Claremont Colleges

Scholarship @ Claremont

CGU Theses & Dissertations CGU Student Scholarship

Fall 2022

Data-Driven Methods for Low-Energy Nuclear Theory

Jordan M.R. Fox
Claremont Graduate University

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd

Cf Part of the Nuclear Commons

Recommended Citation

Fox, Jordan M.R.. (2022). Data-Driven Methods for Low-Energy Nuclear Theory. CGU Theses &
Dissertations, 445. https://scholarship.claremont.edu/cgu_etd/445.

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized
administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.


https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/203?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F445&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@cuc.claremont.edu

DATA-DRIVEN METHODS
FOR LOW-ENERGY NUCLEAR THEORY

by
Jordan M. R. Fox

Claremont Graduate University and San Diego State University

Fall 2022



Copyright (©) 2022
by
Jordan M. R. Fox



Approval of the Dissertation Committee

This dissertation has been duly read, reviewed, and critiqued by the Committee listed
below, which hereby approves the manuscript of Jordan Fox as fulfilling the scope and
quality requirements for meriting the degree of Doctor of Philosophy in Computational

Science.

Calvin W. Johnson, Chair
San Diego State University
Professor of Physics

Kenneth Nollet
San Diego State University
Associate Professor of Physics

Rodrigo Navarro Perez
San Diego State University
Assistant Professor of Physics

Marina Chugunova
Claremont Graduate University
Professor of Mathematics

Ali Nadim
Claremont Graduate University
Professor of Mathematics



ABSTRACT

Data-driven methods for
low-energy nuclear theory
by
Jordan M. R. Fox

San Diego State University and Claremont Graduate University: 2022

The term data-driven describes computational methods for numerical problem
solving which have been developed by the field of data science; these are at the
intersection of computer science, mathematics, and statistics. When applied to a
domain science like nuclear physics, especially with the goal of deepening scientific
insight, data-driven methods form a core pillar of the computational science endeavor.
In this dissertation I explore two problems related to theoretical nuclear physics: one in
the framework of numerical statistics, and the other in the framework of machine
learning.

I) Historically our understanding of the structure of the atomic nucleus, the
quantum many-body problem, has been built upon many layers of approximation, since
the computational complexity of the problems is so large. One of the most flexible and
enduring models, the configuration-interaction shell model, allows for detailed
calculations of arbitrary scope. I lay out a simple framework for uncertainty
quantification in empirical shell model calculations, thus providing not only error bars
for large-scale calculations, but also insight for theory optimization and experimental
design.

IT) Nuclear cross sections are an integral component in many different
applications including astrophysics and nuclear medicine, but descriptions of cross
sections are often very “data-heavy”. Huge libraries consisting of cross section
evaluations, a combination of experimental measurements and theoretical results, are
dense with information and thus ripe for data-driven methods. I have developed a deep
learning system to learn trends in cross sections across the nuclear landscape. This
system can predict cross sections for any nuclide and also can be used as an ensemble
predictor. This is to my knowledge the first generative adversarial model developed for
analyzing trends in nuclear data libraries.
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0.1 OVERVIEW

In this dissertation I explain two research problems I have worked on during my
doctoral research.

Chapters[1] 2, and [ introduce the relevant aspects of nuclear theory, uncertainty
quantification, and machine learning respectively. It is my intent that these chapters
give sufficient background and framing to the later chapters which detail my work.

Chapters 4] and [5| cover my work on uncertainty quantification of nuclear shell
model calculations. Much of the contents from these chapters are taken from two
papers [42] and [43]. At the time of writing, the first paper has been published in
Physical Review C, and the second is in peer review for the same journal.

Chapter [6] covers my work on a deep learning application for nuclear reaction
data. This research began during an internship at Lawrence Livermore National
Laboratory where I was working with Kyle Wendt, and continued into a USDOE Office
of Science Graduate Fellowship in 2021 and after. At the time of writing we are
preparing a paper on this research for publicatior[l]

Finally, Chapter [7] summarizes the conclusions of each project and describes my

plans for future research.

T cannot provide a citation for this work but a manuscript will be posted to arXiv.org in the weeks
following publication of this dissertation.

XX1



CHAPTER 1
INTRODUCTION TO LOW-ENERGY

NUCLEAR THEORY

1.1 Foundations

The physics of atomic nuclei informs some of our deepest scientific questions,
like the origins of visible matter, the physics of stars, and the cosmological dark matter
problem. More urgently though, some science problems are crucial for the security and
future of humanity: safe energy generation, radioisotope use in medicine, and
nonproliferation of nuclear weapons will shape our world through the 21st century and
beyond. Today’s nuclear physicists have a responsibility to build a robust
understanding of our science. We are presented with a unique challenge: while the
Standard Model of particle physics is the most precise physics model ever developed,
there are still crucial gaps in our understanding. Many promising avenues are being
pursued in concert, for example robust ab initio methods constructed from fundamental
physics, and many-body simulation on quantum computers. My work takes another
approach, so-called data-driven methods, which extract insight from the abundance
of experimental and theoretical data using statistical methods and machine learning.

An atomic nucleus is a bound state of Z positively charged protons and N
uncharged neutrons, which together as constituent particles we call nucleons. The pair
of numbers (Z, N) defines a nuclide (a.k.a. species), and each nuclide exhibits
particular properties. For example, Carbon-13 is a nuclide with (Z, N) = (6,7), and it
has a particular set of excitations it may exhibit, with different attributes like angular
momentum and radius. Understanding these low-energy excitations and their

properties is referred to as the study of nuclear structure.



The chart of nuclides, shown in Fig. [I.1], shows the nuclides arranged on a grid
with neutron number N on the horizontal axis and proton number Z on the vertical.
The diagonal trajectory is dubbed the valley of stability: nuclides at the center of the
valley are stable, meaning they will never decay spontaneously, and most surrounding
nuclides are unstable. At present there are about 2900 known nuclides [10], the
majority of which are unstable. Unstable nuclei have several ways they can decay (beta,
alpha, etc.), and in most cases this results in a different nuclide. Nuclides are
considered nonexistent if the nucleons do not form a bound state, and on the chart this
occurs at the driplines: the edges of the valley of stability. At the dripline, adding
another nucleon to the nucleus does not resulting in a bound system, and the new
particle spontaneously “drips” off.

One of the fundamental questions in nuclear theory is the nature of the nuclear
forces [84]. If nucleons only felt the electromagnetic force, nuclei would fly apart due to
the repulsive nature of like charges. Since nuclei are bound, however, we infer there is
an overall attractive force felt between nucleons, and that it must be stronger than the
electromagnetic force at least on scales of 1 fm = 10-1% meters (a.k.a. a distance of one
fermi). Unlike the forces of electromagnetism and gravity, which do work at any length
scale thanks to massless force-carrying particles, the nuclear forces are relegated to only
small scales. Experimental avenues for probing low-energy structure can be complicated
and expensive, and in those cases theoretical guidance of experimental design is
valuable. Comprehensive UQ for nuclear theory can help inform experimental design
for the nuclear forces, but also for neutrinos and physics beyond the Standard Model.

Nuclei are many-body quantum mechanical systems, so not all variables can be
measured simultaneously and to arbitrary accuracy. In the theory, this is represented
by non-commutativity of operators: measuring position first and momentum second is
famously not the same as measuring them the other way around. Model validation for

nuclear theory quite often comes down to comparing a handful of numbers: binding



energies, low-lying excitation energies, decay half-lives, etc. Unlike classical physics the
number of simultaneously observable variables is restricted, and of that set even fewer
serve as truly practical and informative probedl]|

Nuclear structure refers to properties of an individual nucleus at low energy:
spatial density, angular momentum, collective motion of nucleons, etc. Nuclear
structure is thus dominated by the nature of the strong nuclear force and quantum
mechanics itself; in a sense we are excluding more complicated situations (i.e.
relativistic) and just focus on the bare necessities of a nucleus at low energy. The first
chapter of Walecka’s book [128] gives a brisk review of the strong force; roughly
summarized, the strong force is: attractive, short-range (~2 fm), spin-dependent (and
spin-orbit dependent, S - KA), non-central (not only s-wave), charge independent, and
hard-core (strongly repulsive at small distance < 1/2 fm). Nucleons are fermions, which
means they are subject to the Pauli exclusion principle: no two particles can occupy the
same state. Many complicated phenomena result from the combination of these
attributes. A complete theory of structure must explain excitation spectra, spin
properties, vibrational /rotational modes, transition properties (electromagnetic and
electroweak decays), and other properties like electromagnetic moments, including
charge radius, etc. The nuclear structure problem can only manifest naturally in a
finite number of ways: of the 2900 known nuclides, only a subset of those are possible
to obtain and study experimentally.

The modern theoretical formulation of nuclear structure is the quantum
many-body problem; we construct a model of the nuclear force with the above
properties satisfied and then calculate solutions for which the total energy of the system
is well-defined. These solutions can then be used to further compute properties of the

nucleus, interactions of the nucleus with external phenomena, etc.

LA good example of a useful observable is the magnetic dipole moment, which happens to have a
wonderfully simple operator at leading order: a sum of spin and orbital angular momentum. We can
use this to probe the spin degrees of freedom alone and thus it is relatively easy to interpret.



1.2 The many-body Schrodinger equation
for nuclei

In order to describe the many-body quantum state of the nucleus, the problem

we want to solve is the time-independent Schrodinger equation in eigenvalue form:

H|U) = E|W), (1.1)

where H is the Hamiltonian, |¥) is the nuclear (many-body) wavefunction, and
E is the energy of the nuclear wavefunction. I use hats to denote operators, and usually
the same letter without the hat is the matrix representation, that operator in a discrete
basis, unless otherwise noted. Once we have the nuclear wavefunctions |¥) in hand we
can compute observables like attributes of the nucleus (radius, densities, etc.) and
decay probabilities.

The familiar Hamiltonian form is H =7 + V. For multiple particles of equal

mass, we have

N B2
H = Z;_%V?JFU(F) + Y V(7 - 7)), (1.2)

i<j

where U is an external field which is necessary for certain problems (e.g. a
Coulomb field, or a mean-field approximation of forces), and V' is a two-body
interaction. Now, I will present a reformulation of this Hamiltonian, in so-called second
quantization, specifically for fermions (which protons and neutrons are). For the whole
story on second quantization one may turn to most textbooks on field theory; Chapter
3 of Klauber’s QFT book [74] has a good pedagogical presentation. Our Hamiltonian

becomes

1

H:Zn@mﬁ4
s
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where af, a are the fermion creation and annihilation operators respectively

({dg, a;} = d;rdj + djdj = ;7). They act on the many-body wavefunction and add or
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remove particles in the state denoted by their subscripts. This is very handy because
any many-fermion state can be represented as a product of creation operators acting on
the vacuum state: idﬂO). The result will be properly antisymmetrized, and we can
fully describe the state just by the indices of the operators; this is known as the
occupation representation. The coefficients 7',V are real numbers, and the letters
here are chosen because these terms play roughly the same roles as kinetic energy and
potential did before. As input to nuclear configuration-interaction codes

[22, 211, 24], 123], the two-body matrix elements are always coupled up to an angular
momentum scalar so that the many-body angular momentum J is a good quantum
number of eigenstates. (To be specific, the two-body matrix elements are

Vyr(ab, ed) = (ab; JT|V|ed; JT), where V is the nuclear two-body interaction and

lab; JT') is a normalized two-body state with nucleons in single-particle orbits labeled
by a,b coupled up to total angular momentum .J and total isospin 7".) The right-most
expression in Eq. is simply pointing out that the Hamiltonian is just a linear
combination of density operators 6. This is a handy representation when doing
parameter estimation, such as fitting the interaction to reproduce some experimental

observation, because we can deal directly with the vector A.

T

The term density operator is used for operators of the form aa; (one-body) ,

arala,ay (two-body), d;didl&vdu&t (three-body), and so on. The expectation value of
ala;, for instance, measures the density of the wavefunction from state j and .
Likewise alald,a; measures the density of the wavefunction from the pair of states ¢, u
to the pair r,s. Building the Hamiltonian from density operators conveniently allows us
to represent many different theoretical force models in a single format.

Importantly, in Eq. [I.3], the sums run over single-particle states, not over the

particles themselves, because the particles are indistinguishable. We will decide on

what single-particle states to include in the model, and that is separate from the total



number of constituent particles we are modeling. We must make two decisions now:

first, what are the single-particle states? and second, what are the coefficients A?

1.3 The nuclear shell model

The nuclear shell model (NSM) is fundamentally based on two empirical
observations: the Pauli exclusion principle and the magic number phenomena.
Regarding the former, particles with half-integer spin (1/2,3/2, etc.) obey the Pauli
exclusion principal, meaning no two particles in a many-body system can occupy the
same state. These systems are called fermionic and they include the electrons around
an atom and the protons and neutrons in a nucleus. Many-body systems tend to prefer
low-energy states, but the Pauli principle means fermions will “stack” on top of one
another, filling up states like blocks in a game of Tetris. Bosonic systems by contrast
are not subject to exclusion and thus are free to fit many particles into the same state;
a famous example of which is the superfluidity of helium-4. Regarding magic number
phenomena, nuclides with certain magic numbers (2, 8, 20, 28, 50, etc.) of constituent
nucleons are observed to have a greater binding energy (i.e. are bound tighter) than
others similar to them. Although binding energy per nucleon is almost constant for the
majority of nuclides, as shown in Fig. [I.2] shell structure is clearly visible when looking
at the whole chart: Fig. shows approximate second derivatives in binding energy
with respect to N, Z, so deviations away from linearity show up very clearly and are
generally located at these magic numbers. One powerful aspect of the shell model is the
ability to set up calculations between shell boundaries, thereby alleviating the need to
reproduce complex shell structure, and instead allowing us to focus on modeling trends
in between. As such, so-called empirical shell model Hamiltonians are designed for
specific closed regions of model space.

Prior to the development of the NSM, a similar magic number phenomena had
also been observed in electron structure of atoms, although with different magic

numbers (2, 10, 18, 36, 54, etc.). Much of the theory used in atomic structure was



carried over to nuclear structure; of course the constituent particles and governing
forces are very different, but some theoretical constructions persist. Namely, N-body
basis states are almost always considered to be products of N single-particle
wavefunctions, thus solutions to the problem are a linear combination of those. The
theoretical approach to single-particle wavefunctions in NSM adopts some conventions
from the electron shell model, including the use of spectroscopic notation.
Oftentimes out individual particles inhabit eigenstates of the 3D harmonic oscillator
labelled by quantum numbers: the nodal number n, the orbital number [, spin s
(almost always omitted, since |s| = 1/2 for all fermions), total angular momentum
j=1+s (where s = +1/2), and the magnetic number m = j,. Spectroscopic notation is
simply a shorthand for describing the orbit of a particle: that is, the state(s) specified
by n,l,j : typically written n/;. The magnetic number is omitted because in general
our systems are energy-degenerate in m, meaning the Hamiltoninan does not depend on
m. To sufficiently confuse the uninitiated, each [ is assigned a letter corresponding to
an arcane naming convention: [ =0 is assigned s (sharp), [ = 1 gets p (principal), [ = 2
gets d (diffuse), [ = 3 gets f (fundamental/fine structure), and then the naming
continues alphabetically with g, h, etc. So, our single-particle orbits beginning with

n =0 are written as 0s1/2, 0ps/2, 0p1/2, 151/2,0d5/2,0d3/2, and so on. Model spaces in the
NSM are described as set of orbits: the “p-shell” is the set {Ops/2,0p1/2}, the sd-shell is
the set {151/2,0d5/2,0d3/2}, and so on.

Within a usual shell model calculation, we begin with the model inputs and,
with the help of computer code, end with nuclear wavefunctions. From nuclear
wavefuctions we can compute observables and compare to experiment (or study them in
their own right, though technically they are not observables). The model inputs include
the one-body wavefunctions from which we form the many-body basis, the nuclear force

expressed in that basis, and proton number and neutron number to specify the nuclide.



1.3.1 Interactions

Modern nuclear interactions typically fall into two categories: phenomenological
and ab initio. My work mainly concerns the former, but I include a mention of the
latter because they are very important for modern shell model calculations. The
difference of the two has to do with parameterizations of the nuclear force:
phenomenological forces may be parameterized to fit some data and may not have an
easy physical interpretation, whereas ab initio ones are tuned by physically “low-level”
parameters, 2-nucleon and 3-nucleon scattering data, and thus may be more robust but
generally require more work to afford the same accuracy.

A phenomenological or empirical interaction is a nuclear Hamiltonian
which is constructed for a specific model space, typically a small number of contiguous
shell model orbitals. The interactions relevant to my research all have the form of
but in general they do not need to; we say this Hamiltonian is a sum over one- and
two-body density operators. The model assumes that some of the nucleons are inactive,
or frozen, and those within the model space interact and form the different

configurations. Here are some examples of model spaces.

e p-shell calculations. We assume the core is a frozen *He nucleus, and there are
(N -2) neutrons and (Z - 2) protons forming configurations in the Ops/o + Op1/2
space (up to 6 neutrons and 6 protons active).

e sd-shell calculations. We assume the core is a frozen O nucleus, and there are
(N - 8) neutrons and (Z - 8) protons forming configurations in the
0ds/2 + Ods/o + 1519 space (up to 12 neutrons and 12 protons active).

e pf-shell calculations. We assume the core is a frozen 4°Ca nucleus, and there are
(N -20) neutrons and (Z - 20) protons forming configurations in the
1p1j2 + 1psjo + 0f5/2 + 0 f7/2 space (up to 20 neutrons and 20 protons active).

Using a Hamiltonian made of one- and two-body density operators, choosing the
model space fully determines the number of parameters: each orbit is assigned a

single-particle energy and every four orbits (which do not break rotational

symmetry or isospin) is assigned a two-body matrix element. Together these form



our interaction parameters A. These parameters can be determined from first principles
[79], but the usual procedure is to begin with the so-called Brueckner G-matrix method
[61]. The G-matrix has historically been an indispensable component of nuclear
structure calculations, since it is constructed by wrapping many different orders of
interaction into a single matrix. The G-matrix provides a good starting point for
parameter values; typically one then iteratively optimizes A to fit a set of experimental
energies and occasionally some other structure observables.

The phenomenological interaction used in my work is the universal sd-shell
interaction, version B; USDB for short [18]. It is one of several interactions made for
the sd-shell by B. Alex Brown (Michigan State University) and collaborators.

Finally, ab initio interactions are part of a larger effort by nuclear theorists
to create computationally tractable descriptions of the nucleus without some of
large-scale approximations typical traditional shell-model calculations. Ab initio,
meaning “from first principles”, is generally a label for models which construct the
system as an ensemble of small well-understood pieces rather than empirically fitting
within a fixed energy regime. In nuclear physics this takes several forms but my
experience is with the no-core shell model (NCSM) [97, 9]. The NCSM Hamiltonians
are derived primarily from two- and few-nucleon data, often in the framework of chiral
effective field theory [127]; because they work in large single-particle spaces and
converge as the model space increases, such calculations are considered more robust
than empirical calculations, but are limited to p-shell nuclides and the lightest sd-shell
nuclides. Part of the motivation for such calculations is that one can identify the errors
in the theory from leaving out higher order terms [131, 49l 23], 100, K7, 133], but in
practice quantifying uncertainties in ab initio many-body calculations is far from
trivial. As the name suggests, the NCSM does not assume a frozen core of nucleons,
but rather all nucleons are considered as degrees of freedom. This means that even the

very lowest-energy single-particle states must be included in the basis calculation, and



ultimately the basis dimension is much larger in NCSM than the same nuclide in an
empirical calculation. (A promising alternative to empirical interactions are so-called
microscopic effective interactions [12I] wherein ab initio methods are used in a fixed

model space, but these are still very much under development.)

1.4 Shell model calculations with BIGSTICK

Our research group at San Diego State University uses the BIGSTICK code [68]
for many different research application§?l BIGSTICK is a flexible
configuration-interaction open-source shell-model code for the many-fermion problem.
The primary operation of BIGSTICK is to solve the time-independent Schrodinger
equation for a nuclear Hamiltonian, but has many other capabilities as well. I suggest
the technically interested reader to look at [68] for a thorough overview.
Configuration-interaction (CI) is a method for numerically solving the Schrédinger
equation for a many-fermion Hamiltonian in an orthonormal basis of anti-symmetrized
products of single particle states, called Slater determinants. The Hamiltonian matrix
must be computed in this basis, then a diagonalization algorithm is used to obtain
eigenvalues and eigenvectors (most often a subset of the total). CI is exact in principle;
that is, there is nothing within the theoretical formulation of CI that would introduce
errors. However in practice, computational resources are finite and so one must use
finite bases to represent the problem; this inevitably leaves out some physical
contributions and introduces errors. As computing systems have become more
advanced, larger CI problems can be constructed and solved with decreasing errors.

To get the matrix version of Eq. [I.1} we strategically insert some completeness

relations and simplify. Consider a finite orthonormal basis {|®;)}i-1,. a3

PCHIC S EAICHNIESDULHIC AL (1.4)

7

and with some rearranging we can obtain

2The code is available for public download here.
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https://github.com/cwjsdsu/BigstickPublick

S (1, ), [ )[1) = F 3,08, (15)
1] 7
The expression (®;|H|®;) is the matrix element of the Hamiltonian, Hy;, and the
inner products (®;|¥) and (®,|¥) are coefficients of the vector ¥ in this basis, ¢; and ¢;

respectively. The eigenvalue problem can now expressed in terms of sums and products,

ZHijCj|‘I)i> :EZCi|(I)i) (1.6)

where

or, in typical algebra notation,

Hy = E (1.8)

where 1; = (®;|U) is the wavefunction represented as a vector in this basis. Now,
Eq. looks an awful lot like Eq. [I.I} but what we have constructed is actually much
simpler. We have expressed the Hamiltonian operator and the formally
“representationless” solution |¥) in a basis {|®;)}. The many-body Schrodinger
equation is now a typical eigenvalue problem — nothing more mysterious than what is
seen in a first-year linear algebra course. However, computing the Hamiltonian matrix
elements and solving this equation for very large dimensions is far from trivial.

Since we have complete control over our choice of basis, we should take the
opportunity to bake in some physics. The basis used in BIGSTICK, for a calculation
involving N particles, is a set of antisymmetrized products of N single particle states.
Although not mandatory, it is convenient to choose single-particle states with nice
symmetries; we almost always use 3D harmonic oscillator eigenstates defined by
quantum numbers n (nodal), [ (orbital), j (total spin), m (magnetic/orientation).

Usually in CI, one chooses a number to be invariant for all basis states: in the

11



M-scheme we fix J, = M, but there are other codes which fix .J instead. These are
called M-scheme and J-scheme, respectively, and both are equally valid, but there are
practical tradeoffs. Taking M to be invariant means we set its value for all basis vectors
and thus any solution will have J > M. This is convenient because experimental states
are typically identified by the magnitude of J and excitation energy, so we can either
set M to the minimum to include many states, or raise it to exclude states with J < M.
Because nucleons have intrinsic spin s = 1/2 , the minimum M is 0 for even A nuclides
and 1/2 for odd A nuclides.

The single-particle space (SPS) is a set of one-body wavefunctions |¢) from
which the many-body basis is constructed. If all basis vectors |®) are properly
antisymmetrized many-fermion wavefunctions, then the solution to the many-body
problem, |¥), will be a linear combination of properly antisymmetrized many-fermion
wavefunctions, and thus antisymmetric itself. Conveniently, we can express this using a

determinant structure: for N particles, we construct

[ bu(m1) du(ms) o (o)

dot G2(z1)  P2(x2) -+ Pa(an) (1.9)

1
(I)(xla"'axN):m

| on(z1) on(z2) - on(an) |

known as a Slater determinant. Here, the symbols ¢; mean the single particle
wavefunction occupied by particle i. So, the matrix inside the determinant has
dimension of the number of particles N; the whole basis is constructed by taking all
possible combinations of single particle states for N particles, a.k.a. all possible
configurations of the system.

In practice, our basis dimensions can far exceed what modern computers are
capable of. For a matrix with dimension 10® and sparsity 1/10¢, the number of nonzero
matrix elements is about (10%)2/10° = 101°. Even with some tricks (for instance, binary

representation of Slater determinants) the number of nonzero matrix elements can
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quickly surpass hundreds of gigabytes. However, one of BIGSTICK’s features is a very
efficient factorization of the Hamiltonian: we store not matrix elements themselves, but
instead factors of them. This allows for reduced memory storage and good scalability
on supercomputers. The M-scheme in general leads to large basis dimension, compared
to other methods, but BIGSTICK remedies this by scaling efficiently to many hundreds

or thousands of compute nodes (and across even more CPUs with multi-threading).

1.5 Electromagnetic and weak transitions

In this section I will first describe the theory of transition strengths, then
explain the calculations we do to obtain them. The experimental property of interest
for any transition is the half-life T’ 5, which is the amount of time for half of the sample

to decay. The half-life is related to decay rate by

N In2
70 = NO exp(—WTl/g) g T1/2 = W (110)
The connection to nuclear theory is made by Fermi’s golden rule,
2 A 9
Wiy = 1071010 o Ep), (111)

which describes how we compute the decay rate from energy eigenstates of a
nucleus |i),|f). Here, p(Ey) is the density of final states, a.k.a. the phase-space factor.
The rule considers a single initial state decaying to multiple final states.
Experimentalists however can measure rates between single initial and final states, so
the phase-space factor is not relevant for us. We focus on the quantity |(f|O|i)[?, which
is called the transition strength ,

(5 = TAOllein = Ji)

wherein the factor of 2J; + 1 is the number of orientations and accounts for

isotropy of the strength. The double vertical lines around O indicate this is a reduced
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matrix element, which I explain later. Comparing theory to experiment is either done
in terms of B-values or transition matrix elements M (O), where B(O) = |M(O)[.
B-values are always positive real numbers, but there are some special cases where we
need the phase information and thus work in terms of M.

We are interested in computing the transition matrix element M (O) by which
state |i) turns into state |f) via the operator O, and to do so we need the numerical
representations of these vectors and operator. The wavefunctions are produced as
vectors by solving the many-body Schrodinger equation, which is discussed in Section
[[.4f The operators we want are those for electric transitions E\, magnetic transitions
MM, and beta decay.

The fundamental electromagnetic and weak interactions with nuclei are unified
under electroweak theory: in a transition, the nucleus interacts with external fields
mediated by force-carriers (gauge bosons) and in doing so will change from one state to
another. For the electromagnetic force the gauge boson is the photon, and for the weak
force the gauge bosons are the two charged W#* and neutral Z°. Properties of the bosons
give us some hints as to the nature of the interaction: unlike the uncharged photon, the
W#* bosons can change charge of the particle it interacts with, and thus leave us with a
different nuclide than what we started with (meaning, the electric charge of the nucleus
changes with the decay). For example, - decay will change a neutron into a proton
and release an electron and electron antineutrino: (Z,N) - (Z+1,N-1)+e™ + 1.

The transition operators can be derived from first principles of relativistic
quantum field theory, and a detailed explanation may be found in Walecka’s book [128],
Chapters 7 (EM) and 42 (EW). Due to their complexity, I will not include the
derivations here, but I will point out some relevant facts from that analysis. The
electromagnetic operators can be derived from the QED (quantum electrodynamics)
Hamiltonian. The beta decay operators can be derived from the electroweak portion of

the Standard Model Lagrangian. In both cases, one takes the long-wavelength limit
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(i.e. low-energy limit) and get the effective one-body operators for nuclei. The
long-wavelength limit means our modeling of these physical processes is biased toward
low-energy solutions. For the energy regimes relevant to my research, this is
appropriate, but for physics in higher energy-density environments the appropriate

descriptions of operators may change.

1.5.1 Electromagnetic transitions

Physically, an electromagnetic transition is characterized by the nucleus
interacting with an external electromagnetic field, or rather the quanta of that field, the
photon. The interaction is organized in the multipole expansion in terms of a
positive integer multipolarity A, which is the angular momentum carried by the operator

which represents that external field, and the total transition is the sum over all values:

O(total EM) = Y>> O(EX) + O(M)). (1.13)

In this way, we can theoretically isolate each channel of the interaction: A =0 is
the monopole, \ =1 is the dipole, A = 2 is the quadrupole, etc. The orientation of the
external field also matters, so we keep track of that with p which can take integer
values from -\ to +A. Fermi’s golden rule from Eq. can be re-written a bit more

explicitly for an EM transition:

w:iL(&
T eoh A[(2A + 1)1 \ ke

where E, is the energy of the photon, and X is either E or M. Since the

22+1
) AMOEEMIE, (L1

individual orientations (a.k.a. magnetic substates) are not typically observed, we sum

over p, M;, My to get the complete transition probability

1

ZJZ +1 MM

T3 = ST, (1.15)

i
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Note the factor in front with (2.J; + 1); this averages over initial orientations, and

we will actually wrap it and the summation into our definition of the transition

strength B(X\).

E 22+1
N L (J) B(SA: J; > Jp) (1.16)
R A[(2X + 1)!1]

hc

The reduced transition strength (called B-value for short) now contains the
average over initial state orientations and summation over photon and final state
orientations. The formula in Eq. also allows us to convert from experimental
half-lives to experimental B-values, which is usually how we compare model predictions
to nature.

We now must turn our attention to the electromagnetic operators themselves.
As stated, I will not derive these expressions, since such derivations are available in a
number of nuclear physics textbooks, and also the details are not relevant to this

dissertation. The operators are

A
O(EAu) = Y e;rY{(Q;)) (1.17)
=1
for electric, and
A KN & 2 7 - Ay B
O(M M) = %j; [mgl,ﬂj + gs,jsj] -V, [V ()] (1.18)

for magnetic. Here, 7 is an index over nucleons and so values dependent on j
really only depend on whether nucleon j is a proton or neutron. Note that these
operators are dependent on p, and our wavefunctions will be eigenstates of M as well;
we will undo this later with the Wigner-Eckart theorem. The function Y{'(6,¢) is the

spherical harmonic and are the eigenfunctions of the usual orbital angular
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momentum operators:

LY/ = A1+ \)Y (1.19a)

LY} = uY} (1.19b)

which are the square of orbital angular momentum and the z-component of
orbital angular momentum respectively. We often split these operators into two parts:
one which only acts on the proton wavefunction and the other which only acts on the

neutron wavefunction, denoted by subscript p,n. The electric operator is then expressed

O(EM) = e, [rY}(8, O] +en[PYV(0,9)],- (1.20)

The constants e,, ¢, are called effective charges. For the free nucleon, these
would just be the bare proton and neutron charges: 1 and 0 in units of e, the elementary
charge. However, since these operators will work in a limited model space (i.e. the
finite many-body basis) we will inevitably leave out some high-energy contributions.
This truncation introduces errors, and one common way to partially alleviate the errors
is to empirically fit effective charges. In other words, we allow the proton and neutron
charges to inflate a little to accommodate some model shortcomings. These values are
typically around e, = 1.4 and e,, = 0.4, but differ depending on the application.

When using harmonic oscillator eigenstates for single-particle wavefunctions, we
have another parameter that appears in matrix elements: the oscillator length b.
This parameter is actually not a length, it is dimensionless, but it is related to the
harmonic oscillator frequency w by the relation b? = A/mw. Increasing the oscillator
length widens the oscillator potential and decreases the energy separation between
states. Basically, the 7 in the operator will contribute a factor of b* to the total matrix
element. I mention this here because when doing UQ for the E2 transitions we consider
b% as a parameter of the transition along with e,, e,, even though technically it is a

parameter of the single particle wavefunction.
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The electric operator I am most interested in is where A\ = 2, called the

quadrupole,

O(E2) = e, [r?Y4(0, 0)] +en[rPYL(0,9)], - (1.21)

When computing single particle matrix elements, p ends up being zero, but it is
not obvious why this is. First, the spherical harmonic is complex-valued for m > 0. This
is no problem in theory, but there is strong empirical evidence that m > 0 contributions
are zero. Namely, imaginary components in matrix elements break time-reversal
symmetry, i.e. creating or destroying energy. We see empirically that electromagnetic
transitions are time-reversal symmetric, and thus deduce than any imaginary
component of the electromagnetic transition must ultimately be zero. This is
convenient for us, because (as discussed in section we work in bases of many-body
states with fixed M (that is, M = J,, the z-component of angular momentum). In order
for two of these states to be connected by an operator with m > 0, the initial and final
M must differ. With m =0, connecting states with the same M is trivialf|

The magnetic dipole operator (M1) is simpler than the E2 in the sense that it
has no spatial dependence:

—

O(Ml) = gspgp + gsngn + gépgp + ggnﬁn. (1.22)

Protons and neutrons each contribute a spin term and an orbital angular
momentum term. The coupling constants gs, gip, gsn, gin May be treated as parameters
(as I will show in UQ later), but they have default values for bare nucleons. The spin
constants, also known as gyromagnetic factors, have bare values gs, = 5.586 and
gsn = —3.826, and the orbital factors have bare values g, =1 and g, = 0. In practice

though, one may replace these with effective values, which I address in the UQ section.

3By connecting states here I mean that, for states i and f, that (f|O|i) is not trivially zero.
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1.5.2 Beta decay

Beta decay is an electroweak phenomenon, meaning it involves the electric
force and the weak nuclear force; since nuclear structure is governed by the strong force,
a complete understanding of beta decay of the nucleus cannot be had without wrapping
quarks, leptons, and the force-carrying bosons into a single unified framework. The
current incarnation of this framework, and arguably the most successful scientific
theory ever developed, is the Standard Model of particle physics. Beta decay
operators are derived electroweak sector of the Standard Model Lagrangian.

There are three distinct phenomena classified as beta decay: -, 5+, and
electron capture (EC). They are described formulaically as follows. (Positron capture is

relevant for some studies but only in sufficiently high energy densities.)

- A(Z,N)>A(Z+1,N-1)+e +7,
BYA(Z,N) > A(Z-1,N+1)+e* +1, (1.23)
EC:A(Z,N)+e - A(Z-1,N+1) +v,

Depending on how the operators change under the Laplace transform we give
them special names: scalar (S), pseudoscalar (P), vector (V), axial-vector (A), and
tensor (T). In principle, each of these components could be an important part of the
weak interaction, however experimental tests have consistently showed that the vector
and axial-vector parts dominate. The result is given the name V — A theory, since the
resulting form of the interaction is the vector (V) part minus the axial-vector (A) part.
The other three couplings may not be strictly zero, but they are small by comparisonf}

For my work, we accept the V' — A theory and work in terms of two operators:
the vector part, also known as the Fermi part, is simply an isospin (7") raising/lowering
7., while the axial-vector part, also known as the Gamow-Teller (GT), is a isospin

raising/lowering and a spin flip 67,. That is, the Fermi component only changes T,

4Some work has been done to measure the S, P, and T contributions, which may be nonzero via
electromagnetic induction, but such is beyond the scope of this dissertation.
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and the GT changes T, and can change total spin but up to one unit: AJ =0,+1. The
Fermi component to any decay can be determined analytically, due to its simplicity, but
the presence of spin operator in the GT means it is dependent on the wavefunction.
Since experimental results contain a mix of Fermi and G'T contributions, we usually
remove the Fermi contribution from the experimental measurement and compare the

result directly to B(GT).

1.5.3 Computing transition strengths

The transition strength from state 1); to 9y is

{AOxIT)P

1.24

Bi;(0) =

We often think of matrix elements as integrals, but in this case we do not
compute it by evaluating the integral itself. Instead, we can move forward using the
concept of reduced matrix elements and ultimately use density matrices to
simplify the calculation. First, we note that the matrix element in Eq. [1.24] the
quantity (J¢||O,,||J;) is already reduced in total angular momentum, meaning the states
involved are independent of spatial orientation of the systems given by M;, My, and M,.
[ am using J; and M, to be the angular momentum and magnetic number of the
transition operator. Many texts use K for angular momentum of the transition, but I
prefer to be explicit here: a subscript ¢ means that number belongs to the transition
operator. The notation for reduced matrix elements is to use || inside the matrix element
instead of |. This concept of “reduction” comes from the Wigner-Eckart theorem:

(JAO117:)
V2T, +1

This tells us how to couple and uncouple angular momenta: a matrix element in

(Jfo|OJth|JiM¢> = <JiMiaJtMt|Jfo> (1.25)

the coupled basis (where |J; - Ji| < J; < |J; + J;| and M; + M, = M) can be expressed as
a product of a matrix element in a uncoupled basis and a Clebsch-Gordon coefficient.

(Beware: some authors have other conventions for reduced matrix elements.)
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The B-value thus is equivalent to a linear combination of non-reduced matrix

elements,

1 A 1 ~
5771 5 & 2 MOl T = 5 KOs, (1.26)

where we average over initial state orientations, sum over final state orientations,
and sum over external field orientations. The B-value however does depend on
orientation in isospin space, because the z-component of isospin is a property of the
nuclide, T, = (N - Z)/2, which keeps track of charge. Our shell model calculations using
BIGSTICK require a single fixed T, for the basis. Because of this, we must “undo” the
reduction in 7" using the Wigner-Eckart theorem; that is, multiply by the
Clebsh-Gordon coefficient to couple isospin. For y-transitions, charge is conserved so

there is no issue, and the B-value is

|(T;Tz,i7 Tt Tz,t|Tsz7f>|2

it ST )P
I ) s

Bif(Osmmr..) = g« T Ty T 4O goanrr.

(1.27)
However, if the transition changes the charge of the nucleus from 7; to T , as
is the case with S-decay (where |T; - T3| < Ty < |T; + Ty| and T, ; + T, + = T, ¢), then this
presents a problem: how can we compute a matrix element (J¢, T;T% 4||O 5|1 Ji, TiTs)
using a single basis with fixed 7,7 We can resolve this via a so-called isospin rotation;
luckily as long as the states have good isospin, the rotation is completely handled by
the Clebsch-Gordon. Since we already need to introduce the isospin Clebsch-Gordon
coefficient in our expression, the only requirement for the rotation is that we choose a
T, for the basis which is less than or equal to both T’; and T.;. Then, we update the

expression for the B-value as

1

Bif(Opmrr.,) = mWM s I T T Ogoanrr 0 = LT

|<ET2) T;f Tz,t|Tsz>|2
2Tf +1

(1.28)
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where T, is at least the charge difference carried by the operator (for S-decay it
is +1).
Lastly, we compute the doubly reduced matrix element (denoted with |||

around the operator) using density matrices:

p(a,b) = (¥|cle,| ). (1.29)
Specifically the one-body density matrix for a normalized state W is as
follows, using ¢ as the annihilation operator. The interpretation of the density matrix is
quite intuitive: the density operator removes a particle from state a and then creates a
particle in state b, so it is a measure of which single-particle states are occupied in W.
Without accounting for angular momentum, the one-body matrix elements of O would

be computed like

([Ofs) = zbjp(a,b)(alélb)- (1.30)
However, we want the doubly reduced density matrices from state 1; to state v,
so we introduce a slight modification by giving the density operator a well defined
angular momentum J; and writing it as reduced in angular momentum (per our

convention) and reduced in isospin as well.

(5 Tyl [eh @ @], i)
2Jt +1

The notation for coupling the product of operators to angular momentum K and

Pl (a,0) = (1.31)

magnetic number M is [62 ® éb] which is equal to a linear combination of uncoupled

Ji My

operators with Clebsh-Gordon coefficients:

(@], = D (ama domal AM)E,, Em, (1.32)

memy

where the time-reversed annihilation operator is ¢;,, = (-1)7*™c¢; ,,. The subtlety

here is that the annihilation operator is actually not a spherical tensor, and in order to
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use the SU(2) rules of angular momentum coupling we must be working with spherical
tensors. Luckily, the time-reversed version is a spherical tensor.
With the doubly reduced density matrix in hand, we can compute the doubly

reduced matrix element,

(07 : STy TNO sl = TTIT) ZthMt(a b)(alllO sz D) (1.33)

which we can plug into the B-value in Eq. [1.28] The doubly-reduced one-body
matrix elements of the transition operator, (a|||OJ,a,77. |||b), depend on the operator in
question but are usually not difficult to compute. They are computed once, stored, then

referred to for many calculations of many-body matrix elements.

1.6 Nuclear reactions and scattering

This dissertation is not about scattering theory, but in order to do proper
machine learning on reaction cross section evaluations we must understand the physical
importance of relevant quantities. A nuclear reaction is a process which begins with
an initial nucleus, ends with a final nucleus, and is described by a interaction with some
other nuclei or particles. The initial and final nuclide may be the same, for example
24Mg +n —2* Mg + n/, which we can imagine as a energetic neutron colliding with a
magnesium-24 nucleus, depositing some energy, and bouncing off. The initial and final
nuclides can also be different, for example one of Ernest Rutherford’s scattering
experiments tested the reaction N+« =17 O + p: a nitrogen-14 target is hit with an
alpha particle (a.k.a. a *He nucleus, made of two protons and two neutrons), and
produces oxygen-17 and an extra proton. In both these examples we have a target and
a projectile; we know the general attributes of their initial and final states, and what
happens in between is governed by some complex scattering phenomena.

The simplest theoretical picture of quantum scattering is to represent the

incoming particle with a plane wave incident upon the nucleus, then represent the
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outgoing particle as a spherical wave travelling away from the nucleus. So we would

look for solutions to the Schrodinger equation with the form

U [ek + 1(0) e:] . (1.34)

An illustration of the scattering event is shown in Fig [I.4l Note than the
wavenumber, k, related to energy by k = v/2mE /h, is the same for the incoming particle
and outgoing particle, and we call this situation elastic scattering. For inelastic
scattering, wherein some energy is deposited in or withdrawn from the target, one must
account for different wavenumbers. The proper handling of that typically involves a
partial wave analysis and is not particularly relevant for this dissertation. Under these
assumptions, the quantity of interest is the scattering amplitude, f(6), which
describes the polar distribution of the scattered particles. Treating this like a

probability amplitude, we can square it to get the so-called differential cross section

2 do _ 2
do =|f(0)|°d2, or 20" If(O)°. (1.35)

The solid angle element df2 is a small patch of the detector through which
outgoing particles pass, and do is a small increase in the cross section of particles
scattered at polar angle # and reaching the df)-sized area. The differential cross section
as I wrote it is defined for a projectile energy F = k?h2/2m, but we can easily imagine
our hand on the knob controlling energy of the projectile beam. As we turn up the
energy, do/dS) is going to change and allow us to probe the physics underlying the
scattering process. Integrating over the polar angle we can get the total cross

section, as a function of the energy of the incoming particle that is

Oior(B) = f d00(0, E). (1.36)
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This is the quantity being studied in my ML research: the cross section as a
function of energy. Relevant scattering energies are on the order of 10 MeV, which is on
the low end of possible nucleon-nucleus scattering experiments.

The current corpus of nuclear cross section data has contributions from many
groups in many countries around the world. Groups in China, Russia, Japan, Europe
(under the Organization for Economic Co-operation and Development), and the USA
have issued up-to-date comprehensive libraries, not to mention the data maintained and
issued by the International Atomic Energy Agency or other libraries with a special
purpose (i.e. fusion research, etc.). Thanks to the enourmous efforts of nuclear data
scientists, much of this data can be accessed through the evaluated nuclear data files
(ENDF) database [25]. ENDF is the name of a reaction evaluation library created by
groups in the USA, but the online ENDF database allows access to many other libraries
as well. Fig. shows an example of the ENDEF data retrieval tool.
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Figure 1.4. Illustration of the basic (elastic) quantum scattering event. (Fig-
ure by Jay Wang, 2020)
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CHAPTER 2
UNCERTAINTY QUANTIFICATION IN

PHYSICS

The fundamental idea of uncertainty quantification (UQ) for theoretical
calculations is that no physical theory or model exactly represents nature, and that we
can gain insight by studying discrepancy between our simulator and experimental
observation. Providing theoretical predictions with error bars that reflect the true
limits in our knowledge of a physical system allows for meaningful comparisons between
different theoretical models. Even if the assigned uncertainty is an approximation, as it
often is in practice, it is useful to theorists and experimentalists alike. As such, UQ can
be considered a driver of the experiment-theory feedback loop. Proper UQ on the
theoretical side can be used to identify the experimental measurements that will have
the largest impact in reducing such uncertainty. New measurements, with their own
error bars, can then be used to improve current theoretical models.

Gelman’s book Bayesian Data Analysis [51] describes the data analysis process

in three steps, which I paraphrase here.

1. Set up a probability model for the quantities of interest. This may include
experiment, computer simulation, or parameters to a computer model. The goal
is to correctly identify what your target variables depend on. We may need to
learn some probability theory, but this step is not too difficult.

2. Put the formal probability model in a form you can compute. We construct the
posterior distribution for the quantity of interest, usually dependent on some
experimental data. This step is the most challenging and likely the most
contentious. Here is where we may introduce approximations, choice of emulators,
etc. (Any mistakes made here will certainly propagate to the outcome, so be
careful.)

3. Evaluate the model. How this is done depends on the form of the model itself,
but the result is a description of the posterior distribution and thus we can
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analyze model fit, implications, etc. In the Bayesian paradigm, the posterior
distribution informs our belief about the variables in question. Before much
computational development had gone into UQ, this part would have been quite
challenging as well, but recent advances in computational methods and machine
learning have made evaluation easier than ever.

We describe an experimental measurement y as
y(A) =m(A,0)+(A,0)+e(A), (2.1)

where m is our simulator for the quantity y, A denotes attributes of the physical system
being modeled, 6 is a set of simulator parameters, § is the systematic discrepancy in the
simulator, and finally € is the error in the experiment, including statistical and
systematic errors [71], 1T5]. We use the term simulator to mean the mathematical
model as well as the code implementation; although errors and uncertainty can
technically stem from code implementation itself, we combine these factors under the
assumption that code errors and algorithmic/numerical errors are smaller than all other
sources of error. The experimental values y(A) are tabulated with corresponding
uncertainties €(A) being reported by the experimentalist. The discrepancy 0(A, ) is
entirely dependent on the problem at hand. For some problems we have very little
knowledge of systematic structures and so modeling d in its own right is valuable for
progressing theory. However, in much physics research, there is a general understanding
of discrepancy and as such modeling ¢ directly is not very fruitful. A good example of
this in physics is anywhere perturbation theory is used to find a leading-order
contribution: doing UQ only to determine the known higher-order corrections is clearly
a redundant effort. Rather than attempting to improve the model by explicitly reducing
discrepancy, we want to quantify the uncertainty of model parameters 6. Because of
this, we consider the total error §(A,0) +e(A) = y(A) —m(A, ), and uncertainty on 6

can be determined by studying this relationship for many different cases or systems A.
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We begin by asking a question: given experimental observations, how do we
describe behaviour of the variable (parameters) of interest 7 The first step in

answering this question is formulating Bayes’ rule,

P(y|6)P(6)
P(y)

The posterior P(f]y) is the ultimate goal of our analysis: a distribution

P(bly) =

describing the parameters of interest € given observations y. Bayes’ rule says the
posterior can be computed from existing (or at least, attainable) knowledge of these
variables. The likelihood distribution P(y|@) describes the converse of the posterior:
how observations y behave given an instance of §. The prior P() is the probability
distribution of # according to our prior knowledge. Finally, the evidence P(y)
describes the distribution of y according to our knowledge.

A short aside, in the effort to develop some intuition — we are using particular
notation to describe variables conditioned on other variables: A|B means A given B.

This is related to intersection by

P(A|B) = P(An B)/P(B) P(An B) = P(A|B)P(B). (2.3)

Since probabilities are always between zero and 1, we know that
P(An B) < P(A|B): the probability of two events occurring together (intersecting) is
always less than or equal to one occurring given the other, and always less than or
equal to either of the individual probabilities P(A) and P(B).

Our next step is to decide the likelihood, and in the context of comparing a
numerical model to experiment, the most common choice for P(y|@) is defined in terms
of the x? (“chi-squared”), which is a simple measure of model error. The sensible
assumption in using this form of likelihood is that the probability of P(y|@) is equal to

the product of individual probabilities P(y,|@), so
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-3 (1) 24

The index « denotes each observation, and the factor Ay, is the experimental
uncertainty (one standard deviation). While the latter is often equal to € in my
formulation above, that is not always the case and computing it may be a bit subtle; in
that case one must remember that separate (uncorrelated) contributions to uncertainty
add in quadrature. The likelihood is conventionally defined P(y|f) = exp [—% XQ(Q)].
This distribution is Gaussian in terms of m,(6) but is generally not Gaussian in terms
of 6.

Our next step is to define the prior P(#). Assigning probability distributions to
variables is nontrivial, and very much research has been done regarding choices of priors
[119, 51]. In the Bayesian context, the prior encodes our existing a priori knowledge of
0, and as such is entirely problem dependent. We do have guidance, however, in the
form of the principle of maximum entropy (MaxEnt): the best choice of probability
density p(z) is one that maximizes entropy S = — [ dxp(z) log p(z) subject to some
constraints (probabilities sum to 1, etc.). The simplest result gives the principle of
insufficient reason: when nothing is known about # in advance, let all outcomes of 6
have the same probability. However, with physics models, this is rarely the case. One
may argue that using a uniform prior is warranted for practical reasons, possibly based
on the difficulty of designing an informative prior, but physics models are rarely
designed with arbitrary parameterizations. Some results of MaxEnt are given in

Table [2, depending on the a priori knowledge.

a priort knowledge MaxEnt distribution
Nothing Uniform
Mean Exponential
Mean and standard deviation Gaussian

One can probably see now why Gaussian priors are so common: physicists will

generally be able to estimate mean and standard deviation of the parameter, but rarely
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bother with higher moments. This is also why the Gaussian likelihood is so common for
experimental data which include errors. In the larger picture, we maintain that
scientists should always work to remove subjectivity: no two researchers should do the
exact same statistical analysis and come up with different answers. This in itself is not
a very controversial point. However, it is my belief that use of an informative prior,
even when it is technically an inaccurate representation of beliefs due to the
parameterization being wrong, is still very useful and warranted. One simply must
make it explicitly clear what the assumptions were, as is always the case. With
advances in numerical evaluation of probability distributions (e.g. fast Markov Chain
Monte Carlo), one may include several choices of prior distribution and present them
side-by-side in the research.

A common trick to deal with the evidence P(y) in the denominator of Eq2.2]is
to wrap it into a proportionality constant. The evidence has no # dependence, thus can
only contribute to the overall scaling of the posterior. In a typical UQ analysis, a
normalized posterior need not be obtained anyway, since it is relative probabilities that

are informative. So, we seldom keep track of proportionality constants,

P(0ly) o< P(y|0)P(0). (2.5)

Bayes’ rule now looks deceivingly simple; evaluating this numerically can be
difficult and require considerable computation power. Luckily MCMC evaluation is
easier and more powerful than ever; in Python my preferred tool is the emcee library
[40], an affine-invariant ensemble sampler, which parallelizes and scales efficiently.
Matlab and R have their own built-in MCMC libraries, and many open-source
implementations can be found for C and Fortran. There are even programming
languages developed specifically for Bayesian statistical analyses, with statistical

principles built into their design; a popular one is Stan [52], but there are many more.
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CHAPTER 3
INTRODUCTION TO DEEP LEARNING

3.1 A review of artificial neural networks

Any deep learning system has three key components: the neural network
architecture M, the data (X,Y’), and the loss function £. The objective is to find the
function mapping M : X - Y by training the network on data. The neural network is a
highly nonlinear composite function with parameters (weights) W, mapping input data
rxeX toyeY, so we may write M(W;x) =y" where 3’ is ideally close to y. The
accuracy is determined by training and the loss function which very often compares the
model prediction y’ to the target data y and returns a number £(y,y’) which becomes
smaller as y’ — y. The ML practitioner uses an optimization algorithm to iteratively
change the networks wights W as to minimize (on average) L(y, M(W;x)) for all z € X
and y € Y. This optimization process typically uses a stochastic gradient descent (SGD)
algorithm, which uses backpropagation (automatic differentiation) to determine the
gradient of the loss function at each iteration and find a new parameterization W — W’
with some randomness involved. In general this is a global optimization problem, and
there may be many local minima which give a poor solution. The random properties of
SGD allow for local minima to be reached and overcome as training continues.

Often the first task of a ML practitioner is to look at the data, clean it,
normalize it, and/or generally put it into a proper form for machine learning. This
takes many forms and is entirely dependent on the problem, but there are a few guiding
principles. First, data must be as clean as possible: all data should be of the same type
and shape, with no missing values. Second, the data should probably be normalized;

there are a number of common ways to normalize data and this likely will depend on
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network architecture as well. Of course, some problems may require the model to learn
different scales and thus normalization would not be appropriate, so this depends on
the situation. Third, it may be optimal to transform or compress the data. For
example, consider high-dimensional image data: will the ML system perform better on
the images themselves, or on a truncated Fourier transform of the images? Usually this
requires some experimentation, but simplifying data representation can make a big
difference in model accuracy.

The simplest deep neural network design is a densely-connected feed-forward
network, shown in Fig. [3.1] called the multi-layer perceptron (MLP). The network
receives input x with dimension p and outputs y (1-dimensional in this example). The
middle layer, called a hidden layer, takes inputs and performs the operation
f(Wyzx) = v where f is a nonlinear activation function, Wj is the weight matrix of
that layer, and v is the resulting vector. Notice that every input node connects to every
node of the hidden layer; this is called a dense connection. The output layer does the
operation g(W7v) =y where W is another set of weights, ¢ is a function mapping onto
the output range.

The function f is an activation function. Probably the most common modern
activation function is the rectified linear unit, ReLU, which is zero for all negative
numbers and identity for all positive numbers. The ReLU is very powerful and there
have been many studies exploring its efficacy [32], 136]. I will mention two other
activation functions, but there are many more. First, the Leaky ReLU [83] was
invented to fix the vanishing gradient problem for negative ReLLU inputs: rather than
zero for negative numbers the Leaky ReLU becomes negative with a very small positive
slope, hence it is allowed to “leak” a little energy from the activations. Second the
sigmoid linear unit, SiLU/Swish [106], defined x/(1—-e*), is an everywhere-smooth
function with a single minimum near -1. Which activation works best is particularly

dependent on features in the training data: despite not being smooth, the kink in ReLLU
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may perform best in learning data with sharp changes. Likewise the SiLU may be an
optimal choice when data contains smoother trends. This is mostly heuristic though,
and in practice one simply tries several and uses the best for the present problem. For
example, the SiLU may outperform the ReLLU in many cases, but it is also more
expensive to compute; for very large networks the extra time required to compute SiLU
for many nodes might not be justified by those gains.

The function g maps from the internal representation f(Wyx) = v to the output
g(W1v) = y. Some popular choices are linear (identity), the same function used for
activation (if appropriate), and a sigmoid. A sigmoid is not one function but a family
with similar properties; they accept a real number input on (—oo,+00), are
monotonically increasing, differentiable everywhere, and have exactly one inflexion
point (i.e. the second derivative has one root). Some examples are shown in Fig. [3.2]
Sigmoids are good for mapping the real numbers to probabilities. Sigmoids have
historically been used as activation functions as well, but are not used as such in
modern deep learning applications because they suffer from some issues such as
vanishing gradients.

In order to train the MLP model M (W:;z) to emulate a function ¢(x), we need
many evaluations of that function for training and validation, and we must define a
differentiable loss function, £(¢(x), M (W;x)). In general, the form of the loss
function is dependent on the task, but we have a few standard options [15]. First,
mean-squared error (MSE) is a common choice for regression problems because it grows
quadratically with error thereby strongly emphasizing poor predictions. However, this
also means that MSE is susceptible to being saturated by outliers. If outliers are a
problem, one might use mean absolute error (MAE) which only grows linearly with
error; however, MAE is not differentiable everywhere which may cause problems.
Lastly, binary cross-entropy (BCE) is useful particularly for classification problems

where both ¢ and M are probabilities (that is, ¢, M €[0,1]). All three of these loss
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Figure 3.1. The multi-layer perceptron, the simplest useful deep neural net-
work. Information flows from left to right, mapping the input x to output y.
The multiplicative weights I/ and w are optimized during training.

functions have the property that every contribution to the loss function is positive, so

we need not be concerned about cancellations.

Luse(@) = 1 2(0(@) - (@)’
Laras(@) = 5 Slo(@) - (o) 3.1)

Lace(e) =~ 330(@) oe(u(e) + (1 - 6(z)) log(1 - y(a)

The MLP and other networks like it may be used for two kinds of problems:
regression and classification. Before going into more complicated tasks, we must
understand these two. Generally speaking, if our model is mapping to a continuous
variable then we have a regression problem, and otherwise if our model is mapping to a
discrete variable then we have a classification problem. Input variables, which can be

continuous or discrete, are considered independent.
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Figure 3.2. Some examples of sigmoid functions: the logistic function
(1 -e7*)"!, a scaled hyperbolic tangent (tanh(z) + 1)/2 where tanh(x) = (e® -
e®)/(e* + e*), and a scaled error function (erf(z) + 1)/2 where erf(x) =
(2//7) [, exp(~t?)dt. Sigmoids are useful for mapping the real numbers to
probabilities.

3.2 A brief history of deep learning

Machine learning (ML) is a broad field encompassing many different methods
and applications. It is intimately related with the field of artificial intelligence, and as
illustrated in Fig: the overlap of the two contains so-called deep learning which is
relevant for this dissertation. ML is often described strictly as a subset of Al but I
believe that view is a bit outdated. Some aspects of Al research have very little to do
with computer implementations, like the politics and sociology of robots. On the other
side, plenty of useful ML algorithms can hardly be considered intelligent, such as
regression algorithms, decision trees, and Gaussian processes. Certainly those can be
considered the basis for contemporary deep learning, but our definitions of AT will
naturally change as technology develops. Some machine learning tasks are easy for
humans to perform, but are quite difficult for us to detail the rules for or write a
computer code to perform: this is where ML enters into Al. Deep learning is useful for
problems wherein detailing steps toward the solution is too complicated, and yet one

has plenty of examples of correct execution: these include image
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Figure 3.3. Some examples of activation functions.

recognition/classification, speech recognition, generating data/images by example, and
controlling complex systems like cars and robots.

Many methods and concepts we now recognize as essential to deep learning are
not new inventions. It is likely the first artificial neural network was invented by
Frank Rosenblatt [113] in 1958 at Cornell Aeronautical Laboratory. Rosenblatt called
his invention the perceptron and he was mainly concerned with concepts of storing
“memory”, representing input data in what we would now call the network parameters
or weights. One idea that was developed early in cybernetics, which was the name for
neural network research at the time, and remains useful in 2022 is using a stochastic
gradient descent algorithm to optimize weights of the network. However, early
models were linear, so they could only learn functions of the form f(x,w) =¥, w;z;.
The inability for linear models like the perceptron to learn even very simple nonlinear
functions (famously, the exclusive or operation, XOR) led researchers to be skeptical of
their promise. In the 70s and 80s however, a renewed interest led to a few
breakthroughs including Kunihiko Fukushima’s Cognitron and Neocognitron models

[47, 48] for image recognition, which formed the basis of modern convolutional
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Figure 3.4. Deep learning (DL) exists within (but is not equal to) the inter-
section of artificial intelligence (AI) and machine learning (ML). In my work
I use deep generative models () to make predictions about physical systems.

neural networks and included the first use of a nonlinear activation function, the
rectified linear unit (ReLU).

The so-called deep learning revolution around 2012 had several main factors:
unprecedented accuracy in unsupervised learning problems, models outperforming
humans at image recognition and games, and significant advances in hardware and
software. To name just a few: the now-famous convolutional model ImageNet[7§],
robust speech recognition with large vocabularies [26], and development of distributed
training methods [27] (which would ultimately prompt the construction of TPU
architectures). AlphaGo [118| [3] beating high-ranking Go players Fan Hui (2015), Lee
Sedol (2016), and #1 Go player in the world Ke Jie (2017) illustrated the superhuman

capabilities of deep learning systems on a world stage.
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CHAPTER 4
PROJECT 1A: UNCERTAINTY

QUANTIFICATION IN SHELL MODEL
CALCULATIONS

Published in Phys. Rev. C [{2] and available on |arXiy

4.1 Introduction

Recent advancements in nuclear theory have emphasized the importance of
theoretical uncertainty quantification (UQ) [28] with applications to, among other
things, the nuclear force and effective field theory [131] 149, 23], 100, ’7, 133], the optical
model [81], 96], density functional theory [116], 86] and the configuration-interaction
shell model [64], 139].

The shell model, which provides a useful conceptual framework for nuclear
structure, can be approximately divided into ab initio and empirical /phenomenological
approaches. Ab initio calculations, such as the no-core shell model [97, [9], typically use
forces built upon chiral effective field theory [127] and thus are arguably more
fundamental and also have been subject to considerable UQ [131], 49, 23| 100], 87, 133],
but are limited to light nuclei, approximately mass number A < 16. Empirical shell
model calculations [22] 211, 24] have a long, rich, and successful history, and,
importantly, have been applied to a wide range of nuclei far beyond the Op shell, but the
theoretical underpinnings are more heuristic: individual interaction matrix elements in
the lab frame (single-particle coordinates) are adjusted to reproduce experimental data.

(We will not consider here related but distinct methodologies such as coupled

clusters [58], and we note but do not comment further on efforts to construct
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interactions that ‘look like’ traditional empirical calculations but are derived with
significant rigor from ab initio forces [122].)

Previous work on UQ in the shell model focused on Op-shell calculation: one
considered a simple interaction with only seven parameters, examining correlations
using a singular-value-decomposition analysis [64]; while the other used 17 parameters
but did not consider correlations between parameters [139].

Because of the broad applications and demonstrated utility of the empirical shell
model, we carry out a sensitivity analysis on an widely-used, ‘gold standard’ empirical
shell-model interaction, Brown and Richter’s universal sd-shell interaction, version B, or
USDB [19]. Here, ‘sd-shell’ means the valence space is limited to 1s and 0d
single-particle orbits, with an inert 0 core.

In fitting their interaction, Brown and Richter followed a standard procedure
[22]. They minimized the total error with respect to experiment, defined as the
x2-function in Eq. below, by taking the first derivatives with respect to the
parameters, which yield the linear response of calculated energies to perturbations of
the parameters, and then carried out gradient descent on the independent parameters,
here 63 two-body matrix elements and three single-particle energies. In the fit they
found that about five or six linear combinations of parameters, found by singular value
decomposition as we do below, were the most important. (Interesting, a similar result
was found for random values of the matrix elements [66]). Brown and Richter actually
produced two interactions [19], USDA, which was found by fitting the first 30 linear
combinations from singular value decomposition, and USDB, found by fitting 56 linear
combinations.

For a Bayesian sensitivity analysis, discussed more fully in Chapter 7?7, one must
characterize the likelihood function for model parameters. In Laplace’s approximation,
one assumes the likelihood is well approximated by a Gaussian, which corresponds to a

quadratic expansion in the y2-function. Even so, the matrix of second derivatives of x?
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(which, more rigorously, is the log-likelihood), or the Hessian, needed is quite
demanding to obtain.

We therefore consider a further simplification, approximating the Hessian by the
same linear response (first derivatives of the energies), which are efficiently computed
by the Feynman-Hellmann theorem [59, 38]. As discussed below, this principal
component analysis of the sensitivity is, in this approximation, singular value
decomposition of the linear response. Importantly, we find that numerical corrections to
the linear response matrix are small, making this approximation appealing for studying

larger spaces wherein the full numerical calculation is too costly.

4.2 The empirical configuration-interaction
shell model

For details on the shell model, see Section [L.3]

We assume a frozen 90 core and use the 1s-0d single-particle valence space, also
called the sd-shell. Assuming both angular momentum J and isospin 17" are good
quantum numbers, one has only three independent single-particle energies and 63
independent two-body matrix element, for a total of 66 parameters. Because each of

those parameters appears linearly in the Hamiltonian, we can write

where O; is some dimensionless one- or two-body operator. Thus the parameters A
have dimensions of energy.

The set of parameters A = {)\;} we use are Brown and Richter’s universal sd-shell
interaction version B (USDB) [19], which, along with its sister interaction USDA, are
the current “gold standards” for empirical sd-shell calculations. The present study seeks
to extend this model by computing theoretical uncertainties on model parameters and
shell-model observables [110], [T08]. While the parameter vector A is formally considered

a random variable, note that all calculations are performed about the USDB values.
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An important nuance in using the USDB parameters is that while the
single-particle energies are fixed, the two-body matrix elements are scaled by (Ay/A)%3,
where A is the mass number of the nucleus, and Aq is a reference value, here = 18. We
account for this by modifying as H =Y, Ai(Ag /A)0~3@i (but only for the two-body
matrix elements), so that we implicitly varied the parameters fixed at A = 18.

Experimental energies in this paper are the same used in the original fit of the
USDB Hamiltonian: absolute energies, relative to the O core and with Coulomb
differences subtracted, of 608 states in 77 nuclei with A =21 - 40. The data excludes
any experimental uncertainties greater than 200 keV, and most are smaller, on the
order of 10 keV.

In the rest of this paper, we estimate the uncertainty in the USDB parameters
and, from those, estimate uncertainties in observables such as energies, probabilities for
selected electromagnetic and weak transitions, and for a matrix element relevant to

dark matter direct detection.

4.3 Sensitivity analysis of a nuclear
interaction

Our development above is cast in terms of standard sensitivity analysis
[82, 88, [103], 28]. To connect with more sophisticated UQ analyses, and to set the stage
for future work, we provide a broader, Bayesian context.

To define uncertainty on the USDB parameters, we start with Bayes’ theorem.

Let D represent data and A the parameters, then

P(DIN)P(A)

PAD) ==,

o P(DIA)P(X) (4.2)

Bayes’ theorem states that the distribution of model parameters given the
experimental data (the posterior = P(A|D)) is proportional to the distribution of data
(the likelihood = P(D|A)) given the parameter set, multiplied by the a priori

distribution of parameters (the prior = P(X)). Bayesian analysis [I19] demands that
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we put some thought into the choice of prior, and a common choice here is a
non-informative prior, which seeks to minimize the effects of prior knowledge on the
posterior distribution. In this case a non-informative prior can simply be uniform and
very broad in the limiting case, P(\) = constant everywhere. This assigns equal
probability to all parameter values (the principle of indifference [119]). Although one
could also justify using an informative prior, the flat prior it is a sensible first
approximation for the scope of this analysis.

With the prior set to constant, Bayes’ theorem reduces to:
P(A|D) «< P(DIX) (4.3)

The goal now is to evaluate this expression, and we can choose between two
methods: Laplace’s Approximation (LA), or Markov-Chain Monte Carlo (MCMC). Due
to its simplicity, we choose LA, as did a prior shell model study [139]. While MCMC
advantageously makes no assumption as to the form of P(A|D), it typically converges
slowly for posteriors which are steep around extrema, so the computational cost of LA
is comparatively much less.

Laplace’s approximation is a second-order Taylor approximation in the
log-likelihood, and thus we assume normally distributed errors on energies. Our

likelihood function takes the form:

P(DIX) =exp| -5 (V)| (4.4)

where 2 is the usual sum of squared residuals:

N’(EEM(A)—E@m)z

X’(A) =), AL (4.5)

a=1

In addition E5™ is the experimental excitation energy given in the data set and
ESM(A) is the shell model calculation for that energy using the parameters A. The
total uncertainty AFE, on the residual is expressed as experimental uncertainty AFEq"?

and some a priori theoretical uncertainty AE* added in quadrature:
AE? = (AE™)? + (AES*P)? (4.6)
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Here we introduce AE as an estimated uncertainty on the shell-model predictions of
the data. We assume it is independent of the level, that is, of «, and fix it by requiring
the reduced sum of squared residuals x2 = %XQ ~ 1 [88], which gives us AE" ~ 150 keV.
Here v is the number of degrees of freedom: the number of data points minus the

number of parameters. In their original paper, Brown and Richter set o*® (equivalent to

our AE™) =0.1 MeV as “close to the rms value” they eventually found, 126 keV [19].

-3 -2 -1 0 1 2
R4 (unitless)

Figure 4.1. Histogram of energy residuals R, = (E5M(Ausps) - Ea?)/AE,.

Before proceeding with the sensitivity analysis, it is important to test the
distribution of residuals R, = (ESM(Ausps) — Ea'?)/AE,, shown in Fig. since we
will approximate it to be normally distributed (equivalent to Laplace’s approximation).
We employ two statistical tests of normality: Kolmogorov-Smirnov [I] (KS-test) and
tail-sensitive [93, [6] (T'S-test); the former is a typical test of overall normality, while the
latter is more sensitive to features in the tails of the distribution. Each test returns a
p-value: we adopt the traditional significance threshold of p > 0.05 as no significant
evidence for deviations from the standard normal distribution. This is sometimes
colloquially referred as agreement between the empirical and theoretical distributions.

To visualize these tests of normality, we show a rotated quantile-quantile (Q-Q) plot of
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the residuals R, in Fig. 4.2l The residuals appear to have a nearly normal distribution,
and indeed the KS-test returns a p-value of 0.15. This validates our implementation of
Laplace’s approximation. However, the more sensitive T'S-test returns a p-value of 0.02,
indicating that the tails of the residual distribution contain sufficient non-normal

features as to warrant a more detailed study in future work.

s 1
£
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J A TS test
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-3 -2 -1 0 1 2 3
Qnormal

Figure 4.2. Rotated quantile-quantile (Q-Q) plot of energy residuals
(ESM(Ausps) — Ea'")/AE, with respect to standard normal distribution. The
dashed and dotted lines in the Q-Q plot show the boundaries of TS and KS-
tests respectively. Deviation from the horizontal axis indicates non-normal
deviations in the data. The residual points crossing the dashed purple line
around (normal ® 1.5 corresponds to the low p-value returned by the TS-test.

The quantile-quantile (Q-Q) plot [2] is a useful tool for visualizing how well the
distribution of a data set matches that of a random variate from a known probability
distribution. Our rotated Q-Q plot in Fig. [4.2] shows the comparison of energy residuals
to a standard normal distribution. A typical Q-Q plot graphs N measured data points
{xzda%2} "sorted from lowest to highest, against N uniformly distributed evaluations
{x¢} of the quantile function (sometimes called a percent-point function) of the

distribution we wish to compare to. For a random variable X with cumulative
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distribution function (CDF) Fx(z) = Pr(X < z), the quantile function Qx(p) returns
the value of x such that Fy(x) = p; in other words, it is the inverse function of the
CDF. For instance if the set of data points follows a normal distribution, that is,
{xoval} = {grormal} then the points (xdata gnormal) for =12 ..., N will fall on a straight
line with slope of 1. If the data does not follow a normal distribution, then the points
will deviate from a straight line, displaying how non-normal the data is. Our Q-Q plot
in Fig. in this paper has been “rotated” by plotting instead (z{at — phormal pnormal)
where 7982 are the energy residuals, so that a normal distribution would lie on the
horizontal axis at zero. This allows for an easier identification of discrepancies between
empirical and theoretical quantiles via visual inspection.

Many statistical tests exist for determining normality of data, and often these
can be represented as a curve on the Q-Q plot. The Kolmogorov-Smirnov and
tail-sensitive tests used in this work correspond to curves shown in Fig. 4.2} evidence of
possible non-normality of the data is indicated by the plotted quantile-quantile points
crossing over these curves.

Under the assumption the errors have a normal distribution , x? is
well-approximated by quadratic function in A, and we can compute the Hessian H, or
the second derivative of x2, that is,

1 0
i = ————X". 4.7
DYV (4.7)
Note that we write the Hessian matrix as H, and the Hamiltonian operator as H. We

can simplify this expression to put it in terms of energies:

2 N 2 [0ESMOESM
ONON; L (AEL)2| 0N 0N

02 ESM
ESM_Eempt el 4.8
(- B S (1.9

so that
N 1 OESM gEsM
H;: = @ -
J Z (AE,)? 0N 0N\

a=1

N (ESM _ ngpt) O2ESM
P Ve N RE INON,

a=1
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The first term in this expression dominates, so we define the approximate Hessian A as

follows:
OESM gESM
Z(AE 2 0N 0)

Ay (4.10)

This approximation is good if the cross-derivative is small, for example if the energies
were exactly linear in the parameters, or alternatively if the residual is small (meaning
the model is good). Furthermore, the calculation of E5M is made with the optimized
USDB parameters, therefore the term multiplying the cross-derivative should on
average be close to zero. The second term contains the cross-derivative, and this is
more challenging to calculate, especially considering the size of the parameter-space.

Note that the energy matrix element is nonlinear in A due to dependence in the
wavefunction. If one were to ignore this dependence, we call this the linear model
approximation

= (NIHNN) » (H) ) = ;Ai(wl@lw) (4.11)

Under the linear model approximation, any cross-derivative term is zero and thus the
‘approximate’ Hessian above would be equal to the full Hessian: A = H.

To compute the derivatives of the energies, in Eq/4.10, we use the

Feynman-Hellmann theorem,

OESM(X) <¢

O\, a> = (a|Oiltha), (4.12)

i

where the Hamiltonian is linear in ;. (These first derivatives are Jacobians [2§].)
Thus, for the first derivatives in (4.10]), we can simply evaluate expectation values of
the individual 1- and 2-body operators.

While the full numerical calculation of the Hessian is quite costly, we can
numerically compute the cross-derivative term in Eq. with a simple finite difference
approximation of the second derivative, so as to achieve a better approximation to the

exact Hessian.
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i [Al op [Anum]lii | [Toum]i
(MeV-2) | (keV) | (MeV-2) | (keV)
1 | 11785000 | 0.29 | 11785500 0.29
2 393000 1.6 393600 1.6
3 79100 3.5 78810 3.5
4 71200 3.7 70800 3.7
5 22200 6.7 22220 6.7
6 6357 13 6357 13
7 5200 14 5175 14
8 3600 17 3590 17
9 3270 17 3261 17
10 3050 18 3035 18
64 10.6 307 <1 > 1000
65 7.71 360 <0.1 > 3000
66 3.16 562 <0.1 > 3000

Table 4.1. Statistics of linear-combinations of USDB matrix elements, or
principle component analysis (PCA) parameters. The eigenvalues of the
approximate Hessian matrix A we denote as [A];;, which is the sensitivity of
the 1th PCA parameter, and o; is the corresponding uncertainty. Thus the
most sensitive PCA parameter is constrained to within 290 eV. Likewise, the
eigenvalues of the numerically corrected approximate Hessian matrix A,,, we
denote as [Apum i, and [opum]; is the corresponding uncertainty. Note that
for the most sensitive PCA parameters, the numerical correction effectively
leaves the standard deviations unchanged.

P2ESM 1 [OESM(XT)  OESM(A;) )
. - 4.1

Here, ESM (A7) is the a-th energy evaluated using USDB parameters with the
j-th value perturbed by xe. Inserting into Eq. [4.9) we denote the resulting numerically
corrected approximate Hessian matrix as Anum.

(4] + 5 Ea

a=1

[Anum]ij

MOy E L [PERON) SBEOA] g

(AE,)? 2¢ o\ o\

We tested their importance by evaluating with € ~ 0.1. The the resulting
eigenvalues of A and Ay, shown in Table [4.1] are very similar, indicating that while
the numerical corrections terms are individually nonzero, the total contributions

average to very small contributions. Thus A is in fact a very good approximation to the
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full Hessian matrix and, in what follows, we find that propagation of uncertainties onto
observables are almost independent of the numerical correction. This also implies that

the linear model approximation (Eq. [4.11]) is a good approximation.

4.3.1 PCA Transformation

Transforming the Hessian UHUT = D, where D is diagonal, or its approximation
WAWT = A (4.15)

where A ~ D is also diagonal, provides a transformation from the original parameters A

to new linear combinations of parameters,
pn=WA. (4.16)

This is simply principal component analysis (PCA) of the Hessian, and so we call p the
PCA parameters. In terms of our approximate Hessian, we can also understand this as
a singular value decomposition (SVD) of the linear response J,; = 0E,/0\;. More
formally, we approximate H ~ A= JTY72J, where X is the diagonal matrix of
uncertainties on energies, Y,5 = 0,5AE,; but, as is nearly true, AE, » AE™ and hence
A~ (AE™)"2JT J; then it should be clear that the eigenvalues of A are proportional to
the SVD eigenvalues of J. Thus the eigenvalues found in A, presented in Table and
plotted in Fig. [4.3] allow us to determine the most important linear combinations of

parameters to the fit.

4.4 Evaluating uncertainties

The parameter covariance matrix is simply the inverse of the Hessian matrix,

which we have approximated as
CAN)=H '~ A7 =WTAT'W (4.17)

The naive variance of the original parameters A is given by the diagonals of the

covariance matrix, so that o(\;) = /Cj;. This, however, ignores correlations between
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Figure 4.3. Ordered eigenvalues of the approximate Hessian A, which equal
the diagonal elements of A. The eigenvalues are interpreted as the sensitivity
of the corresponding linear combination or principal components of matrix
elements (PCA-parameter). The first PCA-parameter carries 95% of the total
sensitivity, and the first 5 PCA-parameters carry 99.6% of the sensitivity.
parameters and thus is an incomplete description of parameter uncertainties. A better
approach is to compute variances from the diagonalized Hessian matrix, and thus
obtaining uncorrelated uncertainties on the PCA parameters, o(p) = 1/v/A;;. These we
give in Table and plot in Fig. Here one sees the first few PCA parameters have
very large sensitivity, and indeed the first 10 carry over 99.8% of the total; it is
well-known lore in the nuclear shell-model community the fit of USDB and similar
empirical interactions are dominated by only a few linear combinations, which here
define the PCA parameters. Table in fact demonstrates these parameters must be
known to within a few keV or better; on the other hand 23 PCA parameters have
uncertainties of 100-500 keV. At this point, it is important to remember that these

variablities are with respect to experimental data that only includes energies, so these
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low-variability PCA parameters could in principle be tuned to fit the interaction to
various other observables without disrupting the fit to energies.
If the uncertainties in the principal components p are independent, then the

propagation of uncertainties is straightforward. For any observable X,

02(){):;(2

X)2 )

o (1 4.18
AR (418)
Using (A.16).

(% = Z i m (4.19)
and so
0X
o} (X) = 2‘72(#@) Z Wi D —~Wi=g"Cg (4.20)

where g; = 0X /0, is the linear response of any observable to perturbations in the
original parameters. This is particularly useful in the case of energies, where we already

have the linear response, thanks to the Feynman-Hellmann theorem.

4.4.1 Computed covariance of fitted energies

Here we show that computing the covariance matrix of fit energies C'p by Eq.
4.30] is simply related to a similarity transform of the original uncertainties on fit
energies given by Eq. Yaa = AFE, . The response of the energies to changes in the
parameters is an Ny x N,, Jacobian matrix, J,; = 0E,/0\;, where Ny is the number of

data points and N, is the number of parameters. The approximate Hessian is
A=JIx2], (4.21)
and the parameter covariance is
Cy=A"=(Jr's2 )L (4.22)

Since J is not square, we cannot evaluate this expression in terms of matrix inversion
and instead use the pseudoinverse obtained by SVD decomposition. We get the

factorization J = USVT where U is a N, x Ny unitary matrix, S is a Ny x N, matrix
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with the only non-zero elements being [V, singular values along the diagonal, and V' is a
N, x N, unitary matrix. We use this to define a new matrix J* which is the

pseudoinverse of J.

Jr=vsut (4.23)

Here, S* is the pseudoiverse of S, which has the same shape as ST and the only
nonzero elements are such that ijj =1/8;; for j=1,2,...,N,.

Plugging this into the expression for C, we have
Cy=J"22[JT) = (VST U2 (USTVT), (4.24)
In turn we insert this into our expression for Cg:
Cp=(USVT)(VSTUTS2(USVH(VSUT). (4.25)

By the orthogonality of U and V' we have UTU = I; and UTU = I, identity matrices in

the data-space and parameter-space respectively, so that
Cp=USI,S*UTX*US*,SUT. (4.26)

To simplify further, we need to pay attention the the rank-deficient property of S.
Define SI,S* = P} to be a Ngq x Ny square matrix with N, 1’s on the diagonal, starting
from the top, and all zeros otherwise. (This is projection operator from the data-space

into the parameter-space, hence this notation.) Then
Cp=UPUTS?*UPIUT. (4.27)

Now, notice that since ¥? is diagonal, we have UT32U = ¥2. The matrix P} is of course

idempotent so Py P} = P?, and we get
Cp=Ux*PIUT, (4.28)

or

UTCpU = 2PY. (4.29)
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Thus, the computed covariance on the energies C'g is equivalent to a similarity
transform of the input uncertainties 32, albeit with rank = N,

For other observables, we do not use directly. Instead, we generate
perturbations in USDB by generating perturbations in the PCA parameters du with a
Gaussian distribution with width o(u;) given by Table I. Because the uncertainties are
independent, or nearly so, in the PCA parameter representation, it is safe to generate
the perturbations independently. We then transform back to the original representation
of the matrix elements and read into a shell-model code [67, [69], find eigenpairs, and
evaluate the reduced transition matrix element for one-body transition operators. We
sampled at least 1,000 sets of parameters, which gives sufficient convergence of the
resulting set of matrix elements: assuming the transition strengths B; are normally
distributed with respect to small perturbations in the Hamiltonian, we take the
theoretical uncertainty o(B;) as equal to the standard deviation of the set of samples.
Previous works have demonstrated convergence with similar approaches and an even
smaller number of samples. In [94] the statistical uncertainty in the binding energy of
3H was quantified using 250 samples of an interaction with about 40 parameters,
resulting in o(B) = 15 keV. The same result was later reproduced in [95] using only 33

samples.

4.4.2 Results

For the energies used in the fit, we already have the elements of § saved from
computing the approximate Hessian, so this calculation is cheap. We can thus estimate
covariance in the computed energies C'r by expanding this expression to a matrix
equation.

Cp=JC\J" (4.30)

Results for some of these estimated uncertainties are given in Table 1.2 Using

these estimates, 75% of shell-model energies are within 1o of experiment, and 96% are
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Figure 4.4. Estimated 1o uncertainties of ground-state fit energies in units of
keV.

within 3o; these are close to the standard normal quantiles of 68% and 99%
respectively, so we conclude that these theoretical uncertainties are sensible. Akin to
the original sensitivity analysis of fit energies [19], Fig. shows theoretical 1o
uncertainties on ground-state binding energies. We refer the reader to [130] for
comparison to uncertainty plots, in particular Fig. 10 of that paper. While this
description of uncertainties on the fitted energies may be useful, we also note that they
are in a sense tautological: the energy covariance Cg is related to the energy
uncertainties in Eq. by a coordinate transformation.

We also computed the uncertainties in selected transitions. The uncertainty
bands presented in all transition strength calculations correspond to the 16th - 84th
percentiles; for normal distributions this is precisely the 1o uncertainty band, but we
find many computed transition strengths have asymmetric distributions (especially
those with small B-values). This, along with reporting median rather than mean, gives

a more accurate description of uncertainty.
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Nucleus | JF T | Eewp— ESM | g
(keV) (keV)
305i 17 1 -114 851
K| 120 |1/2] 189 785
BF 5/27 | 7/2 -312.1 743
3BK 17 0 -355.9 686
AL | 11/20 | 1/2 ] -52.9 615
24Mg 67 0 156.1 156
20Ne 67 0 -223.2 154
2Na | 11/27 [ 1/2|  -15.3 153
BMg 27 2 19.3 153
170 | 528 |1/2| 2183 142

Table 4.2. States in experimental energy data, shown in order of descending
uncertainty o (high-variability on top, low-variability on bottom).

Following [108], we compute reduced transition strengths B(E2) for several
low-lying transitions in 26Mg and 26Al, shown in Fig. and respectively. The
one-body electric quadrupole operator matrix elements were computed assuming
harmonic oscillator radial wave functions with oscillator length b =1.802 [20] and
effective charges e, = 1.36, e,, = 0.45, which were obtained by a least-squares fit [109].
While some values are close to experiment, others differ significantly. The B(E2) values
are quadratically dependent upon both the oscillator length and the effective charges,
and can be quite sensitive to small changes in the interaction matrix elements [10§].

For 26Mg, in Fig. [£.5] the median values and uncertainty intervals for our
selected transitions are 27 — 07 : 63.759:78, 25 — 07 :3.46%035 , 0 — 27 :1.1579:3% | and
25 — 07 : 0.96%913, all in units of e?fm", while for 26Al, in Fig. |4.6 the median values and
uncertainty intervals for our selected transitions are 37 — 57 : 52.0474%, 13 — 37 :
544789 25 — 07 : 56.63*128 | 1% —» 37 : 0.53%233, 35 — 57: 0.017091%, and 3% —» 17 :
11.38+282,

Magnetic dipole reduced transition strengths B(M1) distributions for 18F and
26 Al are shown in Fig. and respectively. We used bare gyromagnetic factors,

with no corrections for exchange currents. Like the B(E2) values, some of the
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Figure 4.5. Distributions of the electric quadrupole (E2) transition strengths
for 26Mg. Black dashed line shows experimental value [129]. The the median
values and uncertainty interval are highlighted in white: (a) 27 — 07 : 63.775-%8,
(b) 25 — 07 :3.46%025 , (c) 05 - 27 :1.1579:33 , (d) 25 — 07 : 0.9675-18, all in units of
e2fm*.
transitions are close to experiment, while the 07 - 17 in 18F is quite far away. For 18F,
in Fig. [4.7] the median values and uncertainty intervals for our selected transitions are
07 - 17 : 17.13:9:49, 13 - 07 : 0.317397¢, and 35 — 27 : 0.57:3:987 all in units u3;, where
iy is the nuclear magneton, while for 26Al, in Fig. the median values and
uncertainty intervals for our selected transitions are 17 — 07 : 2.8970-42, 17 — 07 :
0.557048, 11 — 07 : 0.096:089, 17 - 07 = 0.17#){2 and 28 — 17 : 0.09570:0%% .

We show Gamow-Teller matrix elements for 5--decays in 26Ne and 32Si in Fig.
[4.9 and respectively. We have used for the axial-vector coupling constant
galgv = —1.251, following [110], and a quenching factor of 0.76 for USDB. For ?Ne, in

Fig. the median values and uncertainty intervals for our selected transitions are
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07 - 17 : 0.72673:938, 07 — 13 : 0.267+0:930 ,and 07 — 13 : 0.2233:931, all unitless. The
ground-state decay of 32Si has a small experimental transition strength, so our
sensitivity analysis does not provide a normal distribution for B(GT). Using USDB, our
median value and uncertainties are 0.00597*8:0073, but this is quite different than the
experimental value is of 0.000038 [I30]. This particular transition is very sensitive to
the parameters: for the 1985 universal sd-shell interaction (USD) interaction [I7] we get
a value for B(GT) = 0.00005, and if one uses the 2006 universal sd-shell interaction
version A (USDA), which is a less constrained version of USDB [19], the B(GT) is 0.038.
(Motivated by the non-Gaussian distribution in Fig. we increased the
number of samples from 1000 to 4000. The results were nearly indistinguishable, with

new median value and uncertainties of 0.00624+3-9977.)

One of the biggest questions in physics today is the nature of non-baryonic dark
matter [I1]. While there are a number of ongoing and planned experiments [114],
interpreting experiments, including limits, requires good knowledge of the dark
matter-nucleus scattering cross-section, including uncertainties. While historically it
was assumed dark matter would couple either to the nucleon density or spin density,
more recent work based upon effective field theory showed there should be a large
number of low-energy couplings, around 15 [7]. This enlarged landscape of couplings,
and the increased need for good theory, is a strong motivation for the current work.

In order to illustrate the application of UQ to nuclear matrix elements for dark
matter scattering, Fig. shows the uncertainty of an [ - § coupling for 36Ar. 36Ar is a
small component (0.3%) of argon dark matter detectors, e.g. [B], but it is within the
scope of the current work to compute. Of the EFT operators that do not vanish for a
J™ = 0% ground state, most of them depend upon radial wave functions that do not play
a role in fitting the USDB parameters; nontrivial operators, however, include [ -3, which

arises in the long-wavelength (momentum transfer ¢ - 0) limit of the nuclear matrix

60



elements of the operators O 1215 [7]

where my is the nucleon mass, § is the momentum transfer, Sy /x are the spins of the
nucleon/WIMP, and ¢* is the component of the nucleon-WIMP relative velocity
perpendicular to . We chose to study (Z - §) for the simple reason of best illustrating a
variance due to uncertainty in the USDB parameters. The variance of this particular
operator is relatively small, but in larger model spaces there could be greater
uncertainty. Knowledge of the variance of the operator is important for interpreting

experiments, such as placing upper limits on dark matter-nucleon couplings.

4.5 Conclusions

We have carried out uncertainty quantification of a ‘gold-standard” empirical
interaction for nuclear configuration-interaction calculations in the sd-shell valence.
Rather than finding the uncertainty in each parameter independently [139], we
computed the linear sensitivity of the energies, which is easy to compute using the
Feynman-Hellmann theorem, and then constructed an approximate Hessian which we
then diagonalized. This is equivalent to a singular-value decomposition of the linear
sensitivity, and is also known as principle component analysis. We found evidence this
is a good approximation to the full Hessian. From the inverse of the diagonal (in a basis
of the PCA linear combination of parameters) approximate Hessian, we obtained
approximately independent uncertainties in the PCA parameters. Then, starting from
those uncertainties, we generated uncertainties for energies as well as several
observables. The distribution of residuals in energies implies statistical agreement, as
well as an underlying systematic uncertainty in the shell model of 150 keV. For

electromagnetic and weak transitions, which we note are sensitive to effective
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parameters such as effective charges and assumed oscillator length parameters, our
residuals relative to experiment included both good agreement as well as residuals with
statistically significant deviations. We also presented as a test case a dark
matter-nucleus interaction matrix element and our derived uncertainty.

In future work, in addition to further and more systematic study of observables,
we will carry out a more detailed and thorough study of parameter covariances, as well
as applying our methods to other empirical interactions in other model spaces. This
will entail evaluating the posterior without Laplace’s approximation, and instead using
Markov-chain Monte Carlo sampling. We are investigating the use of eigenvector
continuation [44] [35, [75] to explore parameter space efficiently. For the time being,
however, it seems that this approximate Hessian is a good approximation. This is not
surprising, but it is useful. Nonetheless, moving to larger spaces, which grow
exponentially in dimensions and compute time, will be challenging. New technologies
still in development, such as quantum computing may make possible better and more

rigorous uncertainty quantification.
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CHAPTER 5
PROJECT 1B: UNCERTAINTY

QUANTIFICATION OF TRANSITION
OPERATORS IN THE SHELL MODEL

Submitted to Phys. Rev. C [43] and available on [arXid

5.1 Introduction

Over the last two decades, interest in uncertainty quantification (UQ) has grown
rapidly in many sciences, and theoretical nuclear physics is no exception
[28, 03, (135, [80], 102, 134, 30} 10T 64, 139]. Providing theoretical predictions with error
bars that reflect the true limits in our knowledge of a physical system allows for
meaningful comparisons between different theoretical models. Furthermore, UQ can be
considered a driver of the experiment-theory feedback loop. Proper UQ on the
theoretical side can be used to identify the experimental measurements that will have
the largest impact in reducing such uncertainty. New measurements, with their own
error bars, can then be used to improve current theoretical models. This relationship
between theory and experiment becomes particularly relevant in the context of
upcoming flagship experimental programs like those at the Facility for Rare Isotope
Beams (FRIB) [8], the Deep Underground Neutrino Experiment (DUNE) [4], as well as
dark matter searches [125] and neutrinoless double-beta decay experiments [36, 29].

The UQ endeavor includes not only computing error bars for theoretical
predictions, but also studying correlations between our variables, whether those be
solutions (wavefunctions), coupling constants, observables, etc.. Bayesian statistical
analyses [119], which are a natural fit for probabilistic modeling of theory, have become

popular in the nuclear science community. Significant advances in computational
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techniques and tools like Markov Chain Monte Carlo [16], Hamiltonian MC [31], NUTS
[62], and the emcee library [41] can help achieve efficient and accurate evaluation of
probability distributions. Furthermore, the development of emulator models
(eigenvector continuation [45] [76], Gaussian processes [107], and even neural networks
[55, 99]) allows researchers to study perturbations to complicated models, trading some
accuracy for far less computation.

In this work we apply UQ techniques to nuclear shell model calculations to
analyze variability of coupling constants with respect to a particular nuclear force
model, which in turn requires a statistical description of individual transition matrix
elements. In particular we use MCMC and the implementation of the emcee library for
sampling probability distributions. Future research on shell-model UQ should also
investigate other methods, especially emulators for calculations which require
significant computational resources. After a brief description of the empirical nuclear
shell model in Section [5.2] we present statistical descriptions of model parameters in
Section and how to construct the distributions of observables and operator
parameters in Section [5.4] In Section we show results of parameter estimation for

transition operator parameters.

5.2 The empirical configuration-interaction
shell model

For details, see Section [I.3] on the nuclear shell model.

The Hamiltonian has the usual form,
=3 \o, (5.1)

where 0; is the appropriate operator. For empirical calculations the values of the {\;}
are fitted to reproduce some observables, almost always energies.
Here we note an important source of model error. Although the interaction

parameters often originally arise from some known translationally-invariant (i.e.,
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relative coordinates) representation, and the matrix elements calculated as integrals
using some choice of single-particle wave functions, the matrix elements are directly
adjusted in the laboratory frame to fit data [22 2], thus severing any explicit
connection to an underlying potential or Lagrangian. (This differs from ab initio
calculations, where one may carry out specific transformations of the

interaction [14} 60] but never loses the thread back to the “original” interaction.) Thus,
arguably, one can no longer even fix with certainty the single-particle basis, specifically
the radial part of the wave functions, from which the many-body states are built. This
has consequences when computing observables, such as radii or electromagnetic
transitions, for which the single-particle wave functions are a key input. A frequent
choice in the literature is to assume harmonic oscillator basis states, but this is mostly
out of simplicity and convenience: there is a single parameter to choose.

To solve the many-body problem, we use a configuration-interaction code,
BiagsTick [67, [69], to generate from the single-particle energies and two-body matrix
elements the many-body Hamiltonian and solve for extremal eigenvectors and
eigenvalues using the Lanczos algorithm. BIGSTICK uses an M-scheme basis, which
means all basis vectors (and thus, all solutions) share the same value for the
z-component of total angular momentum, M or J,. Because the matrix elements are
read in as an external file, BIGSTICK does not depend upon a particular choice of
single-particle basis. Any other nuclear configuration-interaction shell model code will
yield the same results from the same input files.

Our interaction of interest is a widely-used, ‘gold standard’ empirical shell-model
interaction, Brown and Richter’s universal sd-shell interaction, version B, or USDB [18],
a set of 66 parameters fit to energy data for a number of nuclei between 0 and 4°Ca.
In previous work [42] we performed a sensitivity analysis of USDB, which gives a
probability distribution P(A) from which the interaction is sampled. An important

nuance in using the USDB parameters is that while the single-particle energies are
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fixed, the two-body matrix elements are scaled by (Ag/A)%3, where A is the mass
number of the nucleus, and Ay is a reference value, here = Ao + 2 = 18. We account for
this by modifying the Hamiltonian expression H = ¥; A;(Ag/A)°30; (but only for the
two-body matrix elements), so that we implicitly varied the parameters fixed at A = 18.
Eigenstates of H give us many-body wavefunctions: |¢); from these we measure
transition matrix elements which depend on different initial and final states. The result
is a number related to the probability of state [¢);) being transformed to state [¢)) by

an operator O representing coupling to an external field:
M;f(O) = (¢¢|Ols) (5.2)

The wavefunctions, being solutions to the eigenvalue problem, depend on A, and we

assign the label # to any parameters in the operator.

Mip(O; X,0) = (1(N)|O(O)]ehi(X)) (5.3)

The experimental transition rate is proportional to [M;¢|?. We leave out the technical
elements of computing transition matrix elements, detailed in the
literature [22, 21) 24] 123]. The most important point is that we consider standard

one-body transition operators easily represented through second quantization:
0(0) = > w,s(0)alas, (5.4)
TS

where, again, the dependence of the coefficients w,, upon the effective parameters 6 is
well-known.

Hence, we have the computational pipeline of nuclear observables: A determines
the Hamiltonian — eigenstates of the Hamiltonian determine wavefunctions — matrix
elements of transition operators between those eigenstates determine transition
probabilities. Thus, we pursue two questions. First, given P(A), how does M; f(O; A 0)
behave? And second, given P(A) and some experimental observations O, what is our

posterior distribution P(6]0O)? In many cases, it is useful to produce a covariance
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matrix for 6, which describes sensitivity of § with respect to O(\,#) about an optimal

value.

5.3 Sensitivity analysis of the interaction

Our prior sensitivity analysis in [42] assumed that the Hamiltonian parameters
(matrix elements) A follow a normal distribution; thus their variability is fully
described by a covariance matrix C. The covariance is the inverse of the Hessian H)
(not to be confused with the Hamiltonian H ), that is, the second derivatives of energy
errors with respect to parameters A evaluated with the parameters that minimize the
error, A*. (The notation A* for parameters at the minimum, while not common in
nuclear physics, is used in uncertainty quantification [53].) We arrived at two important
conclusions: (1) the Hessian matrix can be well approximated by a simpler calculation
depending on first derivatives alone, and (2) we confirmed previous findings (e.g., [18])
that the parameter space is dominated by a small number of principal components,
specifically that only 10 of the total 66 linear combinations of parameters account for
99.9% of the Hamiltonian. (The first most important linear combination carries 95%.)

The Hessian matrix is the second derivative of the y? function about the optimal

model parameters \*:

(1, - 20 ) (55)
A Z = —_— .
7 20NN N
where
N, exp th 2
2 _ 4 (Ea B Ea (A)) _ T -1
X (A) - %: O_(ngp)g + O'(Eth)z - eE(A)CE eE(A) (56)

Here ep () is the energy error vector, Cp is a matrix with energy variances along the
diagonal, and Ny is the number of data points. The two contributions to variances are
the experimental variance o(FEq )2 and the a priori theoretical variance o(E*™)? which
is the same for all observations. The latter is tuned such that the x? per degree of

freedom,

) 3O
Ny-N,

Xo () = (5.7)
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(a.k.a. the reduced x?) is 1. In doing so, we ensure the Hessian matrix be scaled
appropriately, so the inverse may be interpreted as covariance. This procedure for
determining the “static” theoretical uncertainty estimate is the same for the later
analyses of transition strengths.

We found the Hessian for interaction parameters is well approximated by

H)\NA)\EJT

EonCit Ty where [ gy ]

.. = OB (X)[0; is the Jacobian matrix, which is
computed easily using the Feynman-Hellman theorem [59] 38]: [J B( )‘)]m = (0]|O;a), an
expectation value of eigenstates H(X)|a) = Et*(A)|a). This approximation replaces an
O(N?) calculation with an O(N,) calculation while only introducing small errors.

We thus describe the distribution for interaction parameters A as normal with

mean at the fitted USDB values and with the covariance given by our approximation:

A ~ N (mean = Ayspg, cov = [JTCE J]™) = P(X) (5.8)

We use this description to propagate uncertainty of A to calculations of observables.

5.4 Bayesian parameter estimation

Bayesian data analysis is so named because it makes use of Bayes’ rule to create

statistical models:
P(y|0)P(0)
P(y)

The posterior P(6|y) is the ultimate goal of our analysis: a distribution describing the

P(bly) = (5.9)

quantity of interest 6 given observations y. The likelihood P(y|0) describes the converse
of the posterior: how observations y behave given 6. The prior P(#) is the probability
distribution of # according to our prior knowledge. Finally, the evidence P(y) describes
any bias to observations y. Oftentimes, including in this work, P(y) is constant.
Following typical Bayesian data analysis, 6 stands for any parameter or vector of
parameters we are modeling; here those parameters are the coupling constants (and, for

electric quadrupole transitions, the basis harmonic oscillator length parameter)
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appearing in transition operators. This should not be confused with the vector of
Hamiltonian parameters A, which is well described by a Gaussian approximation, while
6 will be evaluated by Markov Chain Monte Carlo. To describe 6, we ultimately must
compute the posterior distribution with respect to experimental observations O,
P(0)O). We take several mathematical steps to put the posterior P(|O) into a form
we can compute. First, we introduce the interaction parameters as a marginal variable
(that is, a new variable being integrated over) in RN», where N, is the number of

parameters (here, 66):

P(6|O) = fRNp P(8,\0) dA (5.10)

By the chain rule of probabilities, we can reinterpret A as a conditional variable if we

also insert its prior in the integrand.

fRNp P(0,A|0) dX = [R o, PO10, ) P(X) dA (5.11)

Since we can easily sample the distribution P(X) via Eq. (5.8]), we approximate the

integral over P(0]0O,A)P(\) as an average of P(0]|O, A;) for Ny interaction samples .

[, PEONPO) A=~ 5 POIO.N) (5.12)

$ Ag~P(A)

This approximation works due to the idea of importance sampling in Monte Carlo
integration, and the integral is better approximated as Ny — co. By the central limit
theorem, the sum converges to the integral with errors on the order of 1/\/Nj; to keep
this error less than 1%, we use 10,000 samples for each calculation.

Next, we apply Bayes’ rule to the summand. As mentioned above, the
probability distribution of experimental observations, P(QO), often referred to as the
“evidence”, is the same for all possible O, and thus is constant. We ignore it and the

factor of 1/N; since the posterior need not be normalized in order to model 6.

Loy peory-L v

P06, \e) P(6)
o P(6) P00, Ar)  (5.13)
No AP Ns Py P(0) )\kNZP:()‘)
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The right-hand side of this equation we can compute, and the likelihood is:
1
P00, Ar) = exp [—§X2(9, )\k)] (5.14)

The function x2(60, Ax) is similar to Eq. (5.6]), but is defined for the observables O
instead of energies.

XQ(Q,Ak) =6£(9,A]€)05160(9,Ak), (515)

where [eo (0, Ar)]a = (05" — O (6, Ar)) is the error vector and
[Colaa =0 (0gT)? + 0(O™)? is the matrix with total variances along the diagonal.

Here, the a priori theoretical uncertainty o(O") is determined in the same way as for

Eq. (5.7)), by setting the reduced x? involving 6,

2 X200, Ak) _ X0, Ax)
= = 1

to unity and evaluating at Ayspp, which also ensures the Hessian with respect to O has
proper scaling, Ho = Cg!. Here, N, is the number of observations O and N, is the
number of total parameters in # and .

For simplicity of the calculation, o(O™") is computed once using a reasonable a
priori choice of parameters, and does not change with samples of # and A. Finally, we
have an expression for the posterior distribution # in terms of things we can compute:

P(E0) o< P(8) Y exp| -0 M)C5 a6 M) | (5.17)
Ap~P(X)

Each transition operator has unique parameters ¢ and observations O, but the
general process of describing P(0|0O) is the same for any observable. We decide on the
prior P(6), construct the expression in Eq. , and measure it. Since contributions
to the likelihood in Eq. are highly non-Gaussian, we evaluate using Markov
Chain Monte Carlo, the affine-invariant ensemble sampler from emcee [40]. However, by
the central limit theorem the sum over P(O|f,A;) approaches a Gaussian as the
number of observations becomes large, meaning 6 can ultimately be well described by

mean and covariance alone.
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Due to our frequentist approximation of the total likelihood function, the above
procedure might be called “pseudo-Bayesian”. A fully Bayesian analysis, rather than
summing over many likelihoods, would probably define likelihood as a function of (6, )
together and construct the posterior accordingly: P(6)P(X)P(O|0,A). Indeed, doing so
would elucidate correlations between the Hamiltonian matrix elements and operator
parameters. We choose to construct the approximate likelihood from many samples of
A mainly due to practical challenges. In order to evaluate the likelihood function, which
contains a sum over observables in many nuclides, perturbations to the Hamiltonian
must not result in the relevant eigenstates vanishing or otherwise being too difficult to
track. A single evaluation of the likelihood requires at least dozens of individual shell
model calculations, perhaps even hundreds in extreme cases. Sampling according to our
prior PCA makes it more likely that these calculations produce a sensible answer for
every observable. Our codes compute wavefunction overlaps upon each iteration to help
track eigenstates; this grants some robustness but it is not perfect. A potential solution
to this problem is using eigenvector continuation, which recently has been applied to

shell model calculations [I38], but that is beyond the scope of this paper.

5.5 Results

Here we present the results of uncertainty quantification for Gamow-Teller (GT),
electric quadrupole (E2), and magnetic dipole (M1) transitions. The analyses are
presented in order of increasing difficulty: GT has only one parameter and thus is the
simplest; E2 has three but only two are independent; while M1 has four parameters, we
must couple two of them in order to get a useful result. All our experimental
observations O are reduced transition strengths, B(O) = [M(O)[2/(2J; + 1), where
M(O) is the reduced [33] matrix element for transition operator O, and J; is the initial
angular momentum. Transitions outside the range of model validity were excluded,
including isotopes which have no protons or neutrons (or proton/neutron holes) in the

valence space. For electric quadrupole (E2) and magnetic dipole (M1) transitions, we
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converted to Weisskopf units to get a sense of their strength with respect to single
particle estimates, then truncated datasets to exclude extreme cases. E2 transitions
with strength < 0.1x and > 150x the Weisskopf single particle estimate were excluded.
This shrunk the total E2 data set from 236 to 153 transitions. For M1, which tend to
be smaller on average, we only left out those with < 0.01x the Weisskopf estimate. We
also dropped some M1 transitions involving very excited states, in particular if either
state is above 6 excitations for a particular total angular momentum J. This altogether
shrunk our M1 data set from 167 to 143 transitions.

For each transition operator, we present an a priori theoretical uncertainty: it is
a fixed estimate of theoretical error based on setting the reduced x? to one using a prior
parameter estimate. These provide a useful prediction of theory error, but they can be
sensitive to choices of the UQ analysis, prior parameterizations, data sets, etc. The
study of observables using USD Hamiltonians by Richter, Mkhize, and Brown (2008)
[T09] serves as our primary source for prior information on parameter uncertainties.

Exact probability distributions mentioned are either uniform on a closed interval

[a,b], written Upgp), or normal with mean p and standard deviation o, written N (u,0).

5.5.1 Gamow-Teller transitions
Both the vector and axial-vector weak couplings, gy, ga respectively, have been
measured from the S-decay of a free neutron, with |ga/gy|~ 1.28 [109]. Empirical
shell-model calculations of allowed transitions, specifically Gamow-Teller reduced

transition matrix elements
My (GT) = (J; ||g5Fo 7| /i) , (5.18)

when compared to experiment, consistently lead to a quenched coupling,
g% = Qga 21, 24]; Q is called the quenching factor. Recent work in ab initio

calculations have shown quenching can largely be accounted for by including physics
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beyond capabilities of the effective shell model, including two-body currents, sometimes
interpreted as meson exchange, and long-range energy correlations [57].

Using 185 low-lying 8%, 57, and electron-capture transitions, we assign an a
priori theoretical uncertainty in the (dimensionless) B(GT') to be 0.30, based on
setting the reduced x? to unity. Examples of the resulting B(GT') distributions are
shown in Fig. . The only a priori assumption in our UQ is that 0.5 < ¢%T/g4 < 1.0 so
our prior is set to a uniform distribution within those bounds: P(Q) = Up5,1.01- Fig.
show our derived posterior, which is Gaussian with ) = 0.762 + 0.025. This is more
tightly constrained than the estimate from Richter et al. 2008, ) = 0.764 + 0.114 [109],
but our result is consistent with their conclusion that quenching of g4 in empirical

calculations is robust and independent of the Hamiltonian.

5.5.2 Electric quadrupole transitions

The electric quadrupole (E2) reduced transition matrix element is
M (E2) = (Jf||[epE2, + €n, E2,] || ;) (5.19)

where E2:=r2Y," and e, e, are the effective charges for protons and neutrons,
respectively. Because we assume harmonic oscillator single-particle wave functions, the
matrix elements of 2 are proportional to b%, where b is the oscillator length parameter.
Thus, the parameters of interest are § = (b2, e,, e,,). However, ? and effective charges
both contribute to the overall scaling of the matrix element, so we chose to separate this
UQ into two steps: first we fix b2 and model (e,,e,) , then fix (e,,e,) and model b2
First, we assign prior distributions for the parameters. Effective charges for E2
calculations take values of e, € (1,2) and e, € (0,1). Previous work by Richter et al.
using the USDB interaction found optimal values e, = 1.36(5) and e,, = 0.45(5) [109].
The oscillator length is parameterized by an existing global fit 2 = 0.9 x AY/3 + 0.7,
called the Blomqvist-Molinari formula [13]. In total, we first model 6, = (e, e,,) with b?

given by the formula, then separately reparameterize the oscillator length by
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Figure 5.1. Two examples of B(GT) histograms computed using Monte Carlo.
Due to the near-linearity of the model, B(GT) is almost always very nearly
Gaussian.

b? = pAY3 + 3 and model 6, = (u, B) with effective charges fixed to prior optima (from

[109]). These estimates are used to compute our a priori theoretical uncertainty

estimate of 5.4 Weisskopf units, based on setting the reduced x? to unity.

5.5.2.1 Effective charges: ¢, ¢,

Whether we use a uniform prior, P(e,) = Upi,2) and P(e,) = U1, or a Gaussian
prior centered on previous optimal results, P(e,) =N (u=1.36,0 =1) and
P(e,) = N(pn=0.45,0 = 1), the resulting posteriors for effective charges are almost

identical (including reducing the prior standard deviations down to 0.5). The assigned
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Figure 5.2. Histogram of the Gamow-Teller quenching factor () via Monte
Carlo; the posterior is Gaussian, ) = 0.77 + 0.013. This is more tightly con-
strained than the estimate from [109], @ = 0.764 £ 0.114.

uncertainties in [109] are o = 0.05 for both proton and neutron, too small to construct
a sensible prior with, and thus the resulting posterior is constrained mainly by the
likelihood.

Our results for ey, e,, 1.44 +£0.17 and 0.40 £ 0.16, respectively, have central values
within uncertainty of the estimates of [109], although we arrive at nearly three times
the standard deviation. Fig. shows the effective charges are strongly correlated, as
expected. Fig. 5.5 shows the same data but in the isospin basis: the isoscalar
component, e, + e, = 1.84 + 0.05 is tightly constrained, and we see much larger
uncertainty on the isovector component e, —e,, = 1.04 £ 0.32. This agrees with a recent
ab initio study [120].

Using our results for optimal effective charges, we compute again the static
theoretical uncertainty in B(£2) to be 4.1 in Weisskopf units. We suggest that static
theoretical uncertainties be taken with a somewhat wide confidence interval, since this
value is dependent on the experimental data and the parameters 6. (Additionally, since
we have shown that the interaction is dominated by only 10 parameters, one could

argue this uncertainty is actually smaller. If we compute the theoretical uncertainty
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Figure 5.3. Two examples of M(GT) histograms computed using Monte
Carlo.
again, setting the reduced chi-squared in Eq. for B(E2) to unity, and using

N, =10 rather than 66, we get a 1o value of 3.0 Weisskopf units.)

5.5.2.2 Oescillator length: b

Following the Blomqvist-Molinari formula, b? = 0.9A'3 + (0.7, we parameterize by
b? = pAY3 + 3, and assign normal priors centered at = 0.9, 3 =0.7. In an effort to use
an informative prior that will not bias our result too strongly toward the
Blomqvist-Molinari result (which was fit to nuclei beyond the sd-shell), we leave the
prior standard deviation relatively large, o = 1. Furthermore, we expect both u and

to be positive, so the priors are only nonzero for positive values. Since any
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Figure 5.4. Joint histogram of the effective charges for proton and neutron
in E2 transitions, with no data truncation based on relative errors. Red lines
show values from [109], which were used to determine Gaussian priors. Flat
priors give almost identical results.

normalization constant will not have an effect on the result of this calculation, the
priors in Eq. are defined as proportionalities. (We are not computing any
probabilities in this work, thus the posterior need not be normalized. Regardless, the

posterior could in principle be normalized without keeping track of individual

normalizations of likelihood and prior distributions.)

N(0.9,1) ifpu>0

P(u) o< 4 (5.20a)
0 if u<0
N(0.7,1) ifp5>0

P(B) o< (5.20b)
0 it <0

For this calculation, the effective charges were fixed at the optimal values
presented in [109]. The MCMC evaluation of y and f are shown in Fig. [5.6, The two

are strongly correlated and reveal a tendency of y to decrease and 3 to increase,
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Figure 5.5. Effective charges determined by E2 transitions, in

isoscalar/isovector terms: e, = ¢, +¢,. We see by comparing the standard
deviations that the isoscalar component e, is much more tightly constrained
than the isovector component ¢_. Note that correlation between isospin com-
ponents is far less than between proton/neutron components.

corresponding to a flattening out of b2 as a function of AY/3. This indicates that b? is
less dependent on A in the sd-shell than the global fit indicates. Finally, we can use the

posterior distributions of i, to compute b? as a function of mass number A with an

uncertainty band, as shown in Fig. 5.7

5.5.3 Magnetic dipole transitions

The magnetic dipole reduced transition matrix element is

Mig(M1) = (J1ll [9spp + Gsnn + 9Ly + genln] |72 (5.21)

where 5; is the spin operator and 7, is the orbital angular momentum operator, and

t = p,n denotes action only on the proton/neutron part of the wavefunction. The
parameters of interest are the coupling constants: 6 = (gsp, gsn, gep, gen ). For the free
nucleon, these coupling constants are (5.5857,-3.8263,1,0), but previous work on M1
transitions with USDB [109] found optimal values of (5.15,-3.55,1.159,0.09). The
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Figure 5.6. Joint histogram of parameters p and g for oscillator length pa-
rameter b, with b2 = yAY/3+ 3. The red point indicates the global fit: ;i =0.9 and
B =0.7. The tendency of p (slope) to decrease and  (intercept) to increase,
which we see in the Monte Carlo results, corresponds to b? flattening out as
a function of A'/3,
slight difference in values using USDB is due to physics left out of the empirical
Hamiltonian , as well as optimizing for a finite number of transitions in the sd-shell.

The M1 transition is more challenging than the GT and E2 for a few reasons.
Transition strengths tend to be small compared to the Weisskopf single-particle
estimate, which can be due to cancellation between the four components, and/or
quenching of the coupling constants similar to the quenching of g4 in the
Gamow-Teller. Individual matrix elements can also be highly non-Gaussian with
respect to variation in the Hamiltonian. Due to the central limit theorem however,
distributions of the coupling constants approach normality when summing over many
experimental data points.

Furthermore, the parameters are not constrained in a naive construction of the
posterior distribution. When sampling all four coupling constants and using a flat prior,

the parameters are allowed to move within a large region wherein the posterior (and,

thus, the y2 function) is constant. This result is not useful for assigning uncertainty to
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Figure 5.7. Square of the harmonic oscillator length parameter as a function
of mass number A, comparing the Blomqvist-Molinari (B.M.) fit against ours.
The band indicates 1o uncertainty.
the coupling constants, so we explored several different paths for how to constrain the
posterior in a statistic way. The flat shape of the likelihood means that imposing a
restrictive prior alone is insufficient, since the resulting posterior would be fully
determined by the prior in that region. To solve this, we transform our parameters to
an isospin basis and fix the most tightly constrained dimension as noted by previous
work [65]. Since we expect 1) the isovector part to fluctuate more than the isoscalar
part, and 2) the spin part to fluctuate more than the orbital part, we choose to fix the
orbital isoscalar coupling ge, + gen to be fixed to its optimal value found by Richter et al.
2008 [109]. The results for the B(M1) couplings using a flat prior are shown in Fig. [5.8}
the fixed orbital isoscalar component appears as a straight line on one correlation plot.
Compared to the results in [109] our spin components are smaller in magnitude and
orbital components are larger. We also construct informative priors from the results of
[109], Gaussian distributions centered at optimal values for USDB and with standard

deviations at 3x that of the tabulated results (The factor of 3 is chosen simply to inflate
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Figure 5.8. Posterior distribution of the M1 coupling constants using flat
priors with the orbital isoscalar component fixed to a constant value (deter-
mined by optimal values listed in [109]). Hence the joint histogram for g,
versus g, indicates a perfect anti-correlation. The red points show optimal
values listed in [109]. Absolute magnitude of spin couplings is smaller than
prior estimates, while absolute magnitude of orbital couplings is larger.

the Gaussian confidence interval from 68% to 99.7%) as shown here:

P(gs) =N (515, 0.27)
P(an) = N(—355, 03)
(5.22)
P(gsy) = N(1.16,  0.069)
P(gem) = N (-0.09, 0.78)
As expected, using informative priors gives results nearer to those previously

cited, but the spin components are still notably smaller in absolute magnitude. A
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number of M1 transitions in fluorine isotopes have large errors, so we also present
results for the M1 couplings having dropped 18 particularly troublesome transitions
which exhibit large relative errors. A likely explanation for difficulties in these matrix
elements is that the structure of fluorine isotopes have significant p-sd particle-hole
intruder configurations not included in our model. This combined with the fact that
the M1 matrix element has four components and often involves some cancellations
means we can easily over- or under-estimate the total transition strength. The UQ

results without these 18 troublesome fluorine transitions is shown in Fig. [5.10]

5.5.4 Parameter sensitivity from energies,
transitions, and sum rule operators

In our previous study [42] we evaluated the covariance of Hamiltonian
parameters A with respect to energies, i.e., Eq. , . If we evaluate with respect
to other observables, such as transition strengths or transition sum rules, we get very
different estimates. Here we show some results of computing approximate Hessian
matrices of X with respect to energy, which was used for our sensitivity analysis in this
paper, and again using B(GT) values instead of energies. The (non-energy-weighted)
sum-rule operator for transition O is OTO, and is so called because the expectation
value implicitly counts up transition contributions over final states:

(O10); o< £, (i[O £)(£1O)i).

We compute all Hessians by the approximation H) ~ Jg( )\)Cél(]g( ») Where € is
the observable (energy, Gamow-Teller strengths, sum rules) and
[JQ( /\)]ia = I (XN)/ON;, and Cq is the diagonal matrix of errors.

The Hessian for energies, Eq. (5.5)), (5.6)), is plotted in Figure[5.12] Of all
Hessian matrices, this appears to have the most structure, showing some complex
correlations. The most sensitive parameters have 1o uncertainties around 800-900 eV,
and correspond to the Hamiltonian matrix elements:

(0ds20ds)2; J, T = 4, 1{H|0d5)o0ds5/0; J, T = 4,1),
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(Ods 218195 J, T = 3, 1|H|0d5 215195 J, T = 3,1), and
(0d3/90ds)0; J, T = 4, 1|ﬁ|0d3/20d5/2; J, T =4,1) which are the 51st, 60th, and 24th
parameter in our arbitrary ordering, respectively. These are matrix elements between
normalized two-body states |ab; JT') with nucleons in orbitals a and b coupled up to
total angular momentum J and total isospin 7'; the commonplace notation for the shell
model is V7 (ab, cd).

The Hessian for Gamow-Teller transitions, B(GT), is in Figure [5.13] We can see
two Hamiltonian parameters which are especially important for B(GT), are
Vi ((0dsj2)?, (0ds2)?) and Vi1 (0ds/2151/2,0d5/2151/2), which were also important for
energies, which have 1o uncertainties of 32 and 43 keV respectively. That is, GT
transition strengths are particularly sensitive to the two-body matrix elements
(TBMEs) of these two-body operators. These also reveal strong negative correlations
between their TBMEs. We find that the Hamiltonian matrix element
Vi1 ((0ds/2)?, (0ds2)?) is very important in all transition types, not only the
Gamow-Teller. The Hamiltonian matrix elements Vi (0ds/2151/2,0d5/2151/2) and
Vi1(0ds5/20ds3/2,0d5/90d5/2) are also especially sensitive for other transition strengths. On
average, the three operators listed above are the most important for the transition

strengths we computed.

5.6 Conclusions
We have presented a method of uncertainty quantification for parameters of

transition matrix elements resulting from empirical shell model calculations. Our
parameters fall into two categories: those in the nuclear Hamiltonian (\), and those in
the transition operator (6). The present analysis is primarily concerned with the latter.
While a fully Bayesian U(Q) analysis would ideally model A and # together, we assign a
distribution to A and construct a likelihood for # based on a fixed sampling of A. The
result trades a high-resolution picture of A in exchange for relatively quick calculation

of the 6 posterior.
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The work presented here fits into the larger picture of theoretical UQ in nuclear
theory. While significant efforts have been underway for many years to quantify
uncertainties in nuclear theory, from uncertainties in nuclear interactions
[92], 149, 23], 133, 87, 100] and ab initio calculations of light an medium nuclei
[12, 50, [132], 34] to mean field calculations of heavy nuclei [1111 117, 37, O8] and
simulations of astronomical nucleosynthesis processes [124], 89, [85] 9], 00, 126], UQ in
empirical shell model has been less abundant [139] [64]. In particular this work is, to our
knowledge, the first approach to quantifying uncertainties of transition operators.

Further research should use our results to inform more accurate UQ analyses.
For instance, recent work has shown eigenvector continuation (EC) to be an extremely
powerful approach to emulating eigenvalue problems. One could do away with the
simplistic P(\) and instead define the likelihood with a EC model. That way, one may
evaluate a joint posterior P(\,0|D) by MCMC and potentially get a more accurate

correlation analysis.
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Figure 5.9. Similar to Fig. posterior distribution of the M1 coupling con-
stants, but using Gaussian rather than flat priors. The orbital couplings are
perfectly anti-correlated because their sum is fixed to a constant. We apply
informative priors shown in Eq. , which are based on previous measure-
ments [109], which are shown here in red. The result confirms that the orbital
components are more constrained than the spin components. Again, we find
that absolute magnitude of spin couplings is smaller than prior estimates,
while absolute magnitude of orbital couplings is larger.
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Figure 5.10. Posterior distribution of the M1 coupling constants excluding
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the previously cited value in [109].
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Figure 5.11. Three examples of M(M1) histograms computed using Monte
Carlo. Most matrix elements are Gaussian but nonlinear dependence on the
wavefunction can lead to asymmetric distributions.
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Figure 5.12. A,(g), approximate Hessian matrix for Hamiltonian parameters
A, computed from energies. Note how the structure of the matrix is very
different when using B(GT') transition strengths in place of energies, as shown

in Fig.
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Figure 5.13. A,(p), approximate Hessian matrix for Hamiltonian parameters
A, computed from Gamow-Teller transition strengths. The B-value is domi-
nated by two TBMEs (#°51, and 60 here): isovector pairs (0ds)(0ds/2) with
J =4, and isovector pairs (0ds2)(1s1/2) with J = 3.

94



CHAPTER 6
PROJECT 2: ILLUMINATING TRENDS IN

CROSS SECTION EVALUATIONS USING
GENERATIVE MACHINE LEARNING

To be submitted to Physical Review.

6.1 Introduction

6.1.1 Nuclear cross section evaluations

Since many applications of nuclear theory require continuous descriptions of
nuclear reaction cross sections over scattering energy, experimental data are combined
with theoretical models to produce so-called cross section evaluations. These
evaluations are intended to give a comprehensive picture of scattering processes and are
organized into large libraries; these are an essential resource for astrophysical
simulation, radioisotope studies for medicine, reactor engineering, and national security
applications. Evaluated libraries include complicated systematic trends due to the
fundamental physics, but these can be difficult to study due the tremendous size of
these libraries and their density of information. The motivation for this work is to
develop a machine learning system to facilitate illuminating and analyzing trends in
cross sections and using existing information to predict cross sections beyond
experimental barriers.

As a first step, we focus on the TENDL library [77] and the inelastic neutron
scattering channel (n,n’) in particular, with resonances excluded; this choice was made
because of relative simplicity of correlations in this channel. Because of odd-even

staggering, the well-known behavior of systematic trends in nuclei to oscillate with
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parity of proton/neutron numbers Z, N, we only work with even-even nuclei in the
present study. While this significantly reduces the complexity of trends the model must
learn, it nonetheless requires a model with sufficiently large complexity to make
reasonable predictions. This simplification makes it much easier to interpret results and
better develop the model; this work acts as a foundation for future development of
more sophisticated models.

Many different types of correlations exist in this data set (i.e. at different scales
over the chart of nuclides), making it a ripe target for data science and machine
learning. For instance, a predictive model must learn correlations in the cross sections
between values of scattering energy, correlations between nuclei with similar numbers of
constituent particles, and (in future development) correlations between cross sections in

different reaction channels.

6.1.2 Model overview

Our deep learning model has two major components working in tandem: a
variational auto-encoder (VAE) responsible for encoding the cross section evaluation in
a dense representation, and the generative adversarial network (GAN) responsible for
learning to transform a cross section at one nuclide to that of a nearby nuclide. The
VAE learns to encode the cross section data in a smaller dimensional space, called the
latent space. Cross sections are continuous functions of energy, and they have strong
short-range correlations and weak long-range correlations; in other words, the
covariance matrix is diagonally dominant. We leverage this property by using
convolutional layers in the VAE neural networks which are formulated to learn
multi-scale correlations; each consecutive hidden layer is responsible for a slightly larger
or smaller correlation length. This is similar to models used for image recognition:
long-range correlations are not ignored, but the relative importance of short-range
correlations is built directly into the network architecture. The VAE has an additional

benefit of mapping inputs to normal distributions in the latent space, rather than
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points like a simple autoencoder would. This results in smooth and very efficient
encoding of data, and thus we think is more likely to provide better interpolation
properties. The generative adversarial network is designed to work on the encoded cross
section and map between nuclides. The GAN consists of generator and discriminator
networks: the former transforms the encoded cross section and the latter classifies the
outputs as realistic/unrealistic according to what features are present in the training
data. These two networks are adversaries; while training they compete with each other
until an equilibrium is reached. At that point the transformed data appears, according
to the discriminator, to have all the necessary features of the real data. Lastly, each
linear axis across the chart of nuclides ( , /', <>, \v) gets its own model, and as such
the full predictive system is an ensemble (which has advantages and disadvantages).
With this construction we can make predictions for cross sections of nuclides outside
the training set, chaining together predictions using many paths across the chart. Our
hypothesis is that this model, when trained correctly, can help illuminate systematic

trends in nuclear data libraries.

6.1.3 A convolutional variational
autoencoder (VAE) for nuclear data

The first step in our procedure, as is common for machine learning tasks in
general, is to find an ideal representation of the data. This almost always includes some
kind of normalization, and also may include an encoding to simplify correlations in the
data and reduce dimension. One powerful method of data encoding uses a neural
network model called an auto-encoder (AE). In practice, the AE can be thought of as a
nonlinear principal component analysis (PCA). When doing linear PCA via singular
value decomposition (SVD), one finds orthogonal principal components of data and the
whole data set can be represented using those components as a basis. A common
procedure for data encoding with SVD is to drop the basis components with small

singular values, and represent all data with the remaining components, thus one

97



achieves an efficient representation of the data in a smaller dimension. Inevitable errors
are introduced by reducing the number of variables, but PCA ensures components with
small singular values are the least important and so ignoring them introduces the least
error possible. However, linear PCA includes some crucial assumptions about the data:
the data is a linear combination of explanatory variables, all explanatory variables have
been observed roughly the same amount, correlations follow a Gaussian distribution,
the data is primarily unimodal, etc. Nuclear cross section evaluations break all of these
rules, and so we must turn to a more robust encoding method. An example of linear
PCA encoding and reconstruction on our cross section data is shown in Fig. [6.1}
reproducing the small-scale features would require keeping many principal components,
thus defeating the purpose of using this approach. (Furthermore, cross sections are
strictly positive, and using linear PCA to reduce dimension inevitably produces
negative cross sections.)

A simple AE model is a neural network mapping from data X to itself, and
some layer inside the network is the latent space representation of the input. The model
is split into an encoder part E before the latent layer and a decoder part D after the
latent layer, and the full model is a function convolution D(FE(x)) = x’. With weights 0
and ¢ for D and FE respectively, the simplest loss function penalizes errors over a batch

of N, data:

Lap(0.6:2) = 2 3} DalEof) - 61
Thus E-! ~ D; the encoder and decoder transform to and from the latent space.
When the AE networks are converged, we can encode all input data into the latent
space representation, F(X) = Z, and the rest of the model will work entirely on the
encoded data Z.
One problem that arises with the simple AE is that we do not have any control

over the distribution of latent space encodings, and this is undesirable because we plan
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Figure 6.1. Reconstruction of two cross section evaluations using a linear PCA
with 32 variables, out of an original 256 dimensional cross section vector. The
linear PCA does not do a good job representing our data because there are
too many variations.

to use these encodings as input for another model. Having a smooth yet efficient
encoding is a high priority, and so we turn to a more appropriate formulation of the
encoding problem: variational Bayes (VB) and in particular the variational autoencoder
(VAE) [73]. VB refers to statistical methods which approximate a probability
distribution with a conditional (or joint) one, often using Kullback-Leibler divergence
(KLD) as a measure of closeness. In the present case, we want to approximate the
distributions Pgg)(2|x), the encoding, and Ppg)(2’|2), the decoding. The VAE is
essentially a mapping of the VB problem onto the autoencoder neural network
structure: the problem has a robust statistical foundation and we introduce deep neural
networks to learn the probability distributions. The VAE maps the latent variables to
parameters of Gaussian distributions rather than points: this is called the

reparameterization trick, mapping each input to a mean and variance. This means the

latent representation of x used in the VAE is not F(x) = z but rather E(z) = (i, 0?).
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When training the VAE, the latent representation is a random sample from N (u,,02).
Each latent space representation z is mapped to output z’ according to the probability
distribution P(E(z)) = N (., 02). When using the VAE for encoding after training, the
random noise is removed, so the encoding is deterministic E(z) = u., and so we
typically denote the encoded data p, = z as before.

The VAE loss function Ly 4g is a combination of the AE loss and VB loss,

reconstruction error and Kullback-Leibler divergence (KLD) respectively,

1
Lyvap(0,0,7) = A > K LD [Py (22:) IV (112, 02) | + Lap (0, ¢; F). (6.2)
=1

The function K LD(-||-) is lower when the probability distributions on either side
of the || are similar and large when they are very different. In our case, where the

comparison is made to a Gaussian distribution, this function reduces nicely:

KLD [Py ()N s, 02)] = 5 [1 - Togo? - i2 - 7] 63)

The scale of the KLD loss term is parameterized by the number S and in
practice this is not a static quantity. With a sufficiently complex neural network it is
easy to find (via numerical optimization) a minimization of KLD with large
reconstruction error: in other words, the latent space representations are Gaussian but
E and D are not good approximations to the distributions they should be learning. To
help this, we employ a technique called cyclic annealing [46] which schedules the KLD
to oscillate from 0 to 1 a few times before ultimately fixing to 1. This resulted in good
convergence and is especially easy to implement in code.

Lastly, our VAE layers are fully convolutional. A convolutional neural network is
likely superior to the usual densely-connected feed-forward neural network for data
dominated by local correlations, especially for a use-case like encoding. This is

especially true in very complicated problems where larger neural networks are
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employed; for a fixed number of layers the convolutional network has fewer parameters
than the dense, and thus is generally easier to train. The combination of convolutional
layers and learning VB results in an efficient mapping to the latent space: it appears
that large-scale features in the cross section are provided large o, and thus are
smoother with respect to the latent space, and smaller-scale features are given a smaller

0.. So, the latent space appears to reflect naturally the trends present in the data.

VARIATIONAL AUTO-ENCODER

U
— %.% ""/--O%I% —
64x4 Latent space (x2) 64x4
128x2

INPUT
OUTPUT

128x2

Encoding = Convolution + Normalization + Activation

256x1 256x1

Decoding = De-convolution + Normalization + Activation

Figure 6.2. A schematic of the deep convolutional variational auto-encoder.
The green central layer is the latent layer where variables are reparameterized
to the mean and variance of a Gaussian distribution.

6.1.4 Generative adversarial networks
We employ a generative adversarial network (GAN) to learn trends in the cross
sections. Before introducing the GAN, it is worth mentioning that deep generative
learning (and the subset of it which is adversarial) as a field of study has expanded and
matured significantly in the years since the first GAN work was published [56]. In the
present research we have developed our architecture based on experience with the

relevant physics, but there are many different types of GAN models one may consider
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Figure 6.3. Diagram of generator network structure in the cycleGAN. The
network shown the largest one of several configurations tested.

for this task [70} [104], 54 63, [141]. We cannot possibly give a comprehensive description
of all the ways a GAN may be applied to nuclear data. Our model is the result of over
two years of ongoing study and development, but it is not a perfect solution, and it is
our hope that this work will prompt other researchers to develop more creative and

effective methods for these sort of problems.

6.1.4.1 Simple GANs

Generative models are a family of machine learning techniques which are
designed to learn, and thus sample, a probability distribution. The VAE discussed in
the last section is a generative model: the decoder network can be fed a normal random
variable and generate random samples of the learned distribution. What sets the GAN
apart is a modification of the generating network’s loss function: rather than relying on
the latent space distribution of data, one introduces an entirely separate network to
learn the definitive trends in training data and penalize the generating network when
the output does not match those trends. As such, the adversarial nature of the model
allows for a generalization of the statistical requirements we had in the VAE. The

simplest GANSs consist of two networks: one generator G and one discriminator D, both
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Outer Iaver Dense + Activation

Inner layer = Dense + Dropout + Activation

INPUT
OUTPUT

Figure 6.4. Diagram of discriminator network structure in the cycleGAN.

acting on data x € X. The generator learns a mapping from a standard normal to the
target distribution, and the discriminator scores the validity of generated data,
D(z") = P(2' € X|z € X). This type of GAN is useful for fully unsupervised learning;
that is, the generator learns the relevant probability distribution without any labelled
inputs (aside from the labels for x € X and G(z) ¢ X, which are supplied to the
discriminator, but these are trivial to generate). During training, the weights of
networks GG and D are optimized with respect to a loss function, and the networks
compete with one another in what is (notoriously) tantamount to finding a Nash
equilibrium; methods for reliable GAN training is an open area of research. Training
the system results in a generator which can “convincingly” (according to the
Discriminator) create new samples z/, the correlations of which closely resemble those
of the training data: z’ € X (i.e. 2’ closely resembles an element of X, and/or
x' ~ P(X)). We denote this simple GAN as the pair {G,D}. We can write the
networks as explicit functions of weights 0 as G = G(0¢) and D = D(6p) for clarity.
The loss function for the simple GAN is different for generator and

discriminator, but both can be expressed in terms of two expectation values (E),

103



v=E,.px)log(D(z)) + E,.pc)log(1 - D(z)). (6.4)

The distribution P(G) means the distribution which the generator samples. The
respective loss functions are L5 (0g) = v(0g) and Lp(0p) = —v(0p). The discriminator
loss is low when it correctly identifies both true data and generated data, thus both
terms are large. The generator loss only depends on the second term, and is low when
the discriminator assigns a high probability to the generator outputs; thus we might say
the discriminator is being “fooled”, classifying the generated data as real.

Although the ideal outcome is to find a Nash equilibrium, this can be very
difficult and so training a discriminator to effectively classify true/fake data, and
subsequently training a generator to “fool” it can be a useful approach. It is common
for GANSs to be trained this way, then repeat the process by training the discriminator
a bit further. While both networks are training they compete and which has the
advantage can oscillate; this process can continue for a long time without clear
indication of making progress, but the model may still be useful in this state despite
not being fully converged.

In practice, we may express this loss function in Eq. in a slightly different
way. One often uses a loss function like binary cross-entropy (BCE) to evaluate
probabilities, which the discriminator network emits. BCE is the preferred loss function
when the classifier network ends with a single sigmoid neuron: it compares a label
probability y with a predicted probability p, and outputs a number that decreases as
y — p. (In practice, one may design a classifier which emits a so-called logit value on
(=00, +00) and a modified version of the BCE to handle logits instead of probabilities.
This is equivalent but may allow for better convergence in some cases.) The BCE loss

term in terms of p and y is

BCE [p,y] = —[ylog(p) + (1 -y)log(1-p)]. (6.5)
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BCE can also be evaluated for a set of inputs, as in batch training, simply by
averaging the individual BCE values for each pair. In terms of BCE for a single batch

of N, data points, the losses are

Lo(00) = o 33 [BOEID(:). 1] + BCE[D(G()).0]

(6.6)

Lo(0c) =~ Y. BCE[D(G(=)).1],

1
Ny
1
Nb i=1
which I find a little more intuitive than Eq [6.4 Ultimately, the GAN learns to
approximate the probability distribution of the data P(X) and the evaluation of the
generator on random noise G(z) approximates sampling from P(X). To better adapt

the model to our nuclear data problem, we consider a slightly more advanced form

called the cycle-consistent GAN.

6.1.4.2 Cycle-consistent GANSs

Zhu et al [140] demonstrated the effectiveness of cycle-consistent GANs
(cycleGANSs) for image-to-image translation: two GANs {G, Dg} and {F, Dp}, may be
used to map between two distinct probability distributions, for x € X and y e Y, as
G(z)=y' €Y and F(y) =2’ € X. The discriminator networks D¢ and Dp score the
validity of the two resulting candidates: Dg(y') = P(y' € Y|y eY') and
Dp(z') = P(2' € X|z € X). The cycleGAN loss functions add two new terms to the loss
functions in Eq. [6.6] First, cycle loss ensures that applying the generators in succession
returns the input (i.e. the convolution of co-inverse generators is the identity function).
For a batch of N, data points, cycle loss is

1 Y

Liae = ZIX FGXD))il+ & ZIY G(E(Y))il (6.7)

cycle

One such application is style-transfer [70] where G learns to transform X so that
correlations match those of Y, and F' learns the reverse. Style-transfer employs the

constraint that generators be idempotent (G? = G): G(y) €Y and F(z) € X, because
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the generators should act as projections into the respective spaces (that is, G(z) €Y
but G(G(z)) €Y as well). The term “cycle-consistent” refers to an additional
constraint that each generator be the inverse of its partner: G(F(y)) = G(z') =y’ and
F(G(z)) = F(y') = «'. In practice, this helps ensure the generators learn systematic
trends rather than simply “memorize” the training data. We can denote such a

cycleGAN system as the set {G, F, Dg, Dr}.

6.1.4.3 The physics-informed
cycleGAN

Our method for transforming cross-sections is a modified version of the
cycleGAN for style-transfer: we rely on cycle-consistency, but there are some important
differences. First, our data is paired, so we do not use the the projection constraint
present in style-transfer. Having generators be projectors makes sense in style-transfer
because there are two distinct distributions being mapped between, but we want the
generators to learn changes based on changing proton/neutron numbers which should
always (probably) have an affect on the cross section. Our generators map between
data points within a single domain, and consequently we have a single shared
discriminator Dg = Dp = D. We denote the modified cycleGAN as {G, F, D}.

Second, we introduce a new loss term: target loss, equal to the mean absolute
error between the model and target cross section. Without target loss, the total loss
function would have many minima not relevant to the physical solution, so the
introduction of this term is referred to as physics-informing. The total loss function is
thus biased toward a solution to the adversarial GAN problem which correctly
reproduces the physics. We introduce a tunable parameter Aiaqet for controlling the
weight of target loss, which is scheduled to be large at the beginning of training so the
optimizer converges quickly, then dropped later in training as to not overfit. Target loss

18
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1 Ny 1 Ny
Lirger = MZP{@'—F(Y%‘H EZM - G(X)il- (6.8)

The overfitting problem is subtle, in part because it is quite different from
overfitting in simple regression models (which is very well understood). A typical
regression problem abides the Gauss-Markov assumptions: errors between model and
target have mean zero and a diagonal covariance matrix Cj; = 02 with the same variance
value for each observation. This assumption does not hold for the present approach:
cross section evaluations are in some cases much more detailed than others, different
evaluations may involve different theoretical models and experimental factors, and the
library may even include some mistakes. This makes it very difficult to make any
assumptions about the form of the covariance matrix of errors. What we can do,
however, is control overfitting via model complexity, regularization, and by tuning
)\target-

We judge overfitting based on evaluations for validation data, as in a typical
regression problem: our assumption is that when errors on validation data are
approximately equal to those on training data, locally, the probability of having overfit
is low. The converse however is not true: a low probability of local overfitting does not
necessarily mean that errors on validation data are approximately equal to those on
nearby training data. The TENDL library has many individual cross section
evaluations which have been finely tuned to experimental data, while surrounding cross
sections have not, thus if that cross section is held out for validation we cannot always
expect the model to predict those details. In short, the model cannot predict a
systematic relation between cross sections that is not present in the training data.

Regularization of the neural networks is implemented in two ways: dropout, and
label noise. Dropout is used in generators and discriminator. During training, upon
each iteration, some percentage of neurons are randomly chosen to turn off, outputting

zero. This makes network predictions more robust, since no single neuron can be relied
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on all of the time, and it makes it much less likely that the network will “memorize”
data. We use a dropout probability of 50% on the inner hidden layers of the generators
and 25% for the discriminator; hidden layers near the input and output do not use
dropout (see Figs. and . Label noise is a regularization tool which works on the
discriminator; rather than using labels 0 or 1 for all training data, a small random ¢ is
chosen and added/subtracted to the label accordingly. That is, upon every iteration we
choose € ~ N (0,02) and then replace 0 > 0+ |e| and 1 - 1 —|¢|]. The standard deviation
o is 0.1 in the present application (although, this value was not arrived at via any
optimization, and in general such an exploration may be warranted). This has the
effect of smoothing the discriminator predictions around the limits, keeping the
discriminator from assigning probabilities “overconfidently”, so to speak. It is generally
common to have label noise applied to only one label (i.e. either 0 or 1, not both),

however in the present work we found applying the noise to both gave better results.

6.1.4.4 Challenges with the
convolutional GAN

Our initial attempts at this project involved not the separate convolutional VAE
and dense GAN, but rather a single convolutional GAN which was intended to learn
both latent space encodings and transforms of cross sections. This construction was
difficult to work with, and although the exact reasons for difficulty are unclear, we can
certainly learn some things by comparing that model to our final version. In the old
model, the generator of the cycleGAN followed a U-net design [112] illustrated in
Fig.[6.5] The U-net design has shown success in GAN models on 2D image data, so our
assumption was that 1D cross section data is similar enough that we could use a 1D
version of the same model structure. The loss function was the same as that of our
dense GAN; the discriminator network followed the design of a simple multi-layer
convolutional classifier. However, when training it we found the U-net model to have

poor convergence properties and especially was difficult to control overfitting while
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maintaining good predictions, and in particular to optimize the coefficient of target
loss. If the coefficient Agarget is too large then the model would overfit and predictions
would be unreliable, and if too small the model would not converge (i.e. predicted cross

sections were very noisy and would not match the training set).

U-NET GENERATOR NETWORK

Concatenate outputs
‘ i
6ax4 32x8 32x8 6ax4
128x2

INPUT

OUTPUT

128x2
Encoding = Convolution + Normalization + Activation

256x1 256x1

Decoding = Upsampling + Convolution + Normalization + Dropout + Activation +
Concatenate w/ encoding partner

Figure 6.5. Diagram of U-net style generator network used in our initial
attempts but ultimately was too difficult to optimize for this particular prob-
lem.

An interesting physics connection can be seen in comparing the results of the old
model with the new. Since the old model would not converge fully, it could not learn
systematic trends across the chart, and in particular Fig. shows that error increases
around N =50 and 82, which are magic numbers. This indicates that the model had
not learned to incorporate changes in the cross sections that are due to shell structure.
These errors are not present in final versions of our model.

This is not to say that a 1D U-net style cycleGAN is in general a poor design,

only that in our particular implementation for this problem, it did not give good
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Figure 6.6. Average error of local predictions using the U-net GAN model,
which was prone to overfitting, unstable, and ultimately abandoned in favor
of the VAE+GAN system. Note that higher errors are clearly visible around
magic numbers N = 50,82, indicating the model has not learned how cross
sections are dependent on shell structure.

results. Whether that model could be successful in some applications may be a worthy

question to pursue, but that is beyond the scope of this research.

6.2 The physics-informed cycleGAN model
for nuclear cross sections

We must invent some notation to clarify this section. First, for individual
directions on the chart (cardinals + diagonals) we use the index
de{t, 7,—,\,|, v, <, ~N}. Second, we use the index a for “axis”, meaning each
co-inverse pair of directions, so a € {{, /', <, N }.

Our full model consists of four cycleGANSs, one for transforming along each axis
across the chart of nuclides: the < axis corresponds to adding/subtracting neutron
pairs, the ] axis to adding/subtracting proton pairs , the / axis to adding/subtracting

both proton and neutron pairs (a.k.a. isoscalar), and the N axis to swapping a proton
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pair for neutron pair and vice versa (a.k.a. isovector). Denoting each cycleGAN set as
M, we have the following four separate models. The subscript of generators G, F'

indicate the transform they have learned.

M. = {Gn,2)>(N+2,2), F(N.2)>(N-2,2); Do }
My ={G .2~ (v.z+2), F(v.z)-(v.z-2), D1}
My = {G(Nn,2)>(N+2,2+2), F(N,2)>(N-2,2-2), D # }
M, ={G(N,2)>(N+2,2-2), F(N,2)>(N-2,2+2), Dx.}
However, for simplicity we rename the generator networks to Ty with a subscript

arrow indicating the direction of transformation on the chart of nuclides.

M. ={T.,T_,D.}
My ={T;, T}, Dy}
(6.10)
M, = {TmeDz}
M~ ={T\,T<, D~}
We standardize cross sections to lie on a fixed energy domain of 0 — 30 MeV in

256 bins, and normalize them individually to a maximum of 1. This way, we factor out
the task of predicting amplitudes and just focus on the shape of the curve. In principle
the scales could be included in the predictive model in future development, but that
would likely require some non-trivial modification of the VAE encoding process. Let X
with no subscript mean the set of all cross section evaluations, ¥ = {o(y z)}. For each
cycleGAN; a set of cross sections 3, is prepared by pairing cross sections along the

relevant axis. Sets of pairs of cross sections are denoted as follows.
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Y= {(U(N,Z)a 0(N+2,Z))}
Ei = {(U(N,Z)a U(N,Z+2))}
(6.11)
Y, ={(ow,2), 0(n+2,2+2)) }
Y = {(O(N,Z)aU(N+2,Z—2))}
Preparation of data for the GAN takes two steps. First, we use the VAE to
encode each cross section, E(o(y, Z)) = 2(n,z)- Let Z with no subscript mean the set of

all encoded cross sections, Z = {z(n,z)}. The sets of all pairs of encoded cross sections

are denoted similarly with Z, as follows.

Zo ={(2v.2), 2(N+2,2)) }

Zy ={(2(v.2), 2(N,z+2)) } (6.12)
Zy= {(Z(N,Z), Z(N+2,Z+2))}
Zx, = {(Z(N,Z), Z(N+2,Z—2))}

Second, each vector z(y z) is appended with normalized values of proton and
neutron number N, Z. We can denote the resulting form of our data as Z, which is the
pairs of encoded cross sections with normalized proton/neutron numbers appended. As
such, the dimension of the generator input/output is equal to the VAE latent dimension
plus 2.

The discriminator networks have a different job than in a cycleGAN used for
style-transfer. Rather than accept a single data vector Z’ and determine P(Z’ € Z ), the
discriminator D, accepts an ordered pair (2!, 2}) and learns P((2},%}) € Z,). This has
several benefits. The order of the pair matters, so discriminator D, should assign 1 to
(that is, accept) only pairs of vectors which together match the distribution of variables

along axis a in the data.
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6.3 Optimization

The loss function for each cycleGAN has four main components:
cycle-consistency losses, prediction losses, and the two adversarial losses. Without loss
of generality, we write the loss function for a single cycleGAN {G, F, D} as follows.

L= )\cycleEG + )\targetEtGarget + )\fakeﬁfDake + )\real;CD (613)

cycle real
The coefficients are determined simply by trial and error, we found that
Aeycle = 1, Afake = Atrue = 1 worked well for this case. The target loss coefficient A¢arget is
set larger (e.g. 5-10) at the beginning of training, then scheduled to decrease to 1. This
allows for us to bring the system to the relevant region of parameter space early, but
ultimately relax the constraint that predictions match very closely with TENDL data.
We use a translated and scaled sigmoid function to do schedule changes in values

while training. The sigmoidal schedule function,

SZ' t<t;

— S¢—S;
Sm,s(t) - SZ + m t; <t< tf (614)

Sf t>tf

begins at S; then in the window between times ¢; and t; gradually approaches
the value Sy. The parameters m and s control the translation and scale (in time)
respectively. This function is used to smoothly schedule the decrease in learning rate
and Aiarger. The initial and final epochs ¢;,t; depend on convergence, but are on the
order of 10,000 epochs.

We found that our model, as was the case in the original cycleGAN paper,
converged more quickly using a bacth size of N, = 1. This is quite unlike many other
machine learning applications where batch size may be set to several dozen. This is
mostly a practical decision, but is well known in the GAN community; one generally

gets much more accurate predictions with a batch size of 1 [105]. However, this decision
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can make training relatively slow, since epoch time scales like O( # data points / batch
size)90.

Development and training was carried out on heterogeneous architecture at
Lawrence Livermore National Laboratory with IBM POWER9 chips: per training
session, the CPU creates the relevant data environment including the cycleGAN model
with appropriate hyperparameters and sends it to the on-board GPU for weight
optimization. Optimization was performed using ADAM [72] with a moving average
wrapper [137]. ADAM already includes a momentum contribution, but the moving
average means the weights are even less sensitive to small changes in the loss function,
which is very helpful because gradients of adversarial losses can be very noisy.

We have prepared two data sets for experimentation: dataset A has a subset of
20 cross sections distributed along the length of the chart held out for validation, and
dataset B has a 3x3 region with 1"0Yb at the center, 9 cross sections total, held out as a
validation set. Examples of loss histories for dataset A4 and B are shown in Figs. [6.7]
and respectively. In these experiments, we have assisted the adversarial nature of
the model slightly by introducing a freezing value for each loss term. When the
discriminator loss drops below a freezing point, it’s weights are fixed to allow the
generator to catch up. The generators similarly have their own freezing value. Evidence
of this can be seen in the loss histories: where sudden spikes appear in generator loss
terms, corresponding with a sudden drop in discriminator loss, this means the
discriminator has reached it’s freezing point and we allow the generator to catch back
up.

The loss terms Liarger and Leyele tend to follow one another very closely, and this
makes sense since both are controlled by the generator completely. The discriminator
scores are shown in the dot-dash lines, and one can clearly see those loss terms in
opposition with the generator’s adversarial losses, shown in dotted lines. That is, the

generators and discriminator are competing, as they should be. Also apparent is that
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Figure 6.7. Loss history for dataset A shown from 0 to 16,000 epochs.

some “victories” seen in the discriminator have little effect on the generators, while

others have a very large effect.

6.4 Predicting cross sections

There are several ways to use the model to make predictions. The simplest use
of the model is to predict cross sections of direct neighbors; we call this a local
prediction. For local predictions, beginning from a cross section oy, the prediction of
neighbor in the d direction is o’ = D(T;(E(0y))). Each tile shows the TENDL cross
section in black and the predictions from direct neighbors in colored dashed lines. We
can judge how well the model has fit the data by comparing predictions of validation
data with the training data. Our assumption is that if errors on training data are on
the same scale as errors on validation data, then the model is unlikely to be overfit.

Figures [6.11] , [6.12] [6.13] and [6.14] show regions of local predictions using dataset
A. Figures[6.15] [6.16], [6.17], [6.18] [6.19] [6.20], [6.21], show regions of local predictions using
dataset B. The heatmaps for datasets A and B, shown in Figs. and respectively,
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Figure 6.8. A portion of loss history for dataset B, shown from 130 to 140
thousand epochs.

show a global picture of local predictions, with average MAE values represented as
colors, and each tile is a single cross section. Validation data are outlined in light green.
Since each generator learns changes in cross sections according to a particular
physical process, we can make predictions in stepwise paths across the chart, plugging
each consecutive prediction back into the system as input. This process is not restricted
to the region of training data, and so we can use what trends the model has learned
inside the training region to extrapolate beyond. To do so, we compute
o' = D(Ta(E(0g))) where Tx is a convolution of a sequence of Ty; the sequence A then
constitutes a path across the chart. Consider for example of = D(7) .. (E(0y))) and
ob=D(T.«,(E(0p))). While our starting cross section is the same for both, oy, and
both paths terminate on the same nuclide, the results will likely be different. The
function T, does not commute with Ty for different directions d + d'.
As another example, consider o] = D(T.,.(E(o(n,z)))) and
0y = D(T.(E(0o(n+2,2))))- These predictions begin at two different nuclides, (N, Z) and

(N +2,7), but terminate on the same nuclide (N + 4, 7). If the networks have
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Figure 6.9. Average error from immediate neighbors, trained on data without
3x3 region around '"°Yb (outlined in green).

successfully learned the local correlations present in the training data, then it is likely
that o] and o4 will be similar, but there will inevitably be some error. When
considering similar predictions to this with longer chains of predictions, errors can
compound leading to instability.

The accuracy and stability of extrapolations appear to be dependent on the
complexity of local trends around where the predictions are made. Each chain of
predictions is stable for a number of steps, around 5-6 on average, but can be longer or
shorter depending on trends locally present and the introduction of drastically

anomalous data. Some examples of interpolation are given in Figs. [6.22] [6.23, [6.24], and

6.25] In these examples, I have shown a list of TENDL cross sections in one plot and a
list of extrapolated GAN predictions in the other. The first predicted curve oy is simply
the first cross section oy encoded and decoded once, of, = D(E(0y)) . The second, o}, is

the first cross section encoded, transformed once, and decoded: o] = D(Ty(E(0y))),
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Figure 6.10. Average error from immediate neighbors, trained on data with-
out a scattered subset of 20 nuclides (outlined in green).This model had been
trained for far less time than that in the first example, hence the larger and
more sporadic error around the edges.

where d is the direction of transformation. The third, o, is the first cross section
encoded, transformed twice, and decoded: o4 = D(T?(E(0y))). This proceeds for n

steps: o}, = D(T}}(E(0y))). Note that the only input to the GAN for the entire chain of

predictions is oy.

6.4.1 Ensemble predictions

Leveraging the prediction capability, we can perform ensemble predictions for
cross sections beyond the training set as well. Ensemble methods can be used in many
different machine learning problems and are useful because the model(s) produce a set
of predictions rather than just one, and thus we have a built-in measure of variability.
In our GAN, this consists of computing many paths across the chart and predicting the

cross section at a common final nuclide using the full set of transforms. The final set of
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predictions may be interpreted as representative of a Gaussian distribution and thus we
present the ensemble prediction with mean and standard deviation.

Neural network models are commonly understood to have difficulty with
extrapolations, at least without the proper modifications. Regularization, which are
basically additional constraints, can help us to produce better extrapolations. In
particular, distribution learning and constraints placed on latent space distributions of
data can be helpful. The VAE, for instance, limits the distribution of latent variables
using variational Bayes, and this results in a fantastically smooth latent representation
(see [73] for more). Our working hypothesis is that distribution learning may be
leveraged to achieve good extrapolation behaviour; this certainly helps achieve good
results within this work but a proof of this concept does not to my knowledge exist.

Ensemble predictions are formed by a set of individual prediction chains. We
first designate a target nuclide and a region of the chart for the starting points. Then,
we compute all possible paths which begin within our region of interest and terminate
on the target. An added constraint is that the paths do not “back-track”; that is, within
each path, the distance to the target nuclide is monotonically decreasing with each
step. This property ensures that we are not including undue errors in the ensemble.

Examples of ensemble predictions are shown in Figures [6.26], [6.27], [6.28] [6.29] and

[6.30, Each figure shows the TENDL cross section evaluation in pink and the predicted
ensemble in thin colored lines. The color corresponds to the nmumber of steps in the
path leading to that prediction (see colorbar). So, Figures and show good
predictions and a reasonable spread of errors. As can be seen in Fig. [6.27], short paths
are generally more accurate than long paths. This makes sense since predictions from
longer paths might accumulate errors which compound with each application.

Fig. [6.28| shows predictions for Cerium-158, which does not have a cross section
evaluation in the TENDL library. Interestingly, we see the ensemble prediction is

bimodal; that is, each prediction is centered around one of two curves. The first mode
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increases very fast at 0 MeV, then has a shorter secondary peak around 6 MeV (which
is a very common feature in the inelastic neutron scattering channel). It corresponds to
predictions from shorter paths (blue and green curves), and so it is likely more
accurate. The second mode, which only has one major peak around 5 MeV, is created
by longer paths (yellow and red curves), and thus is likely not as accurate as the other.
We can thus inspect the ensemble prediction and provide a prediction for the cross
section of Cerium-158, which does not have experimental measurements, and also
provide a confidence band estimate according to the spread in the ensemble. However,
one should be careful here: the ensemble is certainly not normally distributed, and so
summarizing it with a mean and 1o confidence band is inaccurate.

Lastly, I include Figures and to illustrate some ensemble predictions
with large variability. Ensemble predictions for heavy nuclides, like Uranium-234 and
Erbium-158, are likely not as accurate as those for lighter nuclides, because there are
less data points for heavy nuclides in the training data (which can be seen as the chart
gets thinner at the heavy end, nuclides have fewer around them). A future priority for
this research may be to decide how to better summarize these ensemble predictions

with large variance.

6.5 Conclusion
I have developed a deep generative machine learning model to learn intricate

systematic trends in nuclear cross section evaluations in a subset of the TENDL library.
The model uses well-established machine learning models, namely the variational
auto-encoder and generative adversarial network, but we have made several important
modifications to these models to suit the problem of nuclear data, and thus it is a novel
development. The model is capable of accurate predictions of cross sections as particle
pairs are added and subtracted from the target nucleus, at least within local regions on

the chart of nuclides.
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This can be used for interpolations and extrapolations, chaining together of
predictions, and producing an ensemble of predictions for cross section evaluations.
Ensemble predictions are very powerful as they naturally can be used to predict cross
sections outside the library, and estimate confidence intervals.

Although the present model is perhaps not well suited for scaling to larger
problems, such as data with non-even-even nuclides and including other reaction
channels, we hope this research can inspire other researchers to bring creativity and

insight to this problem.

121



N,Z =[100, 70] N,Z = [102, 70]

EXCLUDED FROM TRAINING EXCLUDED FROM TRAINING N,Z =104, 70]
10 ~== from up, MAE = 0.02227 10 ~ =~ from up, MAE = 0.03041 104 ~ =~ from up, MAE = 0.02684
~=~ from up-right, MAE = 0.01268 === from up-right, MAE = 0.01155 ~ =~ from up-right, MAE = 0.01287
=== from up-left, MAE = 0.007803 ==~ from up-left, MAE = 0.008287 === from up-left, MAE = 0.01292
=== from right, MAE = 0.0315 === from right, MAE = 0.01037 === fromright, MAE = 0.01267
0.8 from left, MAE = 0.02428 08 from left, MAE = 0.009105 0.8 from left, MAE = 0.01609
from down, MAE = 0.01197 from down, MAE = 001935 from down, MAE = 0.03415
=== from down-right, MAE = 0.03887 === from down-right, MAE = 0.02631 === from down-right, MAE = 0.05311
[} : === from down-left, MAE = 0.04326 === from down-left, MAE = 0.02448 === from down-left, MAE = 0.01543
061 i center 06 center 061 center
(B
§
0.4 04 044
02 02 02
0.0 0.0 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
N,Z = [100, 68] N,Z = [102, 68]
EXCLUDED FROM TRAINING EXCLUDED FROM TRAINING N,Z =104, 68]
104 ~ =~ from up, MAE = 0.02977 10 ~ =~ from up, MAE = 005003 104 ~ =~ from up, MAE = 0.05838
~ =~ from up-right, MAE = 0.01532 . ~ =~ from up-right, MAE = 0.02541 ~=~ from up-right, MAE = 0.0701
~ =~ from up-left, MAE = 0005949 i ~ == from up-left, MAE = 0.01341 ~ == from up-left, MAE = 0.06216
=== from right, MAE = 0.01684 ”1‘ === from right, MAE = 0.07361 === fromright, MAE = 0.01216
0.8 from left, MAE = 0.01461 08 |‘: from left, MAE = 0.03706 084 from left, MAE = 0.03736
from down, MAE = 0.03771 ~ from down, MAE = 003772 from down, MAE = 0.01282
=== from down-right, MAE = 0.03089 === from down-right, MAE = 0.06193 === from down-right, MAE = 0.05015
=== from down-left, MAE = 0.02078 === from down-left, MAE = 0.1107 === from down-left, MAE = 0.01032
064 center 06 center 064 center
0.4 04 0.44
024 0.2 024
0.0 0.0 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
N,Z = [100, 66] N,Z =[102, 66] N,Z =[104, 66]
104 ~== from up, MAE = 005785 1.0 ~ == from up, MAE = 0.04696 104 ~ == from up, MAE = 0.02965
~=~ from up-right, MAE = 0.07887 ~==- from up-right, MAE = 0.01364 ~=- from up-right, MAE = 0.03018
~== from up-left, MAE = 0.1128 ~== from up-left, MAE = 0.03896 ~== from up-left, MAE = 0.04252
-=~ from right, MAE = 0.03985 ~== from right, MAE = 0.01045 ~== from right, MAE = 0.03054
0.8 from left, MAE 08 from left, MAE = 0.01721 084 from left, MAE = 0.03657
1 from down, MAI : from down, MAE = 0.01263 === from down-left, MAE = 0.02846
‘I === from down-right, MAE = 0.03605 ,' === from down-left, MAE = 0.01378 center
‘l‘l === from down-left, MAE = 0.02002 “ center
067 i — center 061 1 061
] e ]
it ]
i 3
\
\
044 N 0.4 044
i
02+ 02 024
m=mmeen.,
0.04 0.0 0.04
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 6.11. TENDL compared to local predictions of the VAE+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.
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Figure 6.12. TENDL compared to local predictions of the VAE+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.
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Figure 6.13. TENDL compared to local predictions of the VAE+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.
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Figure 6.14. TENDL compared to local predictions of the VAE+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.
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Figure 6.15. TENDL compared to local predictions of the VAE4+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend. Features in
this region are pretty simple, so we can reasonably expect the model to make
accurate predictions.
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Figure 6.16. TENDL compared to local predictions

of the VAE+GAN model.

Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend. Features in
this region are pretty simple, so we can reasonably expect the model to make
accurate predictions.

127




N,Z =116, 82] N,Z = [118, 82] N,Z =[120, 82]
1.0 === from up, MAE = 0.00523 1.0 from up, MAE = 0.04745 1.04 from up, MAE = 0.03732
- from up-right, MAE = 0.01515 from up-right, MAE = 0.1004 from up-right, MAE = 007585
~ =~ from up-left, MAE = 0.09377 from up-left, MAE = 0.09726 ~ =~ from up-left, MAE = 0.04975
“ === from right, MAE = 0.01322 from right, MAE = 0.1331 from right, MAE = 0.02098
051 from left, MAE = 0.09162 08 from left, MAE = 004405 0581 ; from left, MAE = 0.06783
from down, MAE = 005113 from down, MAE = 01202 i from down, MAE = 002985
=== from down-right, MAE = 0.05956 from down-right, MAE = 0.123 " from down-right, MAE .04105
=== from down-left, MAE = 0.1001 from down-left, MAE = 0.1333 1 from down-left, MAE = 0.09289
06 center 06 center 06 center
0.4 04 0.4
024 0.2 024
0.04 0.0 0.04
0 5 10 15 20 25 30 0 5 10 15 20 25 30 5 10 15 20 25 30
N,Z = [118, 80]
N,Z = [116, 80] EXCLUDED FROM TRAINING N,Z =[120, 80]
104 —=- fromup, MAE = 0.02444 10 ~=- from up, MAE = 008151 104 ~=~ from up, MAE = 0.01952
~=~- from up-right, MAE = 0.02056 from up-right, MAE = 0.1068 from up-right, MAE = 0.01626
~== from up-left, MAE = 0.03836 N from up-left, MAE = 001236 from up-left, MAE = 0.0136
\
[, === from right, MAE =0.1158 Y == fromright, MAE = 0.1014 —=- from right, MAE = 0.02321
\
0.84 \\‘ from left, MAE = 0.09835 0.8 from left, MAE = 0.02954 0.84 from left, MAE = 0.04008
\
W from down, MAE = 001626 from down, MAE = 0.008503 from down, MAE = 002693
\
\\ == from down-right, MAE = 003658 ~=- from down-right, MAE = 0.01506 ~== from down-right, MAE = 003133
\\ \ === from down-left, MAE = 0.1098 === from down-left, MAE = 0.01078 === from down-left, MAE = 0.02919
064 center 06 center 061 center
0.4 04 0.4
02 02 024
0.0 00 0.0
0 5 10 15 20 25 30 0 5 10 15 2 25 30 5 10 15 20 25 30
N,Z =[116, 78] N,Z =[118,78] N,Z =[120, 78]
104 ~=~ from up, MAE = 0.01972 10 from up, MAE = 0.009925 104 from up, MAE = 001668
from up-right, MAE = 0.01973 from up-right, MAE = 0.01336 from up-right, MAE = 0.0221
~= - from up-left, MAE = 0.0292 ~=- from up-left, MAE = 001225 ~=- from up-left, MAE = 0.01388
-~ from right, MAE = 0.01766 ~== from right, MAE = 0.02054 ~== from right, MAE = 0.01599
0.1 from left, MAE = 0.02145 08 from left, MAE = 0.009435 0. from left, MAE = 0.01065
i from down, MAE = 0.02348 from down, MAE = 0.01907 from down, MAE = 0.01859
i from down-right, MAE = 0.02854 from down-right, MAE = 002604 from down-right, MAE = 001523
u from down-left, MAE = 0.067 from down-left, MAE = 0.01558 from down-left, MAE = 001172
0.6 center 0.6 center 0.6 center
|
|
!
041 04 i 041
]
024 02 021
0.0 00 } 0.0
0 5 10 15 20 25 30 0 5 10 15 20 2 30 5 10 15 20 25 30

Figure 6.17. TENDL compared to local predictions

of the VAE+GAN model.

Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.

128




N,Z = [124,84]

N,Z =[126, 84]

10
104 from up, MAE = 0.02468 10 from up, MAE = 0.0142
- == from up-right, MAE = 0.03225 ~ == from up-left, MAE = 0.02047
~ == from up-left, MAE = 0.02753 from left, MAE = 0.02579
=== from right, MAE = 0.03098 from down, MAE = 0.1265 084
08 from left, MAE = 0.03212 08 - == from down-right, MAE = 0.01519
from down, MAE = 0.03062 ~ == from down-left, MAE = 0.03256
=== from down-right, MAE = 0.02318 center
- == from down-left, MAE = 0.02828
0.6 = center 0.6 067
04 04 041
024 0.2
024
0.04 0.0
- - - - - - - - - - - - - - 00 - - - -
0 5 10 15 20 2 30 0 5 10 15 20 2 30 00 02 04 06 08 10
N,Z =[126,82]
N,Z =[124, 82] EXCLUDED FROM TRAINING N,Z =[128, 82]
1.04 from up, MAE = 0.03274 10 P, from up, MAE = 0.07913 1.0 ~=~ from up-left, MAE = 0.07098
2.3
~ == from up-right, MAE = 0.0242 iy ~ == from up-left, MAE = 0.08642 \ - =~ from right, MAE = 0.006626
N
~ == from up-left, MAE = 0.02639 I --- fromright, MAE = 0.1292 I from left, MAE = 0.08438
~ == from right, MAE = 003345 I from left, MAE = 0.07753 from down, MAE = 0.007497
0.8 from left, MAE = 0.02085 08 'l:l from down, MAE = 0.1326 0.8 === from down-right, MAE = 0.01188
1
from down, MAE = 0.02783 b -~ from down-right, MAE = 0.1744 - == from down-left, MAE = 0.006695
1
~ == from down-right, MAE = 0.01775 o -~ from down-left, MAE = 0.09342 — center
—=~ from down-left, MAE = 0.02678 1 center
0.6 center 06 0.6
04 04 04
02 02 02
00 < 00 0.0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 15 20 2 30
N,Z =124, 80] N,Z =[126, 80] N,Z =[128, 80]
1.0 from up, MAE = 0.01301 10 p from up, MAE = 0.1077 1.0 from up, MAE = 0.0228
=== from up-right, MAE = 0.03411 pa === from up-right, MAE = 0.07329 “~ === from up-right, MAE = 0.06537
~ == from up-left, MAE = 0.01487 ‘uf‘/ ~ == from up-left, MAE = 0.04537 ! ~ == from up-left, MAE = 0.1278
- == from right, MAE = 001498 ‘:.":,-' - == from right, MAE = 0.07553 ‘\‘*a - == from right, MAE = 001814
0.8 from left, MAE = 0.0144 0.8 ':,':, from left, MAE = 0.09422 0.8 from left, MAE = 0.01773
from down, MAE = 0.01535 l"l( from down, MAE = 0.06823 from down, MAE .01878
- == from down-right, MAE = 0.01986 '.‘{ - == from down-right, MAE = 0.08514 ~ == from down-left, MAE = 0.06849
=== from down-left, MAE = 0.02332 === from down-left, MAE = 0.09502 center
0.6 center 0.6 center 0.6
i
i
04 04 0.4
i
i
i
|
;
024 02 024 |
————————— |
/
¥
0.0 0.0 0.0
0 5 10 15 20 25 30 0 5 15 20 2 30

Figure 6.18. TENDL compared to local predictions of the VAE+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions

color-coding and mean absolute error are given in each legend.
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Figure 6.19. TENDL compared to local predictions of the VAE4+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend. In the upper-

left we can see Plutonium-234, the shape of which is quite different from those
around it.
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Figure 6.20. TENDL compared to local predictions

of the VAE+GAN model.

Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.
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Figure 6.21. TENDL compared to local predictions of the VAE+GAN model.
Cross sections which have been excluded from the training set are labelled. In
each tile, the solid black line is the TENDL cross section evaluation and each
colored dashed line is the prediction from a direct neighbor. The directions
color-coding and mean absolute error are given in each legend.
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TENDL cross sections (5)
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Figure 6.22. Cross sections in the (N, 7) - (N+2,7Z+2) direction (), beginning
at (N, Z) = (30,20) for 6 steps. The only cross section data supplied to the GAN
is the first cross section, shown in the darkest blue. In this case, the GAN
has reproduced the larger trends well and only smaller features are lost by
the end of the interpolation (red curve).
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TENDL cross sections (3)

1.0
08
] —— [10280]
- 0.6 —— [10480]
E [106 80]
=]
Z [108 80]
S04
3 [11080]
[11280]
02 [11480]
0.0
0 5 10 15 20 25 30
E (MeV)
(a) TENDL cross sections, normalized.
CycleGAN extrapolation (3)
1.0
08
] —— [10280]
g 06 —— [10480]
g [106 80]
o
Z [108 80]
=04
4] [110 80]
[112 80]
02 [114 80]
00

0 5 10 15 20 25 30
E (MeV)

(b) GAN predictions, chained.

Figure 6.23. Cross sections in the (N,7) - (N +2,7) direction (—), beginning
at (N,Z) = (102,80) for 6 steps. The only cross section data supplied to the
GAN is the first cross section, shown in the darkest blue. We can see a peak
emerge around 2.5 MeV in the TENDL data at N =112,114, which the GAN
does not reproduce. The broader changes, however, are reproduced nicely.
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(b) GAN predictions, chained.

Figure 6.24. Cross sections in the (N, 7) - (N+2,7-2) direction (\), beginning
at (N,Z) = (68,62) for 5 steps. The only cross section data supplied to the
GAN is the first cross section, shown in the darkest blue. This sequence,
while including drastic changes, is reproduced nicely by the model. As is
typical however, some small details in the predictions are lost 6 steps away
(red curve).
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TENDL cross sections (2)
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Figure 6.25. Cross sections in the (N, Z) - (N, Z+2) direction (1), beginning at
(N,Z) =(86,52) for 6 steps. The only cross section data supplied to the GAN
is the first cross section, shown in the darkest blue. I include this example
because we see the GAN reproduce the trends well until (86,64) (red curve),
which is localized at lower energy than the TENDL data and has a smaller
width and a longer tail. Note the prediction just before that in the chain,
(86,62) (yellow), appears quite similar to the TENDL data. This makes sense,
since the general shape of (86,62) is very common among the data and thus
the model must rely on smaller changes to decide what comes next.
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N,Z =[50, 38] from all 273 possible paths

6
1.01 —— Sr88 (nn’)
508/ 5
[a¥]
N
£
5 0.6 4
)
[
8
§ 0.4' _3
a
8 |
1 |
© 02 .' 2
0.0f = :
0 5 10 15 20 25 30
Energy (MeV)

Figure 6.26. Ensemble prediction of the (normalized) cross section of
Strontium-88, using 273 paths within a bounded local region of the chart
of nuclides. The color of predictions correspond to the number of model eval-
uations used, as shown in the colorbar. The pink line shows the TENDL cross
section evaluation.
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N,Z = [54, 40] from all 51 possible paths
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Figure 6.27. Ensemble prediction of the (normalized) cross section of
Zirconium-94, using 51 paths within a bounded local region of the chart of
nuclides. The color of predictions correspond to the number of model evalu-
ations used, as shown in the colorbar. The pink line shows the TENDL cross
section evaluation.
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N,Z = [100, 58] from all 57 possible paths
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Figure 6.28. Ensemble prediction of the (normalized) cross section of Cerium-
158, using 57 paths within a bounded local region of the chart of nuclides.
The color of predictions correspond to the number of model evaluations used,
as shown in the colorbar.
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Figure 6.29. Ensemble prediction of the (normalized) cross section of Erbium-
158, using 273 paths within a bounded local region of the chart of nuclides.
The color of predictions correspond to the number of model evaluations used,
as shown in the colorbar. The pink line shows the TENDL cross section
evaluation.
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N,Z = [142, 92] from all 277 possible paths
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Figure 6.30. Ensemble prediction of the (normalized) cross section of
Uranium-234, using 277 paths within a bounded local region of the chart
of nuclides. The color of predictions correspond to the number of model eval-
uations used, as shown in the colorbar. The pink line shows the TENDL cross
section evaluation.
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CHAPTER 7
CONCLUSIONS

In this dissertation I have described two projects I completed during my
doctoral research.

The first project was about uncertainty quantification of configuration
interaction shell model calculations. I have shown how to assign a probability
distribution to parameters of an empirical interaction model, and then how to
propagate that distribution through the calculation of nuclear transition strengths.
This provides a posterior distribution for not only the transition strengths, which are
compared to experimental measurements, but also for coupling constants which show
up in a number of theoretical calculations. This procedure of assigning uncertainties to
elements of nuclear theory is important for three main reasons. First, it allows us to
assign more accurate confidence intervals to physical quantities, accounting for
experimental and theoretical uncertainties. Second, it aids further development of the
theory by giving correlations between informative variables, for example showing in
detail which parts of the empirical Hamiltonian are most important for beta decay, sum
rules, and so on. Third, assigning theoretical uncertainties to physical quantities can be
important for efficient experimental design. Experiments are expensive, and the price
tag is determined in part by the range of energies necessary to probe the physics of
interest. Recommendations from theory as to which energy regimes should be
prioritized, versus others which may likely be unfruitful, can lead to saving precious
resources of money and work-hours. This is not a new development in nuclear physics
of course, experimental design is always guided by theory, but more precise and robust

UQ accelerates the physics community toward discovery.
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The future of my UQ research holds many possibilities. One of the most
powerful recent developments is an emulator method specific to eigenvalue problems,
known as eigenvector continuation (EC). EC allows one to interpolate eigenvectors of
the Hamiltonian by some parameters with extremely good accuracy, as long as the
eigenvalue problem can be solved within the range of interest. Rather than computing
solutions via the Lanczos algorithm to generate statistics (i.e. 1000-10,000 times), EC
allows one to perform the full calculation fewer than 100 times, then use the emulator
to generate statistics instead, decreasing the cost of UQ immensely. This was not
pursued in my doctoral research because the practical code implementation of EC for a
sophisticated CI code like BIGSTICK is far from trivial.

Another goal we can pursue beyond my UQ research is fitting an empirical
Hamiltonian for shell model calculations using my results in the sd-shell. At the time of
writing, the “gold-standard” interaction, as discussed in this dissertation, is USDB,
which is fit only using excitation energies. Given the hypothesis that the general
accuracy of transition and moment calculations could be improved by including
transitions and moments in the fitted dataset, we could further optimize USDB via an
iterative method and publish it for others to use, along with estimates of sensitivities
and correlations.

The second project in my dissertation was about studying systematic trends in
nuclear cross section libraries using deep learning models. This work began during a
summer internship at Lawrence Livermore National Lab with Kyle Wendt, and we have
continued development for the last two years. In that time, the model has taken many
forms and I experienced many challenges along the way. Ultimately, I have designed a
system which combines the encoding power (technically manifold learning) of a
variational auto-encoder (VAE) with the distribution learning capability of a generative
adversarial network. Training the GAN is nontrivial: adversarial networks are

notoriously difficult to train and that is an open area of research at the time of writing.
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However, using the VAE to encode data before training allowed us to decouple that
task from the generative network, and ultimately the model provides reasonable
predictions. This can be used to predict extensions to the evaluated libraries for which
experiments may not be available, or to predict cross sections we do have data for in
order to compare them with the model’s expectations.

It is likely that the future incarnations of models for this project will use
fundamentally different deep learning models. The VAE+GAN model has been a
worthy endeavor but there are a number of objectives which the current model falls
short on. The GAN transforms for adding/subtracting different particles are completely
independent, and so correlations between directions cannot be leveraged. Correlations
between reaction channels ((n,n),(n,n’),(n,2n),etc.) also cannot be leveraged. Ideally
both encoding and transforms would be learned by a single deep network; as discussed,
we pursued this in the beginning but ended up factoring the problem into two parts to
make development easier. This factorization forces us to use an unnecessarily abstract
representation for data, which leads to compounding of errors in predictions. One
promising avenue is that of graphical neural networks (GNNs), which as the name
suggests work on graph data; since the chart of nuclides and evaluation libraries already
have a particular graph structure, using a GNN may allow for a very natural encoding
of data and leveraging of correlations. I will be continuing work on this project after

this dissertation is published with Kyle Wendt and other collaborators.
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.1 The SHMUQ codes: Shell Model
Uncertainty Quantification

Doing UQ for nuclear shell model required I develop a system to automate the
calculations. SHMUQ is a module and series of codes written in Python with the
objective of providing basic building blocks for complicated calculations using multiple

production codes. Some capabilities are as follows.

e For a given effective Hamiltonian with the form H = i Aio; an a set of states
{|tba; J, T, n)} for many nuclides, SHMUQ performs all BIGSTICK calculations
required to get the expectation values (14|01 ) . These are then used for
sensitivity analysis (SA) of A.

e The sensitivity analysis (SA) consists of a principle component analysis, which
allows us to determine the most important linear combinations of matrix elements
with respect to energies of the states E, = (¢o|H|1s)-

e Given the resulting sensitivity analysis (SA), approximate the distribution P(X)
with a Gaussian and sample new interactions
N ~ N (average = uy, covariance = Cly).

e Given the resulting sampled interaction A/, compute a set of states {|1),(A’))} for
many nuclides (potentially different than the original set used for SA). Note that
the wavefunction |1, (A)) is smooth in A: small perturbations in the Hamiltonian
yield small changes in the eigenvectors. In principle one should be able to “track”
a state as A changes. However, given some solutions evaluated at two points, A
and X', matching pairs of states 1o (A); J,T,n) < [t (N); J,T,n) is nontrivial. I
will elaborate on this problem, “state matching”, later in this section.

e With the states produced by the sampled interaction, compute other observables.
This could include transition matrix elements of one-body operators,
M;_.s = (¥4|OJ;), or expectation values of two-body operators My = (1o|O|tha).
This provides the mapping from interactions to observables, P(A) - P(O|A).

e If the observable depends on parameters of interest, O = O(0), then we model 6 as
well.

.1.1 Challenges

L All Hamiltonians we deal with have this form, a linear combination of density operators. As such the
terms “Hamiltonian” and “interaction” are mostly interchangeable. The Hamiltonian matriz, however,
depends on the basis, number of particles, angular momentum, etc.
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.1.1.1 State matching

The eigenvectors and eigenvalues the Hamiltonian H (\) are perturbative with
respect to the parameters A: a small change in A produces a small change in the
solutions, and thus also a small change in the integrals upon which solutions depend.
The individual mappings A — ((A)[OJ(\)) are usually not very complicated, and a
polynomial fit does well to emulate the model around a point. However, when A\ is
chosen randomly, it is possible to “lose track” of the solution due to state mixing and/or
level crossings. If the solution of interest has mixed too much with another state, or has
changed order in the list of total excitations of the system as shown in Fig. [T} then it

can be very difficult or impossible to connect within the overall framework.

51‘~\
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Figure 1. For two discrete samples of parameters \; and )\, the energies of
states a and [ change order.

This is handled within SHMUQ using overlaps. Wavefunctions |¢)) in the
calculation are tracked not by J7 but rather by computing the overlap, |(1|tyet)|?, with
a reference state |ib.f). The reference states are eigenstates of the unperturbed
Hamiltonian. This system is not too slow, and ensures that states are tracked even
when they may switch order with one another. Of course, this requires one set a lower
limit on the acceptable overlap; for overlaps less than around 0.5, we do not accept the

result. If this occurs, SHMUQ makes a new sampled Hamiltonian and the calculation
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starts over. During the work in Chapter [5] this occurred with very low probability, less
than 0.01% of the time.

.1.1.2  Extreme I/0

A practical challenge faced when sampling large calculations for UQ is
management of output files and disk storage. Simulation codes are typically designed
with verbosity as a high priority, and this makes a lot of sense: delivering more
information to the user is rarely a bad thing, especially if that information can be
conveniently organized into multiple text and/or data files. However, it became
apparent early during the development of SHMUQ that some built-in file management
would be required. The problem is that disk space required for UQ increases

geometrically as we broaden the analysis.

NSHMUQ ~ observables Nsamples Nexperiment Nstates' o (1)

Here Ngmuyq is some abstract quantity representing the size of the UQ, and is
related to disk space required and/or the number of files produced. That is, our
analysis scales like the product of number of observables considered, number of samples
for statistics, number of experimental data points, number of solutions required to
produce good data, etc. For UQ of operator parameters in the sd-shell (for E2, M1, and
GT, and the sum-rule version of each), we have the following (rough) evaluation of this

expression.

Nsmwg ~ (6)(10,000)(150)(40) = 360,000, 000 (2)

This is certainly an order-of-magnitude calculation, but clearly we can reach the
scale of millions of files and millions of MB of data on disk. Not all of those files must
be kept, but implementing “clean-up” functions in the code itself takes much care and

caution on the part of the developer. The typical method used in SHMUQ is to stage
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unnecessary files for deletion, then archive the important files using tar along with
compression program pigz, which is a multithreaded version of gzip. A Python script
then copies the necessary files out of archive, and only after that returns are the trash
files finally deleted. While this strategy ultimately reduces Nggq significantly,

archiving files on this scale can be extremely slow.

.2  Quantum mechanical formalism

I include this section for the interested reader not already familiar with the
formalism of quantum mechanics, but with basic knowledge of linear algebra and
calculus.

This work is concerned with quantum mechanical systems of many particles (
>3 ) at low energy. Low energies implies non-relativistic theory, so the language of
non-relativistic quantum mechanics (QM) is usually appropriate, although a little bit of
non-relativistic field theory is used as well. Quantum mechanics for a fixed number of
particles is often formally done in Hilbert spaces, which are infinite-dimensional
vector spaces with an inner product rule. In practice though, we work in finite bases — I
will explain those in detail later. In the Hilbert space, states of the many-body system
are represented by vectors, so working with these states is in large part linear algebra,

altogether forming the invaluable matrixz formulation of quantum mechanics.

.2.1 The matrix formulation of quantum
mechanics: kets, bras, operators, and all that

A vector in our Hilbert space is written in Dirac’s bra-ket notation: |¢)) is a
state with the label 1. f] A vector [¢) is a ket vector, meaning it is oriented like a
column vector. A vector (1| is a bra vector, meaning it is oriented like a row vector.

Transforming [¢)) — (1| is the same as a conjugate transpose. Just like regular vectors,

2We often label states with its quantum numbers. So, if the state [t/) is an eigenvector of an operator,
we can specify according to that information. Say some vectors |¢)) have spin S = 2, then I could write
those as [¢; S = 2). Or, if we want to write a general eigenstate of the spin operator, we may just write
|S). Labels are flexible to accommodate whatever properties we need to keep track of.
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kets and bras are closed under addition and scalar multiplication, although they
technically exist in two distinct vector spaces. For a Hilbert space H defined over the
complex numbers, a bra (dual) space H*, vectors |a) and |b) € H, and a complex number

z € C, we have the following general relations.

la) +[b) e H

(a| + (b] e H*
zla) e H
z(a| e H*

The Hilbert space is also equipped with a number of products: inner and outer
come up the most often. Just like a dot product between vectors x,y can be written
like x -y or xTy, or for complex vectors like x*y or x'y or x”y, the inner product in
our Hilbert space is written (x|y). The usual inner product between two vectors is

defined as the integral over their product, but with one complex-conjugated.

[All possible ¢ dq ¢: (Q)¢J(Q) - (sz}g) (4)

Here, ¢ can be anything: coordinates, frequencies, spins, etc. Notice I had to
introduce a new variable ¢ for the integral, but not in the inner product in Dirac
notation. Indeed, computing an integral requires a basis, but the inner product is
independent of basis. Put another way, the numerical value of the inner product does
not depend on what computational basis is used. Our bra and ket vectors are without
representation, and they only gain a representation when we put them in a basis.

For example, consider a 1D coordinate basis {|z;)}:-1._n versus a 1D Fourier
basis {|k;)}i-1,...n, both with N basis vector’} That means, each |z) is localized at one

point in coordinate space, and each |k) is localized at one point in Fourier space. Just

31 realize I introduced the idea of infinite-dimensional bases, then gave an example of a finite dimen-
sional one. This is intentional. It is easier to define concepts like an inner product formally as integrals
first, then in practice define them again as sums. Computationally, all our bases are finite.
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like coordinate vectors are distinguished by their position x, Fourier modes are
distinguished by their wavenumber k, and the process of going between these two is
called a Fourier transform (or inverse Fourier transform). The components representing
some arbitrary vector |¢)) are obtained by the inner product of it with each basis vector:
W(z;) = (x;|v) and ¥ (k;) = (ki|t)). Remember: while the coefficients of the vector are
basis dependent, the vector i) itself does not have any preferred representation. It is
helpful to express both these bases in the |x) basis: (z|z’) = §(x - 2’) and
(x|k) = coskx +isinkx.

To be clear, the quantity ¥ (z;) = (x;[t) is not a vector, it is a number. In order
to represent the vector in a basis (that is, in terms of other vectors), we will apply a

completeness relation, shown in Eq. [5]

N

>zl = 1. (5)

i=1

This is an extremely handy object. Note that |x;){z;| is an outer product of a
vector with itself, and thus is a matrix. Algebraically, we can always insert an identity
matrix without changing the value of an expression. By the completeness relation, if we
know a useful basis, we can always find a way to evaluate the expression in that basis.

There is an integral version of completeness too,

| dala)al -1 (6)

where 1 is the identity in infinite dimensions. One should be careful to
distinguish though — these statements are similar but not interchangeable. With this
knowledge, we can return to Eq. 4/ and see how the inner product and completeness

relation are related.

(Wilvy) = (ilils) = [ datvdadialvs) = [ davi(@)vs(a) 7)
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Bases used for computation often have an additional property called
orthonormality: the inner product of two basis vectors is only nonzero if the vectors are
equal, in which case the inner product is 1. We use the Kronecker delta: 64, = 1 only if

a = b, otherwise = 0.

(@ilzj) = b5 (8)

In nuclear theory, the state vectors and associated objects get called by different
names, and any nuclear theorist would admit these can be a little confusing for
newcomers. Usually state vectors represent one or more particles, so they are
wavefunctions. If they are a solution to an eigenvalue problem, which comes up often,
they are called eigenvectors or eigenfunctions or eigenstates. The inner product of two
states (x;|z;) may be called an overlap, because we often use it as a measure of
similarity. If an operator O is inserted between, then the number (z;|Olz;) is typically
called a matriz element, because it is the coefficients of the matrix representation of O
in the basis {|x;)}.

Operators represent what we call external fields, although I think it is helpful to
think of them as representing properties of the quantum mechanical system (like
position), or processes the system can undergo (like decay). We denote operators with a
hat: O. Calculating a property of a state [¢)) is equivalent to an expectation value;
position may be represented by the operator £ and measurement of position is

calculated as a modified inner product like in Eq. 9

(o= (Wl = [ doo @)av(e) = [ doali(o)P )
From here, we can take a closer look at expansion of a wavefunction in a basis,

and statistical interpretations of the wavefunction.

) = 1) = e ail) = Yeile) (10)
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where ¢; = (x;|1). For now, imagine 1 is a single particle in a 1D space
coordinate z, so the basis {|x)} fully spans a 1D coordinate space and this expression
poses our wavefunction |¢)) as a scalar function of space 1(x). The values of the
function may be computed as ¢(z = 2’) = (2'|). In this case, measuring the x position
of our particle delivers an eigenstate of Z, |x), with probability given by the square of
the wavefunction at that point: ¥?(x = z') = |(2|¢)|>. For M independent preparations
of the state [¢), the measurement of Z will “reveal” the particle at x = 2’ a total
M|(z'|1))|? times, on average. Upon measurement, the wavefunction becomes an
eigenstate of the operator; for &, every |z) is an eigenstate, so the act of measurement
has taken our system from an admixture of many positions to a single position. In other
words, if we measure the position of the particle to be x = z’, then the wavefunction
immediately after the measurement is |z’). For more on statistical interpretations see
an introductory quantum mechanics text like those by Griffiths or Shankar.

By the probability interpretation we can clearly see that the scale of
wavefunction coefficients ¢; is important — since the probabilities of all possible states

must equal 1, we enforce that our wavefunction be normalized.

Y Pr((ofEw) = x:); = 3 Pr((wlkle) = k)i = 1 (11)

The process of normalization is to divide the wavefunction by the square root of

its inner product with itself.

y ) -
W)= (12)

So, |1’} is properly normalized, and thus we can think of [¢'(z)|* as a
probability density function in the coordinate basis. This can be generalized to
other bases which are formed by eigenstates of an operator, such as the Fourier basis

with the wavenumber operator k or spin basis with spin operator S,
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.2.2 Quantum angular momentum

Recall from classical mechanics the formula for calculating angular momentum
from position and translational momentum: L = x p. For quantum mechanics, we
must also account for intrinsic angular momenta of particles, commonly called spin.
Systems with spin have angular momentum but may be point particles with no
structure to be rotating through space, so the classical definition does not work. The
quantum analogue to classical L is orbital angular momentum L-= (iw, ﬁy, f)z), and
we define intrinsic spin as a new quantity S = (S’x, Sy, SZ) which follows all the same
rules as L. In nuclear physics especially these two types of angular momentum will
combine to give total angular momentum
J=L+8= ([:x + Sx,ﬁy + gy,ﬁz + S*Z) = (jx, jy,jz).

Quantum angular momentum follows the SU(2) commutation relations in

Eq. .
[, J,] = ihJ. [J., J.] = ihJ, [Jy, J.] = ihJ, (13)

Since individual components don’t commute, they cannot be known
simultaneously to arbitrary precision, and so we often work in terms of two operators
which do commute: J, and J2 = J2 + jy2 +J2. Consider a state |J, .J,) which is an
eigenvector of both. We often label a vector with its quantum numbers so it is obvious

these conditions are satisfied.

jz|J7 Jz) = JZ|J7 Jz)
(14)
JA|J, Ty = J(J +1)]J, )
As expected, the eigenvalue of the operator J, is the z-component of the total

angular momentum of the system, J,. However, the eigenvalue of the operator J2 is not

J? but J(J+1)=J%+J. The extra factor of J is generated by the non-commutativity
in Eq. [13
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