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Abstract

The AdS/CFT correspondence, or holographic duality, relates quantum field
theories with quantum gravity in one dimension higher. In this thesis, we study
precision holography in various examples, using tools from strongly-coupled
quantum field theories and supergravity.

After reviewing the AdS/CFT correspondence in the introductory chapter 1, in
chapter 2 we study 4d gauged supergravity theories that can be uplifted to 10d or
11d supergravity backgrounds. Motivated by results in the holographically dual
3d field theories, we examine the logarithmic corrections to the gravitational
on-shell action and black hole entropy for a number of theories on different
backgrounds, both supersymmetric and non-supersymmetric. By comparing
our new results with the field theories’ results, we have confirmed precision
holography and found new Swampland constraints on the gravity theories.

In chapter 3, we study a specific 4d N = 2 superconformal gauge theory called
the E theory. This theory is closely related to the N = 4 super Yang-Mills
theory and has a holographic description in terms of type IIB supergravity on a
Z2 orientifold of AdS5 × S5. With novel high precision numerics, we evaluate
the partition function on S4, extremal correlators, and vacuum expectation
values of Wilson loops with general ’t Hooft coupling in the planar limit. Based
on these numerics, we arrive at closed-form formulas in the strong coupling
expansion. Our results match the literature on type IIB supergravity.

In chapter 4, we study the Hawking-Page phase transition between two
asymptotically locally AdS8 families of backgrounds, which are analogs of
NUT and Bolt in the 4d counterpart. The backgrounds are parametrized by a
squashing parameter of the asymptotic boundary, which is a squashed seven-
sphere. Surprisingly, we observe the absence of the Hawking-Page transition,
giving a prediction for the dual non-supersymmetric field theory. We also
calculate and compare the free energies as a function of the squashing parameter
in conformally coupled scalar, free fermion, and the holographic theory.

v





Beknopte samenvatting

De AdS/CFT-correspondentie, of holografische dualiteit, verbindt kwantum-
veldtheorieën met kwantumzwaartekracht in een hogere dimensie. In deze thesis
bestuderen we precisie-holografie in verschillende voorbeelden, met behulp van
tools uit sterk gekoppelde kwantumveldtheorieën en superzwaartekracht.

Na de AdS/CFT-correspondentie te hebben besproken in het inleidende hoofd-
stuk 1, bestuderen we in hoofdstuk 2 de 4d geijkte superzwaartekrachttheorieën
die kunnen worden geuplift naar 10d of 11d superzwaartekrachtachtergronden.
Gemotiveerd door resultaten in de holografisch duale 3d veldtheorieën,
onderzoeken we de logaritmische correcties op de gravitationele on-shell actie
en de entropie van een zwart gat voor een aantal theorieën op verschillende
achtergronden, zowel supersymmetrisch als niet-supersymmetrisch. Door onze
nieuwe resultaten te vergelijken met de veldtheorie-resultaten, hebben we
precisie-holografie bevestigd en nieuwe Swampland-constraints gevonden op de
zwaartekrachttheorieën.

In hoofdstuk 3, bestuderen we een specifieke 4d N = 2 superconforme ijktheorie
genaamd de E-theorie. Deze theorie is nauw verwant aan de N = 4 super
Yang-Mills-theorie en heeft een holografische beschrijving in termen van type
IIB superzwaartekracht op een Z2 orientifold van AdS5 × S5. Met behulp
van nieuwe hoge-precisie numerieke methoden, evalueren we de partitie functie
op S4, extremale correlatoren en vacuum verwachtingswaarden van Wilson
lussen met algemene ’t Hooft koppeling in de vlakke limiet. Gebaseerd op deze
numerieke methoden, komen we tot gesloten formules in de uitbreiding naar
sterke koppeling. Onze resultaten komen overeen met de literatuur over type
IIB superzwaartekracht.

In hoofdstuk 4, bestuderen we de Hawking-Page faseovergang tussen twee
asymptotisch lokale AdS8 families van achtergronden, die analoog zijn aan NUT
en Bolt in de 4d tegenhanger. De achtergronden worden geparametriseerd door
een squash-parameter van de asymptotische grens, die een gesquashte zevensfeer
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viii BEKNOPTE SAMENVATTING

is. Verrassend genoeg observeren we de afwezigheid van de Hawking-Page
overgang, wat een voorspelling geeft voor de duale niet-supersymmetrische
veldtheorie. We berekenen en vergelijken ook de vrije energieën als functie
van de squash-parameter in conform gekoppelde scalar, vrije fermion en de
holografische theorie.
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Chapter 1

Introduction

Strongly coupled field theories and quantum gravity are two very intriguing
topics in high energy physics. The AdS/CFT correspondence, a mysterious
feature of quantum gravity, has been shown to act as an extremely useful and
powerful tool to connect them. The goal of the thesis is to study precision
AdS/CFT using tools in supergravity and quantum field theories. Besides,
the correspondence itself also gives new predictions on both sides. As an
introduction, we will start with questions relevant in the thesis that are also
interesting to a wider audience, discussing their relations with the AdS/CFT
correspondence. In section 1.1, we introduce the main field theory tools we use
in the thesis, namely superconformal symmetry and supersymmetric localisation.
In section 1.2, we motivate and introduce the AdS/CFT correspondence. The
structure of the thesis is given in the end of this chapter.

The black hole entropy

The first question is related to black hole entropy. For almost 50 years, people
have known that the black holes behave like thermal systems characterized
by a non-vanishing entropy proportional to the area of the event horizon. [1]
Although the area law can be found purely from the classical physics (general
relativity), the coefficient is harder to obtain and turns out to include the
Planck’s constant: [2, 3, 4]

SBH = A

4l2P
, lP =

√
GN~
c3

, (1.1)

1



2 INTRODUCTION

where A is the area of the horizon. So in order to know what are the microstates
attributed to the (very large)1 entropy, we need more information from quantum
gravity.

There are different perspectives to study the black hole entropy. From the
“top-down” perspective, people start from the string theory, which is regarded as
a consistent quantum theory of gravity. In string theory, some black-holes could
be constructed out of objects such as D-branes, NS5 branes, and fundamental
strings: in specific brane constructions, the microstates can be parametrized
by their momentum quanta explicitly, whose number can be calculated which
reproduces the Bekenstein-Hawking formula in the leading order of large charge.
[5, 6] There are also insights coming from AdS/CFT correspondence, where the
mircostates of asymptotically AdS supersymmetric extremal black holes2 can
be evaluated by supersymmetric partition functions of the dual field theories.
Various field theory results in the literature are summarized in Table 2.1, which
motivate our study in chapter 2. In this thesis, instead of relying on the
AdS/CFT correspondence, we start with a classical background3 in gauged
supergravity theories, and consider quantum fluctuations of all the fields to the
partition function. The Legendre transformation of the partition function gives
the enetropy. [7, 8, 9] In chapter 2 of the thesis, we study the one-loop quantum
corrections to the classical4 Bekenstein-Hawking.

Strongly coupled field theories

In field theories, the weak-coupling behavior can be studied through Feynman
diagrams in a systematic way. However, the strong-coupling regime is also
important and interesting for us. There are situations where a strong coupling
necessarily appears. For example, because of the asymptotic freedom, the
non-Abelian gauge theories (or Yang-Mills theories) are strongly-coupled in the
low-energy regime, resulting in the quark-confinement. So a strong-coupling is
involved if we were to study the confinement-deconfinement phase transition
in QCD. Another example is in AdS/CFT correspondence, where the field
theory becomes strongly-coupled if we want to suppress the high-derivative
corrections in the corresponding gravity theory, which is necessary for the

1For example, the entropy of the black hole with one solar mass is around 1018 times that
of the sun. [2].

2They are also called BPS black holes which are the ground states in the Hilbert space of
quantum gravity.

3By classical it means the background solves the classical equations of motion, with no
quantum effects included.

4Here the word “classical” means that the Bekenstein-Hawking entropy is evaluated from
the classical background.



INTRODUCTION 3

precision holography since we don’t know the full tower of high-derivative
corrections of string theory.

After so many years of research, there are already many powerful non-
pertbative techniques to study quantum field theories. For example, the
introduction of conformal symmetry and supersymmetry, large N expansion,
and integrability. The development of computing power and more efficient
algorithms is also helpful, which prompted the lattice gauge theories. The
AdS/CFT correspondence also plays an important role for studying holographic
field theories, because it maps a strongly-coupled field theory to a weak-coupling
gravity theory. At the same time, the AdS/CFT correspondence maps a strongly-
coupled gravity to a weakly-coupled field theory, so it also probes the unknown
regimes of quantum gravity.

The path integral of quantum gravity

Path integral is a natural way to do quantization. Let’s start with the
gravitational path integral in Lorentzian signature:

ZLgrav =
∫
DgµνDφei

1
~ I
L[gµν ,φ], (1.2)

with IL[gµν , φ] the Einstein-Hilbert action plus possible matter contents. A
useful operation in field theory path integral is the Wick rotation, which people
also apply to study the gravitational path integral:

ZEgrav =
∫
DgµνDφe−

1
~ I
E [gµν ,φ]. (1.3)

The advantage of the Wick rotation is that the WKB approximation in which
~→ 0 performs better. This can be understood as follows. In the WKB limit,
the path integral can be approximated by saddle-points, or stationary phases,
which are backgrounds such that the classical equations of motion are solved.
Under the WKB approximation, the path integrals are dominated by these
saddles, up to small corrections in ~:

ZLgrav =
∑

gcl
µν ,φ

cl

ei
1
~ I
L[gcl

µν ,φ
cl]

(
1 +

∑
n=1

αn(i~)n
)
,

ZEgrav =
∑

gcl
µν ,φ

cl

e−
1
~ I
E [gcl

µν ,φ
cl]

(
1 +

∑
n=1

αn(−~)n
)
,

(1.4)
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where the sum in front of each line is over all classical saddles gcl
µν , φ

cl that solve
the equations of motion. It’s not hard to see that there are two advantages to
use the Euclidean path integral. First, let us ignore the perturbative corrections
and focus on the leading term contribution given by the action. In the Euclidean
case, only one (or coincidentally a few) saddle(s) with the lowest action will
dominate, with the others exponentially suppressed going like e−∆IE/~. While
in the Lorentzian case, each saddle contributes an order 1 number with different
phases. Secondly, by comparing the terms perturbative in ~, it’s not hard to
see that the corrections in terms of (−~) cancel with each other and give a
smaller total correction. So the Euclidean path integral has smaller perturbative
corrections as well.

To sum up, the gravitational path integral (1.2) is evaluated by the Euclidean
saddles in the classical limit ~→ 0: [4]

Zgrav '
∑
i

e−
1
~ I[g

(i)
µν ,φ

(i)], (1.5)

where the sum is over saddle-points, namely backgrounds which satisfy the
classical equations of motion of the path integral with given boundary conditions.
This Euclidean prescription will play a central role in our studies in various
gravity theories. This is accompanied by the fact that we also have a better
control on the field theories in Euclidean signature. As we know from the study
of quantum field theories, the observables suffer from UV and IR divergences.
The former appears due to the high-energy modes, and the latter is a result of
the space-time being unbounded. As we will see, the supersymmetric localisation
automatically solves the UV divergences by reducing the full path integral to
an integration of zero modes or fixed locus. To solve the IR divergences, we
need to put the theory on a compact manifold, so we need to use the Euclidean
signature in the field theory as well to get rid of the unbounded Lorentzian time
coordinate.

The Gibbons-Hawking integral allows us to approximate the path integral by a
sum over Euclidean saddles, but we don’t know whether the classical background
with the lowest action is really a minimum or only a saddle5, especially because
the Einstein-Hilbert action is not bounded from below. [10] Yet in practice, the
saddle-point approximation is the most natural thing to do, thus, it is a non-
trivial but important task to make sure that the Gibbons-Hawking prescription
gives the correct gravitational path integral in the classical limit. One may need
alternative ways to study or even define the gravitational path integral. The
AdS/CFT correspondence provides a good way to check the Gibbons-Hawking
path integral. According to the AdS/CFT correspondence, the gravity partition

5This “saddle” means that the action IE may decrease further upon a small off-shell
deformation of the background.
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function Zgrav is fully captured by the dual field theory. If it’s possible to
evaluate the partition function purely from the field theory, we can explicitly
check whether the saddle-point approximation is correct in the classical limit.
Doing this on the field theory side usually involves strong couplings, but it
can be made possible with the techniques of superconformal symmetry and
supersymmetric localisation to be introduced in section 1.1.

Phase space of AdS spacetime

According to the Gibbons-Hawking prescription, in the classical limit, the
gravitational path integral is dominated by one or several saddle-points that
has the lowest action. With the same boundary conditions, there might exist
several competing saddle points. When one changes parameters that determine
the boundary condition, such as the temperature or the squashing parameter,
the dominant saddle may change.

One of the examples is given by Hawking-Page phase transition in asymptotically
Euclidean AdS space. We know that black holes evaporate, the smaller a black
hole is, the faster it evaporates, so the black holes are not stable in asymptotically
flat space. But in asymptotically AdS space, massive fields are effectively trapped
and can’t propagate to the spatial infinity. As a result, the black holes can be in
equillibrium with the radiation and become stable. Between the two competing
phases, AdS black hole phase and thermal AdS phase, there exists a critical
temperature where the dominant phase changes. It is an interesting question to
study the structure of the phase space of the gravitational path integral in the
classical limit, such as what are the possible phases, when do they dominate,
and what’s the order of the phase transition.

In order to study these questions discussed above, we should first have proper
tools. So before going to the more specific questions in later chapters, we shall
have a brief review on the main tools. In the following section, I will introduce
the superconformal symmetry in Euclidean signature and supersymmetric
localisation which are helpful for studying the strongly-coupled field theories.
After that, I will introduce the AdS/CFT correspondence, including its
motivation, a constructive example, and its implications.
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1.1 Aspects of symmetry

Symmetry plays an important role in modern physics. In classical physics,
we already know that a global symmetry gives a conserved charge, when the
number of the symmetry is large, the system becomes “integrable” and the
evolution is largely constrained. We will introduce conformal symmetry and
supersymmetry, both of which are cornerstones of the AdS/CFT correspondence
and will play an important role throughout the whole thesis.

1.1.1 Conformal symmetry and supersymmetry

As discussed before, in this thesis, we use the Euclidean signature for the field
theories. For a generic relativistic field theory, the set of symmetry includes
translations Pµ and Lorentzian transformations Mµν , where µ = 0, 1, · · · , d is
the space-time label. Combing them gives the Poincaré group, which preserves
the (proper) distance:

∂x′µ

∂xν
= Rµν , RTR = Id×d. (1.6)

Critical systems in nature, such as the critical systems, enjoy extra scaling
symmetry: x→ λx. The most general set of symmetry transformations that
preserves the angle but not the distance is called conformal symmetry6, i.e.,

∂x′µ

∂xν
= Ω(x)2Rµν , RTR = Id×d, (1.7)

which include the Poincaré group, the dilatations generator D that generates
the scaling symmetry, and the special conformal symmetry Kµ. The conformal
symmetry turns out to be very powerful. Field theories that accommodate
conformal symmetry are called conformal field theories. For eigenstates Oi of
the dilatations generator with eigenvalues ∆i, the two-point and three-point
functions are determined up to constant factors:

〈Oi(x)Oj(y)〉 ∼ δij
|x− y|∆1+∆2

,

〈Oi(x)Oj(y)Ok(z)〉 ∼ λijk
|x− y|∆1+∆2−∆3 |y − z|∆2+∆3−∆1 |z − x|∆3+∆1−∆2

.

(1.8)
6The scaling symmetry itself doesn’t imply the full conformal symmetry, namely the special

conformal transformation Kµ, see discussion in [11].
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The conformal symmetry is in fact more powerful. Through the program of
conformal boostrap [12, 13], one may determine accurately the data of the field
theory, such as the conformal dimensions7 ∆i and OPE coefficients λijk for the
operators. Though being interesting and powerful, the conformal boostrap will
not be the focus of this thesis.

Now we introduce the supersymmetry [14, 15, 16] to conformal field theories,
which are generated by operators Q that transform bosonic states into fermionic
states and vice versa:

[Q,B] = F, {Q,F} = B. (1.9)

Since the operation of the supercharge Q changes the spin by 1/2, if we require
the maximal spin within a quantum field theory not to exceed 1, there will be
a maximal number of total supersymmetry. In fact, the representations of all
possible super-conformal symmetry in different dimensions have been worked
out, which only exists in d ≤ 6, [17, 18] and we will be interested in d = 3, 4
in this work. In each superconformal multiplet, the bosons and fermions are
organized such that their total degrees of freedom are equal.

Supersymmetric gauge theories play an important role in the AdS/CFT
correspondence, as they encode aspects of space-time in quantum gravity. The
landscape of studies on SCFTs (superconformal field theories) is immense and is
still under great progress nowadays [19], powerful tools such as supersymmetric
localization [20], integrability [21], and superconformal bootstrap [12, 13],
among many others, enable us to get a deeper understanding of the field
theories, and thus have a great impact on holography. According to the
AdS/CFT correspondence, fields in the gravity theories are mapped to fields
in the superconformal field theories, which are organized into superconformal
multiplets in accordance with the amount of supercharges.

1.1.2 A brief overview of supersymmetric localisation

My work uses supersymmetric localization to study supersymmetric field theories.
Mathematically, the supersymmetry generators Q’s are similar to the equivariant
differential forms. As a result, the domain of the path integral is reduced to
a subset of the full configuration space called the BPS locus, where the fields
are annihilated by Q. In favourable situations, the field theory path integrals
that evaluate BPS observables, such as the partition functions, correlators,

7In Euclidean signature, we usually do the radial quantization, where the “constant time
slices” are taken to be the surfaces with constant radii. In this quantization, the dilatations
generator D plays the role of the Hamiltonian which generates the time evolution, so the
conformal dimensions are sometimes also called the “energies”.
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and expectation values of the Wilson loops, are reduced to finite dimensional
integrals.

Let’s first look at the idea of “localisation”. For an integral over a manifoldM,
if the integrand satisfies some simplifying properties, for example it is a total
derivative, then we only need to evaluate the integral on ∂M. If ∂M happens
to be a set of points, the full integral localizes to the points. This is the most
naïve example of localisation.

What we actually do is more involved, and the localised points are not simply on
boundary of the domain. For an example [22] which catches some of the salient
features of localisation, we consider the following integral on S2 parametrized
by a real number t:

Z(t) =
∫ 2π

0
dφ

∫ π

0
sin θdθ eitf(θ,φ), f(θ, φ) = cos θ. (1.10)

In the large t limit, one may consider a stationary-phase approximation, under
which the integral is reduced to the sum of Gaussian integrals with quadratic
fluctuations about each stationary point x∗:

Z(t) = 2πi
t

∑
x∗

(−i)λ(x∗) eitf(x∗)√
det(g−1Hf (x∗))

+O(t)−2, (1.11)

whereHf is the Hessian of f , which for the standard metric ds2 = dθ2+sin2 θdφ2

gives:
Hf = ∇i∇jf(x) = diag(− cos θ, cos θ). (1.12)

Since our function f = cos θ is nothing but the height function, whose stationary
points x∗ are the north and south poles. Plugging in the values, we get the
leading order under the stationary phase approximation:

Z = 2πi
t

[
(−i) eit√

−1
+ (−i) e

−it
√
−1

]
+O(t)−2. (1.13)

At the same time, we can do the integral directly to get the exact answer:

Z(t) = 2π
∫ 1

−1
d(cos θ)eit cos θ = 2πi

t

(
−eit + e−it

)
. (1.14)

By comparing the stationary phase approximation and the exact result, we
see that up to the correct choices of branches for the square root function,
the stationary phase approximation gives an exact answer. The reason is that
function f is invariant under the U(1) isometry of the two-sphere rotating along
the z-axis. For this special case, the integral is reduced to the fixed points
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of the U(1) isometry, which is exactly the stationary points of f . This is an
example of the Duistermaat-Heckman localisation formula [23] based on fixed
points of isometries, which is in turn an example of a more general equivariant
localisation formula. [24, 25]

Supersymmetric localization [26, 27, 28] is an analogue of equivariant localisation
8, which aims at evaluating the expectation values of BPS observables OBPS:

〈OBPS〉 =
∫
DXOBPSe

−S[X], QOBPS = 0, (1.15)

where Q is a supersymmetric generator and it squares to a bosonic generator,
Q2 = B, which can be a linear combination of spacetime symmetries, global
symmetries, and the gauge symmetry. We have the analog of Stokes’ theorem in
supersymmetric field theories, which dictates that the Q-exact operators don’t
contribute to the expectation value:

〈QO〉 =
∫
DX(QO)e−S[X] =

∫
DXQ

(
Oe−S[X]

)
= 0, (1.16)

assuming that there are no boundary contributions or anomalies. Now we
consider deforming the integrand by adding a Q-exact term QP[X] with an
additional constraint on the fermionic term such that BP[X] = 0. Then we
can check that the deformed path integral is independent of the deformation
parameter t:
d

dt

∫
DXOBPSe

−S[X]−tQP[X] = −
∫
DX(QP[X])OBPSe

−S[X]−tQP[X]

= −
∫
DXQ

(
P[X]OBPSe

−S[X]−tQP[X]
)

= 0,
(1.17)

where we used the invariance of P under the bosonic transformation B = Q2

and the invariance of OBPSe
−S[X] under Q. Because of the independence of t,

we can evaluate the path integral in the limit t→∞, where the saddle-point
approximation becomes exact. The saddle points are located at the BPS locus
FBPS, which are fixed points of Q in the full field space, which is given by:

FBPS ≡ {X = X0|fermions = 0, Q(fermions) = 0}. (1.18)

Under the saddle-point approximation, the classical value combined with the
1-loop fluctuations over the BPS locus gives the exact path integral over the
infinite-dimensional field theory space. Consider the following fluctuation:

X = X0 + 1√
t
δX, (1.19)

8There is a more detailed map between quantities in equivariant localisation and quantities
in supersymmetric localisation, as introduced in [22]. We will not get into these details.
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where X0 denotes the BPS configuration. When taking the large t limit, we take
the BPS value of the original action S[X0] and choose the form of P[X] such
that the deformation QP [X] vanishes at the BPS locus and only the quadratic
fluctuations survive:

S[X] + tQP[X]→ S[X0] + 1
2

∫
δ2(QP)
δX2

∣∣∣
X=X0

(δX)2 +O(1/
√
t). (1.20)

So the BPS observable reduces to:

〈OBPS〉 =
∫
DX0OBPS

∣∣∣
X=X0

e−S[X0] 1
SDet

[
δ2(QP[X0])

δX2
0

] . (1.21)

In favorable cases with suitable choices of deformation QP [X], the integral over
the BPS locus can be expressed as a finite-dimensional integral, making the
formidable evaluation possible. One typical choice of deforming action is:

P =
∑

(QΨ)†Ψ + Ψ†(QΨ), QP =
∑

(QΨ)†(QΨ), (1.22)

where we sum over all the fermions. The resulting integral is in general an
N -dimensional one, which is still very complicated for an arbitrary N . Other
techniques based on matrix model, integrability, complex analysis, or even
statistical mechanics will be used to study these integrals. In fact, the main
technical improvement of chapter 3 is devoted to evaluating the matrix model
by a combination of numerics and strong/weak-coupling expansion.

Application of localization principle to quantum field theories has been long
restricted to topological field theories with scalar supersymmetry. A major
breakthrough was made by Pestun [28] who constructed N = 2 supersymmetric
gauge theories on S4 and derived a closed formula for partition function as well as
expectation values of certain Wilson loops. We will introduce relevant results in
4d N = 2 SCFTs in section 3.2. Soon after Pestun, using supersymmetric
localization, partition functions of 3d N = 2 SCFTs on various compact
manifolds can be reduced to matrix models. We will introduce some 3d
backgrounds with more details in section 2.3.

1.2 The AdS/CFT correspondence

1.2.1 The holographic principle

Classical works on black hole thermodynamics show that the black-hole entropy
satisfies the area law instead of the volume law. [1] One consequence is that
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in any theory with gravity, the entropy enclosed by a surface Σ has an upper
bound given by its surface:

S[Σ] ≤ SBH[Σ] ≡ A[Σ]
4l2P

, (1.23)

where A[Σ] denotes the area of the surface and lP is the Planck length in 4d.
The argument can be sketched as follows. Imagine some matters enclosed by
Σ with S > SBH, we can throw in some matter until a black hole is formed9,
whose entropy is given by SBH indicated above. However, with more matter
thrown in, the entropy must increase, this contradicts our assumption above.
Thus we have the Bekenstein bound (1.23).

Given the area-law entropic upper bound for a theory with gravity, one may
propose that all the degrees of freedom within a theory of gravity can be mapped
to a boundary theory without gravity10 in one dimension lower. This is similar
to how a hologram works, so the proposal above is called the “holographic
principle”. [30, 31] To have a taste of this principle, one may consider a lattice
model of space-time where degrees of freedom are fixed on the lattice, whose
lattice length is given by the Planck length. For a generic configuration of
this model, the energy enclosed in a closed surface Σ, which is proportional
to its volume, will exceed that of a black hole, so a black hole will form and
take place the original configuration. As a result, most of the lattice model
configurations are excluded by the black hole formation, and the reduced number
of configurations satisfies the area law.

The appearance of the Planck’s constant in the Bekenstein bound strongly
indicates that quantum effects play an important role in the holographic principle.
Similar to Bohr’s formula of hydrogen energy levels for quantum mechanics,
the holographic principle acts as the touchstone for theories of quantum gravity.
Since string theory is a candidate for quantum gravity, which is the first theory
able to give the correct number of black hole microstates [5], it is expected
to obey this principle as well. In fact, string theory (and M theory) not only
satisfies this principle but also provides a highly valuable playground based
on explicit constructions of the quantum gravity theory and its corresponding
quantum field theories, which is the AdS/CFT correspondence.

9We will not discuss why will the horizon organize itself on Σ. Instead, we only discuss
systems which will form a horizon on Σ. As a result, in the present discussion, the Bekenstein
bound only applies to a special set of surfaces where a horizon can be formed on it.

10We are making this assumption otherwise the chain will never end. But there are
discussions on “double holography” where people project the gravity on a codimensional-one
brane which has its own boundary. [29]
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1.2.2 Gauge theories and strings

In some sense, it is not completely unexpected that the string theory is connected
with gauge theories, because the original motivation of string theory is to describe
the strong interaction, where the confined color flux lines connecting two quarks
within a meson behave like a string. [32] Namely, the elementary excitations in
the confining QCD are not particles but strings that are formed from the flux
lines of color fields. This serves as the first picture of gauge/string relation. The
stretchable string model gives the correct relation between mass and angular
momentum observed in particle physics, i.e.,

J = α′M2 + α(0). (1.24)

Although the string theory turns out not a good theory for strong interaction,
the fact that the open string represents gauge theories on its endpoints persists.
The string theory also contains graviton modes on closed strings, the interactions
between open and closed strings suggest a relation between the gauge and gravity
theories.

Another perspective that finally leads to gauge/string correspondence is the
large N limit of 4d gauge theory with gauge group SU(N). [33] The gauge fields
transform under the adjoint representation of the gauge group, using the fact
that

Ad⊕ 1 = N⊗ N̄, (1.25)
in the large N limit, we can approximate the gauge field to transform under the
bifundamental representation, which introduces the double-line notation for its
Feynman diagram representation with two oriented lines carrying fundamental
indices. We introduce the ’t Hooft coupling λ ≡ g2

YMN , so the Lagrangian can
be written as

L = 1
g2

YM
(∂A∂A+A2∂A+A4) = N

λ
(· · · ). (1.26)

Thus, we have:

• For each propagator, there is a factor of λ/N .

• For each vertex, there is a factor N/λ.

• For each loop, there is a factor N because of the summation of the
fundamental index over the closed single-line loop.

For simplicity, we focus on the vacuum diagrams of gauge fields with V vertices,
E propagators, and F loops, the factor gives:(

N

λ

)V (
λ

N

)E
NF = λE−VNV−E+F . (1.27)
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Notice that V − E + F = χ which is the Euler characteristic. We can fill all
the single-line closed loops in a vacuum diagram to make it a two-dimensional
closed surface, whose genus g is given by χ = 2− 2g. Thus in the large N limit,
the partition function can be written as a genus expansion:

logZgauge =
∑
g=0

N2−2gFg(λ). (1.28)

This is reminiscent of the loop expansion in string theory:

logZstring =
∑
g=0

(gs)2g−2F̃ (α′), (1.29)

where gs is the string coupling. The similarity makes ’t Hooft conjecture a
duality between gauge theory and string theory:

gs ∝ 1/N. (1.30)

This picture works well in the large N regime, where the diagrams are dominated
by those with genus 0, or the “planar diagrams”. Another simplification is that
in the large N regime, the dual string picture is expected to be weakly coupled,
allowing perturbative calculations.

1.2.3 The example of D3 branes

The proposal of the AdS/CFT correspondence [34] is motivated by the previous
works on branes and relations to gauge field theories living on the branes. The
correspondence suggests that the gravity theory and the field theory correspond
to each other in a much larger parameter space in a stronger sense, even at the
quantum level. To have a taste of how it works, we take the example of a stack
of N D3-branes in type IIB supergravity with N large. One can view the low
energy limit of this system from different perspectives, which lead to different
descriptions of the same system.

The first perspective on the stack of branes is to look at the brane action. In
the low energy limit, we have: [35]

I = Iopen + Iclosed + Iint. (1.31)

The open-string excitations Iopen describe the 4d N = 4 super Yang-Mills
theory on the world volume. The closed-string excitations Iclosed describe a
supergravity theory in which the branes are located. Iint is the interaction
between the two sectors. When taking the limit where α′ → 0, the all the
interactions are suppressed, and the open and closed-string sectors get decoupled.
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The higher derivative stringy corrections to Iclosed and Iopen are also suppressed
under this limit. As a result, in the limit α′ → 0, the stack of branes is described
by the 4d N = 4 SYM living on the brane with a free supergravity in the 10d
space.

The second perspective is from the supergravity point of view, where the metric
backreacted by a large stack of D3-branes is given by: [36]

ds2 =
(

1 + R4

r4

)−1/2

(−dt2 + d~x2) +
(

1 + R4

r4

)1/2

(dr2 + r2dΩ2
5),

R4 = 4πgsα′2N,

(1.32)

with R the AdS length scale. Similarly, we focus on the low-energy modes in
this space. Some low-energy modes are massless particles propagating in the
bulk, and the others come from excitations living in the near-horizon region,
whose energies are suppressed because of the gravitational red-shift. Work on
scattering with branes [37, 38] shows that these two modes decouple in the low
energy limit.

Now, we focus on the near-horizon modes and we look at the near-horizon limit
r � R, the geometry will become AdS5 × S5:

ds2 = r2

R2 (−dt2 + d~x2) +R2 dr
2

r2 +R2dΩ2
5. (1.33)

To sum up, in the perspective of supergravity, the stack of branes is described
by a full quantum gravity theory in AdS5 × S5 and the massless modes of
supergravity propagating in the bulk.

By comparing these two perspectives, we can see that the excitations in the
near horizon region of the branes are described by two completely different
theories, i.e., the N = 4 super Yang-Mills field theory versus quantum gravity
excitations in AdS5×S5. A careful study show the following dictionary between
parameters on both sides:

g2
YM = 4πgs, λ = R4

(α′)2 . (1.34)

Remember that λ = g2
YMN is the ’t Hooft coupling. Since the N = 4 super

Yang-Mills and quantum gravity in AdS5 × S5 both describe the stack of D3
branes, it is conjectured that these two theories are equivalent. Moreover,
comparisons on protected observables on both sides can be done, which suggest
the validity of the correpsondence beyond the limits. Schematically, this dictates:
[39, 40]

Z[Type IIB superstring in AdS5×S5] = Z[N = 4 SYM], (1.35)
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including all higher-derivative and quantum corrections. The left-hand side
of the equality is the gravitational partition function, and the right-hand side
is the generating function of correlators in the field theory. The boundary
condition for the gravitational partition function is such that the asymptotic
values of the fields are identified with the sources coupling to the fields in the
field theory. This is why we always refer to the boundary field theory and
the bulk gravitational theory. Based on similar arguments, the same duality
occurs from different brane configurations in superstring or M theories, where
can make the same comparison between the two perspectives and make a more
general statement: [39, 40]

Z[Type IIA/IIB/M theories in AdSd ×MD−d] = Z[worldvolume SCFT],
(1.36)

where D = 10 or 11, and MD−d is the compact internal space, which depends
on the background in which we put the branes. However, the emergence of
AdS space-time isn’t necessarily associated to the near-horizon region of branes.
[32, 41, 42] One can understand the extra dimension in the bulk as the energy
scale of the boundary. The conformal symmetry of the AdS space (1.33) goes
like:

r → αr, xi → xi/α, (1.37)

with xi the space-time coordinate on the boundary field theory. By taking α
large, we are approaching the boundary; but at the same time, the probe has
a smaller spatial extension, and thus probes higher energy. This is referred to
as the UV/IR relation in the duality. [43, 44] By pushing λ towards infinity,
we will encounter both the IR divergence in the bulk because of the divergent
volume of the AdS space, and the UV divergence in the boundary field theory.
So a cutoff together with counter terms have to be introduced to cure the IR
divergence in the bulk. [45, 46]

Given the above considerations, the most general AdS/CFT correspondence can
be independent of brane constructions or even a UV-complete gravity theory:

Z[Any gravity theory in AdS] = Z[A certain CFT on ∂AdS]. (1.38)

Some of the examples exist in bottom-up constructions, which are less
understood compared to the top-down ones. Especially, without a brane
construction, for generic cases it is unclear what field theory is the correct one.
These perspectives can be justified by thinking of the boundary field theory as
defining the gravity theory in the bulk. In fact, because of technical simplicity,
the bottom up holography also provides a lot of new insights to the AdS/CFT
correspondence, for example, the dual between JT gravity and SYK model
[47], the dual between 2d ensemble averaged field theories and 3d Euclidean
wormholes [48].
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A precision test of the AdS/CFT is in general hard. That’s because the two
sides of the correspondence are simplified in different regions. Let’s take the
N = 4 SYM/AdS5 × S5 correspondence as an example, where the dictionary
is (1.34). For the field theory to be perturbative, one expects the effective
expansion to be small, i.e.,

g2
YMN = λ� 1, (1.39)

where an extra factor N is included which comes from summing over the
fundamental indices in the loops. (see, e.g., [49]) On the other hand, for the
gravity theory to be approximated by GR, one wishes that the curvature radius
R to be large compared to the string length ls = (α′)1/2:

R4

l4s
= R4

(α′)2 = λ� 1. (1.40)

In my thesis, I mainly consider a classical action in the bulk gravity theory, and
use the powerful tools we introduced in the last section to study the strongly
coupled field theories.

1.2.4 Implications of AdS/CFT

After more than 20 years since its appearance, the AdS/CFT correspondence
has been proven to be very valuable in both quantum gravity and quantum
field theories. On one hand, with more results available from both sides beyond
the leading order, the correspondence gains more evidence both classically and
with quantum corrections; on the other hand, one can take advantage of this
correspondence and give non-trivial predictions both in field theory and in
quantum gravity.

The topics of my thesis involve the following top-down constructions of
AdS/CFT:

• Correspondence between 3d Chern-Simon SCFT arising from M2 branes
and 4d gauged supergravity with 10d or 11d upliftings. (Chapter 2)

• The correspondence between the 4d N = 2 superconformal E-theory and
type IIB supergravity in AdS5 × S5/Z2. (Chapter 3)

Let us summarize the relations among the different topics discussed in this
section, shown in Fig. 1.1. Originally, the string theory as a model of the
strong interaction naturally motivates the string/gauge correspondence. The
correspondence persists in quantum gravity when the string theory is realised
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Quantum Gravity

String/Gauge
Correspondence

Holography

AdS/CFT
Correspondence

Figure 1.1: The relation between quantum gravity, the string/gauge
correspondence, holographic principle, and the AdS/CFT correspondence.

as a theory describing quantum gravity. Holographic principle is motivated by
the Bekenstein bound and is a very important feature of quantum gravity. The
AdS/CFT is a good example of holography in quantum gravity, and is also a
good example of the string/gauge correspondence.

We talked about the correspondence between partition functions above, but we
can also insert operators on both sides. For local operator insertions, we get a
correspondence between correlation functions on the boundary and S-matrix
in the bulk. [40] For non-local insertions, we have correspondence between
expectation value of a Wilson loop on the boundary and surface of string
worldsheet in the bulk. [50] The entanglement entropy on the boundary is
captured by the extremal surface in the bulk. [51, 52] So the field theory is
indeed encoding lots of information about the bulk. In chapter 3, we study
various observables in holographic superconformal E theory and give non-trivial
predictions to corresponding quantities in the dual supergravity.

So how would the field theory encode the Hawking-Page transition? For the
field theory to contain enough degrees of freedom corresponding to black holes
in the bulk, we need to take the large N limit. Because of the distinction
in topologies between the black-hole and thermal AdS phases, the wrappings
of Wilson loops are different between them. The two different configurations
of Wilson loops give O(N)0 and O(N)2 large N behavior of the free energy
that correspond to the confined and deconfined phases in the Yang-Mills gauge
theory. [40, 53] In chapter 4, we study the Hawking-Page transition in Einstein
gravity between two families of asymptotically locally AdS8 spaces.

As discussed above, the correspondence has a mixing between UV and IR on the
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two sides, and especially the radial direction of the AdS space is related to an
energy scale of the boundary field theory. This is the idea behind the holographic
renormalization group flow [54, 55], where the bulk theory interpolates two
different field theories on two sides which are related by renormalisation group
flow. This bulk discription provides a probe to study these renormalisation
group flows, not only on the two sides but along the flow itself. Our setup in
chapter 4 can be understood as such a holographic flow, which is induced by a
relevant deformation sourced by the stress-energy tensor.

1.3 Structure of the thesis

In the thesis, we will study the questions introduced in the beginning with more
details and try to give a partial answer. The study is mainly motivated by and
based on the AdS/CFT correspondence, making use of the tools we introduced
above. The contents will be divided into three parts, based on my publications
[56], [57], and [58] together with unpublished results. My publication [59] is not
included in the thesis.

In chapter 2 based on [56], we study the logarithmic corrections to various
CFT partition functions in the context of the AdS4/CFT3 correspondence for
theories arising on the worldvolume of M2-branes. We utilize four-dimensional
gauged supergravity and heat kernel methods and present general expressions
for the logarithmic corrections to the gravitational on-shell action and black
hole entropy for a number of different supergravity backgrounds. We outline
several subtle features of these calculations and contrast them with a similar
analysis of logarithmic corrections performed directly in the eleven-dimensional
uplift of a given four-dimensional supergravity background. We find results
consistent with AdS/CFT provided that the infinite sum over KK modes on
the internal space is regularized in a specific manner. This analysis leads to an
explicit expression for the logarithmic correction to the Bekenstein-Hawking
entropy of large Kerr-Newmann and Reissner-Nordström black holes in AdS4.
Our results also have important implications for effective field theory coupled
to gravity in AdS4 and for the existence of scale-separated AdS4 vacua in string
theory, which come in the form of new constraints on the field content and mass
spectrum of matter fields.

Based on unpublished results, we study the logarithmic corrections within
gauged supergravity theories that are connected by RG flows. It turns out that
any two theories connected by an RG flow give identical logarithmic correction.

In chapter 3 based on [57], we study correlation functions of local operators and
Wilson loop expectation values in the planar limit of a 4d N = 2 superconformal
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SU(N) YM theory with hypermultiplets in the symmetric and antisymmetric
representations of the gauge group. This so called E theory is closely related
to N = 4 SYM and has a holographic description in terms of a Z2 orientifold
of AdS5 × S5. Using recent matrix model results based on supersymmetric
localization we develop efficient numerical methods to calculate two- and three-
point functions of certain single trace operators as well as 1/2-BPS Wilson
loop expectation values as a function of the ’t Hooft coupling λ. We use our
numerical results to arrive at simple analytic expressions for these correlators
valid up to sixth order in the λ−1/2 strong coupling expansion. These results
provide explicit field theory predictions for the α′ corrections to the supergravity
approximation of type IIB string theory on the AdS5 × S5/Z2 orientifold.

In chapter 4 based on [58], we study a bottom-up model which involves an
asymptotically locally AdS8 analog of the Taub-NUT solution. This chapter
presents two main results. First, we study the renormalized free energies of
Euclidean Einstein gravity in asymptotically AdS8 and various field theories on a
squashed seven sphere. In the gravity theory, we demonstrate the absence of the
Hawking-Page transition, while in the field theory, we focus on the O(N) vector
model and the massless free fermion model. The conformal symmetry governs
the universal behaviors of the free energies for small and large squashings, which
we confirm numerically and analytically. Second, we evaluate the second-order
derivative of CFT free energy with respect to the squashing parameter, finding
universal results that hold for generic conformal field theories. We examine two
different squashings, one with an SU(2) bundle, which is the primary focus of
this chapter, and another with a U(1) bundle, where our results align with the
conjectured formula from the gravity side in the literature.

The two main facets of AdS/CFT involve attempting to comprehend quantum
gravity by utilizing superconformal field theories as a tool, and vice versa. In
chapter 2, we use the bulk results to understand better the field theory results
from supersymmetric localisation which are lack of explanation. In chapter 3,
we study the field theory using supersymmetric localisation to predict scattering
amplitudes and the area of string worldsheet in supergravity. In chapter 4, our
main focus is in the bulk side and showed the absence of a phase transition,
this encodes information of the strong coupling field theory dual.





Chapter 2

Log corrections in AdS4

2.1 Introduction

The AdS/CFT correspondence is a cornerstone of modern theoretical physics and
it is of clear interest to test this duality as precisely as possible. In this chapter,
we focus on subleading corrections to the supergravity approximation used in
holography, specifically in the context of AdS4/CFT3. The motivation for our
analysis comes from the CFT side of the duality and the recent proliferation of
techniques to compute QFT observables in the large N limit of supersymmetric
holographic CFTs. More concretely, the partition functions ZM3 of 3d N ≥ 2
holographic SCFTs arising from a stack of N M2-branes on a compact Euclidean
manifold M3 can be calculated in the large N limit using supersymmetric
localization. In these theories, the leading term in the free energy logZM3

scales as N3/2 and in many examples agrees with the regularized on-shell action
of classical asymptotically locally AdS4 Euclidean supergravity solutions which
can be thought of as smooth fillings ofM3.1 The first subleading term scales
as N1/2 and it can be accounted for in the bulk by studying the leading four-
derivative correction to the classical four-dimensional supergravity action, see
[66, 67]. The goal of this chapter is to study how the logN term that arises at
the next order in the large N expansion of the free energy can be computed
from the bulk supergravity theory.

An alternative point of view on logarithmic corrections to gravitational path
integrals is found in black hole physics. It is expected that the Bekenstein-
Hawking formula for the black hole entropy, SBH = 1

4AH with AH the area of
1See [60, 61, 62, 63, 64] for an incomplete selection of references and [20, 65] for a review.

21
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the horizon in Planck units, receives perturbative quantum corrections. These
arise from higher-derivative terms in the gravitational effective action, as well as
from quantum effects due to matter fields propagating on a fixed gravitational
background. While a lot is known about these corrections to the black hole
entropy, they are in general hard to calculate and strongly depend on the details
of the UV completion of the effective gravitational theory. It was shown by
Ashoke Sen that the logarithmic corrections to black hole entropy are very
special in that regard. Notably, the coefficient of the logAH correction to SBH
is determined solely by the one-loop quantum contributions to the gravitational
path integral of all fields below the cutoff scale of the effective gravitational
theory. This fact represents a powerful “IR window” into the UV-complete
theory of quantum gravity and can be employed to derive strong consistency
condition on the microscopic description of black hole physics. Moreover, in
special situations with enough symmetry, it has been shown that the logAH
corrections to black hole entropy can be successfully matched to microscopic
results from string theory, see [7, 8, 68, 69, 9, 70] and references thereof.

These two vantage points on logarithmic corrections to gravitational path
integrals lead us to study how such logarithmic terms arise in 4d gravitational
theories in AdS, see [71, 72, 73, 74, 75] and [76, 77, 78] for previous studies of
logarithmic corrections in AdS4/CFT3 in 11d and 4d supergravity, respectively.
We follow the approach of Sen and study the quantum effects of matter fields
propagating on a fixed background of a 4d gravitational theory with a negative
cosmological constant. Focusing on fields with half-integer spin up to 2 and
general masses, we employ heat kernel methods to calculate their contributions
to the logarithmic term in the gravitational path integral, see [79] for a review
of the heat kernel expansion. In the absence of other scales in the problem, the
log correction is of the form logL2/GN where GN is the 4d Newton constant
and L is the length scale set by the cosmological constant.2 In general the
coefficient of logL2/GN can receive contributions from zero modes and non-
zero modes of the differential operator that controls the dynamics of the field
with a given spin, as well as from boundary terms. For the 4d gravitational
backgrounds of interest in this work, we find under reasonable assumptions that
the boundary terms have a vanishing contribution to the logL2/GN coefficient.
The analysis of the contribution from zero modes is subtle and we can only
make precise quantitative statements for very symmetric spaces like Euclidean
AdS4 and AdS2 ×Σg, where Σg is a smooth compact Riemann surface of genus
g. Nevertheless, we argue that even for more general gravitational backgrounds,
the zero modes contribute a pure number to the coefficient of logL2/GN which
is independent on any continuous parameters that may be present in the 4d
gravitational solution.

2The methods we use can be adapted to study situations with a more general cutoff scale
not related to the 4d Planck scale. We will comment on such situations further below.
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The results for the contribution of the non-zero modes is more intriguing. We
find that general massive fields of spin up to 2 lead to a coefficient of logL2/GN
that depends on the continuous parameter of the gravitational background, like
squashing deformations of the boundary metric or the angular velocity of a black
hole. This seemingly innocuous fact has important repercussions. Focusing on
4d Euclidean supergravity backgrounds, we can compare our results for the
coefficients of the logL2/GN corrections to the logN terms in the path integral
of large N 3d holographic SCFTs arising from M2-branes. Using results from
supersymmetric localization for a number of explicit examples of such SCFTs,
we observe that the coefficient of logN does not depend on such continuous
parameters. We use this to show that the apparent contradiction between the
supergravity and SCFT results can only be resolved if the total contribution of
the non-zero modes to the logL2/GN term in the gravitational path integral
only depends on a specific contribution in the heat kernel expansion that we
identify.

We then set out to check this strong “bootstrap” constraint on explicit top-down
AdS4/CFT3 examples. We start with the familiar ABJM theory at level k = 1
dual to 11d supergravity on an asymptotically locally AdS4 × S7 background.
When trying to employ our 4d gravitational approach we are faced with an
immediate difficulty, namely that the 4d N = 8 supergravity theory is not a
standard EFT with finitely many fields but rather a consistent truncation to 4d
N = 8 SO(8) gauged supergravity coupled to an infinite tower of Kaluza-Klein
(KK) modes with masses below the 4d Planck scale. To calculate the non-zero
mode contribution to the heat kernel, we thus have to take into account the full
KK tower and sum the contributions of the infinitely many KK modes. This
calculation leads to a divergent sum which we need to regularize. Using three
different regularization methods proposed in the literature, we show that all
non-zero mode contributions in the heat kernel expansion relevant for the logN
correction vanish.

This result presents a puzzle. Using supersymmetric localization on the round
S3, it can be shown that the ABJM free energy has a logarithmic term in
its large N expansion given by 1

4 logN , see [80, 81]. The factor of 1/4 was
successfully reproduced in 11d supergravity in [71] using a one-loop analysis of
the 11d supergravity fields on the dual AdS4×S7 background. In short, one finds
that since the heat kernel expansion is used in odd dimensions, only zero modes
of the 11d differential operators contribute. The only possible such zero mode
in Euclidean AdS4 arises from a 2-form, and it would naively seem that there
are no 2-forms among the fields of 11d supergravity. However, the quantization
of the 3-form potential of the 11d theory necessitates the introduction of a
2-form ghost, which in turn gives the only non-vanishing contribution to the
logN term. This contribution was calculated in [71] and was shown to agree
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precisely with the 1/4 calculated in the holographically dual SCFT. Our 4d
analysis of the logarithmic correction yields a different result. Since there are
no 2-forms in the KK spectrum of 11d supergravity on AdS4 × S7 even after
quantization, we find no contribution from any zero modes. As explained above,
we also find that the non-zero modes do not contribute. Moreover, one can
show that there are no contributions from boundary terms. We are thus led to
two possible conclusions: A) The 4d supergravity calculation of the logarithmic
correction yields a vanishing result for logN in clear contradiction with the 11d
analysis and with holography; or B) The regularization of the infinite sum over
KK modes that contributes to the heat kernel coefficients can be performed in a
way that gives a finite result consistent with 11d supergravity and holography.

While option A) above may appear puzzling, it is not hard to understand how
and why it may be possible. While 11d supergravity on AdS4 × S7 should be
equivalent to 4d N = 8 SO(8) gauged supergravity coupled to an infinite tower
of KK modes at the classical level, there is no guarantee that the two theories
produce the same quantum effect. Indeed in this explicit example we can trace
the discrepancy to the 2-form ghost needed for the consistent quantization of
the 11d 3-form field, which is not present in the 4d supergravity theory or
in the full KK spectrum. If indeed option A) is to be taken seriously then it
should be viewed as a cautionary tale for any application of lower-dimensional
consistent supergravity truncations to holography, especially when studying
quantum corrections to the leading supergravity approximation.

Option B) on the other hand leads to more interesting conclusions. Assuming
that the infinite sum over KK modes is regularized in a specific way that yields a
non-vanishing heat kernel coefficient, we find that the non-zero modes contribute
a factor of χ

6 to the logarithmic correction, where χ is the Euler number of
the four-dimensional background. If we further assume that, apart from the
2-forms mentioned above, there are no zero modes in the asymptotically locally
Euclidean AdS4 spaces relevant for holography, we find the following general
result for the saddle point approximation to the gravitational path integral:

I = I0 + χ

6 log
(
L2/GN

)
+ . . . . (2.1)

Here I0 is the regularized gravitational on-shell action (possibly including higher-
derivative corrections) evaluated on the equations of motion, and the . . . include
higher order corrections in the semi-classical gravitational expansion. While
the result in (2.1) is not derived very rigorously, we show that it is in perfect
agreement with results for the large N path integral of the 3d N = 6 ABJM
SCFT on various compact Euclidean three-manifolds. Moreover, if we assume
that (2.1) is valid, we arrive at the following prediction for the logarithmic
correction to the entropy of a large AdS-Kerr-Newmann black hole embedded
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in AdS4 × S7

SAdS-KN = AH

4GN
− 1

3 log(AH/GN ) + . . . . (2.2)

Here we work in an ensemble with fixed temperature and chemical potentials,
the leading term is the standard Bekenstein-Hawking entropy of the black hole,
and the . . . are a placeholder for possible further quantum corrections to the
black hole entropy. In the supersymmetric limit, our bulk result agrees with
the logarithmic term in the large N limit of the superconformal index of the
dual SCFT. We consider this agreement to be a strong precision test of the
microstate counting for 4d AdS black holes.

To understand further the interplay between logarithmic corrections in
holography, 11d supergravity, and 4d KK supergravity theories, we study
four other top-down examples of AdS4 vacua of M-theory with different
amounts of supersymmetry and different topology of the internal manifold,
and underscore several subtleties in the calculation of the logarithmic terms
and the regularization of the infinite sums over KK modes. The conclusions
we draw from these other examples are similar to the ones for AdS4 × S7, i.e.
one either should not use the 4d supergravity theory with the infinite tower of
KK modes for the calculation of logarithmic corrections, or one should find a
suitable regularization scheme for the infinite sums over KK modes in order to
obtain one-loop results consistent with holography.

In addition to being of interest for top-down holographic models with explicit
string/M-theory embeddings, our results have important implications for a more
agnostic bottom-up approach to holography. Consider an effective theory of
gravity coupled to a finite number of matter fields of spin less than 2 which is
valid up to an energy cutoff scale Λ and admits an AdS4 vacuum of scale L.
Our results imply that the coefficient of the logLΛ term in the semi-classical
expansion of the gravitational path integral depends in general on the continuous
parameters of an asymptotically locally AdS4 background. If we assume that
the gravitational theory has a holographic description, this in turn implies that
there exist logN or log λ terms in various physical observables, such as local
correlation functions or the thermal effective action which captures the partition
function of the theory on S1 × S2 in a saddle-point approximation. Note that
here we are somewhat abstract and use the integer N to denote the large number
of degrees of freedom in the holographic CFTs, and λ denotes some notion of
a continuous parameter like an exactly marginal coupling. To the best of our
knowledge such logarithmic terms do not appear in local correlation functions
in any sequence of CFTs and they do not depend on continuous parameters in
thermal effective actions. In this work we assume this to be true in general.
Equipped with this assumption we are then led to conclude that general effective
gravitational theories with a finite number of fields and an AdS4 vacuum cannot
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be holographic. As we show in detail the only possible exception to this
constraint, which somewhat poetically may be referred to as “the unbearable
lightness of the KK scale” [82], arises from theories with a very finely tuned
spectrum of quadratic fluctuations around the AdS4 vacuum. In particular, we
show that the pure 4d N = 2 and N = 4 gauged supergravity theories do not
evade this constraint and are therefore not consistent UV-complete holographic
gravitational theories.

As a final application of our results we can also consider scale-separated vacua
of string or M-theory, see [83] for a recent review and an extended bibliography.
These are putative consistent AdS4 vacua for which the length scale associated
with the internal space is much smaller than the scale L that sets the 4d
cosmological constant.3 Clearly such a scale-separated AdS4 vacuum defines an
effective gravitational theory with finitely many fields valid up to the KK scale
set by the internal manifold. If we assume that the scale-separated vacuum is
associated with a consistent dual 3d CFT that does not have logN or log λ terms
in local correlations functions, we arrive at very strong consistency constraints.
In particular, we find that the mass spectrum of quadratic excitations around the
AdS4 vacuum should be such that three of the four heat kernel coefficients that
contribute to the bulk logarithmic terms should vanish. These constraints are
particularly strong for AdS4 vacua preserving N = 1 or more supersymmetry, for
which we show that most mass spectra with finitely many fields are inconsistent.

We continue in the next two sections with a summary Kaluza-Klein supergravity
and known QFT results for the logN terms in the large N expansion of
partition functions of 3d holographic SCFTs on compact Euclidean manifolds.
In Section 2.4 we review the heat kernel method and apply it to the calculation of
logarithmic corrections in the saddle-point approximation of gravitational path
integrals in asymptotically AdS4 backgrounds. In Section 2.5 we show how one
can use the results for the logarithmic corrections of SCFT partition functions
from Section 2.3 in conjunction with holography to deduce strong constraints
on the Seeley-de Witt coefficients in the heat kernel expansion. Section 2.6
is devoted to a discussion of some top-down examples in AdS4/CFT3 arising
from M-theory for which we can compute the logN corrections by summing
over the infinite tower of supergravity KK modes. In Section 2.7 we change
gears and discuss the important constraints implied by our results for EFTs
with finitely many fields coupled to gravity in AdS4, as well as the implications
of these constraints for scale-separated AdS4 vacua of string and M-theory. We
conclude in Section 2.8 with a discussion of some open problems and directions
for further study. In the five appendices we collect many of the technical details

3A precise definition of this internal length scale is not crucial for our argument. The scale
can be defined through the volume, diameter, or the spectrum of some differential operator
on the internal space.
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needed for our analysis.

2.2 Supergravity and Kaluza-Klein compactifica-
tion

Since we mainly use 4d gauged supergravity in this chapter, we will start with a
brief introduction to supergravity in general, followed by explaining the relation
between the 4d gauged supergravity with 11d supergravity as an example of
the Kaluza-Klein compactification in supergravity.

2.2.1 Supergravity and supersymmetry

In the introduction of the thesis, we have introduced superconformal field
theories which play an important role in the AdS/CFT correspondence. Here
we will introduce the other part of the correspondence, namely the supergravity
theories [84, 85] which are the low-energy effective theories of string or M-theory.
Different from string theory which is considered a unified theory including
quantum gravity, the motivation of supergravity is to modify the general
relativity with supersymmetry [14, 15, 16], where global supersymmetry is
promoted to be local in order to respect the general covariance on a curved
space. As the low-energy approximation of string and M-theory, supergravity
becomes a highly valuable tool to study the semiclassical dynamics of quantum
gravity. There have been developments in this field recently, such as supergravity
localization [86, 87], the exceptional field theory method [88, 89], and Euclidean
supergravity [90]. We only consider Euclidean signature in this chapter.

If we were to study top-down holography, we start from the UV complete theories,
such as type II string theories or M theory. The corresponding low energy
theories are type II supergravities and 11d supergravity, respectively. Studying
the phase space of asymptotically AdS backgrounds in these supergravity theories
is difficult because the dimension is too high. The first way out comes from
supersymmetry. The infinitesimal version of supersymmetry transformation
schematically looks like:

δεF = Bε, δεB = Fε, (2.3)

where B,F denote bosonic and fermionic fields, respectively, and ε is a
spinor parametrizing the transformation. To preserve a certain number of
supersymmetry, there must exist at least one ε such that δεF = δεB = 0 for all
the matter fields. This requirement imposes non-trivial relations to the metric
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and gauge fields, called the “BPS equations”, which are first order differential
equations that are much easier to solve in comparison with the second-order
equations of motion. In favorable situations, the BPS equations automatically
solve the equations of motion.4 [92, 93, 94, 95] This is helpful when looking for
supersymmetric backgrounds in 11d or type II supergravities.

Another method to look for 10d or 11d backgrounds is through compactification.
The idea of compactification is that the background should be of a (warped)
product form Md × YD−d, so all the D-dimensional fields can be expanded by
products of external fields and internal harmonics. When the internal space
YD−d becomes somehow small, the mass spectrum of fields are dominated by
the internal mass spectrum, which is organized into an infinite tower of discrete
Kaluza-Klein levels. Thus in the limit where the YD−d is very small, we can
omit the higher KK modes and only look at the massless ones. This is the
Kaluza-Klein reduction. However, it turns out to be surprisingly hard to find
scale separated backgrounds in 10d/11d supergravity. This will also be the
point discussed in section 2.7, where we show that our results can be a criterion
for the existence of scale-separated background in a given supergravity theory.

Given the lack of scale seperated backgrounds, we need to include infinitely
many Kaluza-Klein modes. Because of the conservation of degrees of freedom,
the higher-dimensional fields with more Lorentz indices reduce to a large number
of fields in the lower dimension. Despite the ramping number of fields, lower
dimensional supergravity can still be easier to study compared their 10d/11d
counterparts.

AdS/CFT correspondence identifies the field theories to the full quantum
gravity living in 10d/11d. At the classical level, a background AdS4 × Y7 in
11d supergravity is equally described by a 4d gauged supergravity in AdS4 with
the full tower of Kaluza-Klein modes associated to Y7. In this chapter, we
assume that the two descriptions are also equivalent with one-loop quantum
corrections, and our results indeed show the precision holography with 4d
gauged supergravity. This correspondence is shown by the red dotted arrow in
Fig. 2.1. In what follows, we will take the KK reduction from 11d supergravity
down to 4d to show how the compactification works.

2.2.2 Kaluza-Klein supergravity in 11d

Among all the supergravity theories, one of them is very special, that is the 11d
supergravity [96]. Not only because 11 is the maximal number of dimensions

4However, it is not true true in general, since there is no reason. But see [91] for a special
case in type IIB supergravity where this is true.
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Quantum Gravity:
String/M-theory

on M4 × Y

CFT(Y ) on ∂M4
10d/11d SUGRA

on M4 × Y

4d KK
SUGRA on M4

low energy EFT strong AdS/CFT

KK reduction

low energy AdS/CFT

KK AdS/CFT (classically fine, quantum unkonwn)

Figure 2.1: The picture shows different versions of the AdS/CFT correspondence
with decreasing stringency. The pink boxes represent gravity theories, while the
cyan box denotes the field theory. The dark thick arrows represent procedures
that are understood or accepted, while the red dotted arrow is the less understood
one. We assume the Kaluza-Klein theory with the full KK tower can be identified
with the higher-dimensional counterpart.

permitted by supersymmetry [17], but the theory is uniquely determined,
while supergravity theories in lower dimensions are highly constrained but
not completely fixed. The field contents is very simple as well: a metric
gMN and a three-form potential AMNP . The 11d supergravity is regarded as
the low energy theory of M theory [97], since its reduction on S1 gives the
strong-coupling limit of the type IIA supergravity.

To make a connection between this beautiful theory with our real world, one
may naïvely think of putting the 11d supergravity on a background in a direct
product5 form of M4 × Y7 and consider the effective theory on M4, with the
hope that M4 gives an effective gravity theory describing the real world. This
is roughly the idea of Kaluza-Klein compactification. [99]

5In fact, one should also consider a warped product background, which is necessary to
reproduce some extra theories in 4d guaged supergravity. [98]
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To simplify the discussion further, we shall make an ansatz for the 4-form field
strength that singles out the four-dimensional external space: [100]

FMNPQ =

3mεµνρσ, along M4,

0, otherwise.
(2.4)

Under this ansatz, the 11d Einstein equations become:

Rµν = −12m2gµν , Rmn = 6m2gmn, (2.5)

where µ, ν, ρ, σ are coordinates along M4, and m,n are coordinates along Y7.
This simple ansatz leads to the requirement that the internal manifold needs
to be compact (since it has positive curvature) and Einstein. The external
manifold will have negative curvature, and thus asymptotically AdS, happens
to be applicable for the AdS/CFT correspondence.

On the product background, one can show that if the “internal space” Y7 has an
isometry group G, the massless states in the effective theory will contain a gauge
field with the gauge group G. [101] The maximally symmetric choice of M7 is
the seven-sphere with SO(8) isometry, which should correspond to a 4d gauged
supergravity with gauge group SO(8). What’s more, the AdS4×S7 background
in 11d supergravity was explicitly found to contain 8 Killing spinors ε [102],
which will be preserved if we “spontaneously compactify” to AdS4, resulting
in the 4d N = 8 SO(8) gauged supergravity [103]: the Kaluza-Klein modes
that descend from the 11d supergravity organize themselves into a tower of 4d
N = 8 supergravity multiplets.

We can also consider less symmetric internal spaces. The coset spaces can
be represented as the group manifold G/H where H is a subgroup of G, and
they are automatically homogeneous by construction. For example, the seven
sphere can be represented as SO(8)/SO(7). The classification of 7d Einstein
coset space is done in [104], many of them appear to have Killing spinors and
thus correspond to 4d gauged Kaluza-Klein supergravities. These 4d gauged
supergravities holographically correspond to 3d superconformal field theories,
through the chain of relations in Fig. 2.1. Many of the 3d field theories
are identified as supersymmetric gauge theories amenable to supersymmetric
localization, as partially listed in Table 2.1. The field theory results motivate
us to study the corresponding Kaluza-Klein gauged supergravity obtained by
compactifying the 11d backgrounds found in [104].

We can relax the Freund-Rubin ansatz in (2.4) and consider non-vanishing
fluxes in the internal space, where things start being complicated. As we
discussed above, the straightforward method starts from 11d supergravity,
taking advantage of the global symmetry and supersymmetry to get the first-
order BPS equations. It may work well when the symmetry is large, for



LARGE N PARTITION FUNCTIONS OF 3D HOLOGRAPHIC SCFTS 31

example, in [105, 106, 107, 108]. Another perspective is to look at the 4d
N = 8 SO(8) gauged supergravity, which has 70 scalar fields with a complicated
scalar potential. The potential has extrema parametrized by the non-zero
VEVs of the scalar fields, they correspond to IR fixed points of RG flows
sourced by deformations on the original theory. At such a fixed point, the
fields descending from the original OSp(8|4) multiplet in the UV reorganize
themselves into new multiplets with reduced supersymmetry. Because the 4d
N = 8 SO(8) gauged supergravity is a consistent truncation [109, 110, 111], all
the 4d theories corresponding to extrema of the scalar potential can be uplifted
to 11d.6 Besides, the exceptional field theory method can also be helpful looking
for an 11d background when a large global symmetry is preserved, which takes
advantage of the full symmetry group of the maximal (or half-maximal) gauged
supergravity. [113]

We will be interested in the quantum aspects of the 4d Kaluza-Klein gauged
supergravities. Under the canonical quantization, all the Kaluza-Klein modes
will run in loops, thus we need the mass spectrum data for the full tower.
In the literature, this can be obtained by doing harmonic analysis of the
various differential operators. Nowadays a new method based on the hidden
exceptional symmetry [89] is more powerful for less symmetric cases, including
non-supersymmetric theories. We will study 4d gauged supergravity theories
that have uplifts in massive type IIA, type IIB, and 11d supergravity with
known holographic duals. Interesting results from the 1-loop quantum effects of
the Kaluza-Klein modes will be presented.

2.3 Large N partition functions of 3d holographic
SCFTs

Let us begin by briefly reviewing known results about the logarithmic terms
in the large N partition functions of 3d holographic SCFTs with N ≥ 2
supersymmetry placed on compact Euclidean manifolds. Using supersymmetric
localization, partition functions of 3d N = 2 SCFTs on various compact
manifolds can be reduced to matrix models. Of particular interest to us are
the squashed7 3-sphere partition function [115, 114, 116], the Topologically

6This is not true for some other 4d gauged supergravities, for example, the dyonic gauged
maximal supergravity [112] doesn’t have an 11d uplift. It is also not true that all 11d
supergravity backgrounds can be compactified to 4d gauged supergravity, such as the GMPS
solution [108, 95].

7We will be interested in a particular squashing of S3 [114] that preserves a U(1)×U(1)
isometry and is parametrized by a real positive number b, with b = 1 corresponding to the
round sphere. We denote this manifold by S3

b .
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Twisted Index (TTI) obtained by putting the theory on S1 × Σg with a
supersymmetry-preserving twist along the Riemann surface [117, 118, 119, 120],
and the Superconformal Index (SCI) where the 3d SCFT is put on S1 ×ω S2

after turning on a chemical potential ω for the angular momentum on the S2

[121, 122, 123, 124]. In what follows, we first introduce the three BPS observables
and then discuss their universal behaviors under the large N expansion.

2.3.1 BPS observables in 3d N = 2 gauge theories

The classification of three-dimensional BPS manifolds preserving 3d N = 2
supersymmetry has been done [125]. The three geometries we will study, i.e.,
squashed three-sphere S3

b , S1 × Σg, and S1 ×ω S2, are special cases of the 3d
BPS geometries. Application of supersymmetric localization on 3d N = 2
SCFT leads to the precise matrix-integral formulas for the path integral on
them. In the last two cases, the partition function evaluates the topologically
twisted index (TTI) and the superconformal index (SCI), which are related to
the number of black-hole microstates in their AdS duals. [65]

The squashed sphere S3
b preserves U(1)×U(1) isometry, whose metric can be

written as

ds2 = b2(dx2
1 + dx2

2) + 1/b2(dx2
3 + dx2

4), x2
1 + x2

2 + x2
3 + x2

4 = 1. (2.6)

We are interested in 3d superconformal theories with N = 2 supersymmetry,
where the partition function localizes to, schematically: [114, 116]

Z(R) =
∫ ∏

Cartan
du eiπtru2

det
Ad

[
sinh(bπu) sinh

(
b−1πu

)]
×

∏
chirals in rep Ri

det
Ri

[
sb(

iQ

2 (1−∆i) + iu)
]
,

(2.7)

where Q = b + 1/b, ∆i are the R-charges of the chiral multiplets under the
R-symmetry, and sb is the double-sine function defined by:

sb(x) ≡
∏

m,n≥0

mb+ nb−1 + Q
2 − ix

mb+ nb−1 + Q
2 + ix

. (2.8)

When the sphere is not squashed, the expressions are dramatically simplified:
[115]

Z(R) =
∫ ∏

Cartan
du eiπtru2

det
Ad

[
sinh2(πu)

] ∏
chirals in rep Ri

det
Ri

[
e`(1−∆i+iu)

]
,

(2.9)
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where `(z) is a special function:

`(z) ≡ −z log
(
1− e2πiz)+ i

2

(
πz2 + 1

π
Li2
(
e2πiz))− iπ

12 . (2.10)

For a 3d SCFT with N ≥ 3, the R-symmetry SO(N ) is non-Abelian, which
protects the R-charges when going from the UV to the IR fixed point. But for
N = 2 case, the R-charge gets quantum corrections and mixes with Abelian non-
R flavor symmetries. It was shown that the choice of R-charge that maximizes
the partition function is the correct superconformal R-charge in the infrared
[126]. This is reminiscent of the a-maximization in 4d. [127]

Apart from squashed three-spheres, on some specific backgrounds, the partition
functions happen to reproduce the supersymmetric Witten index [128]. The
motivation of the superconformal index is to study the Hilbert space of
superconformal field theories. We expect the Hilbert space to be a direct sum
over irreducible unitary representations of the superconformal algebra, which
has been classified in general dimensions. [129, 130, 131, 132, 133, 18] One
special set of representations are called “short” because they have fewer states
compared to the general multiplets, which are called “long”. Within a continuous
family of superconformal field theories, the continuity of the spectrum prevents
the short multiplets from becoming long unless a group of short multiplets
coincidentally combine into a long one. [121] The superconformal index can be
defined as special linear combinations of the numbers of the multiplets which
are invariant under the multiplet combinations discussed above and are thus a
function of the spectrum that remains constant under continuous variation of
the spectrum.

One typical choice of the index is prescribed by Witten [128], which counts
the states annihilated by a particular supercharge Q and its conjugate Q̄. The
Witten index is defined as

I = tr (−1)F e−β{Q,Q̄}eµiFi , (2.11)

where F is the fermion number operator and Fi are flavor symmetries commuting
with Q and Q̄. The Witten index receives only contributions from states that
are both annihilated by Q and Q̄, and thus by {Q, Q̄}, so it is independent
of β as well as other continuous deformations. The Witten index is the most
general index since it can reproduce all the indices that are continuous spectral
functions.

Using supersymmetric localization, the superconformal index of an N ≥ 2
superconformal field theory on S1 ×ω S2 can be reduced to an explicit finite-
dimensional matrix integral as well, which involves both the integration over
the Cartan generators of the gauge group parametrizing the BPS locus as well
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as an infinite sum over all the possible magnetic monopole fluxes over the
two-sphere valued under the GNO lattice [134] of quantized magnetic fluxes.
[122, 121, 123, 124]

Preserving supersymmetry on a curved manifold is a non-trivial task. The
standard protocol involves coupling the field theory to a supergravity theory
and fixing the gravity and gauge flux background. [135] One special scenario is
the partial topological twist proposed by Witten [26, 27]. The BPS equation
schematically reads:

∇µε = ∂µε+ ωabµ Γabε+ARµ ε. (2.12)
By specifying the background gauge field ARµ coupled to the U(1)R-symmetry
such that the last two terms above cancel, a constant ε automatically solves
the BPS equation and thus supersymmetry is preserved. Since the gauge field
is along the Riemann surface which is a part of the total space Σg × S1, this
operation is called “partial topological twist” and its corresponding Witten
index is called the topologically twisted index (TTI), which can be expressed
explicitly as a finite-dimensional integral using supersymmetric localization.
[117, 119, 118] The BPS locus is also paramtrized by the GNO lattice and the
Cartan algebra of the gauge group. The difference between the twisted index
and the superconformal index is whether the gauge field ARµ is turned on or not
to preserve the supersymmetry.

Supersymmetric localization makes the exact evaluation for these BPS
observables at finite N , couplings, and charges possible, which is meaningful in
the comparison with gravity in the context of AdS/CFT. In this chapter, we
will take advantage of the results in the literature on localizing 3d SCFTs on
the three backgrounds, which are summarized in Table 2.1.

2.3.2 The large N behavior

Under favorable circumstances related to special values of the 3d background
parameters, the matrix model for the S3

b partition function can be computed
in closed form to all orders in the large N expansion [80, 81, 136, 137, 138].
The matrix models for the other supersymmetric partition functions have not
yet been solved analytically, but closed-form expressions were conjectured for
various N ≥ 2 SCFTs based on non-trivial consistency checks with the bulk
theory and numerical studies [139, 140, 141, 142]. In all known cases, we have
the large N behavior

logZCFT = F0 + C logN +O(N0) , (2.13)

where F0 denotes all terms that dominate over logN in the large N expansion.
In general, F0 is a polynomial in some (possibly fractional) power ofN depending
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Theory M3 log coefficient C Ref. 10/11d bulk

M2-brane theories (class I)

(S7/Zk)free (†)
S3
b − 1

4 [80, 81, 143, 140] 3 [71] (s.c.)
S1 × Σg − 1

2 (1− g) [73, 140] 3 [72] (s.c.)
S1 ×ω S2 − 1

2 [141] 7

(S7/ZNf )f.p. (†)
S3
b − 1

4 [136, 138, 144, 142]
7S1 × Σg − 1

2 (1− g) [142]
S1 ×ω S2 − 1

2 [141]

N010/Zk
S3
b=1 − 1

4 [81, 142] 7

S1 × Σg − 1
2 (1− g) [142] 3 [75]

S1 ×ω S2 − 1
2 [145] 7

V 52/Zk
S1 × Σg − 1

2 (1− g) [142] 3 [75]
S1 ×ω S2 − 1

2 [145] 7

Q111/Zk
S1 × Σg − 1

2 (1− g) [142] 3 [75]
S1 ×ω S2 − 1

2 [145] 7

M5-brane theories (class II)

AN−1

S3
b − 1

2 [146, 147] 7

S1 × Σg>1 (b1(H3)− 1)(1− g) [74, 148]
3 [148]

S1 ×ω S2 b1(H3)− 1 [148]

DN

S3
b

0 [147] 7S1 × Σg>1

S1 ×ω S2

IIA theories (class III)

CP3 (†)
S3
b − 1

6 [149, 140]
7

S1 × Σg
2
3 (1− g) [150, 140]

CP3
def S3

b=1 − 1
6 [151] 7

S6
def

S3
b=1

− 2
9 (fixed k)

[152]
7− 1

6 (‘t Hooft)
S1 × Σg − 7

18 (1− g) [153]

Table 2.1: The logarithmic coefficient in (2.13) for various 3d N ≥ 2 SCFTs.
We indicate the compact manifold M3 on which the theory is placed and
the possibility of mass deformations (†), along with relevant references where
analytic and/or numerical computations are presented. We refer to the main text
for detailed explanations and implicit restrictions of each entry. The last column
indicates whether the result has been matched from a one-loop computation
in 10d or 11d supergravity with the abbreviation s.c. used to indicate that
the supergravity analysis is performed at the superconformal vacuum, i.e. for
vanishing squashing and mass deformations.
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on the SCFT of interest, whose coefficients are functions of the parameters
of the theory such as the discrete Chern-Simons (CS) level or continuous
parameters like squashings, fugacities for flavor symmetries or real masses. In
stark contrast, the logarithmic correction in (2.13) is universal and independent
of such parameters. We summarize a number of known results for the logarithmic
coefficient C in Table 2.1, after giving some general explanations of the 3d
holographic SCFTs and their observables.

The three broad classes of 3d N ≥ 2 SCFTs we consider arise from the
worldvolume of M2- and M5-branes in M-theory, and from D2-branes in massive
Type IIA string theory. SCFTs in the first class will be distinguished by the
Sasaki-Einstein base SE7 of the cone probed by a stack of N M2-branes. Familiar
examples in this class are the N = 6 ABJM theory [154], for which SE7 is a
freely acting orbifold of the 7-sphere (S7/Zk)free, or the N = 4 ADHM theory
or “Nf model” [155, 136, 156] where the base of the cone is a 7-sphere orbifold
(S7/ZNf )f.p. with fixed points.

SCFTs in the second class are constructed by starting with the N = (2, 0) theory
on the worldvolume of N M5-branes and placing it on a compact hyperbolic 3-
fold H3, including a partial twist to preserve N = 2 supersymmetry in the three
non-compact directions. Taking the limit vol(H3)→ 0 produces 3d holographic
theories of class R [157]. In Table 2.1, we distinguish them by the ADE-type of
the “gauge group” G in the parent 6d theory.

The third class of theories consists of 3d holographic theories whose gravity duals
uplift to solutions of (massive) Type IIA string theory. They will be distinguished
by the internal six-dimensional space. This class includes a particular limit of
the ABJM theory where one takes both N and k large while keeping N/k fixed.
This implements a dimensional reduction along the Hopf fiber over CP3 inside
S7/Zk and gives access to a regime of the theory dual to massless Type IIA
string theory on an asymptotically AdS4 × CP3 background [154]. In addition,
this class of theories includes the Gaiotto-Tomasiello (GT) theory [158] and
the SCFT dual to 4d ISO(7)-gauged maximal supergravity [159] also belong in
this class of theories, which uplift to massive Type IIA (mIIA) on a deformed
CP3 and a deformed S6, respectively. In these mIIA SCFTs, the CS level k is
controlled by the Romans mass and one can study either the regime of large N
and fixed k, or the limit of large N and large k with N/k fixed. We call the
former the fixed k limit and the latter the ‘t Hooft limit in Table 2.1.

Once the theory is specified, it can be placed on a compact Euclidean manifold
M3 and the corresponding supersymmetric partition functions can be computed
using localization. The resulting matrix models can be studied at large N
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and, in some cases, the logarithmic term in (2.13) can be extracted. For M2-
brane theories, the squashed 3-sphere partition function (M3 = S3

b ), the TTI
(M3 = S1 × Σg), and the SCI (M3 = S1 ×ω S2) have all been studied along
these lines. In Table 2.1 we collect the resulting logarithmic coefficients and
give the relevant references. We note here that the coefficient of the logN term
in the SCI has only been obtained in the Cardy-like limit where ω → 0, so
we restrict our summary to this regime.8 Class R theories can be placed on
the same three-manifolds and the logarithmic term in the large N limit can
be extracted using the 3d-3d correspondence [160]. In the squashed sphere
case, M5-brane results are available only in the limit b→ 0 and for hyperbolic
three-folds with trivial H1(H3,Z). For the SCI, the results have again only
been obtained in the Cardy-like limit. These restrictions are implicit in the
relevant entries of Table 2.1. Finally, the logarithmic term in the round 3-sphere
partition function of the GT theory has only been obtained for the two-node
case, and we again implicitly restrict to this case in our summary.

SCFTs arising from M2-branes can also be deformed away from the
superconformal point. For example, the ABJM theory has an SO(4)×U(1) flavor
symmetry and one can turn on three N = 2 supersymmetry-preserving real
masses in the Cartan subgroup of this global symmetry group. The observables
introduced above can be studied using localization in the deformed theory,
and the logarithmic terms can again be extracted. Theories in which such
deformations have been studied are denoted with a (†) in Table 2.1. We stress
that the logarithmic coefficient turns out to be independent of the deformations
in all known cases, in line with its universal character. To the best of our
knowledge, such mass deformations have not been studied for SCFTs in the
second and third class.

In Table 2.1, we also contrast the deluge of SCFT results with the drought of
dual supergravity computations. As far as we are aware, there are only few bulk
results available in the literature, and they have all been obtained in the eleven-
dimensional low-energy effective description of M-theory. There, as mentioned
in the Introduction, a one-loop calculation can be performed using the heat
kernel method wherein the problem of computing the logarithmic correction
reduces to a zero mode counting problem, see e.g. [71]. While this technique
can be used to match with CFT results, it is limited to some simple 11d
backgrounds where the spectrum of kinetic operators can be worked out in full.
Typically, this requires being at the superconformal point where possible mass
or squashing deformations are turned off. To emphasize this point, we include

8Since we expect the logarithmic correction to always be universal, it is likely that higher-
order terms in ω will not change the results. Making this argument precise is however beyond
the scope of this work.
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the abbreviation “s.c.” in the relevant entries of Table 2.1. A complementary,
although broader, approach to logarithmic corrections in the bulk was put
forward in [76] where it was shown how supergravity localization can efficiently
compute the coefficient C in the 4d effective supergravity theory using index
theorems. We will discuss this method in more details below.

The rest of the chapter will be devoted to studying logarithmic corrections in
the lower-dimensional 4d supergravity theories, with an eye towards replacing
some of the “7” entries in Table 2.1 with bulk results matching the SCFT
predictions. To this end, we set up the 4d Euclidean supergravity path integral
and the appropriate heat kernel expansion in the next section.

2.4 Logarithms in the 4d Euclidean path integral

The SCFTs we consider in Section 2.3 are holographically dual in the large
N limit to ten- or eleven-dimensional supergravity theories on backgrounds
that are asymptotically of the form AdS4 ×X, where X is a 6d or 7d internal
manifold. We denote the (common) length scale of these spaces by L.9 The
KK reduction of the 10d/11d supergravity theory on X produces an infinite
tower of massive 4d fields in addition to the massless ones. The Euclidean path
integral for the 4d KK supergravity theory involving all these 4d fields is then
holographically dual to the 3d SCFT partition function (2.13),

Zsugra ≈ ZCFT , (2.14)
where the approximate equality reminds us that we work in the large N limit
and are ignoring heavy string and brane states. In the holographic context,
specifying a 3d SCFT amounts to choosing a particular KK supergravity theory
and the corresponding field content in the bulk. Once the theory is specified,
one can study various supersymmetric observables and their bulk incarnations.
In particular, the partition function of a given 3d SCFT on a compact Euclidean
manifoldM3 is captured by the corresponding KK supergravity Euclidean path
integral around a 4d supergravity background whose conformal boundary is
M3.

In the semi-classical limit where the Newton constant is small in units of the
AdS radius, i.e. L2/GN � 1, the 4d Euclidean path integral can be evaluated
in the saddle-point approximation. This yields

logZsugra = − 1
16πGN

Scl[φ̊] + C log
(
L/
√
GN

)
+O(1) , (2.15)

9Here we focus on situations arising from standard top-down AdS/CFT examples in string
and M-theory. We will discuss scale-separated AdS4 vacua and more general 4d supergravity
theories in Section 2.7.
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where φ̊ generically denotes the on-shell values of all fields φ in the gravity
theory for a given background. To leading order (LO) at large L2/GN , the
saddle-point approximation of the supergravity path integral is controlled by
the two-derivative on-shell action of the given 4d background. The next-to-
leading order (NLO) term in the semi-classical expansion is a four-derivative
correction to the action evaluated on the two-derivative solution. Both LO and
NLO terms are grouped in the Scl[φ̊]/GN term in (2.15). This quantity has
been computed and shown to match with F0 in (2.13) in numerous examples,
see [67, 147, 140, 142], in line with expectations from AdS/CFT away from the
strict semi-classical limit.

We now would like to focus on the logarithmic term and ask if the values of the
logarithmic coefficient C in the large N expansion of a given 3d SCFT partition
function match the logarithmic coefficient C in the saddle-point approximation
(2.15). In this comparison, we will ultimately have to use the AdS4/CFT3
dictionary appropriate for each class of SCFTs introduced in Section 2.3 (as
explained there, we split class III according to whether the bulk solution admits
a IIA or massive IIA uplift):

L2

GN
∼ N 3

2 (class I) , L2

GN
∼ N3 (class II) , L2

GN
∼

{
N2 (IIA)
N

5
3 (mIIA)

.

(2.16)
Since we are concerned with a logarithmic term we do not have to worry about
the precise numerical factors or possible finite N corrections to the above
relations, as these would only contribute O(1) terms in (2.15). We will use
heat kernel techniques to compute C. In Section 2.4.1 we first review how the
logarithmic coefficient splits into a local and a non-local contribution based on
the heat kernel expansion. In Section 2.4.2 and Section 2.4.3, we study these
contributions in detail.

2.4.1 Logarithmic contributions to the Euclidean path integral

In this subsection, we review the general structure of the logarithmic coefficient
C in the Euclidean path integral for any 4d KK supergravity theory. Note that
all supergravity fields with masses below the UV cutoff can run in loops in
the Euclidean path integral and thereby contribute a logarithmic term in the
bulk partition function. Up to L-independent terms, the resulting logarithmic
correction generically takes the form [68, 69, 70, 71]

C log
(
L/
√
GN

)
=
∑
φ

[
− (−1)F

2 log det′Qφ + log
∫
Dδφ0

]
, (2.17)
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where Qφ is a second-order differential operator that captures the dynamics of
a quantum fluctuation δφ = φ− φ̊ around a given background, and the sum is
taken over all 4d fields φ in the KK theory weighted by their fermion number
F , including ghosts.10 The prime on the determinant indicates that it should
be computed after removal of the zero modes, which are modes that satisfy

Qφδφ0 = 0 . (2.18)

The second term in (2.17) encodes the contribution to the path integral from
these zero modes separately. In practice, we expect the spectrum of the Qφ
differential operators to be well-behaved, and in particular that the eigenvalues
satisfy certain ordering and positivity properties with only a finite number of
them being zero. On non-compact spaces with a boundary, such properties
depend on the boundary conditions imposed on the fluctuations δφ and we will
discuss some of these aspects in due course. One immediate consequence of this
“good” spectral behavior is that only massless fluctuations can satisfy (2.18),
since any positive mass-squared term in Qφ would lift the δφ0 zero-mode.

To evaluate the non-zero mode contribution to the logarithmic correction (2.17),
it is convenient to introduce the heat kernel associated to the operator Qφ as
[79]

K(x, y; t;Qφ) = 〈x|e−tQφ |y〉 . (2.19)

At coincident space-time points, this can be expanded in the small t limit as

K(x, x; t;Qφ) =
∞∑
k=0

a2k(x;Qφ) tk−2 , (2.20)

in terms of the Seeley-de Witt (SdW) coefficients a2k. Using (2.19), we write
the determinant factor in (2.17) as an integral [68, 69, 70, 71]

log det′Qφ = − lim
ε→0

∫ ∞
ε

dt

t

[∫
d4x
√
g K(x, x; t;Qφ)− nφ0

]
, (2.21)

where we have explictly removed the nφ0 zero modes of Qφ and ε is a UV cutoff.
By a scaling argument, one can show that the one-loop determinant (2.21)
produces a logarithmic correction to logZsugra in the large L2/GN limit that is

10Quantization of a p-form requires a tower of (p− j)-form ghost fields with j = 1, . . . , p
labeling the ghost level [161]. For the purpose of computing the determinant factor, the
kinetic terms of these ghost fields can be thought of as differential operators of order 2(j + 1)
and therefore the first term in (2.17) has to be multiplied by a factor of j + 1, see e.g. [71].
This factor can be understood as arising from ghost number conservation, and the same
remark applies for any field with gauge invariance. To declutter formulas, we will mostly keep
the ghost level factor implicit when summing over the spectrum of the theory.
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entirely controlled by the k = 2 term in the SdW expansion [70, 71]:

log det′Qφ = −2
[∫

d4x
√
g a4(x;Qφ)− nφ0

]
log
(
L/
√
GN

)
+O(1) . (2.22)

On the other hand, the path integral over the zero modes of the Qφ operator
produces a logarithmic correction to (2.17) that can be written as [68, 69, 70, 71]

log
∫
Dδφ0 = (−1)Fβφ0nφ0 log

(
L/
√
GN

)
+O(1) , (2.23)

where βφ0 is a pure number fixed by demanding locality of the path integral
measure Dδφ0. For future reference, we record here the results for fields of spin
3/2, spin 2, and for p-forms in four dimensions, see [69, 71]:

β3/2 = 3 , β2 = 2 , βAp = 4− 2p
2 . (2.24)

Together, the non-zero mode contribution (2.22) and the zero mode contribution
(2.23) yield the full logarithmic correction to the 4d Euclidean path integral.
Accordingly, we split the resulting coefficient C in (2.17) into two parts,

C = Clocal + Cnon-local , (2.25)

where the local contribution is controlled by the fourth SdW coefficient,

Clocal =
∑
φ

(−1)F
∫
d4x
√
g a4(x,Qφ) , (2.26)

and the non-local contribution captures the effect of zero modes,

Cnon-local =
∑

massless φ
(−1)Fnφ0(βφ0 − j − 1) . (2.27)

Here the sum is over the massless spectrum, and we have explicitly displayed
the ghost level factor discussed in Footnote 10 since it will be important later.
In the following, we study these contributions in turn.

2.4.2 Local contributions

We now review some important features of the SdW coefficient a4 that controls
the local contribution (2.26). For this discussion, we assume that the second-
order differential operator Q is of Laplace type.11 This means that it can be

11We temporarily drop the subscript φ on Qφ since the analysis is valid for generic fields.
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represented locally as

Q = DµDµ + 2ωµDµ + P , (2.28)

where Dµ is the covariant derivative with respect to all bosonic local gauge
transformations of the theory under consideration12 and (ωµ, P ) are a set of
matrices acting in field space. Introducing the differential operator Dµ =
Dµ + ωµ, we complete the square and write

Q = DµDµ + E , (2.29)

where E = P − ωµωµ −Dµωµ. We stress that the matrix multiplication in field
space is implicit in our notation. The curvature associated to Dµ is denoted by
Ωµν = [Dµ, Dν ].

In general, the SdW coefficients associated to Q can be written in terms of
traces of the matrix-valued quantities E and Ωµν , together with curvature
tensors of the background geometry. If we consider a general 4d Riemannian
manifold (M, g) with a non-empty boundary ∂M, the formula for the fourth
SdW coefficient of the Laplace operator (2.29) integrated overM reads [79]13∫

M
d4x
√
g a4(Q) =

∫
M
d4x
√
g abulk

4 (Q) +
∫
M
d4x
√
g atot.der.

4 (Q)

+
∫
∂M

d3y
√
γ abdry

4 (Q) ,
(2.30)

where γab is an induced metric on the boundary ∂M and we define

(4π)2abulk
4 (Q) = Tr

[
1
2E

2 + 1
6RE + 1

12ΩµνΩµν + 1
360

(
3W 2 − E4 + 5R2)] ,

(2.31)

(4π)2atot.der.
4 (Q) = Tr

[
1
6�E + 1

30�R
]
, (2.32)

12In particular, Dµ includes background gauge fields. We use the symbol ∇µ to denote the
spacetime covariant derivative.

13Note that this reference uses the inward unit vector normal to the boundary. We will use
the outward one, and this difference is reflected in various signs in the last term of (2.30).
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(4π)2abdry
4 (Q) = 1

360Tr
[
(120Π− − 240Π+)∇nE + (18Π− − 42Π+)∇nR+ 24∇̃a∇̃aK

+ 120EK + 20RK + 4RananK − 12RanbnKab + 4RabcbKac

+ 1
21

{
(280Π+ + 40Π−)K3 + (168Π+ − 264Π−)KabKabK

+ (224Π+ + 320Π−)KabKbcKa
c
}

(2.33)

− 720SE − 120SR− 144SK2 − 48SKabKab + 480S2K

− 480S3 − 120∇̃a∇̃aS − 60ΩanP∇̃aP

+ 12(10S −K)∇̃aP∇̃aP − 24Kab∇̃aP∇̃bP
]
.

Here we have used i, j, k ∈ {1, 2, 3, 4} and a, b, c ∈ {1, 2, 3} for the local
orthonormal frame indices of the tangent bundles onM and ∂M, respectively.
From here on we choose a bulk local orthonormal frame appropriately so that
the 4d i, j, k indices become identical to the union of 3d boundary a, b, c indices
and the normal vector index n = 4 on the boundary ∂M. Then the extrinsic
curvature of the boundary can be written explicitly as Kab = −Γnab. The trace
of the extrinsic curvature is K = Ka

a. The boundary covariant derivative ∇̃ is
distinguished from the bulk one ∇, and the box symbol is defined with respect
to the latter as � = ∇µ∇µ. The quantities Π± and S specify the boundary
conditions used for the fields on which the differential operator Q acts, and
P = Π+ − Π−. These boundary conditions will be discussed in more detail
below. Finally, the trace Tr[. . . ] is taken in field space and over all free indices
carried by the E and Ω matrices, and we have introduced the usual curvature
combinations

W 2 = RµνρσRµνρσ − 2RµνRµν + 1
3 R

2 ,

E4 = RµνρσRµνρσ − 4RµνRµν +R2 .

(2.34)

The general structure of (2.30) is that of a bulk contribution involving four-
derivative terms, a total derivative contribution, and an intrinsic boundary
contribution. We discuss each of them below.
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Bulk contributions

First we study the bulk contribution (2.31). For simplicity, from here on we
focus on the case where the background φ̊ in the saddle-point approximation
(2.15) is a solution of Euclidean N = 2 minimal gauged supergravity with
bosonic action

Sminimal = − 1
16πGN

∫
M
d4x
√
g

[
R− 2Λ− FµνFµν

]
, Λ = − 3

L2 , (2.35)

where the corresponding equations of motion read

Rµν −
1
2gµν(R− 2Λ) = 2FµρFνρ −

1
2gµνFρσF

ρσ ,

∇µFµν = 0 .
(2.36)

In this case, the bulk contribution (2.31) can be conveniently rewritten using
the background equations of motion (2.36) and field redefinitions as [77]

(4π)2abulk
4 (Q) = −aE E4 + cW 2 + b1R

2 + b2RF
µνFµν , (2.37)

where (aE , c, b1, b2) are a set of coefficients that can be obtained from trace
computations. These heat kernel coefficients will be central to our analysis since
they govern the bulk part of the SdW contribution to the Clocal term.

For illustration, consider the quantum fluctuations of a massive neutral scalar
(MNS) field around a given background. The relevant second-order operator
QMNS = �−m2 capturing the dynamics of these fluctuations is of Laplace type
(2.29) with

E = −m2 , Ωµν = 0 . (2.38)
Using this in (2.31) and taking the trace, we obtain the bulk contribution

MNS: (4π)2abulk
4 = m4

2 −
1
6 Rm

2 + 1
360

(
3W 2 − E4 + 5R2) . (2.39)

This can be brought into the form (2.37) by making use of the trace of the
background equation of motion R = −12/L2, which yields the coefficients

MNS: aE = 1
360 , c = 1

120 , b1 = 1
288

(
(mL)2 + 2

)2
, b2 = 0 . (2.40)

This simple example illustrates how obtaining the bulk contribution to the
fourth SdW coefficient for a field φ amounts to identifying the appropriate
second-order Q operator governing its fluctuations, extracting the E and Ω
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matrices, and collecting the (aE , c, b1, b2) coefficients by computing traces and
making use of the background equations of motion.

In Appendix A.2 we implement this method for both massless and massive
fields of spin 0 ≤ s ≤ 2. For scalars and fermions, we consider quadratic
fluctuations of minimally coupled fields around a generic background satisfying
the equations of motion (2.36). For fields of spin 1 ≤ s ≤ 2 we opted to turn off
the background Maxwell field for simplicity. In this way, we have obtained the
coefficients (aE , c, b1) in (2.37) for all fields minimally coupled to an Einstein-
Maxwell background, while we only have access to the b2 coefficient for scalars
and fermions. The results of these lengthy computations are summarized in
Table 2.2.

spin mass aE c b1

0 (mL)2 = −2 1
360

1
120 0

0 m 1
360

1
120

1
288
(
(mL)2 + 2

)2
1/2 0 − 11

720 − 1
40 0

1/2 m − 11
720 − 1

40
1

144 (mL)2((mL)2 − 2
)

1 0 31
180

1
10 0

1 m 31
180 + 1

360
1
10 + 1

120
1

288
(
3(mL)4 − 12(mL)2 + 4

)
3/2 mL = 1 589

720
137
120 0

3/2 m 589
720 −

11
720

137
120 −

1
40

1
72
(
(mL)4 − 8(mL)2 + 11

)
2 0 571

180
87
20 0

2 m 571
180 + 31

180 + 1
360

87
20 + 1

10 + 1
120

5
288
(
(mL)4 − 8(mL)2 + 8

)
Table 2.2: The quantities controlling the bulk contribution to the SdW
coefficient (2.37). For massive fluctuations with gauge invariance, we indicate
the effect of adding the appropriate Stückelberg fields as a separate contribution
to aE and c.

Let us collect some important remarks on the results. For fields of spins
1 ≤ s ≤ 2, the operator Q can be brought to Laplace form (2.29) only after
imposing gauge-fixing conditions inside the path integral. For massless fields, this
requires the addition of appropriate ghost fields, as we review in Appendix A.2.
Our results for the corresponding (aE , c, b1, b2) coefficients are compatible with
previous derivations in the literature, see e.g. [77, 78]. For massive fields,
the mass term typically breaks gauge invariance and to remedy this we must



46 LOG CORRECTIONS IN ADS4

fields mass
s = 0, 2 (mL)2 = ∆(∆− 3)
p-form (mL)2 = (∆− p)(∆ + p− 3)
s = 1

2 ,
3
2 |mL| = ∆− 3

2

Table 2.3: Relation between 4d mass and 3d conformal dimension for various
bulk fields.

introduce appropriate Stückelberg fields [162, 163], see [164] for a modern
review. It is important to note that these fields are physical, and while they
do not modify the classical equations of motion, they are allowed to run in
loops. Therefore, they generically give non-trivial contributions to the heat
kernel coefficients. To draw attention to this point, we explicitly separate the
contribution from the Stückelberg fields to the (aE , c) coefficients in Table 2.2.
This also makes it clear that the massless case is not obtained as a limit of the
massive one, which is a manifestation of the fact that the Stückelberg fields do
not decouple at the one-loop level. Introducing the appropriate Stückelberg
fields is therefore crucial to obtain the correct coefficients in (2.37) for massive
fields.

It is also worth mentioning that, because we study fields on an asymptotically
AdS4 space, by massless we meanm2 = −2/L2 for a scalar field andm = 1/L for
a gravitino field. This nomenclature takes into account the conformal coupling
in the Lagrangian which, in the case of a (pseudo) scalar field for example,
reads 1

6Rφ
2 = −2L−2φ2 on an asymptotically AdS background. Indeed, such a

conformally coupled scalar field sits in the massless supermultiplet of a conserved
current.

Finally, the four-derivative quantities (E4,W
2, R2) are not all linearly

independent on an Einstein background for which Rµν − 1
2gµν(R − 2Λ) = 0.

After turning off the background Maxwell field, the linear constraint implied by
the Einstein equations (2.36) is

Einstein background: E4 −W 2 − 1
6R

2 = 0 , (2.41)

which translates to an ambiguity in the coefficients (aE , c, b1) entering (2.37).
In Table 2.2, this freedom has been fixed by demanding that b1 = 0 for massless
fields.
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Boundary contributions

For the total derivative contribution (2.32), the fact that Tr[E] is a two-derivative
quantity shows that we can use the background equations of motion (2.36)
together with Stoke’s theorem to bring it to the form [77]

(4π)2
∫
M
d4x
√
g atot.der.

4 (Q) =
∫
∂M

d3y
√
γ nµ∇µ

[
α1R+ α2FµνF

µν
]
, (2.42)

where nµ denotes the outward unit vector normal to the boundary and α1,2
are constants whose values depend on the field under consideration. We can
therefore view the total derivative contribution to the integrated SdW coefficient
as a surface term.

The other surface term in (2.30) depends explicitly on the choice of boundary
conditions for each field fluctuation δφ. In writing (2.33), we have implicitly
assumed that we can choose so-called “mixed” boundary conditions [79] for all
fields. Such boundary conditions are parametrized as

Π−δφ|∂M = 0 , (∇n + S)Π+δφ|∂M = 0 . (2.43)

Within this class, various choices are avalaible for fields in Euclidean gravity.
We will further restrict ourselves to boundary conditions that ensure that the
differential operator Qφ is elliptic. Roughly speaking, this guarantees that the
operator has only finitely-many zero modes so that we can define its determinant
in the usual way, as we have indeed assumed we could do in writing (2.17). For
a nice review of such boundary conditions we refer the reader to [165], which
we follow.

Dirichlet and Neumann boundary conditions on the scalar Laplacian are elliptic.
The former amount to choosing Π− = 1 and Π+ = S = 0 in (2.43), while the
latter are achieved for Π− = S = 0 and Π+ = 1. To compute the one-loop
determinant for a spinor field ψ, it turns out to be convenient to use the square
of the Dirac operator for the Qψ operator, as we explain in Appendix A.2. A
choice of elliptic (and hermitian) boundary conditions for this operator is given
by Π− = 1

2 (1 + iγnγ5), Π+ = 1− Π− and S = 1
2KΠ+, see [79]. For Yang-Mills

fields, we will use so-called relative boundary conditions where the fluctuations
δAµ = Aµ − Åµ satisfy [79]

(δAa)|∂M = 0 , (2.44)

where the Latin index a denotes the local orthonormal frame indices of the
tangent bundle on the boundary introduced below (2.33). By BRST invariance,
this condition implies that the ghost field c required for quantization vanishes
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at the boundary, c|∂M = 0. The same must be true for the anti-ghost field
b in order to have a well-defined propagator for the b-c system. Invoking
BRST again, (2.44) then implies that G(δA)|∂M = 0 where G is the gauge-fixing
function for the fluctuations. This set of boundary conditions is elliptic, see [165].
Working in the Lorenz gauge as in Appendix A.2, it corresponds to

(Π−)ij = δij − δinδjn , (Π+)ij = δinδjn , Sij = Kδinδjn , (2.45)

in the parameterization (2.43). Elliptic boundary conditions for spin-3/2
fluctuations can be obtained by using an appropriate combination of elliptic
Yang-Mills and spinor boundary projectors Π± and S, and are also of mixed
type.

The boundary problem for metric fluctuations is notoriously more involved.
While it was shown in [166] that there exists a set of elliptic boundary conditions,
they involve tangential derivatives and therefore cannot be cast in the form (2.43).
Instead, they fall into the more general class of “oblique” boundary conditions
for which much less is known regarding the general form of abdry

4 in (2.30),
see [79] for a discussion. To show this explicitly, let us recall that the conformal
boundary conditions of [166] are obtained by fixing the conformal structure
of the boundary and requiring that the metric fluctuations preserve the trace
of the extrinsic curvature. Writing the perturbed metric as gµν = g̊µν + hµν ,
the first condition amounts to demanding that the traceless part of hαβ |∂M
vanishes, where α, β, . . . denote spacetime indices tangent to the boundary. Just
as in the Yang-Mills case, BRST invariance then implies that Gµ(h)|∂M = 0,
which gives two additional boundary conditions when split along µ =⊥ and
µ = α, see also [167]. The extrinsic trace condition gives us one last equation
that the fluctuations should satisfy. For concreteness, we will work in the
harmonic (de Donder) gauge for the metric perturbations, and use Gaussian
normal coordinates for the background so that g̊⊥⊥ = 1 and g̊⊥α = 0. Then,
the full set of elliptic metric boundary conditions can be summarized as[

hαβ −
1
3 g̊αβh

γ
γ

]∣∣∣
∂M

= 0 ,[
∂⊥h

γ
γ − 2∇̃αhα⊥ −Kh⊥⊥

]∣∣∣
∂M

= 0 ,[
∂⊥h⊥⊥ +Kh⊥⊥ − 2Kαβhαβ

]∣∣∣
∂M

= 0 ,

[
∂⊥hα⊥ +Khα⊥ + ∇̃βhαβ −

1
2∇̃α(h⊥⊥ + hγγ)

]∣∣∣
∂M

= 0 .

(2.46)

Since the tangential covariant derivatives ∇̃ cannot be eliminated from these
equations, we are indeed dealing with oblique boundary conditions. As far
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as we are aware, the problem of finding good boundary conditions for metric
fluctuations in 4d and their explicit contribution to the fourth SdW coefficient
has not been solved on a general non-compact manifold with boundary. We
believe this is a hard mathematical problem that falls outside the scope of the
present work. In order to make progress, we will formally impose the above
conformal boundary conditions in order to ensure ellipticity of the Qh operator.
This will induce a modification of the boundary term (2.33),

abdry
4 −→ abdry

4 + aoblique
4 . (2.47)

As we will see in Section 2.5, the contribution from mixed boundary conditions
abdry

4 can always be holographically renormalized away after integrating over a
cutoff hypersurface and sending the cutoff to infinity. We will assume that the
same is true for the unknown quantity aoblique

4 in the rest of this chapter. This
assumption ensures that the oblique nature of the boundary conditions (2.46)
does not affect the local contribution to the logarithmic term in the Euclidean
path integral.

2.4.3 Non-local contributions

We now discuss the non-local contribution (2.27). The first step is to identify
whether the Laplace-type operator Qφ admits zero modes. In general, this
spectral problem for generic Einstein-Maxwell backgrounds that solve the
equations of motion (2.36) is quite involved. We will therefore restrict our
attention to two minimal supergravity backgrounds for which we can make
explicit statements. These backgrounds are pure Euclidean AdS4 (EAdS4)
and Euclidean AdS2 × Σg with a non-trivial background gauge field along the
Riemann surface. They will serve to illustrate expected general features of the
non-local contribution to the log term in the supergravity path integral.

Zero-modes on EAdS4

For pure EAdS4, an analysis of the zero modes of Laplace-type differential
operators acting on p-forms, spin-1/2 and metric tensors was conducted in
[168, 169, 170]. There it was shown that there are no square-integrable zero
modes of the Laplacian for symmetric tensors on EAdS4. Fermions also do
not allow for square-integrable zero modes of the Dirac operator. Lastly for
p-forms, there are square-integrable zero modes only in even dimension d and
for p = d/2. Hence, zero modes can only come from 2-forms in a pure EAdS4
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background. The number of such zero modes is given by [169, 71]

nA2 = 3
4π2L4

∫
M
d4x
√
g = 1 , (2.48)

for each 2-form field present in the spectrum. In (2.48) the divergent volume
factor of EAdS4 is renormalized as

vol(EAdS4) =
∫
M
d4x
√
g = 4π2L4

3 , (2.49)

by adding appropriate boundary counter-terms. For spin-3/2 fields, one can
construct zero modes of the Rarita-Schwinger (RS) operator as follows. We
start with an eigenspinor of the Dirac operator on EAdS4,

/∇Ωs`m = is
L
λΩs`m , (2.50)

indexed by a continuous eigenvalue λ, two mode numbers ` ∈ N and m =
1, . . . , d` and a sign s = ± related to chirality. Here d` is the dimension of the
spin-` representation of Spin(3). Now define the basis spinors

Ψ(1)s
µ = γµΩs , Ψ(2)s

µ = ∇µΩs , (2.51)

where we momentarily suppress the mode indices. Consider the RS operator
for a spin-3/2 field of mass M on EAdS4,

(D±)µν = γµνρ∇ρ ±Mγµν , (2.52)

where the sign factor encodes chirality. This operator acts on (2.51) as

(D±)µνΨ(1)s
ν =

(
± 3M − 2is

L
λ

)
Ψ(1)s
µ + 2 Ψ(2)s

µ ,

(D±)µνΨ(2)s
ν =

(
R

8 ±
is
L
M λ

)
Ψ(1)s
µ ∓M Ψ(2)s

µ ,

(2.53)

where we have used the defining relation (2.50). This shows that appropriate
linear combinations of the spinors Ψ(1)s

µ and Ψ(2)s
µ generate a (non-orthonormal)

basis for the eingenfunctions of the RS operator. In particular, consider the
following linear combination,

Ψs
µ`m(λ) = N s

`

(
∇µ + s

2 Mγµ

)
Ωs`m . (2.54)

Here, the normalization constant N s
` should be fixed by demanding

〈Ψs
µ`m(λ),Ψµs′

`′m′(λ
′)〉 = δss′δ``′δmm′δ(λ− λ′) , (2.55)
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where we define the Euclidean inner product as

〈f, g〉 =
∫
d4x
√
g f†g . (2.56)

For a massless gravitino field in EAdS4 with M = 1/L, it is easy to see that
Ψs
µ`m is in fact a zero-mode of the RS operator:

(Ds)µνΨs
ν`m(λ) = 0 , (2.57)

where the sign factors are now correlated. Thus, it appears that quantum
fluctuations of a spin-3/2 field can include zero modes of the RS operator on
EAdS4. We should now ask whether such modes are square-integrable with

〈Ψs
µ`m(λ),Ψµs

`m(λ)〉 <∞ . (2.58)

To answer this question, we can use the known expression for the Dirac
eigenspinors Ωs`m in [170]. We give details in Appendix A.3, where we show that
the zero modes Ψs

µ`m either have vanishing norm or are not square-integrable
and must therefore be discarded.

The upshot of this analysis is that, on EAdS4, the non-local contribution (2.27)
comes only from 2-forms as

Cnon-local =
∑

massless 2-forms
(−1)F (−j − 1) . (2.59)

A common feature of all 4d KK supergravity theories we will consider is that
the spectrum does not include p-forms with p > 2. As a result, any 2-form is
necessarily bosonic and at ghost level j = 0 (see Footnote 10), in which case
the above simplifies to

Cnon-local(EAdS4) = −NA2 , (2.60)

with NA2 the total number of massless 2-form fields. We stress that the non-
local contribution (2.59) to the EAdS4 logarithmic correction is always a pure
number, regardless of the field content of the gravitational theory we consider.

Zero-modes on EAdS2 × Σg

On a product space like EAdS2 × Σg, the quadratic operator Q acting on
arbitrary field fluctuations can be split into

Q4d = QEAdS2 +QΣg
. (2.61)
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We will always consider compact Riemann surfaces, which implies that the
operator QΣg

has real non-negative eigenvalues. We will see that, as originally
shown in [168, 169, 170], normalizable modes on EAdS2 also have non-negative
eigenvalues. Therefore, we can study the modes that are in the kernel of both
two-dimensional operators separately to obtain the zero-modes on the 4d space.

The EAdS2×Σg>1 solution to (2.36) with the corresponding graviphoton reads

ds2 = L2

4

[
(ρ2 − 1) dτ2 + dρ2

ρ2 − 1 + 2 dx
2 + dy2

y2

]
,

dA = L

2y2 dx ∧ dy .

(2.62)

We restrict ourselves to a Riemann surface with genus g > 1 since this is
the situation arising from the near-horizon limit of supersymmetric extremal
black holes in AdS4, see Section 2.5.2. On this background, a 4d field can be
dimensionally reduced down to the EAdS2 factor with coordinates (τ, ρ). In this
two-dimensional space, the relevant Laplace-type operators for scalar and spinor
fields are the usual 2d scalar Laplacian and the square of the Dirac operator.
Their eigenvalues are well-known,

−�EAdS2φ =
(
λ2 + 1

4

)
φ , λ ∈ R ,

− /∇2
EAdS2

ψ = λ2 ψ , λ > 0 ,
(2.63)

which shows that there are no zero modes for these 2d fields. In contrast,
2d fields with spin 1 ≤ s ≤ 2 have normalizable zero modes whose explicit
expressions can be found in [69]. These zero modes are indexed by a non-zero
integer ` whose range depends on the spin, and they satisfy∑
|`|≥1

|a(`)
α |2 = 2

πL2 ,
∑
`≥1
|ξ(`)
α |2 = 4

πL2 ,
∑
|`|≥2

|w(`)
αβ |

2 = 6
πL2 , (2.64)

for a vector, gravitino and metric zero mode, respectively. Here α denotes a space-
time EAdS2 index and the norm is taken with appropriate 2d metric contractions.
Multiplying (2.64) by the regularized volume vol(EAdS2) = −πL2/2, we obtain
the number of zero-modes for each two-dimensional field,

nEAdS2
0 = nEAdS2

1/2 = 0 , nEAdS2
1 = −1 , nEAdS2

3/2 = −2 , nEAdS2
2 = −3 ,

(2.65)
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On the Riemann surface, the only zero-mode of the scalar Laplacian is the
constant function.14 For spin-1/2, we must take into account the fact that
there is a non-trivial gauge field along Σg as in (2.62). This implies that the
relevant differential operator acting on spinor fluctuations is the Dirac operator
on the compact Riemann surface twisted by the line bundle L defined by the
gauge connection. Denoting this operator by /∇A, we can make use of the result
of [171] for g > 1,

dimKer /∇A = deg(L) = 2(g− 1) , (2.66)

Thus, the number of zero modes for scalar and spinor fields on the Riemann
surface are

nΣ
0 = 1 , nΣ

1/2 = 2(g− 1) . (2.67)

We will not need the number of zero modes for fields of spin 1 ≤ s ≤ 2 since
they always come tensored with scalar or spinor zero modes on the EAdS2
factor, which as we saw above do not exist.

We can now decompose all 4d fields according to their 2d spins and use the
above results to compute the number of 4d zero modes. The 4d scalar and
spinor fields decompose into combinations of scalars and fermions on EAdS2
and the Riemann surface, so they have no zero modes by (2.65). A vector field
in 4d decomposes into a spin-1 field on EAdS2 and a scalar on Σg, so we have
−1 such zero-modes. A 4d gravitino field decomposes into a combination of
spin-3/2 and spin-1/2 two-dimensional fields, producing a total of −4(g − 1)
gravitino zero-modes in 4d. For the metric, the absence of globally defined
Killing vectors on the Riemann surface of genus g > 1 implies that the 4d mode
decomposes into a combination of metric and scalar modes on the 2d spaces.
Thus,

n4d
0 = n4d

1/2 = 0 , n4d
1 = −1 , n4d

3/2 = −4(g− 1) , n4d
2 = −3 . (2.68)

Observe that the dependence on the genus comes from the fact that the gravitino
is charged under the background gauge field that defines the line bundle L.

The non-local contribution to the logarithmic correction from the above zero
modes is obtained by substituting (2.24) and (2.68) into (2.27). The result is

Cnon-local =
[∑
s=1

(−1)F j
]

+ 4(1− g)
[ ∑
s=3/2

(−1)F (2− j)
]
− 3
[∑
s=2

(−1)F (1− j)
]
,

(2.69)
14This can be shown, for instance, by studying the Laplacian on the upper half-plane and

quotienting by a discrete subgroup of PSL(2,R) to obtain the spectrum on the compact
Riemann surface.
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where the sums run over the massless fields of spin s. The 4d KK supergravity
theories we want to consider do not contain ghost fields of spin s > 1, so that
the last two sums are restricted to the j = 0 sector and have definite fermion
numbers. Gauge-fixing in the spin-2 fluctuation sector requires the introduction
of a pair of vector ghosts (see also Appendix A.2.5). If we assume that this
gauge-fixing is the only source of s = 1 ghosts, the above simplifies to

Cnon-local(EAdS2 × Σg>1) = 8N3/2(g− 1)− 4N2 , (2.70)

where N3/2 and N2 denote the number of massless gravitino and metric
fluctuations in the spectrum. Note that the contribution (2.69) to the
logarithmic correction is always integer, regardless of the KK theory under
consideration. Moreover, it depends on the parameters of the background
geometry only through the genus of the Riemann surface, which arises from
the non-trivial charge of the gravitino fluctuations under the background gauge
field.

Generic zero-modes

The results (2.59) and (2.70) illustrate how the spectral problem of finding
the zero modes of the Q operators depends on the supergravity background.
In particular, when the latter includes a factor of d-dimensional Euclidean
AdS, one can leverage known results in the literature to study the zero
modes. Unfortunately, the task is much more arduous on generic backgrounds.
Nevertheless, our examples make it clear that the non-local contributions to
the logarithmic corrections on a general M4 will always take the form of
pure numbers related to the counting of zero modes and possibly a simple
dependence on discrete parameters of topological origin like the rank of some
fiber bundles. In particular, we do not expect that Cnon-local can depend on
continuous parameters specifying the 4d supergravity background.

Before closing this section, we would like to point out that the discussion above
was focused on the calculation of the Euclidean gravitational path integral
in the so-called grand canonical ensemble of fixed temperature and chemical
potentials. If one is interested in a different thermodynamic ensemble, for
example in order to calculate the entropy of a black hole, an appropriate
Laplace transform according to the standard rules of thermodynamics should
be performed. This change of ensemble can lead to additional contribution to
the logarithmic corrections of the partition function, see [70]. Notably, these
additional terms in the coefficient of the logarithmic correction are always pure
numbers independent of continuous parameters in the supergravity background
of interest.
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2.5 Bootstrapping the local contributions

Following the procedure described in Section 2.4, one can in principle compute
the logarithmic coefficient C in the 4d Euclidean path integral (2.15) around
any asymptotically EAdS4 Einstein-Maxwell background in a given 4d KK
supergravity theory. As we have pointed out, there are a few technical hurdles:

1. Computing the local contribution Clocal for generic Einstein-Maxwell
backgrounds with a non-vanishing graviphoton remains out of reach, since
we have restricted our results in Table 2.2 to pure Einstein backgrounds,
and we therefore do not have access to the b2 coefficient in (2.37) for every
KK supergravity field.

2. While imposing conformal boundary conditions on the metric fluctuations
ensures that the differential operator Qh is elliptic, this choice falls outside
of the class for which explicit surface contributions to the SdW coefficient
are known.

3. Computing the non-local contribution Cnon-local involves a spectral
problem that we cannot solve in general for arbitrary Einstein-Maxwell
backgrounds.

In view of these difficulties, it would seem that a first-principle computation of
C for various 4d supergravity backgrounds still eludes us. However, we will now
leverage holography and explain how the various logarithmic coefficients C on
the field theory side (see Table 2.1) can be used to “bootstrap” the heat kernel
coefficients (aE , c, b1, b2) in the bulk. This will allow us to elegantly circumvent
the first two issues in the above list. The main idea is to study the logarithmic
corrections as a function of various backgrounds supporting arbitrary quadratic
field fluctuations, rather than studying individual fields in the KK spectrum
evolving on a fixed background. Before we illustrate how this procedure works
in detail on several examples, we note that from the expressions for the SdW
coefficient in (2.30) and (2.37), it is clear that the contribution to Clocal from
the aE coefficient comes accompanied by the integrated Euler density

∫
E4.

This integral yields a topological invariant of the 4d Euclidean manifold M
used as a supergravity background, i.e. its Euler characteristic χ(M), and thus
the contribution of aE to Clocal is always a pure number independent of any
continuous parameters that may be present in the supergravity background. As
we show below this general expectation is realized in all examples we study.
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2.5.1 EAdS4

We start with the pure EAdS4 solution to (2.36) given by

ds2 = L2

L2 + r2 dr
2 + r2 dΩ2

3 , A = 0 , (2.71)

where dΩ2
3 is the metric on the round S3 with unit radius. This space is

conformally flat and so has vanishing Weyl tensor. Introducing appropriate
counter-terms, the regularized Euler characteristic and R2 invariant are given
by

χ = 1
32π2

∫
d4x
√
g E4 = 1 , 1

32π2

∫
d4x
√
g R2 = 6 . (2.72)

Thus, we find that an arbitrary fluctuation of a field φ (of general mass and
spin) with corresponding kinetic operator Qφ propagating in this background
produces a bulk contribution to the integrated SdW coefficient (2.37) given by∫

d4x
√
g abulk

4 (Qφ) = 2
[
6 b1(φ)− aE(φ)

]
. (2.73)

Observe that the coefficient of aE equals −2χ with χ given in (2.72). In addition,
the total derivative contribution (2.42) vanishes trivially since the bulk Ricci
scalar is constant and A = 0. It remains to analyze the boundary contributions
(2.33). The extrinsic curvature of EAdS4 in the coordinate system (2.71) reads

Kcd =
√
L2 + r2

b

Lrb
δcd = 1

L
δcd +O(r−2

b ) , (2.74)

where rb is the location of the boundary in the radial direction. This in turn
determines the projectors Π± and S specifying the boundary conditions. Note
that following the discussion in Section 2.4.2, the latter can be parameterized
as S = S′K where the S′ field space matrix is constant. Working in a radial
expansion with a large cutoff rb, we find the following surface contribution to
the integrated SdW coefficient:∫
∂M

d3y
√
γ abdry

4 (Qφ)

= 1
360Tr

[
45L2E(1− 6S′)− 2(Π− − 29Π+) + 1620S′2(1− S′)− 93

] r3
b

L3

+ 1
240Tr

[
15L2E(1− 6S′)− 2(Π− − 29Π+)− 180S′(2− 9S′ + 9S′2)− 31

] rb
L

+O(r−1
b ) ,

(2.75)
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where Π±, S′ and E are all independent of the radial cutoff. This boundary
contribution can be holographically renormalized upon introducing the counter-
term ∫

∂M
d3y
√
γ
(
c1 + c2R

)
, (2.76)

where R denotes the Ricci scalar of the boundary. The constant c1 can be
chosen so as to cancel the cubic divergence in (2.75) while c2 can be tuned
to cancel the linear term. Importantly, this renormalization scheme does not
introduce any constant term on EAdS4. In this way, the boundary contribution
to the SdW coefficient vanishes by holographic renormalization. With this
prescription, the total local contribution (2.26) is

Clocal = 2
∑
φ

(−1)F
[
6 b1(φ)− aE(φ)

]
. (2.77)

Here we have taken the sum of the contributions of all fields propagating in the
background weighted by their fermion number F .

Let us make the following comment on our result. Using the heat kernel
coefficients (aE , b1) given in Table 2.2 and expressing the masses of the bulk
fields in terms of conformal dimensions of the dual operators using Table 2.3,
we find that the summand in (2.77) can be written as

6 b1(φ)−aE(φ) = 2s+ 1
48

[(
∆−3

2

)4
−
(
s+ 1

2

)2(
2
(

∆−3
2

)2
+ 1

6

)
− 7

240

]
, (2.78)

for any bosonic field of spin s ∈ {0, 1, 2}, and as

6 b1(φ)−aE(φ) = 2s+ 1
48

[(
∆− 3

2

)4
−
(
s+ 1

2

)2(
2
(

∆− 3
2

)2
− 1

3

)
+ 1

30

]
, (2.79)

for any fermionic field of spin s ∈ {1/2, 3/2}. In other words, we have

Clocal =
∑
φ

Gs

(
∆− 3

2

)
, (2.80)

where the function Gs is defined by

Gs(x) =


2s+1

24
(
x4 −

(
s+ 1

2
)2(2x2 + 1

6
)
− 7

240
)

s ∈ {0, 1, 2}

− 2s+1
24
(
x4 −

(
s+ 1

2 )2(2x2 − 1
3
)

+ 1
30
)

s ∈ {1/2, 3/2}
. (2.81)

The appearance of this function is not an accident. Rather, as shown in [172,
173, 174], the function Gs is precisely the one that controls the logarithmic
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divergence in the free energy F∆,s of a free field in EAdS4 dual to an operator
of spin s and conformal dimension ∆,

F∆,s = Gs

(
∆− 3

2

)
log(L/ε) + finite , (2.82)

where ε is a UV cutoff. The result (2.82) has been obtained by a direct spectral
analysis on pure Euclidean AdS4, and what we have shown is that our heat
kernel coefficients precisely reproduce the expected logarithmic behavior. Note
that to achieve this agreement, it was crucial to use the precise values of
the aE and b1 coefficients given in Table 2.2, which in particular take into
account the contribution from Stückelberg fields when 1 ≤ s ≤ 2. Therefore,
we can view (2.80) as a non-trivial check of our computations in Appendix A.2.
Moreover, we can now argue on the basis of (2.82) that there cannot be local
contributions to the EAdS4 logarithmic correction due to the oblique nature
of boundary conditions on the metric fluctuations, in agreement with our
assumption at the end of Section 2.4.2.15 In the simple EAdS4 background,
we can therefore address all three points raised at the beginning of the present
section and conclude that the logarithmic correction to the path integral is
entirely controlled by C = Clocal given in (2.77). To compare with the CFT
coefficient C, we still need to explicitly sum over the field content of the relevant
KK supergravity theory and use a suitable regularization. We will discuss this
in Section 2.6, but for the time being we move on to other minimal supergravity
backgrounds.

2.5.2 Euclidean Romans

Next we consider the Euclidean Romans solution to (2.36) given by [175, 176]

ds2 = U(r) dτ2 + dr2

U(r) + r2ds2
Σ , U(r) =

(
r

L
+ κL

2r

)2
− Q2

4r2 ,

dA = Q

2r2 dτ ∧ dr + κL

2 VΣ ,

(2.83)

where κ ∈ {0,±1} is the normalized curvature of the Riemann surface Σ and
Q is a free, continuous parameter. Evaluating the relevant curvature-squared
terms with appropriate counter-terms, we find that the bulk contribution (2.37)

15Recall from (2.59) that the non-local contribution vanishes in the absence of bulk massless
2-forms in the spectrum, which is assumed in deriving (2.82).
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for a field φ of general spin and mass is given by∫
d4x
√
g abulk

4 (Qφ) = − 4(1− g)aE(φ) + 3(|Q|+ κL)2

10πL|Q| vol(Σ) c(φ)

− 3(|Q| − κL)2

2πL|Q| vol(Σ) b1(φ)− 3(Q2 + κ2L2)
4πL|Q| vol(Σ) b2(φ) .

(2.84)

The coefficient of aE equals −2χ where the regularized Euler characteristic is
χ = 2(1− g). We stress that these results are valid for quadratic fluctuations of
an arbitrary field φ around the Romans background. Using the same holographic
renormalization prescription as in the case of pure EAdS4, the total derivative
and boundary contributions to Clocal can be shown to vanish. This implies that
the only contribution to (2.26) reads

Clocal =
∑
φ

(−1)F
∫
d4x
√
g abulk

4 (Qφ) , (2.85)

with the integrated abulk
4 (Qφ) given in (2.84) and the sum is taken over all fields

propagating in the background weighted by their fermion number F .

The 4d Euclidean path integral around the Romans background is holograph-
ically dual to the TTI of the boundary SCFT on S1 × Σg. The logarithmic
coefficient C extracted from the large N limit of the TTI is given in Table 2.1
for various SCFTs, and one readily checks that this coefficient is always a pure
number. On the bulk side, we have argued in Section 2.4.3 that the non-local
contribution to C is a pure number for arbitrary backgrounds. Therefore,
holography dictates that Clocal given in (2.85) should also be a pure number,
and in particular should be independent of the continuous parameter Q of the
background. This requirement then translates into a linear constraint on the
heat kernel coefficients summed over the spectrum,∑

φ

(−1)F
[
2 c(φ)− 10 b1(φ)− 5 b2(φ)

]
= 0 . (2.86)

We stress that this should be true in any four-dimensional KK supergravity
theory whose SCFT dual falls in one of the classes discussed in Table 2.1.
Indeed, this constraint must be statisfied in order to fit the expectations of the
AdS/CFT correspondence at order O(logN) in the large N expansion.

The background (2.83) admits a supersymmetric limit as Q→ 0. For hyperbolic
Riemann surfaces, i.e. for g > 1, the resulting geometry has a Lorentzian
interpretation as a magnetically charged Reissner-Nordström (RN) black hole
in AdS4. In Section 2.6.2 we will comment on the implications of our results for
the thermodynamics of AdS black holes.
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2.5.3 U(1)×U(1) squashing

Another solution to (2.36) we can consider is one where the conformal boundary
is a squashed 3-sphere. A particular squashing that preserves supersymmetry
and a U(1)×U(1) subgroup of the SO(4) isometry group can be obtained in the
bulk by turning on an anti-self-dual graviphoton compared to the pure EAdS4
case. In a convenient coordinate system, this squashed background takes the
form [177]

ds2 = f1(x, y)2 dx2 + f2(x, y)2 dy2 + L2 (x2 − 1)(y2 − 1)
s2 − 1 dφ2

1 + L2 (s2 − x2)(y2 − s2)
s2(s2 − 1) dφ2

2 ,

A = L

2(x+ y)

(
s2 + xy

s dφ2 − (1 + xy) dφ1

)
, (2.87)

where the squashing parameter is s (not to be confused with the spin s of a
field), and

f1(x, y)2 = L2 y2 − x2

(x2 − 1)(s2 − x2) , f2(x, y)2 = L2 y2 − x2

(y2 − 1)(y2 − s2) . (2.88)

Computing the relevant curvature invariants, we obtain the bulk contribution∫
d4x
√
g abulk

4 (Qφ) = 2
[
6 b1(φ)− aE(φ)

]
− 3(s− 1)2

2 s b2(φ) , (2.89)

for any field φ of general mass and spin propagating on this background. Again,
the coefficient of aE in this expression is minus twice the Euler characteristic
of the squashed background, which is topologically indistinguishable from the
pure EAdS4 geometry.

When s = 1, we recover the result for pure EAdS4 with a round 3-sphere
boundary. In addition, our renormalization prescription ensures that there are
no other contributions to Clocal besides (2.89). Following the logic described
in the previous subsection, AdS/CFT requires that the above integrated SdW
coefficient be independent of the squashing parameter after summing over all
fields in the spectrum.16 This immediately imposes∑

φ

(−1)F b2(φ) = 0 , (2.90)

16The universal CFT coefficient C in Table 2.1 has been obtained analytically in the large
N limit of the squashed 3-sphere partition function for s = 1 [80, 81] and s = 3 [138], and
conjectured for a generic squashing parameter in [140, 142]. One-loop calculations in the
dual 11d backgrounds, however, make the universality of the logarithmic coefficient clear for
any value of s, since in this approach the logarithmic coefficient is entirely controlled by the
number of 11d zero-modes [71] that should not depend on any continuous parameter.
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which shows that while we do not have access to the b2 coefficient for a given
field in general, universality of the logarithmic correction and holography imply
a strong constraint on the total contribution after summing over the spectrum.
This addresses the first point raised at the beginning of this section, at least
partially. We can combine the above constraint with (2.86) to obtain a more
stringent relation among the remaining heat kernel coefficients,∑

φ

(−1)F
[
c(φ)− 5 b1(φ)

]
= 0 . (2.91)

2.5.4 SU(2)×U(1) squashing

We now consider another supersymmetric bulk solution whose conformal
boundary is a squashed 3-sphere, with the squashing preserving an SU(2)×U(1)
isometry. The minimal supergravity background is given by [178]

ds2 = r2 − s2

Ω(r) dr2 + (r2 − s2)(σ2
1 + σ2

2) + 4s2Ω(r)
r2 − s2 σ2

3 ,

A = sσ3
r − s
r + s

√
4s2

L2 − 1 ,

(2.92)

where
Ω(r) = (r − s)2

(
1 + (r − s)(r + 3s)

L2

)
, (2.93)

σi are the SU(2) left-invariant one-forms, and s is the squashing parameter. We
can proceed as before and compute the renormalized bulk contribution (2.37)
which now takes the form∫

d4x
√
g abulk

4 (Qφ) = − 2 aE(φ) + 2(L2 − 4s2)2

L4 c(φ)

+ 96s2(L2 − 2s2)
L4 b1(φ) + 24s2(L2 − 4s2)

L4 b2(φ) ,
(2.94)

and the surface terms again vanish by holographic renormalization. Since the
logarithmic term in the dual squashed sphere partition function is independent
of the squashing parameter, we can apply the same logic as before and deduce
that AdS/CFT imposes a new constraint on heat kernel coefficients summed
over the spectrum. Together with the previous constraints (2.86) and (2.91),
we arrive at the final conclusion that∑

φ

(−1)F c(φ) =
∑
φ

(−1)F b1(φ) =
∑
φ

(−1)F b2(φ) = 0 . (2.95)
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In other words, the universal character of the logarithmic corrections to the
large N limit of SCFT partition functions imposes, via holography, that the
sum of the heat kernel coefficients (c, b1, b2) over the spectrum of the theory
should vanish. This must be true regardless of the particular field content of
the 4d KK supergravity theory under consideration. As we will see below, these
constraints have important consequences. Recall also that the aE coefficient
is not subject to any constraint since the Euler characteristic χ(M) cannot
depend on continuous parameters.

2.5.5 AdS-Taub-NUT

The bootstrap result (2.95) is obtained by studying the Euclidean path integrals
around three distinct supersymmetric backgrounds holographically dual to 3d
N = 2 SCFT partition functions whose logarithmic coefficients have been argued
to be pure numbers by supersymmetric localization and the index theorem.
As we discuss in Section 2.7, one can derive similar constraints on heat kernel
coefficients without the need to assume N = 2 supersymmetry. To illustrate
this point we now consider two different non-BPS supergravity backgrounds.

As a first example, we study the following Euclidean AdS-Taub-NUT
background [179]

ds2 = 4n2V (r)σ2
3 + V (r)−1dr2 + (r2 − n2)(σ2

1 + σ2
2) , (2.96)

where
V (r) = r2 + n2 − 2mr + L−2(r4 − 6n2r2 − 3n4)

r2 − n2 . (2.97)

The above metric solves the Einstein equations in (2.36) with a vanishing
Maxwell field, and the solution fully breaks supersymmetry. The mass parameter
m is related to the NUT charge n as

m = n− 4n3

L2 , (2.98)

and the boundary at r →∞ is a squashed 3-sphere with metric

ds2
∞ = r2

(
σ2

1 + σ2
2 + 1

1 + sσ
2
3

)
. (2.99)

The squashing parameter is related to the NUT charge as

n = L

2
√

1 + s
. (2.100)
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With this at hand, we compute the bulk part of the integrated fourth SdW
coefficient:∫

d4x
√
g abulk

4 (Qφ) = 8√
1 + s

[
6 b1(φ)− aE(φ)

] r3
b

L3 −
6

(1 + s)3/2

[
6 b1(φ)− aE(φ)

] rb
L

+ 2
(1 + s)2

[
6 b1(φ)− (1 + s2) aE(φ) + s2 c(φ)

]
(2.101)

+O(r−1
b ) ,

where we have introduced a boundary cut-off rb. Using the counter-term (2.76),
the divergent terms above and the surface part of the integrated SdW coefficient
can both be holographically renormalized away, and we find that the local
contribution to the logarithmic correction fo the AdS-Taub-NUT free energy
F (s) is given by

Clocal(s) = −2
∑
φ

(−1)F
[
aE(φ)− 1

(1 + s)2

(
s2c(φ)+6(1+2s) b1(φ)

)]
, (2.102)

where as usual we need to add up the heat kernel coefficients of all bulk fields
in the gravitational effective theory. In addition, we do not expect the non-local
contribution to depend on the squashing parameter since they arise from zero
modes. The correction (2.102) translates into a logarithmic correction to the
stress tensor two-point function coefficient CT in the boundary CFT via the
relation [180]

CT = −48
π2 ∂

2
sF (s)

∣∣
s=0 . (2.103)

Using the above, we thus find that CT generically contains a term

CT 3
192
π2

∑
φ

(−1)F
[
6 b1(φ)− c(φ)

]
logN . (2.104)

If we now assume that the stress tensor two-point function coefficient in any
holographic CFT does not contain a logarithmic term in its large N expansion,
we arrive at the bootstrap constraint∑

φ

(−1)F
[
6 b1(φ)− c(φ)

]
= 0 . (2.105)

This is compatible with our previous results using supersymmetric backgrounds
and SCFT observables. We will discuss our assumption about the absence of
log terms in CT and further implications of this result in Section 2.7.
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2.5.6 Kerr-Newman

Lastly, we come to the Euclidean incarnation of the 4d electric Kerr-Newman
(KN) black hole solution in AdS. The metric and Maxwell field take the form [181,
182, 183]

ds2 = ∆r

V

(
dτ + α

Ξ sin2 θdφ
)2

+ V

(
dr2

∆r
+ dθ2

∆θ

)
+ ∆θ sin2 θ

V

(
αdτ − r̃2 − α2

Ξ dφ

)2

,

A = im sinh(2δ) r̃
V

(
dτ + α

Ξ sin2 θdφ
)
, (2.106)

where

r̃ = r + 2m sinh2 δ , Ξ = 1 + α2

L2 , V = r̃2 − α2 cos2 θ ,

∆r = r2 − α2 − 2mr + r̃2

L2 (r̃2 − α2) , ∆θ = 1 + α2

L2 cos2 θ .

(2.107)

The parameters (m,α, δ) are related to the energy, angular momentum and
electric charge of the solution. After a lengthy computation, we find that the
bulk contribution to the integrated SdW coefficient can be holographically
renormalized to give∫

d4x
√
g abulk

4 (Qφ) = − 4 aE(φ) + f1(m,α, δ) c(φ)

+ f2(m,α, δ) b1(φ) + f3(m,α, δ) b2(φ) ,
(2.108)

where the various functions on the right-hand side are given by

f1 = βm2

2πα5Ξ

{
3m2c4s4

r̃4
+

(α4 − r̃4
+) log

( r̃+ + α

r̃+ − α

)
−

16α5mc2s2(c2 + s2)r̃3
+(3r̃2

+ + α2)
r̃3
+(r̃2

+ − α2)3

+
2α(m2c4s4(3r̃8

+ − 8α6r̃2
+ + 42α4r̃4

+ − 8α2r̃6
+ + 3α8) + 4α4(c2 + s2)2r̃4

+(r̃2
+ + α2))

r̃3
+(r̃2

+ − α2)3

}
,

f2 = 12β
πL4Ξ

(
α2r̃+ − r̃3

+ +mL2(c2 + s2)
)
,

f3 = 24βm2c2s2r̃+

πΞ(r̃2
+ − α2) . (2.109)
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In these expressions we have used the shorthand s = sinh δ and c = cosh δ. The
quantity r̃+ = r+ + 2m sinh2 δ is given in (2.107) with r+ being the largest
real root of ∆r(r+) = 0, and β is the periodicity of the Euclidean time circle.
Regularity of the solution at r = r+ fixes the value of β in terms of the solution
parameters as

β = 4π(r̃2 − α2)
[d∆r

dr

]−1∣∣∣
r=r+

. (2.110)

The mass parameter m can also be related to the value of the radial coordinate
r+ at which the τ circle shrinks to zero size, see e.g. [183].

Some interesting special cases can be studied from the above general expressions.
First, if we set

α = iL
(
coth(2δ)− 1

)
, (2.111)

the solution (2.106) preserves two real supercharges. In this supersymmetric
limit, it is not hard to see from (2.109) that the bulk contribution to the
integrated SdW coefficient will in general depend on the value of the continuous
parameter δ. The holographically dual description of this gravitational solution is
in terms of the superconformal index of the dual SCFT, i.e. the supersymmetric
partition function on S1 ×ω S2 with the angular fugacity ω related to δ. As
summarized in Table 2.1, the logarithmic contribution to the superconformal
index is independent of ω and therefore Clocal should not depend on δ. This in
turn leads to the following constraints for the total values of the heat kernel
coefficients for fields propagating on the AdS-KN background∑

φ

(−1)F c(φ) =
∑
φ

(−1)F b1(φ) =
∑
φ

(−1)F b2(φ) = 0 . (2.112)

This confirms the result we have obtained previously in (2.95). We can also
consider the non-BPS limit of vanishing electric charge δ → 0 in which case the
above solution reduces to the Euclidean version of the AdS-Kerr black hole. In
this limit,

f1(m,α, 0) =
β(r2

+ + L2)2(r2
+ + α2)

πL4Ξ r+(r2
+ − α2) ,

f2(m,α, 0) = −
6β(r2

+ − L2)(r2
+ − α2)

πL4Ξ r+
,

f3(m,α, 0) = 0 .

(2.113)

The AdS-Kerr solution is holographically dual to the grand canonical thermal
partition function of a CFT placed on S1

β × S2, where the circle has size β
which sets the (inverse) temperature. This QFT observable can be studied in a
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saddle-point approximation which defines the so-called thermal effective action
of the theory, see [184]. The thermal effective action of a given holographic
CFT may contain a logarithmic term in the large N limit. If we assume that
the coefficient of this logN term does not depend on the temperature or the
spin fugacity, then by our general reasoning the dependence of Clocal on the
dual continuous parameters arising from (2.113) can only be suppressed if we
impose ∑

φ

(−1)F c(φ) =
∑
φ

(−1)F b1(φ) = 0 . (2.114)

This example illustrates how the strong constraints on the spectrum of the
gravitational theory we have obtained are not necessarily a consequence of
supersymmetry. Rather, they can be implied more generally by the topological
nature of logarithmic terms in the large N limit of holographic CFT observables.
We are not aware of a general proof that the logN term in the thermal effective
action of any holographic CFT cannot depend on chemical potentials, so our
statements in the non-supersymmetric setting are weaker than the ones we
made using supersymmetric observables. It would be very interesting to sharpen
these statements using QFT arguments.

2.6 Explicit KK supergravity examples

We have just learned that AdS/CFT dictates that the sum over the spectrum
of individual heat kernel coefficients (c, b1, b2) must vanish as in (2.95). In
this section, we will explicitly check this property by studying the logarithmic
coefficient C in the semi-classical expansion of the 4d Euclidean path integral
(2.15) in certain supergravity theories for which the KK spectrum is known.
We will focus in the present section on supergravity theories with at least
N = 2 supersymmetry. Generically, supersymmetry requires the presence of
non-minimal couplings that enter the quadratic expansion of the action around
an arbitrary background. Thus, it would seem that we cannot make use of the
results we have obtained in Table 2.2 for minimally coupled fields. However, we
can adapt a useful trick put forward in [68] in the context of asymptotically flat
space-times to the AdS setting. Rather than repeating the trace computations
in Appendix A.2 with non-minimal couplings, we will instead supersymmetrize
the Clocal term (2.26) directly. To do so, we use the results of [67] to relate
the four-derivative invariants controlling the fourth SdW coefficient. On any
background of N = 2 minimal supergravity, this relation reads

W 2|N=2 = E4 + 4
L2

[
R+ 6

L2 − FµνF
µν
]
, (2.115)
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modulo terms that vanish using the equations of motion (2.36). Here the
subscript on the left-hand side denotes the supersymmetrization of the Weyl-
squared density (2.34), see [67] for the explicit expression. The relation (2.115)
implies that the bulk part of the fourth SdW coefficient (2.37) in all theories that
can be expressed in an N = 2 language is straightforwardly supersymmetrized:

(4π)2abulk
4 |N≥2 = (c− aE)E4 +

(
b1 −

c

6

)
R2 +

(
b2 + c

3

)
RFµνF

µν . (2.116)

Since all non-minimal couplings required by supersymmetry have been taken into
account in this formula, we can use the minimally coupled results of Table 2.2 to
infer the value of the heat kernel coefficients (aE , c, b1)|N≥2 in supersymmetric
theories,

aE |N≥2 = aE − c , c|N≥2 = 0 , b1|N≥2 = b1 −
c

6 . (2.117)

In the rest of this chapter, we will systematically compute heat kernel coefficients
as if all fields were minimally coupled according to Table 2.2, and only restore
the effect of non-minimal couplings using (2.117) when necessary. We also note
that if a particular spectrum produces a vanishing total

∑
φ(−1)F c(φ) = 0, the

relation (2.117) immediately shows that N ≥ 2 non-minimal couplings have no
bearing on the other heat kernel coefficients. We will make extensive use of this
fact below when studying specific KK spectra.

2.6.1 KK supergravity on S7

As a first example, we consider the simple case of eleven-dimensional supergravity
compactified on the round S7. Since the length scales of the internal and external
spaces are of the same order, this compactification gives rise to maximal gauged
supergravity in 4d along with an infinite KK tower of massive fields. All fields
can be arranged into 4d N = 8 supermultiplets, and the complete spectrum was
obtained long ago in [185, 186, 187, 188, 99]. In what follows, we will denote the
SO(8) R-symmetry representations by their Dynkin labels (α1, α2, α3, α4) and
follow the convention of Appendix A in [189] for the SO(8) triality frame. The
massless and massive field content of the KK supergravity theory is indexed by
a single positive integer k that labels the KK level and also controls the mass
of the field. The spectrum is summarized in Table 2.4 and Table 2.5.

To compute the logarithmic correction to the path integral around a given 4d
backgroundM in this KK theory, we use the general formulae of Section 2.4.
The local contribution (2.26) is controlled by the SdW coefficient, which receives
a bulk contribution of the form (2.37). In Appendix A.4.1, we explain how
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spin SO(8) irrep Dynkin label ∆
2 1 (0, 0, 0, 0) 3
3/2 8s (0, 0, 0, 1) 5

2

1 28 (0, 1, 0, 0) 2
1/2 56s (1, 0, 1, 0) 3

2

0+ 35v (2, 0, 0, 0) 1
0− 35c (0, 0, 2, 0) 2

Table 2.4: The massless N = 8 supermultiplet.

spin Dynkin label ∆
2 (k, 0, 0, 0)k≥0 3 + k

2

3/2
(k, 0, 0, 1)k≥0

5
2 + k

2
(k − 1, 0, 1, 0)k≥1

7
2 + k

2

1
(k, 1, 0, 0)k≥0 2 + k

2
(k − 1, 0, 1, 1)k≥1 3 + k

2
(k − 2, 1, 0, 0)k≥2 4 + k

2

1/2

(k + 1, 0, 1, 0)k≥0
3
2 + k

2
(k − 1, 1, 1, 0)k≥1

5
2 + k

2
(k − 2, 1, 0, 1)k≥2

7
2 + k

2
(k − 2, 0, 0, 1)k≥2

9
2 + k

2

0+

(k + 2, 0, 0, 0)k≥0 1 + k
2

(k − 2, 2, 0, 0)k≥2 3 + k
2

(k − 2, 0, 0, 0)k≥2 5 + k
2

0−
(k, 0, 2, 0)k≥0 2 + k

2
(k − 2, 0, 0, 2)k≥2 4 + k

2

Table 2.5: Massive N = 8 supermultiplets at KK level k. For k = 0 we recover
Table 2.4.

to compute the heat kernel coefficients (aE , c, b1) by combining the results
summarized in Table 2.2 together with the KK spectrum given in Tables 2.4
and 2.5. For the c and b1 coefficients, we find a non-trivial cancellation “level-



EXPLICIT KK SUPERGRAVITY EXAMPLES 69

by-level”,17

c(k) = 0 , b1(k) = 0 , ∀ k ≥ 0 . (2.118)
Since the sum over the spectrum reduces in this simple case to a sum over the
KK level k, we obtain

ctot ≡
∑
k≥0

(−1)F c(k) = 0 , and btot
1 ≡

∑
k≥0

(−1)F b1(k) = 0 . (2.119)

Since ctot vanishes, (2.117) implies that the vanishing of btot
1 also holds for non-

minimally coupled fields around any backgroundM. Likewise, the vanishing
of
∑
k(−1)F c(k)|N=8 automatically follows from (2.117). These results are

in perfect agreement with the bootstrap constraints in (2.95) applied to KK
supergravity on the 7-sphere. Having knowledge of the full spectrum also allows
us to compute the aE coefficient, for which no such level-by-level cancellation
occurs. Instead we find that its contribution to Clocal is given by

− 1
72 χ(M)

∑
k≥0

(k + 1)(k + 2)(k + 3)2(k + 4)(k + 5) , (2.120)

where χ(M) is the regularized Euler characteristic of the 4d background. For a
generic backgroundM, another contribution to Clocal is of the form

1
16π2

(∫
M
d4x
√
g RFµνF

µν
)
btot
2 , (2.121)

where btot
2 =

∑
k(−1)F b2(k), but this term vanishes according to (2.95). Lastly,

the local part of the logarithmic correction also receives contributions from
surface terms in the expression of the SdW coefficient (2.30). Since these cannot
be written compactly for generic backgrounds and boundary conditions, we
generically denote them by S(M) after summing over the spectrum. With this
notation, the full local contribution is

Clocal(M) = S(M)− 1
72 χ(M)

∑
k≥0

(k+1)(k+2)(k+3)2(k+4)(k+5) . (2.122)

Clearly this expression contains divergent sums that need to be appropriately
regularized. Before doing so, we recall that yet another contribution to the
logarithmic term is given by Cnon-local in (2.27). As discussed in Section 2.4.3,
the corresponding spectral problem for generic backgroundsM remains out of
reach at present. So from now on, we will focus on specific backgrounds of the
S7 KK supergravity theory where we can make progress.

17This result is reminiscent of the level-by-level cancellation in the one-loop beta function
of N = 8 gauged supergravity observed in [190].
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An interesting (and tractable) case is to come back to the situation whereM is
pure EAdS4. There, we argued in Section 2.5 that the surface terms could be
holographically renormalized away prior to summing over the spectrum of the
KK theory. As a result, we have S(EAdS4) = 0. In addition, the KK spectrum
does not include any 2-form fields, which by (2.59) implies that the non-local
contribution vanishes. In total, we arrive at the logarithmic correction to the
path integral

C(EAdS4) = − 1
72
∑
k≥0

(k + 1)(k + 2)(k + 3)2(k + 4)(k + 5) , (2.123)

where we have used that χ(EAdS4) = 1. Note that we could have arrived at
this result starting from (2.80) and explicitly implementing the sum over the
spectrum by keeping track of the dimensions of the SO(8) representations and the
conformal dimensions of the dual operators at a given KK level. Indeed, (2.123)
is compatible with [172, 173, 174].

What remains is to discuss a possible regularization of the infinite series. For
instance, the method used in [173] consists of introducing a zk regulator to the
summand with |z| < 1 and defining the regularized series as the finite term in
the expansion around z = 1. This attaches the value

C(EAdS4) ?= 0 , (2.124)

to the logarithmic coefficient in the one-loop EAdS4 free energy. In Appendix A.5,
we present two other methods based on zeta-function regularization that yield
the same result. However, (2.124) should give us pause. Indeed, if correct,
we are then forced to conclude that the bulk computation of the logarithmic
coefficient cannot possibly agree with the holographically dual ABJM result

C(S3
b=1) = −1

4 , (2.125)

given in Table 2.1. At this stage, it seems that there are a couple of possible
resolutions for this discrepancy. Recall that in 11d supergravity on EAdS4 ×
S7 [71], the logarithmic term comes entirely from the zero mode of the 2-form
ghost required to quantize the 3-form potential of the theory. After dimensional
reduction, we have insisted that the KK supergravity fields arrange themselves
into N = 8 multiplets that do not accommodate 2-form fields. As a result, the
non-local contribution in the 4d theory vanishes on EAdS4 according to (2.59).
To remedy this, we could opt to dualize some (or all) of the massless scalars in
the KK theory to 2-forms and hope to obtain a non-zero contribution to the
Cnon-local part of the logarithmic correction. While this change of duality frame
explicitly breaks the N = 8 multiplet structure, it may be necessary to obtain a
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match between bulk and boundary contributions at the one-loop level. However,
a short computation shows that this cannot resolve the discrepancy. The heat
kernel coefficient aE for fluctuations of a massless 2-form can be obtained by
the same trace computations that led to the results in Table 2.2. It was shown
in [191] that there is a simple relation between the aE coefficient for a massless
scalar field and a massless 2-form,

aE(2-form) = aE(scalar)− 1
2 . (2.126)

This shows that dualizing q scalar fields into 2-forms shifts the local contribution
to the logarithmic coefficient as

Clocal −→ Clocal + q . (2.127)

On the other hand, the non-local contribution also acquire a shift after dualizing,

Cnon-local −→ Cnon-local − q , (2.128)

where we have used (2.59) with j = 0. In this case, the two shifts precisely cancel
and we see that the total logarithmic coefficient C(EAdS4) does not depend
on the duality frame. This shows that dualizing massless fields cannot help in
resolving the discrepancy between bulk and boundary computations. A second
possible resolution of the tension between (2.124) and (2.125) would be to find a
regularization scheme that yields a non-zero result for the total

∑
k(−1)FaE(k)

contribution to Clocal. Although we have discussed three distinct methods to
regularize the series and arrive at a vanishing result, it is interesting to note
that the regularization∑

k≥0
(k + 1)(k + 2)(k + 3)2(k + 4)(k + 5) = 24 , (2.129)

is compatible with AdS/CFT expectations. Indeed, this would imply

C(EAdS4) = −1
3 , (2.130)

which together with the holographic dictionary for class I SCFTs (2.16),
L2/GN ∼ N

3
2 , precisely matches (2.125). Unfortunately, we are not aware

of a rigorous way to arrive at the result (2.129). If it does exist, it will
be interesting to understand why holography seems to favor this putative
regularization method over the ones regularizing the infinite sum to zero.

We can provide arguments in favor of the regularization (2.129) by considering
supergravity backgroundsM that are not pure EAdS4. For the 4d background
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whose conformal boundary is the U(1)×U(1) squashed 3-sphere, we have also
explained previously how the surface terms can be renormalized away. The Euler
characteristic of this background is the same as pure EAdS4 since χ cannot
depend on the squashing parameter, and therefore (2.129) implies that the
Euclidean path integral around the squashed background contains a logarithmic
term − 1

4 logN , again in agreement with the ABJM results in Table 2.1.

Let us also consider the EAdS2×Σg near-horizon region of the Romans solution
with genus g > 1. As we have explained in Section 2.5.2 the surface term can be
holographically renormalized to zero. In addition, we have χ(EAdS2 × Σg) =
2(1− g) and putting this together with the non-local contribution in (2.70), we
obtain

C(EAdS2×Σg) = (g− 1)
[
64 + 1

36
∑
k≥0

(k+ 1)(k+ 2)(k+ 3)2(k+ 4)(k+ 5)
]
− 4 .

(2.131)
Regardless of the regularization chosen for the infinite series, this cannot match
the logarithmic coefficient in the TTI of the boundary theory given in Table 2.1,

C(S1 × Σg) = 1
2(g− 1) . (2.132)

However, the comparison in this case is more subtle since there could be degrees
of freedom localized outside the near-horizon region of the Romans solution
that contribute to the logarithmic term seen from the asymptotic boundary. In
fact, it was argued in [72] that taking into account the full Romans geometry
modifies the zero-mode counting in a drastic way compared to Section 2.4.3. In
particular, they argued that on the full geometry,

Cnon-local(Romans) = 2(1− g)
∑

massless 2-form
(−1)F (−j − 1) . (2.133)

In the absence of two-forms in the spectrum, we therefore find

C(Romans) = 2
3(g− 1) , (2.134)

after using (2.129). With the holographic dictionary relevant for M2-branes,
this again perfectly matches (2.132) found in the ABJM TTI.

One last example we can consider is the supersymmetric AdS-KN background
holographically dual to the SCI of the boundary theory. Because we can again set
S(KN) = 0 using holographic renormalization, combining χ(KN) = 2 together
with the regularization (2.129) yields

C(KN) = −2
3 + Cnon-local(KN) . (2.135)
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For this to match the ABJM result

C(S1 ×ω S2) = −1
2 , (2.136)

upon using L2/GN ∼ N
3
2 , the zero-modes of various Laplacian operators on

the AdS-KN background must be such that the non-local contribution (2.27)
vanishes. This is a highly non-trivial prediction for the spectral problem of
Laplace-type differential operators on this complicated background.

2.6.2 A conjecture for C and black hole entropy

At this stage, we assume that the regularization (2.129) can be made rigorous
and we will use it to predict the logarithmic correction of general 4d backgrounds.
For this, we observe that in all bulk geometries holographically dual to the
squashed 3-sphere, TTI and SCI observables of the ABJM theory, the non-local
contribution vanishes and the logarithmic term comes entirely from the heat
kernel coefficient atot

E after summing over the spectrum. The situation should
be contrasted with the 11d computations in [71, 72] where the coefficient of the
log correction can only come from zero modes since the heat kernel vanishes
in odd dimensions. We now would like to conjecture that, in all minimal
gauged supergravity background that are relevant for AdS4/CFT3, a non-local
contribution to C can only arise from the presence of massless 2-forms in the
spectrum of the theory. In KK supergravity on S7, maximal supersymmetry in
4d does not accommodate such 2-forms (in a duality frame where we keep all 70
massless scalars), which then becomes the reason behind the fact that Cnon-local
vanishes. This conjecture is certainly compatible with (2.59) and (2.133), and
it would be most interesting to derive similar formulae for other asymptotically
locally AdS4 backgrounds.

Assuming that the general picture holds, we can go ahead and compute the
logarithmic correction in the Euclidean path integral around any S7 KK
supergravity backgroundM. The result for C takes a very simple form:

C(M) = −1
3 χ(M) , (2.137)

where we have also assumed that the boundary contribution S(M) can be set
to zero using holographic renormalization onM with the counter-term (2.76).
Recall that this was checked explicitly for all backgrounds of Section 2.5. We
note that (2.137) takes the same functional form as the one derived in [76] based
on 4d N = 2 gauged supergravity localization. In that work, the specific field
content of the theory was left arbitrary and the dependence of the logarithmic
correction on the Euler characteristic ofM was derived using an index theorem.
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In this framework, each multiplet of the 4d N = 2 theory contributes a fixed
amount to C, and that amount was computed for vector and hypermultiplets
in [76]. However, the contribution from the graviton and KK multiplets was left
unspecified. Our heat kernel result (2.137) effectively resums these contributions
in the case of KK supergravity on S7. Moreover, it predicts a logN term in
the large N limit of the dual ABJM free energy on ∂M with a coefficient

C(∂M) = −1
4 χ(M) . (2.138)

This holographic formula agrees with the SCFT results in Table 2.1 but is
also valid regardless of the amount of supersymmetry, so that we can use it to
make predictions for non-BPS backgrounds with interesting CFT duals. One
such example is the AdS-Taub-NUT solution discussed in Section 2.5.5. We
have already shown in (2.118) that ctot = btot

1 = 0 in KK supergravity on
S7. According to (2.104), this implies that there is no logarithmic term in
the large N expansion of the stress tensor two-point function coefficient CT in
ABJM theory. This is in agreement with our general formula (2.138), since the
Euler characteristic of AdS-Taub-NUT is a constant equal to one, and taking
derivatives with respect to the squashing parameter or the NUT charge as
in (2.103) trivially gives zero.

Another non-BPS background we can consider is the so-called AdS soliton [192].
The Euclidean metric reads

ds2 = r2

L2

[(
1− r3

0
r3

)
dτ2 + dx2 + dy2

]
+ L2

r2

(
1− r3

0
r3

)−1
dr2 , (2.139)

and the asymptotic boundary at r →∞ is the three-manifold S1
β×R2. Here the

inverse temperature β is related to the parameter r0 by demanding absence of
conical singularity in the bulk, which leads to r0 = 4πL2/3β. When the ABJM
theory is put on this thermal background, the free energy computes the one-point
function of the stress tensor which is non-vanishing since conformal invariance
is broken by the finite temperature.18 Using (2.139), it is straightforward to
show that the Euler characteristic of the AdS soliton vanishes. Thus, by (2.138),
we predict that the large N expansion of the stress tensor one-point function
coefficient does not contain a logN term,

C(S1
β × R2) = 0 . (2.140)

To derive this result from a QFT analysis seems arduous, because it pertains to
strongly-coupled theories at finite temperature. Our holographic formula (2.138)

18For a review of thermal observables in CFT see [193], and for a discussion of higher-
derivative effects in the stress tensor one-point function for general N = 2 holographic CFTs
see [194].
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elegantly sidesteps this difficulty and allows us to make a strong prediction.

In light of (2.137), it is also instructive to consider non-BPS asymptotically
AdS black hole backgrounds embedded in 11d supergravity on S7. The simplest
such example is the Euclidean AdS-Schwarzschild solution

ds2 =
( r2

L2 + 1− m

r

)
dτ2 +

( r2

L2 + 1− m

r

)−1
dr2 + r2dΩ2

2 . (2.141)

The location of the outer horizon r+ is related to the mass parameter as m =
r+(r2

+/L
2 + 1). The regularized Euler characteristic is given by χ(AdS-Sch) = 2

which, by (2.137), implies that the logarithm of the Euclidean path integral in
the semi-classical expansion contains a logL term:

I = I0 + 1
3 log

(
L2/GN

)
+O(1) . (2.142)

Here I0 is the classical on-shell action of the solution. We can now make use of
the quantum statistical relation [4, 195]

I = βM − S , (2.143)

to find that the AdS-Schwarzschild black hole entropy receives a logarithmic
correction at one-loop

SAdS-Sch = AH

4GN
− 1

3 log(AH/GN ) +O(1) , (2.144)

with AH = 4πr2
+ the horizon area. To obtain this result, we have assumed that

we have a large black hole in AdS, i.e. the length scale r+ that sets the size of
the black hole horizon is comparable to the AdS scale L. In the logarithmic
term, this means we can trade L2 ∼ r2

+ up to O(1) terms.

Using the same approach we can also calculate the correction to the entropy
and on-shell action of the general Kerr-Newmann black hole in AdS4 presented
in Section 2.5.6. The quantum statistical relation in this case reads

I = βM − S − βΦQ− βωJ , (2.145)

where Q and J are the electric charge and angular momentum and Φ and ω
are the corresponding electric chemical potential and angular velocity. The
logarithmic correction to the on-shell action takes the same form as in (2.142)
and since the black hole background is not changed when computing this
correction, we conclude that the Bekenstein-Hawking entropy of the AdS-KN
black hole is corrected as follows

SAdS-KN = AH

4GN
− 1

3 log(AH/GN ) +O(1) . (2.146)
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The explicit expressions for the regularized on-shell action I0 and the horizon
area AH, as well as those for the black hole charges and fugacities, are quite
lengthy and can be found in [183, 67]. Importantly this result for the logarithmic
correction to the AdS-KN entropy is valid in a thermodynamic ensemble of fixed
(T,Φ, ω) since this is the natural ensemble used in the evaluation of the on-shell
action. One is of course free to change to a different thermodynamic ensemble
by employing a suitable Legendre transformation. However, as emphasized
by Sen [70], upon such a change in ensemble one should carefully track how
the black hole charges and fugacities scale with the large parameter in the
theory that controls the logarithmic corrections, i.e. the rank N of the gauge
group in our M-theory examples, since this could lead to additional (constant)
contributions to the logarithmic coefficient.

Finally, we note that the AdS-KN black hole admits a supersymmetric limit as
discussed in Section 2.5.6. By taking the Q→ 0 limit of the Romans solution
presented in Section 2.5.2 with g > 1, we can also study the supersymmetric
AdS-Reissner-Nordström (AdS-RN) black hole. In both of these examples we
find that the supersymmetric black hole entropy receives the same type of
logarithmic correction as in (2.146), i.e. −χ6 log(AH/GN ). For theories arising
from M2-branes this can be compared to the logarithmic corrections in the large
N limit of the superconformal index (for AdS-KN) or the topologically twisted
index (for AdS-RN). Comparing the supergravity logarithmic corrections to
the corresponding logN entries for the S1 ×ω S2 and S1 × Σg path integrals
in Table 2.1, we indeed find perfect agreement. This constitutes an important
precision test of the microscopic counting of supersymmetric black hole entropy
in AdS4 using our 4d supergravity approach.

2.6.3 Other KK supergravity examples

We now proceed with examples of KK compactifications of 11d supergravity
to four dimensions with less supersymmetry. We focus on three examples for
which the KK spectrum is known in detail and comment on a fourth example
that illustrates some challenges and subtleties.

KK supergravity on S7/Zk

The KK supergravity spectrum of the AdS4×S7/Zk 11d supergravity solution19

can be obtained by branching the N = 8 KK spectrum labeled by so(8)
representations into the N = 6 KK spectrum labeled by the so(6) ⊕ u(1)

19We caution the reader that here k refers to the order of the orbifold and should not be
confused with the label of the KK level in the previous section.
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representations and keeping the supermultiplets with vanishing U(1) charges
modulo k only [173]. In Appendix A.4.2 we present the resulting N = 6 KK
spectrum following this procedure, and then evaluate the heat kernel coefficients.
The KK level is now labelled by two integers h and r that satisfy h− |r| ≥ 0
and k | 2r. We again find a non-trivial cancellation level-by-level for the c and
b1 coefficients, which immediately leads to

ctot = btot
1 = 0 . (2.147)

This provides another non-trivial test of our bootstrap results in Section 2.5.
The total aE coefficient is obtained as the following sum over the spectrum,

atot
E =

∞∑
h=1

1 + 2h
24

bh/k′c∑
`=−bh/k′c

[
h(1+h)(−4+5h+5h2)+(7−10h−10h2)(`k′)2+5(`k′)4

]
,

(2.148)
where we have defined k′ as

k′ =
{
k/2 for k ∈ 2Z
k for k ∈ 2Z + 1

, (2.149)

and imposed the constraints h− |r| ≥ 0 and k | 2r to translate the sum over r
to a finite sum over an auxiliary label `. Computing this finite sum explicitly,
we obtain:

atot
E =

∞∑
h=1

(1 + 2h)(1 + 2 bh/k′c)
72

[
3h(1 + h)(−4 + 5h+ 5h2) (2.150)

+ bh/k′c (1 + bh/k′c) k2(7− 10h+ 10h2 − k2) + 3 bh/k′c2 (1 + bh/k′c)2
k4
]
.

In addition, (2.95) imposes that btot
2 = 0 and we arrive at the conclusion that

Clocal(M) = −2χ(M) atot
E , (2.151)

modulo surface terms S(M) that can be renormalized to zero on all
4d backgrounds of interest. According to our zero mode conjecture in
Section 2.6.2, (2.151) is in fact the complete contribution to the logarithmic
coefficient in the Euclidean path integral. AdS/CFT then demands that the
regularized value of the infinite series (2.150) must be independent of k and
equal to 1/6. Once again, we are not aware of a regularization method that
would yield such a simple result. In fact, the situation in KK supergravity
on S7/Zk is richer than for k = 1, since we can now consider the limit where
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k →∞ and study logarithmic corrections to supersymmetric observables in the
IIA limit of the ABJM theory. In this limit, we have

lim
k→∞

atot
E =

∞∑
h=1

h(1 + h)(1 + 2h)(−4 + 5h+ 5h2)
24 , (2.152)

and the corresponding supergravity logarithmic coefficient is

C(M) = −2χ(M)
∞∑
h=1

h(1 + h)(1 + 2h)(−4 + 5h+ 5h2)
24 . (2.153)

For this to be compatible with the dual S3 free energy, we must require
that the series be regularized to 1/12 so that C(S3) = −1/6, after using the
dictionary (2.16) for SCFTs whose dual uplifts to massless Type IIA. However,
this regularization then fails to give the correct log coefficient for the IIA limit
of the ABJM TTI given in Table 2.1. We will not dwell on this further, but
simply view it as a clear indication that a holographic match heavily depends
on the choice of regularization when summing over the infinitely many fields of
the dual KK spectra. Moreover, one should keep in mind that in the Type IIA
limit there could also be log λ corrections to the free energy, where λ = N/k
is the ’t Hooft coupling. Such terms could compete with the logN term we
study above and disentangling these two contributions could lead to additional
subtleties in the bulk supergravity calculation and the holographic comparison.

mABJM

We now consider the gravity dual of a 3d N = 2 SCFT sometimes referred
to as the mABJM theory. The theory can be obtained by focusing on the
k = 1, 2 ABJM model and adding a particular superpotential mass term that
involves also the light monopole operators responsible for the enhancement to
N = 8 supersymmetry in the ABJM theory. The RG flow that ensues ends
at an IR fixed point which has been studied with various QFT methods, see
[196, 61, 197] for more details. Notably the known logN corrections to various
partition functions in the mABJM theory coincide with the ones in the parent
ABJM model.

The holographic studies of the mABJM theory are facilitated by the presence of
an explicitly known AdS4 dual background. This AdS solution was first found as
a supersymmetric critical point of the potential in the 4d N = 8 SO(8) gauged
supergravity in [98]. The 4d solution was then uplifted to a background of 11d
supergravity in [107] which we will refer to as the CPW solution. Importantly
the full KK spectrum of the CPW solution was explicitly presented in [198, 199].
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This allows us to use the results for the heat kernel coefficients in Table 2.2
and calculate the total contributions from all KK modes. The calculation
proceeds in an analogous way to the one for the AdS4 × S7 solution presented
in Section 2.6.1. There are a number of technical differences due to the lower
amount of supersymmetry and the treatment of long multiplets. We discuss all
this in Appendix A.4.3 where we present the details of this analysis. While the
calculation is somewhat arduous, the final result is easy to state and simple.
The c and b1 coefficients once again vanish level-by-level, and therefore we have

ctot = btot
1 = 0 , (2.154)

in agreement with (2.95). The aE coefficient is non-vanishing and one finds
that the sum over KK levels is given by

atot
E = 1

144
∑
n≥0

(n+ 1)(n+ 2)(n+ 3)2(n+ 4)(n+ 5) . (2.155)

Notably, this is the same sum we encountered in (2.123) for the atot
E contribution

from all KK modes on the round S7. We thus arrive at an interesting observation,
namely that the total (atot

E , ctot, btot
1 ) coefficients for the KK spectrum on AdS4×

S7 are the same as those for the CPW solution. While we do not have a complete
explanation for this result, it is reasonable to suspect that this is due to the
fact that the two AdS4 solutions are connected by a smooth gravitational
domain wall, i.e. a holographic RG flow. Along this flow the spin of all KK
modes does not change. The mass of these modes does change, but since they
are organized into multiplets of the N = 2 supersymmetry preserved by the
flow, the results in Table A.2 dictate that the heat kernel coefficients for these
multiplets are independent of the mass. Nevertheless, this line of reasoning
does not immediately lead to the equivalence of the two sets of coefficients since
the (aE , c, b1) coefficients of the KK multiplets of the CPW background depend
on the R-charges. Perhaps a more conceptual explanation of the equivalence
between the UV and IR heat kernel coefficients may be given by some type of
anomaly matching à la ’t Hooft, but we were unable to make this precise at
this stage. It will certainly be most interesting to understand this phenomenon
better and to uncover whether it is a general feature of AdS vacua connected
by smooth domain walls.

Under the same assumptions as in the S7 case, we then arrive at the same
logarithmic correction in the KK supergravity theory dual to mABJM, namely

C(M) = −1
3χ(M) . (2.156)

This once again matches the results obtained in the dual CFT. Indeed, the
logarithmic term in the large N limit of the mABJM free energy on S3

b , S1×Σg
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and S1 ×ω S2 can be obtained using supersymmetric localization by starting
from the same UV quiver as that of the ABJM theory. Supersymmetry ensures
that the log term in these observables is protected along the flow to the IR,
and therefore the boundary logarithmic coefficient C(∂M) is expected to be the
same as that of the ABJM theory given in Table 2.1. We refer to [200, 142] for
additional details on mABJM supersymmetric observables.

N0,1,0

Another example we can study is the Freund-Rubin AdS4 × N0,1,0 solution
of 11d supergravity, see [201]. The internal 7d space N0,1,0 is Einstein and
Tri-Sasakian and thus the dual 3d SCFT preserves N = 3 supersymmetry. The
KK spectrum for this background has been computed in [202, 203] where it
was also organized in multiplets of the 3d N = 3 superconformal algebra and
representations of the additional SU(3) isometry of N0,1,0, which plays the role
of a flavor symmetry in the dual SCFT. To perform this arduous calculation
the authors of [202, 203] used the fact that N0,1,0 is a coset space and therefore
the spectrum of various operators on it can be calculated using group theory
techniques. The 3d N = 3 SCFT dual to the AdS4 ×N0,1,0 solution has been
studied in [204, 205, 206, 207].

The details of this explicit example of an AdS/CFT dual pair of theories will
not be of great importance for our discussion. What is crucial is that on the
field theory side one can employ supersymmetric localization to compute the
partition function of the SCFT on various compact manifolds, including the
omnipresent logN term of interest to us. We refer to Table 2.1 for more details
and a list of relevant references. To access the logN terms we can follow the
logic outlined in Section 2.6.1 for the AdS4×S7 solution of 11d supergravity. To
this end we use the explicit results on the KK spectrum from [202, 203] to find
the contributions of each KK mode to the heat kernel coefficients. The details
of this calculation are important but not very illuminating and we present them
in Appendix A.4.4. Here we will only summarize the results.

Using the organization of the KK spectrum into multiplets of the N = 3
superconformal algebra, we find that each multiplet has vanishing b1 coefficient.
Thus, the total contribution from all KK modes is

btot
1 = 0 . (2.157)

The situation is more interesting for the total ctot coefficient. The long
superconformal multiplets have vanishing c coefficients, while the various short
multiplets have a non-zero value for c that depends on their R-charge. Since
we have an infinite number of short multiplets in the KK spectrum, we arrive
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at a divergent sum indexed by a single integer parametrizing the R-charge.
Interestingly, in Appendix A.4.4, we find a regularization method based on [208]
that yields a vanishing ctot. Combining this with (2.157) and the discussion
around (2.117), we come to the conclusion that ctot|N=3 = btot

1 |N=3 = 0 for
the N0,1,0 spectrum, in accordance with the bootstrap constraints (2.95).20 To
arrive at this result, we use a “spin-by-spin” prescription where the contributions
from short graviton, short gravitini and short vector multiplets are regularized
individually using the method in Appendix A.5 before assembling them together.
We hasten to stress that the method we use to regularize the infinite sums in each
spin sector fails to produce the result (2.129) for atot

E in KK supergravity on S7,
as we have mentionned in Section 2.6.1. It is therefore clear that we currently
lack a good understanding of the prescriptions needed to obtain results that
are compatible with the AdS/CFT correspondence in all situations described
so far. Nevertheless, it is encouraging to find some prescription ensuring that
the bootstrap constraints (2.95) are compatible with a somewhat standard way
of regularizing divergent series.

The total atot
E coefficient is even more involved, since we need to take into

account the contribution of all long and short superconformal multiplets in the
KK spectrum. Once the dust settles, we find various contributions that are
spelled out in detail in Appendix A.4.4. In particular, there are double series
indexed by two integers coming from the long sector, and we do not know how
to systematically regularize such expressions. What we can do is once again
combine the various series contributing to atot

E with our zero mode conjecture to
eventually attach a finite value to all the divergent sums. That value must be
compatible with the dual N0,1,0 CFT results presented in Table 2.1. However,
this exercise is not very illuminating and we will not go through it explicitly
here.

Q1,1,1

The last example we will study is the AdS4×Q1,1,1 solution of 11d supergravity.
The dual 3d SCFT preserves N = 2 supersymmetry and has SU(2)3 flavor group.
The spectrum of the KK theory has been organized into N = 2 multiplets
in [209] by leveraging the coset structure of the Q1,1,1 internal Sasaki-Einstein
space. In general there are short and long multiplets, and they are indexed
by the three quantum numbers of SU(2)3 and by the R-charge. We denote
the tuple of quantum numbers by (j1, j2, j3, k). In the short sector, the sum
over the spectrum reduces to a sum over k ∈ N and using the tables provided

20In contrast, we have checked that the regularization method of [173] for ctot yields results
for btot

1 |N=3 that are not compatible with (2.95).
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in [209] we find

ashort
E = 1

8
∑
k≥0

(k + 1)(13k2 + 26k − 31) ,

cshort = − 1
4
∑
k≥0

(k + 1)(17k2 + 58k + 109) ,

bshort
1 = 1

24
∑
k≥0

(k + 1)(3k4 + 16k3 + 84k2 + 204k + 109) .

(2.158)

We assume a regularization scheme that assigns a finite value to these infinite
sums. The long sector is more involved and depends on the SU(2)3 quantum
numbers. However, using the spectrum in [209], we find that the contributions
to the (aE , c, b1) coefficients from the long multiplets take a simple form:

(along
E , clong, blong

1 ) =
(9

4 ,−
1
4 ,−

1
24

) ∑
k,j1,j2,j3

dim(j1, j2, j3) , (2.159)

where dim(j1, j2,3 ) is the dimension of the SU(2)3 representation. We do not
know of a rigorous way to regularize the infinite sums on the right-hand side.
However, we can turn the logic around and see what can be learned from the
bootstrap constraints (2.95). In particular, we see from (2.117) and (2.159) that
blong
1 |N=2 = blong

1 − clong/6 = 0. Thus, the bootstrap constraints imply that the
spectrum in the short sector must be such that

cshort = 6 bshort
1 (2.160)

to achieve bshort
1 |N=2 = 0. The regularization scheme used for (2.158) should

satisfy the above constraint. It is straightforward to check that using the
method in Appendix A.5 to regularize cshort and bshort

1 , we do not find finite
values that satisfy (2.160). Since our computation is highly sensitive to the
full spectrum of the KK theory, this contradiction could point to issues in the
analysis of [209]. We note that this possibility has been raised independently
in [207] and further emphasized in [210]. Of course, we cannot exclude that
there exists some renormalization scheme for the sums in the short sector that
is compatible with the bootstrap constraints (2.160). At present, we are unable
to make a definite statement, but we feel that this example highlights how
sensitive our log computations are to the intricate details of the KK spectrum
in a given supergravity compactification.



EXPLICIT KK SUPERGRAVITY EXAMPLES 83

N = 8, SO(8)

N = 1, G2N = 1, U(1)2 N = 1, SO(3)

N = 2, SU(3)× U(1)

Figure 2.2: The web of RG flows between holographic CFTs starting from the
ABJM theory.

2.6.4 Heat-kernel coefficients and RG flows

In our study of the mABJM theory above, we realize the interesting property
that the heat-kernal coefficients (aE , c, b1) are identical to those of the ABJM
theory for any given Kaluza-Klein level k. To make sure that this identity is
not a coincidence, we evaluate the coefficients in other gauged supergravity
theories whose corresponding field theories are connected by an RG flow to the
others. The theories we study as well as the RG flow webs connecting them are
shown in Fig. 2.2 and 2.3. The theories we study include theories connected
to the ABJM theory, dual to the N = 8 SO(8) gauged supergravity; theories
descending from the D2-brane theory which is dual to the N = 8 ISO(7) gauged
supergravity21 with uplifts in massive type IIA; and Jn theories that are dual
to the Janus backgrounds in type IIB supergravity. The details are presented
in appendix A.4, where all of the results conducted so far point to the following
universal behavior: the coefficients (aE , c, b1) are identical among all theories
connected by an RG flow.

This unexpected coincidence might have something to do with protected
quantities such as the ’t Hooft anomalies, as discussed in section 2.6.3 when

21The field theory dual of this supergravity is not conformal, thus not a valid UV fixed
point.
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N = 1, U(1)a N = 1, U(1)bN = 1, ∅

N = 0, G2 D2 branes N = 0, SO(6)

N = 2, SU(3)× U(1) N = 1, G2

N = 0, SO(7) N = 3, SO(4) N = 1, SU(3)

Figure 2.3: The web of RG flows between holographic CFTs from the holographic
dual of the ISO(7) gauged supergravity uplifting to massive type IIA theory.
The thick lines denotes the known RG flows between fixed points reviewed in
[211], and the red dashed lines are those coming from the field theory dual of
the N = 8 ISO(7) gauged supergravity, which is not conformal.

we study the mABJM theory. Technically, one could try to explain this for
aE , c coefficients. Because of their independence of the masses, for fields with
a given spin, their contribution to the total coefficient is proportional to the
dimension of their representations under the global symmetries. As long as the
representations are obtained by the branching rules for theories connected by an
RG flow, the contributions of each particle to these HK coefficients are always
preserved, since the branching rules don’t change the total dimension. However,
the coefficient b1 does depend on the masses. Since the masses are not preserved
along the RG flow, it seems non-trivial that they finally match. However, if
both the IR and UV fixed points preserve at least N = 2 supersymmetry,22 and

22I am not requiring the flow itself to preserve N = 2 supersymmetry.
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the branching rule doesn’t break apart the N = 2 multiplets23, since b1 for the
long multiplets as a whole are also constants (see Table A.2), the matching can
also be regarded as trivial, except for the short multiplets whose contributions
are subleading for very high KK levels. However, for RG flows where the N = 2
multiplets are broken apart and recombined, the matching is still non-trivial.

The calculations we have done, as shown in the appendix, give strong evidence
for the following conjecture:

Conjecture 1 All the heat-kernel coefficients (aE , c, b1, b2) are identical level-
by-level between two SCFTs connected by an RG flow.

And a stronger version of it:

Conjecture 2 All the heat-kernel coefficients (aE , c, b1, b2) are identical level-
by-level and spin-by-spin between two SCFTs connected by an RG flow, if we
take into account the effect where a massless field with spin s+ 1 eats a field
with spin s and becomes massive.

This conjecture appears to be consistent with the swampland conjecture (2.163)
proposed in the next section: within many gauge supergravity theories which
correspond to different vacua of the scalar potential, as long as one theory
satisfies (2.163), so do all of the rest. This conjecture should also be applied on
RG flow across dimensions, which will involve supergravity theories in different
dimensions whose heat-kernel coefficients are not fully available.

2.7 The unbearable lightness of the KK scale

So far we have discussed how to compute logarithmic corrections to the
gravitational path integral on asymptotically AdS4 backgrounds. Our focus was
on 4d KK supergravity theories that preserve some amount of supersymmetry
and arise from consistent truncations of 11d supergravity on a 7d manifold.
In these explicit top-down constructions the size of the internal manifold is
comparable to the size of the AdS4 vacuum. This in turn implies that the
four-dimensional gravitational theory does not really fall into the framework of
standard EFT with finitely many fields, i.e. there is an infinite tower of KK
modes that have masses of the same order that is parametrically smaller than
the Planck scale. We now turn our attention to a more agnostic, or bottom-up,

23Such as the RG flow from ABJM to the SU(3)×U(1) massive ABJM.
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approach to EFTs coupled to gravity in AdS and their holographic physics in
the context of the logarithmic corrections of interest in this work.

In order to be as general as possible we will work with a 4d gravitational theory
(with at least one AdS4 vacuum) coupled to a finite number of massive matter
fields with spin up to 2 that obey some form of positive energy condition. We
will assume that this theory has a consistent UV completion into a quantum
gravitational theory, or to use modern parlance, that it is not in the Swampland.
We will also assume that the 4d gravitational EFT is valid up to some energy
scale which for concreteness we take to be the 4d Planck scale, although our
arguments are general and can be adapted to other UV cutoff scales of interest.
Lastly, we assume that the UV completion of the theory is such that it admits an
equivalent holographic description in terms of a consistent unitary 3d CFT. As
usual in AdS/CFT, the semi-classical gravity approximation is controlled by a
large parameter which we call N . We emphasize that, at this somewhat abstract
level of discourse, N is just a label for a quantity much bigger than 1 that
measures the number of degrees of freedom in the CFT, or rather the sequence
of CFTs. For concreteness we can think of N as being defined by the free energy
of the CFT on S3. Of course, in concrete and familiar AdS/CFT examples,
N can often be thought of as the rank of a gauge group. By evaluating the
regularized on-shell action of the Euclidean AdS4 vacuum of the gravitational
theory we can find a map between the 4d Newton constant GN , the scale L of
AdS4, and the large parameter N . By dimensional analysis, this map will take
the form

L2

GN
= βNγ , (2.161)

where the equality is to be understood to leading order in the large N limit,
the parameters β and γ are positive real numbers, and in all known AdS/CFT
examples γ is rational.

The path integral of the CFT on a compact Euclidean manifold should admit a
large N expansion of the form we already discussed around (2.13), i.e.

logZCFT = F0 + C logN +O(N0) . (2.162)

Here F0 contains all positive powers of N while the terms in O(N0) are constant,
have negative powers of N , or are exponentially suppressed at large N . These
terms may have a complicated dependence on various continuous parameters
of the theory including geometric deformations of the Euclidean manifold and
dependence on relevant or exactly marginal couplings. Importantly, we will
assume that the quantity C does not depend on any continuous parameters,
i.e. it is a fixed real number for any given large N CFT. Since this is a crucial
assumption in our reasoning it is important to scrutinize it. We are not aware of
any example of a sequence of CFTs (holographic or not) parametrized by N for
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which, in the large N limit, one finds that C depends on continuous parameters.
One way to understand this may be to look at the 3d CFT placed on a squashed
S3 background and study the implications of any potential dependence in C on
the continuous squashing parameter(s). If there is such a dependence one can
expand the path integral in the limit of small squashing and deduce that there
is a logN term in the large N expansion of integrated correlators of the CFT
on the round S3. In particular, there will be a logN term in the CT coefficient
of the two-point function of the energy momentum tensor.24 We are not aware
of an example of a sequence of 3d CFTs where such a term appears, and it does
not seem compatible with the usual large N diagrammatics of gauge theories à
la ’t Hooft. The absence of any dependence of C on continuous parameters is
also manifest in various explicit examples of partition functions of 3d N = 2
SCFTs (holographic or not) that can be studied by supersymmetric localization.
It will be very interesting to construct a more robust argument or a proof that C
does not depend on continuous parameters. One possible avenue to do this is to
follow the approach in [212] and study the supersymmetric effective action of a
3d N = 2 SCFT on S1 ×ω S2 with supersymmetric boundary conditions on S1

and with angular momentum fugacity ω, in the limit where the radius of the S1

is small. It was shown in [212] that for 4d SCFTs the logarithmic term in the
analogous effective action does not depend on the continuous parameter ω and
has a topological nature. Furthermore, one can try to break supersymmetry and
study the question more generally in the context of the thermal path integral of
the 3d CFT on S1 × S2 which is controlled by the thermal effective action, see
[184] for a recent discussion. It may be possible to use this formalism to prove
that no logarithmic terms can appear in n-point functions. In the absence of a
solid proof, from now on we will assume that C is independent of continuous
parameters and will proceed to study the implications of this assumption for
the holographically dual 4d gravitational theory. Before doing so, we would like
to emphasize that the essence of the discussion above is not specific to the logN
terms in CFT path integrals and local correlation functions. If the CFT at
hand has any dimensionless parameter, like an exactly marginal coupling λ, we
also do not expect the coefficient of a log λ term in the path integral to depend
on continuous parameters like squashing deformations or chemical potentials.

We can now proceed in a similar manner as in Section 2.5. Studying the
logarithmic corrections to the gravitational path integral on various explicit
gravitational backgrounds,25 we find that the coefficient of logN (or log λ) will
depend on continuous parameters unless the total contribution to the (c, b1, b2)

24See (2.103) for an explicit example of such a relation between CT and a squashed sphere
partition function.

25We expect that the path integral of a standard 4d gravitational EFT allows for a standard
diagrammatic expansion with respect to the large parameter L2/GN . The coefficient of the
logarithmic correction log(L2/GN ) that is dual to C in the field theory side is then anticipated
to be insensitive to the details of the UV cutoff and thereby determined unambiguously in
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heat kernel coefficients from the finite number of matter fields in the effective
gravitational theory vanishes, i.e. we find the constraint

ctot = btot
1 = btot

2 = 0 . (2.163)

We emphasize that this conclusion is independent of the supersymmetry
preserved by the gravitational theory or the background. This result imposes
very strong constraint on any candidate consistent effective theory of gravity in
AdS with finitely many fields. We now illustrate this with several examples.

Consider the 4d N = 8 SO(8) gauged supergravity theory constructed in [103],
i.e. the nonlinear theory for the fields in the massless N = 8 gravity multiplet
presented in Table 2.4. Using (2.117) and the results summarized in Section 2.6.1
we find that the heat kernel coefficients for the maximally supersymmetric AdS4
vacuum in this theory read26

aN=8
E = 5

2 , cN=8 = bN=8
1 = 0 . (2.164)

Following the arguments above we therefore cannot conclude that this gauged
supergravity is not a consistent holographic theory of quantum gravity, see also
[213, 214] for recent discussion on the viability of the 4d N = 8 SO(8) gauged
supergravity as a consistent quantum gravity theory. Arguments, similar in
spirit to ours, have been used to exclude 4d N = 8 ungauged supergravity as a
consistent quantum gravitational theory [215].

We can proceed in a similar manner to study 4d N = 4 and N = 2 minimal
gauged supergravity, i.e. the gauged supergravity theory of the gravity multiplet
with the respective amount of supersymmetry. We find the following results:

aN=4
E = 1

2 , cN=4 = 0 , bN=4
1 = − 1

12 ,

aN=2
E = −11

24 , cN=2 = 0 , bN=2
1 = −13

36 .
(2.165)

We therefore conclude that our logarithmic constraint excludes these two models
as consistent quantum gravitational holographic theories. At this point one
may be emboldened by the relative simplicity of our arguments and proceed to
analyze all matter coupled (super)gravity theories and check whether they stand

the diagrammatic expansion. In particular, this requires the absence of exotic contributions
like [(L2/GN )]p[log(L2/GN )]q with p ≥ 0, q > 1 in the expansion. In the discussion below
we assume that such contributions indeed do not arise.

26We note that if we choose to break N = 8 supersymmetry we can dualize some of the 35
pseudoscalars in the N = 8 gravity multiplet into 2-forms which will in turn yield different
values for the aE coefficient. However, the c and b1 coefficients remain invariant under
dualization [191].
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a chance of acting as consistent effective theories of gravity. This analysis is
however complicated by the fact that we are interested in gravitational theories,
like gauged supergravity, in which the scalar fields generically have highly
non-trivial potentials. In such models it is a very involved task to study the
space of AdS4 vacua and the mass spectrum of linear fluctuations around them.
As an illustration, consider the 4d N = 8 gauged supergravity with an ISO(7)
gauging. This theory has the same matter content as the maximal SO(8) gauged
supergravity, i.e. the fields in Table 2.4, but a very different scalar potential. In
particular, none of the 219 known AdS4 vacua in this theory, see [216], is located
at the origin of the scalar manifold where the full gauge group and maximal
supersymmetry is preserved. This means that the heat kernel coefficients for
any of the AdS vacua of this theory are not simply given by (2.164). To find the
correct logarithmic corrections to the gravitational path integral, one first needs
to choose one of the vacua of the gauged supergravity theory, compute the mass
spectrum of excitations around it (as was done in [216]) and only then use the
results in Table 2.2 above to calculate the total (aE , c, b1) coefficients. Given
these considerations we are left with the conclusion that the validity of a given
effective theory of gravity in AdS with finitely many fields, supersymmetric or
not, has to be studied on a cases-by-case basis. This can be done systematically
for any given theory with fields with spin up to 2 and a known mass spectrum
by using the results in Table 2.2 and checking whether the total heat kernel
coefficients obey the constraints in (2.163).

In several corners of string theory the notion of a scale-separated AdS4 vacuum
appears, see for instance [217, 218, 219, 220] for several well-known constructions
of this kind and [83] for a recent review. These are proposed consistent
backgrounds of string or M-theory of the schematic form AdS4 × Y where
there may be a warp factor in front of the AdS4 metric and the internal space Y
is either completely geometric, i.e. a smooth manifold with properly quantized
R-R and NS-NS fluxes, or has some mild singularities allowed by string theory
such as orbifolds and orientifolds. The defining feature of such backgrounds
is that the length scale `Y associated to Y is parametrically smaller than the
scale L of AdS4,

`Y � L . (2.166)

We hasten to add that there could be some ambiguity in the definition of
the scale `Y . It can be associated to the volume or the diameter of Y , or be
defined in terms of the eigenvalues of some appropriate differential operator
on Y used in the determination of the KK spectrum. What is important for
our discussion is that below the scale set by `Y one should have a consistent
effective gravitational theory in AdS4 with finitely many matter fields of spin
up to 2. In this setup, we can employ our results for the logarithmic corrections
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to the gravitational path integral to shed new light on the consistency of such
scale-separated AdS4 vacua. More specifically, we conclude that the spectrum
of low-lying excitations around a given scale-separated AdS4 vacuum, i.e. all
fields with masses up to the scale set by `Y , should be such that their total
contribution to the (c, b1, b2) coefficients vanishes as in (2.163). We note that
these strong constraints should be viewed as an addition to the constraints and
obstructions for the existence of scale-separated vacua discussed previously in
the literature, see [221, 222, 223, 224, 225, 226] and references thereof.

Since many AdS4 vacua discussed in the literature, including scale-separated
constructions, preserve N = 1 supersymmetry, we finish this section with a
short discussion on the calculation of the heat kernel coefficients for 4d N = 1
matter multiplets. This should facilitate the exploration of the consistency
condition in (2.163) for any given AdS4 vacuum with a known spectrum of
light modes. To organize our results we first present the possible 4d N = 1
multiplets. We use notation similar to the one used for 4d N = 2 multiplets in
Appendix A.4.3 and find the following list of multiplets

• LGRAV = L1
[
E0,

3
2
]
, SGRAV = A1

[ 5
2 ,

3
2
]
,

• LGINO = L1 [E0, 1] , SGINO = A1 [2, 1] ,

• LVEC = L1
[
E0,

1
2
]
, SVEC = A1

[ 3
2 ,

1
2
]
,

• LSCA = L2 [E0, 0] , SSCA = A2
[ 1

2 , 0
]
.

On the right-hand side we have indicated how each supergravity multiplet can
be related to the 3d N = 1 SCFT multiplets tabulated in Section 2.1.1 of
[18]. This facilitates the comparison with the holographically dual CFT and
also allows one to consult the explicit field content of each multiplet using
the detailed presentation in [18]. We note that in the list above we have not
included the identity multiplet denoted by B1[0, 0] in that reference. The list
above contains long multiplets (LGRAV, LGINO, LVEC, LSCA), for which
all fields with s ≥ 1 are massive, as well as short multiplets (SGRAV, SGINO,
SVEC, SSCA), for which the fields with s ≥ 1 are massless. Finally, E0 is equal
to the dimension ∆ of the dual CFT primary operator and the mass of the field
in AdS4 can be found by using the relations between ∆ and m in Table 2.3. The
heat kernel coefficients (aE , c, b1) of each 4d N = 1 multiplets are presented in
Table 2.6.

We stress that for all entries in Table 2.6 we have already incorporated the
(−1)F that accounts for the fermion number of a given field in sums like the one
in (2.77). Therefore, for a given AdS4 vacuum with a known mass spectrum
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aE c b1

LGRAV 23
12

7
3

5
16 −

1
12 (E0 − 1)2

SGRAV 113
48

77
24 0

LGINO − 7
16 − 7

8 − 1
8 + 1

16 (E0 − 1)2

SGINO − 31
48 − 25

24 0

LVEC 5
24

1
6

1
32 −

1
24 (E0 − 1)2

SVEC 3
16

1
8 0

LSCA 1
48

1
24

1
48 (E0 − 1)2

SSCA 13
720

1
30

23
4608

Table 2.6: The heat kernel coefficients for 4d N = 1 multiplets.

organized into 4d N = 1 multiplets, one simply needs to add the contributions
from the table above to check whether the constraint in (2.163) is obeyed. Since
most multiplets in Table 2.6 have positive c coefficients, it is clear that imposing
(2.163) will result in non-trivial constraints. It will be very interesting to explore
these constraints in detail for many of the well-known AdS4 vacua in string and
M-theory.

2.8 Outlook

In this work we studied several aspects of logarithmic corrections to gravitational
path integrals in AdS4 and their relation to holography. In addition to a
compendium of new technical results on this subject, we can extract at least
two general lessons from our analysis. First, for a given explicit AdS4 vacuum
of string or M-theory, it is crucial to study the logarithmic corrections in the
proper setup, i.e. in the higher-dimensional supergravity theory or in the
4d consistent truncation accompanied by a proper regularization scheme for
the infinite tower of KK modes that contribute to the heat kernel. Second,
we find that the form of the logarithmic corrections to the path integral on
asymptotically locally AdS4 backgrounds impose non-trivial constraints on the
possible consistent 4d effective gravitational theories. In particular, assuming
the validity of holography and the 4d gravitational EFT up to some cutoff
scale, we conclude that either the total (c, b1, b2) coefficients of the matter fields
in the theory need to vanish, or that the dual 3d CFTs necessarily contain
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certain exotic logarithmic terms in their local correlation functions and thermal
observables.

Our analysis points to several interesting open questions and directions for
future work which we now briefly discuss.

• As emphasized in Section 2.6.1, the 4d KK supergravity calculation of the
logN correction to the free energy on AdS4 × S7 does not agree with the
field theory result or the 11d supergravity analysis in [71] if one chooses
a regularization scheme in which aE = 0. It may be possible to resolve
this discrepancy by using that the non-trivial contribution to logN in the
11d calculation comes from a zero mode of a 2-form ghost field needed
for the proper quantization of the 3-form in 11d supergravity. To this
end, one may contemplate a KK reduction of all ghost fields used in the
quantization of the 11d graviton, gravitino, and 3-form around AdS4 × S7

which can perhaps be organized into 4d N = 8 “ghost KK multiplets”.
With this at hand one should repeat our 4d KK supergravity analysis to
account for the contribution of these “KK ghosts” to the coefficient of the
logN term. Even if this calculation ends up successfully accounting for
the correct 1

4 logN contribution to the free energy, it is still unclear to
us why such an analysis is justified. It will be interesting to understand
this point better and draw lessons for the analysis of similar logarithmic
corrections in more general gravitational backgrounds.

• As discussed in Section 2.6.2, if we adopt a particular regularization scheme
for the infinite tower of KK modes on S7 we can find an expression for the
total aE heat kernel coefficient that agrees with the 1

4 logN corrections
to the AdS4 × S7 path integral. If in addition we assume the absence of
zero modes other than for 2-forms in asymptotically locally AdS4 spaces,
we find results for the logarithmic corrections to the gravitational path
integral that are consistent with the supersymmetric localization results
in the ABJM theory summarized in Table 2.1. Moreover, this allows
us to calculate the logarithmic corrections to the Bekenstein-Hawking
entropy of non-supersymmetric black holes in AdS4, generalizing the work
of Sen [70] for asymptotically flat black holes. It is clearly important
to put these calculations and assumptions on a more solid footing and
find efficient methods to treat the contributions of zero modes to the
logarithmic corrections in asymptotically AdS4 backgrounds. We should
also emphasize that we carried the calculation of the b2 heat kernel
coefficient in Appendix A.2 for minimally coupled charged scalars and
spin-1/2 fermions and relied on the bootstrap argument in Section 2.5 in
most of our analysis. It will be nice to fill this gap and compute the b2
coefficient for matter fields of arbitrary spin, mass, and charge.



OUTLOOK 93

• An interesting generalization of the topologically twisted index of 3dN = 2
SCFTs on S1×Σg is the supersymmetric partition function on the Seifert
manifoldMg,p given by a degree p fibration of the S1 over Σg. This path
integral was discussed in detail in [120] for general SCFTs where it was
shown how it can be computed using supersymmetric localization. The
holographic description of this path integral is given by the supersymmetric
Euclidean AdS-Taub-Bolt solution presented in [227, 228] and was studied
for theories arising from M2- and M5-branes in [228] and [74, 148, 147],
respectively. It is interesting to apply the conjecture in Section 2.6.2 to
the AdS-Taub-Bolt background. As shown in [147], the Euler number
of this 4d supergravity background is independent of p and is given by
χ = 2(1− g). This implies that the logarithmic correction to the SCFT
free energy onMg,p does not depend on p. Indeed, as shown in [74, 147],
this is true for class R theories arising from M5-branes. This is yet another
piece of evidence that supports the conjectural results in Section 2.6.2.
Using this we can then conclude that the free energy on Mg,p for the
ABJM theory, discussed to leading N3/2 and subleading N1/2 order in
[228] and [66, 67], respectively, should receive a 1

2 (1− g) logN correction.
Confirming this prediction by an explicit matrix model calculation based
on the results of [228] will amount to a very non-trivial test of our results.
We hope to report on this in the near future.

• A central assumption underlying the discussion in Section 2.7 is the
independence of the coefficients of the logN and log λ terms in CFT
partition functions on continuous parameters like squashing deformations
or relevant operator couplings. This can also be phrased as the absence
of logN and log λ terms in correlation functions of local operators. Given
the strong constraint this assumption imposes on gravitational theories
in AdS, it is important to scrutinize it and understand whether it can be
put on a more rigorous footing.

• In many of the discussions above we focused on the logN terms in the
path integrals of 3d N = 2 holographic SCFTs in M-theory. There
can of course be log λ corrections to holographic SCFTs path integrals
if a suitable notion of a ’t Hooft coupling exists in the theory. These
corrections should then correspond to logL/`s corrections to the AdS4
path integral where `s is the string length. Studying these corrections
in 10d supergravity is in principle possible with the heat kernel methods
discussed here and will be very interesting to pursue. However, a technical
complication arises since one will first need to calculate the 10d heat kernel
coefficients of the various supergravity fields in order to compute the local
contribution to the coefficient of logL/`s. It will be very interesting
to pursue this analysis, contrast the result with a 4d KK supergravity
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approach along the lines presented in this work, and ultimately compare
the outcome of these calculations with the available 3d SCFT results
for the relevant path integrals. More generally, even in the absence of
supersymmetry, when there are dimensionful parameters like temperature,
electric charges, and angular momenta present in the gravitational path
integral, one can combine them with the AdS scale to form dimensionless
parameters that can be scaled in various ways. It will be interesting to
explore these scaling limits systematically and understand whether one
can compare the coefficient of the logarithmic terms with dual 3d CFT
results. Moreover, it will be nice to understand whether this analysis can
lead to any interesting constraints on effective gravitational theories in
AdS4 along the lines of Section 2.7.



Chapter 3

The planar limit of the N = 2
E-theory: numerical
calculations and the large λ
expansion

3.1 Introduction and summary of results

Since the seminal work of ’t Hooft [33] the planar limit of four-dimensional gauge
theories has served as an important approximation that provides new insights
into their dynamics. In subsequent developments a plethora of additional tools,
amongst which integrability, supersymmetric localization, and AdS/CFT, were
applied with great efficacy in conjunction to the planar limit to improve our
understanding of gauge and string theory. A central example which often serves
as a testbed for new calculational techniques and conceptual advances is the
N = 4 SYM theory. Our modest goal in this work is to build on recent results
from supersymmetric localization for four-dimensional N = 2 SCFTs, see [20]
for a review, and derive some new results for physical observables in a particular
planar gauge theory that shares many properties with the N = 4 SYM theory.

The theory of interest here is an N = 2 SU(N) gauge theory with one
hypermultiplet in the symmetric representation of the gauge group and one
hypermultiplet in the antisymmetric representation. This was referred to as the
E theory in [229] and we will also adopt this monicker. As discussed in [229]

95
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the E theory is closely related to SU(N) N = 4 SYM theory. For instance, the
conformal anomaly coefficients of the two theories are

aN=4 = cN=4 = 1
4(N2−1) , aE = aN=4+ 1

24 , cE = cN=4+ 1
12 . (3.1)

Moreover, similarly to N = 4 SYM, the E theory theory has a holographic
description in terms of type IIB string theory on a Z2 orientifold of AdS5 × S5,
see [230, 231].

Certain physical observables in both the E theory and N = 4 SYM can
be calculated by placing the theory on S4 and employing supersymmetric
localization as in [28]. Importantly, in the planar limit the instanton
contributions to the supersymmetric localization matrix model trivialize and the
calculation of some physical observables as a function of the ’t Hooft coupling
λ becomes feasible. This in turn provides the interesting possibility for explicit
gauge theory calculations in the strong coupling limit, λ � 1, which should
lead to insights into the α′ corrections of type IIB string theory around the
AdS5 × S5/Z2 orientifold. Obtaining such strong coupling results in the planar
limit of the E theory is the main objective of this work.

In particular, we will be mainly interested in the two-point correlation functions
of single trace operators in the E theory built out of the complex scalar field in
the N = 2 vector multiplet. Conformal covariance and the R-symmetry of the
theory dictate that these two-point functions take the following form

〈trϕm(x)trϕ̄n(0)〉 = Gm(λ,N)δm,n
(4π2x2)2m , (3.2)

where Gm(λ,N) is a non-trivial function that can in principle be computed by
supersymmetric localization, however explicit calculations for general values
of N are difficult. To organize the calculation it is useful to take the ratio of
this function to the corresponding two-point function in N = 4 SYM, G(0)

m .
Moreover, it is important to distinguish the operators with m even and odd in
the planar limit. The operators with odd m correspond to twisted sector modes
in the AdS5 × S5/Z2 orientifold and have distinct correlators from those of
N = 4 SYM already at leading order in the planar limit. The untwisted sector
modes correspond to operators with even m and their two-point functions are
identical with those in N = 4 SYM to leading order at large N but differ at
subleading orders. This information can be conveniently organized into the
following large N expansions

G2k+1

G
(0)
2k+1

= 1 + ∆k(λ) +O(N−2) , G2k

G
(0)
2k

= 1 + δk(λ)
N2 +O(N−4) . (3.3)

As explained in [229], ∆k(λ) and δk(λ) can be calculated by using supersym-
metric localization and matrix model techniques. It was shown in [229] that
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a central role in this calculation is played by an infinite matrix X with matrix
elements:

Xkl = (−1)k+l+18
√

(2k + 1)(2l + 1)
∫ ∞

0
dt W (t)J2k+1

( t√λ
2π

)
J2l+1

( t√λ
2π

)
,

(3.4)

with k, l = 1, 2, . . ., where Jn are Bessel functions, and

W (t) = et

t(et − 1)2 . (3.5)

The calculation of ∆k(λ) then amounts to inverting 1− X and calculating the
following ratio of determinants1

1 + ∆k(λ) =
det D(k)

det D(k−1)
, Dk,l ≡

( 1
1− X

)
k,l
. (3.6)

It is relatively easy to calculate the small λ expansion of ∆k(λ) using (3.6).
Indeed, for each order in the small λ expansion, the matrix X is essentially a
finite matrix, and the calculation of ∆k(λ) order by order in the small λ limit
amounts to straightforward calculations with finite matrices. However, it is
more challenging to calculate the large λ expansion of ∆k(λ). To tackle this
problem we develop numerical techniques based on solving an integral equation
that allow for the efficient calculation of ∆k(λ) for general finite values of λ.
Using this method for large values of λ and performing a precise numerical
fitting procedure allows us to propose a conjecture for the analytic form of the
first six terms in the large λ expansion of ∆k(λ). The first three terms in this
expansion read

1 + ∆k(λ) = 8π2k(2k + 1)
[

1
λ
− 16k log 2

λ3/2 + 32k(4k − 1) log2 2
λ2

]
+O(λ−5/2) ,

(3.7)
while three more subleading terms are presented in Section 3.3.5. The leading
1/λ term in (3.7) agrees with the analysis in [229] where it was calculated using
analytic methods. We have also attempted to provide an analytic derivation of
(3.7) but we were not successful due to certain subtleties we encountered when
working with infinite matrices. This attempt is summarized in Appendix B.1.

It was argued in [229] that δk(λ) in (3.3) can be calculated by taking derivatives
with respect to λ of the difference between the S4 free energy of the E theory

1Here the symbol D(k) is used to denote the upper left k × k block of the matrix D.
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and N = 4 SYM. It was shown in [232] that this difference in free energies is
related to the determinant of the matrix X as follows:

F ≡ FE−theory − FN=4 = 1
2 log det(1− X) . (3.8)

Again, it is relatively straightforward to calculate the small λ expansion of
F , but it is much more difficult to calculate its large λ expansion. To this
end we develop a numerical method to compute the determinant of 1− X for
general values of λ. Detailed numerical analysis in the large λ regime leads us
to conjecture the following analytic form of the first four terms in the large λ
expansion of F

F = 1
8
√
λ− 3

8 log
(
λ

λ0

)
− 3

4
log 2√
λ
− 3

2
log2 2
λ

+O(λ−3/2) , (3.9)

where λ0 ≈ 7.72390117 is a numerical constant.2 We note that the 1/8 coefficient
of the leading

√
λ term in (3.9) differs from the result in [232] where analytical

methods were used to find the value 1/2π for this coefficient. We have no
reason to doubt our very precise numerical analysis, which also allows us to find
three more subleading terms in the large λ expansion as compared to [232], and
believe that the discrepancy may be due to subtleties with the analytic method
used in [232] when applied to matrices of infinite rank. The result for F in
(3.9) can be combined with the arguments in [229] to find the large λ expansion
of the two-point function δk(λ). We find the following explicit result for the
leading four terms in the large λ expansion

δk(λ) = −k(4k2 − 1)
16

√
λ+ 3

8k(4k2 − 2)

− 3
8
k(4k2 − 3) log 2√

λ
− 3

2
k(4k2 − 4) log2 2

λ
+O(λ−3/2) . (3.10)

Knowing the difference of free energies F allows us also to calculate the vacuum
expectation value of a circular supersymmetric Wilson loop wrapping the equator
of S4. For N = 4 SYM in the planar limit this Wilson loop vev is given in
terms of a Bessel function, see [233],

〈WN=4〉0 = 2N√
λ
I1(
√
λ) . (3.11)

2An analytical form has been found by other methods, see the discussion around (3.81).
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The deviations from this leading planar result are captured by a function q(λ),
see [232]

〈WN=4〉
〈WN=4〉0

= 1 + qN=4(λ)
N2 +O(N−4) , where qN=4(λ) = λ3/2

96
I2(
√
λ)

I1(
√
λ)
− λ

8 .

(3.12)
As discussed in [232] for the E theory one finds that the leading order result for
the Wilson loop vev in the planar limit is the same as that for N = 4 SYM,
〈WE〉0 = 〈WN=4〉0. There are differences however at order N−2 which can be
captured by the function ∆q(λ) = qE(λ)− qN=4(λ). It was furthermore shown
in [232] that ∆q(λ) = −λ2

4 ∂λF . Using this relation and the result in (3.9) we
find the following large λ behavior

∆q(λ) = − 1
64λ

3/2 + 3
32λ−

3 log 2
32 λ1/2 − 3 log2 2

8 +O(λ−1/2) . (3.13)

Our results for the large λ behavior of F and Dk,l can be used in conjunction
with the recent studies in [234] to derive the strong coupling behavior of the
planar limit of some three-point extremal correlators of single trace operators in
the E theory. We are able to compute these correlations functions up to order
λ−2 in the strong coupling expansion, which improves on the results of [234] by
providing three additional terms in the large λ expansion. These results are
presented in Section 3.5.

We stress that our numerical methods to calculate ∆k(λ) and F are useful
independently of the large λ results presented above. The numerical method
we propose is fast and efficient and provides accurate results for a wide range of
values for the coupling λ, 0 ≤ λ . 107, for both ∆k(λ) and F . The numerical
techniques we use are explained in some detail in Sections 3.3.3 and 3.4.1,
respectively, and we hope they may also find some use in other similar problems.

The structure of the chapter is as follows. In Section 3.2 we summarize some
relevant facts about correlation functions in the E theory and their calculations
by supersymmetric localization techniques. In Section 3.3, we develop a method
involving integral equations to calculate ∆k(λ). We solve the resulting integral
equation numerically to calculate ∆k(λ) accurately for many values of λ and we
use these results to conjecture analytic expressions for the large λ behaviour of
∆k(λ). In Section 3.4, we rewrite the free energy F as a Fredholm determinant
and explain how to calculate it numerically for many values of λ. We again use
these numerical results to conjecture the large λ behaviour of F and therefore for
δk(λ) and ∆q(λ). In Section 3.5, we show how to use these results to determine
the large λ behaviour of three point extremal correlators. We conclude in
Section 3.6 with a short discussion on some open questions for future research.
The four appendices contain some details on our numerical algorithm as well as
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an illustrative example of an analytic approach to the calculation of ∆k which
we believe is wrong for subtle reasons.

3.2 N = 2 superconformal field theories and matrix
models

In this section, we start with a briefly recall on some background material on
supersymmetric localization and matrix model results for correlation functions
in 4d N = 2 SCFTs. More details on this material can be found in [229, 234,
235, 236, 237, 238]. Then we introduce our main objects: the chiral primary
operators and extremal correlators.

One can use supersymmetric localization techniques3 to study N = 2 SCFTs,
see [20] for a review. After suitable regularization of the superdeterminant on
S4, the partition function can be localized to a matrix integral:

ZS4 =
∫
dNa∆(a)Zcl(a)Z1−loop(a), (3.14)

where N is the rank of the gauge group, ∆ denotes the Vandermonde determi-
nant, Zcl(a) and Z1−loop(a) correspond to e−S[X0] and the superdeterminant
terms in (1.21), both of which can be written explicitly as functions of the
Cartan of the gauge group:

Zcl(a) = e
− 8π2

g2 tr a2
, Z1−loop(a) =

∏
w∈W (adj)H(iw · a)∏
w∈W (R)H(iw · a) ,

H(x) ≡ G(1 + x)G(1− x),

(3.15)

where G(x) is the Barnes G-function, R is the representation under which the
hypermultiplet transfers under the gauge group. Thus everything is known
explicitly if we ignore the instanton contributions [240] which are suppressed
exponentially at large N . This localisation scheme (3.14) is the original one
obtained by Pestun [28], where we integrate over the Cartan subalgebra.

In this chapter, alternatively, we use the scheme where the partition function
on S4 can be written as the following matrix integral, which uses the fact that
dNa∆(a) is the Haar measure of the SU(N) group:

ZS4 =
∫
da e−tr a2−Sint(a) , (3.16)

3There are two localization schemes in the literature; in this chapter we use the full Lie
algebra localization [229, 234, 235, 237, 239].
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where we slightly changed the measure over the BPS locus, where a = abTb
with Tb the generators of the full gauge algebra instead of the Cartan algebra
as in (3.15), and the new measure is given by

da =
N2−1∏
b=1

dab√
2π

. (3.17)

One can show that Sint(a) = 0 for the N = 4 SYM theory and the matrix
model is therefore Gaussian in that case. There is a closed form expression for
the interaction term Sint(a) in general. The general form of this expression is
not presented here, but can be found for the E theory in equation (3.27) below.

3.2.1 Extremal correlators on R4

An interesting set of objects in 4d N = 2 SCFTs are single trace chiral primary
operators built out of the complex scalar ϕ in the vector multiplet:

On(x) ≡ trϕn(x) . (3.18)

These operators are chiral because they are annihilated by half of the
supersymmetries, and they are automatically normal-ordered because of R-
charge conservation. The anti-chiral primary operators are denoted by Ōn(x)
and are constructed from ϕ̄(x) in the same way. The properties of the OPE for
4d N = 2 theories leads to the chiral-ring relation:

Om(x)On(0) = Om,n(x) + · · · , Om,n(x) ≡ trϕm(x)trϕn(x), (3.19)

where “· · · ” denotes Q̄-exact terms. In this chapter, we are interested in the two-
point and three-point functions involving chiral and anti-chiral operators in R4.
These correlators are constrained by the chiral-ring relation and R-symmetry
selection rules and take the following form

〈Om(0)Ōn(x)〉 = Gm(N,λ)δm,n
(4π2x2)2m , 〈Om(0)On(x)Ōp(y)〉 = Gm,n(N,λ)δm+n,p

(4π2x2)m(4π2y2)n .

(3.20)
More generally, the extremal correlators in R4 involve chiral primaries with one
anti-chiral primary. The superconformal symmetry constrains their forms up to
a constant: [241]

〈Oi1(x1)Oi2(x2) · · ·Oin(xn)Ōj(y)〉R4 = Gi1,··· ,in;j(τ, τ̄)
n∏
k=1

1
(y − xk)2∆Oik

,

(3.21)
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where Gi1,··· ,in;j(τ, τ̄) is a function of the exactly marginal coupling τ = θ
2π+ 4πi

g2
YM

.
We push the anti-chiral operator to the spatial infinity using the conformal
invariance through Ōj(∞) ≡ limy→∞ y2∆j Ōj(y). Using supersymmetry Ward
identity [242], one can prove that the extremal correlator with Ō located at
infinity doesn’t depend on any of {xi}. Thus, we can put all the chiral operators
on top of each other at the origin, and thus:

Gi1,··· ,in;j = 〈Oi1(0)Oi2(0) · · ·Oin(0)Ōj(∞)〉R4 . (3.22)

Now we put the theory on S4, it follows that supersymmetric localization on S4

reduces On to Ωn ≡ tr an.4 To make a connection with the 4d N = 2 theory
on R4, one naïvely expects:5

〈Oi1(0) · · ·Oin(0)Ōj(∞)〉R4
?= 〈Oi1(S) · · ·Oin(S)Ōj(N)〉S4 =

= 〈Ωi1 · · ·ΩinΩj(N)〉 = Z−1
S4 ∂

i1
τ · · · ∂inτ ∂

j
τ̄ZS4(τ, τ̄),

(3.23)

where N,S denotes the north and south poles of the sphere. However, an
important complication happens because of the conformal anomalies on S4:
an operator On(x) on S4 will mix with the full tower of lower-dimensional
operators below it, [243]

OR4

n → Ωn + α1(τ, τ̄)Ωn−2R
−2 + α2(τ, τ̄)Ωn−4R

−4 + · · · , (3.24)

where R is the radius of the round S4. Diagonalizing the operator mixing
matrix on S4 à la Gram-Schmidt leads to the representation of the extremal
correlators on R4:

Gn,n = 〈On(0)Ōn(∞)〉R4 =
det D(n,n)

det D(n−1,n−1)
, Dnm ≡ Z−1

S4 ∂
n
τ ∂

m
τ̄ ZS4(τ, τ̄),

(3.25)
where the suffix (n, n) means the n × n minor in the upper-left corner. The
matrix elements Dmn are two-point correlators 〈ΩnΩn〉 on the S4 which contain
the mixing.

3.2.2 The superconformal E-theory

For 4d N = 2 su(N) gauge theories with NF hypermultiplets in the fundamental
representation, NA hypermultiplets in the anti-symmetric representation and

4By definition, a are Hermitian matrices, thus the anti-chiral operator is localised to
Ω̄k = tr āk = tr ak = Ωk.

5In the last equality, the differentiations of the partition function should give an integrated
correlator, which has UV divergences to be regularized. The regularization we used, where
we put the anti-chiral operator to the north pole and the chiral operators to the south pole,
is the one consistent with the Ward Identity.
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NS in the symmetric representation, the gauge coupling admits corrections only
at 1-loop order, and the coefficient of its β-function is

β0 = 2N −NF − (N + 2)NS − (N − 2)NA . (3.26)

There exist five families of theories with vanishing β0 [244], which are called
ABCDE theories respectively. Their matter content is listed below:

theory A B C D E
NF 2N N − 2 N + 2 4 0
NS 0 1 0 0 1
NA 0 0 1 2 1

We focus on the E-theory in this work. The main reason for this is that the
numerical method we employ below relies on the results of [229] which have
been derived so far for this model only. It should be possible to generalize
our discussion also to the D-theory which shares many similarities with the
E-theory but we refrain from discussing this here since, among other differences,
the corrections to the untwisted correlation functions in the D-theory have a
different scaling with N . The A, B, and C- theories have more qualitative
differences with N = 4 SYM and their study may require different techniques.

One can calculate that for E theory, the interaction term in the matrix
model (3.16) is given by the following expression

SE
int(a) = −4

∞∑
l,m=1

(
− g2

8π2

)l+m+1 (2l + 2m+ 1)!
(2l + 1)!(2m+ 1)!ζ(2l+2m+1)tr a2l+1 tr a2m+1,

(3.27)
where ζ(s) is the Riemann zeta function. Expectation values in the matrix
model are given by the usual expression

〈f(a)〉 =
∫
da f(a) e−tr a2−Sint(a)∫
da e−tr a2−Sint(a) . (3.28)

This can also be written as

〈f(a)〉 =

〈
f(a)e−Sint

〉
(0)

〈e−Sint〉(0)
, (3.29)

with the expectation value in the Gaussian model defined as

〈f(a)〉(0) =
∫
dae−tr a2

f(a) . (3.30)
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One can also use the matrix model to calculate the correlation functions (3.20).
Namely, in the planar limit, one finds

Gn = 〈On(a)On(a)〉 , and Gm,n = 〈Om(a)On(a)Om+n(a)〉 . (3.31)

The expectation values on the right hand sides are given by (3.28). The operators
On(a) are defined as [234, 236]

On(a) = Ωn(a)−
∑
m<n

Cn,mOm(a) , (3.32)

with Ωn(a) = tr an and the mixing coefficients Cn,m given by

Cn,m = 〈Ωn(a)Ωm(a)〉
〈Ωm(a)Ωm(a)〉 . (3.33)

Equation (3.32) can be viewed as resulting from applying Gram-Schmidt
orthogonalization.

From now on, we will denote the quantities related to the zero coupling limit
with a suffix (0), which is identical to N = 4 YM. Then we define the normalized
normal-ordered operators in the matrix model, focusing on the twisted sector:

ωk(a) ≡ O(0)
2k+1(a)

/√
G

(0)
2k+1, 〈ωk(a)ωl(a)〉(0) = δkl, (3.34)

where G(0)
2k+1 = (2k + 1)(N/2)2k+1 in the large N limit. As is pointed out in

[237], the correlators of ωk(a) can be evaluated using Wick’s theorem. We can
regard the matrix operators ωk(a) as a set of normally distributed real variables
ωk and write

〈ωk1(a)ωk2(a) · · ·ωkn(a)〉 =
∫

[Dω]ωk1ωk2 · · ·ωkne−
1
2ω

Tω, [Dω] ≡
∞∏
i=1

dωi√
2π

,

(3.35)
where we denote ω as an infinite vector whose components are ωk. It was
pointed out in [237] that one can re-express Sint for E theory (3.27) in terms of
ω as

SE
int = −1

2ω
TXω , (3.36)

where the infinite matrix X is given in (3.4).

We will study several observables using this formalism. As an example, the
partition function of the matrix model (3.16), ignoring the normalization factor,
is given by:6

Z =
〈
e−Sint

〉
(0) =

〈
e

1
2ω

TXω
〉

(0)
. (3.37)

6The fact that Sint of E theory only contains odd double-traces is important here and is
the main reason we restrict ourselves to the E theory.
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Using (3.35), one obtains:

Z =
∫

[Dω]e− 1
2ω

T (1−X)ω = det−1/2 (1− X) . (3.38)

The corresponding free energy, which is actually the free energy of the “difference
theory”, is given by [232]

F ≡ FE−theory − FN=4 = − logZ = 1
2 log det(1− X) . (3.39)

3.3 Twisted correlators

Following the last section, the expectation value of any operator f(ω(a))
containing only odd traces can be written in terms of the free model quantities
as

〈f(ω(a))〉 = 1
Z

∫
[Dω]f(ω)e− 1

2ω
T (1−X)ω . (3.40)

Thus the propagators of ωk(a) in the interacting theory are given by

〈ωk(a)ωl(a)〉 =
( 1

1− X

)
k,l
≡ Dk,l . (3.41)

Multiple correlators can be obtained by Wick contraction with propagator D.

What we are really interested in are the operators On(a). Thus we define the
analogue of ωk(a), which are by definition diagonal and suitably normalized:

ω̂k(a) ≡ O2k+1(a)√
G

(0)
2k+1

, 〈ω̂k(a)ω̂l(a)〉 = 〈trϕ2k+1 tr ϕ̄2l+1〉
〈trϕ2k+1 tr ϕ̄2l+1〉(0)

= δkl
(
1 + ∆k(λ) +O(1/N)2) .

(3.42)
Comparing with (3.34), we find that ∆k(0) = 0. As pointed out in [229], from
the Gram-Schmidt procedure, one finds from (3.41) that:7

1 + ∆k(λ) =
det D(k)

det D(k−1)
. (3.43)

In the remainder of this section, we will introduce a novel method to evaluate
the matrix elements Dkl and the quantity ∆k both numerically and analytically.

7Here we use A(k) to denote the upper left k × k block of the matrix A.
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3.3.1 Fredholm integral equations

To calculate ∆k(λ) numerically one could truncate the matrix (3.4) to size
M × M with M large. The calculation of (3.43) then only involves linear
algebra with finite matrices. However, for large M , there are many integrals to
calculate numerically which is slow. We therefore proceed as follows. If V is an
n×m matrix, it is easy to check that

(1 + V V T )−1 = 1− V (1 + V TV )−1V T . (3.44)

Notice that the inverse on the left is of an n× n matrix, whereas the inverse on
the right is of an m×m matrix. This can also be written as

(1 + V V T )−1 = 1− V Z , (3.45)

where Z is the solution of the equation (1 + V TV )Z = V T .

A limiting procedure for m→∞ then gives the following result. If Vk(t) are
functions with k = 1, . . . , n and t ∈ [0,+∞[ and if we define a matrix V V T as

(V V T )kl =
∫ +∞

0
dt Vk(t) Vl(t) , (3.46)

then
(1 + V V T )−1

kl = δkl −
∫ +∞

0
dt Vk(t) Zl(t) , (3.47)

where Zk(t) is the solution of the integral equation

Zk(t) +
∫ +∞

0
ds M(t, s)Zk(s) = Vk(t) , (3.48)

with M(t, s) =
∑n
k=1 Vk(t)Vk(s). The matrix X defined in (3.4) has the form

(3.46), thus its inverse matrix D can be written using (3.47) as

Dkl = δkl − (−1)k+l√2k + 1
√

2l + 1
∫ +∞

0
dt v(t)J2k+1(t)Ψ2l+1(t) , (3.49)

where Ψ2l+1(t) is the solution of the integral equation

Ψ2k+1(t) +
∫ +∞

0
ds K(t, s)Ψ2k+1(s) = v(t)J2k+1(t) , (3.50)

with

K(t, s) = v(t)KB(t, s)v(s) , and v(t)2 = 16π√
λ
W

(
2πt√
λ

)
.
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Here KB(t, s) is the Bessel kernel [245], which can be evaluated in closed form
as [229]8:

KB(t, s) ≡
+∞∑
k=1

(2k+1)J2k+1(t)J2k+1(s) = −1
2

ts

t2 − s2 (tJ1(t)J2(s)− sJ2(t)J1(s)) .

(3.51)
All in all, we have converted the original definition (3.41) of Dkl, which uses the
inverse of an infinite matrix, to an expression which uses instead the solution of
an integral equation. In Section 3.3.2 we will perform a check of the equations
derived above by comparing against the expansion in small λ. We are not
able to solve the integral equation (3.50) analytically, therefore we resort to a
numerical method which we discuss in Section 3.3.3.

3.3.2 Analytical comparison against small λ expansion

In this section we calculate the small λ expansion of Dk,l using equations (3.49)

and (3.50). For convenience, in this section, we use the notation µ =
√
λ

2π . We
also change variables t/µ = x and s/µ = y and define χ2k+1(x) = Ψ2k+1(µx).
Equations (3.49) and (3.50) then become

Dkl = δkl−(−1)k+l√2k + 1
√

2l + 1 (8µ)1/2
∫ +∞

0
dxW (x)1/2J2k+1(µx)χ2l+1(x) ,

(3.52)
and

χ2k+1(x)+8
∫ +∞

0
dy W (x)1/2 KB(µx, µy)W (y)1/2χ2k+1(y) =

(
8
µ

)1/2
W (x)1/2 J2k+1(µx) .

(3.53)
Using the Taylor series expansion of Bessel functions, equation (3.51) leads to
the following small λ (or equivalently small µ) expansion

KB(µx, µy) = 1
768x

3y3µ6 − 1
12288(x5y3 + x3y5)µ8 +O(µ)10 .

Therefore, up to this order, the kernel of the integral operator in (3.53) is
degenerate, and the integral equation can be solved exactly.9 We can thus write

K(x, y) =
3∑
i=1

ai(x)bi(y) +O(µ)10 , (3.54)

8A short proof of this identity can be found in [246].
9See Appendix B.3 for more details on how to implement this and for the notation we use.
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with

a1(x) = 8
768x

3W (x)1/2 , b1(y) = y3W (y)1/2µ6 ,

a2(x) = − 8
12288x

5W (x)1/2 , b2(y) = y3W (y)1/2µ8 ,

a3(x) = − 8
12288x

3W (x)1/2 , b3(y) = y5W (y)1/2µ8 .

The 3× 3 matrix
Aki =

∫ +∞

0
dx bk(x)ai(x) , (3.55)

can be calculated analytically by employing the Mellin transform∫ +∞

0

dx

x
xp W (x) = Γ(p− 1)ζ(p− 2) , (3.56)

to find

A =



5
4ζ(5)µ6 −105

32 ζ(7)µ6 − 5
64ζ(5)µ6

5
4ζ(5)µ8 −105

32 ζ(7)µ8 − 5
64ζ(5)µ8

105
2 ζ(7)µ8 −945

4 ζ(9)µ8 −105
32 ζ(7)µ8

+O(µ)10 . (3.57)

The inverse is given by

(1 +A)−1 =


1− 5

4ζ(5)µ6 105
32 ζ(7)µ6 5

64ζ(5)µ6

−5
4ζ(5)µ8 1 + 105

32 ζ(7)µ8 5
64ζ(5)µ8

−105
2 ζ(7)µ8 945

4 ζ(9)µ8 1 + 105
32 ζ(7)µ8

+O(µ)10 .

Equation (B.36) then gives

χ2k+1(x) =
(

8
µ

)1/2
W (x)1/2J2k+1(µx)

−
3∑

i,j=1

∫ +∞

0
dy ai(x)(1 +A)−1

ij bj(y)
(

8
µ

)1/2
W (y)1/2J2k+1(µy) .
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One can now expand the Bessel functions again as a series in small µ and
calculate the integral with (3.56). This gives an expansion for χ2k+1(x) at small
µ. The result of this procedure is fairly complicated and we do not present it
explicitly here. Finally, inserting χ2k+1(x) into equation (3.52) gives Dkl as a
series in µ:

D11 = 1− 5
4ζ(5)µ6 + 105

16 ζ(7)µ8 − 1701
64 ζ(9)µ10 +

(
25
16ζ(5)2 + 12705

128 ζ(11)
)
µ12 +O (µ)13

,

D12 = D21 = 7
32
√

15 ζ(7)µ8 − 105
64
√

15 ζ(9)µ10 + 1089
128
√

15 ζ(11)µ12 +O (µ)13
,

D22 = 1− 63
64ζ(9)µ10 + 1155

128 ζ(11)µ12 +O (µ)13
.

This then finally leads to

∆1(λ) = −5
4ζ(5)µ6 + 105

16 ζ(7)µ8 − 1701
64 ζ(9)µ10 +

(
25
16ζ(5)2 + 12705

128 ζ(11)
)
µ12 +O (µ)13

,

∆2(λ) = −63
64ζ(9)µ10 + 1155

128 ζ(11)µ12 − 27885
512 ζ(13)µ14 +O (µ)15

.

This agrees with equations (3.37) and (3.38) in [229]. Since the results in [229]
were obtained by a different method we view this as a consistency check of our
approach.

3.3.3 Numerical method for the calculation of Dkl and ∆k(λ)

To solve the integral equation (3.50) we employ numerics and use the Nyström
method. This method is well known and is based on discretizing the integral
appearing in the integral equation in the schematic form∫ +∞

0
dt f(t) ≈

m∑
a=1

waf(ta) with m large . (3.58)

Here, wa ≥ 0 are weights and ta are the discretization points. The upper left
p× p block of the matrix D is then equal to

D(p) = 1p×p − V (1m×m + K)−1 VT , (3.59)
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where V is a p×m matrix and K is an m×m matrix given by

Vka = √wa (−1)k
√

2k + 1 J2k+1(ta) v(ta) ,

Kab = √wa K(ta, tb)
√
wb .

(3.60)

If m → ∞, (3.59) should converge to the correct result. All in all, what we
have done is instead of truncating the original matrix (3.4) to size M ×M and
treating the integrals over the Bessel functions exactly, we have taken M →∞
and discretized the integrals.

There are many discretization schemes (also known as quadrature rules) that
one can use in (3.58). Some of these are discussed in Appendix B.2. We chose
the Fejér type 1 quadrature rule. In this rule, we also have to truncate the
integral ∫ +∞

0
dt f(t) ≈

∫ L

0
dt f(t) ≈

m∑
a=1

waf(xa) .

So we have to take L and m both large to get accurate results. More details on
Fejér type 1 and the values of L and m can be found in Appendix B.2. As an
illustration, the two graphs in Figure 3.1 were made using equation (3.59) with
appropriate settings for L and m. As a check on the accuracy of the numerical
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Figure 3.1: 1 + ∆k(λ) as function of λ with k = 1 (left) and k = 2 (right).

algorithm we can compare our numerical result against the analytic calculations
of the small λ expansion of ∆k(λ) discussed in [229]. The first few terms in the
small λ expansion for ∆1 read

∆1(λ) = − 5 ζ(5)
256π6λ

3 + 105 ζ(7)
4096π8 λ

4 − 1701 ζ(9)
65536π10λ

5 + · · · . (3.61)
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In Figure 3.2 we compare this analytic result against our numerics. It is clear
that there is very good agreement between the two calculations for small values
of λ.10

As discussed in [237], the radius of convergence of the series for ∆1 is λc = π2

because of the branch point located at λ = −π2, see also [247].

1 2 3 4
λ

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Figure 3.2: Black dots: numerical results for 1 + ∆1(λ). Red line: 1− 5 ζ(5)
256π6λ

3;
Orange line: 1 − 5 ζ(5)

256π6λ
3 + 105 ζ(7)

4096π8 λ
4; Green line: 1 − 5 ζ(5)

256π6λ
3 + 105 ζ(7)

4096π8 λ
4 −

1701 ζ(9)
65536π10λ

5.

In Table 3.1 we provide additional numerical evidence for the agreement between
the two methods.

10Since the numerical coefficients multiplying the powers of λ in (3.61) are small (10−5 or
smaller) we can treat order 1 values for λ as “small”.
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n\λ 1 2 3 4 20
1 −0.0000210659 −0.000168527 −0.000568778 −0.00134822 −0.168527
2 −0.0000183417 −0.000124939 −0.000348117 −0.000650816 0.267347
3 −0.0000186194 −0.000133826 −0.000415601 −0.000935195 −0.621336
4 −0.0000185927 −0.000132119 −0.000396155 −0.000825934 1.08587
5 −0.0000185952 −0.000132442 −0.000401667 −0.000867224 −2.1399
numerics −0.000018595 −0.000132391 −0.000400453 −0.000855928 −0.0326525

Table 3.1: Comparison of the small λ expansion against numerical calculations of
∆1(λ) for different values of λ. The last row gives the value which is calculated
with the numerical method explained in Section 3.3.3. The first row with n = 1
gives the result using 1 term in the expansion (3.61), the second row with n = 2
gives the result using 2 terms in the expansion (3.61) and so on. It is clear that
for small λ < λc (λ = 1, 2, 3, 4 in the table) the series (3.61) converges to the
numerical result as n is increased. For large λ > λc (λ = 20 in the table), the
series (3.61) does not converge, but the numerical method of Section 3.3.3 still
works.

We can proceed similarly and test our method for k = 2, see Table 3.2. To do
this we use the result for the small λ expansion of ∆2 from [229]

∆2(λ) = − 63 ζ(9)
65536π10λ

5 + 1155 ζ(11)
524288π12λ

6 − 27885 ζ(13)
8388608π14λ

7 + · · · . (3.62)

n\λ 1 2 3 4 20
1 −1.02857 × 10−8 −3.29142 × 10−7 −2.49942 × 10−6 −1.05325 × 10−5 −3.29142 × 10−2

2 −7.90102 × 10−9 −1.76523 × 10−7 −7.60998 × 10−7 −7.64937 × 10−7 1.19705 × 10−1

3 −8.26546 × 10−9 −2.23172 × 10−7 −1.55805 × 10−6 −6.73606 × 10−6 −3.46789 × 10−1

4 −8.21887 × 10−9 −2.11244 × 10−7 −1.25232 × 10−6 −3.68225 × 10−6 8.46105 × 10−1

5 −8.22428 × 10−9 −2.14016 × 10−7 −1.35889 × 10−6 −5.1016 × 10−6 −1.92606
10 −8.22374 × 10−9 −2.13514 × 10−7 −1.33223 × 10−6 −4.65977 × 10−6 7.26826 × 101

num. −8.22374 × 10−9 −2.13514 × 10−7 −1.3323 × 10−6 −4.66487 × 10−6 −1.79469 × 10−3

Table 3.2: Comparison of the small λ expansion against numerical calculations
of ∆2(λ) for different values of λ. The notation is the same as in Table 3.1 and
the conclusions are similar.

3.3.4 Large λ expansion of Dkl and ∆k: a conjecture

As outlined above and discussed in detail in [229] it is relatively easy to calculate
the small λ expansion of Dkl. The large λ expansion appears to be much more
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challenging. The first term was calculated in [229] and reads (assuming k ≤ l),

Dkl = 4π2

λ

√
(2k + 1)(2l + 1) k(k + 1) +O(1/λ3/2) . (3.63)

The matrix elements for k ≥ l follow from the symmetry Dkl = Dlk. We are not
able to rigorously calculate the subleading terms in the expansion analytically.
However, based on numerical investigations, we make the following conjecture
for Dkl with k ≤ l,

Dkl = 4π2
√

(2k + 1)(2l + 1)k(k + 1)
λ

{
1− 8l(l + 1) log 2

λ1/2

+2π2

9λ [3l(l + 1)(l − k)(l + k + 1) + 2(k − 1)k(k + 1)(k + 2)]

+16 log2 2
λ

l(l + 1)[k(k + 1) + l(l + 1)− 1]

−16π2 log 2
9λ3/2 L[K(K − 2) + L(L− 2)]

−64 log3 2
9λ3/2 L[2L2 + 6KL− 7L− 7K + 2K2 + 6]

− ζ(3)
3λ3/2L[3 + 4(4K2 + 4L2 − 5K − 5L− 6KL)] +O(λ)−2

}
(3.64)

We have used the notation K = k(k + 1) and L = l(l + 1) to shorten some of
the coefficients. The expression (3.64) was obtained as follows. First, we used
the numerical method outlined in Section 3.3.3 to calculate Dkl for many values
of k, l and many λ ranging11 from e8 to e16. We then used this numerical data
and the function LinearModelFit[] of Mathematica to estimate numerically
the coefficients in the large λ expansion of Dkl. Finally, the precision in these
fitted coefficients was sufficiently high so that we could guess12 the closed form
expression (3.64).

The analytical form (3.64) for the strong coupling behavior of Dkl is used
as ingredient in the calculation of the three point function of single trace
chiral/anti-chiral correlators discussed in Section 3.5. It can also be directly

11For λ greater than e16, our algorithm converges too slowly, and the precision obtained is
not good enough.

12We were able to guess a closed form expression of this additional term only after the
publication of [248]. In [248] an analytical expression for the determinant of Dkl is obtained,
this helped us to guess closed from expressions of the components Dkl themselves.
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used in (3.43) to find the quantity ∆k(λ) that controls the two-point function
of twisted operators. Using (3.43) and (3.64) we find

1 + ∆k(λ) = 8π2k(2k + 1)
λ

[
1− 16k log 2

λ1/2 + 32k(4k − 1) log2 2
λ

+O(λ−3/2)
]
.

(3.65)
A notable fact is that the π4 terms appearing at O(1/λ2) order in Dkl, see
(3.64), cancel with each other in ∆k, leading to a relatively simple result that
improves on the calculations in [229] by providing two more terms in the large
λ expansion. Some observations can be made based on the leading three terms.
First, the powers series is in inverse powers of

√
λ, which is compatible with the

string theory perturbation series in α′ after using the identification λ−1 ∼ α′2.
Second, the coefficients of the three terms are polynomials of k, whose order
increases by 1 with each term in the series and which exhibit a factorized form.
Third, we find an increasing power of log 2 in each term in the perturbative
series. This factor increases the degree of transcedentality of each perturbative
coefficient and perhaps suggests a renormalization of the coupling λ.

To illustrate the agreement between the analytic conjecture (3.65) and our
numerical results we present a few plots. To facilitate the comparison we define
the following three quantities that represent the three terms on the right hand
side of the expansion (3.65)

∆(1)
k (λ) = 8π2

[
k(2k + 1)

λ

]
,

∆(2)
k (λ) = 8π2

[
−16k2(2k + 1) log 2

λ3/2

]
,

∆(3)
k (λ) = 8π2

[
32k2(2k + 1)(4k − 1) log2 2

λ2

]
.

(3.66)

In the figures below, we have added error bars on the numerical data of 1+∆k(λ)
with an estimation of accuracy and we have set k = 1 in Figures 3.3 and 3.4.
Similar results can be obtained for other values of k which we illustrate for
k = 2, 3 in Figure 3.5.
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(a) Red dots: log (1 + ∆1(λ)).

Red line: log
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(b) Orange dots: log
(
−(1 + ∆1(λ)−∆(1)

1 (λ)
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−∆(2)
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(c) Green dots:

log
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1 (λ)−∆(2)

1 (λ)
)
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line: log
(

∆(3)
1 (λ)

)
.

Figure 3.3: A loglog plot of 1 + ∆1(λ) and its asymptotic expansion. For large
λ, the numerical data agrees very well with the asymptotic expansion. This
indicates that all terms in the asymptotic expansion (3.65) are correct.
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Figure 3.4: A combination of Figures 3.3a-3.3c. The slope of the lines decrease
if more terms in the asymptotic expansion are included. This illustrates that
the coefficients in the asymptotic expansion (3.65) are correct.

Similarly, Figure 3.5 serves as evidence that the asymptotic expansion (3.65) is
valid for k = 2 and k = 3.
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log λ

-15
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-5

5

Figure 3.5: Similar to Figure 3.4, but with k = 2 (left) and k = 3 (right)
respectively.

3.3.5 Large λ expansion of ∆k(λ): more terms

The matrix elements Dkl are harder to evaluate than the single-index quantity
∆k that controls the two-point functions of physical interest. Utilizing the same
numerical method described in Section 3.3.3, we can evaluate ∆k(λ) directly
for λ going up to e16 and k up to 25. A selection of the numerical data we have
obtained can be found in Appendix B.4. This numerical data agrees very well
with the three terms in the expansion in (3.65) as expected and allows us to
find an expression for more subleading terms in the large λ expansion of ∆k(λ).

For future convenience, let us denote the coefficients in the large λ expansion
with Ci such that 1 + ∆k(λ) =

∑
i Ci

( 1
λ

)i. At O(1/λ5/2), the structure of the
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coefficient is more or less the same as in (3.65), but there is a curious shift in
the polynomial factor (4k − 3), namely we find:

C5/2 = −8π2 ·32(log3 2) ·k2(2k+1)(4k−1)
[
(4 + 4ε5/2)k − (3− ε5/2)

]
, (3.67)

where ε5/2 ≈ 0.107738, which does not appear to be any simple “closed form”
number. Proceeding to higher order we find that at O(1/λ3), the factor (4k− 3)
which is shifted in C5/2 is however unshifted, but there is a new factor (4k − 7)
that is shifted:

C3 = 8π2·16(log4 2)·k2(2k+1)(4k−1)(4k−3)[(4+4ε3)k−(7−ε3)], ε3 ≈ −0.1381 .
(3.68)

We have also observed a numerical coincidence between the two shifts. Namely,
we find the following relation to be correct up to four digits:

ε3 ≈ 8ε5/2 − 1 ≈ −0.13809664 . (3.69)

The fact that we do not have closed form fully analytic expressions for C5/2 and
C3 but rather have these coefficient depend on the numerical constants ε5/2 and
ε3 limits the accuracy of our numerical investigations due to the limited accuracy
in the LinearModelFit[] function in Mathematica. The highest order in the
large λ expansion we could reliably evaluate is at O(1/λ7/2) for which we find
the coefficient

C7/2 = 8π2 · (log5 2) · 28k2(2k+ 1)(4k− 1)(4k− 3) · [(1 + ε7/2)k2− (2− 2ε7/2)] ,
(3.70)

where ε7/2 ≈ 0.023. The numerical data we used to obtain the expressions for
C5/2, C3, and C7/2 above is presented in Table 3.3.

Note added: While we were finalizing version 1 of this manuscript, [248] appeared
in which the large λ expansion of ∆k(λ) is calculated analytically. The result
in [248] agrees with our conjecture (3.65). Their expansion also agrees with the
expressions in (3.67) and (3.68). Additionally, they obtained the closed form
expressions

ε5/2 = 1
3 −

ζ(3)
16 log3 2

and ε3 = 5
3 −

ζ(3)
2 log3 2

, (3.71)

which agree with our numerical estimates discussed above. It turns out that
our numerics was not accurate enough to determine the full structure of the
coefficient C7/2 in (3.70). Namely, instead of the factor in the square brackets
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k C5/2 C3 C7/2 L

1 −11652. −9.6× 103 3× 104 5000
2 −70322(2± 2). −5.0× 104 5× 106 6000
3 −6.06468× 106 5.83× 106 1.46× 108 6000
4 −2.695(60± 1)× 107 5.447× 107 1.31× 109 6000
5 −8.4686(7/8)× 107 2.616× 108 6.8× 109 8000
6 −2.145944× 108 8.930× 108 2.55× 1010 8000
7 −4.69624× 108 2.459× 109 7.7(4± 2)× 1010 8000
8 −9.239(10± 1)× 108 5.831× 109 2.01× 1011 8000
9 −1.67634× 109 1.2384× 1010 4.65× 1011 8000
10 −2.85418× 109 2.416× 1010 9.8(3± 2)× 1011 8000
15 −2.20129× 1010 3.0492× 1011 1.731× 1013 8000
20 −9.34553× 1010 1.7983× 1012 1.313× 1014 8000
25 −2.8645× 1011 7.056× 1012 6.31× 1014 8000

Table 3.3: The numerical values for the coefficients Ci with different k. The
range of our discretization points is [0, L].

[(1 + ε7/2)k2 − (2− 2ε7/2)], the analytical calculation in [248] yields(
− 9ζ5

128 log5 2
+ ζ3

log3 2
− 32

15

)
k2 +

(
− 9ζ5

128 log5 2
− 3ζ3

4 log3 2
+ 16

5

)
k

+
(
− 27ζ5

2048 log5 2
− ζ3

4 log3 2
− 16

15

)
≈ [1.02051k2 + 0.0371916k − 2.05448] .

(3.72)

The rest of the expression for C7/2 in (3.70) agrees with the analytic result in
[248].

3.4 Free energy F and untwisted correlators

Our goal in this section is to compute the free energy of the matrix model at
hand. To this end we employ the Weinstein-Aronszajn determinant identity for
an m× n matrix A and an n×m matrix B which reads

det(1m×m +AB) = det(1n×n +BA) . (3.73)

We can identify the matrix X defined in (3.4) as the product of two Ak(t) which
can be regarded as a generalized matrix with one discrete index k ∈ N+ and
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one continuous index t ∈ (0,∞). After the change of variables t→ 2πt√
λ
we can

rewrite (3.4) as

Xkl = −
∫
dtAk(t)Al(t), Ak(t) ≡ (−1)k

√
(2k + 1) 16π√

λ
W

(
2πt√
λ

)
J2k+1(t) .

(3.74)
Using a continuous version of formula (3.73), one can transform the free energy
difference F defined in (3.39) as follows:

F = 1
2 log det(1− X) = 1

2 log det
(

1 +
∫
dtAk(t)Al(t)

)

= 1
2 log det

(
1 +

∑
k

Ak(t)Ak(s)
)
.

(3.75)

We therefore conclude that F is the logarithm of a Fredholm determinant:

F = 1
2 log det(1 +K) , (3.76)

where 1 +K is the functional operator that we encountered in (3.50). This will
be our starting point for the calculation of the free energy.

As a consistency check on the manipulations performed above, we can compare
our results derived from (3.76) against the small λ expansion derived in [232] by
other methods. In Section 3.3.2, we showed that when performing an expansion
for small λ the kernel is degenerate. Therefore, we can calculate the Fredholm
determinant in (3.76) using Equation (B.43). To this end we employ the results
and notation of Section 3.3.2. For the free energy up to order µ10 we find

F = 1
2 log det(1 +A) +O (µ)10

, (3.77)

where the 3× 3 matrix A is given in equation (3.57). This in turn leads to

F = 5
8ζ(5)µ6 − 105

32 ζ(7)µ8 +O (µ)10
. (3.78)

This result agrees with the first two terms in Equation (3.4) in [232]. It is
straightforward but tedious to extend our method to higher orders in µ. In
particular we have successfully compared our results to the terms up to order
µ20 in Equation (3.4) of [232].13

13All the terms agree, apart from one. In [232] there is a term 3.6355
8 ζ(13)λ̂7, but we find

instead 212355
8 ζ(13)λ̂7. Given that 3.6355

8 ζ(13)λ̂7 is the only term with irrational coefficient
multiplying a ζ function in Equation (3.4) in [232], this is probably a typo.
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3.4.1 Numerical method for the calculation of F

Unfortunately we are not able to analytically calculate the Fredholm determinant
in (3.76) for all values of λ. To proceed we calculate F numerically with the
Bornemann method [249]. This numerical method is based on the Nyström
method for solving integral equations. Namely, if wa ≥ 0 are weights and ta are
discretization points of a quadrature method, with a = 1, . . . ,m, then

det(1 +K) ≈
m

det
a,b=1

(
δab +√waK(ta, tb)

√
wb

)
. (3.79)

This algorithm is simple but very efficient for smooth kernels. There are many
discretization schemes one can use in (3.79). As in Section 3.3.3 we have
chosen Fejér type 1. As an illustration of the results obtained via this method,
in Figure 3.6 we present the numerical results for the free energy with some
appropriate settings for the quadrature parameters L and m.

200 400 600 800 1000
λ

0.5

1.0

1.5

2.0

F

Figure 3.6: F as a function of λ computed with the Bornemann method.

A table with numerical values of F can be found in Appendix B.4. As a
consistency check on the numerical implementation of the Fredholm determinant
algorithm we can compare the numerical results against the analytic small λ
expansion. We use the small λ expansion of Equation (3.4) in [232] which we
have independently reproduced:

F = F3λ
3 + F4λ

4 + F5λ
5 + F6λ

6 + · · · (3.80)

with F3 = 5
512π6 ζ(5), F4 = − 105

8192π8 ζ(7) etc. The results are illustrated in
figure 3.7.
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Figure 3.7: Black dots: numerical calculation of F with the Bornemann method.
Red line: F3λ

3; orange line: F3λ
3 +F4λ

4; green line: F3λ
3 +F4λ

4 +F5λ
5; blue

line: F3λ
3 + F4λ

4 + F5λ
5 + F6λ

6. Clearly the numerical and analytic results
agree very well.

In Table 3.4 we provide more evidence for the validity of our numerical method.
As discussed in [232], the radius of convergence of λ is λc = π2, which is the
same as for N = 4 SYM.
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n\λ 1 2 3 4 20
1 0.0000105329 0.0000842635 0.000284389 0.000674108 0.0842635
2 0.00000917083 0.0000624697 0.000174058 0.000325408 −0.133674
3 0.00000931482 0.0000670777 0.00020905 0.000472864 0.327125
4 0.00000930041 0.0000661549 0.000198539 0.000413804 −0.595688
5 0.00000930182 0.0000663362 0.000201637 0.00043701 1.2173
10 0.0000093017 0.0000663066 0.000200935 0.000430498 249.84
15 0.0000093017 0.0000663066 0.000200935 0.000430495 960.633
numerics 0.0000093017 0.0000663066 0.000200935 0.000430494 0.0175565

Table 3.4: Comparison of small λ expansion against numerical calculation of
the free energy for different values of λ. The last row gives the value calculated
with the Bornemann method. The first row with n = 1 gives the result using 1
term in the expansion (3.80), the second row with n = 2 gives the result using
two terms in the expansion (3.80) and so on. One can see that for small λ < λc
(λ = 1, 2, 3, 4 in the table) the series (3.80) converges to the numerical result as
n increases. For large λ > λc (λ = 20 in the table), the series (3.80) does not
seem to converge, but the numerical method still yields sensible results.

3.4.2 Large λ expansion of F : a conjecture

Using the numerical method detailed above we calculated F for λ going up
to e18. Fitting the numerical data listed in table 3.5, we observed that the
following asymptotic expansion with coefficients in closed form agrees very
accurately with the data

F = 1
8
√
λ− 3

8 log
(
λ

λ0

)
− 3

4
log 2√
λ
− 3

2
log2 2
λ

+O(λ−3/2) . (3.81)

The constant λ0 ≈ 7.723901172 can be determined with high precision by our
algorithm whose closed-form formula was found later on by the authors of [248]:

λ0 = 214/9e8ζ′(−1)π2 , (3.82)

which agrees with the numerical value we found. It is tempting to speculate that
the coefficient of the log λ term above is related to the difference in conformal
anomalies between the E theory and N = 4 SYM, see (3.1), but we were not
able to make this statement quantitatively precise.

Interestingly the result in (3.81) is in conflict with the leading order result
presented in [232] where it was argued that F ∼ 1

2π
√
λ. As illustrated in
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λ F
e8 4.5816147173(9±6)
e8.5 6.3347294273322(8±8)
e9 8.637894890881(0±9)
e9.5 11.64760271190(0±6)
e10 15.5647287113(94±21)
e10.5 20.6471553368(9±4)
e11 27.225974672885(68±15)
e11.5 35.726290419555(6±8)
e12 46.69392596735(85±24)
e12.5 60.8297166581(16±11)
e13 79.033540756198(14±11)
e13.5 102.460855469831(90±14)
e14 132.595289990373(00±26)
e14.5 171.34185630862(66±11)
e15 221.1466338982(52±31)
e15.5 285.1504476051873(00±31)
e16 367.3861937408442(07±28)

Table 3.5: The numerical values of F that we used for numerical fitting. The
range of our sampling points is (0, L), where in practice we take L = 12000.

Figure 3.8 this is in clear disagreement with our numerical results. While we are
not completely convinced why the result in [232] disagrees with ours we suspect
that it could be due to the assumption in [232] that the leading order behavior
of F for large λ is controlled by the leading order behavior of X. Namely, in
[232] the authors use14

F = 1
2 log det (1− X) = 1

2 log det
[
1 + λ

2π2 S +O(λ0)
]

= 1
2 log det

(
1 + λ

2π2 S
)

+ o(
√
λ) .

(3.83)

Both analytical and numerical analysis supports the following behavior, see
[232]

1
2 log det

(
1 + λ

2π2 S
)
∼ 1

2π
√
λ (3.84)

Thus we suspect that there is something wrong in going from the first to the
second line in (3.83) which is the cause of the conflict with our numerical

14The expression of matrix S is given in (B.4).
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Figure 3.8: The counterpart of Figure 4 in [232]. The green and dark yellow lines
represent the constants 1/2π and 1/8, respectively. The blue line is the analytic
approximation in (3.81). The red dots are the numerical results obtained by
evaluating the Fredholm determinant with the Bornemann method.

analysis. To illustrate this subtlety we have shown numerically that F/
√
λ can

also depend on the sub-leading order expansion of X, for example, if we multiply
the identity matrix in (3.84) with an arbitrary constant, then the coefficient of√
λ in the final result changes. As discussed in Appendix B.1 similar subtle

issues are present in the analytic evaluation of ∆k.

3.4.3 Untwisted correlators and Wilson loops in the E theory

The free energy in (3.81) can be used to calculate the large λ behavior of the
functions δk(λ) that control the two-point functions of the untwisted sector
operators in the E theory, see (3.3). It was argued in [229] that δk(λ) obey the
following relation

δk(λ) = −2k
[
(2k2 − 1)λ∂λF + (λ∂λ)2F

]
, (3.85)

where F is the free energy defined in (3.39). Using (3.85) and the conjectured
analytic form of the large λ behavior of F in (3.81) we find that the large λ
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behavior of δk(λ) is

δk(λ) = −k(4k2 − 1)
16

√
λ+ 3

8k(4k2 − 2)

− 3
8
k(4k2 − 3) log 2√

λ
− 3

2
k(4k2 − 4) log2 2

λ
+O(λ−3/2) . (3.86)

This is a new result that provides three more orders in the large λ expansion
of δk(λ) as compared to the previous literature [229, 232]. Note that we again
find a discrepancy between our result for the coefficient of the

√
λ term in δk(λ)

above and the results of [232]. This is due to the discrepancy in F discussed
around (3.83).

As a final application of our result for F we can calculate the first four terms in
the strong coupling expansion of the function q(λ) that controls the vacuum
expectation value of a 1/2-BPS circular expectation loop in the E theory. As
derived in [232] and discussed around equations (3.12) and (3.13) this function
can be calculated by taking a derivative of F , ∆q(λ) = −λ2

4 ∂λF(λ). Using our
result for F in (3.81) we find

∆q(λ) = − 1
64λ

3/2 + 3
32λ−

3 log 2
32 λ1/2 − 3 log2 2

8 +O(λ−1/2) . (3.87)

3.5 Three point functions

In this section, we study the strong coupling expansion of three-point functions
of single trace operators in the E theory. As discussed in Section 3.2, Gm,n,
which are defined in equation (3.20), can be calculated with an expectation
value in the matrix model. In the planar limit this is:

Gm,n = 〈Om(a)On(a)Om+n(a)〉 . (3.88)

Its value in N = 4 YM is given by, see for example [234],

G(0)
m,n = mn(m+ n)

2

(
N

2

)m+n−1
. (3.89)

We will calculate ∆m,n(λ) which is defined by

Gm,n = G(0)
m,n

(
1 + ∆m,n(λ) +O(1/N)2) . (3.90)
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There are three possibilities for the parities of m and n. If m and n are both
even, the three point functions belong to the un-twisted sector, and therefore in
the planar limit ∆2k,2l = 0. For the cases where m and n are both odd, or one
is odd and the other is even, ∆m,n is generally non-zero. Their leading order
behaviour at large λ was calculated previously in [234]. In the next few sections
we will calculate the next three terms in its expansion. The reader who is not
interested in the calculation can find the result in equations (3.112) and (3.113)
below. We want to emphasize that the calculation below is fully analytic, but
we use the conjectured form (3.64) for Dkl as input.

Before calculating ∆m,n we need to calculate several auxiliary objects called T ,
C and M . The T ’s are defined by the expectation values

Tm = 〈Ωm(a)〉, Tm,n = 〈Ωm(a)Ωn(a)〉, etc . (3.91)

The mixing coefficients Cm,n were defined previously in equation (3.33). The
matrix M is given by inverting a matrix: M = (1 +C)−1. We will first present
the expressions for T , C, M in the untwisted sector and twisted sectors. These
results can be found in [234] but we include them here because we need them
in Section 3.5.1 where we put everything together and calculate the strong
coupling expansion of ∆m,n(λ). The two-point functions of operators with even
dimensions belong to the un-twisted sector, therefore15:

T2k,2l = T
(0)
2k,2l = Nk+l+2

2k+l
(2k)!(2l)!

k!(k + 1)!l!(l + 1)! . (3.92)

In N = 4 YM, the mixing coefficients are

C(0)
n,m = lim

λ→0
Cn,m =

(
N

2

)n−m
2
(

n
n−m

2

)
, if n > m, (3.93)

and C(0)
n,m = 0 if n ≤ m, thus for the un-twisted sector, we have

C2k,2l = C
(0)
2k,2l =

(
N

2

)k−l( 2k
k − l

)
, if k > l. (3.94)

We introduce the vev-less version of Ωn(a):

Ω̂n(a) ≡ Ωn(a)− 〈Ωn(a)〉 = Ωn(a)− Tn, (3.95)

and we denote the transformation coefficients from Ω̂n(a) to On(a) as Mn,m:

On(a) =
∑
m≤n

Mn,mΩ̂m(a). (3.96)

15All equations presented in this section are valid at the leading order in the large N
expansion.
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Using (3.32) on finds:

Mn,m =
(

1
1 + C

)−1

n,m

. (3.97)

The matrices M and C are lower-triangular, so we obtain from (3.93)

M (0)
n,m =

(
−N2

)n−m
2 n

m

(
n+m−2

2
n−m

2

)
, if n ≥ m, (3.98)

and M (0)
n,m = 0 if n < m. Therefore in the un-twisted sector we have

M2k,2l = M
(0)
2k,2l =

(
−N2

)k−l
k

l

(
k + l − 1
k − l

)
, if k ≥ l. (3.99)

When λ = 0, one has [250]:

O(0)
n (a) = tr pn(a), pn(a) ≡ 2

(
N

2

)n
2

Tn

(
a√
2N

)
+ δn,21 = an + · · · .

(3.100)
where Tn(x) is the Chebyshev polynomial of the first kind.

The two-point functions T2k+1,2l+1 can be evaluated using Dk,l. From (3.98)
and (3.100), one finds

Ω2k+1(a) =
(
N

2

)k+ 1
2 k−1∑
i=0

ck,iωk−i(a), with ck,i =
(

2k + 1
i

)√
2k − 2i+ 1,

(3.101)
and therefore for k, l ≥ 1

T2k+1,2l+1 =
(
N

2

)k+l+1 k−1∑
i=0

l−1∑
j=0

ck,icl,jDk−i,l−j . (3.102)
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Using our conjectured expression (3.64) for Dkl it is then straightforward to
show that

T2k+1,2l+1 =
(
N

2

)k+l+1
4π2 (2k + 1)!(2l + 1)!

k!(k − 1)!l!(l − 1)!

[
1

k + l

1
λ
− 8 log 2

λ3/2

+16 log2 2
λ2 (2k + 2l − 1) + 4π2

3λ2
k(k − 1) + l(l − 1)

k + l − 1

−32
3

log 2
λ5/2

(
π2(k(k − 1) + l(l − 1)) + 4 log2 2(k + l − 1)(2k + 2l − 1)

)
+ ζ(3)
λ5/2 (−32k2 − 32l2 + 24k + 24l + 32kl) +O(λ)−3

]
.

(3.103)
The mixing coefficients C2k+1,2l+1 for k > l ≥ 1 can be obtained from T2k+1,2l+1
using the following formula [234]:

C2k+1,2l+1 =

∣∣∣∣∣∣∣∣∣
T3,3 T3,5 · · · T3,2k+1
T5,3 T5,5 · · · T5,2k+1
...

... . . . ...
T2l+1,3 T2l+1,5 · · · T2l+1,2k+1

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

T3,3 T3,5 · · · T3,2l+1
T5,3 T5,5 · · · T5,2l+1
...

... . . . ...
T2l+1,3 T2l+1,5 · · · T2l+1,2l+1

∣∣∣∣∣∣∣∣∣ .
(3.104)

Here the denominator is the determinant of an l × l matrix T2i+1,2j+1 with
1 ≤ i, j ≤ l, and the matrix in the numerator is obtained by performing in the
last column the replacement l→ k. Substituting (3.103) in (3.104) one obtains

C2k+1,2l+1 =
(
N

2

)k−l 2k + 1
2l + 1

(
2k
k − l

)[
1− 8 log 2

λ1/2 (k − l)+

+16 log2 2
λ

(k − l)(2k − 2l − 1) + 4π2

3λ (k + l)(k − l)

−32 log 2
3λ3/2 (k − l − 1)(k − l)

(
4 log2 2(2k − 2l − 1) + π2(k + l)

)
+ ζ(3)
λ3/2 (k − l)

(
−32k2 + 16l2 − 32kl + 24k + 24l − 1

)
+O(λ)−2

]
.

(3.105)
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Inverting 1 + C with odd indices we then find that for k ≥ l

M2k+1,2l+1 =
(
−N2

)k−l 2k + 1
2l + 1

k

l

(
k + l − 1
k − l

)[
1− 8 log 2

λ1/2 (k − l)

+16 log2 2
λ

(k − l)(2k − 2l − 1) + 4π2

3λ (k + l)(k − l)

−32 log 2
3λ3/2 (k − l − 1)(k − l)

(
4 log2 2(2k − 2l − 1) + π2(k + l)

)
+ ζ(3)
λ3/2 (k − l)

(
16k2 − 32l2 − 32kl − 24k − 24l − 1

)
+O(λ)−2

]
.

(3.106)

The last quantity we will need is the three-point functions of Ωn(a). This can
be found in [234] and reads:

T2m,2k+1,2l+1 = T2m

[
1 + m(m+ 1)

N2 (k + l + 1 + λ∂λ)
]
T2k+1,2l+1 +O(1/N)4.

(3.107)

3.5.1 Three point function at large λ

Using (3.96), we have

〈O2m(a)O2l+1(a)O2p+1(a)〉 =
(m,l,p)∑

(n,r,s)=1

M2m,2nM2l+1,2r+1M2p+1,2s+1〈Ω̂2nΩ̂2r+1Ω̂2s+1〉

=
(m,l,p)∑

(n,r,s)=1

M2m,2nM2l+1,2r+1M2p+1,2s+1(T2n,2r+1,2s+1 − T2nT2r+1,2s+1) .

(3.108)
On the second line above, we substituted the definition of Ω̂n and simplified.
Using (3.107), the term in the bracket is given, in the large N limit, by

T2n,2r+1,2s+1−T2nT2r+1,2s+1 = n(n+ 1)
N2 T2n [(r + s+ 1)T2r+1,2s+1 + λ∂λT2r+1,2s+1] .

(3.109)
Using (3.108), we find that the summation of n can be performed explicitly.
Namely, using the expressions for T2n and M2m,2n in (3.92) and (3.98), one has

m∑
n=1

M2m,2nT2n
n(n+ 1)
N2 = m

(
N

2

)m−1
. (3.110)
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The sum over r, s can also be done directly using (3.103) and (3.106). Putting
everything together, we find

〈O2mO2l+1O2p+1〉 =
(
N

2

)p+l+m 16π2m

λ
l(2l + 1)p(2p+ 1)

[
1− 4 log 2

λ1/2 (2p+ 2l − 1)

+16 log2 2
λ

(2p+ 2l − 1)(p+ l − 1)

−64 log3 2
3λ3/2 (2p+ 2l − 1)(p+ l − 1)(2p+ 2l − 3)

+ ζ(3)
2λ3/2 (2p+ 2l − 1)

(
16p2 + 16l2 − 16pl − 4p− 4l − 3

)
+O(λ)−2

]
.

(3.111)
If we take m = k and p = k + l, use (3.31) and the value of G(0)

m,n in (3.89), we
finally find

1 + ∆2k,2l+1 =16π2

λ
l(k + l)

[
1− 4 log 2

λ1/2 (2k + 4l − 1) + 16 log2 2
λ

(2k + 4l − 1)(k + 2l − 1)

−64 log3 2
3λ3/2 (2k + 4l − 1)(k + 2l − 1)(2k + 4l − 3)

+ ζ(3)
2λ3/2 (2k + 4l − 1)

(
16k2 + 16l2 + 16kl − 4k − 8l − 3

)
+O(λ)−2

]
(3.112)

If we take m = k + l + 1 and p = k instead, we find

1 + ∆2k+1,2l+1 =16π2

λ
kl

[
1− 4 log 2

λ1/2 (2k + 2l − 1) + 16 log2 2
λ

(2k + 2l − 1)(k + l − 1)

−64 log3 2
3λ3/2 (2k + 2l − 1)(k + l − 1)(2k + 2l − 3)

+ ζ(3)
2λ3/2 (2k + 2l − 1)

(
16k2 + 16l2 − 16kl − 4k − 4l − 3

)
+O(λ)−2

]
(3.113)

The leading term in the large λ expansion in equations (3.112) and (3.113)
agrees with the result in [234], the next three subleading terms are our novel
results based on the conjecture for Dkl in (3.64).

In [248], which appeared while the first version of this manuscript was being
finished, it was pointed out that the expression for ∆k(λ) simplifies when using
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the variable λ′, where
(λ′)1/2 = λ1/2 − 4 log 2 . (3.114)

We observe that something similar happens for ∆k,l(λ), namely we have

1 + ∆2k,2l+1(λ) = 16π2

λ
l(k + l)

(
λ′

λ

)(2k+4l−1)/2

[
1 + ζ(3)

2(λ′)3/2 (2k + 4l − 1)
(
16k2 + 16l2 + 16kl − 4k − 8l − 3

)
+O(λ′)−2

]
,

(3.115)

and

1 + ∆2k+1,2l+1(λ) = 16π2

λ
kl

(
λ′

λ

)(2k+2l−1)/2

[
1 + ζ(3)

2(λ′)3/2 (2k + 2l − 1)
(
16k2 + 16l2 − 16kl − 4k − 4l − 3

)
+O(λ′)−2

]
.

(3.116)

That this simplification also occurs for ∆k,l(λ) seems to provide additional
support for the conjectured form of Dkl in (3.64). Also, based on the form
for ∆k(λ) in [248], it is tempting to speculate that the expressions (3.115)
and (3.116) are correct up to O(λ′)−5/2 instead of only up to O(λ′)−2 displayed
above, and that the coefficient of the next non-zero term is proportional to ζ(5).

3.6 Discussion

In this work, our main focus was on developing an efficient numerical algorithm
that allows for the calculations of correlation functions in the E theory at strong
coupling. To this end, we exploited recent supersymmetric localization results
that reduce the calculations of these observables to matrix models that can be
analyzed with a variety of techniques. Based on our numerical studies we were
able to extract analytic expression for a few of the leading terms in the strong
coupling expansion of these observables.

Parallel to our work, analytic techniques have been developed to derive these
results. The authors of [248] took advantage of techniques on Bessel kernels
developed in [251] to confirm some of the results presented in our Section 3.3
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and Section 3.4. The results were used in [252] to study the strong coupling
expansion of three-point extremal correlators.

We note that the kernel of the integral operator appearing in this chapter is
integrable [253, 254]. This type of kernel appears often in the mathematical
physics literature. In that context, one often translates the calculation to a
Riemann-Hilbert problem and the expansion for large parameters is carried out
with a non-linear steepest descent method [255]. Perhaps these methods can
also be applied to our setup to calculate the large λ expansion of the correlators
analytically.

The numerical techniques we developed can also be efficiently applied to calculate
correlators at finite values of the coupling. This provides valuable lessons about
the properties of large N gauge theories at finite coupling. This can be used
for instance to understand the convergence properties of the weak and strong
coupling expansion and to gain insights into non-perturbative effects. We believe
that very similar methods can be applied also to other examples of 4d N = 2
SCFTs that can be analyzed with supersymmetric localization. The Lagrangian
theories discussed in Section 3.2 are natural candidates for such an analysis.
Work along these lines has recently appeared in [256, 257, 258, 259] for a class of
quiver gauge theories and we hope that our techniques will find an application
and can be adapted to the study of these models.

The strong coupling results obtained here have connections to string theory
through the AdS/CFT correspondence. It will be most interesting to understand
how to calculate any of the correlators we analyzed by using world sheet methods.
This problem appears to be highly non-trivial since it requires performing string
world sheet calculations in the AdS5 × S5/Z2 orientifold at high order in the α′
perturbative expansion. We hope that our results will serve as an impetus to
tackle this challenging world sheet analysis. Some progress has been made in the
literature reproducing the extremal correlators. The leading order analysis in
supergravity [256, 257] reproduces the leading order of strong coupling limit in
(3.115) and (3.116). Partial results on higher-derivative corrections in type IIB
supergravity are reported in [260] which tried to explain the term ∼ ζ(3)λ−3/2

in our expansion (3.115) and (3.116).

Throughout the chapter, we have been discussing the planar limit exclusively.
It is desirable to study the 1/N corrections to the observables. The main
difficulty is that at finite N , the operator mixing between S4 and R4 will involve
not only single-trace operators but also multi-trace ones, which will make the
Gram-Schmidt method much more complicated. Some comments on extremal
correlators are in the Appendix D of [234]. A novel double-scaling limit with
λ3/2/N2 fixed is discussed in [261], which also deserves a closer study.



Chapter 4

Partition functions on
squashed seven-spheres and
holography

4.1 Introduction

The AdS/CFT correspondence posits dualities between large N field theories
and string theories in asymptotically AdS spacetimes. [34, 40, 39] In its original
proposal, the conformal field theory is living on a manifold Md conformally
equivalent to the boundary of the bulk. The coupling between the conformal
field theory and the background helps us gain insight into the dynamics of the
field theory. As the bulk theories typically lie in the semi-classical regime, one
usually needs to exert non-perturbative tools to investigate the field theories, the
well-known examples include supersymmetric localization [20], bootstrap, and
integrability. Through a simplified version of AdS/CFT correspondence [262],
the O(N) model, which is a set of N conformally coupled scalars, corresponds
to higher spin gravity in the bulk, both of them can be attacked analytically.
In our setup, instead, we consider a Euclidean Einstein gravity living in an
asymptotically locally AdS8 space without matter coupling, which does not
correspond to O(N) model, but shares some universal behaviors as dictated by
the conformal symmetry. On the boundary, we consider non-supersymmetric
conformal field theories.

The phase structure of asymptotically AdS spaces is an interesting topic,

133
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originating from the famous Hawking-Page phase transition [263] between
thermal AdS4 space and Euclidean Schwarzschild black hole. Holographically,
the Hawking-Page transition is conjectured to be dual to the confinement-
deconfinement transition in QCD, where the two phases correspond to different
behaviors of Wilson loops. [53] Generalizations of Hawking-Page transition
has been discussed in [264] where the asymptotical boundary geometry is
S2 × Sd, and in [265] where the boundary geometry is Sd1 × Sd2 . Besides,
thermodynamical properties and phase transitions are also discussed for AdS-
Taub-NUT spaces [266, 267, 268, 269, 270], where the asymptotic geometry is
a U(1) fiber bundle over a Kähler-Einstein space B, where the metric looks like:

ds2 = dr2 + a2(r)ds2
B + b2(r)(dψ +AB)2, (4.1)

where AB is the Kähler potential and the Kähler form is given by JB = dAB.
The metric on the asymptotic boundary where the conformal field theory lives
is given by taking r →∞:

ds2
bdy = ds2

B + λ2(dψ +AB)2, λ ≡ lim
r→∞

b(r)
a(r) . (4.2)

The squashing parameter λ controls the size of the U(1) bundle, which no
longer has the interpretation as the inverse temperature as in thermal field
theories. Besides NUT, there exists another family of spaces, which has the same
asymptotic symmetry but with a different topology, dubbed Bolt, which has a
horizon where the Killing vectors degenerate. By varying the size of the U(1)
bundle and comparing the gravitational free energies, one observes a first-order
phase transition between Taub-NUT and Taub-Bolt. In [271], a generalization of
Euclidean AdS4-Taub-NUT space with two squashing parameters was studied.

In our work, we focus on a squashed asymptotically locally AdS8 geometry
preserving SO(5)×SO(3) isometry [272, 273]1, whose boundary geometry is a
squashed seven sphere constructed by an SU(2) bundle over S4. By evaluating
and comparing the gravitational free energy of SU(2) analog of NUT and Bolt
spaces, we are able to study the phase structure of our AlAdS8 geometry. One
special property of our squashed S7 is that there exist two squashing parameters
λ = 1, λ2 = 1/5, for which the squashed sphere is an Einstein manifold [275],
i.e., Rµν = kgµν for some constant k. For the two special cases, we are able
to solve the Einstein equations analytically and then evaluate the Euclidean
free energy by using the standard holographic renormalization. [269, 179, 29]
For general λ > 0, we can evaluate the free energy numerically. Interestingly,
although having the analogs of NUT and Bolt phases, there exists only one
phase for a given value λ, meaning there is no Hawking-Page-like transition
between the two competing phases. A similar phase structure has been found

1See [274] for a similar bulk setup but with positive cosmological constant.
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in [265], which appears only if the the boundary geometry Sd1 × Sd2 satisfies
d1 + d2 ≥ 9.

The field theory contents we’re interested in are Euclidean conformal field
theories living on the squashed seven sphere with SO(5)×SO(3) isometry, where
the squashing naturally couples the field theory with the background metric.
It is the stress tensor of boundary CFT that couples to the squashed metric,
the dynamical properties of which are constrained largely by the conformal
symmetry [276, 277], which reflects the universal character for all CFTs. The
free energy in odd-dimensional field theories is an important quantity since
it’s conjectured to reflect the degrees of freedom in the field theory and thus
monotonically decreasing along with RG flows, which is called F -theorem.
[61, 278] The quantity conjectured to be decreasing along the RG flow is related
to the free energy F ≡ − log |ZSd | by a sign:

F̃ ≡ (−1)
d−1

2 log |ZSd |. (4.3)

The F -theorem was proven only in 3d CFT by [279], but is supported by pieces
of evidence in other dimensions. [278] In our scenario, the CFT living on round
S7 is a free UV fixed point, and introducing squashing on the metric corresponds
to switching on a marginal spin-2 deformation generated by the stress tensor:
[180]

S[gµν , φ] = S[g(0)
µν , φ]− ε

2

∫
ddx
√
g(0)hµνTµν , Tµν ≡ −

2
√
g

δS[gµν , φ]
δgµν

. (4.4)

For a conformal field theory without conformal anomaly, which is true in odd
dimensions, we expect the first-order derivative F̃ ′(ε) to vanish at ε = 0, which is
proportional to the one-point function of the stress tensor. And the second-order
derivative F̃ ′′(ε) should be negative as dictated by F -theorem since the marginal
spin-2 deformation induces an RG flow from the UV fixed point, along which
the free energy must be decreasing. It can be expressed as a double integral on
the round sphere:

F ′′(ε)
∣∣∣
ε=0

= −1
4

∫
ddxddy

√
g(0)(x)g(0)(y)hab(x)hcd(y)〈Tab(x)Tcd(y)〉∂M.

(4.5)
Quite remarkably, we are able to evaluate the second-order derivatives for
general CFTs living on not only squashed SO(5)×SO(3) seven spheres but also
another U(k + 1)×U(1) family of squashed (2k + 1)-spheres, the latter was
only conjectured from results in high-derivative gravity in [280]. The result is
universal and applies to all CFTs, and this is the first time to obtain them from
the field theory to our knowledge.

The above universal results only apply to cases where the squashing is small.
For finite squashing, we consider two toy models: the O(N) vector model, which
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is equivalent to conformally coupled scalars, and a free fermion model. The free
energy of the field theories can be obtained by taking advantage of the spectrum
of the Laplacian and the Dirac operators on our squashed metric [281, 282],
where the path integral boils down to a Gaussian integral, making the evaluation
of the free energy for generic squashing λ possible. [283, 284, 285] We have
also investigated the behavior of free energy at small squashing analytically
and at large squashing numerically. The comparison among free energies of
holographic CFTs, the O(N) model, and the free fermion model has been studied
at small squashing [180, 280, 286] and large squashing [180, 283, 284] where the
boundary is a squashed three-sphere. We have extended this exploration to the
seven-sphere with SU(2) bundle.

The structure of the chapter is as follows. In Section 4.2, we introduce two bulk
metric ansatzes which preserve SO(5)×SO(3) isometry and solve the Einstein
equations. We also calculate the gravitational free energy as a function of the
squashing parameter λ. The field theory calculations are included in Section
4.3, where we begin with the small-squashing behavior for generic CFT living
on SU(2) squashed seven spheres and U(1) squashed (2k + 1)-spheres. We also
evaluate the free energy of both conformally-coupled scalar and free fermion
fields using different methods. In section 4.4, we compare bulk and boundary
free energies.

4.2 Bulk story

In this section, we study the generalization of Hawking-Page transition in
asymptotically locally AdS8 with Euclidean signature. We begin with an
example of Hawking-Page transition in asymptotically locally AdS4. Then we
go to 8d, introducing two ways to construct squashed sphere metrics and use
them to obtain the metrics we are after. Taking the squashed seven sphere
as a boundary, the bulk geometry can be obtained by numerically solving the
equation of motions. In the end, we can take advantage of the bulk solution to
obtain the renormalized free energy.

4.2.1 The phase transition between AdS4 NUT and Bolt

The geometries

To illustrate better the Hawking-Page phase transition and competition between
phases, we take an example of the aymptotically locally AdS4 NUT and Bolt
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spaces. The metric is given by: [179, 287]

ds2 = 4n2V (ρ)(σ3)2 + dρ2

V (ρ) + (ρ2 − n2)(σ2
1 + σ2

2), (4.6)

where the 1-forms σi are defined in (4.23) below and V is given by

V (ρ) = (ρ2 + n2)− 2mρ+ l−2(ρ4 − 6n2ρ2 − 3n4)
ρ2 − n2 , (4.7)

where n is the NUT charge, m is the generalised mass and l is the AdS length
scale. The asymptotic behaviour for ρ→∞ of the metric in (4.6) is locally the
same as the one for AdS4. The only difference being that the boundary is a
squashed S3 with a single squashing parameter, which can be seen by taking
the limit ρ→∞ on (4.6):

ds2 = l2

ρ2 dρ
2 + r2

[
(σ2

1 + σ2
2) + 4n2

l2
(σ3)2

]
, (4.8)

for which we can identify n/l as a squashing parameter of the squashed S3 on the
boundary. When n/l = 1/2, the metric on the sphere ds2 = σ2

1 +σ2
2 +σ2

3 reduces
to that of a round sphere. The asymptotic boundary is the same for all bulk
phases, which are distinct in the bulk. Let us first introduce the NUT solution,
which is obtained by requiring the Dirac-Misner string to be unobservable and
there should be no conical defect at ρ = n, this gives a constraint on the mass
parameter:

m = n− 4n3

l2
. (4.9)

Now we zoom in to the “near-horizon region” by using the new radial coordinate
R =

√
8n(ρ− n), the leading order expansion of the metric in terms of R gives:

ds2 = dR2 + 1
4R

2(σ2
1 + σ2

2 + σ2
3), (4.10)

which is the coordinate on the origin of smooth R4. We can see that the NUT
solution reduces to AdS4 when n/l = 1/2.

When the emblackening factor 1/V (ρ) diverges at ρ = ρb > n, we get the second
set of solutions called Bolt. Similarly requiring the absence of conical singularity
at the “horizon”, we get:

V (ρb) = 0, V ′(ρb) = 1
2n. (4.11)

From the first condition in (4.11) one finds that the mass of the Bolt should
satisfy

mb = ρ2
b + n2

2ρb
+ 1

2l2

(
ρ3
b − 6n2ρb −

3n4

ρb

)
. (4.12)
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The second condition in (4.11) yields a relation between ρb and n and l:

ρb± = l2

12n

(
1±

√
1− 48n

2

l2
+ 144n

4

l4

)
. (4.13)

There are two branches of Bolt solutions, reminiscent of the large and small
Schwarzschild black holes in AdS4 in the original Hawking-Page transition [263],
where the small black hole never dominates. By requiring the positivity of
the discriminant in (4.13) and that ρb > n, we find the range of the squashing
parameter n/l for the Bolt solutions to exist:

0 < n2

l2
= 2−

√
3

12 ≈ 0.022. (4.14)

In particular, the Bolt solutions don’t exist for n/l = 1/2 corresponding to the
AdS4 in the NUT solutions. Now we show that the near-horizon geometry is
rather different. Take the new radial coordinate R ≡

√
8n(ρ− ρb) and take the

limit R→ 0, we get:

ds2 = dR2 + R2

4 dψ2 + (ρ2
b − n2)(σ2

1 + σ2
2), (4.15)

which has the geometry R2 × S2. ψ plays the role of angular coordinate in R2

whose range is 0 ≤ ψ < 4π. The two sphere has a radius
√
ρ2
b − n2 which is

positive because we require ρb > n.

The phase transition

Now we understand both the near-horizon geometry and asymptotic boundary
for the two families of solutions, we can get down to studying the phase transition.
We start from the Euclidean Einstein-Hilbert action:

S = − 1
16πGN

∫
M

d4x
√
g(R− 2Λ)− 1

8πGN

∫
∂M

d3x
√
hK, (4.16)

where h denotes the determinant of the induced metric on the boundary ∂M
of our choice, and K is the trace of the extrinsic curvature. The integral is
proportional to the volume of the asymptotically AdS space which diverges, so
we need to introduce counter terms:

Sct = 1
8πGN

∫
∂M

d3x
√
h

(
R
2 + 2

)
, (4.17)
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Figure 4.1: The Euclidean action S versus the squashing parameters β = n2/l2

for the three families of classical asymptotically locally AdS4 saddles. The
actions are expressed in units of l2/GN .

where R is the scalar curvature on the boundary. A natural choice of boundary
is the surface of constant ρ, this gives us the following renormalized action:

SNUT = 4πl2
GN

β(1− 2β), β ≡ n2

l2
, 0 < β <∞,

S
(±)
Bolt = πl2

216GN

[(
72− 1

β

)
±
(

48− 1
β
− 144β

)√
1 + 48β(−1 + 3β)

]
,

0 < β . 0.022.
(4.18)

The action versus the squashing parameter β = n2/l2 is plotted in Fig. 4.1.
The saddle-point approximation (1.5) tells us that the the saddle with the lowest
free energy dominates. As we know, β = 1/4 corresponds to the round three
sphere on the boundary, so when β is close to 0, the smaller β is, the more
squashed the sphere becomes. According to the plot, when the squashing is
small, the NUT saddle dominates. In fact, NUT is the only saddle for β & 0.022.
When the sphere gets more squashed such that

β < β∗ = 7− 2
√

10
36 ≈ 0.019,

the dominant saddle becomes Bolt(+). The Bolt solutions with smaller radius
never dominate.

The above example shows how the Hawking-Page phase transition happens
when the asymptotic boundary is a squashed sphere, whose squashing parameter
determines which phase dominates. The goal for our study is to test whether
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similar story applies to a Euclidean asymptotically locally AdS8 space with
SO(5)×SO(3) isometry.

4.2.2 A tale of two metrics

In this chapter, we consider squashed seven spheres with SO(5)×SO(3) isometry,
whose metric can be constructed by distinguished yet equivalent ways. The first
one is by embedding the sphere in a projective space admitting the standard
Fubini-Study metric, and the other one is by Hopf fibration over a projective
space, the fibration is non-trivial because of the existence of Kähler or hyper-
Kähler potential on the projective space.

We start with the first construction following [288, 99], where we embed S7 in
HP2. The standard Fubini-Study metric on HP2 is:

ds2 = (1 + q̄kqk)−1dq̄idqi − (1 + q̄kqk)−2q̄idqidq̄jqj , q1, q2 ∈ HP2, (4.19)

where the repeated indices are summed over {1, 2}. We introduce a
parametrization of (q1, q2) ∈ HP2:

q1 = U tanχ cos 1
2µ, q2 = V tanχ sin 1

2µ, 0 ≤ χ ≤ π/2, 0 ≤ µ ≤ π.
(4.20)

Here, U, V ∈ SU(2) can be regarded as quaternions with unit length, so we
parametrize them by Euler angles (θ, φ, ψ) and (Θ,Φ,Ψ) respectively:

U = ekφ/2eiθ/2ekψ/2, V = ekΦ/2eiΘ/2ekΨ/2; 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π,
(4.21)

where i, j,k are units of quaternion. The Maurer-Cartan form can be worked
out directly:

2U−1dU = iσ1 + jσ2 + kσ3, 2V −1dV = iΣ1 + jΣ2 + kΣ3, (4.22)

where the left-invariant one-forms are:
σ1 = cosψdθ + sinψ sin θdφ, σ2 = − sinψdθ + cosψ sin θdφ, σ3 = dψ + cos θdφ;

Σ1 = cos ΨdΘ + sin Ψ sin ΘdΦ, Σ2 = − sin ΨdΘ + cos Ψ sin ΘdΦ, Σ3 = dΨ + cos ΘdΦ.
(4.23)

Using the parametrization above, the metric (4.19) becomes

ds2 = dχ2 + 1
4 sin2 χ

[
dµ2 + 1

4 sin2 µω2
i + 1

4 cos2 χ(νi + cosµωi)2
]
,

νi ≡ σi + Σi, ωi ≡ σi − Σi, i = 1, 2, 3.
(4.24)
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By setting χ to be constant, we’re equivalently taking the co-dimension 1
surface foliating the projective space and surrounding the original point χ = 0.
Introducing the squashing parameter λ ≡ cosχ, we obtain the metric on a
squashed seven sphere with unit radius [288]:2

ds2 = 1
4

[
dµ2 + 1

4 sin2 µω2
i + 1

4λ
2(νi + cosµωi)2

]
. (4.25)

One can introduce the following vielbein:

e1 = 1
2dµ, ei = 1

4 sinµωi−1, eI = λ

4 (νI−4+cosµωI−4), i = 2, 3, 4; I = 5, 6, 7.
(4.26)

Under the tetrad, the Ricci tensor is diagonal:

Rab = diag (α, α, α, α, β, β, β) , α = 12− 6λ2, β = 4λ2 + 2
λ2 . (4.27)

For α = β, the space becomes Einstein. There’re two possibilities for that
condition, λ = 1 and λ∗ = 1√

5 . These two values will both play important roles
in the gravitational free energy.

Now let’s look at the other way to construct squashed seven-sphere with
SO(5)× SO(3) isometry. It’s motivated by k = 1 SU(2) Yang-Mills instanton
on S4. Considering S7 as S3 bundle over S4 with a gauge potential Ai = cos2 µ̃

2 Σ̃i,
the metric is

ds2 = 1
4
[
ds2

S4 + λ2(σ̃i −Ai)2] , ds2
S4 = dµ̃2 + 1

4 sin2 µ̃Σ̃2
i . (4.28)

This is an “inverse-Kaluza-Klein” procession, where we construct a metric on
S7 out of a four-dimensional metric plus an SU(2) bundle, and the size of the
bundle is described by the squashing parameter λ. In fact, we find the metric
returns to S3 × S4 if we set Ai = 0, where σ̃i parametrizes S3 and Σ̃i is on S4.
One can define the following vielbein:

e1 = 1
2dµ̃, ei = 1

4 sin µ̃Σ̃i−1, eI = λ

2 (σ̃I−4 −AI−4) , i = 2, 3, 4; I = 5, 6, 7,
(4.29)

under which the Ricci tensor is the same as the before (4.27), indicating that
the two metrics are closely related.

The two metrics (4.25) and (4.28) constructed above share some similarities,
they are both characterized by one squashing parameter λ, become round when

2The scale factor 1/4 ahead is to make sure when λ = 1, the metric goes back to unit
sphere S7.
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λ = 1, and are Einstein when λ = 1 or 1√
5 ; they both preserve explicitly the

SO(5)×SO(3) isometry. Although they’re different metrics, there exists a map
between them3

σ̃i = σi, iΣ1 + jΣ2 + kΣ3 = Ṽ (iω̃1 + jω̃2 + kω̃3)Ṽ −1, µ̃ = π − µ, (4.30)

where ω̃i ≡ σ̃i − Σ̃i, and 2Ṽ −1dṼ = iΣ̃1 + jΣ̃2 + kΣ̃3 same as defined before.
The map can be written equivalently in the following more compact way:

U = Ũ , V = Ũ Ṽ −1 ⇔ Ũ = U, Ṽ = V −1U ; µ̃ = π − µ, (4.31)

recall that U, V are parametrized by the Euler angles as in (4.21) and likewise
for Ũ , Ṽ . The relation above is nothing but a twist performed in the definition of
some angles on the S3 bundle between the two metrics, which is philosophically
the same as the transformation between (C.19) and (C.33) for a similar
construction on complex projective spaces, this explains the similarities between
the two metrics.

Since we’re concerning Euclidean AlAdS8 in the bulk with a squashed seven
sphere at the boundary, we make the following two ansatzes:4

ds2 = dr2 + a2(r)
(
dµ2 + 1

4 sin2 µΣ2
i

)
+ b2(r)(σi −Ai)2, i = 1, 2, 3

(4.32a)

ds2 = f2
1 (r)dr2 + f2

2 (r)
(
dµ2 + 1

4 sin2 µω2
i

)
+
f2
i+2(r)

4 (νi + cosµωi)2,

(4.32b)

where a(r), b(r), f1(r), ..., f5(r) are undetermined functions of r only. In the
first ansatz, we set the coefficient of dr to be 1 for simplicity, which can also
be kept in general. Also note that in the second ansatz, f3, f4, and f5 can be
different, while in the first ansatz, Einstein equations require only one function
b(r) can be arbitrary. This suggests an enhanced permutation symmetry in
the ansatz (4.32a), and the twist performed in (4.30) breaks the symmetry. In
the main text of the chapter, we will focus on the first ansatz, and we put our
partial results on the second ansatz in appendix C.1 and a more general study
for future work.

3The relation in equation (8.1.32) of [99] is not correct, and should actually be inversed.
4We have replaced all tilded quantities with un-tilded ones for simplicity.
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4.2.3 Equation of Motion

We consider Einstein gravity in Euclidean AlAdSd+1 space with negative
cosmology constant, the equations of motion are:

Gµν + Λgµν = 0, Λ = −d(d− 1)
2`2 , (4.33)

where ` is the scale of AdS. Plugging in the ansatz, we take advantage of the
vielbein formalism in GR to simplify the Einstein field equations. We take the
achtbein emµ such that the metric tensor gµν = δmne

m
µ e

n
ν . In the local achtbein

coordinate, the connection, Riemann tensor, Ricci tensor, scalar curvature, and
Einstein equations are given by:5

Γlmn = 1
2(dlmn − dlnm + dmnl − dmln + dnml − dnlm), dlmn ≡ elµeνn∂νeµm

Rklmn = 2∂[kΓ|mn|l] + 2Γam[lΓ|an|k] + 2Γa[kl]Γmna, Rkm = R l
k ml, R = Rkk

Rkm −
1
2Rδkm + Λδkm = 0, k, l, ... = 1, 2, 3, ..., 8.

(4.34)
By extracting independent parts of Einstein equations, we get the following
equations of motion for the first ansatz:

− 16a3ba′b′ − 8a2b2a′2 − 4a4b′2 + 28a4b2 + 8a2b2 + a4 − 2b4 = 0,

− 4ab2a′′ − 12aba′b′ − 4b2a′2 − 4a2bb′′ − 4a2b′2 + 28a2b2 + a2 + 4b2 = 0,

16a3b2a′′ + 32a3ba′b′ + 24a2b2a′2 + 8a4bb′′ + 4a4b′2 − 84a4b2 − 24a2b2 − a4 + 10b4 = 0.
(4.35)

Only two of them are independent because of Bianchi identity so they are
not over-constrained. An analytical study is desirable, but not yet available
unfortunately for now, and partial attempts were done in [290] for a similar
problem with vanishing cosmological constant. In this chapter, we will solve
them perturbatively at both large-r and small-r regimes, followed by numerical
evaluation, in the same manner as [271]. By numerical simulation, we are able
to find relations between parameters in large-r series and small-r ones.

Remarkably, the equations of motion (C.1) for the second metric ansatz are
identical to the ones above when imposing f3 = f4 = f5. Thus the analysis
below applies identically to the two metrics. In a sense, the second metric is a
generalization of the first one which we will focus on in the main text.

5We follow the notations and conventions of [289].
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Large radius expansion

As a space with negative cosmological constant, it’s natural to perform Fefferman-
Graham expansion at large-r:a(r) = erA0 +A1 + e−rA2 + · · ·

b(r) = erB0 +B1 + e−rB2 + · · ·
. (4.36)

Solving the equations of motion order by order, we find that a general solution
can be determined by three parameters, which we choose to be A0, B0, and
A7. The coefficient A7 is dual to the vacuum expectation value (vev) of a
corresponding operator on the boundary [291], which is the stress tensor in our
case and thus should vanish. The first several terms are:

a(r) = A0e
r + e−r

(
B2

0
8A3

0
+ A0

80B2
0
− 1

5A0

)

+
e−3r (−2A6

0B
2
0 − 39A4

0B
4
0 + 140A2

0B
6
0 +A8

0 − 100B8
0
)

1600A7
0B

4
0

+O(e−5r),

b(r) = B0e
r +

e−r
(
− 10B4

0
A4

0
+ 8B2

0
A2

0
− 3
)

80B0

−
e−3r (−2A6

0B
2
0 − 39A4

0B
4
0 + 140A2

0B
6
0 +A8

0 − 100B8
0
)

1200A8
0B

3
0

+O(e−5r).

(4.37)
As a special analytical solution, for the round AdS8 with spherical foliation,
we have a(r) = b(r) = sinh r = 1

2e
r − 1

2e
−r, which corresponds to A0 = B0 =

1
2 , A1 = B1 = − 1

2 , and all other coefficients vanish.

Small radius expansion and numerics - NUT

In the small-r region, as r decreases, both a(r) and b(r) decrease, and one
of them will hit 0 at some r = r0, forming a black-hole horizon. Depending
on how they hit 0 at r = r0, there’re two families of solutions, dubbed by
Hawking, “NUT” and “Bolt”. “NUT” applies to situations where a(r) and
b(r) hits 0 at the same r0, thus the near-horizon geometry looks locally like
R8. While in “Bolt”, b(r) hits 0 at r = r0 while a(r0) is finite, for which the
near-horizon geometry looks like R4 × S4. 6 Besides the normal “NUT” and

6On why there’s no solution where a(r) hits 0 first when b(r0) is finite: by expanding
at small r and solving equations of motion order by order, one can immediately prove the
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“Bolt” geometries, which cap off smoothly at r = r0, there exist a singular
“NUT” solution which has a conifold singularity at r = r0. The geometries
of the solutions are illustrated in Fig.4.2. The two families of solutions are
analogous as in d = 4 AdS-Taub-NUT/Bolt solution investigated in [271].

Figure 4.2: Possible geometries in the bulk. The first one to the left is “NUT”
geometry, which admits a squashed seven sphere at infinity and caps off smoothly
at r = r0. The one on the right is “Bolt” geometry, which admits a squashed
sphere at infinity and caps off smoothly at r = r0, where the geometry is
R4 × S4. The one in the middle is a singular “NUT” solution which only exists
for λ = λ∗ = 1√

5 , it has a conifold singularity at r = r0.

For “NUT”, we assume the following small-r expansion:a(r) = a1(r − r0)1 + a2(r − r0)2 + ...

b(r) = b1(r − r0)1 + b2(r − r0)2 + ...
. (4.38)

The equations at leading order have two solutions:
a1 = 1

2 ,

b1 = 1
2 ,

or


a1 = 3

√
5

10 ,

b1 = 3
10 .

(4.39)

ansatz doesn’t admit a solution. And on why there’s no wormhole solution: we’ve checked it
numerically using different initial conditions but failed to find a wormhole.
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For the first choice, we solved the equations up to O(r − r0)13, and found the
series has only one free parameter, which is a3, and the first several orders are

a(r) =ρ

2 + a3ρ
3 +

(
−14832a2

3 + 1932a3 − 49
)
ρ5

2160 + 1
816480

(
44570304a3

3 − 7822224a2
3

+434448a3 − 7595) ρ7 +O
(
ρ9) ,

b(r) =ρ

2 +
( 7

36 −
4a3

3

)
ρ3 +

(
71424a2

3 − 9744a3 + 343
)
ρ5

6480 + 1
816480

(
−83054592a3

3

+15344640a2
3 − 906192a3 + 17101

)
ρ7 +O

(
ρ9) ,

(4.40)
where we used the short-handed notation ρ ≡ r − r0. Note that when choosing
a3 = 1

12 , one obtains the round AdS8 solution:

a(r) = b(r) = sinh ρ ⇒ ds2 = dρ2 + sinh2 ρ ds2
S7 . (4.41)

For the second choice in (4.39), up to order O(r − r0)13, the solution is fixed,
with no free parameter, whose leading order expansions can be identified with
hyperbolic sine functions:

a(r) = 3
√

5
10

(
ρ+ ρ3

6 + ρ5

120 + ρ7

5040 + ρ9

362880 +O
(
ρ11))→ 3

√
5

10 sinh ρ,

b(r) = 3
10

(
ρ+ ρ3

6 + ρ5

120 + ρ7

5040 + ρ9

362880 +O
(
ρ11))→ 3

10 sinh ρ.

(4.42)
As can be checked, the asymptotic boundary of the above solution is the Einstein
squashed sphere (4.28) with λ2

∗ = 1/5. This geometry is special, in one sense,
it’s the only singular solution that integrates to infinity, which can be shown by
its diverging Kretschmann scalar at r → r0:

R = −56, RµνR
µν = 392, RµνρσR

µνρσ = 112 + 212

33 sinh4 ρ
. (4.43)

If we zoom in to the near-horizon limit, where a(r) ≈ 3
√

5
10 ρ and b(r) ≈ 3

10ρ, we
can evaluate:

R = 0, RµνR
µν = 0, RµνρσR

µνρσ = 212

33ρ4 . (4.44)

The appearance of a singular solution is not typical in Taub-NUT solution,
since the introduction of nut charge actually alleviates the singular behavior in
a Schwarzschild black hole. A similar singular solution is found in [265] when
the boundary dimension satisfies d ≥ 9.
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Figure 4.3: Upper: the relation between λ on the boundary and a3 at small-r, the
verticle dashed line is a3 = a∗3, and the horizontal dashed line is λ = λ∗ = 1/

√
5.

Downleft: numerical solution for NUT with initial value a3 = −0.5. Downright:
relation between λ and a0 for Bolt, the dashed line is λ = λ∗.

Given the function values of a(r), b(r) and their first-order derivatives at ρ = 0,
we can solve the differential equations (4.35) numerically. In general, for a
randomly-chosen parameter a3, it’s not guaranteed that both a(r) and b(r) can
be integrated up to infinity without hitting 0, otherwise one has a compact
spindle-like space instead of an AlAdS8 one. In this chapter, we focus on the
solutions where neither a(r) nor b(r) has zeros, a bulk solution with asymptotic
squashed sphere boundaries as (4.28), where the squashing parameter can be
identified with the UV expansion coefficients in (4.36) as

λ = lim
r→∞

b(r)
a(r) = B0

A0
. (4.45)

We start from a3 = 1
12 and integrate numerically to infinity, we get λ =

1, as expected. With different a3, this procedure establishes a one-to-one
correspondence between the squashing parameter λ at asymptotic boundary
and the initial condition a3 at small-r, as shown in Fig.4.3. Increasing the
value of a3 from 1/12, the corresponding λ decreases monotonically from 1 to
λ∗ = 1/

√
5 ≈ 0.447; we then decrease a3, and λ increases monotonically from

1 to ∞ and finally stops at a special value a∗3 ≈ −0.151394. For any a3 < a∗3,
a(r) doesn’t integrate to infinity, thus is of no interest to us. An example for
a3 = −0.5 < a∗3 is shown in Fig.4.3.
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The NUT solution also has interesting implications in terms of holographic RG
flow. It interpolates an asymptotically locally squashed AdS8 at the UV region
and a flat R8 in the IR region. The interesting fact is that from a UV theory
with different squashing parameters λ, the RG flow converges to the same IR
theory, which, from the leading order coefficients in (4.40), lives in R8. The
picture here is similar to the holographic uniformization discovered in [292],
which is worth further understanding.

Small radius expansion and numerics - Bolt

The geometry of “Bolt” solution is supposed to be R4 × S4 at small-r limit,
where a(r0) > 0 is the finite radius of S4, and b(r) goes to zero smoothly, forming
R4 together with the radial coordinate. The geometry indicates the following
small-r expansion:

a(r) = a0 + a1(r − r0)1 + a2(r − r0)2 + ...

b(r) = b1(r − r0)1 + b2(r − r0)2 + ...
. (4.46)

Repeating the procedure as above, the solutions can be obtained in any order,
determined by one free parameter a0 > 0. 7 The leading terms are as follows

a(r) =a0 −
(
−7a2

0 − 3
)
ρ2

8a0
−
(
49a4

0 + 98a2
0 + 39

)
ρ4

384a3
0

−
(
−7889a6

0 − 15141a4
0 − 10241a2

0 − 2379
)
ρ6

46080a5
0

+O
(
ρ8) ,

b(r) =ρ

2 −
ρ3

12a2
0
−
(
−49a4

0 − 70a2
0 − 26

)
ρ5

480a4
0

−
(
10290a6

0 + 20531a4
0 + 14000a2

0 + 3224
)
ρ7

80640a6
0

+O
(
ρ9) .

(4.47)

The functions can be integrated out to infinity for any a0 > 0, and the map
between a0 and λ is shown in Fig.4.3. As shown in the plot, as a0 increases
from 0 to ∞, λ decreases from λ∗ to 0 monotonically. Combine the λ ∼ a0
plot for “Bolt” solutions with λ ∼ a3 plot for “NUT” solutions, we find that
for a squashed seven-sphere metric (4.28) with any λ > 0, there exists one
unique bulk solution whose asymptotic boundary is squashed seven-sphere with
λ. For 0 < λ < λ∗, the bulk is “Bolt”; for λ ≥ λ∗, the bulk is “NUT”. The two

7Taking the limit a0 → 0, the geometry becomes closer to NUT solutions, as can be seen
from the corresponding values of λ.
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analytical solutions, which have λ = 1 and λ = λ∗ = 1/
√

5, are both “NUT”
spaces. Inversely speaking, the bulk metric is uniquely determined by λ, so
there will not be an analog of Hawking-Page transition in our geometry. But
it’s still meaningful to evaluate the bulk free energy Fbulk(λ) as a function of
the squashing parameter, which we will do in the next section.

4.2.4 Free energy

In the semi-classical limit, the partition function localizes to solutions of Einstein
equations, then the Euclidean gravitational free energy is reduced to the on-shell
action:

Fbulk = − log
∫
Dgµνe−SE [gµν ] classical===========

approximation
− log e−SE [gµν ]on−shell = SE [gµν ]on−shell.

(4.48)
We focus on Euclidean gravitational field without matter in the bulk, whose
free energy with the GHY term on the boundary is given by [4]:

SEH + SGHY = − 1
16πGN

∫
M8

d8x
√
g (R− 2Λ)− 1

8πGN

∫
∂M8

d7x
√
g(7)K,

(4.49)
where g(7)

ab is the induced metric on ∂M8, which we choose to be a surface
with constant large r, and K is the trace of extrinsic curvature tensor on the
boundary:8[289]

g(7)
µν ≡ gµν − nµnν , Kµν ≡ (g(7))ρµ(g(7))σν∇ρnσ. (4.50)

Here nµ is the unit normal vector of the boundary. By plugging in the metric
ansatz, we obtain the action and its boundary term:

SEH =
∫ R∂

0
dr

4π3`5b

3GN
(
48a3ba′b′ + 24a2b2a′2 + 16a3b2a′′ + 12a4b′2 + 12a4bb′′

−84a4b2 − 24a2b2 − 3a4 + 6b4
)
,

SGHY = −16π3`6a3b2

3GN
(4ba′ + 3ab′) .

(4.51)
For general AlAdS space, the free energy above is proportional to the volume
of M8, which is infinite, corresponding to a UV divergence. So we need to

8In our convention, Greek letters starting from µ are bulk indices, and Latin letter starting
from a are boundary indices.
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regularize the divergence by holographic renormalization. [45, 293, 294] The
counter-terms for d ≤ 7 are given by [269, 270, 179]9

Sct = 1
8πGN

∫
∂M

ddx
√
g(d)

[
(d− 1) + 1

2(d− 2)R+ 1
2(d− 4)(d− 2)2

(
RabRab −

d

4(d− 1)R
2
)

+ 1
(d− 2)3(d− 4)(d− 6)

(
3d+ 2

4(d− 1)RRabR
ab − d(d+ 2)

16(d− 1)2R
3 − 2RabRcdRacbd

− d

4(d− 1)∇aR∇
aR+∇cRab∇cRab

)]
,

(4.52)
where Rabcd,Rab,R are the Riemann tensor, Ricci tensor, Ricci scalar of the
boundary. Plugging in the metric ansatz, we get:

Sct = π3`6

12000a8b3GN

(
384000a12b6 + 9600a12b4 + 40a12b2 + 76800a10b6 − 4480a10b4

+40a10b2 − 19200a8b8 − 160a8b6 + 2774a8b4 − 6400a6b8 + 1504a6b6 + 4000a4b10

−13900a4b8 + 23200a2b10 + 7a12 − 11000b12) .
(4.53)

In the following evaluations, we set the Newton constant to be unit. Recall that
there’re two special values of λ2 = 1, 1/5 for which the metric gµν is known
analytically (4.41, 4.42), the free energies can also be calculated analytically by
Fbulk(λ) = SEH + SGHY + Sct, which are:

Fbulk(1) = 2π3

15
`6

GN
≈ 4.134 `6

GN
, Fbulk

(
1√
5

)
= 2 · 36π3

56
`6

GN
≈ 2.893 `6

GN
.

(4.54)
For general λ, Fbulk(λ) can be obtained only numerically. By large-r expansion,
we can check that the diverging part of SEH + SGHY and Sct exactly cancel
with each other, which have the same diverging structure:

SEH + SGHY ∼ −Sct ∼
B0π

3`6

GN

[
−32A4

0B
2
0e

7r + 6
5e

5r (8A2
0B

2
0 +A4

0 − 2B4
0
)

+ 1
600e

3r
(

100B6
0

A4
0
− 160B4

0
A2

0
+ A4

0
B2

0
− 112A2

0 − 4B2
0

)

+ er

9600

(
11000B8

0
A8

0
− 23200B6

0
A6

0
+ 13900B4

0
A4

0
− 1504B2

0
A2

0
− 40A2

0
B2

0
− 7A4

0
B4

0
− 2774

)]
.

(4.55)
9See [29] for a recent algorithm for deducing the counter terms up to arbitrarily large

order.
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Figure 4.4: Numerical renormalized free energy Fbulk(λ) for NUT and Bolt
spaces. The values of Fbulk are divided by `6

GN
. Where blue points show NUT

solutions, green points are Bolt solutions, and red points are the two special
values λ = 1, λ∗ given in (4.54).

We use the notation “∼” to denote that the equation holds up to vanishing
terms at large r. The numerical renormalized free energy is shown in Fig.4.4.
As λ → 0 or λ → +∞, Fbulk diverges as expected. At λ = 1, there is a local
maximum, consistent with the holographic F-theorem. Up to the precision of
our numerics, near λ∗ = 1√

5 , the free energy varies quite slowly, but we are not
able to determine the critical behaviors explicitly.

Since we’re integrating numerically starting from r = 0, the numerical error keeps
accumulating and explodes at around r ≈ 5, thus one has to stop integrating
somewhere at r = R < 5, then the action looks like:

SEH + SGHY = Ae7R +Be5R + Ce3R +DeR + E +O
(
e−R

)
. (4.56)

The diverging terms are canceled by the counter term, and what we’re interested
in is the finite term E. To extract E, we take a set of cutoff values R and
numerically fit it with the function of the form E + Fe−R +Ge−3R + ..., until
the discrepancy from the analytical results (4.54) is small enough.

In the end, we would like to mention that the gravitational action and boundary
term of the second metric ansatz with f3 = f4 = f5 are identical to those posted
above (4.51), thus the renormalized action is identical to the one we posted in
Fig.4.4.
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4.3 Field theory story

It’s also interesting to study the free energies of quantum field theories. To
look for the correct holographic correspondence of the Einstein gravity theory,
one has to go to string or M-theory and identify the boundary CFT, which
is typically a strongly-coupled CFT without supersymmetry. Instead, we
will study the universal properties of the free energies dictated by conformal
symmetry. Directly making use of the conformal symmetry, we can study
universal properties shared by all CFTs living on the squashed sphere as in
[180]. Some of the universal properties can also be found by studying some toy
models as in [283, 284, 285, 271, 180].

The main quantity that we are interested in is the free energy FCFT(λ) of CFTs
as a function of the squashing parameter that the field theory lives. In the
first part of this section, we calculate F ′′CFT(λ)

∣∣∣
λ=1

for general CFT living on
the squashed seven-sphere of the first kind (4.28), which can be evaluated by
integrating the two-point function of stress tensors on the sphere. This property
is totally determined by the conformal symmetry and thus independent of the
details of the theories such as couplings.

To support the study of the correspondence both around and away from λ = 1,
we study in addition two free CFTs, the conformally coupled scalar, and the
free fermion respectively. Using these toy models, we can evaluate F ′′′CFT(λ)

∣∣∣
λ=1

both analytically and numerically, which is too complicated to be evaluated as
an integrated three-point function of stress tensors. Besides, we can also study
the strongly deformed scaling of the field theories numerically, which can also
be compared with the bulk.

Let’s clarify our results for the two metric ansatzes. The result in the first
subsection only works for the first ansatz which is easier to deal with, we leave
a detailed study of the second ansatz for future work. But we do expect they
are the same because our results for the toy models are identical for them both
due to the coincidence of spectrum on the two squashed sphere metrics. What’s
more, the results show a very good coincidence with the bulk free energy, which
is also identical for the two metrics.
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4.3.1 Partition function on deformed manifold

The partition function of a general CFT on the boundary of manifoldMd+1
with Euclidean boundary metric gab is given by:10

Z =
∫
Dϕ e−S[ϕ,gab], F ≡ − lnZ. (4.57)

We can couple the field theory to the gravitational background by squashing
the metric. As is mentioned in the introduction, squashing background metric
is equivalent to adding a marginal deformation (4.4) generated by the stress
tensor, where we parametrize the squashing by a parameter ε as follows:

gab = g
(0)
ab +εhab, gab = (g(0))ab+εhab+O(ε2) ⇒ hab = −hcd(g(0))ac(g(0))bd.

(4.58)
The coupling of field theory with background metric, or equivalently the effect
of the induced RG flow, is encoded in correlation functions of the stress tensor.
To start with, the first-order derivative of the free energy is given by integrating
the one-point function of the stress tensor: [180]

F ′(ε)
∣∣∣
ε=0

= −1
2

∫
ddx
√
g(0)hab(x)〈Tab(x)〉∂M. (4.59)

In odd-dimensional CFTs, out setup included, one point function of stress tensor
vanishes as is required by conformal symmetry, thus F ′(0) = 0. The second
derivative of free energy FCFT(ε) is given by the integrated two-point function
of stress tensor:

F ′′(ε)
∣∣∣
ε=0

= −1
4

∫
ddxddy

√
g(0)(x)g(0)(y)hab(x)hcd(y)〈Tab(x)Tcd(y)〉∂M.

(4.60)
The integrand is evaluated on the boundary ∂M with deformations turned
off. To evaluate the two-point function on ∂M, we take a conformal map
f : ∂M→ Rd which relates the line element as

f∗(ds2
Rd) = Ω2(x)ds2

∂M,

where f∗ is the pullback and Ω2(x) is the corresponding conformal factor. In
odd dimensions, the stress tensors are transformed under the conformal map
through [295]

Tab(x) = Ωd−2M āb̄
abTāb̄(X), where M āb̄

ab ≡
∂X ā

∂xa
∂X b̄

∂xb
, X ā ∈ Rd, xa ∈ ∂M.

(4.61)
10In this section, we follow the notation of [180] for the free energy. Note that the quantity

F̃ in F -theorem [278] in (4.3) is different from the free energy by a sign, which happens to be
+1 for d = 7 of our interest.
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Thus the stress tensor two-point function on S7 is related to that on R7 by

〈Tab(x)Tcd(y)〉S7 = Ω5(x)Ω5(y)M āb̄
abM

c̄d̄
cd 〈Tāb̄(X)Tc̄d̄(Y )〉R7 . (4.62)

And the two-point function on Rd is well-known in the literature by using
conformal symmetry: [276, 277]

〈Tāb̄(X)Tc̄d̄(Y )〉Rd = CT
Iāb̄c̄d̄(X − Y )
|X − Y |2d

, Iāb̄,c̄d̄(X) = Eēf̄ ,c̄d̄IāēIb̄f̄ ,

Eāb̄,c̄d̄ = 1
2(δāc̄δb̄d̄ + δād̄δb̄c̄)−

1
d
δāb̄δc̄d̄, Iāb̄(X) = δāb̄ − 2XāXb̄

X2 .

(4.63)

There exists a natural conformal map between Sd and Rd: the stereographic
projection, for which the conformal factor is given by:

Ω = 1
2
(
1 +XāX

ā
)
, (4.64)

thus one can always evaluate the reaction of the free energy under metric
deformation. But for a specific metric on the sphere, the detailed construction
of the global map may be different, more discussions and explicit constructions
of the conformal map can be found in Appendix C.2. Using the conformal
map, one can work out the matrix M āb̄

ab defined in (4.61), which facilitates the
integral. In this section, we will investigate two different squashings, one is the
SU(2) bundled seven spheres which is the theme of this chapter, and another
one is the U(1) bundled squashed S2d+1 which is also of great interest.

SU(2) bundle squashed S7

To apply the formalism above to our metric (4.28) on S7, we can relate the two
squashing parameters as follows:

ε ≡ λ2 − 1,

for which one finds the only non-vanishing components of the perturbative
inverse metric hab are:

hθθ = −4, hφφ = hψψ = − 4
sin2 θ

, hφψ = hψφ = 4
tan θ sin θ . (4.65)

Now we know everything in our integral (4.60), which is the double integral on
S7. To evaluate it, one doesn’t need to perform a 14-dimensional integration,
instead, one fixes one stress tensor on the south pole and integrates the other
stress tensor over the sphere. [278, 296, 180] What considered in the references
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is the correlation function of scalar operators, thus the trick is easily justified
because the scalar perturbation preserves the symmetry of the sphere. However,
we’re dealing with the correlation function of stress tensors, whose deformation
coefficients are tensors with coordinate-dependent components as shown in
(4.65), so it is not understood why the trick still works. Luckily it works well
and corresponds to the other calculations that we did in this chapter. According
to the trick, we put one point ya on the south pole, and only integrate on xa:

F ′′(ε)
∣∣∣
ε=0

= −CT4 VS7

∫
d7x
√
g(0)(x)hab(x)hcd(0)〈Tab(x)Tcd(0)〉S7

= −CT4 VS7hcd(0)Ω5(0)M c̄d̄
cd (0)

∫
d7x
√
g(0)(x)

[
hab(x)Ω5(x)M āb̄

ab (x)
Iāb̄,c̄d̄(X)
|X|14

]
,

where VS7 = π4

3 is the volume of the unit seven sphere, coming from identifying
the integrand with arbitrary yµ ∈ S7 to that with yµ fixed at the south pole. The
south pole of the sphere corresponds to the origin of R7, where the quantities
are:

Ω(0) = 1
2 , M 5̄5̄(0) = M 6̄6̄(0) = M 7̄7̄(0) = 1

4 , M c̄d̄ ≡ hcdM c̄d̄
cd . (4.66)

Then the integrand, which we denote I is given by:

I = −CTVS7

29

√
g(0)(x) (1− x8)9

(xāxā)7

∑
c̄=(5,6,7)

M āb̄Ic̄c̄;āb̄(X), xA ∈ R8, ā = 1, 2, · · · 7.

(4.67)
Since the integrand is rather complicated, in order to evaluate it analytically,
we split the contraction into the following three terms:∑
c̄=(5,6,7)

M āb̄Ic̄c̄;āb̄(X) =
(
M 5̄5̄ +M 6̄6̄ +M 7̄7̄ − 3

7M
āā

)
− 4(1− x8)2

xāxā

7∑
c̄=1

3∑
d̄=1

M c̄d̄Xc̄Xd̄

+ 4(1− x8)2

(xāxā)2 M c̄d̄Xc̄Xd̄(x5̄x5̄ + x6̄x6̄ + x7̄x7̄).

(4.68)
Thus we have I = I1 + I2 + I3 where

I1 = −CTVS7

29

√
g(0)(x) (1− x8)9

(xāxā)7

(
M 5̄5̄ +M 6̄6̄ +M 7̄7̄ − 3

7M
āā

)

I2 = +CTVS7

27

√
g(0)(x) (1− x8)11

(xāxā)8

7∑
c̄=1

3∑
d̄=1

M c̄d̄Xc̄Xd̄

I3 = −CTVS7

27

√
g(0)(x) (1− x8)11

(xāxā)9 M c̄d̄Xc̄Xd̄(x5̄x5̄ + x6̄x6̄ + x7̄x7̄).

(4.69)
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Substituting hab from (4.65), Ω2 from (4.64), and M āb̄
ab from the conformal map

given by combining (C.13) and (C.39), we can express the integrand in terms
of S7 coordinates (µ,Θ,Φ,Ψ, θ, φ, ψ). Since the three integrals above are all
divergent near the south pole, the order of variables to be integrated out is
important. Here we present our procedure, which might be not a unique way
to get the correct answer.

The dependence of the integrands on (Θ,Φ,Ψ) is very simple, so we can integrate
over them directly. Then we integrate out θ followed by µ, both of which are
convergent, and the resulting function only depends on χ ≡ φ+ ψ. The final
function is divergent, but the integration is ignorant of the divergence, which is
similar to the example below:∫ 1

−1

1
x2 dx = − 1

x

∣∣∣1
−1

= −2. (4.70)

By going through the procedures above, one can obtain that

F ′′(ε)
∣∣∣
ε=0

=
∫

(I1 + I2 + I3) = −29π8

3780CT + π8

1890CT + 0 = − π8

140CT

⇒ F ′′(λ)
∣∣∣
λ=1

= 4F ′′(ε)
∣∣∣
ε=0

= −π
8

35CT .

(4.71)

In the last line above, we used the relation between the squashings ε = λ2 − 1.
The result is universal since it’s only related to conformal symmetry and thus
applies to all CFTs. It must be reproduced in free field theories as well as the
holographic theory, as we will see.

U(1) bundle squashed S2k+1

Spheres as U(1) bundles over complex projective spaces are very interesting
cases and have been investigated partially in the literature. [180, 280, 286] As
in the last section, we can obtain the second-order derivative of free energy
in terms of squashing parameter for any odd-dimensional sphere with a U(1)
bundle. The special cases for S3 and S5 has been discussed in [180], and a
powerful formula was conjectured for general d = 2k + 1 from the point of view
of high-derivative gravity [280]:

F ′′d (ε)
∣∣∣
ε=0

= (−1) d−1
2 πd+1(d− 1)2

2d! CT . (4.72)

Using the embedding map of S7 described in (C.25), we perform the integral
as in [180] for generic values of d = 2k + 1 and find the result consistent with
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the prediction above, proving it from the field theory side, which is again a
universal result applying for general CFTs living on squashed (2k + 1)-spheres.
This is the first time to obtain them from the field theory side up as far as we
know. We put the detailed analysis of the integral in Appendix C.3 for people
interested.

Taking some special values d = 3, 5, 7, one gets:

F ′′3 (0) = −π
4

3 CT , F ′′5 (0) = π6

15CT , F ′′7 (0) = − π8

280CT . (4.73)

The first two are identical to the results in [180]. Comparing F ′′(ε) on the seven
spheres with U(1) bundle in (4.73) and SU(2) bundle in (4.71), we find the
one with SU(2) bundle is twice larger, which means the squashing with SU(2)
bundle perturbs the field theory more strongly, which is intuitively correct.

4.3.2 Conformally-coupled scalar

The conformally coupled scalar theory, or the O(N) model,11 is holographic
dual to higher spin gravity [262], whose free energy is different from the Einstein
gravity that we studied. However, by comparing the free energies of Einstein’s
gravity and field theories here, we can observe some universal properties shared
among them. [283, 284, 285, 271, 180]. It would also be interesting to study
the high spin gravity in the future.

The partition function of massless conformally-coupled scalars living on squashed
seven-sphere is as follows12

Zsc =
∫
Dφe−Ssc[gab,φ], Ssc = 1

2

∫
d7x
√
g

(
(∂φ)2 + 5

24Rφ
2
)
. (4.74)

After a Gaussian integration, the free energy is given by

Fsc = − logZsc = 1
2 log det

(
−∇2 + 5

24R
)
. (4.75)

The eigenvalues of Laplacian on the squashed seven sphere (4.25) and their
degeneracies are: [281]

λn,r = n(n+ 6) + 1− λ2

λ2 (n− 2r)(n− 2r + 2), n = 0, 1, 2, · · · ;

mn,r = 1
6(n+ 3)(n− r + 2)(n− 2r + 1)2(r + 1), r = 0, 1, · · · ,

[n
2

]
.

(4.76)

11In this chapter, whenever we refer to the O(N) model, we always assume N = 1, which is
the conformally coupled scalar model.

12The coefficient of the coupling term for general d is d−2
4(d−1) .
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As shown in (4.27), the Ricci scalar of the two squashed sphere metrics are
identical, thus the calculation here applies in both cases. We can obtain the
spectrum of conformal Laplacian on squashed seven sphere with the Ricci scalar

λ̃n,r = λn,r + 5
24R, R = 6

(
8− 2λ2 + 1

λ2

)
. (4.77)

From (4.76), we find the eigenvalues are unbounded, thus the free energy has a
UV divergence and needs to be regularized. In the following, we will use two
regularization methods. The first one is heat-kernel regularization following
[284, 285, 271, 180], for which we can calculate Fsc(λ) numerically for general
λ. The second one is zeta-function regularization following [283, 286], with
which we can calculate the derivatives at λ = 1 analytically. Combining the
numerical results for generic λ and the analytical results at λ = 1, we can justify
the precision of numerical simulation, as well as compare them to the bulk
calculation from various aspects.

Heat-kernel regularization

In this section, we follow the heat-kernel technique of [297], see also [298, 79].
Consider a general spectrum {λi} with degeneracy {mi}, one can define the
heat-kernel function and spectral zeta-function:

K(t) ≡
∑
i

mie
−tλi , ζ∆(p) ≡

∑
i

mi

λpi
. (4.78)

After evaluating the Gaussian integral in the partition function, the free energy
is proportional to the determinant of the kinetic operator. For conformally
coupled scalar fields, we have

F = 1
2 log det ∆ = 1

2
∑
i

mi log λi = −1
2ζ
′
∆(0). (4.79)

The spectral zeta function is related to the heat kernel with a Mellin
transformation:

G(p) ≡ Γ(p)ζ∆(p) =
∫ ∞

0
dtK(t)tp−1. (4.80)

On the left hand side above, we can expand G(p) at small p:

G(p) = ζ∆(0)
p
− γζ∆(0) + ζ ′∆(0) +O(p). (4.81)

Meanwhile, on the right hand side, the integral is divergent in the small-t
region because of the divergence of heat kernel at small-t, which in general
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d-dimensional field theories is

K(t) =
d+1

2∑
k=0

ad/2−kt
−d/2+k +O(t). (4.82)

In fact, both the divergence of K(t) at t = 0 on the right hand side and the
pole at p = 0 on the left hand side reflect the UV divergence of the determinant,
which requires a regularization. The essence of heat-kernel regularization is to
regulate the integral on the right hand side. Practically, we divide the integral
domain into (0, 1] ∪ [1,∞) and perform the divergent integral over (0, 1] as
follows, this essentially eliminates the divergence by throwing off the diverging
contribution from a small cutoff:∫ 1

0
dt

1
t
ad/2−kt

−d/2+k = lim
ε→0

∫ 1

ε

dt
1
t
ad/2−kt

−d/2+k

=
ad/2−k

k − d/2 lim
ε→0

(
1− 1

εd/2−k

)
⇒

ad/2−k

k − d/2 .

(4.83)

After heat-kernel regularization, G(p) is reduced to the following finite value:

G(p) =
∫ 1

0
dt

K(t)−
d+1

2∑
k=0

ad/2−kt
−d/2+k

 tp−1+
d+1

2∑
k=0

ad/2−k

k − d/2+
∫ ∞

1
dtK(t)tp−1.

(4.84)
The expression above has no pole at p = 0, which requires ζ∆(0) = 0, thus
the free energy (4.79) is equal to the integral of heat-kernel, this is the central
equation we’re going to calculate:

Fsc = −1
2ζ
′
∆(0) = G(0) = −1

2

∫ ∞
0

1
t
K(t)dt. (4.85)

From the discussion above, the heat kernel regularization is essentially also
a zeta function regularization through the spectral zeta function. Since the
integrals above are evaluated numerically, we don’t require λ to be special values.
For the conformally coupled scalars, we obtain the following coefficients of the
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Figure 4.5: Renormalized free energy with squashing parameter λ, the red
points correspond to the free energy on the round sphere.

divergent terms:

a7/2 =
√
πλ3

384 ,

a5/2 =
√
πλ
(
2λ4 − 8λ2 − 1

)
1536 ,

a3/2 =
√
π
(
4
(
255λ6 − 504λ4 + 257λ2 + 60

)
λ2 + 15

)
184320λ ,

a1/2 =−
√
π
(
2
(
51100λ10 − 60240λ8 − 13674λ6 + 6224λ4 + 11109λ2 + 1260

)
λ2 + 105

)
15482880λ3 ,

a−1/2 =
√
π

247726080λ5 [8
(
733586λ14 − 2142496λ12 + 2212060λ10 − 905552λ8

+81835λ6 + 16808λ4 + 5607λ2 + 420
)
λ2 + 105].

(4.86)
The calculation can theoretically be conducted using the formula listed above,
but in practice, the double-summation of n, r converges extremely slowly. So
here we followed the technique of [284]13, using the Euler-MacLaurin formula
to approximate the summation over thousands of points by integrals and
function values, reducing the time-cost to an acceptable range. Using heat-
kernel regularization, we numerically reproduced the round sphere free energy
obtained in [299]; and the dependence of λ is plotted in Fig.4.5. By comparing it
with the bulk free energy shown in Fig.4.4, we can identify similar behaviors as

13The method has been nicely introduced in several places such as [284, 271, 180], thus we
only present our final results here.
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well as differences. The difference can mostly be attributed to the distinctions
between strongly coupled holographic field theories and free ones we consider
here, but also to field theory details such as correlation functions.

Using heat kernel regularization, we are able to evaluate not only the values
of free energy but also derivatives with regard to the squashing λ. We studied
the second and third-order derivatives at λ = 1, which provides a reference for
our analytical results obtained in zeta function regularization. The procedure is
nearly the same after taking the derivative of λ:

dn

dλn
Fsc = −1

2

∫ ∞
0

1
t

∂n

∂λn
K(t)dt. (4.87)

We also need to distill the divergent part of the integrand:

∂n

∂λn
K(t) =

d+1
2∑

k=0
a

(n)
d/2−kt

−d/2+k +O(t). (4.88)

By dividing the integral domain into (0, 1] and [1,∞), regulating the divergences,
and evaluating the converging part numerically, we obtain the renormalized
derivative, which is consistent with the results from zeta-function regularization
which we obtain later:

F (2)
sc (1) =− 0.289411 = 1.0009

(
−15π2

512

)
,

F (3)
sc (1) =− 5.275 = 1.005

(
−62815π2

118272

)
.

(4.89)

For F (2)
sc (1) and F (3)

sc (1) at λ = 1, the divergent coefficients are as follows:

a
(2)
7/2 =

√
π

64 , a
(2)
5/2 = −

√
π

192 , a
(2)
3/2 = 1453

√
π

30720 ,

a
(2)
1/2 =− 152689

√
π

1290240 , a
(2)
−1/2 = 2317181

√
π

41287680 .

a
(3)
7/2 =

√
π

64 , a
(3)
5/2 = 3

√
π

64 , a
(3)
3/2 = 16553

√
π

30720 ,

a
(3)
1/2 =− 2051699

√
π

1290240 , a
(3)
−1/2 = 10868771

√
π

5898240 .

(4.90)
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Zeta-function regularization

For the scalar spectrum (4.76) we have

Fsc(λ) = 1
2 log det

(
−∇2 + 5

24R
)

= 1
2

∞∑
n=0

[n2 ]∑
r=0

mn,r log λ̃n,r. (4.91)

Thus, following [286], by formally commuting the infinite sum and derivative
over λ, we obtain the following expressions for the i-th order derivative of Fsc
at λ = 1:

F (i)
sc (1) = 1

2

∞∑
n=0

[n2 ]∑
r=0

mn,r
di

dλi
log λ̃n,r

∣∣∣
λ=1

= 1
2

∞∑
k=0

k∑
r=0

m2k,r
di

dλi
log λ̃2k,r

∣∣∣
λ=1

+ 1
2

∞∑
k=0

k∑
r=0

m2k+1,r
di

dλi
log λ̃2k+1,r

∣∣∣
λ=1

.

(4.92)
For the i = 0 case, we met with a divergent series with logarithms, which needs
to be regularized using the generalized zeta-function:
∞∑
k=0

(k + a)n log(k + a) = −ζ ′a(−n), ζa(s) ≡
∞∑
m=0

1
(a+m)s , a ∈ R. (4.93)

The result we obtain, which is also shown in Table 4.1, is the same as in [299]:

Fsc(1) = 60π6 log 2 + 82π4ζ(3)− 150π2ζ(5)− 945ζ(7)
61440π6 ≈ 0.000797. (4.94)

For the first-order derivative, which should vanish because of the vanishing of
the conformal anomaly in odd-dimensional field theory, the expression is

F ′sc(1) = −
∞∑
k=0

16
21

(
k + 1

2

)
(k + 1)

(
k + 3

2

)2
(k + 2)

(
k + 5

2

)
. (4.95)

This expression seems to be non-zero using normal zeta-function regularization,
contradicting the conformal symmetry. However, using a new parameter k′ =
k + 3/2, we get a non-trivial cancellation among generalized zeta functions:

F ′sc(1) = − 4
21
∑
k′

(k′2−5k′4+4k′6) = − 4
21(ζ3/2(−2)−5ζ3/2(−4)+4ζ3/2(−6)) = 0.

(4.96)
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Since this kind of divergent series can’t be regularized using a method that is
both stable and linear, the shift of the summing parameter will bring a different
answer. [298] To guarantee we have the correct shift, one thing we can do is find
a physical meaning of the parameter or use another summation method, such
as comparing our results against those obtained by heat kernel regularization,
integrated correlators, or the bulk results. Indeed, all these results justify that
the universal value is obtained by omitting the term without the π factors,
which we will see below. Another justification is that although shifting variables
k′ = k + a shifts the result, all terms with π factors don’t change.

For the second and third-order derivatives, we arrange the sum in the form
where the first line is divergent and the second line is convergent:

F (2)
sc (1) = 1

2

∞∑
k=0

(
544k6

945 + 272k5

45 + 23588k4

945 + 6928k3

135 + 17018k2

315 + 7003k
270 + 6917

1680

−5(64k(2k + 7)(13k(2k + 7) + 155) + 29619)
48(4k + 5)2(4k + 7)2(4k + 9)2

)

= 6499
43200 + 652− 75π2

2560 ⇒ −15π2

512 .

(4.97)
F (3)

sc (1)

= 1
2

∞∑
k=0

(
−15296k6

10395 − 7648k5

495 − 234104k4

3465 − 233872k3

1485 − 102317k2

495 − 143801k
990 − 6209419

166320

−8k(2k + 7)(8k(2k + 7)(11960664k(2k + 7) + 205534087) + 9393298205) + 142669238625
18480(4k + 5)3(4k + 7)2(4k + 9)3

)

= −614077
950400 −

62815π2

118272 ⇒ −62815π2

118272 .

The procedure outlined above can be directly applied to evaluate higher-order
derivatives, which are less insightful from the holography point of view, thus we
will not bother to put them here.

F F ′′ F ′′′

Scalar 60π6 log 2+82π4ζ(3)−150π2ζ(5)−945ζ(7)
61440π6 − 15π2

512 − 62815π2

118272

Fermion 300π6 log 2+518π4ζ(3)+1050π2ζ(5)+945ζ(7)
7680π6 − 45π2

64 − 101335π2

7392

Table 4.1: F (i)
sc (1) and F (i)

f (1) for i = 0, 2, 3.
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4.3.3 Free fermion

In this section, we calculate the derivatives of free energy at λ = 1 for free
fermions analytically, using zeta function regularization introduced before. The
free energy is

Ff(λ) = − log det
(
−i /∇

)
= −

∑
n,r

mn,r log λ̃n,r. (4.98)

The spectrum of Dirac operator on squashed seven-sphere with SO(5)×SO(3)
isometry was calculated in [281], and in [282] by another method. The eigenstates
of Dirac operator in S7 correspond to the SO(8) irreps (n, 0, 0, 1) and (n, 0, 1, 0),
with negative and positive values respectively. [99] Consider the branching rules
of the two SO(8) irreps under SO(5)×SO(3):

(n, 0, 0, 1)→
[n/2]∑
r=0

(n+ 1− 2r, r;n+ 1− 2r) +
[n/2]∑
r=0

(n+ 1− 2r, r;n− 1− 2r)

+
[n/2]∑
r=0

(n− 1− 2r, r + 1;n+ 1− 2r) +
[n/2]∑
r=0

(n− 1− 2r, r;n− 1− 2r).

(n, 0, 1, 0)→
[n/2]+1∑
r=0

(n− 2r, r + 1;n− 2r) +
[(n−1)/2]∑
r=0

(n− 2r, r;n− 2r)

+
[n/2]∑
r=0

(n− 2r, r;n− 2r + 2) +
[n/2−1]∑
r=0

(n− 2r, r;n− 2r − 2).

(4.99)
The label (p, q; r) correspond to irrep of SO(5) with Dynkin indices (p, q) and
irrep for Sp(1) with index r, whose dimensions are:

mp,q = 1
6(p+ 1)(q + 1)(p+ q + 2)(p+ 2q + 3), mr = r + 1. (4.100)

Thus the degeneracy of irrep (p, q; r) is mp,q,r = mp,qmr. In the branching rule,
there’re three classes of SO(5)×SO(3) irreps, with specific relations between r
and p: (i)(p, q; p), (ii)(p, q; p+ 2), (iii)(p, q; p− 2).
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For case (i), the eigenvalues λ̃ are solutions of the following quatic equation:14

(λ̃− σ1+)(λ̃− σ1−)(λ̃− σ2+)(λ̃− σ2−)−
(
λ2 − 1

) (
5λ2 − 1

)
λ4 p(p+ 2) = 0;

σ1± = −3
2λ±

1
2λ
√

9λ4 + 2λ2(8pq + 8p+ 8q2 + 24q + 9) + 4p2 + 8p+ 9,

σ2± = λ

2 ±
1

2λ
√
λ4 + 2λ2(8pq + 8p+ 8q2 + 24q + 17) + 4p2 + 8p+ 1.

(4.101)
The equation becomes trivial when λ2 = 1, 1/5. And we will name the four
corresponding branches of eigenvalues (Σ1+,Σ2+,Σ1−,Σ2−), which reduce to
(σ1+, σ2+, σ1−, σ2−) respectively if we take λ2 = 1, 1/5.

For cases (ii) and (iii), the eigenvalues are denoted by D2± and D3± respectively:

D2± = λ

2 ±
1

2λ
√
λ4 + 2λ2(8pq + 2p+ 8q2 + 24q + 5) + (2p+ 5)2;

D3± = λ

2 ±
1

2λ
√
λ4 + 2λ2(8pq + 14p+ 8q2 + 24q + 17) + (2p− 1)2.

(4.102)

To determine which eigenvalue to choose for the irreps in (4.99), we need
to compare the above eigenvalues with [99], which discussed the special case
λ2 = 1/5. It turns out that corresponding to the eight irreps of SO(5)×SO(3)
appearing in the branching rule following the order of (4.99), we need to specify
the following eigenvalues:

Σ2−, D3−, D2−, Σ1−; Σ1+, Σ2+, D2+, D3+. (4.103)

When λ = 1, the eigenvalues and degeneracies above are significantly simplified:

D+ = n+ 7
2 , D− = −n− 7

2 , n = 0, 1, 2, ...;

mn = 1
90(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6).

(4.104)

To calculate Ff(1), we need generalized zeta function as in (4.93) to regulate
logarithmic terms, which is also shown in Table 4.1, and corresponds to the
results of [299]:

Ff(1) = 300π6 log 2 + 518π4ζ(3) + 1050π2ζ(5) + 945ζ(7)
7680π6 ≈ 0.0369. (4.105)

14Notice that the equation in [281] has a typo in the last term in the denominator.
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The first, second, and third-order derivatives can be calculated using the ordinary
zeta-function regularization, and we extract the terms with factors of π as the
physically relevant ones as argued before:

F ′f (1) =128
105

∞∑
k=0

(k + 1)
(
k + 3

2

)
(k + 2)

(
k + 5

2

)
(k + 3)

= 32
105

∞∑
m=2

(4m6 − 5m4 +m2) = 32
105 [4ζ(−6)− 5ζ(−4) + ζ(−2)] = 0.

F ′′f (1) =−
∞∑
k=0

(
2176k6

945 + 8704k5

315 + 125984k4

945 + 311552k3

945 + 3100k2

7 + 295696k
945 + 112481

1260

− 256
105(2k + 5) + 45

8(4k + 7)2 + 45
8(4k + 9)2 + 256

105(2k + 3)

)

=− 5608873
264600 +

(
14269
2520 −

45π2

64

)
⇒ −45π2

64 .

F ′′′f (1) =−
∞∑
k=0

(
16k(k + 4)(8k(k + 4)(956k(k + 4) + 9981) + 255129) + 5118283

20790

+
600000
2k+5 −

506675
(4k+7)2 − 506675

(4k+9)2 − 248832
(2k+5)3 − 600000

2k+3 + 248832
(2k+3)3

4620

)

=− 101335π2

7392 + 54409409
363825 ⇒ −101335π2

7392 .

4.4 Comparison

Up to now, we have studied the free energies of three theories: holographic
CFT corresponding to Euclidean Einstein gravity, O(N) vector model, and free
fermion model. In this section, we will compare their free energies as functions
of the squashing parameter λ.

The number of degrees of freedom in field theory is characterized by its central
charge CT in the stress-tensor two-point functions (4.62), thus to compare the
free energy among different theories, the most convenient normalization is to
divide them by the corresponding central charges. For free scalar and massless
Dirac fermion, the central charges are given by, respectively: [286, 276, 277,
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Figure 4.6: Blue points: gravitational free energy. Red points: conformally
coupled scalar action. The zero-point energy where λ = 1 is extracted, and CT
is divided. The lines are interpolation lines to make the plots more clear.

300]15

CT,sc = d

d− 1
1

V 2
Sd−1

, CT,f = d

22[d/2] 1
V 2
Sd−1

, VSd−1 ≡ 2πd/2
Γ (d/2) . (4.106)

The two-point function of stress tensor can also be evaluated holographically
from the bulk side, and the value of CT in Einstein gravity is given by [300, 301]:

CT,holo = Γ(d+ 2)
8(d− 1)Γ(d/2)π(d+2)/2

`d−1

GN
.

Specifically for d = 7, we have:

CT,sc = 525
512π6 , CT,f = 1575

64π6 , CT,holo = 448
π5

`6

GN
.

The first comparison can be made between normalized Fbulk and Fsc for general
λ collected in Fig. 4.6. Except for the expected correspondence at weak and
strong deformation regions, they seem to behave differently, especially around
λ∗ = 1/

√
5 ≈ 0.447. There appear to be some local minima in both cases which

are less understood. The gravitational free energy seems to have a platform
around λ∗, which deserves further numerical study with higher precision.

In the weak-squashing regime, we collect the analytic results of second-order
and third-order derivatives at λ = 1 for scalar and fermion in Table 4.2. In the

15In [180], the convention is different, where the factor of VSd−1 is absent.
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same table, we also include the same quantities of Fbulk obtained by numerical
fitting. The small discrepancy of the second-order derivative is probably due
to numerical errors, which reflects our normalization by dividing CT in each
theory is reasonable. The three-point function of the stress tensor depends on
the details of the field theory, which is different in different theories. It was
observed in [180] that for some special field theories on U(1) squashed three
spheres, the third-order derivatives of free energies of the squashing parameter
ε appear to be vanishing, which is no longer true in our example. Take the
holographic field theory as an example, we have:

1
CT

d3F

dε3

∣∣∣
ε=0

= 1
8CT

F ′′′(1)− 3
8CT

F ′′(1) ≈ −670, (4.107)

which is different from zero. It will be interesting to explore this further.

scalar free fermion holographic field

F ′′(1)/CT −π
8

35 ≈ −271.1 −π
8

35 ≈ −271.1 −271.8

F ′′′(1)/CT − 12563π8

24255 ≈ −4900 − 40534π8

72765 ≈ −5300 −6200

Table 4.2: Comparison of the second and third-order derivatives of free energy
at λ = 1.

The comparison at strong-squashing regime, corresponding to big and small
values of λ, has been reported in the literature. [265, 283] Our results are
collected in Fig. 4.7. Although the free energies are not exactly the same as
in weak-squashing regime, they turn out to be proportional to each other and
have the same scaling of λ or λ−1 respectively, which is the same as AlAdS4
study in [283].

For small λ, the size of the SU(2) bundle can be omitted compared with the S4

base space, this means b(r) will cap off before a(r) as r go from infinity, where
the local geometry is given by S4×R4, corresponding to a Bolt space. Following
[265], we expect the free energy of the conformal field theory to be identical
to a theory living on S4, which is proportional to the normalized volume of S4

and scales like F ∼ 1
λ4 , and indeed they have been reproduced for free energies

both in the bulk and boundary.

At large λ, the S4 becomes tiny and the fiber effect becomes strong, and numerics
suggests to us the power is F ∼ λ10. This power can be compared against [265]:
there they consider an asymptotic boundary S4 × S3 there when S3 becomes
large, the near horizon geometry becomes R5 × S3, corresponding to a CFT
living on S3, thus the free energy will scale as λ3, which is much different from
our result. The difference in our case is that we don’t have such a solution
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Figure 4.7: Free energy at large and small λ, respectively. The blue line is bulk
free energy, and the red one is for free scalar. The green lines are reference lines,
whose slopes are 10 and −4 respectively.

where a(r) caps off before b(r), thus the field theory argument above doesn’t
work anymore. Notice that 10 = 7 + 3, which is the sum of the dimension of the
full boundary and the bundle, it will be interesting to understand this scaling
better.

We can also discuss the large squashing behavior for field theories living on the
U(1) squashed (2k+ 1)-spheres. If we still label the size of the bundle as λ, then
as λ→ 0, the free energy scales as an effective theory on S2k, thus F ∼ λ−2k;
and as λ→∞, we expect a power equal to the sum of boundary dimension and
the fibre, which is λ2k+2. The special case k = 1 has been already considered in
the literature. At the bulk side, it was done in [179] where O(λ4) scaling at large
λ and O(λ−2) at small λ are obtained analytically. The O(λ−2) scaling has also
been reproduced for conformally coupled scalar and fermions. [283, 180, 302]

4.5 Discussion

As the first result of this chapter, we construct a novel one-parameter family
of AlAdS8 solutions of Euclidean Einstein gravity preserving SO(5)×SO(3)
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isometry with two closely related metrics. We study the renormalized
gravitational free energy as a function of the squashing parameter and show
its correspondence with free field theories living on a squashed seven sphere.
With the solutions containing SU(2) fiber bundles, our work has extended
the literature on AdS vacuum solutions. On the field theory side, we have
studied the free energy for an arbitrary CFT living on a perturbed metric.
Using zeta-function and heat-kernel regularization, we study the free energy of
free conformal scalar and free fermion theories living on the squashed sphere.
We compare free energies in the bulk and boundary both at small and large
deformations.

As a second result of this chapter, we expressed the second-order derivative of
the free energy with regard to the squashing parameter in terms of the central
charge in general CFT. The relation is identical to the corresponding one in the
bulk, which reflects the universal property of conformal symmetry and acts as a
sanity check of our result. We checked this for general conformal field theories
living on the U(1) squashed sphere or the SU(2) squashed seven spheres. From a
renormalization group point of view, the squashing on the round sphere induces
an RG flow generated by the stress tensor of the field theory, along which the
F̃ quantity related to the free energy must be decreasing, this is also confirmed
in our analysis.

Future directions

The story we uncovered is interesting but there are some open questions left by
our analysis. Let us mention some of them.

More investigations on the field theory free energy will further support our
results. It’s interesting to evaluate the renormalized free energy for free fermions
using heat-kernel regularization to get the strong deformation behavior, where
a crucial step is to obtain the heat-kernel coefficients. One should also try to
obtain the strong deformation behavior analytically, following [302].

Our second metric ansatz turns out to be more general than the first one and
admits three squashing parameters. The discussions in the appendix C.1 only
show the behaviors of the metric, without exploring further the free energy.
It would be definitely interesting to investigate the extended phase space of
the AlAdS8 solution as well as its holographic partners. We conjecture that
there should be an interface between the NUT and Bolt phase in the bulk
configuration space parametrized by (λ1, λ2, λ3) ≡

(
F30
F20

, F40
F20

, F50
F20

)
, passing

through the special point corresponding to λ∗ = 1√
5 . On the field theory side,

we need to generalize the spectrum of conformal Laplacian [281, 282] when
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the symmetry group is further broken from SO(5)×SO(3) to SO(5)×U(1). At
strong deformation regime, we expect the bulk and boundary free energy to scale
consistently as a homogeneous polynomial of (λ1, λ2, λ3) whose order is dictated
by our analysis which essentially corresponds to the special case λ1 = λ2 = λ3.

We also need to understand better the λ10 scaling of the free energies, which
reflects important properties of the field theory. Notice that a similar scaling
also emerges for U(1) squashed spheres, a numerical study would also be helpful
for those cases. We are also looking forward to a formal justification of our
steps to evaluate integrated two-point correlators on the sphere, which may also
help us evaluate three-point correlators of stress tensors.

Based on our work, there are also many generalizations that are worthy of
exploring.

As we mentioned in the beginning, as dictated by the Klebanov-Polyakov
correspondence [262], the O(N) vector field and free fermion on the boundary
are dual to higher spin gravity in the bulk. The higher spin modes in the
latter contributes non-trivially to the free energy, and thus needs to be studied
independently. There are two types of higher spin gravities, called A and
B, correspond to complex scalar and free fermion fields on the boundary
respectively.16 Following [304, 305, 306] for a new solution similar to our ansatzes
(4.32a) and (4.32b) will be desirable. This will provide new opportunities for
quantitative checks of the higher-spin/vector model duality.

The authors of [307] conjectured that any non-supersymmetric AdS vacua
supported by fluxes must be unstable. An example with a 11D Euclidean
AdS5 × CP3 backups the conjecture. [308] It would be interesting to study
the stability under real-time evolution of our bulk space, following [290] whose
geometry is asymptotically flat.

One can further explore the integrated three-point functions of stress tensor
on seven spheres, and compare them against the proposal in [280, 286]. It
was pointed out in [180, 280] that free bosons and free fermions may play as
lower and upper bounds for the free energies in general field theories. For U(1)
bundled (2k+1)-spheres, this can be explicitly checked by numerically evaluating
the renormalized Euclidean Einstein-Hilbert action as well as analytically on
the field theory side using the zeta-function regularization with the known
eigenvalues of Laplacian [180] and Dirac operators [309].

Our metric ansatz is based on quaternionic line bundle, it might be interesting
to also consider octoninic line bundle considered in [310, 311]. Generalizing
our solutions here to include higher derivative corrections is also an interesting

16See [303] for a review and [304, 305, 306] for results with AdS8.
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direction to explore. [312] A more ambitious plan is to follow the top-down
approach of [313, 314] to understand the AdS8 vacua in string theory.



Chapter 5

Conclusion and outlook

In this thesis we mainly do two things. The first is to test precision holography.
The second is to take advantage of the precision AdS/CFT correspondence to
have a better understanding on both the quantum gravity and the strongly-
coupled quantum field theories.

Chapter 2 mainly uses supergravity techniques to reproduce the subleading
terms in the dual field theories, which is a non-trivial test of precision holography
at quantum level. At the same time, using AdS/CFT, the observation in field
theory results that partitions functions and correlators are independent of
continuous parameters imposes strong constraints on the bulk theories, and
especially may be used to disprove some theories in supergravity with scale
separation.

Chapter 3 uses field theory techniques to evaluate several BPS observables at
strong coupling in the large N limit for the first time, this gives non-trivial
predictions on scattering of Kaluza-Klein modes in the dual type IIB supergravity.
At the same time, partial results in the gravity side are consistent to ours, which
is a non-trivial precision test of holography.

Chapter 4 studies the phases and the analogue of Hawking-page phase transition
in the Euclidean Einstein gravity for a novel asymptotically AdS8 background.
The phase space unexpectedly indicates an absence of any phase transition, which
gives a non-trivial prediction on its dual field theory, which is not understood
because of the lack of supersymmetry. As a bottom-up model of holography, we
compare the partition functions among the conformal scalar, the free fermion,
and the holographic theories.

173
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As discussed in the end of each chapters, there are numerous directions of
further studies of these stories. Here we highlight some of them as valuable
topics to be explored in the future.

• The methods we have employed can be generalized to study logarithmic
corrections to path integrals in de Sitter space, see [315, 316] for some
recent explorations in this direction. It is important to develop this topic
further and calculate both logarithmic corrections to the entropy of empty
de Sitter space as well as to the entropy of asymptotically de Sitter black
holes.

• Supersymmetric localization has proven to be an efficient method for
the calculation of path integrals in supersymmetric theories. It may be
possible to use localization calculations in gauged supergravity as an
efficient method to compute the Euclidean gravitational path integral and
access the logarithmic corrections discussed above. This has been explored
in [317, 318, 319, 76] and it is important to address the subtleties and
open questions that accompany this method. We hope that the results
presented in this work will prove helpful in this regard. To this end, it is
encouraging to note the fact that the 4d KK supergravity regularization
discussed in Section 2.6.2 yields the same χ log

(
L2/GN

)
structure of

the logarithmic correction as the one found in [76] using supergravity
localization and index theorems.

• The methods we used in this work can be applied to logarithmic corrections
of AdS path integrals in other space-time dimensions. It will be particularly
interesting to perform such an analysis for even-dimensional asymptotically
AdS backgrounds since then there are non-trivial local contributions to
the logarithmic corrections and it should be possible to deduce constraints
on gravitational theories in AdS as we did in Section 2.7.

• In Section 2.7 we presented general constraints on the spectrum of light
excitations around a given AdS4 vacuum arising from a UV-complete
quantum gravitational theory. It is important to understand whether
these constraints are obeyed by the many known AdS4 vacua in string and
M-theory. This is of particular interest in the context of scale-separated
AdS vacua where these new constraints can either rule out some a priori
admissible backgrounds, or point to exotic features in the holographically
dual 3d CFTs. It will also be interesting to explore the interplay between
the constraints on the matter fields presented in Section 2.7 and the species
bound discussed in the work of Dvali [320]. Finally, we note that in many
examples discussed in Section 2.6, we found that the total heat kernel
coefficients of two AdS4 solutions connected by a gravitational domain
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wall are the same. It is important to understand whether this is a general
feature of AdS vacua connected by domain walls. If such a property is
generally true it can be used in conjunction with the constraints from
Section 2.7 to derive even stronger consistency conditions on gravitational
theories in AdS.

• New BPS observables in the superconformal E-theory have been studied
using similar matrix models that we discuss, such as correlators of Wilson
loops [321], correlation function between one single-trace scalar operator
and a circular Wilson loop [322], integrated two-point functions with a
Wilson loop [323], integrated four-point functions [324]. It would be very
interesting to study the limit of our algorithm and to study the strongly
coupled limit of these observables for which analytic methods are not
powerful enough.

• There’re several aspects of the SO(5)×SO(3) symmetric AlAdS8 space that
are interesting to explore. We have not identified the detailed behavior of
the renormalized free energy when the squashing parameter approaches
the special value λ∗ = 1√

5 , which requires higher numerical precision. It
would be interesting to see whether there is an oscillating behavior around
the conically singular solution as observed in [265]. Besides numerics, this
special limit can also be studied from the NUT side analytically following
the metric perturbation method as in [265].

• Given the lack of superconformal field theories in d = 7 [17, 325], there
have been many explorations on non-conformal supersymmetric Yang-
Mills theory living on seven manifolds, which can be constructed as
the worldvolume theory of the D6 branes in the Euclidean type IIA∗
theory. [326] With supersymmetries, localization calculations can be
done to extract information about the free energy and the Wilson loops
expectation values. [313] With background fluxes turned on, we expect
the free energy to be different from our case, but it would be interesting
to compare our results and illustrate the difference.





Appendix A

More details on Log
corrections

A.1 Euclidean spinors

In this appendix we briefly summarize the 4d Euclidean convention for spinors
and gamma matrices, see [327, 90] for details. We use hermitian gamma matrices
satisfying

(γa)† = γa , {γa, γb} = 2δab , (A.1)

and define the 5th gamma matrix γ5 as

γ5 = γ1γ2γ3γ4 . (A.2)

The charge conjugation matrix Ω satisfies

Ω = −ΩT , ΩγaΩ−1 = −(γa)T , (A.3)

and also the unitarity relation Ω† = Ω−1.

In 4d Euclidean signature, Majorana spinors are not irreducible and instead
we must use symplectic-Majorana spinors. A symplectic-Majorana spinor λi
satisfies the constraint

Ω−1(λ̄i)T = εij λ
j , (A.4)

written in terms of the charge conjugation matrix Ω and the antisymmetric
tensor εij with ε12 = 1, where the bar is defined as λ̄i := (λi)† and SU(2) indices

177
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i, j ∈ {1, 2} are raised and lowered by complex conjugation. The symplectic-
Majorana condition (A.4) yields the following useful identities on bilinears of
anti-commuting symplectic-Majorana spinors:(

λ̄j Γ† ϕi
)† = ϕ̄i Γλj = −εik εjl λ̄l Ω−1ΓTΩϕk , (A.5)

where Γ is any combination of gamma matrices. For commuting symplectic-
Majorana spinors, we have instead(

λ̄j Γ† ϕi
)† = ϕ̄i Γλj = εik ε

jl λ̄l Ω−1ΓTΩϕk , (A.6)

where the additional minus sign comes from (AB)T = −BTAT for two
Grassmann-odd matrices A and B.

A.2 Trace computations

In this appendix, we study the quadratic operator Q and the associated bulk
contribution to the fourth SdW coefficient in (2.37). We do so for all massless
and massive quantum fluctuations of fields with spin 0 ≤ s ≤ 2. For s = 0
and s = 1/2 we study the fluctuations around a generic Einstein-Maxwell
background satisfying the equations of motion (2.36), while for spin 1 ≤ s ≤ 2
we turn off the background graviphoton and focus on Einstein backgrounds for
simplicity.

A.2.1 Scalar fluctuations

The Euclidean action for scalar fluctuations to quadratic order reads

S =
∫
d4x
√
g φ
[
−DµDµ +m2]φ , (A.7)

where the covariant derivative is

Dµφ = ∇µφ− i q Aµ φ . (A.8)

Here, q is the charge of the scalar field with respect to the background
graviphoton. The quadratic operator can be read off from the action (A.7) as

Qscal = DµDµ −m2 . (A.9)

The associated quantities for the trace computations are defined in Section 2.4.2
and are given by

E = −m2 , Ωµν = −i q Fµν . (A.10)
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Substituting (A.10) into the trace formula (2.31) and then rewriting the result
in terms of the 4-derivative quantities as in (2.37), we obtain the heat kernel
coefficients

aE = 1
360 , c = 1

120 , b1 = 1
288

(
(mL)2 + 2

)2
, b2 = 1

144 (qL)2 , (A.11)

where we have also used the background equations of motion (2.36). The
heat kernel coefficients for the massless case can be obtained simply by setting
m2 = −2/L2 in (A.11).

A.2.2 Spinor fluctuations

The Euclidean action for massive symplectic-Majorana spinors is given by [90]1

S =
∫
d4x
√
g ψ̄iγ

5[δij /D −mσ3
i
j

]
ψj ≡

∫
d4x
√
g ψ̄Dψ , (A.12)

where the covariant derivative is

DµΩi = ∇µΩi − i q σ3
i
j AµΩj , (A.13)

and σ3 is the third Pauli matrix. To obtain a Laplace-type differential operator,
we square the massive Dirac operator to Qferm = −D2, see e.g. [79], and use

log detD = 1
2 log detQferm . (A.14)

The resulting second-order operator reads

Qferm = δij

(
DµDµ −

1
4 R−m

2
)
, (A.15)

where the Ricci scalar term arises due to the Lichnerowicz formula based on
the identity γabγcdRabcd = −2R. This operator is diagonal in the SU(2) indices.
Thus, to obtain the contribution to the heat kernel coefficients from a single
symplectic-Majorana spinor, we can work with the above Qferm and divide the
final result by four: one factor of two for the SU(2) indices and another factor
of two for the symplectic-Majorana condition. From (A.15) we read off the
matrices

E = − 1
4
(
R+ 4m2)δij − 1

2 i q Fabγab σ3
i
j ,

Ωµν = 1
4 R

ab
µνγab δ

i
j − i q Fµν σ3

i
j ,

(A.16)

1The Euclidean Dirac action in a similar form can be derived by generalizing the Wick
rotation to spinors [328]. A proper derivation of the Euclidean spinor action from conformal
supergravity was implemented in [90].
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defined in Section 2.4.2. Substituting (A.16) into the trace formula (2.31) and
then rewriting the result in terms of the 4-derivative quantities in (2.37), we
obtain the heat kernel coefficients

aE = − 11
720 , c = − 1

40 , b1 = 1
144(mL)2((mL)2 − 2

)
, b2 = − 1

36(qL)2 ,

(A.17)
for a single massive spin-1/2 field. The heat kernel coefficients for the massless
case can be obtained simply by setting m = 0 in (A.17).

A.2.3 Vector fluctuations

For a massless Abelian spin-1 field, the Euclidean action reads

S =
∫
d4x
√
g

[
− 1

4 F
µνFµν −

1
2 (∇µAµ)2

]
, (A.18)

where we include a gauge-fixing term imposing the gauge ∇µAµ = 0. To
consider the massive case, we introduce a Stückelberg scalar B and consider
the action [164]

S =
∫
d4x
√
g

[
− 1

4 F
µνFµν−

1
2
(
mAµ+∇µB

)2− 1
2
(
∇µAµ+mB

)2]
. (A.19)

Note that the first two terms are invariant under

δAµ = ∇µλ , δB = −mλ , (A.20)

and that the last term is the new gauge-fixing term for this symmetry. To
enforce the gauge at the quantum level, we introduce anticommuting scalar
ghost and anti-ghost fields with action

Sgh =
∫
d4x
√
g b̄
[
−∇µ∇µ +m2]c . (A.21)

The gauge-fixing term allows us to write the action (A.19) in terms of a Laplace-
type quadratic operator. This operator is diagonal in field space and reads

Qvec =
(
gµν
(
∇2 −m2)−Rµν 0

0 ∇2 −m2

)
. (A.22)

From this we can read off the following matrices defined in Section 2.4.2,

E =
(
−m2gµν −Rµν 0

0 −m2

)
, Ωρσ =

(
Rµνρσ 0

0 0

)
. (A.23)
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This leads to the following heat kernel coefficients for the physical fields,

aph
E = 13

72 , cph = 1
8 , bph

1 = 1
288

(
5(mL)4 − 4(mL)2 + 12

)
, (A.24)

based on the trace formula (2.31) and the equivalent expression (2.37) under the
background equations of motion (2.36) with a vanishing background graviphoton.
The ghost sector contributes minus twice the coefficients for a real scalar field
(A.11), namely

agh
E = − 1

180 , cgh = − 1
60 , bgh

1 = − 1
144((mL)2 + 2)2 , (A.25)

where the factor of two accounts for the pair of ghost and anti-ghost fields and
the minus sign arises due to their anticommuting nature.

Putting the contribution from the physical sector (A.24) and ghost sector (A.25)
together, we arrive at the following heat kernel coefficients for a massive Abelian
vector field

aE = 7
40 , c = 13

120 , b1 = 1
288

(
3(mL)4 − 12(mL)2 + 4

)
. (A.26)

Note that in these trace computations, the Stückelberg field B effectively adds a
simple scalar degree of freedom to the coefficients obtained from the vector and
ghost fields. This is a manifestation of the fact that the quadratic operator (A.22)
is diagonal in field space. One can check that the heat kernel coefficients for a
massless Abelian vector field presented in [77]

aE = 31
180 , c = 1

10 , b1 = 0 , (A.27)

are indeed equivalent to the result obtained by subtracting (A.11) from (A.26)
with m = 0.

A.2.4 Gravitino fluctuations

The Euclidean action for a massive gravitino field reads

S =
∫
d4x
√
g

(
ψ̄µi γ

5[δijγµνρDν−mσ3
i
j γ

µρ
]
ψρ
j+ 1

2iF ρσ ψ̄µiγ5γργ
µνγσψν

i

)
,

(A.28)
where Dµ denotes the covariant derivative. In the following we will turn off the
background gauge field and focus on the gravitino fluctuation around a general
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Einstein background. The Rarita-Schwinger action above needs to be modified
to include a symplectic-Majorana Stückelberg field χi as2

Sχ =
∫
d4x
√
g
(
ψ̄µi+

1
m
∇µχ̄i γ5

)
γ5[δij γµνρ∇ν−mσ3

i
j γ

µρ
](
ψρ
j+ 1

m
γ5∇ρχj

)
.

(A.29)
Implementing the field redefinition

ψµ
i → ψµ

i + 1
2 σ3

i
j γµγ

5χj , (A.30)

the modified action can be written in the form

Sχ = S −
∫
d4x
√
g

(
3
2 χ̄iγ

5 /∇χi − 3m
[
σ3
i
j χ̄iγ

5χj + ψ̄µiγ
µχi
]

− 1
4m

[
Rσ3

i
j χ̄iγ

5χj − 4Gµνψ̄µiγνχi + 2
m
Gµν χ̄iγ

5γµ∇νχi
])

,

(A.31)

where Gµν is the Einstein tensor. After the shift (A.30), the action S in (A.29)
is invariant under the BRST transformations

δBψµ
i = ∇µci −

m

2 σ3
i
j γµc

j , δBχ
i = −mγ5ci ,

δBb
i = i γ5 /∇Bi , δBc

i = 0 , δBB
i = 0 ,

(A.32)

where bi and ci are commuting symplectic-Majorana ghosts and Bi is an anti-
commuting symplectic-Majorana Nakanishi-Lautrup field. To consistently fix
the gauge, we introduce the BRST-invariant action

Sgf =
∫
d4x
√
g
(

i δB
[
b̄i Gi

]
+ ξ B̄iγ

5 /∇Bi
)
, (A.33)

and choose the gauge-fixing function

Gi = γµψµ
i . (A.34)

Lastly, we introduce the massless commuting Kallosh-Nielsen ghost d i with
action

SKN = 1
2 i
∫
d4x
√
g d̄i /∇d i . (A.35)

2See [329] and references therein for how the Stückelberg formalism works for a Rarita-
Schwinger field in the Lorentzian signature. Here we generalized it to the Euclidean signature
based on [90]. Note also that we use ∇µ and not the more general covariant derivative Dµ
since we are considering backgrounds with vanishing graviphoton.



TRACE COMPUTATIONS 183

Upon choosing ξ = − 1
2 in (A.33), the complete action Stot = Sχ + Sgf + SKN

can be written in Dirac form

Stot =
(
ψ̄µi χ̄i b̄i d̄i

)
D


ψν

j

χj

c j

d j

 , (A.36)

where

D =


γ5[δij gµν /∇−mσ3

i
jγ
µν ] −M δijγ

µ 0 0
−M δijγ

ν −γ5[δij /∇− 2mσ3
i
j ] 0 0

0 0 2i[δij /∇− 2mσ3
i
j ] 0

0 0 0 i δij /∇

 .

(A.37)
To write the expressions above, we introduced

M =
√

Λ
2 + 3

2 m
2 , (A.38)

and used that Gµν = −Λ gµν for an Einstein background. We further rescaled
the Stückelberg fermion χi and all the ghosts to normalize all kinetic terms.

Since the operator (A.37) is block diagonal, we first focus on the physical sector
in the 2× 2 upper left corner. To extract the heat kernel coefficients, we square
this operator to bring it to the Laplace form (2.29) and define Qgravitino = −D2,
as in the spin-1/2 case. Contrary to the spin-1 case, this operator is not diagonal
in field space due to the cross terms between the gravitino and the Stückelberg
fermion:

Qgravitino =
(
Qψψ Qψχ
−Qψχ Qχχ

)
. (A.39)

Explicitly, we have the following matrix elements:

Qψψ = δij g
µν /∇2 − 4mσ3

i
j g

ρ[µγν]∇ρ − δij(M2 + 3m2)gµν − δij(M2 + 2m2)γµν ,

Qχχ = δij /∇
2 − 4 δij(M2 +m2) ,

Qψχ = 2M δij γ
5∇µ − 5mM σ3

i
j γ

5γµ ,

(A.40)
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which leads to the following field space matrix for E,

Eψψ = 1
2 δ

i
j

(
Rµνabγ

ab − 1
2 Rg

µν + 6m2 gµν − 2M2 γµν
)
,

Eχχ = − 1
4 δ

i
j

(
R+ 16m2) ,

Eψχ = − Eχψ = −2mM σ3
i
j γ

5γµ ,

(A.41)

and for Ωρσ,

(Ωρσ)ψψ = δij

(
Rµνρσ + 1

4 g
µνRρσabγ

ab + 2m2
[
γµγ[ρgσ]

ν + gµ[ργσ]γ
ν −

(
4 + M2

m2

)
gµ[ρgσ]

ν
])

,

(Ωρσ)χχ = 1
4 δ

i
j Rρσabγ

ab , (A.42)

(Ωρσ)ψχ = − (Ωρσ)χψ = 2mM σ3
i
j γ

5gµ[ργσ] .

With this at hand, we obtain the heat kernel coefficients for the physical sector

aph
E = 109

36 , cph = 25
6 , bph

1 = 1
18
(
17(mL)4 − 16(mL)2 + 11

)
, (A.43)

based on the trace formula (2.31) and the equivalent expression (2.37) obtained
using the background equations of motion (2.36). The ghost sector does not
present additional complications and the corresponding heat kernel coefficients
can be evaluated using the 2× 2 lower right corner of the operator (A.37). The
result is given by

agh
E = 11

60 , cgh = 3
10 , bgh

1 = −4
9(mL)2(2(mL)2 − 1) , (A.44)

where we have taken into account the overall minus sign due to the opposite
spin statistics of the ghosts fields (commuting) with respect to the physical
fields (anti-commuting).

Summing the contribution from the physical sector (A.24) and the ghost sector
(A.25) and dividing the final result by four as in the spin-1/2 case, we obtain
the heat kernel coefficients

aE = 289
360 , c = 67

60 , b1 = 1
72
(
(mL)4 − 8(mL)2 + 11

)
, (A.45)

for a single massive spin-3/2 field. The heat kernel coefficients for a massless spin-
3/2 fluctuation can be computed in the same way but without the contribution
from the spin-1/2 Stückelberg field. The final result is given by

aE = 589
720 , c = 137

120 , b1 = 0 . (A.46)
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A.2.5 Graviton fluctuations

The Euclidean action for a massive spin-2 fluctuation hµν is given by adding
the Pauli-Fierz mass term to the massless action and reads

S =
∫
d4x
√
g
[
hµν∇ρ∇ρhµν − h∇µ∇µh+ 2h∇µ∇νhµν + 2∇νhµν∇ρhµρ

+ 2hµνhρσRµρνσ + 2hµνhµρRνρ − 2hµνhRµν − hµνhµνR+ 1
2h

2R

+ Λ(2hµνhµν − h2)−m2(hµνhµν − h2)
]
,

(A.47)

where all curvature tensors are those of the background metric gµν and h = hµµ.
As in the previous cases for spin-1 and spin-3/2 fields, the Pauli-Fierz mass term
breaks the local gauge invariance. We can restore the symmetry by introducing
two Stückelberg fields, namely a scalar φ and a vector Bµ, and replace the
metric fluctuation by

hµν → hµν−
1
2 gµνφ+ 1

m
∇µ
(
Bν−

1
2m∇νφ

)
+ 1
m
∇ν
(
Bµ−

1
2m∇µφ

)
, (A.48)

see for example [329] and references therein. The resulting action now enjoys
the gauge symmetry

δhµν = ∇µξν +∇νξµ + λmgµν , δBµ = ∇µλ−mξµ , δφ = 2mλ , (A.49)

for which we add appropriate gauge-fixing terms,

S1 = − 2
∫
d4x
√
g
(
∇νhµν −

1
2∇

µh+mBµ
)2
,

S2 = − 2
∫
d4x
√
g
(
∇µBµ + m

2 (h− 3φ)
)2
.

(A.50)

Then, tedious but straightforward manipulations show that the resulting gauge-
fixed action Sgf = S + S1 + S2 can be written as

Sgf =
∫
d4x
√
g
{
hµν
[
Gµνρσ(∇2 −m2) + 2Rµρνσ − 2gµρRνσ + 2ΛGµνρσ

]
hρσ

+Bµ
[
gµν(∇2 −m2 + Λ)

]
Bν + φ

[
∇2 −m2 − 3ΛM−2]φ

+ 2ΛM−1hφ− 2
√

2Λ(mM)−1Bµ∇µφ
}
,

(A.51)
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where

Gµνρσ = 1
2
(
gµρgνσ + gµσgνρ − gµνgρσ

)
, M =

√
3
2 −

Λ
m2 , (A.52)

and we have rescaled the fields to ensure canonically normalized kinetic terms.
In deriving (A.51), we made extensive use of the background equations of motion
(2.36) with a vanishing graviphoton. We can now read off the Laplace-type
operator (2.29) from (A.51),

Qgraviton =

Qhh 0 Qhφ
0 QBB QBφ
Qhφ −QBφ Qφφ

 . (A.53)

Just as in the spin-3/2 case we note that this is not diagonal in field space,
indicating non-trivial interactions between the graviton fluctuations and the
Stückelberg fields. Extracting the matrices E and Ωρσ defined in Section 2.4.2
from the operator Qgraviton is straighforward, and we obtain the following heat
kernel coefficients from the physical sector:

aph
E = 89

24 , cph = 113
24 , bph

1 = 1
288

(
15(mL)4 + 48(mL)2 + 256

)
,

(A.54)
based on the trace formula (2.31) and the equivalent expression (2.37). The
gauge-fixing introduces a pair of vector ghosts and a pair of scalar ghosts whose
Euclidean action reads

Sgh =
∫
d4x
√
g
(
bµ
[
gµν(∇2 −m2) +Rµν

]
cν + b

[
∇2 −m2]c) . (A.55)

Their contribution to the heat kernel coefficients can be obtained from the
spin-1 and spin-0 cases treated above. The result is given by

agh
E = −13

36 , cgh = −1
4 , bgh

1 = 1
144

(
−5(mL)4 − 44(mL)2 − 108

)
,

(A.56)
where we have included an overall minus sign due to the anticommuting nature
of the ghosts.

Putting the physical sector (A.54) and the ghost sector (A.56) together, we
arrive at our final result

aE = 241
72 , c = 107

24 , b1 = 5
288

(
(mL)4 − 8(mL)2 + 8

)
, (A.57)

for the massive spin-2 fluctuations around a generic Einstein background. The
heat kernel coefficients for a massless fluctuation can be computed in the same
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way but without the contribution from Stückelberg fields and the corresponding
scalar ghosts. The final result is given by

aE = 571
180 , c = 87

20 , b1 = 0 . (A.58)

A.3 Rarita-Schwinger zero modes on EAdS4

In Section 2.4.3, we discussed how

Ψs
µ`m(λ) = N s

`

(
∇µ + s

2L γµ
)

Ωs`m , (A.59)

is a zero mode of the Rarita-Schwinger operator. Here, Ωs`m is an eigenspinor
of the Dirac operator on EAdS4,

/∇Ωs`m = is
L
λΩs`m . (A.60)

We note that using the above, we have

γµΨs
µ`m(λ) = s

L
(2 + iλ)N s

` Ωs`m . (A.61)

Since the path integral over spin-3/2 fluctuations includes a delta function
enforcing the harmonic gauge as in (A.34), we should consider the discrete value

λ = 2i . (A.62)

Indeed, the differential operator relevant for non-zero modes is the Laplace-type
operator obtained from (2.52) after introducing the proper gauge-fixing term
and the corresponding ghost fields, see Appendix A.2.4. To study the zero
modes of that operator, we must impose (A.62).

For λ ∈ iR, the Dirac eigenmodes Ωs`m are not square-integrable on EAdS4 [170].
Using the defining equation (2.50), we can express the norm of the RS zero-
modes in terms of the norm of Dirac eigenmodes as follows:

〈Ψs
µ`m,Ψ

µs
`m〉 = |N s

` |2
[
− 2
L2 〈Ω

s
`m,Ωs`m〉+

∫
d4x
√
g∇µ

[
(Ωs`m)†∇µΩs`m

]]
λ=2i

.

(A.63)
Note the appearance of a total derivative term, which can potentially renormalize
the divergences that arise since the first term is non-normalizable. For explicit
computations, we use a coordinate system in which the metric on EAdS4 reads

ds2 = L2(dη2 + sinh2 η dΩ2
3) , (A.64)
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where dΩ2
3 is the line element on S3. In this coordinate system, the unit

normal to the S3 boundary is nµ = (L−1, 0, 0, 0) and the spin-connection has
non-vanishing components only along the 3-sphere directions. This reduces the
boundary term to∫

d4x
√
g∇µ

[
(Ωs`m)†∇µΩs`m

]
λ=2i = sinh3 y

∫
S3

(Ωs`m)†∂ηΩs`m
∣∣
η=y,λ=2i ,

(A.65)
where we put the boundary at η = y with y being large.

The Dirac eigenmodes on EAdS4 are given by [170]

Ωs`m = C`(λ)
(

φλ`(η)χ`m(θ)
i sψλ`(η)χ`m(θ)

)
, (A.66)

where χ`m(θ) are eigenspinors of the Dirac operator on S3 (whose coordinates
we generically denote as θ), φ and ψ are radial functions expressed in terms
of the hypergeometric function 2F1, and C`(λ) is a normalization constant.
For the continuous case λ ∈ R the normalization can be found in [170], but
since we want to consider the discrete mode with λ fixed and imaginary, this
normalization cannot be obtained from requiring that the modes Ωs`m provide
an orthonormal basis. To proceed we note that the radial functions satisfy the
differential equations

∂ηφλ` = 1
2

[
` coth η

2 + (`+ 1) tanh η
2

]
φλ` −

[λ2 + (`+ 2)2

`+ 2

]
φλ(`+1) ,

∂ηψλ` = 1
2

[
(2`+ 1) coth η + sinh−1 η

]
ψλ` −

[λ2 + (`+ 2)2

`+ 2

]
ψλ(`+1) .

(A.67)

Using this, both the bulk and boundary terms in (A.63) can be computed. In
terms of

‖χ`m‖S3 =
∫
S3
χ†`mχ`m , (A.68)

and sy = sinh y, the result is

2
L2 〈Ω

s
0m,Ωs0m〉λ=2i = L2|C0(2i)|2

(e4y

32 −
e2y

8 + 3
16 +O(e−2y)

)
‖χ0m‖S3 ,

s3
y

∫
S3

(Ωs0m)†∂ηΩs0m
∣∣
η=y,λ=2i = L2|C0(2i)|2

(e4y

32 −
e2y

8 + 3
16 +O(e−2y)

)
‖χ0m‖S3 ,

(A.69)
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for ` = 0, and

2
L2 〈Ω

s
1m,Ωs1m〉λ=2i = L2|C1(2i)|2

( e4y

128 −
25e2y

288 + 475
576 +O(e−y)

)
‖χ1m‖S3 ,

s3
y

∫
S3

(Ωs1m)†∂ηΩs1m
∣∣
η=y,λ=2i = L2|C1(2i)|2

( e4y

128 −
e2y

288 + 41
192 +O(e−y)

)
‖χ1m‖S3 ,

(A.70)

for ` = 1. Results for higher values of ` can be obtained straightforwardly and
follow the same pattern. Namely, we observe a perfect cancellation between
bulk and boundary terms when ` = 0, while the modes with higher values of `
only see their leading divergences cancel. Thus, in the large y limit,

L−2〈Ψs
µ0m,Ψ

µs
0m〉 = 0 ,

L−2〈Ψs
µ`m,Ψ

µs
`m〉 = |N s

` C`(2i)|2
[
h1(`) e2y + h2(`)

]
‖χ`m‖S3 for ` > 0 ,

(A.71)

for some h1 and h2 whose first few values are presented in Table A.1. This shows

` 0 1 2 3 4 5 6 7 8 9 10

h1(`) 0 1
12

3
40

3
50

1
21

15
392

1
32

7
270

6
275

9
484

5
312

h2(`) 0 − 11
18 − 23

20 − 39
25 − 118

63 − 415
196 − 37

16 − 1001
405 − 716

275 − 657
242 − 1315

468

Table A.1: The leading and subleading divergences in the norm of the Rarita-
Schwinger zero mode on EAdS4 as a function of the mode number ` ≥ 0.

that the RS zero mode has vanishing norm for ` = 0, but is not square-integrable
for ` > 0. As such, it cannot contribute to the non-local contribution Cnon-local.

A.4 Heat kernel coefficients for KK supergravities

In this appendix we compute the contributions (aE , c, b1) to the bulk SdW
coefficient in (2.37) for the KK supergravity compactifications discussed in
Section 2.6. As explained at the beginning of this section, we will do all
computations for minimally coupled fields and use (2.117) to reinstate the effect
of supersymmetric non-minimal couplings when necessary.
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A.4.1 KK supergravity on S7

The Weyl dimension formula for the SO(8) representation with Dynkin label
(λ1, λ2, λ3, λ4) reads3

dim(λ1, λ2, λ3, λ4)

= 1
4320(1 + λ1)(1 + λ2)(1 + λ3)(1 + λ4)(2 + λ1 + λ2)(2 + λ2 + λ3)(2 + λ2 + λ4)

× (3 + λ1 + λ2 + λ3)(3 + λ1 + λ2 + λ4)(3 + λ2 + λ3 + λ4)

× (4 + λ1 + λ2 + λ3 + λ4)(5 + λ1 + 2λ2 + λ3 + λ4) (λi ≥ 0) ,
(A.72)

and dim(λ1, λ2, λ3, λ4) ≡ 0 if any of the λi’s are negative. We now combine this
formula with the data provided in Tables 2.2, 2.3, 2.4, and 2.5 to evaluate the heat
kernel coefficients for the KK supergravity theory arising from compactification
of 11d supergravity on S7.

The aE coefficient can be computed by adding the contributions from all KK
modes of spin 0 ≤ s ≤ 2 in the given SO(8) representation. At fixed KK level k,
we find

aE(k) = 1
360

(
dim(k + 2, 0, 0, 0) + dim(k − 2, 2, 0, 0) + dim(k − 2, 0, 0, 0)

+ dim(k, 0, 2, 0) + dim(k − 2, 0, 0, 2)
)

+ 11
720

(
dim(k + 1, 0, 1, 0) + dim(k − 1, 1, 1, 0) + dim(k − 2, 1, 0, 1) + dim(k − 2, 0, 0, 1)

)
+
[ 31

180 + 1
360Θ(k − 1)

](
dim(k, 1, 0, 0) + dim(k − 1, 0, 1, 1) + dim(k − 2, 1, 0, 0)

)
−
[589

720 −
11
720Θ(k − 1)

](
dim(k, 0, 0, 1) + dim(k − 1, 0, 1, 0)

)
+
[571

180 +
( 31

180 + 1
360

)
Θ(k − 1)

]
dim(k, 0, 0, 0) , (A.73)

where Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. This step function takes into account
the fact that the contributions from Stückelberg fields are present only for
massive fields with k ≥ 1. Using (A.72), the total heat kernel coefficient

3We follow the conventions summarized in Appendix A of [189].



HEAT KERNEL COEFFICIENTS FOR KK SUPERGRAVITIES 191

atot
E =

∑
k≥0 aE(k) is given by

atot
E = 1

144

∞∑
k=0

(k + 1)(k + 2)(k + 3)2(k + 4)(k + 5) . (A.74)

The heat kernel coefficient c is computed in a similar manner. Here, we find a
perfect cancellation at each KK level:

c(k) = 1
120

(
dim(k + 2, 0, 0, 0) + dim(k − 2, 2, 0, 0) + dim(k − 2, 0, 0, 0)

+ dim(k, 0, 2, 0) + dim(k − 2, 0, 0, 2)
)

+ 1
40

(
dim(k + 1, 0, 1, 0) + dim(k − 1, 1, 1, 0) + dim(k − 2, 1, 0, 1) + dim(k − 2, 0, 0, 1)

)
+
[ 1

10 + 1
120Θ(k − 1)

](
dim(k, 1, 0, 0) + dim(k − 1, 0, 1, 1) + dim(k − 2, 1, 0, 0)

)
−
[137

120 −
1
40Θ(k − 1)

](
dim(k, 0, 0, 1) + dim(k − 1, 0, 1, 0)

)
+
[87

20 +
( 1

10 + 1
120

)
Θ(k − 1)

]
dim(k, 0, 0, 0) (A.75)

= 0 .

We therefore conclude that ctot =
∑
k c(k) vanishes after summing over the KK

tower.

For the b1 coefficient, we note that since the lowest-lying KK modes with k = 0
are massless, Table 2.2 implies that b1(0) = 0. For the contribution from higher
KK modes with k ≥ 1, we use the dictionary between mass and conformal
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dimension in Table 2.3 and obtain

b1(k) = s0

(√
(k2 + 1)(k2 − 2)

)
dim(k + 2, 0, 0, 0) + s0

(√
(k2 + 2)(k2 − 1)

)
dim(k, 0, 2, 0)

+ s0

(√
(k2 + 3)k2

)
dim(k − 2, 2, 0, 0) + s0

(√
(k2 + 4)(k2 + 1)

)
dim(k − 2, 0, 0, 2)

+ s0

(√
(k2 + 5)(k2 + 2)

)
dim(k − 2, 0, 0, 0)

+ s 1
2

(k + 3
2 − 3

2

)
dim(k + 1, 0, 1, 0) + s 1

2

(k + 5
2 − 3

2

)
dim(k − 1, 1, 1, 0)

+ s 1
2

(k + 7
2 − 3

2

)
dim(k − 2, 1, 0, 1) + s 1

2

(k + 9
2 − 3

2

)
dim(k − 2, 0, 0, 1)

+ s1

(√
(k2 + 1)k2

)
dim(k, 1, 0, 0) + s1

(√
(k2 + 2)(k2 + 1)

)
dim(k − 1, 0, 1, 1)

+ s1

(√
(k2 + 3)(k2 + 2)

)
dim(k − 2, 1, 0, 0)

+ s 3
2

(k + 5
2 − 3

2

)
dim(k, 0, 0, 1) + s 3

2

(k + 7
2 − 3

2

)
dim(k − 1, 0, 1, 0)

+ s2

(√
(k2 + 3)k2

)
dim(k, 0, 0, 0) , (A.76)

where we have introduced the functions

s0(x) = 1
288(x2 + 2)2 ,

s 1
2
(x) = − 1

144x
2(x2 − 2) ,

s1(x) = 1
288(4− 12x2 + 3x4) ,

s 3
2
(x) = − 1

72(11− 8x2 + x4) ,

s2(x) = 5
288(8− 8x2 + x4) .

(A.77)

Remarkably, we again find a perfect cancellation

b1(k) = 0 , (A.78)
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implying that the total heat kernel coefficient btot
1 =

∑
k b1(k) = 0.

A.4.2 KK supergravity on S7/Zk

In the notation of [18], the N = 8 supermultiplet whose field content is given in
Tables 2.4 and 2.5 is denoted by

B1[0](n+2,0,0,0)
n
2 +1 . (A.79)

Note that we temporarily change notation and denote the KK level by n ≥ 0 to
reserve the notation k for the order of the orbifold action Zk, as is common in
the literature.

The spectrum of 11d supergravity compactified on S7/Zk can be obtained
from the spectrum of the S7 compactification as follows. First, we use the
so(8)→ so(6)⊕ u(1) branching rule [173]

B1[0](n+2,0,0,0)
n
2 +1 = B1[0](0,0,n+2)

n
2 +1,−n−2 ⊕B1[0](0,n+2,0)

n
2 +1,n+2 ⊕

n∑
i=0

B1[0](0,i+1,n−i+1)
n
2 +1,−n+2i ,

(A.80)
where the subscripts on the right-hand side denote the scaling dimension of
the primary in the given representation and the U(1) charge, respectively, and
the superscripts are the SO(6) Dynkin label (a, b, c). We must then select the
multiplets that are stable under the orbifold action, i.e. the multiplets whose
U(1) charge is divisible by k [173].4 In addition, we only keep the multiplets for
which n is even, see [189]. As a result, the supermultiplets that make up the
N = 6 KK spectrum are those of the form

B1[0](0,h−r,h+r)
h,−2r with h− |r| ≥ 0 and k | 2r , (A.81)

where we have defined h = n
2 + 1 ∈ N and r = h− i− 1 with 0 ≤ i ≤ n. The

field content of these supermultiplets can be read off from [173]. Note that to
obtain the correct field content for the special cases 0 ≤ h− |r| ≤ 3, one must
use the Racah-Speiser algorithm (reviewed e.g. in Appendix A.3 of [18]). We
will omit the details here and proceed to compute the heat kernel coefficients
(aE , c, b1) based on the KK spectrum (A.81).

The SO(6) Weyl dimension formula for a representation with Dynkin label
(a, b, c) is

dim(a, b, c) = 1
12(1+a)(1+b)(1+c)(2+a+b)(2+a+c)(3+a+b+c) . (A.82)

4Here we choose the periodic spin structure on S7/Zk in order to impose the same constraint
on the bosonic and fermionic modes, see [189] for details.
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Using this with the field content of the KK spectrum just discussed, we can
proceed in the same way as in Appendix A.4.1. For the (c, b1) heat kernel
coefficients, we find a perfect cancellation at any allowed given value of the
quantum numbers (h, r),

c(h, r) = b1(h, r) = 0 . (A.83)

For the aE coefficient, we obtain a non-vanishing result:

aE(h, r) = 1
24(1 + 2h)

(
h(1 + h)(−4 + 5h+ 5h2) + (7− 10h− 10h2)r2 + 5r4

)
.

(A.84)
We discuss the sum over the spectrum in more details in Section 2.6.3.

A.4.3 KK supergravity for mABJM

Here we provide some details on the calculation of the SdW coefficient for the
KK modes of the AdS4 solution of 11d supergravity holographically dual to
the mABJM SCFT. Since this background preserves N = 2 superconformal
symmetry, we first present a short summary of the relevant superconformal
multiplets. To facilitate the comparison with the literature we provide a map
between superconformal multiplets in the supergravity conventions of Appendix
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A in [198] and the SCFT conventions of Table 4 in [18]:

A1Ā1[2](r=0)
∆=2 ↔ MGRAV ,

LĀ1[2](r>0)
r+2 ↔ SGRAV with the upper sign ,

A1L̄[2](r<0)
−r+2 ↔ SGRAV with the lower sign ,

LL̄[2](r)∆>|r|+2 ↔ LGRAV ,

LĀ1[1](r>0)
r+ 3

2
↔ SGINO with the upper sign ,

A1L̄[1](r<0)
−r+ 3

2
↔ SGINO with the lower sign ,

LL̄[1](r)∆>|r|+ 3
2
↔ LGINO ,

A2Ā2[0](r=0)
∆=1 ↔ MVEC ,

LĀ2[0](r>0)
r+1 ↔ SVEC with the upper sign ,

A2L̄[0](r<0)
−r+1 ↔ SVEC with the lower sign ,

LL̄[0](r)∆>|r|+1 ↔ LVEC ,

LB̄1[0](r>
1
2 )

∆=r & A2B̄1[0](r=
1
2 )

∆=r ↔ HYP with the upper sign ,

B1L̄[0](r<−
1
2 )

∆=−r & B1Ā2[0](r=−
1
2 )

∆=−r ↔ HYP with the lower sign .

(A.85)

Note that the multiplets in [198] are labeled by their energy E0, R-symmetry
charge y0, and the half-integer Lorentz spin s0. The map to the corresponding
quantities in [18] is given by

(E0, y0, s0) ←→ (∆, r, j/2) . (A.86)

We can use the explicit content of each of the multiplets above together with the
information in Table 2.2 to systematically calculate the heat kernel coefficients
for each superconformal multiplet. The result of this analysis is summarized
in Table A.2. We hasten to note that the long superconformal multiplets have
the interesting feature that while the individual states in the multiplet have
heat kernel coefficients that depend on the conformal dimension (or mass in
AdS) the total coefficients after summing over all fields in the multiplet are
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independent of this continuous parameter. The same is true for the aE and c
coefficients of short multiplets. The b1 coefficient of short multiplets appears
to depend on the conformal dimension, however one should bear in mind that
for such multiplets the conformal dimension is uniquely determined by the spin
and R-charge of the state.

aE c b1

LGRAV 5
4

3
4

1
8

SGRAV 71−10δy0,0
48

35−4δy0,0
24 − 1

144 [3(E2
0 + 2E0 − 11) + 2(E3

0 − 3E2
0 − 9E0 + 25)δy0,0]

MGRAV 41
24

13
6 0

LGINO 0 − 1
2 − 1

12

SGINO − 11+δy0,0
48 − 17+δy0,0

24
1

2304 [48E0(E0 + 1)− 276− (2E0 − 7)2(4E0(E0 − 1)− 7)δy0,0]

LVEC 1
4

1
4

1
24

SVEC 165−2δy0,0
720

25−δy0,0
120 − 1

288 [6(E2
0 − 2) + (3E4

0 − 6E3
0 − 9E2

0 + 12E0 + 4)δy0,0]

MVEC 5
24

1
6 0

HYP 1
48

1
24

1
48 (E0 − 1)2

Table A.2: The heat kernel coefficients (aE , c, b1) for different N = 2
superconformal multiplets. The value of E0 for each short multiplet is uniquely
determined by the Lorentz spin and R-charge of its primary state. Note that
some of the short multiplets do not include certain y0 = 0 states which explains
the appearance of the Kronecker in some of the expressions. The usual massless
vector and hypermultiplets of matter-coupled 4d N = 2 gauged supergravity
are MVEC and HYP, respectively.

After this general discussion we are ready to focus our attention on the specific
AdS4 N = 2 vacuum of interest. This solution was found long ago by Warner
as a critical point of the potential of the 4d N = 8 SO(8) gauged supergravity
[98] and then uplifted to a solution of 11d supergravity in [107] and we will
thus refer to this background as the CPW solution. A notable feature of
this solution is that it has an SU(3) × U(1) symmetry in the internal space
where the U(1) corresponds to the R-symmetry in the dual mABJM SCFT
while SU(3) corresponds to its flavor symmetry. The KK spectrum of the
short superconformal multiplets for this background was described in [198],
the spectrum of spin-2 KK modes was computed in [330], while the full KK
spectrum was analyzed in [199].

Although there is no clear a priori notion of a “KK level” for the spectrum of
11d supergravity AdS4 solutions one can use the fact that the CPW solution is



HEAT KERNEL COEFFICIENTS FOR KK SUPERGRAVITIES 197

related to AdS4 × S7 by a supersymmetric domain wall and use the integer k
labelling the N = 8 KK spectrum in Table 2.5 as giving some notion of a “KK
level”. To avoid confusion and make it clear we refer to the KK spectrum of
the CPW solution we will call this integer n below. With this at hand one can
compactly summarize the KK spectrum using the results of [199] as follows

GRAV : E0 = 1
2 +

√
9
4 + 1

2n(n+ 6)− 4
3Cp,q + 1

2

(
r + 2

3(q − p)
)2
,

GINO : E0 = 1
2 +

√
7
2 + 1

2n(n+ 6)− 4
3Cp,q + 1

2r
2 ,

VEC/HYP : E0 = 1
2 +

√
17
4 + 1

2n(n+ 6)− 4
3Cp,q + 1

2r
2 ,

(A.87)

where
Cp,q = 1

3(p2 + q2 + pq) + p+ q . (A.88)

Here the integers [p, q] specify the Dynkin labels of the SU(3) representation of
the given multiplet and Cp,q is its quadratic Casimir.

The data about the KK spectrum not captured by the information presented
above is which SU(3) representation precisely are contained in the spectrum.
For the short multiplets this was systematically studied in [198, 199], see in
particular Table 6 in [198] and Equation (5.99) in [199].5 For each non-negative
integer n the list of short multiplets is summarized in Table A.3 where we also
present their SU(3) Dynkin labels. Using this information together with the

SGRAV/MGRAV [0, 0]±n
SGINO [n+ 1, 0]n+1

3
, [0, n+ 1]−n+1

3

SVEC/MVEC [n+ 1, 1]n
3
, [1, n+ 1]−n3

HYP [n+ 2, 0]n+2
3
, [0, n+ 2]−n+2

3

Table A.3: The list of short multiplets in the KK spectrum of the CPW solution
along with their SU(3) Dynkin labels. Note that n ≥ 0 and when n = 0, the
SGRAV and SVEC multiplets reduce to a single MGRAV and MVEC multiplet,
respectively.

5Note that the relevant case for our discussion was dubbed Scenario I in [198].
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SU(3) Weyl dimension formula

dim(p, q) = 1
2(p+ 1)(q + 1)(p+ q + 2) , (A.89)

and the heat kernel coefficients in Table A.2, we find the following list of
(aE , c, b1) coefficients for all short multiplets at fixed KK level n,

S/MGRAV : aE(n) = 71
24 −

5
4δn,0 , c(n) = 35

12 −
3
4δn,0 ,

b1(n) = −n(n+ 6)− 3
24 − 1

8δn,0 ,

SGINO : aE(n) = −11
48(n+ 2)(n+ 3) , c(n) = −17

24(n+ 2)(n+ 3) ,

b1(n) = 1
432(n+ 2)(n+ 3)[n(n+ 14)− 5] , (A.90)

S/MVEC : aE(n) = 11
24(n+ 2)(n+ 4)− 2δn,0 , c(n) = 5

12(n+ 2)(n+ 4)− 2δn,0 ,

b1(n) = − 1
216(n+ 2)(n+ 4)[n(n+ 6)− 9]− 1

3δn,0 ,

HYP : aE(n) = 1
48(n+ 3)(n+ 4) , c(n) = 1

24(n+ 3)(n+ 4) ,

b1(n) = 1
432(n+ 3)(n+ 4)(n− 1)2 .

We now move on to discuss the long multiplets. Here the situation is more
involved and it is harder to obtain compact expressions for the total number of
long multiplets, i.e. to sum over the corresponding SU(3) representation labels.
To make progress we can use the strategy employed in [331, 198, 199, 332].
Namely we can rely on the fact that the CPW solution is connected by a
holographic RG flow to the AdS4 × S7 background and thus we can use the
symmetry breaking pattern from the N = 8 supersymmetry with SO(8) R-
symmetry in the UV to N = 2 supersymmetry with U(1) R-symmetry and
SU(3) flavor symmetry in the IR to organize the multiplets.6 Below we present

6We have independently confirmed the calculations in [331, 198, 199, 332] using results
from [333] as well as the LieART package [334]. We note that there are probably some typos
in [198], namely in Table 18, there should be two LGINO 0 in the [1, 1] representation and in
Table 19 there should be two LVEC 0 in the [0, 0] representation.
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explicit expressions for the total number of long multiplets at KK level n and
a short summary on how they are obtained. Since the heat kernel coefficients
(aE , c, b1) are constant for all long multiplets, see Table A.2, this counting is
sufficient for our purposes.

LGRAV: It was observed in [199] that at level n, the graviton multiplets
transform under SU(3)×U(1)R as follows:

[p, q] p−q
3 +(a−b) , ∀ p, q, a, b ∈ N , with p+ q + a+ b = n . (A.91)

Thus we only need to count the ordered partition (p, q, a, b) of the integer n;
which is n + 1 − p − q for fixed p, q. Naïvely, the total number of LGRAV
multiplets is then obtained by summing over p and q to find∑
p,q=0
p+q≤n

(n+1−p−q) dim(p, q) = 1
360(n+1)(n+2)(n+3)2(n+4)(n+5) . (A.92)

This result is true except for p = q = 0 and (a, b) = (n, 0) or (0, n), where the
multiplets are short(or massless when n = 0), thus the corrected weighted sum
that gives the total number of LGRAV multiplets at KK level n is:

ΩLGRAV(n) = 1
360(n+ 1)(n+ 2)(n+ 3)2(n+ 4)(n+ 5)− (2− δn,0) . (A.93)

LGINO: The analysis for the LGINO multiplet is more complicated since there
is no compact formula analogous to (A.91). As explained above we circumvent
this difficulty by using the fact that the field content of the mABJM theory is
inherited from the N = 8 multiplets of the ABJM theory. This implies that for
a given level n, the number of particles with the same spin is identical. The
number of LGINO multiplets is thus equal to the number of spin-3/2 fields,
minus those in L/SGRAV and SGINO multiplets. The total number of spin-3/2
fields is dictated by the following SO(8) representations:

dim(n, 0, 0, 1) = 1
90(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5)(n+ 6) ,

dim(n− 1, 0, 1, 0) = 1
90n(n+ 1)(n+ 2)(n+ 3)(n+ 4)(n+ 5) .

(A.94)

The number of spin-3/2 particles in the graviton multiplets is:

4
[ 1

360(n+1)(n+2)(n+3)2(n+4)(n+5)−(2−δn,0)
]
+6(1−δn,0)+2δn,0 . (A.95)
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The number of spin-3/2 particles in the two SGINO multiplets is 2× dim(n+
1, 0) = (n+ 2)(n+ 3). With this at hand we finally find the total number of
LGINO multiplets:

ΩLGINO(n) = 1
90n(n+ 1)(n+ 4)(n3 + 13n2 + 61n+ 123) . (A.96)

LVEC: To find the total number of LVEC multiplets we follow the same
approach as above. First, we find the total number of spin-1 modes from the
SO(8) representations:

dim(n, 1, 0, 0) + dim(n− 1, 0, 1, 1)n≥1 + dim(n− 2, 1, 0, 0)n≥2

= 3
40(n+ 1)(n+ 2)(n+ 3)2(n+ 4)(n+ 5) + δn,0 .

(A.97)

The number of spin-1 modes contained in LGRAV and SGRAV/MGRAV is

6
[ 1

360(n+1)(n+2)(n+3)2(n+4)(n+5)−(2−δn,0)
]
+6(1−δn,0)+δn,0 , (A.98)

while the number contained in LGINO and SGINO is

4
[ 1

90n(n+ 1)(n+ 4)(n3 + 13n2 + 61n+ 123)
]

+ 6 dim(n+ 1, 0) . (A.99)

Finally the number of spin-1 modes in SVEC/MVEC multiplets is

2(1− δn,0) dim(n+ 1, 1) + δn,0 dim(1, 1) . (A.100)

Combining all this we find that the total number of LVEC multiplets at KK
level n is

ΩLVEC(n) = 1
72(n+ 3)(n+ 4)(n4 + 11n3 + 41n2 + 61n− 42) + 8δn,0 . (A.101)

We now have the total number of each type of long and short multiplets in
the KK spectrum of the CPW background. We can combine this with the
information in Table A.2 to find the total heat kernel coefficients. A short
calculation shows that, at each KK level n, we find a perfect cancellation for
the c coefficient:

c(n) = 3
4ΩLGRAV(n)− 1

2ΩLGINO(n) + 1
4ΩLVEC(n) + cshort(n) = 0 , (A.102)

where cshort is the sum of all c(n) in the short sector (A.90). The same
cancellation occurs for the b1 coefficient:

b1(n) = 1
8ΩLGRAV(n)− 1

12ΩLGINO(n)+ 1
24ΩLVEC(n)+ bshort

1 (n) = 0 . (A.103)
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Lastly, for the aE coefficient, we obtain the following compact final result,

aE(n) = 5
4ΩLGRAV(n) + 1

4ΩLVEC(n) + ashort
E (n)

= 1
144(n+ 1)(n+ 2)(n+ 3)2(n+ 4)(n+ 5) .

(A.104)

Notably, these are exactly the same expressions we found for the heat kernel
coefficients of the KK spectrum of the N = 8 AdS4 × S7 background in (A.73),
(A.75), and (A.76). The calculation leading to these results for the two distinct
11d supergravity backgrounds is very different and as we discuss in the main
text it will be interesting to obtain further insights into why the results end
up the same. Regardless, it is clear that the total c and b1 coefficients after
summing over n vanish. The total aE heat kernel coefficient takes the form of a
divergent sum which is identical to the one encountered in the AdS4 × S7 and
thus should be regularized in the same way.

A.4.4 KK supergravity on N0,1,0

The KK supergravity spectrum of the AdS4 ×N0,1,0 11d supergravity solution
was presented in [202] where it was organized into multiplets of the OSp(3|4)
superconformal algebra and the SU(3) flavor symmetry. We will use both the
conventions of [202] and [18] when we discuss our results. The map between
the two sets of conventions is given by

(E0, J0, s0) ←→ (∆, R/2, j/2) , (A.105)

where ∆ ∈ Z/2 is the conformal dimension, R ∈ Z≥0 denotes the SO(3) R-
symmetry representation, and j ∈ Z≥0 is the Lorentz spin. Note that the
dimension of the SO(3) representation with label R is given by dim(R) = R+ 1
and analogously the dimension of the Lorentz spin-j representation is dim(j) =
j + 1.

The complete list of 3d N = 3 multiplets can be found in Table 5 of [18] and is
summarized in Table A.4. The N = 3 multiplets arising from the N0,1,0 KK
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name primary unitarity bound

L [j](R)
∆ ∆ > 1

2j + 1
2R+ 1

A1 [j](R)
∆ (j ≥ 1) ∆ = 1

2j + 1
2R+ 1

A2 [0](R)
∆ ∆ = 1

2R+ 1

B1 [0](R)
∆ ∆ = 1

2R

Table A.4: The complete list of N = 3 multiplets

spectrum discussed in [202] read

L[1](R)
∆ ↔ SD(smax = 2, E0 > J0 + 3/2, J0|3) ,

L[0](R)
∆ ↔ SD(smax = 3/2, E0 > J0 + 1, J0|3) ,

A1[1](R)
∆ ↔ SD(smax = 2, E0 = J0 + 3/2, J0|3) ,

A2[0](R)
∆ ↔ SD(smax = 3/2, E0 = J0 + 1, J0|3) ,

B1[0](R)
∆ ↔ SD(smax = 1, E0 = J0, J0|3) ,

(A.106)

where on the right hand side we used the notation of [202]. The descendants for
generic multiplets and conserved current multiplets are presented in Section 4.3
and 5.4.3 of [18], respectively (see also Table 1-5 of [202]). Note that the A2[0](0)

∆
multiplet is not present in the spectrum since it contains an extra supercurrent
multiplet not present for the AdS4 ×N0,1,0 solution which is genuinely N = 3
supersymmetric.

To obtain Tables 1-5 of [202] from the generic expressions given in Section 4.3
of [18], one needs to use the Racah-Speiser (RS) algorithm. For the so(3) Lie
algebra of Lorentz spin, the RS algorithm is simply given as

[j](R) =
{

0 (j = −1)
−[−j − 2](R) (j = −2,−3, · · · )

(R ≥ 0) , (A.107)

where the overall minus sign on the right-hand side means that it “eats” the
representation without the minus sign. Since the R-symmetry is also controlled
by the same algebra, we can apply the same rule, i.e.

[j](R) =
{

0 (R = −1)
[j]−(−R−2) (R = −2,−3, · · · )

(j ≥ 0) , (A.108)
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with the same interpretation for the overall minus sign in the superscript of the
RHS.

To calculate the heat kernel coefficients of each N = 3 superconformal multiplet
of interest, we need to add up the coefficients of every field in the multiplet and
use the values in Table 2.2. The result for each of the multiplets in Table A.4 is
summarized below.7

L[1](R)
∆ with ∆ > 1

2R+ 3
2 : aE(R) = 3(1 +R)

2 , c(R) = 0 , b1(R) = 0 ,

L[0](R)
∆ with ∆ > 1

2R+ 1 : aE(R) = 1 +R

2 , c(R) = 0 , b1(R) = 0 ,

A1[1](R)
∆ with ∆ = 1

2R+ 3
2 : aE(R) = 5(1 +R)

4 , c(R) = 5 +R

4 , b1(R) = 0 ,

A2[0](R)
∆ with ∆ = 1

2R+ 1 : aE(R) = − (1−R)
4 , c(R) = −3 +R

4 , b1(R) = 0 ,

B1[0](R)
∆ with ∆ = 1

2R : aE(R) =
{
− 1−R

4 R ≥ 2
1+12R

360 R = 0, 1
, (A.109)

c(R) =
{
− 1−R

4 R ≥ 2
1+7R
120 R = 0, 1

, b1(R) = 0 .

Then the total heat kernel coefficients are obtained after summing over all
multiplets in the KK tower while taking into account their SU(3) representations.
This can be done using the dimension formula (A.89).

Since all N = 3 multiplets have vanishing b1(R), we immediately get that

btot
1 = 0 . (A.110)

Next we consider the total heat kernel coefficient ctot. Since the L[j](R)
∆ long

multiplets have vanishing c coefficients, we only need to consider the A1,2 and
B1 short multiplets and their flavor representations given in Sections 3.2 and
3.3 of [202]. For example, the massive short graviton multiplet A1[1](R)

∆ falls in
SU(3) representations with Dynkin label (k, k) with k ≥ 1, and the R-charge is
given by R = 2k. In addition, there is a massless graviton multiplet in the (0, 0)
representation with R = 0. Therefore, the short graviton sector contributes to

7Note that the rightmost entry of Table 5 of [202] is missing one of the two spin- 1
2

representations.
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the c coefficient with

cshort(2) =
∞∑
k=0

dim(k, k)5 + 2k
4 = 1

4

∞∑
k=0

(1 + k)3(5 + 2k) . (A.111)

The massive short gravitino multipletA2[0](R)
∆ falls in the (k, k+3) representation

with k ≥ 0. In addition, we must consider the conjugate representation (k+3, k)
to obtain the complete spectrum. The R-charge is fixed to R = 2(k + 1) and
the short gravitino sector contributes to the c coefficient with

cshort(3/2) =
∞∑
k=0

[dim(k, k + 3) + dim(k + 3, k)]−3− 2(k + 1)
4

= − 1
4

∞∑
k=0

(1 + k)(4 + k)(5 + 2k)2 .

(A.112)

The massive short vector multiplet B1[0](R)
∆ falls in the (k, k) representation

with k ≥ 2, and with R = 2k. Together with the massless vector multiplet in
the (1, 1) representation with R = 2, this gives

cshort(1) =
∞∑
k=0

dim(k+1, k+1)−1 + 2(k + 1)
4 = 1

4

∞∑
k=0

(2+k)3(1+2k) . (A.113)

Lastly, the (massless) Betti multiplet is in the (0, 0) SU(3) representation and
has R = 2, for a contribution of

cBetti = dim(0, 0)−1 + 2
4 = 1

4 . (A.114)

We should now regularize all the above infinite series. In Appendix A.5, we
present a regularization method adapted from [208]. However, this method is
based on zeta-function regularization and is therefore not stable. This means
that we will obtain different results depending on whether we first sum all short
sector contributions and regularize the resulting series, or if we regularize each
short sector separately before taking the sum. By doing the former, we find
that ctot 6= 0, in violation of our bootstrap constraints (2.95). However, we do
find a remarkable cancellation if we decide to regulate each series independently.
Our regularization prescription based on (A.178) attaches the following finite
values:

cshort(2) = 55
1024 , cshort(3/2) = −1

2 , cshort(1) = 201
1024 , (A.115)

and together with the Betti multiplet contribution, we arrive at

ctot = 0 . (A.116)
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Thus, it is possible to adopt a regularization prescription for the sum over the
KK spectrum that is compatible with the bootstrap constraints (2.95).

The calculation of the atot
E coefficient is more subtle. First, we need to take into

account the contributions from both long and short multiplets. Moreover, the
resulting infinite sums involve multiple summation indices, which complicates
the task of finding a suitable regularization. We give each contribution to atot

E

in turn below.

i) From Table (9) of [202], we have

a
i)
E =

∞∑
k=0

∞∑
j≥2

dim(k, k + 3j)
k+j∑
J0=j

[
3(1 + 2J0)

2 + 1 + 2J0

2 + 1 + 2J0

2

]

= 5
4

∞∑
k=0

∞∑
j≥2

(1 + k)2(1 + 2j + k)(1 + 3j + k)(2 + 3j + 2k) .

(A.117)

ii) From Table (10) of [202], we have

a
ii)
E =

∞∑
k=0

dim(k, k + 3)
[
k+1∑
J0=1

[
3(1 + 2J0)

2 + 1 + 2J0

2

]
+

k∑
J0=1

1 + 2J0

2

]

= 1
4

∞∑
k=0

(1 + k)(4 + k)(5 + 2k)(12 + 18k + 5k2) .

(A.118)

iii) From Table (11) of [202], we have

a
iii)
E =

∞∑
k=0

dim(k, k)
[
k−1∑
J0=0

[
3(1 + 2J0)

2 + 1 + 2J0

2

]
+

k∑
J0=0

1 + 2J0

2

]

= 1
2

∞∑
k=0

(1 + k)3(1 + 2k + 5k2) .

(A.119)

iv) From (12), (13) and (18), (19) of [202], we have

a
short(2)
E =

∞∑
k=0

dim(k, k)5(1 + 2k)
4 = 5

4

∞∑
k=0

(1 + k)3(1 + 2k) . (A.120)
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v) From (14), (15) of [202], we have

a
short(3/2)
E =

∞∑
k=0

dim(k, k+3)−1 + 2(k + 1)
4 = 1

8

∞∑
k=0

(1+k)(4+k)(1+2k)(5+2k) .

(A.121)

vi) From (16), (17) and (20), (22) of [202], we have

a
short(1)
E =

∞∑
k=0

dim(k+1, k+1)−1 + 2(k + 1)
4 = 1

4

∞∑
k=0

(2+k)3(1+2k) . (A.122)

vii) From (21), (22) of [202], we have

aBetti
E = dim(0, 0)−1 + 2

4 = 1
4 . (A.123)

Since we do not have bootstrap constraints involving aE , it is difficult to come
up with the right prescription for regularizing the above sums. In addition,
the method presented in Appendix A.5 does not apply to the long sector
series (A.117) which involve both k and j quantum numbers.

A.4.5 KK supergravity connected to the SO(8) gauged
supergravity

We present our calculations for the (aE , c, b1) coefficients in supergravity theories
connected to the SO(8) gauged supergravity by RG flows apart from the one
dual to the mABJM theory discussed above. The theories are shown in Fig.
2.2.

Theory 1: N = 1, G2

We start with the N = 1 fixed point with G2 flavor group, given by the quadratic
deformation of ABJM and is dual to the CPW solution [107] in 11d supergravity.
The supergravity multiplets can be mapped to the 3d N = 1 superconformal
multiplets discussed above Table 2.6.

The Kaluza-Klein mass spectrum can be evaluate using the Exceptional Field
Theory technique [335]. At level k = 0, different from the SO(8) theory, some of
the gaugini and vector fields acquire mass by eating some scalars and fermions.
Using the multiplets shown in Table 2 of [335], we can explicitly check that

(aE)0 = 5
2 , c0 = (b1)0 = 0, (A.124)
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which is consistent with the GR flow conjecture. At level k ≥ 1, all the multiplets
are massive and thus long, since all the short N = 1 multiplets are massless.
Thus, knowing the branching rules from SO(8) to G2 will teach us the full
knowledge of the multiplets.

Gravitons : (k000)→
k⊕
p=0

(p0) (A.125)

Each graviton corresponds to a LGRAV(we only consider k ≥ 1):

LGRAV :
k⊕
p=0

(p0) (A.126)

Gravitini : (k001)→
[
k−1⊕
p=0

(p1)
]
⊕

[
k+1⊕
p=0

(p0)
]
⊕

[
k⊕
p=1

(p0)
]

(k − 1, 0, 1, 0)→
[
k−2⊕
p=0

(p1)
]
⊕

[
k⊕
p=0

(p0)
]
⊕

[
k−1⊕
p=1

(p0)
] (A.127)

One LGRAV has two gravitini, and the remaining gravitini correspond to the
highest-spin component of LGINOs, which are:

LGINO :
[
k−1⊕
p=0

(p1)
]
⊕

[
k−2⊕
p=0

(p1)
]
⊕

[
k+1⊕
p=1

(p0)
]
⊕

[
k−1⊕
p=1

(p0)
]

(A.128)

Vectors : (k100)→
[

k⊕
p=0

(p1)
]
⊕

[
k−1⊕
p=0

(p1)
]
⊕

[
k+1⊕
p=1

(p0)
]⊕2

(k − 1, 0, 1, 1)→
[
k−3⊕
p=0

(p2)
]
⊕

[
k−1⊕
p=0

(p1)
]
⊕

[
k−2⊕
p=0

(p1)
]⊕2

⊕

[
k−1⊕
p=1

(p1)
]
⊕

⊕

[
k+1⊕
p=0

(p0)
]
⊕

[
k⊕
p=1

(p0)
]
⊕

[
k−1⊕
p=1

(p0)
]
⊕

[
k⊕
p=2

(p0)
]

(k − 2, 1, 0, 0)→
[
k−2⊕
p=0

(p1)
]
⊕

[
k−3⊕
p=0

(p1)
]
⊕

[
k−1⊕
p=1

(p0)
]⊕2

(A.129)
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For each LGRAV, there is 1 vector field; and for each LGINO, there are 2 vector
fields. Each of the remaining vector fields corresponds a LVEC:

LVEC :
[
k−3⊕
p=0

(p2)
]
⊕

[
k⊕
p=0

(p1)
]
⊕

[
k−1⊕
p=1

(p1)
]
⊕

[
k−2⊕
p=0

(p1)
]
⊕

[
k−3⊕
p=0

(p1)
]
⊕

⊕

[
k+1⊕
p=1

(p0)
]
⊕

[
k⊕
p=2

(p0)
]
⊕

[
k−1⊕
p=1

(p0)
]

(A.130)

Fermions : (k + 1, 0, 1, 0)→
[

k⊕
p=0

(p1)
]
⊕

[
k+2⊕
p=0

(p0)
]
⊕

[
k+1⊕
p=1

(p0)
]

(k − 1, 1, 1, 0)→
[
k−2⊕
p=0

(p2)
]
⊕

[
k−3⊕
p=0

(p2)
]
⊕

⊕

[
k⊕
p=0

(p1)
]
⊕

[
k−1⊕
p=0

(p1)
]
⊕

[
k−2⊕
p=0

(p1)
]
⊕

[
k−1⊕
p=1

(p1)
]⊕2

⊕

⊕

[
k+1⊕
p=1

(p0)
]⊕2

⊕

[
k⊕
p=2

(p0)
]⊕2

(k − 2, 1, 0, 1)→
[
k−3⊕
p=0

(p2)
]
⊕

[
k−4⊕
p=0

(p2)
]
⊕

⊕

[
k−1⊕
p=0

(p1)
]
⊕

[
k−2⊕
p=0

(p1)
]
⊕

[
k−3⊕
p=0

(p1)
]
⊕

[
k−2⊕
p=1

(p1)
]⊕2

⊕

⊕

[
k⊕
p=1

(p0)
]⊕2

⊕

[
k−1⊕
p=2

(p0)
]⊕2

(k − 2, 0, 0, 1)→
[
k−3⊕
p=0

(p1)
]
⊕

[
k−1⊕
p=0

(p0)
]
⊕

[
k−2⊕
p=1

(p0)
]
(A.131)
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For each LGINO, there is 1 vector field; for each LVEC, there are 2 vector fields.

LSCA :
[
k−2⊕
p=0

(p2)
]
⊕

[
k−4⊕
p=0

(p2)
]
⊕

[
k−1⊕
p=1

(p1)
]
⊕

[
k−2⊕
p=1

(p1)
]
⊕

⊕

[
k+2⊕
p=0

(p0)
]
⊕

[
k⊕
p=0

(p0)
]
⊕

[
k⊕
p=2

(p0)
]
⊕

[
k−2⊕
p=2

(p0)
] (A.132)

Having obtained all the multiplets, it becomes straightforward to evaluate
the heat-kernel coefficients. We can check explicitly that with the G2 matter
contents given above that8

(aE)k = 1
144(k + 1)(k + 2)(k + 3)2(k + 4)(k + 5), ck = (b1)k = 0.

Theory 2 and 3: N = 1 with SO(3) and U(1)2

Because of the much smaller flavor symmetries, these two theories are under less
analytical control. However, exceptional field theory helps getting the numerical
mass spectrum for the low-lying Kaluza-Klein modes. With the numerical
data given by [336], we are able to numerically check that the same values of
coefficients are reproduced.9

A.4.6 KK supergravity connected to the ISO(7) gauged
supergravity

Now we proceed to theories connected to the ISO(7) gauged supergravity, which
can be uplifted to the massive type IIA supergravity in 10d. There is a slightly
more intricated web of flows shown in Fig. 2.3, which we expect the heat-kernel
coefficients to be identical level-by-level.

In this example, the “UV” theory is given by the maximal ISO(7) gauged
supergravity, which can be obtained by compactifying massive type IIA
supergravity on S6. The theory is not conformal, but the fields are still
organized into KK-levels and transform irreducibly under the SO(7) gauge
group.10

8In order to evaluate (b1)k, we need to use E0 for different multiplets given in equation
(3.1) of [335].

9We thank the authors of [336] for providing the codes of the data and pointing out some
typos in the original paper.

10See, for example, Table 1 of [337].
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In this part, we will start presenting the five theories with large flavor symmetries
in Fig. 2.3, i.e. (1) the N = 2, SU(3)×U(1) theory, (2) the N = 1, G2 theory, (3)
the N = 0, G2 theory, (4) the N = 0, SO(7) theory, and (5) the N = 0, SO(6)
theory. Benefiting from the large symmetry group, we can obtain the multiplet
contents analytically by branching rules for all KK level. After that, we present
two less symmetric theories, they are: (6) the N = 3, SO(4) theory and (7)
the N = 1, SU(3) theory. For these two theories, we are not able to write
down all the multiplets analytically, but we can indirectly get the heat-kernel
coefficients summed over all fields at a given KK level. Lastly, there are three
theories with very small global symmetries, including: (8) the N = 1, U(1)a
theory, (9) the N = 1, U(1)b theory and (10) the N = 1, ∅ theory without any
global symmetry.11 For these three theories, there are only numerical spectrum
available for the low-lying modes.

Theory 1: N = 2, SU(3)× U(1)

The mass spectrum is given in [337]. The heat-kernel coefficients for 3d N = 2
superconformal multiplets are given in Table A.2. We start with the long
multiplets, which are easier because their contributions to the coefficients are
all numbers. So we only need to count the long multiplets, without knowing in
details the branching rules from SO(7) to SU(3)×U(1). The procedure will be
similar to what we did for mABJM above.

The SU(3)×U(1) irrep of the LGRAVs are explicitly known in [337]:

k−1⊕
l=0

l⊕
p=0

[p, l − p] 2
3 (l−2p) ⊕

k−1⊕
p=1

[p, k − p] 2
3 (k−2p), (A.133)

the dimension for which is12

ΩLGRAV
k = 1

120(k + 1)(k + 2)(2k3 + 19k2 + 59k − 60) + δk,0. (A.134)

The number of LGINO is given by:

ΩLGINO
k = dim[k, 0, 1] + dim[k − 1, 0, 1]− 4ΩLGRAV

k − 3ΩSGRAV
k − 2ΩMGRAV

k − ΩSGINO
k

⇒ ΩLGINO
k = 1

30k(k + 1)(k + 4)(2k2 + 15k + 37). (A.135)

11We add the label a and b only to distinguish the two theories, there is no special meaning
to this notation.

12Notice that when k = 0, the sum over p from 1 to k generates an undesired term, so we
added δk,0 to cancel it.
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In the same way, the number of LVEC is13

ΩLVEC
k = 9

40(k + 1)(k + 2)(k + 3)(k + 4)(2k + 5) + δk,0

− 6ΩLGRAV
k − 3ΩSGRAV

k − ΩLGRAV
k − 4ΩLGINO

k − 3ΩSGINO
k − ΩSVEC

k − ΩMVEC
k

⇒ ΩLVEC
k = 1

24(k + 3)(k + 4)(2k3 + 11k2 + 19k − 14) + 8δk,0. (A.136)

Now we turn to the short multiplets. From Table A.2, we realize that aE and c
doesn’t depend on the conformal dimension of the superconformal primaries, so
the total coefficient is given by the coefficient for a single multiplet times their
numbers ΩXk , where X denotes a multiplet:

ΩSGRAV
k = (k + 1)(k + 2)− 2δk,0, ΩMGRAV

k = δk,0,

ΩSGINO
k = 2(k + 1)(k + 3),

ΩS/MVEC
k = 2(k + 2)(k + 4)− 16δk,0, ΩMVEC

k = 8δk,0,

ΩHYP
k = (k + 3)(k + 4).

(A.137)

However, b1 does depends on the conformal dimension of the superconformal
primaries, so we need to do calculate independently:

(b1)SGRAV
k = − 1

432(k + 1)(k + 2)(4k2 + 36k − 27)− 1
8δk,0,

(b1)SGINO
k = 1

216(k + 1)(k + 3)(4k2 + 28k − 5),

(b1)SVEC
k = − 1

216(k + 2)(k + 4)(4k2 + 12k − 9)− 1
3δk,0,

(b1)HYP
k = 1

432(k + 3)(k + 4)(2k + 1)2.

(A.138)

At the lowest KK-level, multiplets can be massless, which contribute:
(b1)MGRAV

k = 0, (b1)MVEC
k = 0. (A.139)

Summing over all the multiplets, we get:

(aE)k = 1
48(k + 1)(k + 2)(k + 3)(k + 4)(2k + 5),

ck = (b1)k = 0.
(A.140)

13We introduce the delta on the first line to solve the problem dim[k− 2, 1, 0] 6= 0 for k = 0.
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This is a new prediction. To support the Conjecture 1, one should show in all
the other theories in Fig. 2.3 give the same results level-by-level.

Theory 2 and 3: N = 1, G2 and N = 0, G2

Let’s start with the G2 theory with N = 1. The spectrum of this theory is
discussed in [335]. For N = 1 multiplets, the heat-kernel coefficients do depend
on the masses, so we need to honestly use the branching rules to get all the
multiplets, which is possible thanks to the large global G2 symmetry.14

LGRAV :[k, 0, 0]→ [k, 0]. (A.141)

Gravitini :[k, 0, 1]→ [k, 0]⊕ [k + 1, 0]⊕ [k − 1, 1],

[k − 1, 0, 1]→ [k − 1, 0]⊕ [k, 0]k≥1 ⊕ [k − 2, 1].
(A.142)

⇒ LGINO : [k + 1, 0]⊕ [k − 1, 0]⊕ [k − 1, 1]⊕ [k − 2, 1]. (A.143)

Vectors :[k, 1, 0]→ [k + 1, 0]⊕ [k, 1]⊕ [k − 1, 1],

[k − 1, 1, 0]→ [k, 0]k≥1 ⊕ [k − 1, 1]⊕ [k − 2, 1],

[k − 2, 1, 0]→ [k − 1, 0]k≥2 ⊕ [k − 2, 1]⊕ [k − 3, 1],

[k − 1, 0, 2]→ [k − 1, 0]⊕ [k, 0]k≥1 ⊕ [k + 1, 0]k≥1 ⊕ [k − 2, 1]⊕

⊕ [k − 1, 1]k≥2 ⊕ [k − 3, 2],

[k + 1, 0, 0]→ [k + 1, 0],

[k − 1, 0, 0]→ [k − 1, 0].

(A.144)

LVEC : [k + 1, 0]k≥1 ⊕ [k, 0]k≥1 ⊕ [k − 1, 0]k≥2⊕

⊕ [k, 1]⊕ [k − 1, 1]k≥2 ⊕ [k − 2, 1]⊕ [k − 3, 1]⊕ [k − 3, 2].
(A.145)

14Notice that the contents we get below doesn’t seem to correctly reproduce the coefficients
for k = 2, which is likely a mistake of mine. But luckily it is only for k = 2, where the
branching can be done seperatedly, and I checked that it is fine.
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Spinors : [k + 1, 0, 1]→[k + 1, 0]⊕ [k + 2, 0]⊕ [k, 1],

[k, 0, 1]→ [k, 0]⊕ [k + 1, 0]⊕ [k − 1, 1],

[k − 1, 0, 1]→ [k − 1, 0]⊕ [k, 0]k≥1 ⊕ [k − 2, 1],

[k − 2, 0, 1]→ [k − 2, 0]⊕ [k − 1, 0]k≥2 ⊕ [k − 3, 1],

[k − 1, 1, 1]→[k, 0]k≥1 ⊕ [k + 1, 0]k≥1 ⊕ [k − 1, 1]⊕ [k, 1]k≥1⊕

⊕ [k − 2, 1]⊕ [k − 1, 1]k≥2 ⊕ [k − 2, 2]⊕ [k − 3, 2],

[k − 2, 1, 1]→[k − 1, 0]k≥2 ⊕ [k, 0]k≥2 ⊕ [k − 2, 1]⊕ [k − 1, 1]k≥2⊕

⊕ [k − 3, 1]⊕ [k − 2, 1]k≥3 ⊕ [k − 3, 2]⊕ [k − 4, 2].
(A.146)

LSCA : [k + 2, 0]⊕ [k, 0]⊕ [k, 0]k≥2 ⊕ [k − 2, 0]⊕ [k − 1, 1]⊕ [k − 2, 1]⊕

⊕ [k − 2, 2]⊕ [k − 4, 2].
(A.147)

With the explicit multiplets contents together with the spctrum given in [335],
we can reproduce the contributions in (A.140).

For the G2 theory with N = 0, there is no multiplet structures and all fields are
standing on their own. Their transform irreducibly under the flavor group with
representations given by the branching rules above. In addition, the scalars
transform under:
Scalars :[k + 2, 0, 0]→ [k + 2, 0],

[k, 0, 0]→ [k, 0],

[k − 2, 2, 0]→ [k, 0]k≥2 ⊕ [k − 1, 1]k≥2 ⊕ [k − 2, 2]⊕ [k − 3, 2]⊕

⊕ [k − 2, 1]k≥3 ⊕ [k − 4, 2],

[k − 2, 0, 0]→ [k − 2, 0],

[k, 0, 2]→ [k, 0]⊕ [k + 1, 0]⊕ [k + 2, 0]⊕ [k − 1, 1]⊕ [k, 1]k≥1 ⊕ [k − 2, 2],

[k − 1, 1, 0]→ [k, 0]k≥1 ⊕ [k − 1, 1]⊕ [k − 2, 1],

[k − 2, 0, 2]→ [k − 2, 0]⊕ [k − 1, 0]k≥2 ⊕ [k, 0]k≥2 ⊕ [k − 3, 1]⊕

⊕ [k − 2, 1]k≥3 ⊕ [k − 4, 2].
(A.148)
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The representations for fields with spins ranging from 0 to 2, together with the
mass spectra of the N = 0, G2 given in [335], is enough for us to check that the
coefficients are indeed identical to (A.140).

Theory 4 and 5: N = 0, SO(7) and N = 0, SO(6)

We start with the SO(7) theory with larger symmetry. The multiplets are given
in Table 1 of [337]. There is one subtlety at k = 0 level, where the gravitini are
massive and eat 8 spinors under the same representation. The vectors in 7 of
SO(7) are also massive, whose scalar Stuckelburg fields are already excluded
from the table. So the correct field contents at k = 0 are given in Table A.5.

spin SO(7) representation ml

2 (000) 0
3
2 (001) 3

√
15

10

1 (010) ⊕ (100) 0, 2
√

3
5

1
2 (101)

√
15

10

0+ (200)⊕(000) 2
√
− 3

5 ,
√

6

0− (002)
√
− 6

5

Table A.5: Fields in the k = 0 level of the N = 0 SO(7) theory.

Using the mass spectra given in [337], we can reproduce (A.140) for both k = 0
and larger k ≥ 1.

For the N = 0 SO(6) theory, the fields are organized into the representations of
SO(6)∼SU(4) under the branching of SO(7):

Gravitons : (k00)→
k⊕
p=0

(0p0). (A.149)
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Gravitini : (k01)→
[

k⊕
p=0

(1p0)
]
⊕

[
k⊕
p=0

(0p1)
]
,

(k − 1, 0, 1)→
[
k−1⊕
p=0

(1p0)
]
⊕

[
k−1⊕
p=0

(0p1)
]
,

(A.150)

Vectors : (k − 1, 0, 2)→
[
k−1⊕
p=0

(1p1)
]
⊕

[
k−1⊕
p=0

(2p0)
]
⊕

[
k−1⊕
p=0

(0p2)
]
,

(k10)→
[
k+1⊕
p=1

(0p0)
]
⊕

[
k⊕
p=0

(1p1)
]
,

(k − 1, 1, 0)→
[

k⊕
p=1

(0p0)
]
⊕

[
k−1⊕
p=0

(1p1)
]
,

(k − 2, 1, 0)→
[
k−1⊕
p=1

(0p0)
]
⊕

[
k−2⊕
p=0

(1p1)
]
,

(k + 1, 0, 0)→
k+1⊕
p=0

(0p0),

(k − 1, 0, 0)→
k−1⊕
p=0

(0p0),

(A.151)
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Spinors : (k + 1, 0, 1)→
[
k+1⊕
p=0

(1p0)
]
⊕

[
k+1⊕
p=0

(0p1)
]
,

(k, 0, 1)→
[

k⊕
p=0

(1p0)
]
⊕

[
k⊕
p=0

(0p1)
]
,

(k − 1, 0, 1)→
[
k−1⊕
p=0

(1p0)
]
⊕

[
k−1⊕
p=0

(0p1)
]
,

(k − 2, 0, 1)→
[
k−2⊕
p=0

(1p0)
]
⊕

[
k−2⊕
p=0

(0p1)
]
,

(k − 1, 1, 1)→
[

k⊕
p=1

(1p0)
]
⊕

[
k−1⊕
p=0

(2p1)
]
⊕

[
k⊕
p=1

(0p1)
]
⊕

[
k−1⊕
p=0

(1p2)
]
,

(k − 2, 1, 1)→
[
k−1⊕
p=1

(1p0)
]
⊕

[
k−2⊕
p=0

(2p1)
]
⊕

[
k−1⊕
p=1

(0p1)
]
⊕

[
k−2⊕
p=0

(1p2)
]
,

(A.152)

Scalars+ : (k + 2, 0, 0)→
k+2⊕
p=0

(0p0),

(k, 0, 0)→
k⊕
p=0

(0p0),

(k − 2, 0, 0)→
k−2⊕
p=0

(0p0),

(k − 2, 2, 0)→
[

k⊕
p=2

(0p0)
]
⊕

[
k−1⊕
p=1

(1p1)
]
⊕

[
k−2⊕
p=0

(2p2)
]

(A.153)



HEAT KERNEL COEFFICIENTS FOR KK SUPERGRAVITIES 217

Scalars− : (k, 0, 2)→
[

k⊕
p=0

(1p1)
]
⊕

[
k⊕
p=0

(2p0)
]
⊕

[
k⊕
p=0

(0p2)
]
,

(k − 2, 0, 2)→
[
k−2⊕
p=0

(1p1)
]
⊕

[
k−2⊕
p=0

(2p0)
]
⊕

[
k−2⊕
p=0

(0p2)
]
,

(k − 1, 1, 0)→
[

k⊕
p=1

(0p0)
]
⊕

[
k−1⊕
p=0

(1p1)
]
.

(A.154)

Again, one has to be careful for k = 0, where we have collected the correct field
contents in Table A.6. Compared to the SO(7) theory, the vectors in (010) of
SO(7) become massive, which eat scalars in the (010)⊕ (101) of SU(4). With
the the mass formulas given in Table 17 of [335], we can reproduce (A.140) for
k = 0 and k ≥ 1.

spin SU(4) irrep ml

2 (000) 0
3
2 (100) ⊕ (001) 3

2 ,
3
2

1 (000) ⊕ (010)2⊕(101)
√

6,
√

3,
√

6
5

1
2 (001)⊕(011)⊕(100)⊕(110)

√
21
2 ,

√
165
10 ,

√
21
2 ,

√
165
10

0+ (000)2⊕ (020)
√

6,
√
− 6

5

0− (200) ⊕ (002)
√

3
5 ,
√

3
5

Table A.6: Fields in the k = 0 level of the N = 0 SU(4) theory from mIIA
supergravity.

Theory 6 and 7: N = 3, SO(4) and N = 1, SU(3)

We put together these two theories because we are able to evaluate the coefficients
(aE , c, b1) for a given KK level, but we are not able to get the multiplet contents
explicitly in a closed form. Nevertheless, this is enough for supporting our
conjecture 1.

We start with the N = 3, SO(4) theory, which is connected to the N =
2, SU(3) × U(1) theory and the N = 1, G2 theory by holographic RG flows
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as shown in Fig.2.3 reviewed in [211]. According to the coefficients of N = 3
multiplets evaluated in (A.109), b1 vanishes for all the multiplets and c vanishes
for all the long multiplets. We shall start with the short multiplets whose
contents are known explicitly for any KK level [337], as shown in Table A.7.
The multiplets transform irreducibly under the global symmetry SO(4) =
SO(3)F × SO(3)R. With the coefficients given in (A.109), we directly get:

multiplet SO(3)F×SO(3)R E0

SGRAV3 (0, k) k + 3
2

SGINO3
(
k+1

2 , k+1
2
)

k+3
2

SVEC3
(
k+2

2 , k+2
2
)

k+2
2

Table A.7: All the short N = 3 multiplets in SO(4) theory. Copied from Table
8 of [337]. k is the KK-level.

(aE)short
k = dim [0] (aE)SGRAV3

k + dim
[
k + 1

2

]
(aE)SGINO3

k + dim
[
k + 2

2

]
(aE)SVEC3

k

= 1
2(k2 + 8k + 4),

ck = dim [0] cSGRAV3
k + dim

[
k + 1

2

]
cSGINO3
k + dim

[
k + 2

2

]
cSVEC3
k = 0,

The result for ck is consistent with our conjecture 1. We need to proceed
to the long multiplets for aE . Since aE depends on the R-charges, we need
the representations of all the long multiplets apart from their numbers, which
requires us to do the following branching:

SO(7) ⊃ SO(3)F × [SO(3)× SO(3)] ⊃ SO(3)F × SO(3)R, (A.155)

where SO(3)R is the diagonal subgroup of SO(3) × SO(3), whose branching
rule is simply:

[j1, j2]→ [j1 + j2]⊕ [j1 + j2 − 1]⊕ · · · ⊕ [|j1 − j2|]. (A.156)

However, it is exactly the appearance of the absolute value that makes the
analytic calculation complicated: there are so many different possibilities for the
relative signs. So instead of doing the time-consuming brute-force calculation,
we do what follows. First, from the branchings together with the expressions
of aE in (A.109), it’s not hard to see that (aE)k is a polynomial in k of order
5, which can be determined by the six coefficients. To determine them, we
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explicitly evaluate the irreducible representations of the matter multiplets under
SO(3)F × SO(3)R for k = 0, 1, · · · , 5. The explicit steps of branching are the
same as many other cases we have done, a quick summary:

• (h, j) of LGRAV is obtained by the representations of gravitons, with
those in SGRAV substracted.

• (h, j) of LGINO is obtained by the representations of gravitini substracting
those in SGRAV, LGRAV, and SGINO.

• Add up (aE)long
k with (aE)short

k obtained above.

We have checked explicitly for k = 0, 1, · · · , 13 that the expression for (aE)k is
identical to (A.140) and thus consistent with our conjecture.

For the N = 1, SU(3) theory which is the IR fixed point from the N = 1, G2
theory, the spectrum is reported in [335]. The group theory exercise we need to
work on is:

SO(7)→ G2 → SU(3). (A.157)
Similarly, doing the branchings is possible but complicated, so we used the
fact that the heat-kernel coefficients are polynomials of k and evaluated them
explicitly for low-lying values of k. After working out k = 0, 1, · · · , 9, we can
confirm the coefficients (aE)k, ck, and (b1)k are identical to (A.140).

Theory 8, 9, and 10: N = 1, U(1)a, N = 1, U(1)b, and N = 1, ∅

Similar to the other theories discussed in [336], the three theories have very
small flavor symmetries, the mass spectra are only known numerically for
k = 0, 1, · · · , 3. With the available data and mass spactra, we are able to
numerically reproduce (A.140).

A.4.7 Theories descending from type IIB supergravity

Theory 1: N = 4 Jn theory

In this section, we study theories related to the J-fold theory in type IIB
supergravity, whose 10d geometry looks like AdS4 × S1 × S5, where we impose
a special twisted boundary condition on S1. The field theory dual is 3d
superconformal Jn theory, where the logarithmic term in the partition function
vanishes, clog = 0 [338], which we would like to reproduce from the gauged
supergravity side.
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Because of the product form of the internal manifold, we have two sets of
KK levels associated to S5 and S1, whose values are l = 0, 1, 2, · · · , and
n = 0,±1,±2, · · · , respectively. The N = 4 multiplets of the so-called Jn theory
are given in [339], consisting of only graviton multiplets parametrized [E0, l1, l2],
where E0 is the dimension of the conformal primary and (l1, l2) is the SO(4)
R-charge. The values of (l1, l2) come from the branching SO(6)→ SO(4):

[0, l, 0]→
[l/2]⊕
a=0

l−2a⊕
k=0

[l − 2a− k, k]. (A.158)

The dimension of the superconformal primary is given by

E0 = −1
2 +

√
9
4 + 1

2 l(l + 4) + l1(l1 + 1) + l2(l2 + 1) + 1
2

(
2πn
T

)2
. (A.159)

Special attention needs to be paid for m = 0,m = 1: for m = 0, the multiplet
is massless; and for m = 1, a few fields are vanishing.15 In these cases, the
standard Racah-Speiser (RS) algorithm is as follows: 16

• If an R-charge component of the field is l = − 1
2 , delete it.

• If an R-charge component of the field is l ≤ −1, eat another field with
l = |l| − 1. The existence of such a field can be proven.

The original field contents in the long and short multiplets can be found in the
standard literature [18]. With modifications for cases where the R-charge has
negative components,17 we obtain Table A.8.

The unitary bound E0 ≥ s0 + l1 + l2 + 1 tells us the values of the charges for
which the multiplet shortens:

n = 0, l1 = l2 = l

2 = 0, 1, 2, · · · , (A.160)

when the multiplet becomes:

LGRAV4[l1+l2+1, l1, l2]→ SGRAV4[l1+l2+1, l1, l2]+SGINO4[l1+l2+3, l1+1, l2+1].
(A.161)

15Notice that SGRAV[1,0,0] is the stress-momentum multiplet, for which we shouldn’t use
the table on P.74 of [18] but (5.55) in it.

16Introduced in App. B of [340] and App. A.3 of [18].
17The LGRAV field contents are also given in tables in the App. of [339], but they contain

typos with the special values of the representations. One needs to start with the general field
contents and use the RS algorithm to take of the shortening conditions.
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aE c b1

LGRAV[E0, 0, 0] 5
2 0 0

LGRAV[E0, 1, 0] 15
2 0 0

LGRAV[E0, 1, 1] 45
2 0 0

LGRAV[E0, l1, 0] 5
2 (2l1 + 1) 0 0

LGRAV[E0, l1, 1] 15
2 (2l1 + 1) 0 0

LGRAV[E0, l1, l2] 5
2 (2l1 + 1)(2l2 + 1) 0 0

SGRAV[2m+ 1,m,m] (4m+ 1)(2m+ 1) 1
2 0

SGRAV[3, 1, 1] 15 1
2 0

MGRAV[1, 0, 0] 1 1
2 0

SGINO[2m+ 3,m+ 1,m+ 1] 1
2 (2m+ 1)(2m+ 3) − 1

2 0

SGINO[3, 1, 1] 3
2 − 1

2 0

Table A.8: The heat kernel coefficients for 4d N = 4 LGRAV and SGRAV
multiplets. l1, l2 ≥ 3

2 , m ≥ 2 in SGRAV and m ≥ 1 in SGINO.

Under the shortening condition, we are interested in SGRAV[2m+ 1,m,m] and
SGINO[2m+ 3,m+ 1,m+ 1] multiplets of 4d N = 4 sugra, which correspond
to A2[0](R=R′=2m)

∆=2m+1 and B1[0](R=R′=2m+2)
∆=2m+3 in the notation of [18].

Case 1: l = 2m+ 1,m = 0, 1, 2, · · ·

In this case, there will be no short multiplets. The irreps of SO(4)R include:

[0, 2m+ 1, 0]→
m⊕
a=0

2(m−a)+1⊕
k=0

[2(m− a) + 1− k, k] (A.162)

We see that cm,n = (b1)m,n = 0 level-by-level. Though aE doesn’t vanish
level-by-level:

(aE)m,n = 5
6(m+ 1)(2m+ 3)2(m+ 2) = 5

24(l + 1)(l + 2)2(l + 3), (A.163)

but we see that (aL,odd
E )m = 0 since the summation of n is factored out and∑

n∈Z 1 = 0.
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Case 2: l = 2m,m = 0, 1, 2, · · · The irreps of SO(4)R include:

[0, 2m, 0]→
m⊕
a=0

2(m−a)⊕
k=0

[2(m− a)− k, k]

=
m⊕
p=0

[p, p]⊕
m⊕
a=0

m−a−1⊕
k=0

[2(m− a)− k, k]⊕
m⊕
a=0

2(m−a)⊕
k=m−a+1

[2(m− a)− k, k].

(A.164)
In this case, we still have (b1)m,n = cm,n = 0 level-by-level. For (aE)m, the
contribution of the last two factors is:

5
6m(m+ 1)(2m+ 1)(2m+ 3). (A.165)

Notice that for short multiplets, the contribution to (aE)m can be decomposed:
SGRAV[2m+ 1,m,m] + SGINO[2m+ 3,m+ 1,m+ 1] = LGRAV[E0,m,m], so
the total contribution of the first term is:

(1− δn,0)
m∑
p=0

5
2(2p+ 1)2 + δn,0

m∑
p=0

5
2(2p+ 1)2 =

m∑
p=0

5
2(2p+ 1)2

= 5
6(m+ 1)(2m+ 1)(2m+ 3).

(A.166)

Thus the total contribution will be

(aE)m,n = 5
6(m+ 1)2(4m2 + 8m+ 3) = 5

24(l + 1)(l + 2)2(l + 3). (A.167)

Although aE doesn’t vanish level-by-level, the summation over n will still give
zero, consistent with field theory.

Theory 2: N = 1 SU(3) Jn theory

The theory is connected to the N = 4 theory discussed above, and the spectrum
is provided in [341].

We focus on a specific two-parameter U(1)×U(1) solution in 4d dyonically
gauged supergravity, which is parametrized by two pseudoscalars (χ1, χ2). At
the special locus χ1 = χ2 = 0, the flavor symmetry is enhanced to SU(3), which
is the theory we study here. The contents of 4d N = 1 multiplets with their
irreps under SU(3) are explicitly given in (3.3) and (3.4) of [341]. For general
KK level (l, n), the multiplets are all long. The only exception is l = n = 0,
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where we have MGRAV and MVEC, notice that there will be extra multiplets
generated:

LGRAV[E0 = 5
2 + ε]→ MGRAV[E0 = 5

2]⊕ LGINO[E0 = 3],

LVEC[E0 = 3
2 + ε]→ MVEC[E0 = 3

2]⊕ LSCA[E0 = 2].
(A.168)

Taking advantage of the coefficients for N = 1 multiplets given in Table 2.6, we
obtain the following coefficients:

(aE)l,n = 5
24(l + 1)(l + 2)2(l + 3), cl,n = (b1)l,n = 0. (A.169)

The coefficients are identical to the N = 4 theory level-by-level, providing
another supporting example of our conjecture 1.

A.5 Regularizing sums over KK spectra

Throughout the main text, we encounter a number of infinite sums that require
regularization. In this appendix, we review a couple of methods that can in some
cases attach a finite value to a divergent series. We hasten to note that these
methods, being essentially based on zeta-function regularization, are neither
linear nor stable (see e.g. [298]). As such, we do not claim that they can be used
to regularize all infinite sums we encounter in an unambiguous way. But we are
inclined to trust these methods whenever they yield results that are compatible
with AdS/CFT expectations, as discussed in the main text.

The first method is a spectral regularization, which we apply to the sum

S =
∑
n≥0

(n+ 1)(n+ 2)(n+ 3)2(n+ 4)(n+ 5) . (A.170)

We follow [190]. First, we introduce the following zeta function:

ζ∆(z) = 1 +
∑
n≥1

D(n)
(
n(n+ 6)

)−z
, (A.171)

where
D(n) = 1

360(n+ 1)(n+ 2)(n+ 3)2(n+ 4)(n+ 5) . (A.172)

The function ζ∆ is associated to the scalar Laplacian ∆ on the seven-sphere.
Indeed, this differential operator has eigenvalues n(n+ 6) with n ≥ 0 and their
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multiplicities are given by D(n). This spectral zeta function has an integral
representation,

ζ∆(z) = 1
Γ(z)

∫ ∞
0

tz−1 Tr
[
e−t∆

]
dt , (A.173)

and the value of ζ∆(0) can be obtained from a heat kernel computation as [342]

ζ∆(0) = ad(∆) resz=0Γ(z) , (A.174)

where d is the dimension of the space on which the scalar Laplacian acts.
Crucially, the coefficient ad(∆) vanishes when d is odd [342], leading to ζ∆(0) = 0
for the seven-sphere. Thus, this method attaches the finite value

S = 0 , (A.175)

to the infinite sum (A.170).

Another regularization method can be adapted from [208], and is more general
than the spectral zeta-function method. Namely, consider a divergent series of
the form ∑

n≥0
f(n) . (A.176)

It will be important in what follows that f satisfies the following two properties:
(i) f(n) 6= 0 for n ∈ [0,∞) and, (ii) ftop(n) = 0 only for n = 0. Here the
subscript “top” indicates the term of highest homogeneity degree in f . The way
to attach a finite value to (A.176) is to introduce the zeta function

ζ(s; f) =
∑
n≥0

f(n)−s . (A.177)

Then, under the assumptions (i) and (ii) above required for convergence, [208]
showed that

ζ(−1; f) =
∑
L≥0

cL(f)BL , (A.178)

where BL is the L-th Bernoulli number and cL(f) is read off from the expansion
of

f
[deg(f)]
a

deg(f)

deg(f)+1∑
`=2

(−1)`−1

`(`− 1) C`(fa) =
∑
L≥0

cL(f) aL . (A.179)

Here we have defined fa(n) = f(n+ a),

f [m] = 1
m!

dmf(n)
dnm

∣∣∣
n=0

, (A.180)
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and C`(f) is the coefficient of y1+deg(f) in( deg(f)∑
i=1

f [deg(f)−i]

f [deg(f)] yi

)`
. (A.181)

Let us apply this regularization to the series S in (A.170). We find that the
coefficients cL are given by

cL(S) =
{
−738

7 , −360, −471, −949
3 , −120, −26, −3, −1

7

}
, (A.182)

for L = 0 . . . 7. Remarkably, using this specific linear combination of Bernoulli
numbers in (A.178) shows that

S = 0 , (A.183)

in agreement with the spectral regularization method. We can also use this
prescription to attach a finite values to other sums. In Appendix A.4.4, we
encountered the divergent series

S1 = 1
4
∑
n≥0

(1 + n)3(5 + 2n) ,

S2 = − 1
4
∑
n≥0

(1 + n)(4 + n)(5 + 2n)2 ,

S3 = 1
4
∑
n≥0

(2 + n)3(1 + 2n) .

(A.184)

The relevant cL coefficients are

cL(S1) =
{
−1229

5120 ,−
5
4 ,−

17
8 ,−

7
4 ,−

11
16 ,−

1
10

}
L=0...5

,

cL(S2) =
{

125
16 , 25, 205

8 ,
47
4 ,

5
2 ,

1
5

}
L=0...5

,

cL(S3) =
{
−1267

5120 ,−2,−7
2 ,−

5
2 ,−

13
16 ,−

1
10

}
L=0...5

,

(A.185)

which lead to the finite values quoted in (A.115).





Appendix B

More details on the
superconformal E-theory

B.1 Wrong analytical calculation of ∆k(λ) for large
λ

In this section we try to calculate analytically the first two terms in the large λ
expansion of ∆k(λ). We warn the reader however that although the calculation
appears to be quite straightforward, the result turns out to be wrong.

Evaluation of the λ−1 term in ∆k(λ)

The calculation is based on the LDU decomposition of matrices and uses the
following fact. If A = LDU where L is a lower triangular matrix, D is a diagonal
matrix and U is an upper triangular matrix, then

A(k) = L(k)D(k)U(k) , (B.1)

where A(k) is the upper left k × k block in the matrix A and we have used the
same notation for the other matrices. Furthermore, if L is lower uni-triangular,
i.e. L has ones on the diagonal, and U is upper uni-triangular, then

det
{
A(k)

}
det
{
A(k−1)

} = Dkk , (B.2)
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with the convention that A(0) = 1.

The λ−1 term in the strong coupling expansion of ∆k(λ) was calculated in [229]
with a different method, we calculate it here again with formula (B.2). By
performing the Mellin transformation of (3.4), one has [229]:

X ∼
λ→∞

− λ

2π2 S +O(λ)0 (B.3)

where S is a tri-diagonal infinite matrix whose elements are

Skl = 1
4(−1)k+l

√
2l + 1
2k + 1

( δk−1,l

k (2k − 1) + δk,l
k (k + 1) + δk+1,l

(k + 1) (2k + 3)

)
. (B.4)

One can then show that

D ≡ 1
1− X = 2π2

λ
S−1 +O(λ)−3/2 . (B.5)

Now let us define a lower uni-triangular matrix L and a diagonal matrix D

Lkl =



1 if k = l

−
√

2k + 1√
2l + 1

if k = l + 1

0 else

, Dkl =


λ

4π2
1

(2k + 1)2k if k = l .

0 else

(B.6)
One can check explicitly that

LTDL = λ

2π2 S (B.7)

which in turn leads to

L−1D−1L−T = 2π2

λ
S−1 = D +O(λ)−3/2 . (B.8)

Since L−1 is again a lower triangular matrix, one can use formula (B.2) to get:

1 + ∆k(λ) +O(λ)−3/2 =
det D(k)

det D(k−1)
+O(λ)−3/2 = D−1

kk +O(λ)−3/2 . (B.9)

Substituting the value of D−1
kk , we get:

1 + ∆k(λ) = 4π2

λ
(2k + 1)2k +O(λ)−3/2 (B.10)

This agrees with both the analytical evaluation in [229] and the numerical
evaluation (3.65) in the main text above.
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Evaluation of the λ−3/2 term in ∆k(λ)

To proceed to higher order in the 1/λ expansion we add one more term to the
expansion of X:

X = − λ

2π2 S + 1
31 +O(λ)−1/2 . (B.11)

One then finds

D = 1
1− X =

(
λ

2π2 S + 2
31
)−1

+O(λ)−2 . (B.12)

We define new matrices L and D, different from the ones in (B.6),

Lkl =



1 if k = l

−Ek
El

if k = l + 1

0 else

, Dkl =


Ek−1

Ek

λ

2π2
1

4k
√

4k2 − 1
if k = l ,

0 else

(B.13)
where Ek is expressed in terms of the modified Bessel function as

Ek =
√

2k + 1
I2k+1

(√
3λ
2π2

)
I1

(√
3λ
2π2

) . (B.14)

To proceed further we recall some properties of the modified Bessel function.
A somewhat nonstandard recursion relation satisfied by the modified Bessel
functions reads:

νI2ν+3(z)−
(

1 + ν(ν + 1) 8
z2

)
(2ν + 1)I2ν+1(z) + (ν + 1)I2ν−1(z) = 0

(B.15)

This can be proven by using the standard recursion relation

2ν
z
Iν(z) = Iν−1(z)− Iν+1(z) . (B.16)

Using (B.16) on both terms in the right hand side of (B.16) gives

2ν
z2 Iν(z) = 1

2(ν − 1)Iν−2(z)− ν

ν2 − 1Iν(z) + 1
2(ν + 1)Iν+2(z) . (B.17)
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This relation is equivalent to (B.15), after renaming the order of Iν(z).

Using the recursion relation of modified Bessel functions (B.15), one can verify
directly that

LTDL = λ

2π2 S + 2
31 , (B.18)

and hence

L−1D−1L−T =
(

λ

2π2 S + 2
31
)−1

= D +O(λ)−2 . (B.19)

Applying once again formula (B.2) we find:

1 + ∆k(λ) +O(λ)−2 =
det D(k)

det D(k−1)
+O(λ)−2 = D−1

kk +O(λ)−2 . (B.20)

Plugging in the value of Dkk and expanding the modified Bessel functions for
large λ, we obtain

1 + ∆k(λ) = 8π2k(2k + 1)
λ

−
32
√

2
3π

3k2(2k + 1)
λ3/2 +O(λ)−2 . (B.21)

Although the calculations above appear to be quite straightforward, it turns out
that the coefficient C3/2 of the λ−3/2 term in the large λ expansion of ∆k(λ)
calculated analytically here is different from the one obtained numerically, see
(3.65):

Cana
3/2 = −32

√
2
3π

3k2(2k + 1) ≈ 810.1k2(2k + 1),

Cnum
3/2 = −128π2 log 2k2(2k + 1) ≈ 875.7k2(2k + 1) .

(B.22)

We believe that the reason for this discrepancy lies in the fact that the analytic
calculation above is subtle and leads to a wrong result due to the fact that we
have treated the infinite dimensional matrix X as a finite dimensional one. For
example, first taking a large λ expansion and then inverting an infinite matrix
could potentially yield a different result than first inverting the matrix and then
expanding at large λ. Also, we are calculating the large λ expansion of the
matrix X for each component separately. In doing this, perhaps one needs to be
more careful to ensure that this expansion is uniform over all components of the
matrix. While we have no rigorous proof that the analytic calculation above
is wrong, due to the subtleties discussed here and the fact that the numerical
results are very accurate and well-behaved we have chosen to trust the result of
our numerical analysis and in particular the large λ expansion in (3.65).
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B.2 Quadrature rules

A quadrature rule for approximation to an integral is a set of points xi and
weights wi such that

I ≡
∫ b

a

dxf(x) ≈
n∑
i=1

wif(xi) ≡ In . (B.23)

The quadrature rules we describe in this section converge exponentially fast.
Namely, if f(x) can be extended to an analytical function f(z) in a region
around the interval [a, b] then

|I − In| ≤ e−cn , (B.24)

with c a positive constant. Typically, the larger the region of analyticity, the
larger c. The reason we want fast quadrature rules is that n should not be too
large because we solve linear algebra problems with matrices of size n× n, see
equation (3.59). The memory requirement will then be of order O(n)2, and the
timing of order O(n)3, so this scales quite badly with n.

Gauss-Laguerre

This is a quadrature scheme for the interval [0,+∞[. It is the Gaussian
quadrature scheme based on Laguerre polynomials. The weights wi and points
xi with i = 1, . . . , n are such that all polynomials of degree not greater than
2n− 1 are integrated exactly. More specifically, if

I ≡
∫ +∞

0
dx e−xf(x), In ≡

n∑
i=1

wif(xi) , (B.25)

then I = In for all polynomials f(x) of degree not greater than 2n− 1. Initially,
this seemed to be a natural quadrature scheme to use in our setup because the
function W (t) in (3.5) decays exponentially fast for t→ +∞. Also, although
the weights wi and points ti are not directly available in Mathematica, they
can be calculated efficiently with the Golub-Welsch algorithm. This quadrature
scheme works quite well for λ . 100, however for larger values of λ we need
to use larger values of n (n & 100). For large values of n, it turns out that
many weights are very small (∼ 10−100), so they are in a sense wasted. This is
also documented in the literature, see Sections 5 and 6 in [343]. Therefore, it is
better to use a different quadrature scheme.
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Quadrature rules on the interval [−1, 1]

Some well-known quadrature rules are:

Gauss-Legendre Here xi are given by the zeros of Legendre polynomials.
These are actually points in the interval [0, 1], but a linear change of
variable converts these to the interval [−1, 1].

Clenshaw-Curtis Here xk = cos
(
kπ
n

)
with k = 0, 1, . . . , n.

Fejér type 1 Here xk = cos
(

(k− 1
2 )π
n

)
with k = 1, 2, . . . , n.

Gauss-Legendre is perhaps theoretically nicer than Clenshaw-Curtis, but the
advantage of Clenshaw-Curtis is that its weights and points are much easier to
compute. Also, Mathematica has a function to compute the weights and points
of Clenshaw-Curtis. However, the end points x0 = 1 and xn = −1 are part of
the quadrature points. In the integral equation we want to solve, we prefer not
to use the left end point. Therefore, we settled on Fejér type 1.

Fejér type 1

The quadrature points are:

xk = cos θk, with θk = (2k − 1) π2n, k = 1, 2, . . . , n , (B.26)

and the weights wk can for example be found in [344]1

wk = 2
n

1− 2
n−1

2∑
r=1

cos(2rθk)
4r2 − 1

 (B.27)

The points xk and weights wk are not directly available in Mathematica.
However, there is code available at Wolfram Function Repository which can be
used for their calculation [346].2

1If the reader wants to check formula (B.27), we found Fejér’s own calculation very readable
[345].

2The function is called FejerQuadratureWeights and is based on the Fast Fourier
Transform. We checked for many cases that FejerQuadratureWeights indeed produces xi
and wi that are numerically the same as the ones given by (B.26) and (B.27).
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Error analysis

To integrate numerically over the interval [0,+∞[ we truncate the interval to
[0, L] and then use Fejér type 1 on the truncated interval. This amounts to the
approximation ∫ +∞

0
dt f(t) ≈

∫ L

0
dt f(t) ≈

n∑
i=1

wif(xi) . (B.28)

This procedure leads to two sources of error: firstly, there is the truncation error
which goes to zero if L→ +∞; secondly, there is the discretization error which
goes to zero if n→ +∞. One possibility is to keep L and n independent, and
test for accuracy by increasing both L and n separately. Another possibility is
to relate L and n in such a way that the truncation error is roughly equal to
the discretization error. We observed that the scaling L ∼ n2/3 works well in
practice.

It is important to note that if n → ∞ then L → ∞, so the truncation error
goes to zero. Also if n→∞, the discretization size h = L

n ∼ n
−1/3 → 0, so the

discretization error will go to zero as well.

B.3 Degenerate kernels

In this section we collect some formulae for integral operators with degenerate
kernel. These formulae are well-known but included here for convenience. The
integral operator

f(x) 7→ f(x) +
∫ β

α

dy K(x, y)f(y) , (B.29)

has degenerate kernel (also known as kernel of finite rank or separable kernel)
if K(x, y) can be expressed as the finite sum3

K(x, y) =
n∑

i,j=1
ai(x) Cij bj(y) . (B.30)

Integral equations with degenerate kernel can be solved in closed form as follows.
Suppose the integral equation is

f(x) +
∫ β

α

dy K(x, y)f(y) = g(x) , (B.31)

3We do not use the summation convention for repeated indices in this section.
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with K(x, y) as in (B.30). Define fi =
∫ β
α
dy bi(y)f(y), then equation (B.31) is

f(x) +
n∑

i,j=1
ai(x) Cijfj = g(x) . (B.32)

Multiplying with bk(x) and integrating over x gives

fk +
n∑

i,j=1
AkiCijfj = gk , (B.33)

where
Aki =

∫ β

α

dx bk(x)ai(x) , (B.34)

and gk =
∫ β
α
dx bk(x)g(x). The system of n linear equations (B.33) can be solved

exactly for fk. Inserting this solution in (B.32) gives4

f(x) = g(x)−
n∑

i,j,l=1
ai(x)Cij(1 +AC)−1

jl gl . (B.35)

The solution of (B.31) is thus

f(x) = g(x)−
∫ β

α

dy L(x, y)g(y) , (B.36)

with
L(x, y) =

n∑
i,j=1

ai(x)[C(1 +AC)−1]ijbj(y) . (B.37)

In the literature L(x, y) is called the resolvent.

The Fredholm determinant of an integral operator with degenerate kernel can
also be calculated analytically. Here is a derivation of the formula. We discretize
the integral with discretisation points xµ and weights wµ with µ, ν = 1, 2, . . . ,m.
Then the Fredholm determinant is equal to

det(1 +K) = lim
m→∞

m

det
µ,ν=1

(δµν +K(xµ, xν)wν) . (B.38)

Write

K(xµ, xν)wν =
n∑

i,j=1
ai(xµ) Cij bj(xν)wν = (MCN)µν , (B.39)

4M−1
ij is the ij component of the matrix M−1.
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with Mµi = ai(xµ) and Njν = bj(xν)wν . Then

det(1m×m +MCN) = det(1n×n + CNM) . (B.40)

Since
(CNM)ij =

n∑
k=1

m∑
ν=1

Cikbk(xν)wνaj(xν) , (B.41)

we find that in the limit m→∞

(CNM)ij =
n∑
k=1

CikAkj , (B.42)

with Akj defined in (B.34). Alltogether, one has

det(1 +K) = det(1n×n + CA) . (B.43)

This is a closed form formula for the Fredholm determinant because the
determinant on the right hand side is of a finite n× n matrix.

B.4 Numerical data

Here we provide two tables with some of our numerical data for ∆k(λ) for
k = 1, 2, 3 as well as for the free energy F .

λ 1 + ∆1(λ) 1 + ∆2(λ) 1 + ∆3(λ)
e3 0.967087942591236(00±11) 0.998182 0.999886471522795(00±11)
e4 0.84413354083007(60±19) 0.976408560611106(00±22) 0.996135433920974(00±11)
e5 0.591355036026568(60±22) 0.867655885531129(00±11) 0.95770388339493(20±22)
e6 0.3263339352130(10±12) 0.62836903552457(64±11) 0.80851244411776(50±30)
e7 0.1524442716515(11±10) 0.36148255438002(6±5) 0.547853721918213(5±8)
e8 0.064525566747991(9±9) 0.1749433084896(77±15) 0.2997641417256(9±5)
e9 0.02579506509172(98±16) 0.07589996453754(0±7) 0.1407940457851(2±4)
e10 0.00997266161958(43±27) 0.0308295464823(8±6) 0.0600521108447(98±30)
e11 0.003779867460756(4±4) 0.0120383586528(52±14) 0.0241553127444(05±15)
e12 0.001415785217(9±4) 0.00459090014(08±27) 0.00937868572(6±8)
e13 0.0005265339(42±19) 0.001726033(07±12) 0.003564618(8±4)
e14 0.000194980(46±21) 0.00064338(77±14) 0.00133750(4±4)

Table B.1: ∆k(λ) with k = 1, 2, 3 for some values of λ. These values are
calculated with the Nyström method explained in Section 3.3.3. We have used
different values of L and m to estimate the accuracy of the numerical values.
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λ F λ F
1 9.3017× 10−6 100 0.227879
2 0.0000663066 200 0.50639
3 0.000200935 300 0.759961
4 0.000430494 400 0.991783
5 0.000764363 500 1.20637
6 0.00120686 600 1.40708
7 0.00175905 700 1.59638
8 0.00241988 800 1.77606
9 0.00318697 900 1.94753
10 0.00405711 1000 2.11184
20 0.0175565 2000 3.49445
30 0.0373082 3000 4.60102
40 0.060823 4000 5.55364
50 0.0866247 5000 6.40401
60 0.11382 6000 7.17993
70 0.141848 7000 7.89843
80 0.170347 8000 8.57086
90 0.199078 9000 9.20523

Table B.2: The free energy F for some values of λ. These values are calculated
with the Bornemann method explained in Section 3.4.1. We have used
appropriate settings of L and m to ensure that all printed digits are correct.



Appendix C

More details on the AlAdS8
background

C.1 Partial results with the second ansatz

In this section, we collect our results for the second squashed sphere metric
(4.32b). We solved the Einstein equations both perturbatively and numerically,
and evaluate the initial values that can be integrated up to the boundary. The
results indicate a richer family of solutions worth exploring further.
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C.1.1 Einstein equations of motion

Using the tetrad method introduced in the main text (4.34), the Einstein
equations for the metric (4.25) are as follows:
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(C.1)
where we have taken the cosmological constant explicitly to be −21. Only four
of the equations are independent because of Bianchi Identity. If one considers
the special case where:

f1(r)→ 1, f2(r)→ a(r), f3(r) = f4(r) = f5(r)→ b(r), (C.2)
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then the last three equations become identical, and the remaining three equations
become identical to the three equations for our first metric ansatz in (4.35).
Thus the solutions discussed in the main text belong to a subset of solutions here,
which we will solve both analytically at the near horizon and near boundary
regions, and numerically for general squashing parameters λ1, λ2, λ3.

C.1.2 Large radius expansion

We perform the following Fefferman-Graham expansion:

f1(r) = 1, fi(r) =
+∞∑
j=0
Fije−(j−1)r, i = 2, 3, 4, 5 (C.3)

We solve the expansion perturbatively up to O(exp(−9r)), it turns out the
solutions are determined by totally 7 free parameters which can be chosen as
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{Fi0,Fj7}j=2,3,4
i=2,3,4,5. The first several terms up to O(e−3r) are

f2(r) =F20e
r + e−r

(
F2

30 + F2
40 + F2

50
24F3

20

−
F20

(
F4
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(
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)
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)2
)

240F2
30F2

40F2
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+
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240F40
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40 + F2

50
)
F2

40

F4
20

+
11F4
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(C.4)
Same as argued after (4.36), we expect the coefficients {Fj7}j=2,3,4 to vanish,
thus the family of solutions have four free parameters.

C.1.3 Small radius expansion and numerics - NUT

For NUT, we assume the following small-r expansion:

f1(r) = 1,

fi(r) = Fij(r − r0)j , i = 2, 3, 4, 5, j = 1, 2, 3, · · · .
(C.5)
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In addition, we assume the SO(5)×SO(3) symmetry to be preserved along the
constant-r surface, thus we require

F31 = F41 = F51 > 0. (C.6)

The equation of first order has two solutions:
F21 = 1

2 ,

F31 = F41 = F51 = 1
2 ,

or


F21 = 3

√
5

10 ,

F31 = F41 = F51 = 3
10 .

(C.7)

For the first choice, we have solved (C.1) up to order O(r− r0)13, there’re three
free parameters, which we can choose to be F23, F33, F43, the first several terms
up to O(r − r0)5 are:

f2(r) =ρ

2 + ρ3F23 + ρ5
[
−2

5
(
F 2

33 + F43F33 + F 2
43
)

+ 7
30(F33 + F43)

− 1
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23 −
49
720

]
+O

(
ρ7) ,

f3(r) =ρ
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−144

(
13F 2

33 − 12F43F33 − 12F 2
43
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(
ρ7) ,

f4(r) =ρ

2 + ρ3F43 −
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44
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43
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(
ρ7) ,

f5(r) =ρ
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12(−12(F33 + F43)− 48F23 + 7) + ρ5

240
[
48
(
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43
)

−644(F33 + F43) + 112F23(48(F33 + F43)− 23) + 11520F 2
23 + 147

]
+O

(
ρ7) ,

(C.8)
where ρ ≡ r − r0. When assigning F23 = F33 = F43 = 1/12, we obtain the
standard AdS8 solution with f2 = f3 = f4 = f5 = sinh ρ. Take the small r
expansion as the initial condition, we can perform numerics for general value of
{F23, F33, F43}. As expected, not all initial values integrate to infinity: some
of them vanishes at some finite r. By numerical simulation, we determine
which initial values can be integrated to infinity and plot them in Fig.C.1.
There’re two observations to be made. First, on each slice of the plot, the green
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region has the same shape as that obtained in [271]. Second, initial values
with F33 = F43 = F53 are always allowed, which correspond to the first metric
ansatz.

Figure C.1: Left: Green points correspond to initial values for NUT solution
that integrate to infinity, and red points for those not. Right: Same plot for
the Bolt solution.

For the second choice in (C.7), up to order O(r − r0)13, the solution is fixed,
with no free parameter, whose leading order expansions can be identified with
hyperbolic sine functions:

f2(r) = 3
√

5
10

(
ρ+ ρ3

6 + ρ5

120 + ρ7

5040 + ρ9

362880 +O
(
ρ11))→ 3

√
5

10 sinh ρ,

f3(r) = 3
10

(
ρ+ ρ3

6 + ρ5

120 + ρ7

5040 + ρ9

362880 +O
(
ρ11))→ 3

10 sinh ρ,

f3(r) = f4(r) = f5(r).
(C.9)

With above solution, the metric has an asymptotic boundary given by squashed
sphere in (4.25) with λ2 = 1

5 as:

ds2 = dr2 + 9
5 sinh2 rds2

S̃7 . (C.10)

The curvatues of the geometry above is the same as the singular solution we
obtained in the other metric (4.43).
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C.1.4 Small radius expansion and numerics - Bolt

The ansatz for Bolt is
f1(r) = 1,

f2(r) = F2j(r − r0)j , j = 0, 1, 2, 3, · · · ,

fi(r) = Fij(r − r0)j , j = 1, 2, 3 · · · ,

F31 = F41 = F51 > 0,

(C.11)

where we require F20 > 0 for convenient. The leading terms are
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(C.12)
Taking the first two orders as the initial conditions, one can also solve the
Einstein equations (C.1) numerically. We can also obtain the set of initial values
which can be integrated to infinity, as plotted in Fig.C.1. The shape of the
region is also similar to the one obtained in [271].
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C.2 Conformal mapping from sphere to plane

In the main text, to perform the integration of the stress tensor correlation
function, one needs the explicit conforming map from S7 to R7. In this section,
we’ll state how we get it and discuss how to construct the map in different
situations.

Generally speaking, the conformal map is the composition of an embedding
map from Sd to Rd+1, together with a standard stereographic projection from
Rd+1 to the equatorial plane Rd:

Y ā = yā

1− yd+1 , ā = 1, 2, ..., d. Y ā ∈ Rd, yA ∈ Rd+1. (C.13)

The conformal factor is given by

ds2
Rd = Ω2ds2

Rd+1 = Ω2ds2
Sd , Ω = 1

2(1 + YāY
ā) = 1

1− yd+1 . (C.14)

Thus the only step dependent on the specific metric is the embedding map
from Sd to Rd+1, which we’ll discuss. In general, the exercise of obtaining the
embedding map from the induced coordinate is a highly non-trivial task even
for two-dimensional cases. The examples considered in this section are only
some special cases where such a map can be constructed systematically.

C.2.1 U(1) bundle

We start with an easier and more established situation, i.e., U(1) Hopf fibration.
Spaces constructed by Hopf fibration with U(1) bundle are common in the
literature, and closely related to generalized Taub-NUT spaces. One of them
is S2k+1 constructed by U(1) bundle over CPk, preserving U(1)× SU(k + 1)
symmetry. The metric can be written explicitly:

ds2
Sd = 1

d+ 1ds
2
CPk +

(
dψ + ACPk

d+ 1

)2
, d = 2k + 1, 0 ≤ ψ ≤ 2π, (C.15)

where the Fubini-Study metric on the projective space and the Kähler potential
ACPk are defined recursively:

ds2
CPk = (2k + 2)

[
dξ2
k + 1

2k sin2 ξkds
2
CPk−1 + sin2 ξk cos2 ξk

(
dψk + 1

2kACPk−1

)2
]
,

ACPk = (2k + 2) sin2 ξk

(
dψk + 1

2kACPk−1

)
, 0 ≤ ξi ≤

π

2 , 0 ≤ ψi ≤ 2π.

(C.16)
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The lowest value is k = 1, which reproduces the initial construction of Hopf
fibration for S3:

ds2
CP1 = 4(dξ2

1 + sin2 ξ1 cos2 ξ1dψ
2
1), ACP1 = 4 sin2 ξ1dψ1. (C.17)

The metric on S3 is:

ds2 = dξ2
1 + cos2 ξ1 sin2 ξ1dψ

2
1 +

(
dψ + sin2 ξ1dψ1

)2
. (C.18)

To make the SO(4) invariance manifest, we can do the following trick: replace
dψ2 by (cos2 ξ1 + sin2 ξ1)dψ2, collect terms with sin2 ξ1 and cos2 ξ1 respectively,
then the metric becomes:

ds2 = dξ2
1 + cos2 ξ1dψ

2 + sin2 ξ1(dψ + dψ1)2. (C.19)

This form may look more familiar, which can be obtained by the simple
embedding formula, as we’ll explain later:1

x4 = cos ξ1 cosψ, x3 = cos ξ1 sinψ, x2 = sin ξ1 cos(ψ + ψ1), x1 = sin ξ1 sin(ψ + ψ1).
(C.20)

Now we head forward to k = 2 for a metric on S5. Again, this time we replace
dψ2 by (cos2 ξ2 + sin2 ξ2)dψ2, leave the former on its own, and put the latter
together with the other terms:

ds2 = dξ2
2+cos2 ξ2dψ

2+sin2 ξ2
[
dξ2

1 + cos2 ξ1(dψ + dψ2)2 + sin2 ξ1(dψ + dψ1 + dψ2)2] ,
(C.21)

where the term in the bracket is organized in order to produce the same form
as (C.19). So we can write down the embedding formula easily:

x6 = cos ξ2 cosψ, x5 = cos ξ2 sinψ,

x4 = sin ξ2 cos ξ1 cos(ψ + ψ2), x3 = sin ξ2 cos ξ1 sin(ψ + ψ2),

x2 = sin ξ2 sin ξ1 cos(ψ + ψ1 + ψ2), x1 = sin ξ2 sin ξ1 sin(ψ + ψ1 + ψ2).
(C.22)

Now we understand how the procedure works. Let’s take one last example, the
metric on S7 with k = 3. Again, we replace dψ2 by (cos2 ξ3 + sin2 ξ3)dψ2 first:

ds2 = dξ2
3 + cos2 ξ3dψ

2 + sin2 ξ3[ A ]. (C.23)

In our expectation, we need to organize A in a form similar to (C.21), where
we need to depart dψ2 again by (cos2 ξ2 + sin2 ξ2)dψ2, finally we get

A = dξ2
2 + cos2 ξ2(dψ + dψ3)2

+ sin2 ξ2
[
dξ2

1 + cos2 ξ1(dψ + dψ2 + dψ3)2 + sin2 ξ1(dψ + dψ1 + dψ2 + dψ3)2] .
(C.24)

1Here we reverse the order of xa for the convenience of evaluating the integral.
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We can then write down the embedding map without any difficulty:

x8 = cos ξ3 cosψ, x7 = cos ξ3 sinψ, x6 = sin ξ3 cos ξ2 cos(ψ + ψ3),

x5 = sin ξ3 cos ξ2 sin(ψ + ψ3), x4 = sin ξ3 sin ξ2 cos ξ1 cos(ψ + ψ2 + ψ3),

x3 = sin ξ3 sin ξ2 cos ξ1 sin(ψ + ψ2 + ψ3), x2 = sin ξ3 sin ξ2 sin ξ1 cos(ψ + ψ1 + ψ2 + ψ3),

x1 = sin ξ3 sin ξ2 sin ξ1 sin(ψ + ψ1 + ψ2 + ψ3).
(C.25)

Upon following the procedures above, we can write down the mapping for
general k:

x2k+2 = cos ξk cosψ, x2k+1 = cos ξk sinψ,

x2k = sin ξk cos ξk−1 cos θk, x2k−1 = sin ξk cos ξk−1 sin θk,

x2k−2 = sin ξk sin ξk−1 cos ξk−2 cos θk−1, x2k−3 = sin ξk sin ξk−1 cos ξk−2 sin θk−1,

......

x4 =
k∏
i=2

sin ξi cos ξ1 cos θ2, x3 =
k∏
i=2

sin ξi cos ξ1 sin θ2,

x2 =
k∏
i=1

sin ξi cos θ1, x1 =
k∏
i=1

sin ξi sin θ1,

(C.26)
where we have defined

θi = ψ +
k∑
j=i

ψj , i = 1, 2, ..., k. (C.27)

With the embedding map, one can write down the conformal map from spheres to
planes, and evaluate the integrated two-point function of the stress tensor (4.60).
We have evaluated this explicitly, and find it corresponds to the prediction of
(4.72).

C.2.2 SU(2) bundle

Our metric on S7 that preserves explicitly SO(5)×SO(3) isometry is the simplest
example of Hopf fibration with SU(2) bundle, thus we expect some tricks can
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help us obtain the embedding map like (C.20), which is the simplest fibration
with U(1) bundle. We discussed in section 4.2.2 that there’re two equivalent
ways to construct metrics on a sphere: by embedding into projective space, or
Hopf fiber over projective space. As we will see, the embedding map of the first
class of metrics can be obtained by the identification of projective space with
Euclidean space in the near-origin limit. And the embedding map of the second
class of metrics can be obtained by an explicit coordinate transformation (4.30)
from the first class.

Let’s start with the first class of metrics. To illustrate how it works, we take an
example first and consider S3 ∈ CP2, following the same steps in section 4.2.2,
we can obtain the metric on S3. The Fubini-Study metric is given by

ds2 = (1 + q̄kqk)−1dq̄idqi − (1 + q̄kqk)−2q̄idqidq̄jqj , q1, q2 ∈ CP2. (C.28)

We take the following parametrization on CP2:

q1 = U tanχ cos µ2 , q2 = V tanχ sin µ2 , U = eiθ/2, V = eiΘ/2,

0 ≤ µ ≤ π, 0 ≤ χ ≤ π

2 , 0 ≤ θ,Θ ≤ 4π.
(C.29)

The Maurer-Cartan form and left-invariant one-form are

2U−1dU = iσ, 2V −1dV = iΣ, σ = dθ, Σ = dΘ. (C.30)

The Fubini-Study metric on CP2 is given by

ds2 = dχ2 + 1
4 sin2 χ

[
dµ2 + 1

4 sin2 µω2 + 1
4 cos2 χ(ν + ω cosµ)2

]
,

ν ≡ σ + Σ, ω ≡ σ − Σ.
(C.31)

The line element in the bracket is the squashed three-sphere metric, with the
squashing parameter identified with λ ≡ cosχ. In the limit χ→ 0, we get the
metric on the round sphere:

ds2
S3 = 1

4

(
dµ2 + cos2 µ

2 dθ
2 + sin2 µ

2 dΘ2
)
. (C.32)

To compare with (C.19), we can define µ̃ ≡ µ/2, θ̃ ≡ θ/2, Θ̃ ≡ Θ/2 to get rid of
the 1/4 factor:

ds2 = dµ̃2 + cos2 µ̃dθ̃2 + sin2 µ̃dΘ̃2. (C.33)
The metric (C.19) is related to this one by a twist over angles:

µ̃ = ξ1, θ̃ = ψ, Θ̃ = ψ + ψ1. (C.34)
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Now we’re ready to discuss the embedding map of S3 in R4. It still seems
non-trivial to write down an embedding map from (C.33) to R4, but the magic
happens at χ → 0 limit of CP2: the space is identical to R4. We write down
the map between CP2 and R4:

q1 = x1 + ix2, q2 = x3 + ix4. (C.35)

Compare it with (C.29), one obtains the following map between (µ, θ,Θ) and
(x1, x2, x3, x4):

x1 = cos µ2 cos θ2 , x2 = cos µ2 sin θ2 , x3 = cos µ2 cos Θ
2 , x4 = cos µ2 sin Θ

2 .
(C.36)

This provides an embedding rule from the round sphere metric of the first class.
However, the metrics that we’re more interested in belong to the other class,
for example, those we discuss in the last section: they’re all obtained by Hopf
fiber. For U(1) bundle, the problem is not severe as we can identify the two
metrics (C.19) and (C.33) by observation. But for SU(2) bundle, it’s no longer
direct. Luckily, the map (4.30) between them has been worked out forty years
ago. [288, 99]

The example we discuss in the main text is S7 embedded in HP2. Similarly, we
identify the near-origin limit of HP2 as R8:

q1 = x1 + x2i + x3j + x4k, q2 = x5 + x6i + x7j + x8k. (C.37)

Meanwhile,
q1 = cos µ2 Ũ , q2 = sin µ2 Ṽ , (C.38)

where Ũ and Ṽ are defined in terms of (µ,Θ,Φ,Ψ, θ, φ, ψ) according to (4.31).
We get the following embedding map:

x1 = cos µ2

(
cos θ2 cos Θ

2 cos 1
2(−Φ + ψ −Ψ + φ) + sin θ2 sin Θ

2 cos 1
2(−Φ− ψ + Ψ + φ)

)
,

x2 = cos µ2

(
sin θ2 cos Θ

2 cos 1
2(Φ− ψ + Ψ + φ)− cos θ2 sin Θ

2 cos 1
2(Φ + ψ −Ψ + φ)

)
,

x3 = cos µ2

(
sin θ2 cos Θ

2 sin 1
2(Φ− ψ + Ψ + φ)− cos θ2 sin Θ

2 sin 1
2(Φ + ψ −Ψ + φ)

)
,

x4 = cos µ2

(
sin θ2 sin Θ

2 sin 1
2(−Φ− ψ + Ψ + φ) + cos θ2 cos Θ

2 sin 1
2(−Φ + ψ −Ψ + φ)

)
,

x5 = cos θ2 sin µ2 cos ψ + φ

2 , x6 = sin θ2 sin µ2 cos φ− ψ2 ,

x7 = sin θ2 sin µ2 sin φ− ψ2 , x8 = cos θ2 sin µ2 sin ψ + φ

2 .

(C.39)
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The conformal map between S7 and R7 is obtained by combining the
stereographic projection and the embedding map above, then we can evaluate
the integral of the stress tensor two-point function as in the main text.

C.3 Integrated correlators on general U(1) bundle
spheres

In this section, we provide more details of our reproduction of the formula (4.72)
for general k, where the integral (4.60) is performed on S2k+1, which we rewrite
as below:

I = −CT4 V2k+1

∫
S2k+1

√
g

(0)
2k+1d

2k+1xΩ2k−1(0)Ω2k−1(x)M āb̄(0)M c̄d̄(x)
Iāb̄;c̄d̄(X)
X2(2k+1)

(C.40)
The volume of S2k+1 and the square root of the metric (C.15) are given by:

V2k+1 = 2πk+1

k! ,

√
g

(0)
2k+1 =

k∏
i=1

cos ξi sin2i−1 ξi (C.41)

The conformal factor and X2 are known from the standard stereographic
projection (C.13):

Ω(x) = 1
1− cosψ cos ξk

, Ω(0) = 1
2; X2 = 1 + cosψ cos ξk

1− cosψ cos ξk
(C.42)

We define the new quantities:

M āb̄ = hab
∂X ā

∂xa
∂X b̄

∂xb
= −∂X

ā

∂ψ

∂X b̄

∂ψ
≡ −ΛāΛb̄, (C.43)

where we used the fact that the only non-vanishing component of hab is hψψ =
−1. Using another fact that the only non-zero component of M āb̄(0) is M ψ̄ψ̄ =
− 1

4 , the contraction between M āb̄M c̄d̄ and Iāb̄;c̄d̄ can be simplied as:

M āb̄(0)M c̄d̄(x)Iāb̄;c̄d̄(X) = 1
4(Λ2k+1)2 − 1

X2 (ΛāXā)(Λ2k+1X2k+1)

+ 1
X4 (ΛāXā)2(X2k+1)2 − 1

4(2k + 1)(ΛāΛā)
(C.44)

Using our general form of coordinate transformation (C.26), we can get a
general form of the quantities appearing above, which, if we put together into
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the integrand together with what we have above, we obtain:

F ′′(0) = − CTπ
k+1

(2k + 1)22k+5k!

∫
√
gd2k+1x

1
(1 + cosψ cos ξk)2k+3

[
8k cos 2ψ cos2 ξk

+4 cosψ[(6k − 1) cos ξk + (2k + 1) cos 3ξk] + 4(3k + 1) cos 2ξk

+(2k + 1) cos 4ξk + 10k − 5]
(C.45)

Note that the integral doesn’t depend on ψi, which reflects the symmetry of
the manifold. As a first step, we can integrate out

∏k
i=1 dψi and

∏k−1
j=1 dξj :∫ k∏

i=1

k−1∏
j=1

dψidξj
√
g = 2πk cos ξk sin2k−1 ξk

(k − 1)! (C.46)

Since the dependence of ψ is relatively simple in (C.45), we integrate over ψ
first. The trick is to identify the integral range ψ ∈ [π, 2π] to [0, π] by the
invariance of the integrand under ψ → −ψ and periodicity ψ ∼ ψ + 2π, and
integrate on a new variable z = cosψ. This gives us with a divergent integral
of ξk, whose value, after throwing away the diverging terms, is:

F ′′(0) = −CT
kπ2k+3/2Γ

(
−k − 1

2
)

4k(k − 1)! (C.47)

After identifying 2k+ 1 = d and simplification, the result is exactly the formula
(4.72) predicted by [280] from the analysis of high-derivative gravity.
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