
Using OpenMP for HEP framework algorithm
scheduling
Christopher Jones1, , Patrick Gartung1 *

1Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract. The OpenMP standard is the primary mechanism used at high
performance computing facilities to allow intra-process parallelization. In
contrast, many HEP specific software packages (such as CMSSW,
GaudiHive, and ROOT) make use of Intel's Threading Building Blocks
(TBB) library to accomplish the same goal. In these proceedings we will
discuss our work to compare TBB and OpenMP when used for scheduling
algorithms to be run by a HEP style data processing framework. This
includes both scheduling of different interdependent algorithms to be run
concurrently as well as scheduling concurrent work within one algorithm.
As part of the discussion we present an overview of the OpenMP threading
model. We also explain how we used OpenMP when creating a simplified
HEP-like processing framework. Using that simplified framework, and a
similar one written using TBB, we will present performance comparisons
between TBB and different compiler versions of OpenMP.

1 Introduction

The CMS experiment at the LHC has used a multi-thread enabled data processing
framework, CMSSW [1], for large scale data processing since the start of LHC Run 2 in
2016. Using multiple threads allows the framework to use substantially less memory per
CPU than running many single threaded jobs allowing jobs to fit within CMS’s memory
constraints. This framework makes use of Intel’s Threading Building Blocks (TBB) library
[2] to handle scheduling of processing tasks across the limited number of threads available
to the process. The framework supports concurrency on three different levels via TBB. The
first is concurrently processing multiple Events. The second is allowing different algorithms
to run concurrently during each Event. The third level is within a given algorithm
concurrent tasks can be scheduled and run. On the whole, CMS has found this system to be
very successful in providing a platform upon which to build a CPU efficient, multi-threaded
processing framework.

Given the success of the system, why did we bother with exploring the use of OpenMP
[3] to do the same processing? The reason is the growing need for CMS to exploit resources
from High Performance Computing (HPC) facilities in the coming years. These facilities
typically support only OpenMP as the intra-process concurrency mechanism. We have
found when we communicate with HPC specialists, they often ask why we are not using
OpenMP for concurrency. As CMS’s utilization of HPC facilities increases we should either
have a strong case for why the software does not use OpenMP or we should convert to
using OpenMP.

In this paper we will present our findings of a comparison between TBB and OpenMP
via the use of demonstrator frameworks. We begin by presenting a review of the relevant

 Corresponding author: cdj@fnal.gov*

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

OpenMP commands used to create a demonstrator framework capable of the three levels of
concurrency already supported by CMS’s framework. We then go on to briefly describe the
abilities of the demonstrator frameworks. This is then followed by the experimental setup
used to do the measurements as well as the results of the measurements.

2 Review of OpenMP Commands

OpenMP is implemented as an extension to a C++ compiler. That is in stark contrast with
TBB which is a standard C++ style third party library. OpenMP C++ syntax is implemented
as pragma statements dictated by the OpenMP standard. How the OpenMP features are
implemented by a given compiler can vary greatly from compiler to compiler as the
OpenMP standard gives a great deal of freedom for the implementations. These large
variations can be true across versions of a compiler as well as across compiler vendors.
Such variations means supporting code using OpenMP across multiple implementations can
be challenging as the runtime behaviors and performance of the code can be vary
substantially. In contrast, TBB gives consistent behavior and performance.

In the rest of this section we will describe four OpenMP 4.5 constructs which we used
to construct the demonstrator framework: omp parallel, omp for, omp task, and omp
taskloop.

2.1 Construct: omp parallel

The #pragma omp parallel statement starts threads which are then used to process the C++
block directly following the statement. Once assigned, those threads can only be used by
that parallel construct. (This is relevant for the case of nested parallel blocks we will
discuss in subsection 2.3.) The thread which first encountered the pragma statement,
OpenMP refers to this thread as master, will also join in processing the block. The master
thread will not continue past the end of the block until all other threads used by the omp
parallel statement have finished with the block. What happens with the other threads used
for processing is implementation defined, not dictated by the OpenMP standard.

The number of threads used by each parallel construct is controlled by the environment
variable, OMP_NUM_THREADS or by calling the function omp_set_num_threads. The
maximum number of concurrently running threads which OpenMP is allowed to use for one
job can only be set via the environment variable OMP_THREAD_LIMIT.

2.2 Construct: omp for

The OpenMP for construct, #pragma omp for, must directly precede a for loop and is used
to distribute the iterations of the for loop to threads associated with the inner most parallel
statement. By default, the master thread waits until all iterators have completed before
moving onto any C++ statements following the for loop.

The OpenMP for construct and OpenMP parallel construct can be combined into one
statement for ease of use.

2.3 Nested parallel blocks

2

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

In OpenMP, support for concurrent nested parallel blocks is implementation defined. If
supported, the feature is controlled via the environment variable OMP_NESTED or by
calling the function omp_set_nested. In addition, the number of threads assigned to the
inner nested parallel blocks is the same as the number of threads assigned to the outer most
block. How threads are assigned, in the case where nested parallelism is supported, is
explained below using an example.

Fig. 1. Example illustrating the use of nested parallel blocks with each block using OpenMP for
constructs. In the example, the function doWork will be called 9 times which means there is the
possibility for 9 concurrently running calls to the function.

Figure 1 shows code for a parallel nested for loop using OpenMP. The call to
omp_set_num_threads restricts each parallel for construct to use 3 threads. The loop over i
can use three threads (one per iteration) and each of those threads each see the inner loop
over j. In turn each of the j loops can also use up to 3 threads. Therefore the maximum
number of concurrent threads for the doubly nested loop is 9. Since the total number of
calls to doWork is also 9, it is theoretically possible to have all 9 calls running concurrently.
As explained earlier, the master thread for each inner loop must wait for each of the
iterations to finish before proceeding. Similarly, the master thread for the outer loop must
wait for all inner loop master threads to finish before proceeding. Figure 2 shows two
different examples where different numbers of maximum threads per job are used to run the
code from Figure 1. In the left sub figure, the maximum number of threads is 9 and we see
the main thread only has to wait until the longest running inner iteration finishes. For the
right sub-figure the total number of threads is only 6. In this case, the i = 0 loop gets three
threads, the i = 1 gets 1 thread and the i = 2 loop gets 2 threads. Once threads are assigned
to the inner loops, they can not be re-assigned. Therefore the main thread must wait for the
i = 1 iteration to process all three inner iterations on a single thread before it can proceed.
The other threads are not allowed to do any other work once they have finished their
iterations. Clearly this behavior does not make the most efficient use of the available
threads.

a) b)
Fig. 2. Possible distributions of work for nested for loops shown in Figure 1. Sub-figure a) shows the
optimal distribution when a total of 9 threads are used. Sub-figure b) shows one potential sub-optimal
distribution where only a maximum of 6 threads are allowed.

omp_set_num_threads(3);
#pragma omp parallel for
for(int i = 0; i< 3; ++i){
#pragma omp parallel for
 for(int j = 0; j< 3; ++j){ doWork(i,j);} }

3

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

2.4 Construct: omp task

The omp task construct, #pragma omp task, is used to place all code in the block following
the construct into a task object. The task object is then scheduled to run on a thread. If the
untied keyword is also used when declaring the task, the resultant task can be run by any
thread being controlled by the inner most parallel construct. When a task completes,
another task can be scheduled on that thread. The only restriction on the following task is it
must be from the same parallel construct.

2.5 Construct: omp taskloop

The omp taskloop construct, #pragma omp taskloop, is very similar to the omp for
construct except each iteration is encapsulated into an OpenMP task. In addition, the
master thread may run other non-iteration tasks while waiting for all the tasks created by
the taskloop to end. This is known as task stealing which some OpenMP implementations
use.

3 Demonstrator Frameworks

Three separate, but related, simplified demonstrator data processing frameworks were used
for the experiments. One framework uses OpenMP to schedule work, the second uses TBB,
and the third is a single threaded framework. All three frameworks use the same
configuration file format thereby making it easier to run the same configuration using
different technologies. In addition, all the frameworks process an input sequence of
collision Events.

All three frameworks bundle the work needed to be done into Modules. A Module
generates data and puts it into an Event. A Module can depend on data from another module
and the frameworks guarantee proper ordering of Modules based on that dependency. For
the multi-thread capable frameworks, the execution of a Module is wrapped in either an
OpenMP or a TBB task. A Module’s task only starts once the data needed by the Module is
available in the Event. When implementing a Module, the use of either OpenMP’s or TBB’s
parallel for construct is allowed. This allows testing of nested parallelism for the different
technologies.

The code for all three frameworks and all the Modules can be found at GitHub [4].

4 Experimental Setup and Results

We used the demonstrator frameworks to allow fair performance comparisons for the three
different cases: OpenMP and TBB each using N threads, and running N concurrent single-
threaded processes, were N is used as an independent variable in the comparisons. Given
that the implementations of OpenMP differ across compilers, we made all the performance
measurements using both the gcc 8 [5] and the clang 7 [6] compiler. For the single-threaded
and TBB cases, the performance differences of the gcc and clang build executables were
indistinguishable within measurement error. Therefore for TBB and the single-threaded

4

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

performance numbers we only report a single number rather than one for each of gcc and
clang.

The configuration used to run the tests was built to emulate the behavior of the actual
CMS reconstruction application. This was achieved by using the same data dependency
between Modules as the actual CMS reconstruction process. In addition, the time each
Module ran for each Event matched the time spent by the equivalent Module in the
reconstruction process. Timings for 100 different Events were used in the test in order to
simulate the effect of varying Event processing times. Using a single core takes about 20
minutes to process all 100 Events. This meant the time was completely dominated by
processing the Events and not in job startup and shutdown, thereby being a sufficient
number of Events for a stable Event throughput measurement.

In each experiment the number of cores used was varied and the total Event throughput
(in Events per second) was measured. For OpenMP and TBB this meant varying the
maximum number of threads used by the jobs. For the single-threaded framework, the total
number of simultaneously running jobs was varied. For the OpenMP and TBB
measurements, the number of concurrently processing Events was set to be equal to the
maximum number of threads allowed to be used in the job. In addition, the total number of
Events processed per job was equal to 100 times the number of threads used in the job. This
guaranteed that each Event time was reused exactly the same number of times for all jobs.
Across experiments, the amount of internal parallelism within a Module was changed to see
the effect of nested parallelism. All the experiments were done using an Intel Xeon Phi
(a.k.a Knights Landing) CPU [7] with 64 physical cores with each core supporting 4
hardware threads.
 Figure 3 shows the Event throughput versus core utilization for the case where all
Modules used in the threaded frameworks are configured to be concurrent capable. That is
each Module can handle concurrent processing of different Events. For this case of perfect
parallelism, both implementations of OpenMP and TBB show equivalent performance. The
slope changes at 64 and 128 threads is caused by the use of additional hardware threads per
core of the Xeon Phi device.

Fig. 3. Event throughput as a function of utilized cores where all Modules are able to run
concurrently.

A more realistic configuration is to change the Module used to simulate the behavior of
the OutputModule, which writes the resultant processed Events out to a file, such that the

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

ec
)

0

3

6

9

12

Number of Threads & Concurrent Events
0 32 64 96 128 160 192 224 256

TBB
OpenMP clang
OpenMP gcc
N Single Threaded

5

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

simulated OutputModule only be able to process one Event at a time. This serialization was
accomplished in a non-blocking manner so that other Modules do run while an Event waits
for the OutputModule to become available. Even with the ability to schedule around the
OutputModule, all the threaded frameworks still hit the serialization limit of 0.9 Events/
second at around 16 threads.
 One way to minimize the serialization limit is to allow internal parallelism within the
OutputModule. For this paper we had the OutputModule execute a loop for 100 iterations
and then used OpenMP and TBB constructs to allow the iterations to be run concurrently.
Figure 4 shows the results using different techniques.
 Figure 4a shows the case where the TBB based framework used tbb::parallel_for and
the OpenMP framework used the taskloop construct. In this case, both TBB and the clang
version of OpenMP employ task stealing while the gcc implementation just does a wait. In
task stealing, if the master thread that is running the concurrent for loop finishes its allotted
work before all the other threads working on the for loop finish, that thread can run another
scheduled task which is unrelated to the for loop. Only once the unrelated task finishes can
the master thread proceed with work following the completion of all iterations of the for
loop. In this experiment, task stealing is shown to be detrimental as the extra work done
while in the OutputModule keeps the OutputModule from finishing its work as soon as
possible and therefore delaying the time before another Event can use the OutputModule.

Fig. 4. Event throughput as a function of utilized cores where a) the OutputModule is serialized and
uses internal parallelism with the possibility of task stealing and b) it is serialized and uses internal
parallelism with task stealing prohibited. Both plots share the same Y axis.

Figure 4b shows the case where task stealing is prevented. For TBB it was a simple
case of putting the tbb::parallel_for call within a TBB tbb::task_arena [8]. The only way
the OpenMP standard guarantees no task stealing is with the use of the omp for construct.
As explained earlier, when using omp for one must specify the number of threads to use for
the loop via the call to omp_set_num_threads. In order to make Figure 4b, for each point on
the x axis we ran 8 to 10 jobs where the total number of threads was fixed while each job
used a different value in the omp_set_num_threads call. The throughput of the jobs varied
routinely by over a factor of 2. Only the result giving the highest Event throughput was

Ev
en

t T
hr

ou
gh

pu
t (

ev
/s

)

0

3

6

9

12

Number of Threads & Concurrent Events

0 64 128 192 256

TBB
OpenMP clang
OpenMP gcc
N Single Threaded

Number of Threads & Concurrent Events

0 64 128 192 256

TBB
OpenMP clang & gcc
N Single Threaded

a) b)

6

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

added to Figure 4b. Even doing our best to hand tune each OpenMP point, the automatic
behavior of TBB gives the best throughput.

5 Conclusion

In this paper we have shown that it is possible to create a multi-threaded HEP data
processing framework using OpenMP. However, it is also shown that using TBB’s
automatic scheduling provides a better throughput than a hand tuned OpenMP. Such
automatic scheduling is extremely important as HEP processing vary widely in time per
Module as well as the mixture of Module types (re-entrant and non-reentrant) as well as the
number of threads used to run a job.

We have also seen that compiler variations in the implementation of OpenMP make
portable performance hard. In particular gcc taskloop does not do task stealing while the
clang implementation of taskloop does do task stealing with no way to disable that feature.

The major takeaway from the paper is OpenMP 4.5 has composability difficulties. In
particular, OpenMP parallel blocks do not share threads which leads to nested parallelism
using fixed allocation of threads. The fixed allocation makes it very hard to tune how many
threads to use at each nested parallel level, particularly if the optimal number can vary
during the execution of the program.

Acknowledgements: operated by Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the United States Department of Energy.

References

1. C.D. Jones and E. Sexton-Kennedy J. Phys.: Conf. Ser. 513 022034 (2014)
2. https://www.threadingbuildingblocks.org
3. https://www.openmp.org
4. http://github.com/Dr15Jones/toy-mt-framework
5. https://gcc.gnu.org
6. https://clang.llvm.org
7. https://ark.intel.com/content/www/us/en/ark/products/codename/48999/knights-

landing.html
8. https://software.intel.com/content/www/us/en/develop/documentation/tbb-

documentation/top/intel-threading-building-blocks-developer-guide/task-isolation.html

7

EPJ Web of Conferences 245, 05003 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505003

http://github.com/Dr15Jones/toy-mt-framework
https://gcc.gnu.org
https://clang.llvm.org
https://ark.intel.com/content/www/us/en/ark/products/codename/48999/knights-landing.html
https://ark.intel.com/content/www/us/en/ark/products/codename/48999/knights-landing.html

