Quantum Information Processing (2021) 20:180
https://doi.org/10.1007/s11128-021-03118-9

®

Check for
updates

Quantum search for scaled hash function preimages

2 2,3

Sergi Ramos-Calderer'2(- Emanuele Bellini' - José I. Latorre’%3 .
Marc Manzano' - Victor Mateu

Received: 26 November 2020 / Accepted: 23 April 2021/ Published online: 10 May 2021
© The Author(s) 2021

Abstract

We present the implementation of Grover’s algorithm in a quantum simulator to per-
form a quantum search for preimages of two scaled hash functions, whose design only
uses modular addition, word rotation and bitwise exclusive or. Our implementation
provides the means to assess with precision the scaling of the number of gates and
depth of a full-fledged quantum circuit designed to find the preimages of a given hash
digest. The detailed construction of the quantum oracle shows that the presence of
AND gates, OR gates, shifts of bits and the reuse of the initial state along the compu-
tation require extra quantum resources as compared with other hash functions based on
modular additions, XOR gates and rotations. We also track the entanglement entropy
present in the quantum register at every step along the computation, showing that it
becomes maximal at the inner core of the first action of the quantum oracle, which
implies that no classical simulation based on tensor networks would be of relevance.
Finally, we show that strategies that suggest a shortcut based on sampling the quan-
tum register after a few steps of Grover’s algorithm can only provide some marginal
practical advantage in terms of error mitigation.

B Sergi Ramos-Calderer
sergi.ramos @tii.ae

Emanuele Bellini
emanuele.bellini @tii.ae

José 1. Latorre
jose.ignacio.latorre @tii.ae

Marc Manzano
marc @tii.ae

Victor Mateu
victor.mateu @tii.ae
Technology Innovation Institute, Abu Dhabi, United Arab Emirates

Departament de Fisica Quantica i Astrofisica, Institut de Ciéncies del Cosmos, Universitat de
Barcelona, Barcelona, Spain

Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-021-03118-9&domain=pdf
http://orcid.org/0000-0002-9629-9814

180 Page2o0f28 S. Ramos-Calderer et al.

Keywords Quantum implementation - Grover’s algorithm - Symmetric
cryptography - Hash function - Pre-image

1 Introduction

Cryptography is universally used to protect the security—confidentiality and integrity—
of communications and stored data. As it is common in the information security world,
the security of a cryptographic scheme is measured by the computational cost required
to recover the secret or the plaintext of the communication. For many years, the com-
putational complexity was evaluated in terms of computer instructions required to run
an algorithm that solves this problem. However, this paradigm has totally changed
due to the fact that the technology on the quantum computers side has evolved up to
a point in which they could be a reality in the next years.

The main threat that the existence of large enough quantum computers poses to
cryptography is that, nowadays, all public key schemes that are standardized and
massively used in our communications will be insecure due to Shor’s algorithm [45].
An attacker could store the communications of today and decrypt them once he has
a quantum computer with the required resources. In order to address this problem,
the cryptographic community started designing quantum resistant schemes capable
of sharing symmetric keys due to the robustness of these schemes against quantum
attacks (i.e., so-called post-quantum cryptography).

Symmetric cryptographic primitives, such as hash functions, are believed to be
quantum resistant. The security of hash functions is measured in terms of resistance
against collision finding, preimage and second preimage finding, and their multi-target
variants. For an ideal cryptographic hash function providing n-bit security, the classical
complexity of preimage and second preimage finding is 2" expected oracle calls, while
for collision finding is 2/? due to the birthday paradox. For these, the parallel rho
method [46] can offer lower complexities if it is parallelized with a large amount of
processors. For multi-target preimage search, the cost is 2"~ hash outputs, where 2’
is the number of targets.

However, if the attacker had access to a quantum computer, the best algorithm for
finding a preimage would be Grover’s algorithm [23] with complexity 2"/ quantum
evaluations. Some more specific applications of this algorithm can be used in order
to find collisions [15] with complexity 2/3 quantum evaluations. Finally, for multi-
target preimage the cost is 2"*~")/? quantum evaluations and all of them can also be
parallelized [5]. This improvement is relevant in terms of impact on the parameters for
hash functions and symmetric encryption, but it is not as disruptive as Shor’s algorithm
for prime factorization and discrete logarithms.

Given that Grover’s algorithm only provides at most a quadratic speed-up, the
generally accepted approach to make symmetric ciphers or hash functions quantum
resistant is to double their classical security level. This only gives a rough idea of the
security penalties that quantum computers cause on symmetric primitives, especially
because the cost of evaluating Grover’s oracle is very often ignored. Both cryptosystem
designers and cryptanalysts may want to know the specific parameters that provide

@ Springer

Quantum search for scaled hash function preimages Page3of28 180

appropriate security, and to achieve that, further detailed studies are required to better
understand the actual cost of quantum algorithms.

When speaking about complexity in the quantum setting, there are different assump-
tions related to the challenges of quantum technology. As in the classical computational
model, we have a definition of complexity, with regards to the amount of operations,
which helps the community in setting bounds on the computational cost of running
a specific algorithm that breaks the security of a scheme. Nevertheless, the quantum
setting also presents restrictions for a quantum circuit that describes an algorithm in
terms of the number of qubits (i.e., width) and the time that it runs (i.e., depth), the
latter as a result of the finite coherence time of physical qubits. For instance, an attacker
can have a quantum computer but not with enough qubits to run an algorithm. Working
with large quantum circuits presents challenges in terms of handling the complexity
of the states, the demand in energy and/or qubit decoherence. Take into consideration
that, as of now, the largest quantum computer is of 53 qubits [3] and that this figure is
increasing slowly; therefore, this measure serves as a sort of technological complexity
metric.

2 Related work

NIST, in its post-quantum cryptography (PQC) standardization process for asymmet-
ric cryptographic primitives [39], suggests an approach where quantum attacks are
restricted to a fixed running time, or quantum circuit depth, by a parameter named
MAXDEPTH [39], which NIST considers to be the total amount of quantum compu-
tations possible during the full attack even in the case of error-free computations.
Besides, this restriction might as well be motivated by the difficulty of running long
serial computations on a quantum computer due to decoherence.

The restrictions from NIST motivated the need to provide better estimations of
the number of quantum gates required to break either AES or SHA3. The security
categories in the NIST PQC standardization process are defined based on the concrete
cost of quantum resources in an exhaustive key search against AES and collision search
as described in [21]. In [21], the authors aim at minimizing the circuit width (i.e., the
number of qubits needed) when using Grover to break AES. Later on, the total number
of Toffoli gates of the quantum circuit for AES-128 is reduced in [1]. In parallel, in
[34], the time-space trade-offs for key search on block ciphers are discussed. They
also consider NIST’s MAXDEPTH and propose parallelization strategies for Grover’s
algorithm to address the depth constraint. Following this research line, a different
S-box design is proposed in [36] to reduce the total number of Toffoli gates in the
S-box as well as its Toffoli depth for AES, improving the previous results of [21] and
[1]. In [13], a new framework mostly focused in AES to study quantum attacks is
presented. The authors explore the different techniques used in classical cryptanalysis
and how they can be sped up using quantum computers.

Recently, other symmetric primitives apart from AES have been considered. In [44]
an implementation of Gimli is described with the particularity that it is conducted in-
place (i.e., not using any ancillary registers), by taking a bit-by-bit approach and
as a result of the underlying Gimli design which conducts XOR operations after

@ Springer

180 Page4of28 S. Ramos-Calderer et al.

performing ANDs and ORs. SIMON and SPECK have also been studied with the aim of
providing quantum resource estimates in [2] and [27], respectively. In addition, in [2] a
reduced version of SIMON was designed with the aim of verifying the implementation
via quantum simulations. In [26], the quantum resource estimation on Korean block
ciphers including HIGHT, LEA and CHAM was presented. A similar work was done
for the block cipher GIFT [28], where the authors present an estimate for the quantum
resources for applying the Grover algorithm to the their optimized GIFT quantum
circuit.

Generic quantum cryptanalysis has also been proposed in the last years focusing on
different constructions [16,31,33]. Besides quantum acceleration on exhaustive search,
new lines of research emerged, focusing on dedicated cryptanalysis of block ciphers
[13], hash functions [25], and on the several attacks relying on Simon’s algorithm ([9—
12,32,35,37]). Nevertheless, work on quantum circuits focuses mainly on exhaustive
key search and specifically on AES key search [18,29], [1,36], [22], and the few other
examples mentioned above.

Most of the works are purely theoretical due to the lack of a powerful enough
quantum computer where an algorithm can be run to perform adequate measurements.
Nevertheless, several simulation tools have recently been presented and could shed
some light on the cost of running quantum algorithms. An implementation of the full
Grover’s oracle for key search on AES and LowMC in Q# appeared in [30]. They
offer a specific implementation that allows them to be more precise with the estimates
of the resources that would be required to run the algorithm on a quantum computer.
Besides, they also review the parallelization strategies to overcome the MAXDEPTH
constraint from NIST and conclude that it is advantageous. Finally, they propose a
circuit minimizing the (a) gate-count and (b) depth-times-width cost metrics, under a
depth constraint MAXDEPTH. It is important to note that their simulation never runs
the full algorithm, but only parts of it, and thus they are capable of testing only small
components of their implementation and claim its overall correctness.

2.1 Our contribution

Following the idea from [2,30] that experimental implementation gives a different and
complementary view than a pure theoretical analysis, on quantum attacks complexity,
we study the implementation of Grover’s algorithm to find preimages of hash functions
based on modular Addition, word Rotation, and eXclusive or (ARX) operations.

Given the limitations to simulate large quantum computers, in this work we con-
sider two ARX-based scaled hash functions with the objective of being able to verify
our results. The first uses a Sponge structure [24], using as permutation a scaled down
version of ChaCha20 stream cipher internal permutation [7] (for ChaChal2 permuta-
tion usages see for instance [8]). The second is a scaled down version of the popular
BLAKE2 hash function [4].

We provide an implementation for both scaled hash functions, as well as Grover’s
algorithm, which allows us to provide precise quantum security bounds for the equiv-
alent non-scaled hash functions, in terms of qubits and quantum gates required to find
preimages. Moreover, we study the behavior of the algorithm running on a simulated

@ Springer

Quantum search for scaled hash function preimages Page50f28 180

quantum computer in order to motivate different approaches in cryptanalysis using
Grover’s algorithm. In this context, we observe that there exists a trade-off to find
preimages without having to run all the steps of Grover’s algorithm, at the cost of
increasing the probability of obtaining an incorrect preimage. This approach, intro-
duced in [14], can also be used to obtain a solution when the number of preimages is
unknown.

Furthermore, our work provides insights to better understand what type of opera-
tions require a higher amount of quantum resources. We infer that there are specific
permutation constructions that have a higher impact on the complexity of the quantum
circuit.

The structure of this article reflects the methodology followed in this work. In
Sect. 3, we describe the scaled hash functions that we implement, and motivate the
choice for such constructions. Next, in Sects. 4 and 5, we explain our implementation
of the quantum algorithm to break the two scaled hash functions. Finally, Sects. 6 and
7 are for presenting the results of our experiments and the conclusions of this work.

3 Toy hash functions

In order to have a better understanding of cryptanalytic attacks, it is a common practice
to define scaled, or oy, versions of a cryptographic primitive preserving the same
security properties, e.g., as in [38], and then run the attack on this toy primitive. This
is also true for asymmetric cryptography, where, to estimate the actual difficulty of
solving a problem, e.g., factoring, researchers try to solve the largest possible instances
of that problem and accordingly extrapolate to measure the actual hardness of the larger
problem.

In this work, we implement Grover’s search algorithm on a simulator of a quantum
computer, in order to understand what are the challenges of such an implementation.
In particular, we use Grover’s algorithm to find all possible preimages (with size up to
the input block) of a hash function. Due to the currently limited number of qubits that
can be simulated on classic computers, it is particularly hard to implement any real
cryptographic primitive using a quantum computer simulator. Therefore, we consider
a scaled version of a hash function, preserving the original design choices. Among all
possible hash designs available, we select the ones that seem easier to scale and fit in
the simulator. In particular, we try to avoid AND gates and OR gates as they require
additional qubits and can easily increase the qubit count over the maximum threshold
that the simulator can deal with (see also Sect. 4.2). Therefore, we focus on primitives
using only modular Addition, bitwise Rotation and bitwise eXclusive or operations.
This type of primitives are usually referred to as ARX.

In Sect. 3.1, we describe a toy hash function, referred to as 7oy Sponge Hash in this
article, based on the Sponge construction with an iterated permutation [24, Chapter 8].
In Sect. 3.2, we describe a toy version of the popular BLAKE2 hash function [4,43],
which we refer to as Toy BLAKE Hash.

@ Springer

180 Page 60f28 S. Ramos-Calderer et al.

1
1
mi Mp—1 ho ha :
[l o] ! state |
[l | !
Cmom |
X :
! absorbing I squeezing
|
: I : :
: (b) Toy Sponge Hash
absorbing phase squeezing phase (processing 1 mes
(a) Full Sponge Hash (processing n message blocks). sage block).

Fig.1 Sponge hash constructions based on the permutation /7

3.1 Toy Sponge Hash

A Sponge function [24] is a very flexible and elegant cryptographic design, from which
it is possible to derive several cryptographic primitives, including hash functions. The
security of a Sponge function is based on the security of an internal function, which
is often selected as an iterated permutation I71. In Fig. 1a, we show the diagram of a
Sponge-based cryptographic hash. During the absorbing phase, the message is split
in n blocks my, ..., m,_1 of size r, the rate of the Sponge, and XOR-ed with the
Sponge state of size r + ¢, where c is called the capacity of the Sponge. Note that
r + c is also the input/output size of the permutation /7. The state is initialized to a
fixed public value for the first iteration. Once the message blocks are all injected into
the Sponge, the squeezing phase starts, producing as many output blocks, hg, k1, ...
of size r, as needed to reach the hash digest size.

As a first experiment, we implement a simple ARX permutation, whose design
is derived from the internal permutation used in ChaCha20 stream cipher [7]. The
state of ChaCha20 internal permutation is seen as a 4x4 matrix of 32 bits words.
This permutation is obtained by iterating a certain number of rounds. Each round
alternatively acts on the columns and on the diagonals of the state, by applying a
function usually referred to as the Quarter Round (QR). Since our quantum simulator
can only manage a 16-bit state, we define Toy Sponge Hash, whose state is a 2x2
matrix of 4 bit words, and define the QR function to accept two input words and return
two output words (instead of four), as shown below:

QR(a,b) : .
ColQR(v) : DiagQR(v) :
a=a+b .
update columns # update diagonals
b=bda) K?2
b v[0], v[2] = QR(v[0], v[2]) v[0], v[3] = QR(v[0], v[3])
a=a
v[1], v[3] = QR(v[1], v[3]) v[1], v[2] = QR(v[1], v[2])
b=0bda) K1
return v return v
returna, b

where ColQR and DiagQR describe how QR is applied to the columns and diagonals
of the state, respectively.

To simplify the quantum simulation, we assume that the absorption of an 8-bit
message and the squeezing of a 4 to 8 bit hash output is performed in a single iteration
of the internal permutation, as shown in Fig. 1b. This means the rate r of Toy Sponge
Hash is 8 bits and the capacity c is also 8 bits. We will use ChaChaj; to indicate the
permutation used in Toy Sponge Hash.

@ Springer

Quantum search for scaled hash function preimages Page70f28 180

do dl dnfl

Blake2 compression function F

d Perm (i)
-
h HH (-1
v

_) H
B e R e -

Fig.2 BLAKE?2 hash function and its internal compression function F

Toy 2x2 Blake2 compression function

- U Eé

i

h
@ H plp=1) X
o (O »% e ==

Fig.3 Toy BLAKE Hash compression function, with a 2x2 matrix state

3.2 Toy BLAKE Hash

BLAKE?2 [4,43] is an ARX cryptographic hash function designed to have the best per-
formances on software implementations. Its core permutation is a tweak of ChaCha20
stream cipher permutation [7]. To produce a message digest, a message is split in n
blocks dy, ..., d,—1, consisting of 4x4 matrices of 64 (or 32) bit words. Each block
is input into a compression function F together with an 8-word state %, which is then
updated by F. The compression function F initializes a 4x4 matrix v using /4 and a
public initialization vector i v. Then, for p rounds, F' acts first on the columns and then
on the diagonals of v, by applying a mixing function G, which also accepts a permu-
tation of the current block as input. The hash function BLAKE and its compression
function F are depicted in Fig. 2.

@ Springer

180 Page 80f28 S. Ramos-Calderer et al.

To derive Toy BLAKE Hash, the scaled version of BLAKE2, we reduce the word
size to 4 bits, and the message blocks are represented as 2x2 matrices with 4 bit words
entries, as shown in Fig. 3. The values A, iv, and v are initialized as follows:

iv[0] = 0x8,iv[l] = 0xB,h[0] = (v[0]® 0x2),h[l] =iv[l],
v[0] = A[0]®, v[1] = A[1] @ (t > 4), v[2] = iv[0], v[3] = iv[1]

and for the last round all bits are flipped, i.e., v[2] = v[2] & 0xF. The variable ¢
identifies the current 2x2 block that is being processed, and v is initialized every time

a round begins.
Finally, the internal mixing function G of the Toy BLAKE Hash quarter round is
defined as follows:

G(a,b,x,y):
a=a+b+x
b=0bda)>2
a=a+b+y
b=0b®a) >1
return a, b
ColQR(v, d) : DiagQR(v, d) :
update columns # update diagonals
v[0], v[2] = G (v[0], v[2]. d[s[O]]. d[s[11]) v[0], v[3] = G(v[0], v[3], d[s[O]]. d[s[1]])
v[1], v[3] = G(v[1], v[3], d[s[2]], d[s[3]]) v[1], v[2] = G(v[1], v[2], d[s[2]], d[s[31])
return v return v

where ColQR and DiagQR describe how G is applied to the columns and diagonals of
the state, respectively.

4 Quantum attack on Toy Sponge Hash

In order to design a quantum attack on the Toy Sponge Hash construction described in
Sect. 3.1, we need to construct an explicit quantum circuit that implements Grover’s
search algorithm [23]. This requires coding an oracle that performs the ChaCha, as
well as the different sponge phases using quantum gates, which are reversible by nature.
Our quantum algorithm is developed using the Qibo quantum simulation language,
available in [20], and code to reproduce the examples presented in what follows can
be found on GitHub [42].

A real Sponge-based hash function might require several rounds of squeezing to
output the digest with the expected length. In such a case, the preimage could be
obtained as a backward sequence of quantum attacks, finding preimages of preimages.
Here, we concentrate on the quantum algorithm for a single step in such a strategy.
Solving a Sponge-based hash function in one shot would require quantum resources
to store the full message and depth to accommodate all steps at once, therefore not
feasible in the near term.

Next, we present the overall structure of the quantum circuit designed to attack Toy
Sponge Hash and then proceed to detail its sub-parts.

@ Springer

Quantum search for scaled hash function preimages Page90f28 180

4.1 Grover’s algorithm for finding preimages

Grover’s search algorithm [23] can be adapted to find the preimage of a hash with 2/2
evaluations of a quantum oracle plus a diffusion operator. The specific hash function
chosen must be coded onto the quantum oracle.

The key idea behind the quantum advantage of this approach is that a quantum
oracle can process calls of superposed states, hence exploiting the genuine quantum
properties of entanglement and interference. It may be argued that quantum mechanics
allows one to try all possible preimages in parallel at a time, but needs a way to single
out the desired solution. This task is non-trivial as the description of the states remains
probabilistic. A high-level understanding of the workings of Grover’s algorithm comes
down to the appreciation that probability amplitudes for each possible solution can add
and subtract (in general, with arbitrary relative phases). It is the fact that probability
amplitudes can cancel that allows for the suppression of undesired solutions, while
the probability of success is enhanced beyond classical means.

Let us be more precise and specify the principal elements in Grover’s algorithm,
namely the initialization, the oracle and the diffusion operator.

We first need to initialize the quantum register with a quantum superposition of all
possible states. This is a standard step for many quantum algorithms which is achieved
by applying a Hadamard gate for each qubit in the quantum register. Note that this first
step is genuinely quantum, as the register will then handle the equal superposition of
all possible states.

We then apply an oracle that encodes the action of the hash function. This oracle
changes the sign of the states that satisfy a given condition. We choose to change the
sign of the hash preimage we want to unveil. Therefore, the oracle will receive all
possible preimages on superposition, will compute their hash on a single go and then
detect the one we want to invert. It will then be possible to change the sign of the
correct preimage in the superposition and undo the hash by applying the circuit in
reverse. This means the oracle will include the information of the particular output we
are analyzing.

After the action of the oracle, a diffusion operator is applied. This final element is
constructed so as to produce an inversion of all probability amplitudes with respect
to their average. The effect of the oracle plus diffusion amplifies the probability of
measuring one of the solution states by a small quantity. The oracle and diffusion steps
must be iterated to bring the probability of finding the right preimage close to 1.

We reiterate here the logic of the Grover attack on a hash function. Starting from
equal probability amplitudes for all states, the action of an oracle, that we shall label
here as “Sponge Oracle,” inverts the sign for the preimage solution to Toy Sponge Hash.
This still remains a small probability amplitude. In the diffusion step, the inverse about
the average produces an amplification of the probability amplitude associated to the
solutions we are after. If a series of two-step oracle plus diffusion actions are applied
O(2"/?) times, a solution of the problem is found with near 1 probability.

The approach we have just sketched can be applied to search for preimages of a hash
function. A diagram of the structure of Grover’s algorithm to solve the Toy Sponge
Hash model is shown in Fig. 4.

@ Springer

180 Page 10 of 28 S. Ramos-Calderer et al.

Sponge Oracle

Diffusion
- AR

repeat O (\/N/iMftimes

Fig.4 Scheme of a quantum circuit that would find preimages of a known hash function. The oracle must
encode the Toy Sponge Hash operations and flip the sign of the preimages which are searched. Each quantum
wire represented in the figure corresponds to two qubits in the Toy Sponge Hash implementation. The qubit
register m encodes the message, c is a classical register and a marks the Grover ancilla. The diffusion part
produces the inversion over the average. The dashed box of the circuit has to be repeated O (/N /M) times,
where N = 2" is the full message space and M is the number of preimages, in order to find a preimage
with probability close to 1

The simplicity of Grover’s overall structure disappears when this algorithm is trans-
lated into a series of quantum gates to be run on areal device. Hence, the explicit coding
of Grover’s recipe needs to be done efficiently in order to not hinder its promised
quadratic performance improvement. A detailed discussion of the creation of the ora-
cle to solve this toy model will now follow.

4.2 Quantum circuit for Toy Sponge Hash permutation

The base of the ChaCha,, permutation is the QR module outlined in Sect. 3.1. The first
step in building the needed quantum Sponge Oracle is to reproduce the quarter round
algorithm on a quantum computer. As sketched in Fig. 5a, there are three operations
in QR: an addition modulo 2", a bitwise XOR operation and an n-bit word rotation.
In terms of explicit quantum operations, the addition is the one that incurs most of
the computational cost. A bitwise XOR can be achieved in a reversible manner using
controlled-not (CNOT) gates, and the rotation can be understood as a classical qubit
relabeling and does not add any quantum cost.

The explicit circuit design of ARX-based hash functions highlights some of the
issues one might face when translating a classical permutation into a reversible quan-
tum language. As previously stated, XOR operations can be substituted by a CNOT
gate, reversible due to its quantum nature. That, however, is not the case for the AND
and OR classical gates, as they require additional quantum resources to be added into
the circuit in order to be reversible. A similar thing happens with bit shifts. While rota-
tions can be substituted by qubit relabeling, shifts are innately destructive, therefore
non-reversible, and could also need the addition of auxiliary quantum registers. The

@ Springer

Quantum search for scaled hash function preimages Page 110f28 180

[bo)

ag) [ao)
0)

|0)
[bx)

. , o)
) oo - . — o [a1) 4 Adder mod 2" |- = a)
e I Jbo) [b2) -4

QR - Adder mod 2° Adder mod 2° a2)

[bo}

az)
[bs)

|as)

bs)

[|as)

(a) Quantum circuit that computes one step (b) Quantum circuit example for the adder

in the Toy Sponge Hash permutation Quarter modulo 2" between two 4 qubit register using

Round between registers a and b. a single ancilla qubit. This is the circuit that
performs the addition part of the quantum
implementation of QR.

Fig.5 Quantum circuits for the quarter round and the adder module 2"

o[0] Sponge Oracle

|
T

QR QR

QR

L
T
o)

it s s e
[

—_— o —
I
_— e — —

f

=
Tepeat T0 Times

A T T T T T T

AR [T

a

(a) Quantum circuit that recreates the
ChaChay permutation described in sec- (b)Sponge Oracle in the context of the Toy
tion 3.1. Sponge Hash model described in section 3.1.

Fig. 6 Quantum circuit for ChaChay and for the Sponge Oracle

modular addition might be costly, but the ancilla qubits required to keep track of the
carry bits can ultimately be decoupled from the system.

The quarter round circuit we have designed makes use of an addition modulo 2".
This element can be constructed using a regular quantum adder without computing
overflow qubits. Quantum adders have been previously studied, and different algo-
rithms are available [17,19,47] with different depth and qubit requirements. For the
purpose of this simulation, we have used a modified version of the adder presented in
[17] due to the reduced amount of ancillas required. As seen in Fig. 5b, the circuit is
highly parallelizable, enabling reduction of circuit depth and requiring one ancillary
qubit.

For each addition performed in parallel one extra ancillary qubitis needed. However,
as the ancilla is decoupled from the system by the end of the computation, that same
ancilla can be reused throughout the full circuit.

The described quantum quarter round block can then be added between the different
quantum registers as instructed by Col QR and Diag Q R in order to build an operator
7 that outputs a ChaCha, permutation on the quantum registers. The construction of
this circuit is showcased in Fig. 6a, where the explicit distribution of Quarter Rounds
can be seen. The quarter round circuits, as built in Fig. 5, are applied as dictate ColQR

@ Springer

180 Page 12 0f 28 S. Ramos-Calderer et al.

Fig. 7 Explicit circuit

construction that computes the
inversion about the average on
the quantum registers that - =
encodes the superposition of all
possible messages. This Diffusion =
amplifies the amplitude of the b
correct answers

|

T
=[]l =] =] |=] =] [=] =]
T Y Y
s]3] <] o [] 3<]
5[]]]]]

and DiagQR and then repeated 10 times. In this figure, each visible quantum wire
accounts for 2 quantum wires in the Toy Sponge Hash construction and is reduced for
visual clarity. Since the construction has been done using quantum gates, the operator
will be reversible. That is, applying the gates in reverse order will recover the inverse
permutation.

4.2.1 Full oracle

The full oracle we need to implement consists of three parts. 1) The first permutation,
constructed classically as it does not include the message, has to be XOR-ed to the
messages in superposition. 2) Then, the previously described permutation is applied,
and amulti-CNOT gate with controls matching the desired hash value acts on the output
of the permutation and the ancilla. This step changes the sign of the quantum state that
encodes the desired hash. 3) After that, the permutation is inverted in order to return
to the original message space. Note that applying the permutation circuit in reverse
order achieves the inverse permutation. At the end of the oracle action, all messages
that output the same hash value have their amplitude sign inverted. Shown in Fig. 6b
is the construction of the full Sponge Oracle using the previously described circuits.
This explicit circuit construction inverts the sign of all messages that output the same
hash function in the context of the Toy Sponge Hash model described in Sect. 3.1. The
7 operator is the quantum version of the ChaCha, permutation. The ¢ wire denotes
a static classical channel that determines the position of some gates, m refers to the
qubit register that encodes the message, and a labels the Grover ancilla. The hash
value checked in this particular example would be 10011010; this is determined by
the controls in the multi-controlled NOT gate in the center.

4.2.2 Diffusion operator

The explicit construction of the diffusion operator is common to all Grover implemen-
tations [23]. The role of this operator is to perform the inversion about the average once
the states that codify the solutions of the problem have had the sign of their amplitude
changed. The quantum circuit that achieves this is shown in Fig. 7. In this case, the
diffusion operator only needs to be applied to the message registers of the quantum
circuit as they are the only ones that are started in a superposition, in the proposed Toy
Sponge Hash this accounts for 8 qubits.

@ Springer

Quantum search for scaled hash function preimages Page 130f28 180

—— —e—
—— ——
—— ——
—— e
—— — ¢ —— R
—— = = N
— % Q D Q
Va D Va D
D N % U

(a) Multi-CNOT gate using an (b) Multi-CNOT gate using extra work space.
extra qubit

Fig. 8 Decomposition of multi-CNOT gates into basic Toffoli gates using a single extra work qubit. The
extra qubit needs not be initialized at |0). Note that ancillas already required for the addition can be reused
here. a The decomposition of the multi-CNOT gate with one work qubit into smaller gates is shown. b The
full decomposition of the resulting gates is shown using enough work space so that they can be reduced to
Toffoli gates

The diffusion operator corresponds to a matrix D whose elements are

2 2
Djj = ifi #j and Dij=—1+=, 4.1

where N = 2",

Both the oracle and the diffusion operator contain multi-CNOT gates that need to
be decomposed into elementary gates in order to faithfully asses the full complexity
of the circuit. Different methods in which multi-controlled gates can be decomposed
in terms of CNOT and Toffoli gates are outlined and given their basic gate scaling
in [6]. Some of the most efficient constructions can only be performed in the case of
having a circuit with some extra work qubits.

A multi-CNOT gate can be decomposed, see Fig. 8, with linear efficiency into
Toffoli gates using one extra qubit. There are in fact several unused qubits in the
circuit when the multi-CNOT gates have to be applied, but in order to keep it separate
from the qubits encoding the solutions, we shall use the ancillary qubit introduced in
the addition modulo 2" circuit as the work qubit for these construction.

4.2.3 Full Grover step

The Sponge Oracle and the diffusion operator combined to produce the body of a
single Grover step and its full construction can be seen in Fig. 9. The full quantum
circuit will require a series of O(y/N/M) Grover steps, where N = 2" is the search
space, and M is the number of solutions, that is, preimages with the same hash value.

With the full Grover step constructed, preimages of Toy Sponge Hash can be
obtained. This can be done directly if the number of preimages is known, apply-
ing the Grover step ~ % 4/2" /M times, with M the total number of preimages. If that
is not the case, this construction can be first employed in quantum counting algorithms

@ Springer

180 Page 14 of 28 S. Ramos-Calderer et al.

c o — 1

| |

| [|

[|| [

| |

T | T

Il — Il

| |

[| [

| |

- A
—m T T EmEEemEE— &
— S oHa-— A
(11} L HH X xHu—AF
|1 (X XHaH—AF
— g & [(A
— S A
— S oHa-— A
S{HX XA H—AF
o XHHlfr——r——®——————————————

—
repeat O (Vi N/M) times

Fig.9 Explicit circuit construction that performs Grover’s search algorithm in order to find preimages for
a certain known hash function following the Toy Sponge Hash model described in Sect. 3.1. The label ¢
denotes an auxiliary classical register, a is the Grover ancilla, and m labels the qubit register that encodes
the message. The dashed section of the circuit has to be repeated O(/N/M) times, where N = 2" is the
message space and M is the number of preimages, in order to complete the algorithm

in order to obtain the total number of preimages, following the guidelines illustrated
in [14].

4.3 Unknown number of preimages

Alternatively, as shown in [14] as well, this Grover step can be employed in an iterative
algorithm to find a preimage even with an unknown number of solutions in the same
order of complexity, that is O(/2"/M) oracle calls. The algorithm assumes that the
number of possible solutions is less than 3N /4, where N is the message space, which
holds for hash functions as the number of preimages is small by construction.

The algorithm presented is as follows. First we initialize m = 1 and A = 6/5, as
described in [14] any A between 1 and 4/3 would work. Then, a value j is chosen
randomly between the nonnegative integers smaller than m and Grover’s search algo-
rithm is applied with j steps. If the measured outcome is a solution of the problem,
the algorithm ends. If that is not the case, we set m = min(im, JN) and repeat the
previous step.

The success of this algorithm is not guaranteed in a set amount of steps unlike
the regular Grover procedure. Nevertheless, the original paper proves that when the
number of solutions is much lower than the total space, the number of Grover iterations
is upper-bounded by §/N/M oracle calls, where M is the number of solutions. The
prefactor is larger, but even in the worst case, the overall scaling is still the same.
However, the average number of function calls needed to solve the algorithm is much

@ Springer

Quantum search for scaled hash function preimages Page 150f28 180

closer to the optimal scaling. In Sec. 6, we present average values of the iterations
needed according to simulation.

4.4 Scaling

The explicit implementation of a toy example of a preimage searching algorithm using
Grover’s strategy can be used to extrapolate the scaling of said algorithm for real
implementations. Let us first state that the quantum circuit is made of many subparts
that may be implemented in some more efficient way in the future. In spite of that, it
will not modify the complexity class of the problem.

By taking into account the scaling of each individual component of the circuit one
can infer the full scaling of the circuit with regards to the size of the hash function
used. The numbers of TOFFOLI, CNOT and SINGLE qubit gates required to build a
Grover step for the Toy Sponge Hash model are

#TOFFOLI: 88n — 80s — 88,
#CNOT: 240n — 160s, 4.2)
#SINGLE: 84n — 160s + 2,

where n is the total number of bits involved and s is the number of sites in the permu-
tation matrix. This scaling agrees with the construction of the full circuit in the code
provided. Hash-specific alterations might add or subtract constants to these numbers
but not in a significant way.

The required depth of the algorithm turns out to be

80
depth = | — + 8) n + 200/5 — 40. 4.3)
s

This scaling benefits from the reduced depth of the addition and the fact that compo-
nents of the circuit that act on different qubit registers can be applied at the same time.
This is approximated with the independent depth of each part of the implementation
explained above, the actual circuit can only have reduced depth if the independent
parts can be put together. This depth reduction is achieved by implementing parts of
the circuit that act on different sites of the permutation matrix at the same time. This
has the cost of adding +/s ancillas, one for each adder modulo 2" that can be imple-
mented simultaneously. The extra qubits needed, however, are not significant when
compared to the overall qubit complexity. In order to achieve the target circuit depth,
the numbers of qubits needed for both the TOY and REAL hash application are

nToYy = 19 qubits, NREAL = 517 qubits. (4.4)
The ancillary qubits needed for full depth reduction only account for less than a 1%
increase in the total size of the circuit for the real implementation.

Using the scaling we find for our Toy Sponge Hash, it is possible to infer the
amount of gates the algorithm would require to solve the same problem using the real

@ Springer

180 Page 16 of 28 S. Ramos-Calderer et al.

Table 1 Scaling of a single Grover step for the TOY and REAL model of preimage search based on the
Sponge Hash using ChaCha20 permutation, as programmed in the algorithm presented above

#TOFFOLI #CNOT #SINGLE #TOTAL Depth

TOY n=106s=4 1000 3200 706 4906 1128
REAL n=>512s5=16 43,688 120,320 40,450 204,458 15,096

The depth of the circuit is significantly lower than the total number of gates due to the possibility of
applying quantum gates to different qubits in parallel. For the REAL implementation of the algorithm, the
depth reduction is increased when compared to the total gates since the larger permutation matrix allows
for further parallel application of adder gates. This, however, requires a different ancillary qubit for each
parallel adder circuit

permutation. In Table 1, the scaling of both the TOY model and REAL implementation
is outlined.

This can be checked against the provided code for the example [42] using real life
values for the Sponge Hash construction.

This scaling of the basic Grover step has to be understood as the cost attached to
the /2" /M oracle calls that the algorithms requires. The efficient construction of the
oracle with the number of qubits signals that the overall scaling will not be altered,
but it is a factor that has to be considered.

5 Quantum Toy BLAKE Hash construction

The preimage finding algorithm for the more complex Toy BLAKE Hash construction,
described in Sect. 3.2, follows the same basic outlines as the ones described for the Toy
Sponge Hash model. In this case, since the message is used inside the Toy BLAKE
Hash compression function, it has to be kept in a separate register than the permutation
matrix v. This causes the amount of qubits needed to increase when compared to
Toy Sponge Hash. In spite of that, Grover’s search algorithm follows as previously
described, with the diffusion operator acting exclusively on the message space.

The internal mixing function for the Toy BLAKE Hash implementation as a
reversible quantum circuit is showcased in Fig. 10. The basic parts that make up
this function are the same as for the ChaCha, quarter round, but here there is the
contribution from registers x and y, which are part of the message.

The compression function that is seen in Fig. 2 can be built as a reversible quantum
circuit for Grover’s oracle using as many qubits as bits in the message matrix d and
vector v. A single ancillary qubit, or two if further parallelization is desired, is needed
for the addition modulo 2" circuits, and it can then be reused throughout the repetition
of the G function operators. The first step of vector v can be initialized classically, as
it is fully determined by the initial parameters of the system, and stored in a classical
register to act as classical controls later on in the system. The permutation of the
message matrix can be achieved through a qubit relabeling and thus does not add
more gates. In Fig. 11, a sketch of the circuit is shown. In the figure, each quantum
wire represents a quantum register of 4 different qubits and the gates are understood
to act equally on all of them.

@ Springer

Quantum search for scaled hash function preimages Page 17 0f28 180

AT
i - { Adder mod 2™
G = Adder mod 2™

|
Adder mod 2™ Adder mod 2™
, {j I , {: E [o

Fig. 10 Quantum circuit analog of operator G presented in Sect. 3.2. Each presented wire corresponds to
two quantum wires in the toy construction, and any CNOT gate between wires is understood to carry onto
omitted wires. The adder mod 2" gates are equivalent to the ones presented in Fig. 5b. In all instances, the
register a is the one updated with the addition result

d[o] - T N e H -
d[l] T [~ d[l] s [|
d[2] - - d[2] o f
d[3] 4 Blake2 - _ 3] H H—€ G +
v[0] - v[0] —4 ; G & HD B h[0]
vﬁ - - vg b -0 Al
v[2] - v B T
v[3] - vB] - bt————— I - P

repeat p times

Fig. 11 Quantum circuit that implements Toy BLAKE Hash compression function as is outlined in Fig. 3.
The initialization step is performed classically and stored in a classical register ¢ along with the value of iv
as they are used as classical controls for the quantum circuit. The shuffling in the message space translates
to a qubit relabeling and does not incur any quantum gates. Each visible quantum wire in the figure accounts
for 4 qubits in the toy implementation. The hash value is returned in the v[0] and v[1] registers

Once the compression function is built, an oracle can be constructed to find preim-
ages of a specific hash for this toy construction. The explicit circuit of the Grover
implementation can be seen in Fig. 12, with quantum wires labeled d and v represent-
ing quantum registers of 4 qubits. Accounting for the extra registers, the construction
is identical to the one showcased for the Toy Sponge Hash model in the previous
section. The diffusion operator is constructed in the same way as depicted in Fig. 7,
accounting for circuit size differences so as to match an operator with the elements
described in Eq. (4.1).

The amount of qubits needed to perform the toy model of this algorithm is 32 qubits
for the message and vector registers, as well as the Grover ancilla and the required
ancilla for the modular additions. Thus, the minimum number of qubits needed to run
the algorithm is 34.

5.1 Scaling
An explicit gate-by-gate implementation of the Grover iteration for preimage finding

for Toy BLAKE Hash has been constructed. Due to the overall size of the circuit,
efficient classical simulation is impractical. However, from the construction we have

@ Springer

180 Page 18 of 28 S. Ramos-Calderer et al.

)) — = 1

d[o]] Il
d[1]] | Diffusi
d[z] : L il iffusion
d[s3] Blake2 — Blake2™' H

v[0] 7:

|
|
v[1] ———q T
|
|
|

v[2] ————H
v[3]

repeat O(W) times

Fig. 12 Grover’s algorithm construction for preimage finding for Toy BLAKE Hash presented in Sect. 3.2.
Each quantum wire labeled d and v corresponds to 4 qubits matching the description in their respective
section. Labeled c is the classical register used in the BLAKE?2 operator. A gate acting on the quantum wire
in the figure is to be understood as acting on all qubits that it represents. The hash value is encoded into
the controls that target the Grover ancilla from registers v[0] and v[1]. The Grover step has to be repeated
O(/N/M) times where N = 2"

presented, the complexity scaling can be calculated and therefore extrapolated to real
implementations.

In terms of basic gates, the Grover step that has to be repeated in order to find
preimages for Toy BLAKE Hash requires the following basic gates,

#TOFFOLI: (8p + 16% + 12)n — (8s + 16./s)p — 56,

#CNOT: (24p + 40% + Dn — (165 + 32./5)p, (5.1)
#SINGLE: (8p + 16% +7)n — (165 +32/5)p + 2,

where n is the amount of bits of the message digest d, s is the total sites of the
permutation matrix, and the parameter p, as seen in Fig. 2, determines the amount
of repetitions inside the compression function. Hash-specific alterations might add or
subtract constants to these numbers, but not relevant to the overall scaling. The circuit
can achieve a certain level of parallelization provided 4/s ancillas are added to the
circuit. Then, the depth of the circuit becomes

depth = (8% +162 +12)n — (205 +32)p — 36. (5.2)
) S

This equation is the addition of the individual depths of the circuits that make up the
implementation; therefore, a bit more depth reduction can be achieved when all is put
together in some cases, but the depth will not increase. Further details in Table 2 are
the total amount of gates required for the TOY implementation described beforehand,
and for a REAL instance of 1024 bits, with 64 bit words in the sites of the matrix. For
both circuits, the amount of repetitions of the Toy BLAKE Hash Quarter rounds has
been set to p = 12.

@ Springer

Quantum search for scaled hash function preimages Page 190f28 180

Table 2 Scaling of a single Grover step for the TOY and REAL model of preimage search based on the
BLAKE2

#TOFFOLI #CNOT #SINGLE #TOTAL Depth

TOY n=16s=4 2440 6928 1650 11,018 2556
REAL n=1024 s =16 157,384 414,208 150,018 721,610 50,460

Both computations have been done with the same p = 12. To achieve the presented depth, /s ancillas are
needed

Again, this scaling refers to the Grover step, oracle and diffuser included, and can
be understood as the factor that accompanies each necessary application of the Grover
step in the algorithm. This can be corroborated with the provided code for the example
[42] using real life values for BLAKE?2 hash construction.

The qubit complexity of the Toy BLAKE Hash implementation, as briefly dis-
cussed above, is higher than for the Toy Sponge Hash model based on the ChaCha,
permutation. This is due to the fact that the messages are actively used inside the
Toy BLAKE Hash Quarter Rounds, therefore are to be saved on their own quantum
register, effectively doubling the number of qubits required. The total amount of qubit
width required to run the presented algorithm, including the +/s ancillas in order to
achieve full parallelization are

ntoy = 35 qubits, nReal = 2053 qubits. (5.3)

The toy model is at the limit of what can be implemented by quantum simulators
available, but is within the number of qubits available in recent quantum devices.

6 Results

The explicit construction and programming of all steps in a Grover attack on Toy
Sponge Hash allows for a detailed exact simulation of the results and costs of an
attack on a hash function. In the following we will discuss the success in the finding of
preimages, according to the expected performance of the algorithm in ideal conditions,
that is, without introducing a simulation of the experimental errors which are expected.
Furthermore, the fact that we handle the exact description of the state at every step
of the computation opens the possibility to analyze the entanglement entropy which
is pervading the system. This, in turn, makes it possible to assess the limits of an
approximate simulation of a quantum circuit using tensor networks. A study of the
effects of Pauli errors, appearance of random X, Y or Z gates after any gate application,
is performed in order to compare the effectiveness of running the full algorithm or a
reduced version under noise conditions.

@ Springer

180 Page 20 of 28 S. Ramos-Calderer et al.

Output probability after Grover iteration Output probability after Grover iteration

Probability
Probability

100
Messagds®

(a) Instance with two preimages. (b) Instance with three preimages.

Fig. 13 Evolution of the probability of finding a message during the Grover process. As more Grover steps
are performed, the probability of finding a preimage of the target hash is amplified. As can be appreciated
in both images, after just a portion of the required ~ % /2" /M Grover steps, the solutions become easily
noticeable

6.1 Finding preimages

Let us first run the attack on Toy Sponge Hash using the quantum circuit we have con-
structed in the previous section. The algorithm is made of a sequence of basic Grover
steps. According to the theory, even if the exact number of preimages is unknown at
first, it is necessary to apply O(v/N/M) Grover steps [14], where N = 2" and M
is the number of preimages, in order to find those preimages. Every Grover step will
increase the probability of the desired solution, until the maximum is obtained.

In order to visualize the iterative nature of Grover’s algorithm, we plot in Fig. 13
the probabilities of measuring the final message states for hash instances with two
and three preimages, respectively, as a function of Grover steps. It can be seen that
the probability of measuring the preimages is amplified with each iteration following
a sinus wave pattern reaching its maximum at the closest integer near ~ %/2"/M,
as expected. After that point, the probability of finding the solutions decreases as it is
redistributed back to all states. Grover’s algorithm can be understood as a rotation in
the two dimensional plane defined by a vector with the superposition of all solutions
and another orthogonal vector with the superposition of the non-solution states.

Asitcanbe appreciated in Fig. 13, there is no need to reach the full number of Grover
steps in order to already find an important amplification of the probability of measuring
a preimage state. This implies that one could stop the quantum computation before
the full scaling is reached, and extract more output samples in a way that a solution
will still be found with high probability. Outlined in Table 3 are the probabilities of a
preimage appearing after each amount of Grover steps, as well as the average number
of samples needed to find the first preimage apparition. This strategy to cut short the
full quantum computation has been analyzed for several number of preimages. It can
be seen that the optimal way to proceed in an ideal quantum computer is to finish
the full Grover’s algorithm and perform all iterations. However, if unlimited circuit
depth is not available, as is the case for noisy intermediate-scale quantum (NISQ)
[41] devices where gate errors and decoherence are a relevant issue, one can strive
for a set depth and still arrive to the right solution by extracting more samples. This

@ Springer

Quantum search for scaled hash function preimages Page210f28 180

Table 3 Probability of success and number of average samples needed before finding one preimage depend-
ing on the number of Grover steps performed

Number of preimages

2 4
Prob. First Calls Prob. First Calls grob. First Calls
1 step 0.069 14.523 15 0.135 7.417 8 0.198 5.052 6
2 steps 0.183 5.453 11 0.344 2.908 6 0.483 2.067 5
3 steps 0.337 2.966 9 0.591 1.691 6 0.774 1.291 4
4 steps 0.511 1.956 8 0.816 1.225 5 0.965 1.036 5
5 steps 0.684 1.463 8 0.964 1.038 6 0.986 1.015 5
6 steps 0.834 1.120 8 0.997 1.003 6
7 steps 0.942 1.062 8
8 steps 0.996 1.004 8

The average number of total oracle calls in order to find a preimage is also presented. For different number
of preimages, the probability of measuring one of them increases according to the number of Grover steps
applied. In general, the optimal solution is to perform the full Grover’s algorithm to find solutions. However,
should circuit depth be an issue, we can stop at an earlier step and acquire more samples for a similar result

Table 4 Theoretical bounds for .

. Number of preimages
the number of function calls 3 7 5
needed to recover a solution in
the Toy Sponge Hash

; . Grover scaling 8 6 5
construction compared with the
average calls needed in a Average calls 10.0 6.3 47
simulation Upper-bound 26 18 15

The average is taken after performing the algorithm 1000 times. The
first value presented is the scaling of the direct Grover algorithm, the
second one is the averaged value from simulation, and the third one is
the theoretical upper bound described in [14]. It can be seen that the
average number of oracle calls needed to solve the problem is much
closer to the normal Grover scaling than to the predicted upper bound

practical consideration may be non-trivial in this and other applications of Grover’s
search algorithm.

6.2 Function calls needed for unknown number of solutions

The implementation of Grover’s algorithm when the exact number of solutions is
unknown does not have a strict number of function calls needed to find a preimage.
The algorithm presented in [14] gives a strict upper-bound on the number of Grover
steps needed. In the following, we have applied this algorithm to the Toy Sponge Hash
construction presented here in order to estimate the average amount of Oracle calls
needed for instances with different number of preimages.

In Table 4, we present data on the average number of Oracle calls needed to recover
one preimage when the total number of solutions is not known. The average calls is
obtained after averaging over 1000 different iterations of the algorithm. As seen, the

@ Springer

180 Page 22 of 28 S. Ramos-Calderer et al.

average number of steps remains much closer to the original Grover scaling rather
than the theoretical upper bound predicted.

6.3 Entropy obstruction to simulation by tensor networks

A study of the entropy within the quantum circuit is relevant, as classical techniques are
available to simulate quantum algorithms in a most efficient manner if the entanglement
present along a quantum computation is low. As a matter of fact, the technology usually
quoted as tensor networks is known to achieve a faithful representation of any quantum
state with moderate entanglement.

Let us introduce the von Neumann entropy as a figure of merit to quantify
entanglement in the register |v). The way to compute the entropy of a bi-partition
A — B of the system requires to first get the reduced density matrix to half of the
register p4 = Trp|y¥)(¢¥|. Then, the von Neumann entropy for this partition is
Sa = —Trpalog, pa . This entropy is zero in the absence of entanglement and is
bounded by the size of the system n 4, that is the number of qubits in the partition. It
is known that states whose von Neumann entropy only scales logarithmically with the
number of qubits can be described in terms of matrix product states[48]. This means
the amount of entropy present in the quantum register along the quantum circuit should
be large, otherwise there would exist an efficient attack on hash functions based on
simulating Grover’s algorithm with tensor networks.

It is well known that the entropy in the register along Grover’s algorithm is bounded
if measured after an application of each Grover step [40]. This has a very simple
explanation. At the end of a Grover step, the register is separated in two distinct
orthogonal states, the solutions and the rest. As a consequence, for an instance with
a single solution, the maximum reached von Neumann entropy between circuit bi-
partitions is bounded by 1, corresponding to maximum two-partite entropy. But this
argument fails to understand that the heart of the quantum computation is done within
the oracle. There, the quantum register displays an enormous increase of entropy,
which is at the origin of its quantum advantage.

Let us emphasize this point further. No algorithm that does not produce large entropy
can provide any quantum advantage over classical strategies. This is due to the fact that
a low amount of entanglement can be simulated efficiently. Grover’s advantage needs
to be rooted at exploiting large entanglement in the quantum register. This, indeed,
should take place within the oracle.

A confirmation of this reasoning can be seen in Fig. 14. The von Neumann entropy
for half of the register in the middle of the Grover step is closer to the maximum
possible bipartite entropy in the Toy Sponge Hash. More precisely, the entropy in the
middle of the Grover step is computed right after the Grover ancilla changes the sign of
the target hash states, at the center of the circuit shown in Fig. 6b. The bi-partition used
at this point is half the quantum registers that make up the permutation matrix. For
the entropy after the Grover step, the bi-partition is instead half the quantum registers
that encode the message space, as the rest of the permutation matrix is at the |0) state.

In the Toy Sponge Hash quantum algorithm we have presented, a gate by gate
study of the entanglement entropy reveals that its maximum is 7.3619, regardless of

@ Springer

Quantum search for scaled hash function preimages Page230f28 180

hash: 10011101 - preimages: 1 hash: 10100011 - preimages: 2

B after Grover step N after Grover step
= middle Grover step = middle Grover step

entropy

2 3 4 5 6 7 8 9 10 1 1 [1 2

3 4 5 6 7 8
Grover iteration Grover iteration

(a) Hash: 10011101 - 1 preimage. (b) Hash: 10100011 - 2 preimages.
hash: 10000101 - preimages: 3 hash: 1110001 - preimages: 4
Y Bl after Grover step . after Grover step

B middle Grover step = middle Grover step

o 1 2

3 4 5 6 7 0 1 2 3 4 H [
Grover iteration Grover iteration

(€) Hash: 10000101 - 3 preimages. (d) Hash: 1110001 - 4 preimages.

Fig. 14 Von Neumann entropy in the middle and after a Grover step for different number of preimages.
In this analysis, all bipartitions remain orthogonal in the final solution state. In the case where entropy is
measured after Grover step, we consider the bipartition that corresponds to half the message space. In the
case where entropy is measured in the middle of the Grover step, we consider the bi-partition of half the
qubits that correspond to the whole permutation matrix

the number of preimages. This is to be compared with the theoretical maximum of 8. It
is noteworthy to observe that the maximum along the computation is reached at the first
action of the Sponge Oracle. In some way, the register develops very large correlations
which are needed to spot the solutions. Then, as the solutions are enhanced, quantum
correlations need not be that high.

The entanglement in the register along the computation depends on the number
of preimages as well as if their binary encoding is orthogonal in the respective bi-
partitions. Nevertheless, entanglement always peaks at the first application of the
Sponge Oracle. This shows that, in the case of large number of qubits n, the entropy
in the register will likely scale with 7, rendering inefficient the classical alternatives
for simulation of quantum circuits. Grover’s algorithm does need an actual quantum
computer to support entropy that scales as the volume of the system.

6.4 Error robustness

The previous simulations assume access to an error free quantum device. This, how-
ever, is not the case for actual quantum computers, still far from operating with logical
qubits. Before reaching fault-tolerant quantum computation quantum devices will be
in their NISQ stage, so considering the effects of errors in proposed algorithms is

@ Springer

180 Page 24 of 28 S. Ramos-Calderer et al.

1.04 %X X Full Grover (8 steps once)
X Half Grover (4 steps twice)

o
@
X

2 |
o X
06
§ X
s Xxxx
w
& 04 XX x
i
X
3 o
X
02 xX x
XX X x
X X X
0.0 X X X X % %

0.000 0.001 0.002 0.003 0.004 0.005
bitphase error (%)

Fig. 15 Probability of finding a preimage after applying Grover’s algorithm with the same amount of oracle
calls under increasing bitphase, or Pauli, error. A small error already destroys most of the strength of
the algorithm due to its complexity and required precision. Points averaged over 250 instances. Running
multiple instances of a reduced version of the algorithm can result in mitigation of the error effects on noisy
intermediate-scale quantum computers. Examples run for an instance with two preimages corresponding
to hash value: 10100011

required. In the following, we analyze the effect of errors on these implementations
of Grover’s algorithm for preimage finding.

Quantum errors range from decoherence and dephasing to Pauli errors. Pauli errors
are characterized by the probability of a random Pauli effect, represented as gates X,
Y and Z, acting on any particular qubit. We have simulated the Toy Sponge Hash
construction in the presence of increasing probability of appearing an X, Y and Z gate
after every quantum gate is applied.

Due to the amount of required gates for Grover’s algorithm, this toy model requires
gate precision below 0.001% in order to reliably output the correct preimages. When
the Pauli error probability reaches beyond 0.003%, all results are effectively lost. In
Fig. 15, the probability of recovering a preimage after applying Grover’s algorithm for
different magnitudes of Pauli errors is shown. For the same amount of oracle queries,
results are presented for the full Grover implementation and one where the preimages
are measured when half the Grover steps are applied. It can be appreciated that for no
error, applying all steps, namely ~ %W , gives better results. However, as the
errors increase, the reduced gate number of applying less Grover steps translates into an
advantage when finding preimages. For this example, the success probability doubles
when at 0.001% error probability. This balance should be taken into consideration
when running this algorithm on a real device. As the Hash construction is scaled,
at least a similar ratio of error probability to number of required gates should be
maintained, and since the number of gates needed is much larger, the error has to go
down that much as well. This leads to the conclusion that even though performing less
Grover steps yields a marginal advantage against error, it is negligible when full size
Hash constructions are considered.

@ Springer

Quantum search for scaled hash function preimages Page 250f28 180

7 Conclusion

Quantum algorithms specially designed to attack cryptographic protocols require
extensive perusal. We have presented an explicit quantum code that performs a full
Grover attack on two scaled ARX-based hash functions. Our algorithm is simulated
using the Qibo quantum simulation software, which is an open-source library for quan-
tum computation available in [20]. Code to reproduce the quantum circuits present in
this paper can be found in GitHub [42].

The explicit construction of a quantum algorithm based on Grover’s search pro-
vides an exact quantification of the quantum resources which are needed for an actual
implementation of a preimage attack. The main takeaway is that the number of gates
and depth required to build the oracle and diffusor scales linearly with n, the number
of qubits in the register, with large prefactors. This is relevant as large prefactors may
make inaccurate naive predictions for the power of quantum computation.

The results of this work further bring a number of considerations we shall now sum-
marize: (a) Different hash functions may differ substantially in the quantum resources
needed to attack them. The quantum algorithm to find preimages of a BLAKE2 hash
requires 2053 qubits and 721610 gates for a single Grover step, while for the basic
sponge construction using ChaCha20 permutation 517 qubit and 204458 gates are
required (considering a single compression function/permutation cycle). (b) Classical
gates such as AND, OR or XOR are dealt differently at the quantum level. It turns
out that XOR easily translates onto a CNOT. But, a classical AND or OR gate is
not reversible which implies proliferation of qubits. Thus, new hash functions can be
designed to be more difficult to be attacked by a quantum Grover strategy. (c) The
analysis of the entropy that the register develops shows that entanglement is maximal
during the first action of the oracle. This fact discards the possibility of simulating the
quantum algorithm using the powerful tensor network classical techniques. (d) We
have shown that the idea of sampling intermediate Grover steps is proven essentially
as powerful as running the whole algorithm in an ideal quantum computer. (¢) We
have presented a first analysis of Pauli errors, showing the degradation of the success
probability as the probability of error increases. We have also observed that a strategy
to run part of Grover’s algorithm performs better than the full quantum circuit because
of the smaller accumulation of errors.

Acknowledgements The authors would like to thank Najwa Aaraj for useful discussions and proof-reading.
SRC acknowledges Stefano Carrazza for help with code availability and testing.

Funding Research funded by Technology Innovation Institute (TII).

Declarations

Conflict of interest The authors declare no conflicts of interest.
Data availability Data are generated using the code in [42].

Code availability The code for this project is available in the GitHub repository found in [42].

@ Springer

180 Page 26 of 28 S. Ramos-Calderer et al.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

10.

12.

13.

14.

15.

16.

. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible circuit of AES-128.

Quantum Inf. Process. 17(5), 112 (2018)

. Anand, R., Maitra, A., Mukhopadhyay, S.: Grover on SIMON. arXiv preprint arXiv:2004.10686 (2020)
. Arute, F, Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao,

F.G.S.L.,Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth,
A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S.,
Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey,
E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa,
F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandra, S., McClean, J.R., McEwen, M.,
Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu,
M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank,
D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B.,
White, T., Yao, Z.J., Yeh, P, Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a
programmable superconducting processor. Nature 574(7779), 505-510 (2019)

. Aumasson, J.P., Meier, W., Phan, R.C.W., Henzen, L.: BLAKE2. In: The Hash Function BLAKE, pp.

165-183. Springer (2014)

. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target preimage search. In:

Selected Areas in Cryptography—SAC 2017—24th International Conference, LNCS, vol. 10719, pp.
325-335. Springer (2017)

. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin,

J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

. Bernstein, D.J.: Chacha, a variant of salsa20. Worksh. Rec. SASC 8, 3-5 (2008)
. Bernstein, D.J., Hopwood, D., Hiilsing, A., Lange, T., Niederhagen, R., Papachristodoulou, L., Schnei-

der, M., Schwabe, P., Wilcox-O’Hearn, Z.: Sphincs: Practical stateless hash-based signatures. In:
Advances in Cryptology—EUROCRYPT, Vol. 2015, pp. 368-397 (2015)

. Bonnetain, X.: Quantum key-recovery on full AEZ. In: International Conference on Selected Areas in

Cryptography, pp. 394-406. Springer (2017)

Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher, A.: Quantum attacks
without superposition queries: the offline Simon-algorithm. In: International Conference on the Theory
and Application of Cryptology and Information Security, pp. 552-583. Springer (2019)

. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric primitives in practice. arXiv

preprint arXiv:2011.07022 (2020)

Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. In: International
Conference on Selected Areas in Cryptography, pp. 492-519. Springer (2019)

Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis of AES. IACR
Trans. Symmetr. Cryptol. 2019(2), 55-93 (2019)

Boyer, M., Brassard, G., Hgyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der
Physik Prog. Phys. 46(4-5), 493-505 (1998)

Brassard, G., Hgyer, P., Tapp, A.: Quantum algorithm for the collision problem. In: Encyclopedia of
Algorithms, pp. 1662-1664. Springer (2016)

Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm
and implications on symmetric cryptography. In: Advances in Cryptology - ASTACRYPT 2017—23rd
International Conference on the Theory and Applications of Cryptology and Information Security,

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2004.10686
http://arxiv.org/abs/2011.07022

Quantum search for scaled hash function preimages Page 27 0f28 180

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

Hong Kong, China, December 3-7, 2017, Proceedings, Part II, Lecture Notes in Computer Science,
vol. 10625, pp. 211-240. Springer (2017)

. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit.

arXiv preprint arXiv:quant-ph/0410184 (2004)

. Davenport,J.H., Pring, B.: Improvements to quantum search techniques for block-ciphers, with applica-

tions to AES. In: Selected Areas in Cryptography—SAC 2020: 27th International Conference, Lecture
Notes in Computer Science. Springer (2020)

Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead
adder. arXiv preprint arXiv:quant-ph/0406142 (2004)

Efthymiou, S., Ramos-Calderer, S., Bravo-Prieto, C., Pérez-Salinas, A., Garcia-Martin, D., Garcia-
Saez, A., Latorre, J.I., Carrazza, S.: Quantum-tii/qibo: Qibo (2020). https://doi.org/10.5281/zenodo.
3997195

Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s algorithm to AES: quan-
tum resource estimates. In: Takagi, T. (Ed.) Post-Quantum Cryptography—7th International Workshop,
PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 9606, pp. 29-43. Springer (2016)

Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover-algorithm to AES: quan-
tum resource estimates. In: Post-Quantum Cryptography, pp. 29-43. Springer (2016)

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing, pp. 212-219 (1996)

Guido, B., Joan, D., Michaél, P., Gilles, V.: Cryptographic Sponge Functions (2011)

Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by using differential
trails with smaller probability than birthday bound. IACR Cryptology ePrint Archive (2020). https://
eprint.iacr.org/2020/213

Jang, K., Choi, S., Kwon, H., Kim, H., Park, J., Seo, H.: Grover on Korean block ciphers. Appl. Sci.
10(18), 6407 (2020)

Jang, K., Choi, S., Kwon, H., Seo, H.: Grover on SPECK: Quantum Resource Estimates. Cryptology
ePrint Archive, Report 2020/640 (2020). https://eprint.iacr.org/2020/640

Jang, K., Kim, H., Eum, S., Seo, H.: Grover on GIFT. arXiv preprint arXiv:2020.1405 (2020). https://
eprint.iacr.org/2020/1405.pdf

Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search
on AES and LowMC. IACR Cryptology ePrint Archive 2019, 1146 (2019). https://eprint.iacr.org/
2019/1146

Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search
on AES and lowmc. In: Advances in Cryptology—EUROCRYPT 2020—39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lecture Notes in Computer
Science, vol. 12106, pp. 280-310. Springer (2020)

Kaplan, M.: Quantum attacks against iterated block ciphers. arXiv preprint arXiv:1410.1434 (2014)
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using
quantum period finding. In: Annual International Cryptology Conference, pp. 207-237. Springer (2016)
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential and linear cryptanal-
ysis. IACR Trans. Symmetr. Cryptol. 2016(1), 71-94 (2016)

Kim, P, Han, D., Jeong, K.C.: Time-space complexity of quantum search algorithms in symmetric
cryptanalysis: applying to AES and SHA-2. Quantum Inf. Process. 17(12), 339 (2018)

Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher and the random
permutation. In: 2010 IEEE International Symposium on Information Theory, pp. 2682-2685. IEEE
(2010)

Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the advanced encryption
standard as a quantum circuit. IEEE Trans. Quantum Eng. 1, 1-12 (2020)

Leander, G., May, A.: Grover meets Simon-quantumly attacking the FX-construction. In: International
Conference on the Theory and Application of Cryptology and Information Security, pp. 161-178.
Springer (2017)

Musa, M.A., Schaefer, E.F.,, Wedig, S.: A simplified AES algorithm and its linear and differential
cryptanalyses. Cryptologia 27(2), 148-177 (2003)

NIST: Post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

@ Springer

http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/quant-ph/0406142
https://doi.org/10.5281/zenodo.3997195
https://doi.org/10.5281/zenodo.3997195
https://eprint.iacr.org/2020/213
https://eprint.iacr.org/2020/213
https://eprint.iacr.org/2020/640
http://arxiv.org/abs/2020.1405
https://eprint.iacr.org/2020/1405.pdf
https://eprint.iacr.org/2020/1405.pdf
https://eprint.iacr.org/2019/1146
https://eprint.iacr.org/2019/1146
http://arxiv.org/abs/1410.1434
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

180 Page 28 of 28 S. Ramos-Calderer et al.

40.

41.
42.

43.

44.
45.

46.

47.

48.

Orts, R., Latorre, J.I.: Universality of entanglement and quantum-computation complexity. Phys. Rev.
A 69(5), 052308 (2004)

Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

Ramos, S., Carrazza, S.: Quantum-TII/quantum-search-scaled-hash-preimages: Quantum Search for
Scaled Hash Function Preimages—Qibo (2020). https://doi.org/10.5281/zenodo.4007914

Saarinen, M.J.O., Aumasson, J.P.: RFC 7693: The BLAKE2 Cryptographic Hash and Message Authen-
tication Code (MAC) (2015). https://tools.ietf.org/html/rfc7693#appendix-C

Schlieper, L.: In-place implementation of Quantum-Gimli. arXiv preprint arXiv:2007.06319 (2020)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput. 26(5), 1484—1509 (1997)

van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to hash functions and
discrete logarithms. In: Proceedings of the 2nd ACM Conference on Computer and Communications
Security, Fairfax, Virginia, USA, November 2—4, 1994, pp. 210-218. ACM (1994)

Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev.
A 54(1), 147 (1996)

Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett.
91, 147902 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.5281/zenodo.4007914
https://tools.ietf.org/html/rfc7693#appendix-C
http://arxiv.org/abs/2007.06319

	Quantum search for scaled hash function preimages
	Abstract
	1 Introduction
	2 Related work
	2.1 Our contribution

	3 Toy hash functions
	3.1 Toy Sponge Hash
	3.2 Toy BLAKE Hash

	4 Quantum attack on Toy Sponge Hash
	4.1 Grover's algorithm for finding preimages
	4.2 Quantum circuit for Toy Sponge Hash permutation
	4.2.1 Full oracle
	4.2.2 Diffusion operator
	4.2.3 Full Grover step

	4.3 Unknown number of preimages
	4.4 Scaling

	5 Quantum Toy BLAKE Hash construction
	5.1 Scaling

	6 Results
	6.1 Finding preimages
	6.2 Function calls needed for unknown number of solutions
	6.3 Entropy obstruction to simulation by tensor networks
	6.4 Error robustness

	7 Conclusion
	Acknowledgements
	References

