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Abstract

We describe how certain effective divisors, which we call Baker-Akhiezer divisors, on non-degenerate

spectral curves characterize SL2(C)-Higgs bundles. To some extent, these divisors encode the

natural stratification on the Hitchin moduli space MH of SL2(C)-Higgs bundles, and their de-

generation describes families of Higgs bundles that limit to lower strata. We show how apparent

singularities with their accessory parameters of SL-operators are analogues of Baker-Akhiezer di-

visors: they also encode to some extent the natural stratification on the de Rham moduli spaceMdR

of irreducible SL2(C)-connections. In addition, a collision of two simple apparent singularities can

define a family of SL-operators whose limit is an SL-operator with less apparent singularities and

encodes an irreducible SL2(C)-connection in a lower stratum.





Zusammenfassung

Wir beschreiben, wie bestimmte effektive Divisoren, die wir Baker-Akhiezer Divisoren nennen,

auf nicht entarteten Spektralkurven, SL2(C)-Higgs-Bündel charakterisieren. Bis zu einem gewis-

sen Grad kodieren diese Divisoren die natürliche Stratifikation auf dem Hitchin-ModulraumMH

von SL2(C)-Higgs-Bündeln, und ihre Entartung beschreibt Familien von Higgs-Bündeln, die sich

auf niedrigere Strata limitieren. Wir zeigen, wie scheinbare Singularitäten mit ihren Nebenparame-

tern von SL-Operatoren analog zu Baker Akhiezer-Divisoren sind: Sie kodieren auch in gewissem

Maße die natürliche Stratifikation auf dem de Rham ModulraumMdR der irreduziblen SL2(C)-

Zusammenhänge. Außerdem kann eine Kollision von zwei einfachen scheinbaren Singularitäten

eine Familie von SL-Operatoren definieren, deren Grenzwert ein SL-Operator mit weniger schein-

baren Singularitäten ist und einen irreduziblen SL2(C)-Zusammenhang in einem unteren Stratum

kodiert.
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Chapter 1

Introduction

Let X be a compact Riemann surface of genus g ≥ 2. The recurring themes in this thesis are

(a) to characterize SL2(C)-Higgs bundles on X in terms of certain effective divisors, which we

will call Baker-Akhiezer divisors, on their associated spectral curves;

(b) to characterize SL-operators on X , which are natural objects that realize monodromy repre-

sentations in PSL2(C), in terms of their apparent singularities and accessory parameters;

(c) to demonstrate that apparent singularities with their accessory parameters are the analogues

of Baker-Akhiezer divisors, in particular in their degeneration behaviors.

LetMH(Λ) be the moduli space of SL2(C)-Higgs bundles on X with the underlying bundles

having determinant Λ. Hitchin [35] [36] showed that a generic point inMH(Λ) corresponds to the

isomorphism class of a line bundle satisfying certain conditions on the spectral curve associated

to the Higgs bundle, which is a double covering of X embedded into the total space of T ∗X . As

such line bundles can be represented by effective divisors upon adjusting the degrees [31], theme

(a) is hardly surprising.

Our particular way to introduce the so-called Baker-Akhiezer divisors to characterize Higgs

bundles, however, has the following important feature. It is known that MH(Λ) admits a C∗-

action which induces a stratification on it: the top open stratum consists of Higgs bundles with

stable underlying bundles, and the other strata consisting of Higgs bundles with unstable under-

lying bundles are determined by the degree of the destabilizing sub-line bundles [34] [35]. The

input data that define a Baker-Akhiezer divisor consist of a Higgs bundle [E, ϕ] ∈ MH(Λ) with

a non-degenerate associated spectral curve and a sub-line bundle L of E. In particular, the degree

of the Baker-Akhiezer divisor defined by (L ↪→ E, ϕ) is equal to deg(KL−2Λ). Therefore, to

some extent, Baker-Akhiezer divisors characterize the stratification onMH(Λ) by their degrees.

In fact, for the cases where L is the destabilizing subbundle, these divisors were briefly discussed

in the original work of Hitchin [35], and recently revisited in [34] for different purposes.
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Furthermore, one can understand how the lower strata compactify the higher ones in terms

of Baker-Akhiezer divisors. Namely, one can construct a family of Higgs bundles staying in one

stratum that limits to a point in a lower stratum, the corresponding Baker-Akhiezer divisors of

which contain no summand equal to the pull-back of a divisor on X but limit to an effective

divisor containing a summand of the form π∗(x0) for some x0 ∈ X . The family of effective

divisors on X defined by projecting Baker-Akhiezer divisors from the spectral curves displays a

collision of two points to x0 and a disappearance of these points at the limit.

Another important feature of Baker-Akhiezer divisors is that they have analogues in the natural

objects on X that realize monodromy representations π1 → PSL2(C), which we will call projec-

tive monodromy representations. An SL-operator, which is a collection of local Schrödinger-like

differential operators {∂2zα + qα(zα)} that satisfy certain compatibility conditions upon transition

among the coordinated charts {(Uα, zα)}, is such an object [39] [40]. By taking the ratio of two

linearly independent local solutions and analytically continuing to all of X , one obtains a projec-

tive monodromy representation. In general, to realize a projective monodromy representation, an

SL-operators needs to have apparent singularities, which are double poles of qα(zα) with specific

Laurent tails and around which the projective monodromy is trivial. It turns out that apparent sin-

gularities with certain accessory parameters can be considered as the analogues of Baker-Akhiezer

divisors. For example, with the input data consisting of an irreducible SL2(C)-holomorphic con-

nection and a sub-line bundle of the underlying bundle, one can induce an SL-operator. The

positions of the apparent singularities and their accessory parameters are then induced in a very

similar way to how Baker-Akhiezer divisors are defined.

The analogy between Baker-Akhiezer divisors and apparent singularities with their accessory

parameters extends to their limiting behavior. Namely, a family of projective connections defined

by colliding two simple apparent singularities and tuning their accessory parameters in a specified

way limits to a projective connection having two less apparent singularities.

In the following, we briefly recall the relevant geometric objects and moduli spaces before

summarizing the main results of this thesis.
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1.1 Higgs bundles, holomorphic connections and projective connections

SL2(C)SL2(C)SL2(C)-Higgs bundles. An SL2(C)-Higgs bundle is a pair (E, ϕ) where E is a rank-2 holo-

morphic bundle and ϕ : E → E ⊗ K, where K is the canonical line bundle of X , is an

endormorphism of E twisted by holomorphic 1-forms and has zero trace. We say that ϕ is a

Higgs field on E. Such an SL2(C)-Higgs bundle is called stable (semi-stable) if all subbundles

L ↪→ E that are ϕ-invariant, i.e. ϕ(L) ⊂ L⊗K, satisfy 2 deg(L) < deg(det(E))
(

respectively,

2 deg(L) ≤ deg(det(E))
)
. In other words, an SL2(C)-Higgs bundle (E, ϕ) with det(E) = Λ is

stable if and only if either E is stable, or if E is destabilized by LE then the OX -linear morphism

cLE
(ϕ) : LE ↪→ E

ϕ→ E ⊗K → L−1E ΛK, (1.1)

where the last arrow is induced by the quotient of the embedding LE ↪→ E, is non-zero. Gener-

alization of the composition (1.1) to the case where L is any subbundle of E (cf. (1.3)) will be a

central object in this thesis.

The Hitchin moduli spaceMH(Λ) of stable SL2(C)-Higgs bundles with the underlying bun-

dles having determinant Λ was first constructed by Hitchin [35] [36]. Let 1 (E, ϕ) ∈MH(Λ) with

q = det(ϕ) ∈ H0(K2) non-degenerate, i.e. the zeroes of q are all simple. Associated to q is the

spectral curve Sq
π→ X defined by solving for eigen-values of ϕ. Central to the work of Hitchin

is the spectral correspondence between such a Higgs bundle (E, ϕ) and the isomorphism class of

the eigen-line bundle L on Sq, defined by solving for an eigen-subspace of π∗(ϕ) at each point

on Sq. One can recover (E, ϕ) by taking the direct image of L ⊗ π∗(K). The Hitchin fibration

h : MH(Λ) → H0(K2) defined by [E, ϕ] 7→ det(ϕ) equipsMH(Λ) with an integrable struc-

ture; the functions onMH(Λ) defined by h together with a choice of basis of H0(K2) are called

(classical) Hitchin Hamiltonians.

One can define a C∗-action onMH(Λ) by λ.[E, ϕ] = [E, λϕ] for λ ∈ C∗. The Białynicki-

Birula stratification on MH = MH(Λ) is induced by the C∗-action and is the decomposition

MH = W+
N ⊔

(
⊔
d
W+

Nd

)
, where W+

N = {[E, ϕ] ∈ MH(Λ) | E stable} is the top stratum, and

W+
Nd

= {[E, ϕ] ∈MH(Λ) | E destabilized by LE ,deg(KL
−2
E Λ) = d}.

1We will abuse the notations writing (E, ϕ) also for the point it defines in MH(Λ) unless an emphasis on the
isomorphisms that identify different Higgs bundles is needed.
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SL2(C)SL2(C)SL2(C)-connections. An SL2(C)-holomorphic connection is a pair (F,∇) where F is a holo-

morphic bundle with det(F ) ∼= OX , and ∇ : F → FK is a map of sheaves of holomorphic

sections that satisfies the Leibniz rule and induces the trivial connection on OX . Such a holo-

morphic connection is equivalent to a flat SL2(C)-connection on the underlying smooth bundle

and gives rise to monodromy representation in SL2(C) by developing parallel frames. The au-

tomorphism group of the underlying smooth bundle acts on the set of holomorphic connections

by conjugation, and we say two holomorphic connections are isomorphic if there is a smooth au-

tomorphism relating them. The de Rham moduli space MdR as a set consists of isomorphism

classes of irreducible SL2(C)-holomorphic connections, which are those that leave no holomor-

phic subbundle invariant. It is known thatMdR is complex smoothex analytic space of dimension

6g − 6 [53] [9].

Simpson [54] defined a natural stratification on MdR which is analogous to the Białynicki-

Birula stratification on MH(OX). It is defined by embedding both MdR and MH(OX) in the

Hodge moduli spaceMHod of the so-called λ-connections, and restricting the Białynicki-Birula

stratification induced by a natural C∗-action onMHod toMdR andMH(OX). ForMH(OX),

this restriction coincides with the Białynicki-Birula stratification defined on it intrinsically. For

MdR, this defines the stratificationMdR =W dR
N ∪

(
∪
d
W dR

Nd

)
, where W dR

N = {[F,∇] ∈MdR |

F stable} and W dR
Nd

= {[F,∇] ∈MdR | F destabilized by LF ,deg(KL
−2
F ) = d}.

Projective connections, projective structures and SL-operators. Given a representation

π1(X)→ PSL2(C), there are three equivalent types of objects that give rise to the samePSL2(C)-

monodromy up to conjugation. Since PSL2(C) is the automorphism group of P1, a natural ge-

ometric object that realizes this monodromy representation is a fiber bundle with P1-fibers and

locally constant PSL2(C)-valued transition functions, i.e. a flat P1-bundle. We call such a flat

P1-bundle together with a choice of global, nonparallel holomorphic section a projective connec-

tion. The global holomorphic section of a projective connection can be represented in the local

parallel frames of the flat bundle on each sufficiently small chart by a local holomorphic function

valued in C ⊂ P1. This defines a projective structure on X , namely a maximal atlas of coordinate

charts the values of which are related by Möbius transformations. An object of the third type, an

SL-operator, is a collection of local Schrödinger-like differential operators {∂2zα + qα(zα)} that
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satisfy certain compatibility conditions upon transition among the coordinate charts {(Uα, zα)}:

the solutions to these local differential operators transform as local sections of a line bundle of

degree 1− g, such as K−1/2, and define via their ratio a corresponding projective structure. There

is a natural notion of isomorphism among objects of each of these types.

To realize a generic projective monodromy representation in terms of an object of these types,

we will need to include apparent singularities, which are certain distinguished points around

which the projective monodromy representation is trivial. For a flat P1-bundle together with a

choice of a global section, apparent singularities are precisely where the section is tangential to

the local constant leaves (with respect to which the transition functions are locally constant). For

a projective structure, apparent singularities are points where the local functions have zero deriva-

tive, i.e. where they cannot serve as local coordinates. For an SL-operator D = {∂2zα + qα(zα)},

apparent singularities are the double poles of qα(zα) with specific Laurent tails. For example, for

x ∈ Uα, if

qα(zα) = −
3

4(zα − zα(x))2
+

νx,zα
zα − zα(x)

− ν2x,zα +O(zα − zα(x)), (1.2)

then x is called an apparent singularity of D with multiplicity 1, and νx,zα ∈ C is called the ac-

cessory parameter with respect to the local coordinate zα. The leading coefficients of the Laurent

series at apparent singularities of higher order satisfy higher order algebraic relations. Although

these leading coefficients depend on the choice of local coordinates, the algebraic relations they

satisfy are invariant upon a change of coordinates. These algebraic constraints guarantee that the

ratios of linearly independent solutions to the local differential operators are holomorphic, with

their derivatives vanishing to the right order at the apparent singularities.

Although we will occasionally refer to projective connections for geometric meaning, it is the

explicit nature of SL-operators that will help us carry out computation and prove results. This

approach relies on the fact that, with respect to a coordinate atlas {(Uα, zα)} subordinate to a

holomorphic projective structure, i.e. one that has no apparent singularity 2, {qα(zα)dz2α} glue

into a meromorphic quadratic differential. Chapter 6 and chapter 7 of this thesis are where this
2An example of a holomorphic projective structure is provided by the universal covering ofX via the uniformization

theorem: the realization of X as a quotient of the upper-half plane induces coordinate charts on X the value of which
are related by Möbius transformations.
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approach is carried out.

1.2 Summary of main results

Baker-Akhiezer divisors. Consider (E, ϕ) ∈ MH(Λ) with q = det(ϕ) ∈ H0(K2) non-

degenerate. Let us now take a subbundle L of E. On X , consider the composition

cL(ϕ) : L ↪→ E
ϕ→ E ⊗K → L−1ΛK, (1.3)

where the last arrow is induced by the quotient of L ↪→ E, and on Sq, consider the composition

π∗ (L) ↪→ π∗ (E)→ L−1π∗ (Λ) , (1.4)

where the last arrow is the quotient of L ↪→ π∗(E). Note that cL(ϕ) ̸= 0, as otherwise L is

ϕ-invariant and the zeroes of det(ϕ) have non-trivial multiplicity. We let D =
∑d

i=1 x̃i be the

involution of the zero divisor of (1.4) and call it the Baker-Akhiezer divisor associated to the data

(L ↪→ E, ϕ) (definition 3.1). In fact, D depends only on the isomorphism class [L ↪→ E, ϕ],

where isomorphisms of two such data are defined as isomorphisms of the underlying bundles that

commute with Higgs fields and embeddings of subbundles. We justify this terminology after the

proof of proposition 3.1.

Our first results, proposition 3.1 and theorem 3.7, relate Baker-Akhiezer divisors with zero

divisors of (1.3), characterize the eigen-line bundles in terms of Baker-Akhiezer divisors, and

establish the correspondence, up to a square-root ofOX , between these divisors and their defining

input. We summarize the main points of these results in the following.

THEOREM 1.1. Let Sq
π→ X be the spectral curve associated to a non-degenerate quadratic

differential q ∈ H0(K2).

(i) IfD is the Baker-Akhiezer divisor of (L ↪→ E, ϕ) with det(ϕ) = q, then π(D) coincides with

the zero divisor of cL(ϕ), and the eigen-line bundle of (E, ϕ) is isomorphic to π∗(LK−1)⊗

OSq(D).

(ii) The construction of Baker-Akhiezer divisors and remembering the line bundle defines a bi-
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jection

 [L ↪→ E, ϕ]

∣∣∣∣∣∣∣∣∣
L a subbundle of E,

det(E) = Λ,

det(ϕ) = q

←→
 ([L], D)

∣∣∣∣∣∣∣∣∣
D effective on Sq, contains

no pull-back of divisors on X,

KL−2Λ ∼= OX(π(D))

 .

The map induced by forgetting the subbundle, i.e. (L ↪→ E, ϕ) 7→ D, is a 22g : 1 map.

Apparent singularities as analogues of projection of Baker-Akhiezer divisors. Given an

SL2(C)-holomorphic connection (F,∇) and a subbundle L ↪→ F , the analogue of (1.3) is the

composition

cL(∇) : L ↪→ F
∇→ F ⊗K → L−1K, (1.5)

A priori this composition is only C-linear since it involves ∇, but since the morphism F ⊗K →

L−1K is induced from the quotient of the embedding L ↪→ F , cL(∇) is overall OX -linear and

hence is a section of KL−2. Clearly cL(∇) is non-zero if and only if L is not invariant by ∇; in

particular, if (F,∇) is irreducible then any subbundle L would induce cL(∇) ̸= 0. In this case,

the zero divisor of cL(∇) is an effective divisor x with KL−2 ∼= OX(x).

By choosing local flat frames of F w.r.t. ∇, one can define a flat SL2(C)-bundle F∇ and

then projectivize to obtain a flat PSL2(C)-bundle P(F∇) with P1-fibers. By projectivizing the

subbundle L∇ ↪→ F∇ that corresponds to L ↪→ F , which we denote by L∇ ↪→ F∇, one defines a

section P(L∇) of P(F∇). The projective monodromy representation of P(F∇) is the composition

of the monodromy representation in SL2(C) of F∇ with the projection SL2(C) → PSL2(C),

Twisting the data (L ↪→ F,∇) by a square-root of OX and projectivizing would define the same

projective connection (P(F∇),P(L∇)). We denote by [L ↪→ F,∇] the isomorphism class of such

data, where isomorphisms are defined as isomorphisms of the underlying bundles that commute

with the holomorphic connections and embeddings of subbundles.

A rather explicit description of (P(F∇),P(L∇)) is found in its corresponding SL-operator as

follows. Suppose that in certain local frames adapted toL,∇ takes the form ∂+

a(z) b(z)

c(z) −a(z)

 dz.
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Then one can show that local differential operators of the form ∂2z + q(z) where

q(z) = −b(z)c(z)−
(
a(z)− c′(z)

2c(z)

)2

−
(
a(z)− c′(z)

2c(z)

)′
define an SL-operator that depends only on (F,∇) and the embedding L ↪→ F . We denote this

SL-operator by D(L↪→F,∇). Then one can show furthermore that D(L↪→F,∇) is equivalent to the

projective connection (P(F∇),P(L∇)).

Let RSL2(C) be the set of conjugacy classes of irreducible monodromy representations in

SL2(C). LetM0
D,M0

(P,s) andM0
P be the sets of isomorphism classes of SL-operators, projec-

tive connections and flat PSL2(C) bundles with P1 fibers, respectively, whose projective mon-

odromy representations are irreducible and lift to monodromy representations in SL2(C). Let

R0
PSL2(C) be the set of conjugacy classes of projective monodromy representations that lift to

those in RSL2(C). Denote by div(D) the effective divisor formed by the apparent singularities of

the SL-operator D counted with multiplicity. The following theorem summarizes important re-

sults from subchapter 5.5 and shows how apparent singularities are the analogues of the projection

to X of Baker-Akhiezer divisors.

THEOREM 1.2. (i) Given an irreducible SL2(C)-connection (F,∇) and a subbundle L ↪→ F ,

div(D(L↪→F,∇)) is the zero divisor of cL(∇).

(ii) The following diagram is commutative.

 [L ↪→ F,∇] |

[F,∇] ∈MdR

 MdR RSL2(C)

M0
D M0

(P,s) M0
P R0

PSL2(C).

22g :1
22g :1

22g :1 22g :1

1:1

Here the first two vertical arrows projectivize the corresponding data, the arrows with targets
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RSL2(C) and R0
PSL2(C) evaluate the conjugacy class of the monodromy representations,

and the arrows with targetsMdR andM0
P forget the subbundles and global section of the

respective data. All vertical arrows are surjective, with points in the same fiber, except for

the last vertical arrow, differing by a twist by a square-root of OX .

We note that, analogous to how the degree of Baker-Akhiezer divisors encodes to some extent

the stratum a Higgs bundle is contained, the number of apparent singularities, counted with mul-

tiplicity, of an SL-operator D can encode the stratum a holomorphic connection [F,∇] ∈ MdR

is contained if the monodromy representation of F∇ projects to the projective monodromy repre-

sentation realized by D. In particular, if D has fewer than 2g − 2 apparent singularities, then F is

strictly unstable.

Accessory parameters as analogues of cotangent fiber coordinates of Baker-Akhiezer

divisors. While apparent singularities are analogues of the projection to X of Baker-Akhiezer

divisors, their respective accessory parameters are the analogues of the cotangent fiber coordinates

of Baker-Akhiezer divisors. To give a precise formulation of this statement, we will need the

following genericity condition for an effective divisor x on X . Let Qx be the sublinear space of

H0(K2) consisting of quadratic differentials whose zero divisors are bounded below by x, namely

Qx := {q ∈ H0(K2) | x ≤ div(q)} ∪ {0 ∈ H0(K2)}. We will say that x is Q-generic if the

dimension of Qx has the minimal, expected value, namely

dimQx =


3g − 3− deg(x) for deg(x) < 3g − 3,

0 for deg(x) ≥ 3g − 3.

PROPOSITION 1.3. (Proposition 6.5) Suppose deg(Λ) − g is odd. Let q0 be a non-degenerate

holomorphic quadratic differential, and x′1 + ... + x′3g−3 be a reduced Q-generic divisor. If in

addition there is no exceptional divisor on the spectral curve Sq0 projecting to x′1 + ... + x′3g−3,

then there exist open neighborhoods V ⊂ H0(K2) of q0, Ur ⊂ X of x′r and an embedding

U1 × ...× U3g−3 × V −→MH(Λ),

(x⃗, q) = (x1, ..., x3g−3, q) 7−→ [E(x⃗,q), ϕ(x⃗,q)]

9



where det(ϕ(x⃗,q)) = q and E(x⃗,q) admits a subbundle Lx⃗ with zero divisor of cLx⃗
(ϕ(x⃗,q)) being

x1 + ...+ x3g−3. Furthermore, there exist a coordinate zr on Ur and an injective map of sets

U1 × ...× U3g−3 × V −→ {SL-operators },

(x⃗, q) = (x1, ..., x3g−3, q) 7−→ D(x⃗,q)

whereD(x⃗,q) has simple apparent singularities x1, ..., x3g−3 with respective accessory parameters

ν1, ..., ν3g−3 satisfying ν2r + q(zr(xr)) = 0 for r = 1, ..., 3g − 3.

Let x = x1 + ... + xd be a reduced effective divisor. Fix a point [p1, ..., pd] ∈ (T ∗X)[d] :=

(T ∗X)d/Sd, the d-fold symmetric product of the total space of the cotangent bundle of X , that

projects to x. Then the space of spectral curves that pass through p1, ..., pd and admits these

points as effective divisors and the space of SL-operators having x as their apparent singularities

and same respective accessory parameters are both affine spaces 3 modeled on Qx. In addition,

corollaries 3.8 and 5.8 together show how analogously constrained the input data are in this case.

PROPOSITION 1.4. (i) Two Higgs bundles [E1, ϕ1], [E2, ϕ2] ∈ MH(Λ) define the same point

in (T ∗X)[d] via the construction of Baker-Akhiezer divisor only if E1
∼= E2⊗N for some N

with N2 ∼= OX .

(ii) Let D1 and D2 be SL-operators whose apparent singularities are all simple and projective

monodromy representations have lifts to irreducible monodromy representations in SL2(C).

ThenD1 andD2 have the same apparent singularities and respective accessory parameters if

and only ifD1 ∼ D(L1↪→F1,∇1) andD2 ∼ D(L2↪→F2,∇2) for someL1
∼= L2⊗N , F1

∼= F2⊗N

with N2 ∼= OX .

The fact that the destabilizing subbundle of a strictly unstable bundle has a unique up to scaling

embedding has the following analogous consequences for Higgs bundles and SL-operators (cf.

corollaries 3.10 and 5.4).

PROPOSITION 1.5. (i) On a non-degenerate spectral curve, there is no exceptional divisor of

3If x has points of multiplicity 2, the same statement would hold for SL-operators (cf. proposition 5.7) but not for
Higgs bundles and spectral curves. In this sense SL-operators encode more information than spectral curves and Higgs
bundles.
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degree< 2g−2, i.e. an effective divisor of degree< 2g−2 is equivalent to no other effective

divisors.

(ii) Two projective connections with the same irreducible projective monodromy representation

that has a lift to SL2(C) and the same divisor of apparent singularities of degree < 2g − 2

are isomorphic.

Double points in Baker-Akhiezer divisors and double apparent singularities. The fol-

lowing propositions (propositions 4.3 and 7.6) show that one can form a double point in Baker-

Akhiezer divisor and a double apparent singularity by, respectively, colliding two simple points of

Baker-Akhiezer divisors and two simple apparent singularities.

PROPOSITION 1.6. (Proposition 4.3) Let (E, ϕ) ∈MH(Λ) with the associcated non-degenerate

spectral curve S π→ X and L be a subbundle of E such that cL(ϕ) has a double zero at x0 ∈ X

which is not a branch point of S. Let D be the Baker-Akhiezer divisor of (L ↪→ E, ϕ) and x̃0 be

the point with multiplicity 2 in D with π(x̃0) = x0. Let (U, z) be a coordinate neighborhood of

x0, where z(x0) = 0, U is simply connected and contains no branch point of S. Then there exist

a family of Higgs bundles {(Eu, ϕu)}u∈z(U) and a family of line bundles {Lu}u∈z(U) of the same

degree as L parameterized by U such that

(i) [L0] = [L] in Jacdeg(L)(X) and (E0, ϕ0) = (E, ϕ) inMH(Λ);

(ii) for all u ∈ z(U), Eu admits Lu as a subbundle;

(iii) for all u ̸= 0, the Baker-Akhiezer divisor of (Lu ↪→ Eu, ϕu) is D − 2x̃0 + x̃+ + x̃−, where

x̃± lie in the component of π−1(U) containing x̃0 and are such that z(π(x̃±)) = ±u.

Furthermore, these families define embeddings U ↪→MH(Λ) and U ↪→ Jacdeg(L)(X).

The following proposition is the analogue for SL-operators of proposition 1.6 provided that

certain Q-genericity conditions are met with regard to the choice of the collision site x0. We will

also need to tune the accessory parameters of the colliding simple apparent singularities for them

to form a double one at the limit.
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PROPOSITION 1.7. (Proposition 7.6) LetD be an SL-operator with div(D) = 2x0+x3+ ...+xd

beingQ-generic and d ≤ 3g−3. Then there exists a coordinate neighborhood (U, z) of x0, where

U ⊂ U ′ and z(x0) = 0, and a family of SL-operators {Du}u∈z(U) parameterized by U such that

(i) D0 = D;

(ii) for u ̸= 0,Du has simple apparent singularities at x3, ..., xd and x± ∈ U with z(x±) = ±u;

(iii) for u ̸= 0, the accessory parameters ν±(u) of x± w.r.t. the local coordinate z, as functions

of u, have simple poles at u = 0 and Laurent expansions ν±(u) = ∓ 1
4u +ν

D
0 ±ν ′u..., where

2νD0 is the accessory parameter of the double apparent singularity x0 of D.

Furthermore, this family defines via taking monodromy a holomorphic mapU → Hom(π1, PSL2(C)),

which is injective for d < 2g − 2.

We expect that if the projective monodromy representation ofD defines a point generic enough

in R0
PSL2(C), then such a family of SL-operators defines an embedding U ↪→ R0

PSL2(C) which

lifts to an embedding U ↪→ RSL2(C).

In addition, one can check that if {(Lu ↪→ Fu,∇u)} is a family of holomorphic connections

together with subbundles such that cLu(∇u) has zero divisor x± + x3 + ... + xd for u ̸= 0 and

2x0 + x3 + ...+ xd for u = 0, then the family of SL-operators {Du := D(Lu↪→Fu,∇u)} has x±(u)

as simple apparent singularities with accessory parameters of the required form (cf. example 7.2).

Such a family {(Lu ↪→ Fu,∇u)} can be obtained by applying the so-called “conformal limit” [9]

to a family of Higgs bundles and sub-bundles provided by Proposition 1.6.

Reduction of the degree of Baker-Akhiezer divisors. Let [E, ϕ] ∈ MH(Λ) with associated

non-degenerate spectral curve S π→ X , and L be a subbundle of E. The following proposition

(proposition 4.2) shows, given a point x0 ∈ X that is not a branch point of S, the existence

of families of Higgs bundles parameterized by a neighborhood U of x0 such that Higgs bundles

corresponding to points in U \ {x0} admit subbundles of degree deg(L)− 1, but their limit at x0

is (E, ϕ). Such a family defines an embedding U ↪→MH(Λ).

PROPOSITION 1.8. (Proposition 4.2) Let (E, ϕ) ∈MH(Λ) with associated non-degenerate spec-

tral curve S π→ X , and L be a subbundle of E. Given x0 ∈ X not a branch point of S, let (U, z)
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be a coordinate neighborhood of x0, where z(x0) = 0, U is simply connected and contains no

branch point of S. Then there exist a family of Higgs bundles {(Eu, ϕu)}u∈z(U) and a family of

line bundles {Lu}u∈z(U) of degree deg(L)− 1 parameterized by U such that

(i) [L0] = [L⊗OX(−x0)] in Jacdeg(L)−1(X) and (E0, ϕ0) = (E, ϕ) inMH(Λ);

(ii) for all u ∈ z(U), (Eu, ϕu) has S as its spectral curve;

(iii) for all u ̸= 0, Eu admits Lu as a subbundle;

(iv) for all u ̸= 0, the Baker-Akhiezer divisor of (Lu ↪→ Eu, ϕu) is D + x̃+ + x̃−, where D

is the Baker-Akhiezer divisor of (L ↪→ E, ϕ) and x̃± lie in different distinct components of

π−1(U) with z(π(x̃±)) = ±u.

Furthermore, these families define embeddings U ↪→MH(Λ) and U ↪→ Jacdeg(L)−1(X).

Proposition 1.8 in particular shows how one could limit to a Białynicki-Birula stratum from a

higher stratum. For simplicity we have limited to families of Higgs bundles staying on one fixed

smooth Hitchin fiber.

Given a family {[Eu, ϕu]}u∈z(U) constructed by proposition 1.8, one can use the C∗-action on

MH(Λ) to define a family of Higgs bundles {[Fu, ψu]}u̸=0,u∈z(U) parameterized by U \ {x0},

where [Fu, ψu] := u.[Eu, ϕu] for each u ̸= 0. In case Eu is unstable for all u ∈ z(U), proposition

4.4 shows that the limit [F0, ψ0] := lim
u→0

[E′u, ϕ
′
u] lies in the nilpotent cone 4 and admits L0

∼=

L ⊗ OX(−x0) as a subbundle. Hence, the u → 0 limit of [Fu, ψu] stays in the same Białynicki-

Birula stratum, in contrast to the limit [E, ϕ] of [Eu, ϕu]. In the sense that [Eu, ϕu] = u−1.[Fu, ψu],

one might regard the limiting behavior to a lower stratum of {[Eu, ϕu]}u̸=0,u∈z(U) as a blow-up of

the limiting behavior that remains in the same stratum of {[Fu, ψu]}u̸=0,u∈z(U). 5

Reduction of the number of apparent singularities. The analogy between Baker-Akhiezer

divisors and apparent singularities and their accessory data extends to the families of the corre-

sponding objects, the limits of which respectively have Baker-Akhiezer divisors and divisors of

apparent singularities of lower degree. The following proposition (proposition 7.9) is the analogue
4The nilpotent cone is the fiber over 0 of the Hitchin fibration h : MH(Λ) → H0(K2).
5The limit [F0, ψ0] provides an example of a theorem on the so-called very-stable Higgs bundles, those C∗-fixed

points in MH(Λ) with associated upward flows intersecting the nilpotent cone only once, recently studied by [34].
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of proposition 1.8. We will again need some Q-genericity conditions for the “collision site”, and

tune the accessory parameters corresponding to the colliding apparent singularities for them to

“disappear” at the limit.

PROPOSITION 1.9. (Proposition 7.9) Let D be an SL-operator with div(D) = x3 + ... + xd for

d ≤ 3g − 3, and x0 be a point on X such that 2x0 + x3 + ...xd is Q-generic. Then there exists

a coordinate neighborhood (U, z) of x0 and a family of SL-operators {Du}u∈z(U) parameterized

by U such that

(i) D0 = D;

(ii) for u ̸= 0,Du has simple apparent singularities at x3, ..., xd and x± ∈ U with z(x±) = ±u;

(iii) for u ̸= 0, the accessory parameters ν±(u) of x± w.r.t. the local coordinate z, as functions

of u, have simple poles at u = 0 and Laurent expansions ν±(u) = ± 3
4u ± ν

′u+O(u2).

Furthermore, this family defines via taking monodromy a holomorphic mapU → Hom(π1, PSL2(C)),

which is injective for d < 2g − 2.

We expect that such a family would generically define an embedding U ↪→ R0
PSL2(C) which

lifts to an embedding U ↪→ RSL2(C).

There exists a surgery of projective structures called bubbling, which takes a projective struc-

ture and a path on the surface that contains no apparent singularities as the input. This surgery cuts

open the underlying Riemann surface along the chosen path and glues in a copy of P1 which is

also cut open along the image of the path under the local function defined by the projective struc-

ture [8]. The output is another projective structure which induces the same projective monodromy

representation, but is subordinate to a different Riemann surface, i.e. a different complex structure

for the underlying smooth surface, and has two extra apparent singularities. Now, for u ∈ z(U)

let Uu be the projective structure corresponding to Du constructed in proposition 1.9. We found

evidences suggesting that, for u ̸= 0, Uu is the output of a bubbling that produces x±(u) as the

two extra apparent singularities.
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1.3 Outlooks into geometric Langlands

One of the main motivations for the projects leading to this thesis is to understand explicitly the

geometric Langlands correspondence for the case where the Lie group is G = SL2(C). Certain

aspects of the geometric Langlands correspondence have been made explicitly in the cases where

the Riemann surface has genus zero [22] or one [19] and has punctures, and we would like to

emulate this success for the cases where the Riemann surface is compact and has genus ≥ 2.

We now briefly describe a formulation of the geometric Langlands correspondence and the

explicit formulation in the genus zero case, before discussing how one can expect a generalization

of the strategy and how the results of this thesis fit in this scheme. Several of the constructions and

concepts that are not directly relevant to the content of this thesis will not be explained in details;

we will refer the readers to the references in this case.

Quantization of the Hitchin system and geometric Langlands. The formulation of the geo-

metric Langlands correspondence of our interest predicts a correspondence between flatPSL2(C)-

bundles on a Riemann surface X and objects called Hecke-eigensheaves on the moduli stack

BunSL2(C) of SL2(C)-bundles on X [5] [23] 6. Using techniques inspired by conformal field

theories, Beilinson-Drinfeld [5] proved 7 this correspondence for a class of distinguished flat bun-

dles called opers [4] which in our case are precisely the holomorphic projective structures, i.e.

those without apparent singularities. They “quantized” the Hitchin system by constructing the

quantum Hitchin Hamiltonians, which are certain differential operators that act on a line bun-

dle on BunSL2(C), commute with each other and have the classical Hitchin Hamiltonians as their

symbols. One then can argue that the sought-after Hecke eigen-sheaves can be encoded in the

eigen-functions of these quantum Hitchin Hamiltonians, with their eigen-values encoding the cor-

responding opers [23]. In this sense, the quantization of the Hitchin system is an essential in-

gredient to proving the geometric Langlands correspondence in the special case of holomorphic

projective structures.
6For G = SL2(C), the Langlands dual group is LG = PSL2(C). In general, the geometric Langlands correspon-

dence is between Hecke eigensheaves on the moduli stack BunSL2(C) of G-bundles and flat LG-bundles. For brevity,
we only summarize the geometric Langlands correspondence for the case G = SL2(C).

7Beilinson-Drinfeld proved the geometric Langlands correspondence for opers assuming that G is a connected
simply-connected simple Lie group.
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Geometric Langlands on punctured spheres. Variants of the geometric Langlands correspon-

dence exist for the cases g = 0 and 1, i.e. Riemann sphere and torus with punctures. The case

of the Riemann sphere with N punctures is more explicit, since one can essentially work with

a coordinate z for the whole Riemann surface. In this case, an open dense set of BunSL2(C) is

isomorphic to (P1)N−3 [22]. If the punctures are at z = z1, . . . , zN , a projective structure or

equivalently an SL-operator without apparent singularities takes the form

∂2z +

N∑
r=1

cr
(z − zr)2

+

N∑
r=1

νr
z − zr

. (1.6)

With some proper setup, the Hecke-eigensheaf corresponding to such a holomorphic projective

structure can be encoded by the quantum Hitchin eigen-functions Ψννν with eigen-values equal to

the residues ννν = (ν1, ..., νN ) of the “potential” in (1.6) [22],

HrΨννν = νrΨννν , r = 1, ..., N. (1.7)

Here Ψννν = Ψννν(y1, ..., yN−3) is dependent on the coordinates y1, ..., yN−3 of (P1)[N−3] ⊂

BunSL2(C), and the quantum Hitchin Hamiltonians Hr = Hr(∂y1 , ..., ∂yN−3 , y1, ..., yN−3) are

second-order differential operators.

Sklyanin’s separation of variables. It is known that in this case the quantum Hitchin Hamil-

tonians Hr can be identified with the Hamiltonians of the Gaudin model, which is a quantum

integrable spin chain model [29]. Sklyanin [55] discovered a trick to rewrite (1.7) to a more solv-

able form: one can show that there exists an integral transform

Φννν(x1, .., xN−3) =

∫
dy1...dyN−3K(y1, ..., yN−3, x1, ..., xN−3)Ψννν(y1, ..., yN−3), (1.8)

where K(y1, ..., yN−3, x1, ..., xN−3) is an explicit integration kernel [25] [52], that satisfies

(
∂2xs

+

N∑
r=1

cr
(xs − zr)2

+

N∑
r=1

νr
xs − zr

)
Φννν(x1, .., xN−3) = 0, s = 1, ..., N − 3. (1.9)
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Since (1.9) is a decoupled system of differential equations, this rewriting 8 of the eigen-value

problem (1.7) is called the separation of variables for the quantum Hitchin system in this case. Re-

markably, it also makes explicit the geometric Langlands correspondence: the integral transform

Φννν(x1, .., xN−3) satisfies the very differential equation defining the projective structure to which

the Hecke-eigensheaf encoded in Ψννν(y1, ..., yN−3) corresponds to.

Drinfeld’s construction of geometric Langlands. In [13], Drinfeld gave a construction of

the geometric Langlands correspondence for the case GL2(C) over the function field of a curve

over Fq. Frenkel [22] has reinterpreted Drinfeld’s construction in a geometric context and drew

comparison with Sklyanin’s separation of variables for the case SL2(C).

The rough idea is as follows. Let X be a compact Riemann surface of genus g ≥ 2. Let d be a

positive integer and n = d− 2g + 2. Let N n be the moduli space of rank-2 bundles of degree n,

andN n
2,1 the moduli space of rank-2 bundles of degree d admitting OX as subbundles, i.e. a point

of N n
2,1 is an equivalence class of an extension of the form

0→ OX → F → Λ→ 0, deg(Λ) = n, (1.10)

modulo scaling 9. Let j∨ : N n
2,1 → Jacn(X) be the map that sends a point in N n

2,1 that can be put

in the form (1.10) to [Λ] ∈ Jacn(X). It is a projection with the fiber over [Λ] being PH1(Λ−1).

Its dual projection is the map j : X [d] → Jacn(X), where X [d] = Xd/Sd is the d-fold symmetric

product of X , that sends an effective divisor D of degree d on X to [K−1 ⊗ OX(D)]. The fiber

of j over [Λ] is PH0(KΛ).

N n
2,1 X [d]

N n Jacn(X)

i j∨ j (1.11)

Let i : N n
2,1 → N n be the rational map that picks out [F ] from (1.10). Its fiber over [F ]

consists of sections of F that are nowhere-vanishing. If n ≥ 2g − 1, then the image of i defines
8There are in total N − 3 OBunSL2(C) -linearly independent quantum Hitchin Hamiltonians.
9Scaling the embeddings of OX defines different equivalence classes of extensions, but the same subbundle in F .
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an open dense set 10 in N n.

Let n ≥ 2g − 1. Now, given a monodromy representation ρ̌ : π1 → GL2(C), let Fρ̌ be a flat

rank-2 bundle that realizes ρ. Then one can construct a perverse sheaf F (d)
ρ̌ = (π∗F

⊠d
ρ̌ )Sd , where

π is the quotient Xd → X [d], on X [d]. There exists a transformation called Radon transform [7]

[44] [41] that, as j and j∨ are dual projective fibrations, induces a sheaf Gnρ̌ on N n
2,1 from F

(d)
ρ̌ .

Gnρ̌ can be shown [13] to be an irreducible perverse sheaf which is constant along the generic fiber

of i, and hence is the pull-back of a perverse sheaf Fn
ρ̌ on N n.

Frenkel in [22] sketched how one should expect certain analogue of Fn
ρ̌ for the case SL2(C)

induces the Hecke-eigensheaf corresponding to the projective monodromy representation ρ :

π1 → PSL2(C) defined by ρ̌. In particular, Frenkel showed that in the genus zero case, Sklyanin’s

separation of variables (1.8) is precisely a concrete realization of the passage from perverse sheaves

on X [d] defined by monodromy representations in SL2(C) to Hecke-eigensheaves that are geo-

metric Langlands counterparts of the induced projective monodromy representations.

It is suggested in [22] [52] that, for higher genus cases, one can emulate the success in genus

zero in understanding more explicitly the geometric Langlands correspondence by finding the

analogue of Sklyanin’s “separation of variables” (y1, ..., yN−3) → (x1, ..., xN−3). The idea is to

find a generalization of Sklyanin’s trick that would concretely realize Drinfeld’s idea.

Classical separation of variables. As a first step in this approach to geometric Langlands, one

can observe that, in the genus zero case, there is a change of variables of the classical Hitchin

system that inspires the integral transform (1.8). One looks at the expression of the Higgs fields in

a local frame, picks out the lower-left component and its zeroes on the punctured Riemann sphere.

The lower-left component in this case is a function on the punctured Riemann surface that is linear

in the cotangent fiber coordinates of (P1)N−3 ⊂ BunSL2(C) that are conjugate to y1, ..., yN−3, and

the zeroes of the lower-left component are the variables x1, ..., xN−3. The change of variables

from (y1, ..., yN−3) together with their conjugate variables to (x1, ..., xN−3) together with their

conjugate variables at the classical level then induces a natural analogue at the quantum level,
10A holomorphic rank-2 bundle onX of degree ≥ 2g−1 always has sections by Riemann-Roch theorem. The image

of i then only misses the bundles that have no nowhere-vanishing sections, which form a positive-codimensional loci
in Nn since their Baker-Akhiezer divisors induced by these sections are of positive codimension on the corresponding
spectral curves (cf. appendix C).
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which leads to the rewriting (1.9) of (1.7).

Returning to this thesis, on a compact Riemann surface X of genus ≥ 2, observe that in local

frames adapted to a subbundle L ↪→ E the lower-left component of a Higgs field E is precisely

cL(ϕ) as defined in (1.3). By theorem 1.1, its zeroes are the projections toX of the Baker-Akhiezer

divisors defined by (L ↪→ E, ϕ). We therefore expect that, if it is indeed possible to have an

explicit reformulation of the quantum Hitchin eigen-functions in terms of the SL2(C)-operator

provided by the geometric Langlands correspondence, the projection to X of Baker-Akhiezer

divisors will play a role similar to the “separated variables” x1, ..., xN−3.

In fact, some results supporting this expectation have been obtained in an ongoing project

[12]. The basis of these results, which is a separation of variables of classical Hitchin systems, is

reported in our paper [10]. This classical separation of variables amounts to a (rational) symplec-

tomorphism T ∗NΛ,n → (T ∗X)[d], where NΛ,n is the moduli spaces of pairs (rank-2 bundle with

fixed determinant Λ, subbundle of degree n). One notes that these moduli spaces are contained in

a diagram obtained by adapting Drinfeld’s diagram (1.11) to the case G = SL2(C), i.e. fixing the

determinant Λ,

NΛ,n N∨Λ,n X [m]

NΛ Picd

i j j∨ . (1.12)

In appendix C, we have also sketched such a change of variables at the classical level for the case

G = GL2(C).

Generalization to higher ranks. Laumon [44] suggested a generalization of Drinfeld’s con-

struction of geometric Langlands correspondence to higher ranks via a diagram that is similar

to (1.11) and (1.12) but extends further to the left. One achieves this by again modeling mod-

uli spaces of rank-r holomorphic bundles in terms of the spaces of extensions by rank-(r − 1)

holomorphic bundles, and then applying a chain of Radon transforms 11.

It is natural to expect that this can be realized by an analogue of Sklyanin’s separation of

variables in higher ranks [22], and in particular, we expect that the projection to X of a general-
11The challenge, as pointed out in [22], is to prove that the Radon transforms are irreducible perverse sheaves.
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ization of Baker-Akhiezer divisors in higher rank cases should also play the roles of the separated

variables. Hausel-Hitchin [34] recently studied a variant of this generalization of Baker-Akhiezer

divisors for higher ranks, albeit for different purposes.

Analytic geometric Langlands. We would like to point out an example of success in approach-

ing geometric Langlands from the point of view of separation of variables. In [52], by supposing

that there exists an integral transform of the form (1.8) that satisfies (1.9), Teschner was led to

propose that the geometric Langlands counterparts of holomorphic projective connections with

monodromy representations in PSL2(R) (up to conjugation) can be encoded by single-valued

quantum Hitchin eigen-functions. It is natural to regard the single-valued quantum Hitchin Hamil-

tonians as the analogues of automorphic forms in the original Langlands program.

The set of holomorphic projective connections with monodromy representations in PSL2(R)

is discrete in the moduli space of projective connections, and hence a fit interpretation of this corre-

spondence is that one has imposed a natural quantization condition in addition to the quantization

of the Hitchin system constructed by Beilinson-Drinfeld. Etingof-Frenkel-Kazhdan [15] [16] [17]

further supported this interpretation of a quantization condition by showing that, for the genus

zero case, the single-valued quantum Hitchin eigen-functions are automatically square-integrable,

which is a necessary condition from the physicist’s point of view.

Generalization to projective structures with apparent singularities. There is an unpub-

lished construction by Beilinson-Drinfeld sketched by Frenkel in [23] which claims a generaliza-

tion of the correspondence between holomorphic projective structures and Hecke-eigensheaves

to general projective structures, i.e. those with apparent singularities. We expect that this can be

achieved by generalizing the separation of variables techniques including the poles defining appar-

ent singularities of the corresponding SL-operators. In particular, we expect that our work in this

thesis showing the analogy between Baker-Akhiezer divisors and apparent singularities with their

accessory parameters will help to make this approach explicit. As pointed out in [23], one chal-

lenge would be to show that two projective structures that are not equivalent, in particular having

different apparent singularities, but yield equivalent projective monodromy representations would
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yield equivalent Hecke-eigensheaves 12. One necessary condition would be that the corresponding

quantum Hitchin eigen-functions have the same conjugacy classes of monodromy around their

singular loci in BunSL2(C), which consist of bundles that admit nilpotent Higgs fields.

We believe that understanding Higgs bundles and projective structures in terms of divisors

that play analogous roles, i.e. Baker-Akhiezer divisors and apparent singularities as this thesis

demonstrates, is the first key step in this approach to geometric Langlands.

12Frenkel in section 9.6 of [23] pointed out the challenge that, a priori, the constructed Hecke-eigensheaves are
dependent on the choices of Borel reductions of the flat PSL2(C)-bundle that satisfies the oper condition on the
complement of a finite set of X . Such a Borel reduction is simply a section of the PSL2(C)-bundle, and the finite set
on which the oper condition fails consists of the zeroes of its differential. By theorem 1.2, different Borel reductions of
a flat PSL2(C)-bundle, whose projective monodromy representation can be lifted to SL2(C), are the projectivization
of different subbundles of a flat SL2(C)-bundle whose monodromy representations in SL2(C) is a lift.
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Chapter 2

Moduli spaces of stable bundles and Higgs bundles

Throughout this thesis, X is a compact Riemann surface of genus g ≥ 2. In this chapter we

review the relevant results of moduli spaces of bundles and Higgs bundles, with an emphasis on

the natural stratification on them.

2.1 Moduli spaces of bundles

Given a rank-2 holomorphic bundle E, we say a subbundle M of E is a maximal subbundle of

E if deg(M) ≥ deg(L) for all other subbundles L of E. A rank-2 holomorphic bundle E with

det(E) = Λ is called stable if

s(E) := deg(ΛM−2),

where M is a maximal subbundle of E, is positive. In other words, for E being stable s(E) has

0 as a strict lower bound. It follows by a theorem of Nagata [45] that s(E) ≤ g. Hence, since

s(E) ≡ deg(Λ) mod 2, max s(E) = g if g ≡ deg(Λ) mod 2 and max s(E) = g − 1 otherwise.

Given a line bundle Λ on X , the moduli space of stable bundles NΛ with fixed determinant

Λ on X as a set consists of isomorphisms classes of such stable bundles. It is known that NΛ is

a smooth complex projective variety of complex dimension 3g − 3 [49] [47]. For s ≡ deg(Λ)

mod 2 and in the range 1 ≤ s ≤ g − 2, let NΛ(s) = {[E] ∈ NΛ | s(E) = s}. Then NΛ(s) is

an irreducible algebraic variety of dimension 2g + s − 2. The closure in NΛ of these algebraic

varieties define a natural stratification on NΛ which we call the Segre stratification [42].

It is known that if s(E) = g, then the set of its maximal subbundles is of dimension 1 [42].

On the other hand, a generic bundle E with s(E) = g − 1 only has a finite number of maximal

subbundles, and a generic bundle E with s(E) < g − 1 has only one maximal subbundle. If

however E is strictly unstable, i.e. s(E) < 0, then E has a unique maximal subbundle LE .

Regardless of the value of s(E), if M is a maximal subbundle of E then its embedding into E

is unique up to a scaling, i.e. h0(M−1E) = 1.
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2.2 Moduli spaces of Higgs bundles

An SL2(C)-Higgs bundle is a pair (E, ϕ) where E is a holomorphic rank-2 bundle and ϕ ∈

H0(End0(E)⊗K) is a trace-less holomorphic endomorphism of E twisted by holomorphic one-

forms.

It is known that the moduli spaceMH(Λ) of SL2(C)-stable Higgs bundles with the underlying

bundles having determinant Λ has dimension 6g − 6 [36]. Since tensoring a Higgs bundle with a

line bundle keeps the parity of the degree of the determinant and leaves the Higgs fields intact in

a covariant way, MH(Λ) ∼= MH(Λ′) if and only if deg(Λ) − deg(Λ′) is even. In other words,

the moduli spaces of SL2(C)-Higgs bundles are of two isomorphism classes, defined by whether

deg(Λ) is odd or even. We will often writeMH ≡MH(Λ) when it is not necessary to emphasize

the choice of Λ. We will also often call both (E, ϕ) and its isomorphism class a Higgs bundle, and

abuse the notation by simply writing (E, ϕ) for [(E, ϕ)] ∈ MH unless an emphasis on the fact

that distinct Higgs bundles can be identified via isomorphisms is called for.

2.2.1 Underlying bundles of stable Higgs bundles

For a stable bundle E of determinant Λ, any traceless Higgs field ϕ ∈ H0(End0(E)⊗K) defines

a stable Higgs bundle (E, ϕ) and hence a point [E, ϕ] ∈ MH . One can show that a Higgs field

ϕ ∈ H0(End0(E)⊗K) defines a cotangent vector on the moduli spaceN ≡ NΛ of stable bundles

with determinant Λ. Hence T ∗N ⊂MH . This embedding is in fact open dense. In addition,MH

can be equipped with a natural symplectic structure which restricts to the canonical one on T ∗N .

Not all rank-2 unstable bundles form stable Higgs bundles. We refer to [35] for a complete

classification.

PROPOSITION 2.1. [35] (E, ϕ) is stable if and only if one of the following conditions holds

(i) E is stable,

(ii) E is strictly semi-stable and g > 2,

(iii) E ∼= L ⊗ U is strictly semi-stable and g = 2, where the rank-2 bundle U is either decom-

posable or an extension of OX by itself,

(iv) E is destabilized by subbundle LE ↪→ E with h0(KL−2E Λ) > 1,
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(v) E = LE ⊕ L−1E Λ with h0(KL−2E Λ) = 1.

For our purpose, it will be instructive to understand the cases of strictly unstable bundles in

details. We now review the representation of Higgs bundles in terms of extensions of line bundles

before discussing these cases.

Higgs bundles in terms of extensions of line bundles. Suppose E can be realized as an ex-

tension of a line bundle L−1Λ by L, i.e. there exists a s.e.s.

0→ L→ E → L−1Λ→ 0. (2.1a)

An extension of this form is equivalent to the data of a subbundle L ↪→ E, or equivalently a

collection of the transition functions of E of the form

(E)αβ =

lαβ lαβϵαβ

0 l−1αβλαβ

 (2.1b)

where lαβ and λαβ are respectively transition functions of L and Λ. A Higgs field ϕ on E then

defines the composition

cL(ϕ) : L ↪→ E
ϕ→ E ⊗K → L−1ΛK. (2.1c)

In other words, the embedding L ↪→ E defines a map cL : H0 (End0(E)⊗K)→ H0
(
KL−2Λ

)
.

We might later simply write c ≡ cL(ϕ) when the input data (L ↪→ E, ϕ) are clear in context.

Concretely, if over an open set Uα ⊂ X the Higgs field takes the local form

ϕα =

(
aα bα

cα −aα

)
(2.1d)

in certain local frames adapted L ↪→ E, then {cα} glue into the global section cL(ϕ) of KL−2Λ.

Note that cL(ϕ) = 0 if and only if L is ϕ-invariant.

The space of extension classes of the form (2.1a) is canonically isomorphic to H1(L2Λ−1),

which is dual toH0(KL−2Λ) via Serre duality. One could show that for all ϕ ∈ H0 (End0(E)⊗K)

the pairing via Serre duality of the class [E] ∈ H1(L2Λ−1) of the extension (2.1a) and cL(ϕ) ∈
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H0(KL−2Λ) satisfies

⟨[E], cL(ϕ)⟩ = 0. (2.2)

In other words, the image of cL is contained in the hyperplane

ker([E]) = {c ∈ H0(KL−2Λ) | ⟨[E], c⟩ = 0}

defined by (2.1a). See appendix B for the proof of this Serre duality constraint and a detailed

analysis of the image of cL.

Underlying unstable bundles. Let E be a strictly unstable bundle with determinant Λ and a

destabilizing subbundle LE ↪→ E, i.e. deg(L−2E Λ) < 0. If L ↪→ E is another subbundle, then

deg(L) ≤ deg(L−1E Λ): otherwise the composition L ↪→ E → L−1E Λ is zero, which is impossible

by the assumption that L and LE are different subbundles of E. It follows that LE is the unique

subbundle that destabilizes E, and furthermore its embedding into E is unique up to scaling.

Hence a Higgs field ϕ on E defines a stable Higgs bundle if and only if cLE
(ϕ) ∈ H0(KL−2E Λ)

is nonzero.

If h0(KL−2E Λ) > 1, which is the generic case when deg(KL−2E Λ) > g, then one can show

that there are Higgs fields on E that define stable Higgs bundles, i.e. im(cLE
) contains nonzero

elements of H0(KL−2E Λ). Indeed, one can show that E∗LK is isomorphic to the bundle of trace-

less Higgs fields preserving LE (cf. appendix B), and hence cLE
fits in the induced long exact

sequence

0→ H0 (E∗LEK)→ H0 (End0(E)⊗K)
cLE→ H0

(
KL−2E Λ

)
→ H1 (E∗LEK)→ ... (2.3)

It follows from Serre duality and the fact that LE has a unique up to scaling injection into E that

h1 (E∗LEK) = h0(L−1E E) = 1. Hence if h0(KL−2E Λ) > 1 then im(cLE
) has positive dimension.

On the other hand, if h0(KL−2E Λ) = 1, which is the generic case when deg(KL−2E Λ) ≤ g,

then it follows from the Serre duality constraint (2.2) that (E, ϕ) is stable if and only if cLE
(ϕ) ̸= 0

and E = LE ⊕ L−1E Λ.
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2.2.2 Spectral correspondence and integrable structure

The Hitchin fibration h :MH → H0(K2) associates to the isomorphism class of a Higgs bundle

(E, ϕ) the quadratic differential q = det(ϕ). A generic Hitchin fiber is isomorphic to an abelian

variety, namely the Prym variety of the associated spectral curve. This endows MH with the

structure of an algebraic integrable system [36].

To see this, first note that associated to a quadratic differential q = det(ϕ) is a “spectral

curve” Sq embedded in the total space of T ∗X . The spectral curve encodes the eigen-values of

the Higgs field: concretely, if u is the coordinate of an open set U ⊂ X , v the fiber coordinate of

the restriction of T ∗X to U and ϕ(u) =

a(u) b(u)

c(u) −a(u)

 locally, then locally Sq is defined by

v2 + q(u) = v2 − a(u)2 − b(u)c(u) = 0. (2.4)

The morphism Sq
π→ X induced by T ∗X → X is a 2 : 1 covering that branches at the zeroes

of det(ϕ). The involution σ of Sq interchanges points corresponding to the eigenvalues v =

±(−q(u))1/2 of ϕ(u). We say a quadratic differential q and its associated spectral curve Sq are

non-degenerate if the zeroes of q are all simple. In this case, Sq is a smooth compact Riemann

surface of genus g̃ = 4g − 3, and in particular π∗(K) has a canonical section defined by v that

vanishes precisely at the ramification divisor Rq of Sq. A spectral curve Sq is called degenerate

when q has zeroes of non-trivial multiplicity; the most degenerate case is q = 0, and we call the

fiber h−1(0) the nilpotent cone.

Eigen-line bundles. In the non-degenerate case, up to isomorphism, a Higgs bundle (E, ϕ) with

q = det(ϕ) corresponds to a sub-line bundle L of π∗(E) on Sq, defined as the kernel of the

morphism (π∗(ϕ)−v) : π∗(E)→ π∗(E⊗K) [35]. In other words at each point p ≡ (u, v) ∈ Sq,

L as a subbundle of π∗(E) is defined by the eigen-subspace of π∗(ϕ)(p) with the eigen-value v.

Since π∗(ϕ)(p) also has −v as its eigen-value, which defines σ(p) ≡ (u,−v), one can similarly

define a sub-line bundle of π∗(E) with these eigen-values, which is nothing but σ∗(L). The line

bundles L and σ∗(L) are called the eigen-line bundles of (E, ϕ); they coincide at the ramification
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points of Sq
π→ X and satisfy

L ⊗ σ∗(L) ∼= π∗(Λ⊗K−1). (2.5)

Conversely, given a line bundle L satisfying (2.5), one can show that the direct image π∗(L⊗

π∗(K)) is a rank-2 bundle, whose determinant is isomorphic to Λ and pull-back to Sq contains

L and σ∗(L) as subbundles. A Higgs field can be constructed from the fact that, at p ∈ Sq,

π∗(ϕ) |p acts on L |p and σ∗(L) |p with eigen-values corresponding to p and σ(p) respectively.

By construction, the eigen-line bundles of this Higgs bundle are L and σ∗(L).

Prym variety and integrable structure. Condition (2.5), which relates the fixed determinant

of the underlying rank-2 bundles on X and the eigen-line bundles on Sq, in fact implies that the

Hitchin fiber h−1(q) is isomorphic to the Prym variety of Sq if q has only simple zeroes.

The Prym variety Prym(Sq) is the subset of the Jacobian of Sq defined as the kernel of the

norm map π∗ : Jac0(Sq) → Jac0(X) that sends the equivalence class [D] of degree-0 divisor D

on Sq to [π(D)]. It is known that Prym(Sq) = {[L] ∈ Jac0(Sq) | L⊗ σ∗(L) ∼= OSq} if we regard

Jac0(Sq) as the set of isomorphism classes of degree-0 line bundles on Sq. Then choosing any line

bundle L0 that satisfies condition (2.5) allows us to define an isomorphism h−1(q)
∼→ Prym(Sq)

by [E, ϕ] 7→ [L0−1 ⊗ L(E,ϕ)] where L(E,ϕ) is the eigen-line bundle of (E, ϕ). Since a line

bundle satisfies (2.5) if and only if it is the eigen-line bundle of a Higgs bundle having Sq as

its spectral curve, we have defined such an isomorphism simply by identifying a point in h−1(q)

with 0 ∈ Prym(Sq).

REMARK 2.1. For Sq non-degenerate, pulling-back line bundles from X to Sq defines an embed-

ding π∗ : Jac0(X) ↪→ Jac0(Sq). The intersection of Prym(Sq) and the copy of Jac0(X) is the

discrete set of 22g points {π∗L | L⊗2 ∼= OX}.

2.2.3 Natural stratification

CCC∗-fixed points. The Hitchin moduli space admits a C∗-action defined as λ.[E, ϕ] = [E, λϕ] for

λ ∈ C∗. The fixed point locus MC∗
H of the C∗-action is a subset of the nilpotent cone h−1(0).

Clearly MC∗
H contains the zero section N ∼= {(E, 0) | E ∈ N} of T ∗N ⊂ MH . The other
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C∗-fixed points have also been classified: for E destabilized by M , a Higgs bundle (E, ϕ) ∈MH

is C∗-fixed if and only if (E, ϕ) ∼ (EM , ϕc) where

EM =M ⊕M−1Λ, ϕc =

0 0

c 0

 , (2.6)

with some nonzero c ∈ H0(KM−2Λ) [35][34]. We write

MC∗
H = N ∪

(
∪
d
Nd

)
, Nd = {[EM , ϕc] | deg(c) = d}, (2.7)

where N and Nd are connected components ofMC∗
H , with 0 ≤ d ≤ 2g − 2 if deg(Λ) is even and

1 ≤ d ≤ 2g − 1 if deg(Λ) is odd.

Upward flows of CCC∗-fixed points. An important property of the Hitchin fibration is properness

and equivariance with respect to the C∗-action on MH [48] [34]. This implies that any point

[E, ϕ] ∈ MH has a well-defined limit lim
λ→0

[E, λϕ] ∈ MH . For [E, ϕ] with E stable, (E, λϕ) is

also stable for any λ ∈ C and hence lim
λ→0

[E, λϕ] = [E, 0]. For E unstable with LE the destabi-

lizing subbundle, since (E, 0) is not a stable Higgs bundle the limit is different: we have in fact

lim
λ→0

[E, λϕ] = [EM , ϕc] as in (2.6) with M = LE and c = cLE
(ϕ) = cM (ϕc). We can illustrate

this by, for each λ ∈ C∗, considering the automorphism gλ =

λ−1/2 0

0 λ1/2

 of E and noting

its actions on the transition functions (E)αβ of E in local frames adapted to LE as

g−1

(LE)αβ (LE)αβϵαβ

0 (LE)αβ(Λ)αβ

 g =

(LE)αβ λ(LE)αβϵαβ

0 (LE)αβ(Λ)αβ

 , (2.8)

which at the limit λ → 0 provides the transition functions of EM . The action of g on the Higgs

field λϕ is

g−1(λϕ)g = g−1

λa λb

λc −λa

 g =

λa λ2b

c −λa

 ,

which at the limit λ→ 0 provides ϕc.

28



We note that, regardless of whether E is stable or not, if LE ↪→ E is a maximal subbundle of

E, then it is also the maximal subbundle of the underlying bundle at the limit lim
λ→0

[E, ϕ]. For a

C∗-fixed point α, we say Wα := {[E, ϕ] ∈MH | α = lim
λ→0

[E, λϕ]} is the upward flow of α.

EXAMPLE 2.2. For E stable and α = (E, 0), W[E,0] is the cotangent fiber T ∗[E]N ⊂ T ∗N ⊂

MH . If deg(Λ) is even, upon choosing a spin structure K1/2, at the other extreme is the upward

flow of α =

K1/2 ⊕K−1/2,

0 0

1 0

. This upward flow intersects each Hitchin fiber h−1(q)

at precisely one point defined by

K1/2 ⊕K−1/2,

0 −q

1 0

 and is called the Hitchin section.

There are 22g such Hitchin sections corresponding to 22g choices of K1/2.

It is known that Wα is Lagrangian for any α ∈ MC∗
H , which is the generalization of the fact

that W[E,0] is Lagrangian in T ∗N ⊂MH for E stable [9]. The decomposition

MH =WN ⊔
(
⊔
d
WNd

)
,

where WF := ∪
α∈F

Wα for each connected component F ofMC∗
H , is called the Białynicki-Birula

stratification of MH . Note that WN ∼= T ∗N inherits a natural stratification from the Segre

stratification on N and its union with ⊔
d
WNd

is a natural generalization.
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Chapter 3

Baker-Akhiezer divisors

In this chapter we introduce the notion of Baker-Akhiezer divisors on non-degenerate spectral

curves. The input data to define these divisors consist of a Higgs bundles with non-degenerate

associated spectral curve and an injection of a line bundle to the underlying rank-2 bundle. While

the terminology for these divisors is new and inspired by the literature on integrable systems, the

usage of these divisors is not entirely new. Hitchin in his original paper [35] already characterized

Higgs bundles with underlying unstable bundles in terms of these divisors, and the recent work

[34] of Hausel-Hitchin also made extensive use of them in particular in their analysis for different

purposes.

3.1 Definitions and basic properties

Explicit definition of Baker-Akhiezer divisors. Let (E, ϕ) be a semi-stable Higgs bundle with

an associated non-degenerate quadratic differential q, and L ↪→ E a subbundle. Then c = cL(ϕ) ∈

H0(KL−2Λ) defined as in (2.1c) is nonzero: otherwise the zeroes of q will have multiplicity.

Consider its zero divisor div(c) =
∑d

i xi. At each xi, equation (2.4) for the spectral curve Sq
π→ X

reduces to v2 − a(u(xi))
2 = 0. If xi is not a branch point, then the two points in π−1(xi)

are unambiguously labeled by v = ±a(u(xi)); in this case let x̃i be the point defined by v =

−a(u(xi)). If xi is a branch point then let x̃i be the ramification point π−1(xi). We define

D :=
d∑

i=1

x̃i. (3.1)

Clearly D is dependent only on the data (L ↪→ E, ϕ). We say D is the Baker-Akhiezer divisor

of this data. We will write D = D (L ↪→ E, ϕ) when we want to emphasize this dependence,

otherwise we will simplify the notation. Inspired by [35] and [34], in definition 3.1 we will

characterize these divisors in an invariant way and include the case where the injection L → E

has zeroes and hence does not define a subbundle.
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REMARK 3.1. Since q = det(ϕ) has only simple zeroes, if a branch point of Sq
π→ X is con-

tained in div(c) then it must have multiplicity 1. The corresponding ramification point then has

multiplicity 1 in the Baker-Akhiezer divisor D. Hence by construction D contains no part equal

to the pull-back of a divisor on X 13 .

The following proposition describes the eigen-line bundles L and σ∗(L) of (E, ϕ) in terms of

L andD. The result has a straightforward generalization to the caseGL2(C). Hausel-Hitchin [34]

has noted similar results in the case where E is unstable.

PROPOSITION 3.1. Let (E, ϕ) be an SL2(C)-Higgs bundle with associated non-degenerate spec-

tral curve S π→ X . Let L be a subbundle of E and D the Baker-Akhiezer divisor of the data

(L ↪→ E, ϕ). Then

L ∼= π∗
(
K−1L

)
⊗OS (D) , σ∗(L) ∼= π∗

(
K−1L

)
⊗OS (σ(D)) . (3.2)

Proof. We will abuse the notations by using the same notations to denote the local functions on

X and their pull-backs on S; this in particular applies to components of ϕ and transition functions

of E. In the local frames of π∗(E) adapted to the pull-back of (2.1a) from X to S, one can

check that local sections of the form
(
v + a(u)

c(u)

)
are eigen-vectors of π∗ϕ with eigen-value v,

and hence are local sections of L ↪→ π∗ (E). As we transit from one component in π−1(Uα) to

one intersecting component in π−1(Uβ), these local sections transform as

vα + aα

cα

 7→ (E)−1αβ

vα + aα

cα

 =

lαβ lαβϵαβ

0 l−1αβλαβ

−1vα + aα

cα

 . (3.3)

Noting the transformation of the Higgs field (B.2), we can rewrite (3.3) as

1.

vα + aα

cα

 7→ l−1αβkαβ

vβ + aβ

cβ

 = lβαk
−1
βα

vβ + aβ

cβ

 . (3.4)

where kαβ is the transition function of K, and vα = kαβvβ (since they are fiber coordinates of

13The pull-back to S of a branch point on X , regarded as a divisor on X , takes multiplicity into account and so has
multiplicity 2.

31



K). Note that

vα + aα

cα

 vanishes only at D, and hence can serve as a local frame of L if Uα

contains no point of D. In other words, away from neighborhoods of x̃i, L has the same transition

functions as π∗
(
LK−1

)
.

To get a local frame of L on a component of π−1 (Uα) containing x̃i, we can quotient out fromvα + aα

cα

 the minimum of zero multiplicities of vα + aα and cα at x̃i . If xi ∈ Uα is not a

branch point, (2.4) implies that this is the multiplicity of xi in div(c). If xi ∈ Uα is a branch point

and has multiplicity 1 in div(c), then x̃i is a simple zero of v + aα ≡ v + π∗(aα) and a double

zero of cα ≡ π∗(cα) on S. In either case, we can quotient out from

vα + aα

cα

 precisely the

multiplicity of xi in div(c) to construct a local frame of L. This explains the correctionOS (D) to

π∗
(
LK−1

)
in (3.2).

REMARK 3.2. Since

vα + aα

cα

 resembles Baker-Akhiezer functions in the integrable system

literature [2] we are inspired to associate the terminology “Baker-Akhiezer” to its zero divisor D.

EXAMPLE 3.3. Let q be a non-degenerate quadratic differential. Recall that the intersection of

the Hitchin fiber h−1(q) with the Hitchin section corresponding to the spin structure K1/2 is

defined by

K1/2 ⊕K−1/2,

0 −q

1 0

. The Baker-Akhiezer divisors of the data defined by

this Higgs bundle and taking K1/2 and K−1/2 as subbundles are respectively the trivial divisor

and the ramification divisor Rq on Sq
πq→ X . Since OSq(Rq) ∼= π∗q (K), it follows from (3.2) that

the eigen-line bundle is isomorphic to π∗q (K
−1/2) either way.

Following the discussion on isomorphisms between generic Hitchin fibers and Prym varieties,

one can define the isomorphism Iq,K1/2 : h−1(q)
∼→ Prym(Sq) that identifies

K1/2 ⊕K−1/2,

0 −q

1 0


with 0 ∈ Prym(Sq). If [E, ϕ] ∈ h−1(q) and D is the Baker-Akhiezer divisor of some data

(L ↪→ E, ϕ), then Iq,K1/2 sends [E, ϕ] to the isomorphism class of the line bundle π∗q (LK
−1/2)⊗

OSq(D). In particular, the intersection of h−1(q) with another Hitchin section corresponding to

another spin structure K1/2O1/2
X is mapped to the isomorphism class of π∗(O1/2

X ). Hence Iq,K1/2
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maps points on the 22g Hitchin sections surjectively to Prym(Sq) ∩ π∗(Jac0(X)).

Formal definition of Baker-Akhiezer divisors. We now give an invariant and slightly more

general definition of Baker-Akhiezer divisors. This characterization of these divisors has featured

in [35] [34].

Suppose (E, ϕ) is a Higgs bundle with non-degenerate spectral curve S π→ X . The eigen-line

bundle L of (E, ϕ) is a subbundle of π∗ (E) and hence defines an extension

0→ L → π∗ (E)→ L−1π∗ (Λ)→ 0. (3.5)

Let L → E be an injection which possibly has zeroes. We will in particular denote by “L ↪→ E”

an injection which has no zero, i.e. an embedding that makes L into a subbundle of E. Consider

the composition

π∗ (L)→ π∗ (E)→ L−1π∗ (Λ) . (3.6)

The support of the zero divisor of this composition consists of the pull-back of the support of the

zero divisor of L→ E and points where π∗(L) coincides with L as subbundles of π∗(E).

Suppose L ↪→ E has no zero, and hence E can be realized as an extension of the form (2.1a).

We claim that the zero divisor of (3.6) is σ(D) where D is defined as in (3.1). Indeed, if a local

frame of L takes the form

x1
x2

 in some local frame of π∗ (E) adapted to the pull-back of (2.1a),

then an SL2(C)-change of local frames of π∗ (E) from one adapted to π∗(L) ↪→ π∗(E) to one

adapted to L ↪→ π∗(E) can take the form

x1 y1

x2 y2

−1 =

 y2 −y1

−x2 x1

. One then can take y2

−x2

 as a local frame of π∗(L) in certain local frame of π∗(E) adapted to L ↪→ π∗(E), and

so locally the composition (3.6) can be modeled as 1 7→

 y2

−x2

 7→ −x2. It then follows from

the explicit construction of

x1
x2

 in the proof of proposition 3.1 that indeed formula (3.1) gives
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the involution of the zero divisor of (3.6).

DEFINITION 3.1. Given a Higgs bundle (E, ϕ) with non-degenerate spectral curve S π→ X and

an injection L → E, the Baker-Akhiezer divisor associated to these data is the involution of the

zero divisor of the composition π∗ (L)→ π∗ (E)→ L−1π∗ (Λ).

The cases where L → E has zeroes is a straightforward generalization. Indeed, if L → E

has B as its zero divisor, then there exists a subbundle L(B) := L ⊗ OX(B) ↪→ E such that

its composition with the canonical injection of sheaves L sB→ L(B) defines L → E. The Baker-

Akhiezer divisors of (L → E, ϕ) is equal to π∗(B) plus that of (L(B) ↪→ E, ϕ), with the latter

containing no part equal to the pull-back of a divisor on X (cf. remark 3.1). The proof of the

following proposition, which generalizes proposition 3.1, is straightforward.

PROPOSITION 3.2. Let D be the Baker-Akhiezer divisor of (L→ E, ϕ) on a non-degenerate

spectral curve S π→ X . Then

(a) D contains π∗(B) for some effective divisor B on X if and only if L → E vanishes at

B, counted with multiplicity. In particular, D contains no part equal to the pull-back of a

divisor on X if and only if L is a subbundle of E, and in this case D is given by (3.1);

(b) the eigen-line bundle L of (E, ϕ) is isomorphic to π∗
(
LK−1

)
⊗OS(D);

(c) D satisfies OX(π(D)) ∼= KL−2Λ, where Λ = det(E).

Anti-symmetrization of Baker-Akhiezer divisors. The following proposition shows that, while

the construction of Baker-Akhiezer divisors depends not only on Higgs bundles but also on in-

jections from line bundles, the anti-symmetrization of these divisors are invariants of the Higgs

bundles themselves.

PROPOSITION 3.3. If D and D′ are Baker-Akhiezer divisors of (E, ϕ) on S π→ X induced re-

spectively by injections L → E and L′ → E, then D − σ(D) ∼ D′ − σ(D′). In particular,

D − σ(D) represents (σ∗(L))−1 L where L is the eigen-line bundle of (E, ϕ).

Proof. Applying (3.2) to express L and σ∗(L) each in terms of D and D′, one can check that

OS (D − σ(D)) ∼= (σ∗(L))−1 L ∼= OS

(
D′ − σ(D′)

)
. (3.7)
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REMARK 3.4. The anti-symmetrization D − σ(D) of a Baker-Akhiezer divisor D on S, which

represents the line bundle (σ∗(L))−1 L, can be expressed in another way. Following example 3.3,

consider the isomorphism Iq,K1/2 : h−1(q)
∼→ Prym(Sq) defined by identifying 0 ∈ Prym(Sq)

with the intersection of h−1(q) with the Hitchin section corresponding to a spin structure K1/2.

For (E, ϕ) a Higgs bundle with det(ϕ) = q and D its Baker-Akhiezer divisor induced by an

injection L→ E, we have Iq,K1/2([E, ϕ]) = [π∗q (LK
−1/2)⊗OSq(D)] and

2Iq,K1/2([E, ϕ]) = [π∗q
(
L2K−1

)
⊗OSq(2D)] = [D − σ(D)] (3.8)

where we have used property (c) of proposition 3.2. It is in the sense that (3.8) is an invariant of

(E, ϕ) that we may claim that the isomorphism Iq,K1/2 is somewhat “canonical” (there are still

22g such “canonical” isomorphisms corresponding to 22g distinct spin structures on X though).

3.2 Inverse construction

In the following we will show that, given the data (q,D) where q is a quadratic differential with

simple zeroes and D an effective divisor on the spectral curve Sq
π→ X , we can construct the data

(L → E, ϕ) that defines D as its Baker-Akhiezer divisor. The solutions to this inverse problem

are not unique, since twisting one solution with a line bundle defines another. For solutions that

define Higgs bundle in the same moduli spaceMH(Λ), it will be clear shortly that they differ only

by a twist by a square-root of the trivial line bundle.

It is instructive to see first the existence and uniqueness up to isomorphism of the “normalized”

solutions, i.e. L = OX , and in the case where the injection is an embedding, i.e. L = OX is a

subbundle, via an explicit construction. A more abstract proof can be found in the discussion

following theorem 8.1 in [35].

PROPOSITION 3.4. Let q be a non-degenerate quadratic differential and D = x̃1 + ... + x̃d an

effective divisor on Sq
π→ X that does not contain the pull-back of an effective divisor on X . Then
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there exist a rank-2 bundle E′ that arises as an extension of Λ′ = K−1 ⊗OX(π(D)) by OX ,

0→ OX → E′ → Λ′ → 0, (3.9)

and a holomorphic Higgs field ϕ′ onE′ such thatD is the Baker-Akhiezer divisor of (OX ↪→ E′, ϕ′).

The Higgs bundle (E′, ϕ′) is unique up to isomorphism, and the embedding OX ↪→ E′ is unique

up to scaling.

Proof. We first note that the uniqueness statement of the proposition would follow from the

existence statement and the properties of Baker-Akhiezer divisors. Indeed, if D is simultaneously

the Baker-Akhiezer divisor of (OX ↪→ E′, ϕ′) and (OX ↪→ E′′, ϕ′′), then by proposition 3.1 both

(E′, ϕ′) and (E′′, ϕ′′) are isomorphic to the direct image of OSq(D). To show uniqueness up to

scaling of the embeddings, observe that two embeddings i1, i2 : OX ↪→ E′ define the same 1-

dimensional subspaces in the fibers ofE over the zero divisor of the compositionOX
i1
↪→ E′ → Λ′,

where the surjection is the quotient of i2. On the other hand, if they define the same Baker-

Akhiezer divisor D, then π∗(i1) and π∗(i2) define the same 1-dimensional subspaces in the fibers

of π∗(E) over D, and hence i1 and i2 define the same 1-dimensional subspaces in the fibers of E

over π(D). which is of degree deg(KΛ′) > deg(Λ′). Hence if D has no point with non-trivial

multiplicity, the composition OX
i1
↪→ E′ → Λ′ must vanish, which occurs if and only if i1 and i2

are scalings of each other. By an argument analogous to the discussion leading to definition 3.1,

one could show that this statement also holds with multiplicity counted.

To prove the existence statement, we now construct (E′, ϕ′) on an explicit covering. Let

x := π(D) = x1 + ... + xd, where xi = π(x̃i). Let p = p1 + ... + pm and q = q1 + ... + qn

be effective divisors such that Λ′ ∼= OX (p− q), and each pj , qk has multiplicity 1 in p+ q+ x.

Let (Ui, ui) be a small coordinate neighborhood of xi with ui(xi) = 0, and (Upj , zpj ), (Uqk , zqk)

be similarly defined coordinate neighborhoods of pj , qk respectively. W.l.o.g. assume that these

neighborhoods do not intersect each other. Consider a covering of X defined by

{
X ′, U1, ..., Ud, Up1 , ..., Upm , Uq1 , ..., Uqn

}
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where X ′ = X \ {supp(x+ p+ q)}. Our ansatz for the transition functions of E′ are

(
E′
)
UiX′ =

1 ϵi/ui

0 1

 ,
(
E′
)
UpjX

′ =

1 0

0 zpj

 ,
(
E′
)
Uqk

X′ =

1 0

0 z−1qk

 (3.10)

where ϵi = ϵi(ui) is a holomorphic function of ui on Ui∩X ′ = {ui ̸= 0}. LetA be a holomorphic

differential and C ∈ Ω−x−q+p a meromorphic differential that vanishes at x + q, counted with

multiplicity, and has simple poles at p1, ..., pm 14. With B =
(
q −A2

)
/C being a holomorphic

differential on X ′, our ansatz for ϕ′ is that it takes the local form

A B

C −A

 on X ′. Then ϕ′ of

this form would be regular on all of X if its local forms

A+ (ϵi/ui)C B − 2(ϵi/ui)A− (ϵi/ui)
2C

C −A− (ϵi/ui)C

 ,

 A z−1pj B

zpjC −A

 ,

 A zqkB

z−1qk
C −A


(3.11)

on Ui, Upj and Uqk respectively are regular. In addition, it follows from the explicit construction

(3.1) of Baker-Akhiezer divisors that, if the function −A(ui) − ϵi
ui
C(ui) evaluated at ui = 0 is

equal to the square-root of q(ui) |ui=0 that determines x̃i ∈ π−1(xi) = {x̃i, σ(x̃i)}, then this

would give the Higgs bundle (E′, ϕ′) we seek. With the ansatz ϵi(ui) = ϵ0i /u
|xi|−1
i , where ϵ0i ∈ C

and |xi| is the multiplicity of xi in x, we can solve this condition, now a linear one, for a unique

ϵ0i ∈ C. This determines the tuple ϵ = (ϵ1(u1), ..., ϵd(ud)), which determines E′ as an extension

of Λ′ by OX . A direct check shows that with the chosen A, B, C and ϵ, the expressions in (3.11)

are automatically regular.

REMARK 3.5. i. The construction of (E′, ϕ′) in the proof of proposition 3.4 gives an explicit

description of the push-forward of OSq(D).

ii. The fact that A can be any holomorphic differential gives us some degrees of freedom to

adjust ϵ = (ϵ1, ..., ϵd), i.e. constructing equivalent extensions of Λ′ by OX , and in particular

elements in the isomorphism class of E′. This reflects the fact that dimExt (Λ′,OX) =

14By construction C is unique up to scaling and is identified with the section of KΛ′ having x as its zero divisor via
the isomorphism Ω−x−q+p

∼→ KΛ′ ∼= OX(x).
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h1(Λ′−1) = h0 (KΛ′) is smaller than d = deg(KΛ′).

As an example, for any h ≤ g consider a subset {xj1 , ..., xjh} ⊂ {x1, ..., xd} such that

dim{ω ∈ H0(K) | xj1 + ...xjh ≤ div(ω)} = g − h (a generic situation). Then we can

choose A such that −A(ujk(xjk)) is equal to the square-root of q(ujk(xjk)) that determines

x̃jk . This fixes ϵjk = 0 for k = 1, ..., h. We see explicitly here how the underlying bundle of

a Higgs bundle with a generic Baker-Akhiezer divisor of degree≤ g must be split (cf. the last

case in proposition 2.1).

We have assumed that D does not contain the pull-back of any effective divisor on X in

proposition 3.4 to construct E′ with an embedding OX ↪→ E′. On the other hand, if D contains

the pull-back of some effective divisor on X , then there exists some effective divisor B on X such

that D− π∗(B) does not contain the pull-back of any effective divisor on X . It is straightforward

to generalize proposition 3.4 to this case.

PROPOSITION 3.5. Let D be an effective divisor on a non-degenerate spectral curve Sq
π→ X ,

and suppose thatB is an effective divisor onX such thatD−π∗(B) does not contain the pull-back

of any effective divisor. Then there exists a Higgs bundle (E′, ϕ′), where E′ can be realized as an

extension of Λ′ = K−1 ⊗ OX(π(D) − B) by OX , such that D is the Baker-Akhiezer divisor of

the data
(
OX(−B)

sB→ OX ↪→ E′, ϕ′
)

. The Higgs bundle (E′, ϕ′) is unique up to isomorphism,

and the embedding OX ↪→ E′ is unique up to scaling.

Proof. The proposition follows from applying proposition 3.4 to D − π∗(B) and noting that

OX(−B)
sB→ OX has B as its zero divisor.

Propositions 3.4 and 3.5 give the inverse construction of the Baker-Akhiezer divisors in the

“normalized” situation where the line bundle is OX and the determinant bundle Λ′ = K−1 ⊗

OX(π(D)) is determined by D. The following proposition is concerned with the situation where

the determinant bundle Λ is fixed, i.e. we work on a fixed moduli space of SL2(C)-Higgs bundles

MH(Λ).

PROPOSITION 3.6. Given an effective divisor D on a non-degenerate SL2(C)-spectral curve

Sq
π→ X and line bundles L, Λ on X satisfying KL−2Λ ∼= OX(π(D)), there exists a unique

up to isomorphism SL2(C)-Higgs bundle (E, ϕ) with det(E) ∼= Λ, and a unique up to scaling
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injection L→ E such that D is the Baker-Akhiezer divisor of (L→ E, ϕ). In particular, L→ E

is a subbundle if and only if D contains no pull-back of an effective divisor on X .

Proof. Apply proposition 3.5 and tensor with L.

Let us define an isomorphism class [L → E, ϕ] of the input data of Baker-Akhiezer divisors

by saying that two representative data are isomorphic if there are isomorphisms of the underlying

bundles and line bundles that commute with the injections and Higgs fields 15. Clearly Baker-

Akhiezer divisors defined by isomorphic data coincide. The following theorem summarizes the

invertible properties of the construction of BA-divisors.

THEOREM 3.7. Consider the moduli space MH (Λ) of SL2 (C)-Higgs bundles on X with the

underlying bundles of determinant Λ, and a non-degenerate quadratic differential q and spectral

curve Sq
π→ X . Then the construction of Baker-Akhiezer divisors and remembering the line bundle

defines a bijection

 [L→ E, ϕ]

∣∣∣∣∣∣ det(E) = Λ,

det(ϕ) = q

←→
 ([L], D)

∣∣∣∣∣∣ D effective on Sq

KL−2Λ ∼= OX(π(D))

 .

In particular, this bijection restricts to a bijection in the cases of subbundles

 [L ↪→ E, ϕ]

∣∣∣∣∣∣∣∣∣
L a subbundle of E,

det(E) = Λ,

det(ϕ) = q

←→
 ([L], D)

∣∣∣∣∣∣∣∣∣
D effective on Sq, contains

no pull-back of divisors on X,

KL−2Λ ∼= OX(π(D))

 .

The map induced by forgetting the subbundle, i.e. [L ↪→ E, ϕ] 7→ D, is a 22g : 1 map.

Proof. The bijective property follows from the inverse construction of Baker-Akhiezer divi-

sors (cf. proposition 3.6). The 22g covering property follows from the fact that twisting input data

by a square-root of OX do not change the induced Baker-Akhiezer divisors. These twists exhaust

all possible input data of a Baker-Akhiezer divisor since its projection to X determines the line

bundle L up to such a twist.

15Since scalings are isomorphisms of line bundles, scaling the injections from line bundles to rank-2 bundles will
define the same isomorphism class [L→ E, ϕ].

39



3.3 Discussion and some applications

Families of Higgs fields inducing the same point in T ∗X [d]. A Baker-Akhiezer divisor of

degree d on a spectral curve defines a point in the symmetric product (T ∗X)[d] of T ∗X via the

inclusion of the spectral curve to the total space of T ∗X . Given d < 3g− 3 and p = [p1, ..., pd] ∈

(T ∗X)[d], there exists a positive-dimensional family of spectral curves each of which goes through

p1, ..., pd and admits an effective divisor defined by these points. For example, if the divisor x onX

defined by projecting p is reduced, this family of spectral curves is an affine space modeled over

Qx. Hence one same point p ∈ (T ∗X)[d] corresponds to Baker-Akhiezer divisors on different

spectral curves associated to non-isomorphic Higgs bundles. The underlying bundles, however,

are constrained.

COROLLARY 3.8. Two Higgs bundles [E1, ϕ1], [E2, ϕ2] ∈ MH(Λ) define the same point in

(T ∗X)[d] via the construction of Baker-Akhiezer divisors only if E1
∼= E2 ⊗N where N2 ∼= OX .

Proof. For i ∈ {1, 2}, let Di be the Baker-Akhiezer divisors on Sqi of the data (Li ↪→ Ei, ϕi)

such that D1 and D2 induce the same point p = [p1, ..., pd] ∈ (T ∗X)[d]. Tensoring (Li ↪→

Ei, ϕi) with L−1i does not change the Baker-Akhiezer divisors and brings us to the situation where

proposition 3.4 can be applied: Di then is the unique up to isomorphism Baker-Akhiezer divisor

of some data (OX ↪→ E′i, ϕ
′
i). In particular, if we choose the same differentials A and C in the

proof of proposition 3.4 in constructing (E′1, ϕ
′
1) and (E′2, ϕ

′
2), we can construct E′1 and E′2 out of

the same data (ϵ1(u1), ..., ϵ2(u2)). Hence E′1 = E′2. The proposition now follows from the fact

that E′i = Ei ⊗ L−1i and L2
1
∼= L2

2.

Recall that a bundleE, det(E) = Λ, is not maximally stable if it admits a subbundle LE ↪→ E

satisfying deg
(
L−2E Λ

)
< g − 1, i.e. deg

(
KL−2E Λ

)
< 3g − 3. Hence a Higgs bundle (E, ϕ) with

E not maximally stable will induce Baker-Akhiezer divisors of degree < 3g − 3 if we choose a

maximal subbundle of E for the input data. The following corollary follows immediately from the

above propositions and corollary.

COROLLARY 3.9. Let d < 3g − 3. Then for any point p = [p1, ..., pd] ∈ (T ∗X)[d] there exists

a bundle E which is not maximally stable and a positive-dimensional family of Higgs fields on E,

such that the Baker-Akhiezer divisors of these data using a maximal subbundle of E all define p.
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Conversely, if E is not maximally stable, then any Higgs field on E is contained in a positive-

dimensional family of Higgs fields on E, such that the Baker-Akhiezer divisors of these data using

a maximal subbundle of E all define the same point in (T ∗X)[d] for some d < 3g − 3.

Exceptional divisors on non-degenerate spectral curves. Suppose dim{L ↪→ E} ≥ 2, i.e.

there exists at least 2 linearly independent embeddings from L to E. Then any Higgs field ϕ on

E induces a positive-dimensional family of effective divisors on Sdet(ϕ) all of which are equiv-

alent via the construction of Baker-Akhiezer divisors. If deg(KL−2Λ) ≤ 4g − 3, the genus

of a non-degenerate spectral curve, then these Baker-Akhiezer divisors are exceptional divisors.

Conversely, by theorem 3.7, an exceptional divisor D on a non-degenerate spectral curve S, i.e.

deg(D) < 4g − 3, dim |D| ≥ 1, that contains no pull-back of an effective divisor on X induces a

family of embeddings {L ↪→ E} of dimension ≥ 2.

COROLLARY 3.10. On a non-degenerate spectral curve there exists no exceptional divisor of

degree < 2g − 2.

Proof. An exceptional divisor of degree < 2g − 2 implies the existence of a strictly unstable

holomorphic rank-2 bundle E with destabilizing subbundle LE such that dim{LE ↪→ E} ≥ 2,

which is impossible.

Caustics and theta divisor revisited. Consider the locus in a Hitchin fiber h−1(q) defined

by Higgs bundles with stable underlying bundles. The projection from this locus to the mod-

uli space NΛ of stable bundles, defined by forgetting the Higgs fields, is a local diffeomor-

phism at a generic point. It fails to be a diffeomorphism at the locus where h−1(q) is tangen-

tial to the fibers of T ∗NΛ ⊂ MH(Λ). The projection to NΛ of this locus, i.e. {[E] ∈ NΛ |

T ∗[E]NΛ is tangential to h−1(q)}, is called a caustic formed by h−1(q).

Hitchin [35] showed that for a stable bundle E, the two Lagrangian submanifolds T ∗[E]NΛ and

h−1(q) ofMH(Λ) are tangential to each other at [E, ϕ] if and only if the line bundle

π∗(K)(σ∗(L))−1L,

where L is the eigen-line bundle of (E, ϕ), has a non-zero section. This is a non-generic condition
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since π∗(K)(σ∗(L))−1L is of degree g̃−1. For D a Baker-Akhiezer divisor of (E, ϕ) induced by

some injection L → E, since the ramification divisor Rq satisfies OSq(Rq) ∼= π∗(K), it follows

from proposition 3.3 that we can reformulate this condition by requiring

Rq +D − σ(D) (3.12)

to be effective on Sq. By Riemann’s theorem the image of these divisors under the Abel-Jacobi

map S[g̃−1]
q → Jacg̃−1(Sq) ∼= Jac(Sq) is a translation of the theta divisor. 16 Since the theta divisor

is of codimension 1 in Jac(Sq), caustics formed by a smooth Hitchin fiber is of codimension 1 in

NΛ.

Since π∗q (K) has g linearly independent sections that are pull-backed from X in addition to

the canonical section that vanishes at Rq, we have dim |Rq| = h0 (Rq)− 1 ≥ g. Let Dσ < D be

the σ-invariant part of D, i.e. p < Dσ if either p is a ramification point or p + σ(p) < D. Then

D − σ(D) = D′ − σ(D′) where D′ = D − Dσ. It is then easy to see that if D is sufficiently

σ-invariant, i.e. the degree of D − Dσ is sufficiently low, then Rq + D − σ(D) is effective. In

fact, one could check that if deg (D −Dσ) ≤ g then

h0 (Rq +D − σ(D)) ≥ g − deg (D −Dσ) + 1 > 0. (3.13)

EXAMPLE 3.6. Let q be a non-degenerate quadratic differential, and x = x1+ ...+xh < div(q) a

divisor onX of degree h ≥ 2g−3, each point of which is a branch point of Sq. Let x̃ = x̃1+ ...x̃h

where x̃i ∈ Sq is the ramification point corresponding to xi. For d ≤ 3g − 3, if D is the Baker-

Akhiezer divisor of degree d induced by a Higgs bundle (E, ϕ) together with a subbundle L ↪→ E

and is such that x̃ = Dσ < D, then deg(D −Dσ) ≤ g and hence Rq +D − σ(D) is effective.

For fixed data (q,x, d), it follows from proposition 3.6 that by varying D − x̃ we can obtain

22g families of Higgs bundles of dimension (d − h), a generic Higgs bundle of which has stable

underlying bundle and hence projects to a point in the caustics formed by h−1(q) in NΛ.
16Note also the line bundle OSq (Rq+D−σ(D)) is the image of (E, ϕ) ∈ h−1(q) under the composition of Iq,K1/2 :

h−1(q)
∼→ Prym(Sq) (cf. remark 3.4) with the map Prym(Sq) → Jacg̃−1(Sq) defined by [L] 7→ [π∗(K)⊗ L2].
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Intersections of Hitchin fibers with C∗-orbits in the unstable strata. The intersection of

a generic Hitchin fiber with a generic cotangent fiber of the moduli space of stable bundles is a

discrete set of 23g−3 points. A point at which a Hitchin fiber is tangential to a cotangent fiber

of the moduli space of stable bundles can be regarded as a double intersection point of these two

Lagrangian subspaces ofMH ; hence the phenomena of caustics can be regarded as an enumerative

problem.

The generalization of the cotangent fiber of a stable bundle is the upward flow W+
α for α a

C∗-fixed point inMH . Recall from the previous chapter that if E is destabilized by LE , then a

stable Higgs bundle (E, ϕ) defines a point in W+
α where α = (EM , ϕc) is defined in (2.6),

EM =M ⊕M−1Λ, ϕc =

0 0

c 0

 , (3.14)

with M = LE and c = cLE
(ϕ). The following proposition, which characterizes the intersection

points of W+
α with a smooth Hitchin fiber, follows from theorem 3.7 and the fact that an unstable

bundle has a unique destabilizing subbundle. A more general version of this result that applies to

arbitrary ranks was established by Hausel-Hitchin [34].

PROPOSITION 3.11. Let α = (EM , ϕc) be a C∗-fixed point in MH and q a non-degenerate

quadratic differential. Then W+
α ∩ h−1(q) is in 1-1 correspondence with

D effective on Sq

∣∣∣∣∣∣ π(D) = div(c), D contains no

pull-back of a divisor on X

 ,

where the correspondence is defined by constructing Baker-Akhiezer divisors using the destabiliz-

ing subbundle M . In particular, generically
∣∣W+

α ∩ h−1(q)
∣∣ = 2deg(c), which corresponds to the

case where no point in c has non-trivial multiplicity or is a branch point of Sq.
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Chapter 4

Degeneration of Baker-Akhiezer divisors

In this chapter we discuss certain types of families of Higgs bundles in MH ≡ MH(Λ), the

underlying bundles of which admit subbundles of the same degree, that limit to a Higgs bundle

with the underlying bundle admitting a subbundle of higher degree. These types of families are

understood most easily in terms of the corresponding Baker-Akhiezer divisors, so we start from

this perspective.

4.1 Reduction of the degree of Baker-Akhiezer divisors

Let (E, ϕ) ∈ MH be a Higgs bundle with associated non-degenerate spectral curve S π→ X

with involution σ, L ↪→ E a subbundle and D the Baker-Akhiezer divisor of (L ↪→ E, ϕ). Recall

from proposition 3.2 that D does not contain any summand being the pull-back of a divisor on

X and satisfies L2 ∼= KΛ ⊗ OX(−π(D)), and the eigen-line bundle of (E, ϕ) is isomorphic to

π∗(LK−1)⊗OS(D).

Consider a sufficiently small, simply connected open set U ⊂ X that does not contain a branch

point of S. Consider an effective divisor x̃ = x̃+ + x̃− where x̃± lie in distinct components of

π−1(U) and are such that x̃+ ̸= σ(x̃−). In other words, for x± = π(x̃±) we have x+ ̸= x−. By

theorem 3.7, D+ x̃ is the Baker-Akhiezer divisor of some Higgs bundle inMH induced by some

subbundle which is of degree deg(L)−1 and is a square-root ofKΛ⊗OX(−π(D+ x̃)). For each

x̃, there are 22g such square-roots. Varying x̃ then induces 22g families of line bundles of degree

deg(L)−1. IfU is sufficiently small, these families define distinct subsets in Jacdeg(L)−1(X), each

of which, given a point x0 ∈ U , contains upon closure a unique square-root of KΛ⊗ (−π(D)−

2x0) as the limit of x̃→ π∗(x0). One particular family would contain L(−x0) upon closure. Let

Lx̃ be the square-root of KΛ⊗OX(−π(D + x̃)) contained in that family, i.e.

lim
x̃→π∗(x0)

[Lx̃] = [L⊗OX(−x0)] ∈ Jacdeg(L)−1(X) (4.1a)
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for any x0 ∈ U .

Let (Lx̃ ↪→ Ex̃, ϕx̃) be the data that induces D + x̃ as its Baker-Akhiezer divisor. The eigen-

line bundle of (Ex̃, ϕx̃) is isomorphic to π∗(Lx̃K
−1) ⊗ OS(D + x̃). It follows from (4.1a) that

as x̃→ π∗(x0), this family of line bundles limits to π∗(LK−1)⊗OS(D), which is the eigen-line

bundle of (E, ϕ). In other words,

lim
x̃→π∗(x0)

(Ex̃, ϕx̃) = (E, ϕ) ∈MH (4.1b)

for any x0 ∈ U . This is clear in terms of Baker-Akhiezer divisors: for any x0 ∈ U , D+ π∗(x0) is

the Baker-Akhiezer divisor induced by (E, ϕ) via the injection L⊗OX(−x0)
sx0→ L ↪→ E which

vanishes at x0. The following proposition summarizes our discussion.

PROPOSITION 4.1. Let (E, ϕ) ∈ MH with associated non-degenerate spectral curve S π→ X ,

and L a subbundle of E. Let U ⊂ X be a simply connected open set that contains no branch point

of S. Then there exist embeddings

U′ −→MH , U′ −→ Jacdeg(L)−1(X),

x 7−→ (Ex, ϕx), x 7−→ [Lx], (4.2)

where U′ :=
{
x = (x+, x−) ∈ U2 | x+ ̸= x−

}
, such that

(a) for all x ∈ U′, Ex admits Lx as a subbundle;

(b) for all x ∈ U′, the Baker-Akhiezer divisor of (Lx ↪→ Ex, ϕx) is D + x̃+ + x̃−, where

x̃± ∈ π−1(x±) respectively and lie in distinct components of π−1(U), and D is the Baker-

Akhiezer divisor of (L ↪→ E, ϕ);

(c) for all x0 ∈ U , lim
x+→x0←x−

[Lx] = [L⊗OX(−x0)] in Jacdeg(L)−1(X) and lim
x+→x0←x−

(Ex, ϕx) =

(E, ϕ) inMH .

In chapter 7 where we analogously analyze the collision limit of apparent singularities of SL-

operators, we will find it convenient for calculation to specialize to the case where U is equipped

with a coordinate z with z(x0) = 0 for some x0 ∈ U and z(x±) = ±u. It is instructive to now
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spell out the specialization of proposition 4.1 to this case in order to later see the analogy between

colliding points in the projection of Baker-Akhiezer divisors and apparent singularities.

PROPOSITION 4.2. Let (E, ϕ) ∈ MH with associated non-degenerate spectral curve S π→ X ,

and L be a subbundle of E. Given x0 ∈ X not a branch point of S, let (U, z) be a coordinate

neighborhood of x0, where z(x0) = 0, U is simply connected and contains no branch point of

S. Then there exist a family of Higgs bundles {(Eu, ϕu)}u∈z(U) and a family of line bundles

{Lu}u∈z(U) of degree deg(L)− 1 parameterized by U such that

(i) [L0] = [L⊗OX(−x0)] in Jacdeg(L)−1(X) and (E0, ϕ0) = (E, ϕ) inMH ;

(ii) for all u ∈ z(U), (Eu, ϕu) has S as its spectral curve;

(iii) for all u ̸= 0, Eu admits Lu as a subbundle;

(iv) for all u ̸= 0, the Baker-Akhiezer divisor of (Lu ↪→ Eu, ϕu) is D + x̃+ + x̃−, where D

is the Baker-Akhiezer divisor of (L ↪→ E, ϕ) and x̃± lie in different distinct components of

π−1(U) with z(π(x̃±)) = ±u.

Furthermore, these families define embeddings U ↪→MH and U ↪→ Jacdeg(L)−1(X).

We also note that if deg(D) < 2g − 2, these families limit to lower Bialynicki-Birula strata,

i.e. the strata of Higgs bundles with increasingly unstable underlying bundles. The limits of

these families compactify the open dense locus consisting of Higgs bundles with stable underlying

bundles into the whole Prym variety.

4.2 Double point in Baker-Akhiezer divisors

In the above discussion, we have analyzed families of Baker-Akhiezer divisors whose limits con-

tain a summand of the form π∗(x0) for some x0 ∈ X . The following proposition is the counter-

part of proposition 4.2 for the case where the limit contains a double point that projects to 2x0. In

this case, unlike in proposition 4.2, the underlying bundle of the corresponding Higgs bundle at

the limit admits a subbundle of the same degree as in the family.

PROPOSITION 4.3 (PROPOSITION 1.8). Let (E, ϕ) ∈ MH with the associcated non-degenerate

spectral curve S π→ X and L be a subbundle of E such that cL(ϕ) has a double zero at x0 ∈ X
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which is not a branch point of S. Let D be the Baker-Akhiezer divisor of (L ↪→ E, ϕ) and x̃0 be

the point with multiplicity 2 in D with π(x̃0) = x0. Let (U, z) be a coordinate neighborhood of

x0, where z(x0) = 0, U is simply connected and contains no branch point of S. Then there exist

a family of Higgs bundles {(Eu, ϕu)}u∈z(U) and a family of line bundles {Lu}u∈z(U) of the same

degree as L parameterized by U such that

(i) [L0] = [L] in Jacdeg(L)(X) and (E0, ϕ0) = (E, ϕ) inMH ;

(ii) for all u ∈ z(U), Eu admits Lu as a subbundle;

(iii) for all u ̸= 0, the Baker-Akhiezer divisor of (Lu ↪→ Eu, ϕu) is D − 2x̃0 + x̃+ + x̃−, where

x̃± lie in the component of π−1(U) containing x̃0 and are such that z(π(x̃±)) = ±u.

Furthermore, these families define embeddings U ↪→MH and U ↪→ Jacdeg(L)(X).

Proof. The proposition follows from the discussion preceding proposition 4.1 by requiring

x̃± now to be contained in the same component of π−1(U) containing x̃0.

4.3 Local model and scaling of families of Higgs bundles

In the following, we consider a family of Higgs bundles obtained by scaling a family of Higgs

bundles in proposition 4.2.

PROPOSITION 4.4. Let [E, ϕ] ∈ MH with associated non-degenerate spectral curve S π→ X ,

L be a subbundle of E, and x0 ∈ X which is not a branch point of S and not a zero of cL(ϕ).

SupposeE is destabilized by a subbundleLE with deg(L−2E Λ) < 2g−4. Let (U, z) be a coordinate

neighborhood of x0 and {[Eu, ϕu]}u∈z(U) a family of Higgs bundles constructed by proposition

4.2 with (E, ϕ) = (E0, ϕ0). Consider the family of Higgs bundle {[Fu, ψu]}u∈z(U),u̸=0 defined by

[Fu, ψu] := u.[Eu, ϕu] for u ̸= 0.

Then the limit [F0, ψ0] := lim
u→0

[Fu, ψu] exists, lies in the nilpotent cone and is not C∗-invariant.

The underlying bundle F0 is destabilized by L0
∼= L⊗OX(−x0), and cL0(ψ0) has a double zero

at x0.

Let λ = u−1 for u ̸= 0. As we can write [Eu, ϕu] = λ.[Fu, ψu] for λ < ∞, we can think

of the family {[Eu, ϕu]}u∈z(U),z ̸=0 as a blow-up of the family {Fu, ψu}u∈z(U),u̸=0. Note that
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while the latter stays in the same Białynicki-Birula stratum at the limit, the former limits to a

point in a lower stratum. This is how one might understand the compactification of the Białynicki-

Birula strata which completes a generic Hitchin fiber into a Prym variety involves certain “going

to infinity” ingredients.

In the following, we will prove proposition 4.4 by constructing an explicit local model for

{[Eu, ϕu]}u∈z(U),z ̸=0. The main ingredients of the construction are the Hecke transformations of

bundles and Higgs bundles, which have invariant definitions and work for higher rank cases as

well. We refer to [34] for a modern introduction of these ingredients. Since our goal is to have an

explicit local model, we will however not discuss these transformations in their invariant forms.

Modifying bundles. Let (E, ϕ) ∈ MH with non-degenerate spectral curve Sq
π→ X associated

to q = det(ϕ). Let L be a subbundle of E, and x0 ∈ X such that x0 is not a zero of cL(ϕ) and not

a branch point of Sq. Let (W ′, z) be a coordinate neighborhood of x0, where z(x0) = 0, W ′ is

simply-connected, contains no zero of q and of cL(ϕ). Choose an atlas U ′ on X that contains W ′

as a chart, and define E in terms of transition functions on this atlas w.r.t. local frames adapted to

L ↪→ E, i.e. the transition functions are of upper triangular form as in (2.1b)

To define Eu for u ̸= 0 in terms of transition functions, we first refine the atlas U ′ as follows.

Let U and V be simply-connected neighborhoods of x0 such that U ⊊ V ⊊ W ′, and w.l.o.g.

assume that V intersects no other elements of U ′. We define a refinement U of U ′ by refining W ′

into W ∪ V , where W = W ′ \ U . The transition function of E on this new atlas upon transiting

between W and V is the identity.

Now, for each nonzero u ∈ z(U), let x±(u) be points U defined by z(x±(u)) = ±u. Further-

more, given ϵ⃗ = (ϵ+, ϵ−) ∈ C2, we define the bundle E′u,⃗ϵ with transition functions on U that are

the same as those of E except

(
E′u,⃗ϵ

)
WV

=

z − u ϵ+

0 1

z + u ϵ−

0 1

 . (4.3)

Then E′u,⃗ϵ admits L′u := L ⊗ OX(−x+(u) − x−(u)) as a subbundle with L−1Λ the quotient
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bundle, i.e. it fits in the s.e.s.

0→ L′u → E′u,⃗ϵ → L−1Λ→ 0.

REMARK 4.1. Compared with the notions of Hecke transformations of bundles [34], one can see

that E′u,⃗ϵ is the result of two consecutive Hecke transformations from E at x+ and then at x−.

Hecke transformations of a bundle at a point p ∈ X are defined using the choices of a subspace of

the fiber of that bundle at p. The parameter ϵ+ ∈ C in (4.3), for example, encodes such a choice of

1-dimensional subspaces ofE |x+ w.r.t. a local frame ofE |U adapted to L |U . The limit ϵ+ →∞

corresponds to the choice of the subspace of E |x+(u) defined by L |x+(u).

Let Eu,⃗ϵ = E′u,⃗ϵ ⊗ Nu where Nu is a square-root of OX(x+ + x−) such that lim
u→0

[Nu] =

[OX(x0)] in the corresponding Picard component. Then Eu,⃗ϵ has the same determinant as that of

E and admits Lu := L′u⊗Nu as a subbundle. The transition functions on U ofEu,⃗ϵ in local frames

adapted to the embedding Lu ↪→ Eu,⃗ϵ are the same as those of E′u,⃗ϵ in local frames adapted to L′u

up to an “abelian” twist by the transition functions of Nu.

Modifying Higgs bundles. Let D be the Baker-Akhiezer divisor of (L ↪→ E, ϕ). We now

explain that to specific values of ϵ± ∈ C, one can define Higgs fields ϕu,⃗ϵ on Eu,⃗ϵ such that

det(ϕu,⃗ϵ) = q = det(ϕ) and the projection to X of the Baker-Akhiezer divisor associated to(
Lu ↪→ Eu,⃗ϵ, ϕu,⃗ϵ

)
is

π(D) + x+(u) + x−(u). (4.4)

Suppose ϕ =

a b

c −a

 in local frames adapted to L ↪→ E. Away from V , in local frames

adapted to Lu, we can let ϕu,⃗ϵ take the same form as ϕ there. It follows from the transition function

(4.3) of Eu,⃗ϵ that on V , ϕu,⃗ϵ takes the form

ϕu,⃗ϵ |V =

au(z) bu(z)

cu(z) −au(z)

 , (4.5a)
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where

au(z) = a(z)− ϵ−(z − u)c(z)− ϵ+c(z), (4.5b)

bu(z) =
−ϵ2−(z − u)2c(z) + 2ϵ−(z − u)(a(z)− ϵ+c(z))− ϵ2+c(z) + 2ϵ+a(z) + b(z)

(z − u)(z + u)
, (4.5c)

cu(z) = (z − u)(z + u)c. (4.5d)

The regularity condition of bu(z) at x = ±u implies

c+ϵ
2
+ − 2a+ϵ+ − b+ = 0,

4u2c−ϵ
2
− + 4u (a− − ϵ+c−) ϵ− +

(
c−ϵ

2
+ − 2a−ϵ+ − b−

)
= 0, (4.6)

where by a±, b± and c± we mean the evaluation of au(z), bu(z) and cu(z) at z = ±u. The

solutions of (4.6) are

ϵ+,±(u) =
a+ ±

√
−q+

c+
, ϵ−,±(u, ϵ+(u)) =

−a− + ϵ+,±(u)c− ±
√
−q−

2uc−
(4.7)

where q± = q(z) |z=±u= −a±2 − b±c±. Here we have chosen a square-root of −q(z), which is

equivalent to marking a component of π−1(W ).

Hence, for each nonzero u ∈ z(U), if ϵ± take the values given in (4.7) then ϕu,⃗ϵ given by

(4.5) is a holomorphic Higgs field on Eu,⃗ϵ that satisfies condition (4.4). Let us denote the Baker-

Akhiezer divisor of (Lu ↪→ Eu,⃗ϵ, ϕu,⃗ϵ) by Du = D + x̃+ + x̃− where π(x̃±) = x±. As we have

marked a component of π−1(W ) by choosing a square-root
√
−q(z), we can be more specific

about x̃± by observing that

(au(u), au(−u)) =


(
∓
√
−q(u),±

√
−q(−u)

)
for ϵ⃗ = (ϵ+,±, ϵ−,±)(

∓
√
−q(u),∓

√
−q(−u)

)
for ϵ⃗ = (ϵ+,±, ϵ−,∓)

. (4.8)

It follows in particular that if ϵ⃗ = (ϵ+,±, ϵ−,±) then x̃± lie in different components of π−1(W ).

In this case, the family {(Eu,⃗ϵ, ϕu,⃗ϵ)}u∈z(U),u̸=0 yields lim
u→0

[Eu,⃗ϵ, ϕu,⃗ϵ] = [E, ϕ] inMH(Λ), and

hence defines an example of proposition 4.2. On the other hand, if ϵ⃗ = (ϵ+,±, ϵ−,∓) then x̃± lie in
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the same component of π−1(W ): the family {(Eu,⃗ϵ, ϕu,⃗ϵ)}u∈z(U),u̸=0 then extends to an example

of proposition 4.3.

REMARK 4.2. For the case ϵ⃗ = (ϵ+,±, ϵ−,±), we have ϵ−(u)
u→0→ ∞. However,

lim
u→0

(uϵ−) =

√
−q(x0)
c(x0)

(4.9)

is well-defined.

REMARK 4.3. The Higgs bundles (Eu,⃗ϵ, ϕu,⃗ϵ), where ϵ⃗ take the values given in (4.7), can be

induced by applying Hecke transformations to (E, ϕ) and tensoring withNu to ensure det(Eu,⃗ϵ) =

det(E)). Indeed, the regularity condition (4.6) with solutions (4.7) implies precisely that E′u,⃗ϵ =

Eu,⃗ϵ ⊗ N−1u is the result of two consecutive Hecke transformations from E at x+ and then x−.

These Hecke transformations for Higgs bundles are defined with the choice of the subspace of the

fibers at x± being the eigen-spaces defined by the Higgs fields [34]. For ϵ⃗ = (ϵ+,±, ϵ−,±), the

limit ϵ−(u)
u→0→ ∞ reflects that fact that as u→ 0, the eigen-space over x− defined by the Higgs

field limits to the subspace defined by the subbundle, to which our local frames are adapted (cf.

remark 4.1).

Proof of proposition 4.4. By the above discussion, the family {[Eu,⃗ϵ, ϕu,⃗ϵ]}u∈z(U),u̸=0 for ϵ⃗ =

(ϵ+,+, ϵ−,+) extends to a family constructed by proposition 4.2. Plugging ϵ+,+(u) into ϵ−,+(u) in

(4.7), with λ = u−1, we rewrite the local form (4.5) of ϕu,⃗ϵ on V as

au(z) = λ [ua(z)− (uϵ−)(z − u)c(z)− uϵ+c(z)] , (4.10a)

bu(z) =
λ2

z2 − u2
[
− (z − u)2c(z)(uϵ−)2 + 2u2ϵ−(z − u)(a(z)− ϵ+c(z))

−u2
(
ϵ2+c(z)− 2ϵ+a(z)− b(z)

) ]
,

(4.10b)

cu(z) = (z − u)(z + u)c. (4.10c)

We now regard [Fu, ψu] ∈ MH(Λ) as defined by the condition [Eu,⃗ϵ, ϕu,⃗ϵ] = λ.[Fu, ψu]. By our

assumption on the degree of the destabilizing subbundleL = LE ofE, the two isomorphic bundles

51



Fu and Eu,⃗ϵ are both destabilized by Lu and are strictly unstable. Hence it has an automorphism

of the form

λ1/2 0

0 λ−1/2

. This automorphism together with the scaling that defines [Fu, ψu]

allows us to write the local form on V of ψu as

ψu |V =

 λ−1au(z) λ−2bu(z)

(z − u)(z + u)c −λ−1au(z)

 (4.11)

and as

ua u2b

c −ua

 outside V (recall ϕu,⃗ϵ takes the form

a b

c −a

 there.) Noting that uϵ−(u)

has a well-defined u → 0 limit (cf. remark 4.2), we can now compute the limit [F0, ψ0] =

lim
u→0

[Fu, ψu] directly. We see that F0 is destabilized by L0 := L ⊗ OX(−x0), and ψ0 w.r.t. local

frames adapted to L0 takes the form

− lim
u→0

(uϵ−) zc − lim
u→0

(uϵ−)
2 c

z2c lim
u→0

(uϵ−) zc

 =

−
√
−q(x0)

c(x0)
zc −

(√
−q(x0)

c(x0)

)2

c

z2c

√
−q(x0)

c(x0)
zc

 . (4.12)

on V and

0 0

c 0

 outside V . In particular, ψ0 is nilpotent and cL0(ψ0) has a double zero at x0.

□

We note that (F0, ψ0) provides an example of a theorem by Hausel-Hitchin on “very-stable

Higgs bundle” [34]. These are the C∗-fixed points in MH whose upward flows intersect the

nilpotent cone only there and nowhere else. Since ψ0 is nilpotent, the C∗-fixed point (cf. (2.6))

lim
k→0

k.[F0, ψ0] = [EL0 , ϕc0 ] =

L0 ⊕ L−10 Λ,

 0 0

c0 0

 ,
where c0 = cL0(ψ0), provides an example of non-very-stable Higgs bundles. The theorem of

Hausel-Hitchin says that we can indeed detect this simply by looking at the zero divisor of c0 ∈

H0(KL−20 Λ): a C∗-fixed point [EM , ϕc′ ] is very-stable if and only if the zero divisor of c′ is

reduced.
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Chapter 5

Holomorphic connections, projective connections,
projective structures and SL-operators

5.1 Projective connections and projective structures

In the following, we recall the notions of projective connections and projective structures, two

geometric objects that naturally realize monodromy representations in PSL2(C) ∼= PGL2(C).

DEFINITION 5.1. A projective connection onX is a pair (P, s) where P is a flat PSL2(C)-bundle

on X with P1-fibers and s : X → P is a global holomorphic section which is not parallel w.r.t.

the flat structure of P . The points where ds = 0 are called apparent singularities; the order of an

apparent singularity is the order of the zero of ds at that point.

We denote by div((P, s)) the divisor of apparent singularities, counted with multiplicity, of a

projective connection (P, s). Two projective connections (P1, s1) and (P2, s2) are isomorphic if

there exists an isomorphism P1 → P2 of holomorphic fiber bundles that commutes with s1 and

s2. Clearly if (P1, s1) is isomorphic to (P2, s2), then div((P1, s1)) = div((P2, s2)).

DEFINITION 5.2. A projective structure is a maximal atlas {Uα}α∈I of X together with local

holomorphic functions {wα : Uα → C} the values of which are related by Möbius transforma-

tions, i.e. for all x ∈ Uα ∩ Uβ ,

wβ(x) =
aβαwα(x) + bβα
cβαwα(x) + dβα

,

aβα bβα

cβα dβα

 ∈ SL2(C). (5.1)

Apparent singularities are where dwα = 0; the order of an apparent singularity is the order of the

zero of dwα at that point.

Note that wα can serve as a local coordinate on Uα if and only if Uα contains no apparent

singularity. It is clear that a projective structure is determined once a local holomorphic func-

tion wα : Uα → C is determined. Given a point x and the analytic continuation [γ].wα of wα
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along a closed path γ containing x, the composition along γ of the Möbius transformations maps

([γ].wα)(x) back to wα(x). In other words, the composition along a closed path of the Möbius

transformations is the inverse of the PSL2(C)-action defined by analytic continuation. The holo-

morphic function w̃α : X̃ → P1, where X̃ is the universal cover of X , defined by analytically

continuing wα is called a developing map of the projective structure.

Given a projective connection (P, s), by letting s be represented by local holomorphic func-

tions on charts of a sufficiently refined atlas of X , one can define local holomorphic functions the

values of which are related by constant PSL2(C)-valued transition functions. A maximal atlas

together with these local holomorphic functions define a projective structure. Conversely, from the

local holomorphic functions of a projective structure one can define a section of a flat bundle with

P1-fibers, the constant PSL2(C)-valued transition functions of which are the Möbius transforma-

tions. In other words, a projective structure is equivalent to an isomorphism class of projective

connections.

5.2 SL-operators

DEFINITION 5.3. Let N be a line bundle on X , defined via transition functions (N)αβ over

a coordinate covering U = {(Uα, zα)}α∈I of X . An SL-operator D on N for the coordinate

covering U is a collection of meromorphic differential operators {Dα = ∂2zα + qα(zα)}α∈I such

that fα(zα) is a solution to Dα if and only if (N)βαfα is a solution to Dβ |Uα∩Uβ
. The points at

which
(
fα,1

fα,2

)′
= 0, where fα,1 and fα,2 are two linearly independent solutions of Dα, are called

apparent singularities, with the order of the apparent singularity defined to be the order of the zero

of
(
fα,1

fα,2

)′
. Two SL-operators on N for two coordinate coverings are considered equivalent if

their union is also an SL-operator. An SL-operator on N is an equivalence class of SL-operators

on N for different coverings.

We denote by div(D) the divisor formed by apparent singularities, counted with multiplicity,

of the SL-operator D.

REMARK 5.1. It was shown in [39] that an SL-operator exists on a line bundle N if and only if

deg(N) = 1−g, such as N ∼= K−1/2. Such an SL-operator then can be regarded as a differential

operator N → NK2 whose principal symbol is 1 and subprincipal symbol is 0 [24].
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It is clear from the definition of SL-operators onN that, ifN ′ is a flat line bundle with constant

transition functions, the same collection of local differential operators would define SL-operators

on both N and N ⊗N ′. Hence the specific line bundle on which these local differential operators

act is not of interest to us. From now on, we will fix N = K−1/2 and by an SL-operator we will

mean an SL-operator on K−1/2.

We now elaborate on the explicit forms of an SL-operator before showing its equivalence to

the notions of projective connections and projective structures.

Transformation rules of local differential operators. Similar to projective connections and

projective structures, an SL-operator is determined once we know its local form Dα = ∂2zα +

qα(zα) over one coordinate open set (Uα, zα). This is because on the overlap Uα ∩ Uβ ,

2qβ(zβ(zα))(z
′
β(zα))

2 = 2qα(zα)− {zβ, zα} (5.2)

where {g(z), z} := g′′′

g′ −
3
2

(
g′′

g′

)2
is the Schwarzian derivative of a function g(z). To see this, note

that {w(zα), zα} = 2qα(zα) where w :=
fα,1

fα,2
is the ratio of two linearly independent solutions to

Dα [58]. On the overlap Uαβ , since fβ,1 = lβαfα,1 and fβ,2 = lβαfα,2 are solutions to Dβ , we

also have {w(zβ), zβ} = 2qβ(zβ) as w =
fβ,1
fβ,2

. Then (5.2) follows from the transformations upon

a change of coordinates zα 7→ zβ(zα) of a Schwarzian derivative

{g(zβ(zα)), zα} = (z′β)
2 {g(zβ), zβ}+ {zβ, zα} .

There are two important consequences of (5.2) that we will exploit heavily in this work. One is

that if an SL-operator D has no apparent singularity on Uα and hence the ratio wα of two linearly

independent local solutions can serve as a local coordinate, then D takes the simple form ∂2wα
in

terms of the local coordinate wα. Another is that in case the change of coordinate zα 7→ zβ(zα)

is a Möbius transformation, which occurs if and only if {zβ, zα} = 0, it follows from (5.2) that

{qα(zα)} glue into a quadratic differential whose local forms are qα(zα)dz2α.

Hence if the coordinate covering {(Uα, wα)} is a holomorphic projective structure, i.e. one

that has no apparent singularity, then the collection of local differential operators {∂2wα
} defines

an SL-operator. Any other collection of local differential operators {∂2wα
+ qα(wα)} defines an
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SL-operator if and only if {qα(zα)dz2α} glue into a meromorphic quadratic differential.

Local forms near apparent singularities. It follows from (5.2) that, given a local coordinate

z, the SL-operator takes the form Dz = ∂2z + 1
2 {w(z), z} for w being the ratio of two linearly

independent solutions. Suppose now z = 0 is an apparent singularity. The Laurent tail of q(z) =
1
2 {w(z), z} at z = 0 depends on the order of this apparent singularity, i.e. the order of the zero

of w′ at z = 0. If it is a simple apparent singularity, i.e. w(z) =
∑

k≥0wkz
k with w1 = 0 and

w2 ̸= 0, then

Dz = ∂2z −
3

4z2
+
µ

z
+ q0 +O(z) (5.3a)

where µ = −3w3
4w2

and q0 = −(3w3
4w2

)2. Hence

µ2 + q0 = 0. (5.3b)

On the other hand, if z = 0 is a double apparent singularity, i.e. w =
∑

k≥0wkz
k with w1 =

w2 = 0 and w3 ̸= 0, then

Dz = ∂2z −
2

z2
+

2ν

z
+ q0 + q1z +O(z2) (5.4a)

where

ν = −2w4

3w3
, q0 =

4w2
4 − 15w3w5

9w2
3

, q1 =
4(8w3

4 − 15w3w4w5)

27w3
3

.

One can check that

ν3 + q0ν +
q1
2

= 0. (5.4b)

Although the specific coefficients of the Laurent tails (5.3a) and (5.4a) depend on the coordinate z

via the expansion of w(z), the polynomial constraints (5.3b) and (5.4b) they satisfy are invariant

upon a change of coordinates.

Using the Frobenius method one can obtain the Laurent expansions of the solutions around an

apparent singularity. If z = 0 is a simple apparent singularity, solutions to Dz of the form (5.3)
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have the form

z−1/2
(
F0 + µF0z + F2z

2 +O(z)
)
,

where F0 and F2 are the free parameters on which all higher order coefficients depend. If z = 0

is a double apparent singularity, solutions to Dz of the form (5.4) have the form

z−1
[
F0 + λF0z +

(
λ2 +

q0
2

)
z2 + F3z

3 +O(z4)
]
,

where F0 and F3 are the free parameters on which all higher order coefficients depend. One can

check explicitly that the Wronskian W (f1, f2) of two linearly independent solutions f1 and f2 of

these forms is holomorphic at z = 0, and hence the derivative of the ratio of two such solutions

(
f1
f2

)′
=
W (f1, f2)

f22
(5.5)

admits z = 0 as its simple and double zeroes, respectively.

Correspondence to projective structures. A projective structure {Uα, wα}α∈I gives rise to

an SL-operator as follows. On each Uα containing no apparent singularity we define a differen-

tial operator Dα := ∂2wα
, and on each Uγ containing some apparent singularities we use a local

coordinate zγ and define the differential operator Dγ = ∂2zγ + 1
2 {wγ(zγ), zγ}.

On the other hand, given an SL-operator {Dα} on a line bundle N over a coordinate covering

U = {(Uα, zα)}, one can define a projective structure by taking the ratios wα =
fα,1

fα,2
of two

linearly independent solutions toDα with WronskianW (fα,1, fα,2) = 1. It follows from (5.5) that

wα is a holomorphic function Uα → C, and dwα vanishes at the apparent singularity of the SL-

operator with the order equal to the order of the apparent singularities of Dα. The local functions

wα and wβ defined this way are related by a Möbius transformation since fβ,1 and fβ,2 are linear

combinations of fα,1 and fα,2 scaled by (N)βα. Hence a projective structure is equivalent to an

isomorphism class of SL-operators, with the positions and order of apparent singularities matched.

The projective monodromy representation π1(X) → PSL2 that are inherent in the notions of a

projective connection and projective structure is realized in an SL-operator via the ratios wα of
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local solutions. Note that these ratios of local solutions are holomorphic at apparent singularities,

and hence the projective monodromy representations do not detect these singularities.

EXAMPLE 5.2. On a compact Riemann surface X of genus g ≥ 2, the most distinguished projec-

tive connection is induced by the uniformization theorem, which realizes X as a quotient of the

upper-half plane and equips on it a distinguished maximal coordinate atlas {(Uα, xα)} from the

upper-half plane. We call this the uniformizing projective structure ofX . Since nowhere dxα = 0,

the projective structure {(Uα, xα)} has no apparent singularity. The corresponding SL-operator

takes the form ∂2xα
in each Uα. This uniformizing projective structure is distinguished in the sense

that the projective coordinates xα all take values in the upper half-plane.

It follows from (5.2) that if q is a holomorphic quadratic differential, then Dα := ∂2xα
+ q(xα)

glue into an SL-operator that has no apparent singularity. These form the space of holomorphic

projective connections, i.e. those that have no apparent singularities, which is an affine space

modeled over H0(K2) ∼= C3g−3. The isomorphism class of each such SL-operator is equivalent

to a maximal coordinate atlas that is also a projective structure.

REMARK 5.3. Although we do not need to be specific about the line bundle on which an SL-

operator acts and hence can assume it to be K−1/2, given a coordinate atlas subordinate to a

holomorphic projective structure {(Uα, xα)}, one can in fact define explicitly the transition func-

tions of a line bundle N of degree 1 − g as follows. If Uα and Uβ both contain no apparent

singularity and wβ = gβα.wα =
aβαwα+bβα
cβαwα+dβα

with gβα =

aβα bβα

cβα dβα

 ∈ SL2, then we de-

fine (N)αβ := cβαwα + dβα. Then (N)αβ defined this way satisfy the cocyle conditions. More

crucially, (N)αβ and (N)αβwβ are linear combinations of 1 and wα and hence are solutions to

Dα |Uαβ
: hence if fβ is a solution of Dβ then (N)αβfβ is a solution of Dα |Uα∩Uβ

.

For Uγ containing some simple apparent singularities and Uα not containing any apparent

singularities, it is slightly more complicated to define (N)αγ . First, observe that upon analytic

continuation (N)αγ has monodromy −1 around a simple apparent singularity contained in Uγ .

This is because, around each such apparent singularity, a solution fγ to Dγ has monodromy −1,

while (N)αγ fγ has trivial monodromy upon analytic continuation since it is a linear combination

of 1 and wα =
aαγwγ+bαγ

cαγwγ+dαγ
, two solutions to ∂2wα

. One way to make sure the transition functions
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of N involving Uγ satisfy the cocyle condition is to define a covering {Uα}α∈I such that Uγ

contains an even number of apparent singularities, counted with multiplicity, and these apparent

singularities are not contained in any other open set Uα ̸=γ . Under these conditions, if fγ,1 and

fγ,2 are two solutions to Dγ with W (fγ,1, fγ,2) = 1 and fγ,1
fγ,2

= wγ =
aγαwα+bγα
cγαwα+dγα

, we define

(N)αγ = (cγαwα + dγα) f
′
γ,1 − (aγαwα + bγα) f

′
γ,2. Then (N)αγfγ,1 and (N)αγfγ,2 are linear

combinations of wα and 1 and hence are solutions of Dα as desired. These local differential

operators satisfy the transformation rules (5.2), and we hence have defined an SL-operator on N

over the coordinate covering {Uα}α∈I .

Linearization. Let us from now on again fix N = K−1/2. It is well-known that a local differen-

tial operator ∂2zα + qα(zα) is equivalent to the local linear differential operator

∂zα +

0 −qα(zα)

1 0

 . (5.6)

A solution fα(zα) to ∂2zα + qα(zα) defines a solution

−f ′α
fα

 to (5.6). Given an SL-operator

D = {Dα = ∂2zα + qα(zα)}, extending the linearization (5.6) to all of X defines a meromor-

phic connection ∇D on a holomorphic bundle Fop, which is the unique up to scaling non-trivial

extension of N = K−1/2 by K1/2.

To see this, note that given two solutions fα and fβ to Dα and Dβ that represent the same

section of N , i.e. fα = (N)αβfβ(zβ), the transition function (Fop)αβ maps the flat section−f ′β(zβ)
fβ(zβ)

 into

−f ′α(zα)
fα(zα)

. It follows that

(Fop)αβ =

z′β(N)αβ −(N)′αβ

0 (N)αβ

 (5.7)

where the derivatives of zβ and (N)αβ are with respect to zα. Since the canonical line bundle K
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can be characterized by transition functions of the form z′β(zα), (5.7) defines Fop as an extension

0→ KN ∼= K1/2 → Fop → N = K−1/2 → 0. (5.8)

One can check that if we set (N)αβ =
(
z′β(zα)

)−1/2
, then upon conjugation with (5.7) the local

forms of the connection transform as ∂zα +

0 −qα(zα)

1 0

 7→ ∂zβ +

0 −qβ(zβ)

1 0

 with

qβ(zα) and qα(zα) following the transformation rules (5.2). In other words, we have defined Fop

such that there exists a connection∇D that on Uα takes the form ∂zα +

0 −qα(zα)

1 0

 in certain

local frames adapted to K1/2 ↪→ Fop.

EXAMPLE 5.4. If D = {Dα} has no apparent singularity, then in particular∇D is a holomorphic

connection on Fop. Such a holomorphic connection (Fop,∇D) is called an oper. Let {(Uα, wα)}

be a coordinate atlas induced by ratios of local solutions to D. If wβ =
aβαwα+bβα
cβαwα+dβα

then the

transition function of N = K−1/2 can be taken to be (N)αβ = cβαwα + dβα. It follows that the

transition of Fop takes the form (Fop)αβ =

(cβαwα + dβα)
−1 −cβα

0 cβαwα + dβα

. On each Uα

the connection∇D takes the form ∂wα +

0 0

1 0

, and the flat sections

−1
wα

 and

0

1

 span a

local flat frame. Gauge transformation of the form gα =

0 −1

1 wα

 switch between local frames

adapted to K1/2 ↪→ Fop and these local flat frames, with respect to which the flat structure of

(Fop,∇D) can be characterized by constant transition functions

(Eop,∇D)αβ = g−1α (Fop)αβ gβ =

dβα bβα

cβα aβα

 . (5.9)

Note that one can write

wα =
dβαwβ − bβα

(−cβα)wβ + aβα
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and hence (5.9) gives the transition functions of the coordinate atlas {(Uα,−wα)}, which is sub-

ordinate to the same projective structure as {(Uα, wα)}.

REMARK 5.5. If (Uγ , wγ) contains some apparent singularities, then ∇D is meromorphic on

Uγ and takes the form ∂zγ +

0 −1
2 {wγ , zγ}

1 0

. Similar to the discussion in remark 5.3, to

define transition functions of Fop that satisfy the cocyle conditions, one can require Uγ to con-

tain an even number of apparent singularities and that these apparent singularities are not con-

tained in any other open set Uα ̸=γ . An explicit transition function can be defined by requir-

ing that, given solutions fγ,1 and fγ,2 to Dγ such that W (fγ,1, fγ,2) = 1 and wγ =
fγ,1
fγ,1

, the

columns of the matrix (Fop)βγ

−f ′γ,2 −f ′γ,1
fγ,2 fγ,1

 are flat sections of ∂zβ +

0 0

1 0

. This implies

(Fop)βγ

−f ′γ,2 −f ′γ,1
fγ,2 fγ,1

 =

 −cγβ −aγβ
cγβwβ + dγβ aγβwβ + bγβ

, and hence the transition function

of Fop w.r.t. local frames adapted to (5.8) is

(Fop)βγ =

−cγβfγ,1 + aγβfγ,2 −cγβf ′γ,1 + aγβf
′
γ,2

0 (cγβwβ + dγβ) f
′
γ,1 − (aγβwβ + bγβ) f

′
γ,2

 . (5.10)

Note that this is compatible to the discussion in remark 5.3.

Not any SL-operator D can be linearized into a meromorphic connection ∇D of the above

form on Fop. For example, if D has an odd number of apparent singularities, then we cannot al-

ways group an even number of apparent singularities to apply (5.10); this is an expression of this

failure to linearize. However, if the projective monodromy of D has a lift to SL2, then such a lin-

earization exists. Indeed, as will be shown in the following, there exists an SL2(C)-holomorphic

connection (F,∇) together with a subbundle L ↪→ F such that its projectivization gives a projec-

tive connection equivalent to D. The number of apparent singularities will be even in this case.

5.3 Holomorphic connections and monodromy representations to SL2(C)SL2(C)SL2(C)

Let F s be a smooth rank-2 bundle on X with a fixed isomorphism between its determinant line

bundle det(F s) and the trivial line bundle. We will let F s be the underlying smooth objects for
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the following holomorphic objects.

An SL2(C)-holomorphic connection ∇ on an SL2(C)-holomorphic bundle F is a C-linear

map∇ : F → FK satisfying the Leibniz rule∇(fs) = ∂f ⊗ s+ f∇s for any local holomorphic

function f and local section s of F , such that the induced connection on det(F s) is the trivial

connection ∂ : f 7→ f(z)dz. Since there is no (2, 0)-form on a Riemann surface, (F,∇) is

automatically a flat connection and gives rise to a monodromy representation ρ̌(F,∇) : π1 →

SL2(C) via developing local parallel frames. In this case, we say (F,∇) realizes the monodromy

representation ρ̌ = ρ̌(F,∇).

By changing to local frames of F that consist of local parallel sections and using a new set of

transition functions with respect to these local flat frames, one can define a flat bundle F∇ with

constant SL2(C)-valued transition functions, the composition of which along a closed path γ is

ρ̌(F,∇)([γ]). Since the transition functions of F∇ are constant, ∂ is a well-defined holomorphic

connection on F∇. The changes of local frames define an isomorphism F
f→ F∇ such that

∇ = f−1 ◦ ∂ ◦ f , and we say (F,∇) and (F∇, ∂) are isomorphic as holomorphic connections.

In general, for two SL2(C)-holomorphic connections (F1,∇1) and (F2,∇2), we say they are

isomorphic if there exists an smooth automorphism of the underlying bundle F s relating ∇1 and

∇2.

On the other hand, given a monodromy representation ρ̌ : π1(X) → SL2(C), it is straight-

forward to define a flat rank-2 bundle F ρ̌ with constant SL2(C)-valued transition functions that

realizes ρ̌. Clearly a holomorphic connection (F,∇) realizes ρ̌ if and only (F,∇) is isomorphic

to (F ρ̌, ∂) as holomorphic connections.

Moduli spaces. Let CF s be the set of flat connections on the smooth rank-2 bundle F s that in-

duces the trivial connection on the trivial line bundle det(Fs). Then CF s is an infinite dimensional

affine space modeled on Ω1(X,End0(Fs)), where End0(Fs) is the bundle of traceless endomor-

phisms of Fs. It has a complex structure induced by SL2(C) [58] and admits an action by conju-

gation from the gauge group G(Fs) of smooth automorphisms of Fs that act trivially on det(Fs).

We define the de Rham moduli space by

MdR = CirrF s /G(Fs),
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where CirrF s ⊂ CF s is the subspace of irreducible flat connections, i.e. ones that leave no smooth

subbundle of F s invariant. It is known thatMdR is a smooth complex analytic space of complex

dimension 6g − 6 [53] [9]. By the above discussion,MdR is also the moduli space of irreducible

SL2(C)-holomorphic connections, i.e. ones that leave no holomorphic subbundle of the underly-

ing SL2(C)-holomorphic bundle invariant.

Consider the set Hom(π1, SL2(C)) of homomorphisms from π1 to SL2(C). It has the struc-

ture of an affine variety, and admits an action from SL2(C) by conjugation. We define the SL2(C)-

representation variety by

RSL2(C) = Homirr(π1, SL2(C))//SL2(C)

where Homirr(π1, SL2(C)) is the subspace of irreducible monodromy representations and the

double slash indicates invariant theoretic quotient [53] [58]. It is known that RSL2(C) is an ir-

reducible affine variety of complex dimension 6g − 6. Taking the monodromy representation of

an irreducible SL2(C)-holomorphic connection gives an irreducible monodromy representation

in SL2(C), and this defines a homeomorphismMdR → RSL2(C) [58].

Simpson’s stratification on MdR. There exists a natural stratification on MdR that is very

similar to the stratification onMH described in chapter 2. Simpson [54] defines this stratification

in terms of λ-connections, which we summarize as follows.

A λ-connection is a triple (λ, F,∇λ), where λ ∈ C, F is a holomorphic bundle, and ∇λ :

F → FK is a map between sheaves of holomorphic sections satisfying a λ-scaled Leibniz rule

∇λ(fs) = λ∂f ⊗s+f∇λs for any local holomorphic function f and local section s of F . Hence

a (λ = 0)-connection is a Higgs bundle and a (λ = 1)-connection is a holomorphic connection.

The Hodge moduli spaceMHod of irreducible λ-connections has a projectionMHod → C that

picks out the factor λ, with the fibers over 0 and 1 beingMH(OX) andMdR respectively. This

projection is equivariant w.r.t. the C∗-action onMHod defined by t.[λ, F,∇λ] = [tλ, F, t∇tλ] for

t ∈ C∗. The setMC∗
Hod of C∗-fixed points inMHod are the same as the set of C∗-fixed points on
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MH(OX) ⊂MHod (cf. (2.7)), i.e.

MC∗
Hod =MC∗

H (OX) = N ∪
(
∪
d
Nd

)
.

It is known that lim
t→0

t.[F,∇] exists and is contained inMC∗
Hod for all [F,∇] ∈MdR ⊂MHod,

where we have regarded the holomorphic connection [F,∇] as a (λ = 1)-connection. If F is

stable then lim
t→0

t.[F,∇] = [F, 0] ∈ N . If F is destabilized by LF , consider

cLF
(∇) : LF ↪→ F

∇→ FK → LF
−1K. (5.11)

Then it is known that lim
t→0

t.[F,∇] = [ELF
, ϕc] ∈ Nd for c = cLF

(∇) ∈ H0(KL−2F ) and d =

deg(div(c)) = deg(KL−2F ) (recall the definitions of these Higgs bundles in (2.6)). For α ∈

MC∗
Hod, let W dR

α ⊂ MdR consist of all points [F,∇] with lim
t→0

t.[F,∇] = α. The Simpson’s

stratification onMdR is the decomposition

MdR =W dR
N ∪

(
∪
d
W dR

Nd

)

where W dR
N = ∪

α∈N
W dR

α and W dR
Nd

= ∪
α∈Nd

W dR
α . We note that, similar to the stratification on

MH , the degree d = deg(KL−2) of the zero divisor of cL(∇) ∈ H0(KL−2) for a subbundle L

of maximal degree of F tells which stratum a point [F,∇] ∈ MdR is in: if 0 ≤ d ≤ 2g − 2 then

[F,∇] ∈W dR
Nd

, and if d > 2g − 2 then [F,∇] ∈W dR
N .

Note that, upon fixing a spin structure K1/2, W0 is a Hitchin section inMH(OX) and W dR
0

is the space of opers inMdR (cf. example 5.4). The underlying bundles K1/2 ⊕K−1/2 and Fop

are the most unstable ones defining the objects in the corresponding moduli spaces.

REMARK 5.6. That Wα ⊂MH and W dR
α ⊂MdR are biholomorphic via the so-called “confor-

mal limit” is proved for the case α being a stable Higgs bundle by [9]. The first example of this

biholomorphism is for the case where α is the intersection of a Hitchin section with the nilpotent

cone, i.e. a biholomorphism between a Hitchin section and a space of opers. This was first conjec-

tured by Gaiotto [27] and proved by Dumitrescu-Fredrickson-Kydonakis-Mazzeo-Mulase-Neitzke

[14].
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5.4 From holomorphic connections to projective connections

Lifts of projective monodromy representations. Given a projective monodromy representa-

tion ρ : π1 → PSL2(C), we say ρ̌ : π1 → SL2(C) is a lift of ρ if ρ is equal to the composition

of ρ̌ with the projection SL2(C)→ PSL2(C). Concretely, it means that for generators Ai=1,...,g,

Bj=1,...,g of π1 representing a basis of cycles of X , one can find ρ̌(Ai), ρ̌(Bj) ∈ SL2(C) that

projects to ρ(Ai), ρ(Bj) ∈ PSL2(C) and satisfy

[ρ̌(Ag), ρ̌(Bg)] ... [ρ̌(A1), ρ̌(B1)] = 1. (5.12)

A projective monodromy representation ρ, if it has a lift to SL2(C), has in total 22g lifts

modulo conjugation: these lifts correspond to the freedom to choose the sign {±} for the lifts

of ρ(Ai) and ρ(Bj) to SL2(C), since these signs cancel after taking the commutator in (5.12).

On the other hand, two monodromy representations ρ̌1, ρ̌2 : π1 → SL2(C) are lifts of the

same projective monodromy representation if and only if ρ̌1([C]) = ±ρ̌2([C]) for any genera-

tor C ∈ {A1, ..., Ag, B1, ..., Bg}. In practice, we will care about lifts of projective monodromy

representations modulo conjugation.

LEMMA 5.1. Two SL2(C)-holomorphic connections (F1,∇1), (F2,∇2) have monodromy repre-

sentations ρ̌1, ρ̌2 : π1 → SL2(C) that are lifts of the same projective monodromy representation

up to conjugation if and only if F1
∼= F2 ⊗N for some line bundle N with N2 ∼= OX .

Proof. The condition ρ̌1([γ]) = ±ρ̌2([γ]) for any closed path γ is equivalent to the fact that

the two flat bundles F∇1
1 and F∇2

2 are such that F∇1
1
∼= F∇2

2 ⊗ N where N is a flat line bundle

with constant transition functions valued in {±1}. This occurs if and only if N2 ∼= OX .

Projectivization. Given a holomorphic connection (F,∇), we can projectivize the SL2(C)-flat

bundle F∇ to obtain a PSL2(C)-flat bundle P(F∇), the P1-fibers of which are the projectivization

of the fibers of F∇. The constant PSL2(C)-valued transition functions of P(F∇) are induced by

the constant SL2(C)-valued transition functions of F∇ via the projection SL2(C) → PSL2(C).

Let L ↪→ F be a subbundle that is not invariant by ∇, and L ∼= L∇ ↪→ F∇ the corresponding

subbundle induced by the isomorphism F → F∇. Then P(L∇) defines a section of P(F∇) and
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hence a projective connection. Conversely, if (P, s) is a projective connection with projective mon-

odromy representation which has a lift to SL2(C), then (P, s) is equivalent to (P(F∇),P(L∇))

for some holomorphic connection (F,∇) and subbundle L of F .

Irreducible projective monodromy representations. We say a projective monodromy repre-

sentation ρ : π1 → PSL2(C) is reducible if ρ(π1) ⊂ PSL2(C) ≡ Aut(P1) has a fixed point on

P1, and irreducible if it is not reducible. Clearly if ρ has a lift to SL2(C), it is irreducible if and

only if its lift is irreducible.

Similar to how irreducible monodromy representations in SL2(C) are in 1-1 correspondence

with irreducible flat SL2(C)-connections, irreducible projective monodromy representation are in

1-1 correspondence with flat PSL2(C)-bundles with P1-fibers that have no global parallel section.

Furthermore, if an irreducible projective monodromy representation ρ has a lift ρ̌ in SL2(C) which

is realized by an irreducible holomorphic connection (F,∇), then P = P(F∇) realizes ρ.

Inducing apparent singularities. Given an SL2(C)-holomorphic connection (F,∇) and a sub-

bundle L of F , the composition

cL(∇) : L ↪→ F
∇→ FK → L−1K, (5.13)

where the last arrow is induced by the quotient F → L−1 of the embedding L ↪→ F , is nonzero

if L is not invariant by ∇. Hence in particular if (F,∇) is irreducible then for all subbundle L of

F we have cL(∇) ̸= 0. A priori, unlike (2.1c) which is OX -linear, (5.13) is only C-linear since it

involves ∇. However, since FK → L−1K is induced from the quotient map of L ↪→ F , overall

(5.13) is OX -linear.

The following proposition shows that the zero divisor of (5.13) is the loci of apparent singu-

larities. In this sense, (5.13) is the analogue of (2.1c), and apparent singularities are the analogues

of the projection to X of Baker-Akhiezer divisors.

PROPOSITION 5.2. Suppose (F,∇) is a holomorphic connection and L ↪→ F a subbundle not

invariant by ∇. Then the divisor of apparent singularities div((P(F∇),P(L∇))) of the projective

connection (P(F∇),P(L∇)) coincides with the zero divisor of cL(∇).

Proof. Observe that if the embedding L∇ ↪→ F∇ is generated by local sections of the form
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i1
i2

, where i1 and i2 have no common zero, then upon projectivization P(L∇) takes the form

i1/i2. The apparent singularities of (P(F∇),P(L∇)) hence are the zeroes of i′1i2 − i1i′2, counted

with multiplicity. If in a neighborhood i1 (or i2) is nowhere-vanishing, then

i1 0

i2 1/i1

 (ori1 −1/i2

i2 0

, respectively) switches between the local flat frames of (F∇, ∂) and local frames

adapted to L∇ ↪→ F∇, in which∇ takes the form

∂ +

 i′1
i1

0

i1i
′
2 − i′1i2 − i′1

i1

 (or ∂ +

 i′2
i2

0

i1i
′
2 − i′1i2 − i′2

i2

 , respectively). (5.14)

Since the lower-left component locally represents the composition (5.13), the proposition follows.

Let (F1,∇1) and (F2,∇2) be two irreducible SL2(C)-holomorphic connections with mon-

odromy representations that project to the same projective monodromy up to conjugation. By

lemma 5.1, F1
∼= F2 ⊗ N where N2 ∼= OX . If L2 is a subbundle of F2, then there exists

a subbundle L1
∼= L2 ⊗ N of F1 such that cL1(∇1) is identified with cL2(∇2) via the iso-

morphism KL−21
∼= KL−22 . In particular, the projective connections (P(F∇1

1 ),P(L∇1
1 )) and

(P(F∇2
2 ),P(L∇2

2 )) are isomorphic.

We say two data (L1 ↪→ F1,∇1) and (L2 ↪→ F2,∇2) are isomorphic if there is an isomor-

phism L1
∼→ L2 that commutes with an isomorphism F1

∼→ F2 which makes (F1,∇1) isomorphic

to (F2,∇2). The projective connections (P(F∇1
1 ),P(L∇1

1 )) and (P(F∇2
2 ),P(L∇2

2 )) clearly are

isomorphic if and only if (L1 ↪→ F1,∇1) and (L2 ↪→ F2,∇2) are isomorphic.

Let R0
PSL2(C) be the set of conjugacy classes of projective monodromy representations that

are irreducible and have lifts to SL2(C). LetM0
(P,s) andM0

P be the set of isomorphism classes

of projective connections and flat PSL2(C)-bundles with P1-fibers respectively, whose projective

monodromy representations define points inR0
PSL2(C).

The proof of the following proposition follows from lemma 5.1 and the above discussion.

PROPOSITION 5.3. The following diagram, where the first two vertical arrows are defined by
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projectivizing the corresponding data, is commutative.

 (L ↪→ F,∇) |

[F,∇] ∈MdR

 / ∼ MdR RSL2(C)

M0
(P,s) M0

P R0
PSL2(C)

22g :1
22g :1 22g :1

All vertical arrows are surjective, with points in the same fiber of the first two vertical arrows

differing by a twist of a flat line bundle whose square is OX .

EXAMPLE 5.7. LetD be an SL-operator having no apparent singularity, and
(
K1/2 ↪→ Fop,∇D

)
the linearization data of D. We claim that the projective connection defined by projectivizing

these data (P, s) =
(
P(F∇D

op ),P
(
(K1/2)∇D

))
is equivalent to the projective structure defined

by {(Uα, wα)}, where wα are ratios of local solutions to D. As discussed in example 5.4, the

flat structure of P is characterized by projecting the SL2-constant transition functions (5.9). On

(Uα, wα) and in the local flat frame that differs from a frame adapted to K1/2 by the change of

basis gα =

0 −1

1 wα

, the generator of (K1/2)∇D takes the form g−1α

1

0

 =

wα

−1

. The

section s is hence locally represented by the local function −wα. Hence the projective connection

(P, s) corresponds to the coordinate atlas {(Uα,−wα)}, which can also be obtained by locally

solving D. Note that this is consistent with the SL2-constant transition functions (5.9) of F∇D
op .

REMARK 5.8. Given an irreducible projective monodromy representation ρ : π1 → PSL2(C),

we can ask how many projective connections with different sets of apparent singularities can re-

alize ρ. If ρ has a lift ρ̌ in SL2(C), then it can be realized by the flat bundle P(F∇) where

(F,∇) is an SL2(C)-holomorphic connection realizing ρ̌. Different subbundles of F upon pro-

jectivization define different sections of P(F∇), with the maximal subbundle(s) of F defining the

section(s) of P(F∇) with the minimal number of apparent singularities. In particular, for g odd

and deg(F ) = 0, if F is maximally stable, i.e. s(F ) = g − 1, then it has exactly 2g maximal

subbundles. In other words, for g odd, a sufficiently generic projective monodromy representation

is realized by exactly 2g projective connections up to isomorphism [33], all of which have 3g − 3
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apparent singularities counted with multiplicity.

COROLLARY 5.4. Two projective connections with the same irreducible projective monodromy

representations up to conjugation that have lifts to SL2(C) and the same divisors of apparent

singularities of degree < 2g − 2 are isomorphic.

Proof. Two such projective connections are the projectivization of a holomorphic connection

(F,∇) and subbundles L1, L2 of F such that cL1(∇), cL2(∇) both vanish at x and are identified

via the isomorphism KL−21
∼= OX(x) ∼= KL−22 . But deg(x) < 2g − 2, therefore L1 and L2

destabilize F and must be the same subbundle of F .

5.5 From holomorphic connections to SL-operators

Associated SL-operators. Given the initial data (L ↪→ F,∇), we want to have a concrete

construction of an SL-operator that corresponds up to equivalence to the projective connection

(P(F∇),P(L∇)). To this end, suppose∇ = ∂z+

a(z) b(z)

c(z) −a(z)

 in certain local frames adapted

to L. Consider the local differential operator ∂2z + q(z) where

q(z) = −b(z)c(z)−
(
a(z)− c′(z)

2c(z)

)2

−
(
a(z)− c′(z)

2c(z)

)′
. (5.15)

We claim that local differential operators of this form define an SL-operator, the isomorphism

class of which depends only on the isomorphism class of the data (L ↪→ F,∇). To see this, we

need to show that q(z), which is defined from the local form of ∇ in some specific local frames

of F adapted to L, is invariant upon a change between local frames adapted to L and transforms

appropriately upon a change of coordinates. To see this, let g(z) be a gauge transformation of

upper-triangular form and determinant equal to 1: it defines a change between two local frames of

F adapted to L. An explicit calculation shows that, if g−1∇g = ∂z +

a2(z) b2(z)

c2(z) −a2(z)

, then

the function defined by replacing a(z), b(z), c(z) by a2(z), b2(z), c2(z) respectively in (5.15) is

equal to q(z). In fact, this shows that if (L′ ↪→ F ′,∇′) is another data isomorphic to (L ↪→ F,∇),

we would obtain the same local meromorphic function defined by (5.15).

For the transformation of q(z) upon a change of coordinates z 7→ w, first note that the com-
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ponents a(z), b(z), c(z) in the affine part of the local expression of ∇ are local holomorphic

one-forms. Hence what we need to show is q(z) and

qw(w) = −bw(w)cw(w)−
(
aw(w)−

∂wcw(w)

2cw(w)

)2

− ∂w
(
aw(w)−

∂wcw(w)

2cw(w)

)

where

aw(z) = a(z(w))z′(w), bw(z) = b(z(w))z′(w), cw(z) = c(z(w))z′(w),

satisfy the transformation rule 2q(z(w))z′(w)2−2qw(w) = {w, z}. An explicit calculation shows

that this indeed is the case, and hence {∂2z + q(z)} define an SL-operator.

Now suppose z = 0 is a simple zero of c(z). Then the Laurent expansion of (5.15)

q(z) =
−3
4

1

z2
+

[
a(0)− c′′(0)

4c′(0)

]
1

z
− a(0)2 + a(0)c′′(0)

2c′(0)
−
(
c′′(0)

4c′(0)

)2

+O(z). (5.16)

makes z = 0 an apparent singularity. While apparent singularities can be regarded as the analogues

of the projection to X of Baker-Akhiezer divisors, the accessory parameter

a(0)− c′′(0)

4c′(0)
(5.17)

can be regarded as the analogue of the coordinate−a(0) of the point in the Baker-Akhiezer divisor

projecting to z = 0. The Laurent expansion of q(z) also makes a double zero of cL(∇) a double

apparent singularity. This enables us to make the following definition.

DEFINITION 5.4. Given an irreducible SL2(C)-holomorphic connection (F,∇) and a subbundle

L ↪→ F , the associated SL-operator D(L↪→F,∇) takes the local form ∂2z + q(z) where q(z) is

defined in (5.15). The divisor of apparent singularities div(D(L↪→F,∇)) coincides with the zero

divisor of cL(∇).

PROPOSITION 5.5. Let (F,∇) be an irreducible SL2(C)-holomorphic connection and L ↪→ F a

subbundle. Then the associated SL-operator D(L↪→F,∇) is equivalent to the isomorphism class of

the projective connection (P(F∇),P(L∇)).
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Proof. Suppose (U,w) is a coordinate chart subordinate to a projective structure correspond-

ing to D(L↪→F,∇), such that U contains no apparent singularity. We will show that the section

P(L∇) of P(F∇) is locally represented by the function −w on U , and this suffices to prove the

proposition. To this end, suppose ∇ = ∂w +

a(w) b(w)

c(w) −a(w)

 in some local frames adapted to

L, and, upon choosing a square-root of c(w), observe that the holomorphic gauge transformation

G =

c(w)−1/2 0

0 c(w)1/2

1 a(w)− c′(w)
2c(w)

0 1

 ,

puts∇ into the form

G−1

∂w +

a b

c −a

G = ∂w +

0 −q(w)

1 0

 ,

where q(w) is defined by the same formula as in (5.15). Since ∂2w + q(w) is the local differential

operator representingD(L↪→F,∇) and sincew is a developing map of this local differential operator,

we have q(w) = 0. Then

0

1

 and

−1
w

 are two local parallel sections that can define a local

frame of F . In this local parallel frame, the generator of L takes the form

0 −1

1 w

−1G−1
1

0

 = c(w)1/2

 w

−1

 ,

which defines the local function −w upon projectivization.

REMARK 5.9. Let (L2 ↪→ F2,∇2) be the data obtained from (L1 ↪→ F1,∇1) by twisting

by a square-root of OX . Similar to how the projective connections
(
P(F∇1

1 ),P(L∇1
1 )
)

and(
P(F∇2

2 ),P(L∇2
2 )
)

are isomorphic, we also have D(L1↪→F1,∇1) is equivalent to D(L2↪→F2,∇2).

There exists in total 22g such data, which differ from each other by a twist by a square-root ofOX ,

that define the same SL-operator up to equivalence.
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Inverse construction. The following proposition is the analogue of proposition 3.4; the proof

also follows a similar strategy.

PROPOSITION 5.6. LetD be an SL-operator with simple apparent singularities x1, ..., xd, where

d is even. Then given a line bundle L satisfying KL−2 ∼= OX(x), where x = x1 + ... + xd,

there exists a unique up to isomorphism holomorphic connection (F,∇) such that F admits L as

a subbundle and D is equivalent to D(L↪→F,∇).

Proof. Choose x0 ∈ X and effective divisors p = p1 + ...pm, q = q1 + ... + qn such that

L ∼= OX(q − p) and x + x0 + p + q is a reduced effective divisor. Let Ur, Upj , Uqk be small

neighborhoods with respective coordinates zr, zpj , zqk that vanish at xr, pj , qk respectively. Let

ν1, ..., νd ∈ C be the accessory parameters of the apparent singularities x1, ..., xd of D w.r.t. local

coordinate z1, ..., zd.

We will define F in terms of its transition functions on the covering

{X ′, U0, U1, ..., Ud, Up1 , ..., Upm , Uq1 , ..., Uqn},

where X ′ = X \ {supp(x+ x0 + p+ q)}, with the ansatz

(F )UrX′ =

1 ϵr/zr

0 1

 , (F )UpjX
′ =

z−1pj 0

0 zpj

 , (F )Uqk
X′ =

zqk 0

0 z−1qk

 ,

for the transition functions of F . If ∇ takes the form ∂ +

A B

C −A

 on X ′, where A, B and C

are meromorphic differentials on X that are holomorphic on X ′, then it takes the local form

∂zr +

A+ (ϵr/zr)C B − 2(ϵr/zr)A− (ϵr/zr)
2C

C −A− (ϵr/zr)C

+

0 ϵr/z
2
r

0 0

 (5.18)
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on Ur, and

∂zpj +

 A z−2pj B

z2pjC −A

+

z−1pj 0

0 −z−1pj

 and ∂zqk +

 A z2qkB

z−2qk
C −A

+

−z−1qk
0

0 z−1qk


(5.19)

on Upj and Uqk respectively. To prove the proposition, we will now show that there exist mero-

morphic differentials A, B, C and a tuple (ϵ0, ϵ1, ..., ϵd) ∈ Cd+1 (which defines F as an extension

of L−1 by L) such that (i) the diagonal components in (5.18) and (5.19) are regular, (ii) D locally

takes the form ∂z + qD(z) with qD(z) defined as in (5.15), and (iii) νr is the accessory parameter

at xr via (5.17).

To this end, let C ∈ Ω2p−2q ∼= H0(KL−2) be a (unique up to scaling) meromorphic differ-

ential with div(C) = x − 2p + 2q. Let A have simple poles at x0, p1, ..., pm, q1, ..., qn with

residues

Res
pj
A = −1 = −Res

qk
A, Res

x0

A = n−m = deg(L),

and is holomorphic elsewhere: such a meromorphic differential exists as the sum of its residues

vanishes. We define F via the tuple (ϵ0, ϵ1, ..., ϵd) ∈ Cd+1 by requiring

ϵ0C(z0(x0)) + (n−m) = 0,

A(zr) |zr=0 +ϵrC
′(zr) |zr=0 −

C ′′(zr) |zr=0

4C ′(zr) |zr=0
= νr for r = 1, ..., d.

The first condition ensures regularity of the diagonal components of (5.18) at x0, while the second

condition ensures that νr is the accessory parameter at xr via (5.17).

Let (V, z) be a coordinate open subset of X ′, and suppose D can be represented by ∂z +

qD(z) on V . Let B be defined by analytic continuation from −qD(z)
C(z) −

1
C(z)

(
A(z)− C′(z)

2C(z)

)2
−

1
C(z)

(
A(z)− C′(z)

2C(z)

)′
to all ofX . Noting that qD(z) upon analytic continuation to (Ur \{xr}, zr)

will have simple apparent singularity at xr with accessory parameters νr, one can check explicitly

that the expressions in (5.18) are regular with such A, B and C for r = 1, ..., d. A similar check
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can be done at x0 by noting that ϵ0C(z0) |z0=0= −Res
x0

A, and at pj (qk) by noting that there C has

a double pole (zero, respectively). Hence we have defined a holomorphic connection (F,∇) and

an embedding L ↪→ F . By construction, qD is equal to the local meromorphic function defined as

in (5.15) with A, B and C as the input data, and so D = D(L↪→F,∇). The uniqueness statement

follows from the fact that we have chosen a line bundle L satisfying KL−2 ∼= OX(x) among 22g

of them.

EXAMPLE 5.10. As an application of proposition 5.6 and a consistency check, let D be an SL-

operator having no apparent singularity. Then D ∼ D(L↪→F,∇) where L ∼= K1/2. Since ϵ0 =

deg(K1/2) = g − 1 is nonzero, F is a non-trivial extension of K−1/2 by K1/2. Hence (F,∇) is

an oper. The fact that F is a non-trivial extension of K−1/2 is consistent with the well-known fact

that a holomorphic bundle admits a holomorphic connection if and only if all of its indecomposable

factors are of degree 0.

SL-operators with the same apparent singularities and accessory parameters. Let x =

x1 + ... + xd be an effective divisor such that the multiplicity of xi, xi ≤ x, is at most 2. For

d < 3g− 3, in general there are more than one SL-operator with the divisor of apparent singulari-

ties being x and the same accessory parameters. Indeed, let us fix a coordinate atlas subordinate to

a holomorphic projective structure, and suppose the atlas contains the coordinate neighborhoods

(U1, z1), ..., (Ud, zd) of x1, ..., xd. Suppose D = {∂2zα + q(zα)}, where {q(zα)dz2α} glue into a

meromorphic quadratic differential, is an SL-operator with div(D) = x and respective accessory

parameters ν1, ..., νd w.r.t. the coordinates z1, ..., zd. Then given a holomorphic quadratic differ-

ential ∆q ∈ H0(K2) with x ≤ div(∆q), {∂2zα + q(zα) + ∆q(zα)} defines another SL-operator

with apparent singularities x1, ..., xd and respective accessory parameters ν1, ..., νd.

Conversely, two SL-operators that share the same simple apparent singularities and accessory

parameters define a holomorphic quadratic differential that vanishes at the simple apparent sin-

gularities. It is straightforward to see that if xi has multiplicity 2 in xD and hence is a double

apparent singularity, this statement still holds. Let us now recall, given an effective divisor x on

X , the linear space Qx < H0(K2) of quadratic differentials with zero divisors bounded below

by x, namely Qx := {q ∈ H0(K2) | x ≤ div(q)} ∪ {0 ∈ H0(K2)}. The following proposition
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summarizes the above discussion.

PROPOSITION 5.7. Let x = x1 + ... + xd be an effective divisor such that the multiplicity of xi,

xi ≤ x, is at most 2. Then the set

{ D | div(D) = x with the same accessory parameters }

is an affine space modeled on Qx < H0(K2).

The following is the analogue of corollary 3.8.

COROLLARY 5.8. Let D1 and D2 be SL-operators whose apparent singularities are all simple

and projective monodromy representations have lifts to SL2(C). Then D1 and D2 have the same

apparent singularities and respective accessory parameters if and only if D1 ∼ D(L1↪→F1,∇1) and

D2 ∼ D(L2↪→F2,∇2) where L1
∼= L2 ⊗ N , F1

∼= F2 ⊗ N for some square-root N of OX . In

particular, one can choose L1
∼= L2 and F1

∼= F2.

Proof. Similar to the proof of corollary 3.8, the key point is to observe that in the proof of

proposition 5.6, the positions of the apparent singularities and their accessory parameters define a

unique rank-2 holomorphic bundle realized as the extension of line bundles.

Varying apparent singularities. In general, there exist different SL-operators having differ-

ent apparent singularities that realize the same projective monodromy. Indeed, an irreducible

SL2(C)-holomorphic connection (F,∇) together with different subbundles of F induce differ-

ent isomorphism classes of SL-operators with different apparent singularities. However, in case

the number of apparent singularities, counted with multiplicity, is less than 2g − 2, there exists a

unique subbundle that is maximal and destabilizes F . Hence in this case, given a projective mon-

odromy representation with lift to SL2(C), the isomorphism class of the SL-operators realizing it

is unique (cf. corollary 5.4).

A diagrammatic summary. LetM0
D be the set of equivalence classes of SL-operators whose

projective monodromy representations have lifts to irreducible monodromy representations in

75



SL2(C). It follows from our above discussion that the following diagram is commutative.

 [L ↪→ F,∇] |

[F,∇] ∈MdR

 MdR RSL2(C)

M0
D M0

(P,s) M0
P R0

PSL2(C)

22g :1
22g :1

22g :1 22g :1

1:1

Here the first two vertical arrows assign to the isomorphism class of the data (L ↪→ F,∇) the

equivalence class ofD(L↪→F,∇) and the isomorphism class of (P(F∇),P(L∇)). The arrowM0
D →

M0
P is the equivalence between the notion of SL-operators and projective connections. The first

horizontal arrow of the first line and the second horizontal arrow of the second line respectively

forget the subbundles of the rank-2 bundles and the sections of flat PSL2(C)-bundles with P1-

fibers. The arrows with targets RSL2(C) and R0
PSL2(C) compute monodromy representations. All

vertical arrows are surjective, where points in the same fiber of the first two vertical arrows differ

by a twist of a square-root of OX .
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Chapter 6

Meromorphic quadratic differentials and SL-operators

In this and the next chapters, we will fix a holomorphic projective structure {(Uα, zα)}α∈I and

work with SL-operators on this maximal coordinate atlas. In these coordinate charts, an SL-

operator D with apparent singularities x1, ..., xd takes the form {Dα = ∂2zα + qD(zα)}α∈I where

{qD(zα)dz2α} define a meromorphic quadratic differential qD that has poles precisely at the appar-

ent singularities x1, ..., xd. In addition, recall from (5.3) and (5.4) the Laurent tails of qD at the

apparent singularities, namely

qD(z) = −
3

4(z − z(x))2
+

νz
z − z(x)

+ qz,0 +O(z − z(x)) (6.1a)

with ν2z + qz,0 = 0 (6.1b)

if x ∈ U is a simple apparent singularity, and

qD(z) = −
2

(z − z(x))2
+

µz
z − z(x)

+ qz,0 + qz,1(z − z(x)) + +O((z − z(x))2) (6.2a)

with µ3z + 4qz,0µz + 4qz,1 = 0 (6.2b)

if x ∈ U is a double apparent singularity.

6.1 Meromorphic quadratic differentials

Laurent expansion at double poles of quadratic differentials. In the following, we demon-

strate a consistency check that upon a change of coordinates defined by a Möbius transformation,

while the coefficients of the Laurent expansion of a quadratic differential at a double pole change,

the constraints (6.1b) and (6.2b) are invariant.

In general, we can compute the leading terms of the transformation of the local expression of
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a quadratic differential at a double pole x upon a general change of coordinates z(w)→ w as

q(z)dz2 = dz2
∑
k≥−2

qk(z − z(x))k

= dw2

[
q−2

(w − w(x))2
+

(z′′(x)/z′(x))q−2 + z′(x)q−1
w − w(x)

+O(1)
]
, (6.3)

where z′(x) := z′(w) |w=w(x). We see that the leading coefficient at a double pole of a meromor-

phic quadratic differential is invariant upon any change of coordinates (this invariant is sometimes

called the “quadratic residue” in the literature [56]). On the other hand, the accessory parameters

να,i in (6.1a) and µα,i in (6.2a) transform non-trivially, depending on z(w).

In our case, however, since we work on coordinate charts induced by a fixed holomorphic

projective structure, the relevant changes of coordinates are Möbius transformations. Combined

with the specific values of the quadratic residues as in (6.1a) and (6.2a), the constraints (6.1b) and

(6.2b) on these coefficients are invariant, as we now demonstrate. Consider a Möbius transforma-

tion zα(zβ) =
Azβ+B
Czβ+D . W.l.o.g. suppose x has coordinate zα(x) = 0 in Uα and zβ(x) = −B/A

with A ̸= 0 in Uβ . If qα(zα) =
∑

k≥−2 qα,kz
k
α then qβ(zβ) =

∑
k≥−2 qβ,k (zβ − zβ(x))

k where

qβ,−2 = qα,−2, qβ,0 = (3A2C2)qα,−2 − (3A3C)qα,−1 +A4qα,0,

qβ,−1 = −(2AC)qα,−2 +A2qα,−1, qβ,1 = −(4A3C3)qα,−2 + (6A4C2)qα,−1 − (4A5C)qα,0

+A6qα,1. (6.4)

For generic values of qα,−2, the constraints (6.1b) and (6.2b) will not be invariant. But one can

check that

q2β,−1 + qβ,0 = A4
(
q2α,−1 + qα,0

)
if qα,−2 =

−3
4
,

q3β,−1 + 4qβ,0qβ,−1 + 4qβ,1 = A6
(
q3α,−1 + 4qα,0qα,−1 + 4qα,1

)
if qα,−2 = −2.

The invariance of these constraints upon a Möbius transformation of coordinates is consistent with

the fact that these constraints can be derived directly from the transformation rules (5.2) as in (5.3)

and (5.4). Our computations merely demonstrate this explicitly.
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Building blocks of meromorphic quadratic differentials. For each x ∈ X , there exists

quadratic differentials that have poles at x and is holomorphic everywhere else. We will be in-

terested in those that have simple and double poles at x. We denote the space of all such mero-

morphic quadratic differentials as Ω⊗2x and Ω⊗22x respectively. Clearly Ω⊗2x
∼= H0

(
K2

X ⊗OX(x)
)

and Ω⊗22x
∼= H0

(
K2

X ⊗OX(2x)
)
. In particular, elements of Ω⊗2x (Ω⊗22x ) that are holomorphic at x

and hence on all of X correspond to sections of K2
X ⊗OX(x) (respectively, K2

X ⊗OX(2x)) that

admit x as a zero of multiplicity at least 1 (respectively, 2).

In the following we discuss, given a local coordinate z of p, certain quadratic differentials that

have simple and double pole at x with specific Laurent tails in the expansion w.r.t. z. We will

think of these specific quadratic differentials as building blocks, out of which we can construct all

other elements of Ω⊗2x and Ω⊗22x in a way such that we can control their Laurent tails w.r.t. z.

To this end, first note that since h0
(
K2

X ⊗OX(x)
)
= 3g−2, an element in Ω⊗2x is fixed up to

scaling upon fixing 3g−3 out of its 4g−3 zeroes in total. Similarly, an element in Ω⊗22x is fixed up

to scaling upon fixing 3g − 2 out of its 4g − 2 zeroes. To characterize the meromorphic quadratic

differentials that have non-trivial simple and double poles at x, let us first recall the notion of Q-

generic divisors. For an effective divisor x, let Qx be the space of quadratic differentials whose

zero divisors are bounded below by x. We will say x is Q-generic if the dimension of Qx has the

minimal, expected value, namely

dimQx =


3g − 3− deg(x) for deg(x) < 3g − 3,

0 for deg(x) ≥ 3g − 3.

Then an element of Ω⊗2x (Ω⊗22x ) that has a non-trivial simple (respectively, double) pole at x is

characterized by the fact that if an effective divisor of degree 3g − 3 (respectively, 3g − 2) is

contained in its zero divisor (and hence determines it up to scaling), then this divisor is Q-generic.

It is almost obvious that by varying the pole x in its neighborhood we can construct a family of

quadratic differentials that is holomorphically parameterized by this neighborhood, while keeping

intact the freedom to choose the zeroes. Proposition 6.1 formalizes this intuition.

PROPOSITION 6.1. Let U ⊂ X be an open subset, i ∈ {1, 2}, d = 3g − 4 + i, and xd : U →
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X [d], x 7→ xd(x) = x1(x) + ... + xd(x), be a holomorphic map such that, for all x ∈ U and

r ∈ {1, ..., d}, xr(x) ̸= x and xd(x) is Q-generic. Then there exists a family of meromorphic

quadratic differentials
{
q
(i)

x,xd

}
x∈U

holomorphically parameterized by U such that

(a) q(i)
x,xd has a simple (double) pole at x if i = 1 (respectively, i = 2) and is holomorphic on

X \ {x};

(b) xd(x) is contained in the support of the zero divisor of q(i)
x,xd .

Proof. We show the proof for the case i = 1 and d = 3g − 3; the case i = 2 is similar.

For each fixed x ∈ U , due to the hypotheses that xr(x) ̸= x and xd(x) is not contained in the

zero divisor of a holomorphic quadratic differential, the above observation already guarantees the

unique up to scaling existence of a meromorphic quadratic differential satisfying conditions (a)

and (b). Let −x + xd(x) + x3g−2 + ... + x4g−3 be the divisor associated to such a quadratic

differential. This divisor is unique, hence x3g−2(x) + ... + x4g−3(x) is determined by x and

xd(x). More concretely, let q be a holomorphic quadratic differential with zero divisor div(q) =

x′1 + ...+ x′4g−4 and A : X → Jac(X) an Abel map. Then x3g−2 + ...+ x4g−3 is the only point

in A−1 ◦ A
(
x−

∑3g−3
k=1 xk(x) + div(q)

)
; in particular, h0 (x3g−2 + ...+ x4g−3) = 1. Since the

restriction of A to the set of effective divisors that are not special, i.e.
{
D ∈ X [g] | h0(D) = 1

}
is

a biholomorphism, we have x3g−2(x), ..., x4g−3(x) as holomorphic functions of x. Now, for each

x ∈ U , note that the ratio of a quadratic differential with divisor−x+xd(x)+x3g−2+ ...+x4g−3

over q is a meromorphic function defined on all of X and proportional to

fx(z) =

∏3g−3
k=1 E(z, xk(x))

E(z, x)

∏4g−3
h=3g−2E(z, xh(x))∏4g−4

j=1 E(z, x′j)
, (6.5)

where E(x, y) is a prime form of X . Since E(x, y) is holomorphic in both of its variables, fx(z)

is holomorphic on U . Hence q(i)
x,xd := fx(z)q(z) varies holomorphically with respect to x.

The families parameterized by U that satisfies conditions (a) and (b) in proposition 6.1 are far

from unique: scaling one such family by a function holomorphic on U produces another. Given

a local coordinate z on U , however, we can look to control the Laurent tails of these quadratic

differentials w.r.t. z. The resulting “normalized” families would be unique, but we would be able

to impose less zeroes.
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PROPOSITION 6.2. Let (U, z) be an open coordinated subset of X .

1. Let x3g−3 : U → X [3g−3], x 7→ x3g−3(x) = x1(x) + ... + x3g−3, be a holomorphic map

such that for all x ∈ U and r ∈ {1, ..., 3g − 3}, xr(x) ̸= x and x3g−3(x) is Q-generic. Then

there exists a unique family of meromorphic quadratic differentials
{
q
(i)
z,x,x

}
x∈U

holomorphically

parameterized byU such that, for each x ∈ U , q(i)
z,x,x3g−3 satisfies conditions (a), (b) in Proposition

6.1, and furthermore takes the local form

dz2

(z − z(x))i
+R

(i)
z,x,x3g−3(z)dz

2, (6.6)

where R(i)
z,x,x3g−3(z) is the restriction of a holomorphic function R(i)(z1, z2) defined on (U, z) ×

(U, z) to the slice {z1 = z(x), z2 ≡ z}.

2. Let x3g−4 : U → X [3g−4], x 7→ x3g−4(x) = x1(x) + ...+ x3g−4, be a holomorphic map such

that for all x ∈ U and r ∈ {1, ..., 3g − 4}, xr(x) ̸= x and x + x3g−4(x) is Q-generic. Then

there exists a unique family of meromorphic quadratic differentials
{
q
(i)
0,z,x,x3g−4

}
x∈U

holomor-

phically parameterized by U such that, for each x ∈ U , q(i)
0,z,x,x3g−4 satisfies conditions (a), (b) in

Proposition 6.1, and furthermore takes the local form

dz2

(z − z(x))i
+R

(i)
0,z,x,x3g−4(z)dz

2, (6.7)

where R(i)
0,z,x,x3g−4(z) is the restriction of a function R(i)

0 (z1, z2), which is defined on (U, z1) ×

(U, z2) and vanishes at the diagonal {z1 = z2}, to the slice {z1 = z(x), z2 ≡ z}.

Proof. 1. For i = 1, consider a family
{
q
(1)
x,x3g−3

}
x∈U

from Proposition 6.1. For each

fixed x ∈ U , we can scale q(1)
x,x3g−3 into taking the local form (6.6) to construct q(1)z,x,u. For

i = 2, choose x3g−2 ∈ X \ U such that x3g−2 + x3g−3 is Q-generic, and consider two fami-

lies
{
q
(i)
x,x3g−3+x3g−2

}
x∈U

for i = 1, 2 from Proposition 6.1. For each fixed x ∈ U , combining

scaling q(2)
x,x3g−2+x3g−2

and adding a scaling of q(1)
z,x,x3g−3 , we can construct q(2)

z,x,x3g−3 that takes the

local form (6.6). Since q(1)
z,x,x3g−3 in general does not vanish at x3g−2(x), we can only in general

guarantee q(2)
z,x,x3g−3(z) to vanish at x3g−3(x). The uniqueness statement follows from the unique-

ness up to scaling of q(i)
x,xd .

2. By our assumption, for all x ∈ U , there exists a unique up to scaling a holomorphic quadratic
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differential that vanishes at x3g−4(x) and does not vanish at x. By adding proper scalings of this

quadratic differential with the members of the family
{
q
(i)
z,x,x3g−4+x3g−3

}
x∈U

, where x3g−3 is a

point in X \ U , we can cancel the evaluation of R(i)
z,x,x3g−4+x3g−3

(z) at z(x).

REMARK 6.1. To emphasize the fact that the “normalized” forms (6.6) and (6.7) are only manifest

w.r.t. a choice of local coordinate, we have included the local coordinate in the notation of these

families of quadratic differentials.

Some technical results. In the coming chapter we will be interested in families of quadratic

differentials of certain forms. The idea is to work with families of “building blocks” of quadratic

differentials and analyze the limit of these families as the poles collide.

Let (U, z) be a coordinated neighborhood of x0 ∈ X and x′ = x3 + ...+ xd for d ≤ 3g − 3 a

reduced effective divisor on X such that, for all x1, x2 ∈ U , x1 + x2 + x′ is Q-generic. For each

r ∈ {3, ..., d}, let x′r := x′ − xr. Then, refining U if necessary, we can choose some effective

divisors w = w0 + wd+1 + ... + w3g−3 on X with support distinct from U ∪ {x3, ..., xd} such

that, for all x1, x2 ∈ U and r ∈ {3, ..., d}, x1 + x′ +w and x1 + x2 + x′r +w are Q-generic.

Now, for each u ∈ z(U), let x±(u) be points in U having coordinates±u respectively. We use

the following short-hand notations for the unique families of quadratic differentials from proposi-

tion 6.2,

q
(i)
u,± := q

(i)
0,z,x±,w+x′

on (U,z)
≡ dz2

(z ∓ u)i
+R

(i)
u,±(z)dz

2, i ∈ {1, 2}, (6.8)

whereR(i)
u,±(z) is the restriction to the slice {(u, z)} of a functionR(i)

0 (z1, z) which is holomorphic

in both variables and vanishes at the diagonal {z = u}.

LEMMA 6.3. Fix i ∈ {1, 2}.

1. The functions 1
uR

(i)
u,+(−u) and − 1

uR
(i)
u,−(u) are holomorphic on U with variable u = z(x+).

Furthermore, their evaluations at u = 0 are equal.

2. For each fixed z, the limit

Ř(i)(z) := lim
u→0

1

u

(
R

(i)
u,+(z)−R

(i)
u,−(z)

)
(6.9)
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exists. These limits define a holomorphic function on U with variable z.

Proof. 1. We need to show that the u → 0 limit of 1
uR

(i)
u,+(−u) and − 1

uR
(i)
u,−(u) exist

and are equal. Consider the Taylor expansion of R(i)
0 (z1, z) =

∑
m,n≥0R

(i)
m,nzm1 z

n at its zero

(z1, z) = (0, 0). Since R(i)
0,0 = 0,

R
(i)
u,−(u) := R

(i)
0 (−u, u) = − (R1,0 −R0,1)u+O(u2),

R
(i)
u,+(−u) := R

(i)
0 (u,−u) = (R1,0 −R0,1)u+O(u2).

It follows that

lim
u→0

1

u
R

(i)
u,+(−u) = − lim

u→0

1

u
R

(i)
u,−(u). (6.10)

2. For each fixed z, it follows from the Taylor expansion R(i)
0 (z1, z) =

∑
m,n≥0R

(i)
m,nzm1 z

n that,

R
(i)
u,+(z)−R

(i)
u,−(z) = 2u

∑
n≥0

R
(i)
1,nz

n + 2u3
∑
n≥0

R
(i)
3,nz

n + 2u5
∑
n≥0

R
(i)
5,nz

n + ...

is a holomorphic function on (S, u) that vanishes at u = 0; we can calculate

lim
u→0

1

u

(
R(i)

u (z)−R(i)
u,−(z)

)
= 2

∑
n≥0

R
(i)
1,nz

n. (6.11)

6.2 Parameterize SL-operators

PROPOSITION 6.4. Let x′1 + ...+ x′3g−3 be a reduced Q-generic divisor on X . Then there exists

coordinate neighborhoods (Ur, zr) of each x′r, r ∈ {1, ..., 3g − 3}, and an injective map of sets

U1 × ...× Ur × C3g−3 −→ {SL-operators }

(x⃗, ν⃗) = (x1, ..., x3g−3, ν1, ..., ν3g−3) 7−→ D(x⃗,ν⃗)

such thatD(x⃗,ν⃗) has simple apparent singularities at each xr with respective accessory parameters

νr w.r.t. the local coordinates zr.
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Proof. Since x′1 + ... + x′3g−3 is Q-generic, there exists a neighborhood Ur of x′r for each

r ∈ {1, ..., 3g−3} such that, for all (x1, ..., x3g−3) ∈ U1× ...×U3g−3, the divisor x1+ ...+x3g−3

is Q-generic. Let z1, ..., z3g−3 be coordinates on U1, ..., U3g−3 respectively that are subordinate to

a fixed holomorphic projective structure. Then for each (x⃗, ν⃗) = (x1, ..., x3g−3, ν1, ..., ν3g−3) ∈

U1 × ...× Ur × C3g−3, we define a non-degenerate linear system of rank 3g − 3 in H0(K2) by

q(0)(zr) |zr(xr) +ν
2
r = 0, r = 1, ..., 3g − 3,

which admits a unique solution q(0)(x⃗,ν⃗). The meromorphic quadratic differential

q(x⃗,ν⃗) = −
3

4

3g−3∑
r=1

q
(2)
0,zr,xr,x̂r

+

3g−3∑
r=1

νrq
(1)
0,zr,xr,x̂r

+ q
(0)
(x⃗,ν⃗),

where x̂r := x1+ ...+x3g−3−xr, defines an SL-operatorD(x⃗,ν⃗) by its local form ∂2zr +q(x⃗,ν⃗)(zr)

on (Ur, zr). Clearly the assignment (x⃗, ν⃗) 7→ D(x⃗,ν⃗) is injective.

In the following we prove proposition 1.3.

PROPOSITION 6.5 (PROPOSITION 1.3). Suppose deg(Λ)− g is odd. Let q0 be a non-degenerate

holomorphic quadratic differential and x′1 + ... + x′3g−3 be a reduced Q-generic divisor. If in

addition there is no exceptional divisor on the spectral curve Sq0 projecting to x′1 + ... + x′3g−3,

then there exist open neighborhoods V ⊂ H0(K2) of q0, Ur ⊂ X of x′r and an embedding

U1 × ...× U3g−3 × V −→MH(Λ),

(x⃗, q) = (x1, ..., x3g−3, q) 7−→ [E(x⃗,q), ϕ(x⃗,q)]

where det(ϕ(x⃗,q)) = q andE(x⃗,q) admits a subbundle Lx⃗ with the zero divisor of cLx⃗
(ϕ(x⃗,q)) being

x1 + ...+ x3g−3. Furthermore, there exist coordinate zr on Ur and an injective map of sets

U1 × ...× U3g−3 × V −→ {SL-operators },

(x⃗, q) = (x1, ..., x3g−3, q) 7−→ D(x⃗,q)
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whereD(x⃗,q) has simple apparent singularities x1, ..., x3g−3 with respective accessory parameters

ν1, ..., ν3g−3 satisfying ν2r + q(zr(xr)) = 0 for r = 1, ..., 3g − 3.

Proof. For r ∈ {1, ..., 3g − 3}, let Ur be a neighborhood of x′r that contains no zero of q0

and such that Ur ∩ Ur′ = ∅ for r ̸= r′. For each x⃗ ∈ U1 × ... × U3g−3, choose a line bundle

Lx⃗ satisfying KL−2x⃗ Λ ∼= OX(x1 + ...x3g−3) in such a way that {Lx⃗}x⃗∈U1×...×U3g−3
is a family

holomorphically parameterized by U1 × ...×U3g−3. Let V be a neighborhood of q0 that contains

no degenerate holomorphic quadratic differential and such that, for each r ∈ {1, ..., 3g − 3}, the

subset ∪
q∈V

Sq |π−1(Ur) of T ∗X |Ur , where Sq is the spectral curve defined by q ∈ V , has two

distinct components 17. As a particular consequence, if q ∈ V then q has no zeroes located in

any of the neighborhood Ur. Since V by construction allows us to choose a distinct component of

∪
q∈V

Sq |π−1(Ur), for each r ∈ {1, ..., 3g − 3}, one can assign to (xr, q) ∈ Ur × V a point x̃r on Sq

that projects to xr in a way such that (xr, q) 7→ x̃r(xr, q) defines a holomorphic functionUr×V →

T ∗X |Ur . Given (x⃗, q) ∈ U1 × ...×U3g−3 × V , let D(x⃗, q) be the effective divisor on Sq defined

by
∑3g−3

r=1 x̃r(xr, q). By proposition 3.6, there exists a unique Higgs bundle (E(x⃗,q), ϕ(x⃗,q)) such

that det(ϕ(x⃗,q)) = q and E(x⃗,q) admits Lx⃗ as a subbundle inducing D(x⃗, q) as the corresponding

Baker-Akhiezer divisor. One can, if necessary, further refine Ur and V so that D(x⃗, q) is not an

exceptional divisor on Sq for all (x⃗, q) ∈ U1 × ... × U3g−3 × V . Then the assignment (x⃗, q) 7→

[E(x⃗,q), ϕ(x⃗,q)] is injective. By appealing to the fact that the complex structure of each smooth

Hitchin fiber is compatible with the variation of effective divisors on the corresponding spectral

curve and that the Hitchin fibration is holomorphic, one sees that (x⃗, q) 7→ [E(x⃗,q), ϕ(x⃗,q)] defines

an embedding.

Now, let z1, ..., z3g−3 be coordinates on U1, ..., U3g−3 respectively that are subordinate to a

fixed holomorphic projective structure. For each (xr, q) ∈ Ur × V , let νr(xr, q) ∈ C be such that

x̃r(xr, q) has coordinate (zr(xr), νr(xr, q)) in the local frame of T ∗X |Ur defined by dzr. The

second part of the proposition now follows from proposition 6.4.

17One can define such V by making sufficiently small perturbation of 3g − 4 simple zeroes of q0 together with
scaling.
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Chapter 7

Collision of apparent singularities

In this chapter, we analyze the limit when two simple apparent singularities collide. As two simple

apparent singularities approach each other, each contributes and blows-up the coefficient qz,0 in

the Laurent expansion in (6.1a) at the other one. The constraint (6.1b) implies that their accessory

parameters will also blow-up. We will show that, if these respective accessory parameters blow-up

in a particular way, the limit upon collision will be either an SL-operator with a double apparent

singularity at the collision site, or an SL-operator with two less apparent singularities.

7.1 Setup

7.1.1 Conditions on the collision site.

For 2 ≤ d ≤ 3g − 3, let x0 and x′ = x3 + ... + xd be reduced effective divisors on X such that

x0 ≰ x′ and

2x0 + x′ is Q-generic. (7.1)

A consequence if this condition is that for all pairs of distinct points x1 and x2 in a sufficiently

small neighborhood U of x0, we have

x1 + x2 + x′ is Q-generic. (7.2)

Condition (7.2) is equivalent to requiring that, given a basis q = (q1, ..., q3g−3) of H0
(
K2

X

)
, the

d× (3g− 3) matrix qr,k := qk(zr(xr))
1≤k≤3g−3
1≤r≤d , defined by evaluating qk at xr using some local

coordinate zr, is of maximal rank d. This condition is satisfied by a generic choices of x0 and x′.

Determinant with simple zero at x0. Consider the case where d = 3g − 3, and x0, x′ satisfy

condition (7.1). Then upon choosing local coordinates and a basis q = (qk) of H0(K2), any x1,

x2 ∈ U define a (3g − 3)× (3g − 3) non-degenerate matrix qr,k(x1, x2).
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We will in the following evaluate qk at x1 and x2 using the same local coordinate z on U .

Furthermore, we will make the following choices of x1 and x2. W.l.o.g., suppose z(x0) = 0. Then

for each u ∈ z(U), let x1(u) and x2(u) be points in U that have coordinates ±u respectively; in

particular, x0 = x1(0) = x2(0). Then a choice of a basis q = (qk) of H0(K2) and local

coordinates z3, ..., z3g−3 for x3, ..., x3g−3 together define a function det(qr,k)(u) : U ∼= z(U)→

C. This function is holomorphic in u and vanishes only at u = 0, since at u = 0 the matrix qr,k is

degenerate. The following proposition shows that if we use a certain family (qk,u)
3g−3
k=1 of basis of

H0(K2) that also varies holomorphically in u, the zero at u = 0 of the corresponding determinant

is simple.

LEMMA 7.1. Let x0 and x′ = x1+ ...x3g−3 satisfy (7.1), and (U, z), x1(u), x2(u) be constructed

as above. Then there exists a family qu := {(qk,u)3g−3k=1 }u∈z(U) of basis of H0(K2) that is param-

eterized by U and is such that the function det(qr,k)(u), where qr,k = qk,u(zr(xr)), has a simple

zero at u = 0.

Proof. For each k in the range 3 ≤ k ≤ 3g − 3 and each u ∈ z(U), there exists a unique

up to scaling quadratic differential that vanishes at x1(u), x2(u) and all xr with r ̸= k. By

our assumption on x0 and x′, this quadratic differential does not vanish at xk. By scaling, for

3 ≤ k ≤ 3g − 3, we define a unique quadratic differential qk,u with qk,u (zr(xr)) = δkr. We

now define q1 ≡ q1,u and q2 ≡ q2,u independent of u as follows. Let q1 be a (unique up to

scaling) holomorphic quadratic differential that vanishes at x0 +x′. By our assumption on x0 and

x′, its zero at x0 is simple. For some x′0 ∈ U with x′0 ̸= x0, let q2 be a (unique up to scaling)

holomorphic quadratic differential that vanishes at x′0 + x′. By our assumption on x0 and x′, q2

does not vanish at x0 and hence is linearly independent from q1. Then for each u ∈ z(U), let

(qk,u) := (q1, q2, q3,u, ..., q3g−3,u): this forms a basis of H0(K2) for each u ∈ z(U). It follows
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that the function

det(qr,k)(u) =

∣∣∣∣∣∣∣∣∣
q1(z(x1)) q2(z(x1)) 0

q1(z(x2)) q2(z(x2)) 0

0 0 I(3g−5)×(3g−5)

∣∣∣∣∣∣∣∣∣
= q1(z(x1))q2(z(x2))− q1(z(x2))q2(z(x1))

= 2q′1(z(x0)))q2(z(x0))u+O(u2) (7.3)

has a simple zero at u = 0.

7.1.2 Families of meromorphic quadratic differentials.

Given x0 and x′ satisfying condition (7.1), let (U, z), (U3, z3), ..., (Ud, zd) be some respective

coordinate neighborhoods of x0, x3, ..., xd, which do not intersect each other and are subordinate

to a fixed holomorphic projective structure. W.l.o.g., let z(x0) = 0; for each u ∈ z(U), let

x±(u) ∈ U be defined by z(x±) = ±u. Let x′r := x′ − xr.

Let ν±(u), ν3(u), ..., νd(u) be holomorphic functions from U \ {x0} to C. We want to

characterize a family of SL-operators {Du}u∈z(U),u̸=0 holomorphically parameterized by U \

{x0}, where Du has simple apparent singularities at x±(u), x3, ..., xd and respective accessory

parameters ν±(u), ν3(u), ..., νd(u) w.r.t. local coordinates z, z3, ..., zd. We do this by writing

Du = Dpr + qu, where Dpr is an SL-operator defined by the chosen holomorphic projective

structure, and qu is a meromorphic quadratic differential built in terms of the “building blocks”.

One set of the “building blocks” comes from (6.8),

q
(i)
u,± := q

(i)
0,z,x±,w+x′

on (U,z)
≡ dz2

(z ∓ u)i
+R

(i)
u,±(z)dz

2, i ∈ {1, 2}, (7.4)

some u → 0 limits of which are discussed in lemma 6.3. We also use the following short-hand

notations

q(i)u,xr
:= q

(i)
0,zr,xr,x++x−+x′

r+w−w0
, 3 ≤ r ≤ d,
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for “normalized” quadratic differentials that have simple/double pole at xr and vanishes at

x+ + x+ + x3 + ...xr−1 + xr+1 + ...+ xd + wd+1 + ...w3g−3.

We also denote the u→ 0 limits of these families by

q
(i)
0 := q

(i)
0,z,x0,w+x′

on (U,z)
≡ dz2

zi
+R

(i)
0 (z)dz2, q

(i)
0,xr

:= q
(i)
0,zr,xr,2x0+x′

r+w−w0
. (7.5)

REMARK 7.1. We have defined q(i)u,± upon choosing a divisor w = w0+wd+1+ ...w3g−3. Choos-

ing a different choice of w amounts to translating the definitions of q(i)u,± and q(i)u,xr by a holomor-

phic quadratic differential that vanishes at x′ and x+ + x− + x′r respectively.

Now, to construct qu from the “building blocks”, for each nonzero u ∈ z(U), let

qu = q(0)u +
∑

s∈{±}

νs(u)q
(1)
u,s −

3

4

∑
s∈{±}

q(2)u,s +
d∑

r=3

νr(u)q
(1)
u,xr
− 3

4

d∑
r=3

q(2)u,xr
, (7.6)

where q(0)u is the holomorphic quadratic differential that makes qu satisfy condition (6.1b), which

now due to the construction of q(i)u,± and q(i)u,xr takes the form

q(0)u (z) |z=±u = −ν±(u)2 − ν∓(u)q(1)u,∓(z) |z=±u +
3

4
q
(2)
u,∓(z) |z=±u=: C±(u), (7.7a)

q(0)u (zr) |zr=zr(xr) = −νr(u)
2, for 3 ≤ r ≤ d.

(7.7b)

The functions ν±(u), ν3(u), ..., νd(u) define via these constraints (7.7) for each u ̸= 0 a non-

homogeneous linear system in H0(K2
X). Due to condition (7.1), the homogeneous linear system

is of maximal rank d. It follows that, for each u ̸= 0, the non-homogeneous linear system (7.7)

defines via its solutions a (3g−3−d)-dimensional subspace inH0(K2), and hence a (3g−3−d)-

dimensional family of meromorphic quadratic differentials qu with the appropriate Laurent tails at

x±, x3, ..., xd defined by ν±(u), ν3(u), ..., νd(u).

We can represent the linear system (7.7) more explicitly by using the family qu = {(qk,u)3g−3k=1 }u∈z(U)

of basis of H0(K2) constructed in lemma 7.1. For u ̸= 0, let q(0)u =
∑3g−3

k=1 Ek(u)qk,u. Then
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(7.7) decouples into a 2× 2 linear system representing (7.7a),

 q1(z) |z=u q2(z) |z=u

q1(z) |z=−u q2(z) |z=−u

E1(u)

E2(u)

 =

C+(u)

C−(u)

 , (7.8a)

and a trivial (d− 2)× (d− 2) one representing (7.7b),

Er(u) = −νr(u)2 for 3 ≤ r ≤ d. (7.8b)

For d < 3g − 3, the expansion coefficients Er(u) with r in the range d < r ≤ 3g − 3 are not

constrained and parameterize the (3g − 3 − d)-dimensional subspace in H0(K2) consisting of

solutions to (7.7).

Limits of the solutions to the linear systems. We will be interested in families of meromorphic

quadratic differentials {qu}u∈z(U),u̸=0 that have well-defined limits q0 := lim
u→0

qu with the Laurent

tails at the poles having the appropriate forms to make these poles apparent singularities. In other

words, we are interested in families {Du}u∈z(U) of SL-operators parameterized by U , with Du

for u ̸= 0 having simple apparent singularities at x±, x3, ..., xd and D0 being the limit as x+ and

x− collide.

More specifically, we will study families determined by ν3(u), ..., νd(u) being holomorphic

for all u ∈ z(U), and ν±(u) holomorphic at u ̸= 0 and having the Laurent expansions at u = 0 of

the form

ν±(u) = ±
3

4u
± ν ′u+O(u2) (7.9)

or

ν±(u) = ∓
1

4u
+ ν0 ± ν ′u+O(u2). (7.10)

LEMMA 7.2. Suppose ν3(u), ..., νd(u) : U ∼= z(U)→ C are holomorphic functions, and ν±(u) :

U ∼= z(U) → C are meromorphic functions with simple poles and Laurent expansions at u = 0

of either the form (7.9) or (7.10). Then the induced non-homogeneous linear system (7.7) limits to
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a degenerate d× (3g − 3) linear system of rank d− 1.

Proof. This can be checked explicitly by plugging (7.9) and (7.10) in (7.7a). Specifically,

the coefficients at the orders u−1 and u0 of ν±(u) ensure that C±(u) are regular at u = 0, while

the coefficients at the order u1 of ν±(u) together with part 1 of Lemma 6.3 ensure that C+(0) =

C−(0) = C0, where

C0 :=


−ν ′ − 3

4 limu→0

1
uR

(1)
u,−(u) for ν±(u) = ± 3

4u ± ν
′u+O(u2),

−ν20 + ν ′ − 1
4 limu→0

1
uRu,−(u) for ν±(u) = ∓ 1

4u + ν0 ± ν ′u+O(u2).
(7.11)

Then the linear system (7.7) limits to

q(0)u (0) = C0, q(0)u (zr(xr)) = −νr(0)2, (7.12)

for 3 ≤ r ≤ d. Note that the dimension of Qx0+x′ must have the minimal value 3g − 2− d since

otherwise condition (7.1) will be violated. This yields the rank d1 of the system (7.12).

LEMMA 7.3. Let x0, x3, ..., xd satisfy condition (7.1), ν0 ∈ C, and q ∈ H0(K2) a holomorphic

quadratic differential. Then there exist holomorphic functions ν3(u), ..., νd(u) : z(U) → C and

ν±(u) : z(U \ {x0})→ C with Laurent expansions at u = 0 of the forms (7.9) or (7.10) (with ν0

as the coefficient of order u0), and a family of holomorphic quadratic differentials {q(0)u }u∈z(U)

such that

(i) q(0)u solves the linear system (7.7) defined by ν±(u), ν3(u), ..., νd(u) for u ̸= 0;

(ii) q(0)0 = q solves the corresponding limit linear system (7.12).

Proof. We will make use of the representation (7.8) of (7.7) using a family qu = {(qk,u)3g−3k=1 }u∈z(U)

of basis of H0(K2) constructed in lemma 7.1. Let us use the basis corresponding to u = 0 and

expand q =
∑3g−3

k=1 E0
kqk,0. We need to show that there exist ν±(u) of the prescribed forms such

that the solutions to (7.8a),

E1(u) =
C+(u)q2(−u)− C−(u)q2(u)
q1(u)q2(−u)− q1(−u)q2(u)

, E2(u) =
q1(u)C−(u)− q1(−u)C+(u)

q1(u)q2(−u)− q1(−u)q2(u)
, (7.13)
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whereC±(u) are defined as in (7.7), have well-defined u→ 0 limits which are equal toE0
1 andE0

2

respectively. To this end, denote by N1(u) and N2(u) the respective numerators in (7.13). Since

lim
u→0

C±(u) = C0 (cf. (7.11)), both N1(u) and N2(u) are holomorphic and vanish at u = 0. Since

the denominators of (7.13) have simple zero at u = 0 by lemma 7.1, the u → 0 limits of E1(u)

and E2(u) are well-defined by L’Hôpital’s rule. These limits are determined by the coefficient at

order u1 ofN1(u) andN2(u). WithR(i)
u,±(z) =

∑
m,nR

(i)
m,n(±u)mzn, one can compute explicitly

these coefficients to be

N1(u) =
q2(0)

2

[
−4(ν+,2 + ν−,2) + 3

(
R

(2)
0,1 −R

(2)
1,0 +R

(1)
2,0 −R

(1)
1,1 +R

(1)
0,2

)]
u

+
q′2(0)

2

(
4ν1 + 3R

(1)
1,0 − 3R

(1)
0,1

)
u+O(u2),

N2(u) = −
q′1(0)

2

[
4ν1 + 3R

(1)
1,0 − 3R

(1)
0,1

]
u+O(u2)

for the ansatz ν±(u) = ± 3
4u ± ν1u+ ν±,2u

2 +O(u3), and

N1(u) = −
q2(0)

2

[
8ν0ν1 + 4ν0

(
R

(1)
0,1 −R

(1)
1,0

)
+R

(1)
2,0 −R

(1)
1,1 +R

(1)
2,0 + 3R

(2)
1,0 − 3R

(2)
0,1

]
u

+
q′2(0)

2

[
4ν20 − 4ν1 +R

(1)
0,1 −R

(1)
1,0

]
u+O(u2)

N2(u) =
q′1(0)

2

(
−4ν20 + 4ν1 −R(1)

0,1 +R
(1)
1,0

)
u+O(u2)

for the ansatz ν±(u) = ∓ 1
4u + ν0 ± ν1u+ ν±,uu

2 +O(u3).

Since q2(0) and q′1(0) are non-zero, we can tune (ν1, ν±,2) in the first case and (ν0, ν1) in

the second case to tune the coefficients of order u1 of N1(u) and N2(u) as we want. Hence

there exist holomorphic functions ν±(u) : U \ {x0} → C with the Laurent expansion at u =

0 of the form (7.9) or (7.10), so that lim
u→0

E1(u) = E0
1 and lim

u→0
E2(u) = E0

2 . For 3 ≤ r ≤

d, let νr ∈ C be such that E0
r = −ν2r , and define νr(u) = νr for all u ∈ z(U). The tuple

(E1(u), E2(u), E3(u), ..., E3g−3(u)) = (E1(u), E2(u), E
0
3 , ..., E

0
3g−3) then defines for each u ̸=

0 a holomorphic quadratic differential q(0)u :=
∑3g−3

k=1 Ek(u)qk,u that solves the linear system (7.8)

defined by (ν±(u), ν3(u), ..., νd(u)), with lim
u→0

q
(0)
u = q a solution to the corresponding limit linear

system (7.12).
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7.2 Double apparent singularity as the limit

In this subchapter we will analyze the limit lim
u→0

qu if ν±(u) take the form (7.10).

LEMMA 7.4. Let x0, x3, ..., xd be distinct points on X , (U, z) a coordinate neighborhood of x0

with z(x0) = 0, ν±(u) = ∓ 1
4u + ν0 ± ν ′u+O(u2) holomorphic functions on U \ {z0}, and q(i)u,±

defined as in (7.4) for u ∈ z (U), u ̸= 0. Then the family of meromorphic quadratic differentials

∑
s∈{±}

νs(u)q
(1)
u,s −

3

4

∑
s∈{±}

q(2)u,s, (7.14)

which is parameterized by U \ {x0}, extends to a family parameterized by U . The meromorphic

quadratic differential q(2)x0 corresponding to the extension to x0 is holomorphic on X \ {x0},

vanishes at x3, ..., xd, and on U takes the form

q(2)x0
≡ q(2)x0

(ν0) =

[
− 2

z2
+

2ν0
z

+ 2ν0R
(1)
0 (z)− 1

4
Ř(1)(z)− 3

2
R

(2)
0 (z)

]
dz2, (7.15)

where Ř(1)(z) is defined in part 2 of lemma 6.3 and R(i)
0 (z) defined in (7.5).

Proof. We will show explicitly that, as a multi-variable function with variables u and z,

(7.14) limits to (7.15) as u → 0. To this end, it suffices to show that given any z ̸= 0, the

u → 0 limit of the evaluation of (7.14) at z is the evaluation of (7.15) at z. Plugging ν±(u) =

∓ 1
4u + ν0 ± ν ′u+O(u2) into (7.14) yields

−2z2 − u2

(z − u)2(z + u)2
+

2ν0z

(z − u)(z + u)
−
R

(1)
u,+(z)−R

(1)
u,−(z)

4u
+ ν0

(
R

(1)
u,+(z) +R

(1)
u,−(z)

)
−3

4

(
R

(2)
u,+(z) +R

(2)
u,−(z)

)
+O(u)(z).

(7.16)

Here we have ignored the factor dz2 and denoted by O(u)(z) a function with variables u and z

such that, given any z′ ̸= 0, the function Fz′(u) := O(u)(z) |z=z′ is holomorphic on {u | 0 ≤

|u| ≤ |z′|/2} with Fz′(u) ∼ O(u). It follows that lim
u→0
O(u)(z) = O(u)(z) |u=0, which a priori

defines a function in z, is the zero function. By a similar argument, we can take the u → 0 limit

of the other terms in (7.16) explicitly and obtain q(2)x0 as in (7.15) as the limit.
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To show that q(2)x0 is holomorphic on X \ {x0}, it suffices to show holomorphicity on X \ U .

Given p ∈ X \U and a coordinate neighborhood (V,w) of p, let q(i)u,±(w)dw
2 be the local form of

q
(i)
u,± on V . We want to show that the evaluation of (7.14) at p, which defines the function

∑
s∈{±}

νs(u)q
(1)
u,s(w(p))−

3

4

∑
s∈{±}

q(2)u,s(w(p)) =
1

4u

(
−q(1)u,+(w(p)) + q

(1)
u,−(w(p))

)
+O(1)

(7.17)

in u which is holomorphic at u ̸= 0 has a well-defined u→ 0 limit. Since q(i)u,±
u→0→ q

(i)
0 , which is

holomorphic onX\{x0}, it suffices to show that the leading term 1
4u

(
−q(1)u,+(w(p)) + q

(1)
u,−(w(p))

)
of (7.17) has a well-defined u → 0 limit. This is achieved by an argument similar to the proof

of part 2 of lemma 6.3. Furthermore, for p ∈ {u3, ..., ud}, since (7.17) vanishes for u ̸= 0, it is

identically zero for all u ∈ z(U).

In the following, we fix a holomorphic projective structure and a corresponding SL-operator

Dpr (which has no apparent singularity). Recall again that any other SL-operator can be written

as Dpr + q where q is a meromorphic quadratic differential having double poles with appropriate

Laurent tails in coordinates subordinate to the chosen holomorphic projective structure.

PROPOSITION 7.5. Let x0, x3, ..., xd be distinct points on X such that 2x0 + x3 + ...xd is Q-

generic. Let z be a coordinate on U subordinate to the chosen holomorphic projective structure,

with z(x0) = 0. Let ν3(u), ..., νd(u) be holomorphic functions on U , ν±(u) = ∓ 1
4u + ν0 ±

ν ′u + O(u2) holomorphic functions on U \ {z0}, and {Du = Dpr + qu}u∈z(U),u ̸=0 the corre-

sponding family of SL-operators parameterized by U \ {x0} where qu is defined as in (7.6), with

{q(0)u }u∈z(U),u ̸=0 the corresponding family of holomorphic quadratic differentials.

If there exists a holomorphic quadratic differential q(0)0 with q(0)0 = lim
u→0

q
(0)
u , then {Du}u∈z(U),u̸=0

extends to a family of SL-operators parameterized by U . The SL-operator corresponding to the

extension to x0 is D0 = Dpr + q0, where

q0
on (U,z)
= q

(0)
0 + q(2)x0

(ν0) +
d∑

r=3

νr(0)q
(1)
0,xr
− 3

4

d∑
r=3

q
(2)
0,xr

. (7.18)
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(Recall the definition of q(2)0,xr
in (7.15).) In particular, the apparent singularities ofD0 consists of a

double apparent singularity at x0 with accessory parameter ν0, and simple apparent singularities

at x3, ..., xd with respective accessory parameters ν3(0), ..., νd(0).

Proof. The existence of D0 = Dpr + q0 with q0 of the form (7.18) follows from the definition

(7.6) of qu and lemma 7.4. Let qreg0 (z) be the regular part on U of q0(z), i.e.

qreg0 (z) := q0(z)−
(
− 2

z2
+

2ν0
z

)
dz2

= q
(0)
0 (z) +

[
2ν0R

(1)
0 (z)− 1

4
Ř(1)(z)− 3

2
R

(2)
0 (z)

]
dz2 +

d∑
r=3

νr(0)q
(1)
0,xr

(z)− 3

4

d∑
r=3

q
(2)
0,xr

(z).

To prove the proposition, it remains to show that the coefficients of the Laurent tail of q0(z) satisfy

the condition making x0 a double apparent singularity, i.e. for qreg0 (z) =
∑

k≥0 q0,kz
k we have

ν30 + q0,0ν0 +
q0,1
2

= 0. (7.19)

To this end, for each u ̸= 0, let qregu (z) be the regular part on U of qu(z), i.e.

qregu (z) := qu(z)−
(
− 3

4(z − u)2
− 3

4(z + u)2
+
ν+(u)

z − u
+
ν−(u)

z + u

)
= q(0)u (z) +

∑
s∈{±}

νs(u)R
(1)
u,s(z)−

3

4

∑
s∈{±}

R(2)
u,s(z) +

d∑
r=3

νr(u)q
(1)
u,xr

(z)− 3

4

d∑
r=3

q(2)u,xr
(z).

As a function of both u and z, the leading term in u of qregu (z) comes from the leading terms

in ν±(u)R
(1)
u,±(z) and is equal to −(R(1)

u,+(z) − R
(1)
u,−(z))/(4u). By part 2 of lemma 6.3, this

has a well-defined u → 0 limit. Hence qregu (z) has a well-defined u → 0 limit, and in fact

qregu (z)
u→0−→ qreg0 (z).

Now, this enables us to expand qregu (z) =
∑

m,n≥0 qm,nu
mzn, where letting m = 0 gives the

coefficients q0,n of the Taylor expansion qreg0 (z) =
∑

n≥0 q0,nz
n. Plugging this expansions of

qreg0 (z) and and ν±(u) into condition (6.1b) for z = ±u,

ν±(u)
2 − 3

4

1

(2u)2
+
ν∓(u)

(±2u)
+ qregu (±u) = 0, u ̸= 0,
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we obtain a series of constraints by order of u starting from the order u−2. The constraints up

to order u−1 are automatically satisfied by the leading terms of ν±(u). Solving the constraints at

order u0 and u1, we obtain (7.19).

PROPOSITION 7.6. (Proposition 1.7) LetD be an SL-operator with div(D) = 2x0+x3+ ...+xd

beingQ-generic and d ≤ 3g−3. Then there exists a coordinate neighborhood (U, z) of x0, where

U ⊂ U ′ and z(x0) = 0, and a family of SL-operators {Du}u∈z(U) parameterized by U such that

(i) D0 = D;

(ii) for u ̸= 0,Du has simple apparent singularities at x3, ..., xd and x± ∈ U with z(x±) = ±u;

(iii) for u ̸= 0, the accessory parameters ν±(u) of x± w.r.t. the local coordinate z, as functions

of u, have simple poles at u = 0 and Laurent expansions ν±(u) = ∓ 1
4u +ν

D
0 ±ν ′u..., where

2νD0 is the accessory parameter of the double apparent singularity x0 of D.

Furthermore, this family defines via taking monodromy a holomorphic mapU → Hom(π1, PSL2(C)),

which is injective for d < 2g − 2.

Proof. Fix a holomorphic projective structure with corresponding SL-operator Dpr, and

choose coordinate neighborhoods (Ur, zr) of xr for 3 ≤ r ≤ d and (U, z) of x subordinate to

this holomorphic projective structure, where U satisfies condition (7.1). We can write D = Dpr +

qD, where qD is a meromorphic quadratic differential with local expression − 3
4(z−zr(xr))2

dz2r +

νDr
z−zr(xr)

dz2r + ... on Ur, 3 ≤ r ≤ d, and − 2
z2
dz2 +

2νD0
z dz2 + ... on U . Then there exists a unique

holomorphic quadratic differential q(0)0 (D) such that qD can be written in the form (7.18), i.e.

qD = q
(0)
0 (D) + q(2)x0

(νD0 ) +
d∑

r=3

νDr q
(1)
0,xr
− 3

4

d∑
r=3

q
(2)
0,xr

.

By lemma 7.3, there exist holomorphic functions ν3(u), ..., νd(u) : z(U) → C, ν±(u) : z(U \

{x0}) → C with Laurent expansions at u = 0 of the forms (7.10) (in particular, with νD0 as the

coefficient of order u0), and a family {q(0)u }u∈z(U) of holomorphic quadratic differentials with
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lim
u→0

q
(0)
u = q

(0)
0 (D) such that

qu = q(0)u +
∑

s∈{±}

νs(u)q
(1)
u,s −

3

4

∑
s∈{±}

q(2)u,s +

3g−3∑
r=3

νr(u)q
(1)
u,xr
− 3

4

3g−3∑
r=3

q(2)u,xr
, u ̸= 0,

is a meromorphic quadratic differential with simple apparent singularities at x3, ..., xd and x± ∈ U

with z(x±) = ±u. By proposition 7.5, q0 := lim
u→0

qu = qD, and hence {Du := Dpr + qu}u∈z(U)

defines a family we seek.

To see that taking the projective monodromy representation of Du defines a holomorphic map

U → Hom(π1, PSL2(C)), consider a coordinate neighborhood (V,w), where V is distinct from

U ∪ {x3, ..., xd} and w is subordinate to the chosen holomorphic projective structure. On (V,w),

Du takes the form ∂2w + qu(w) where qu(w) is a function holomorphic on U × V . By standard

results on differential equations that vary holomorphically with respect to deformation parame-

ters [38], the local solutions to ∂2w + qu(w) are holomorphic functions on U × V . Analytically

continuing the ratio of two such linearly independent solutions defines the projective monodromy

representation of Du, which is now holomorphic in u. By corollary 5.4, if the number of apparent

singularities is less than 2g − 2 to start with, this holomorphic map is injective.

EXAMPLE 7.2. Let d ∈ Z+ be even, and x0, x3, ..., xd, (U, z) and x± as in proposition 7.6.

Suppose {(Fu,∇u)}u∈z(U) is a family of irreducible SL2(C)-holomorphic connections where Fu

admits a subbundle Lu such that the zero divisor of cLu(∇u) is x±(u) + x3 + ... + xd for u ̸= 0

and 2x0 + x3 + ... + xd for u = 0. In other words, at the limit u → 0, cLu(∇u) forms a double

zero at x0.

We claim that the accessory parameters ν±(u) of the apparent singularities x±(u) from the

induced family {Du := D(Lu↪→Fu,∇u)}u̸=0 are of the form (7.10). Suppose on U and in certain

local frame adapted to Lu, ∇u takes the form ∂z +

au(z) bu(z)

cu(z) −au(z)

. Then au(z), bu(z) and

cu(z) are holomorphic on both u and z. In particular, we can write cu(z) = (z − u)(z + u)fu(z)

where fu(z) is a function holomorphic on both u and z such that for all u ∈ z(U), fu(z) is nonzero

everywhere on U . Expanding au(z) =
∑

m,n≥0 am,nu
mzn and fu(z) =

∑
m,n≥0 fm,nu

mzn, one
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can observe that the accessory parameters of the apparent singularities x± of Du (cf. (5.17)) have

Laurent expansions

au(±u)−
c′′u(±u)
4c′u(±u)

=∓ 1

4u
+

(
a0,0 −

f0,1
2f0,0

)
±
(
a0,1 + a1,0

+
f20,1 + f0,1f1,0 − f0,0(2f0,2 + f1,1)

2f20,0

)
u+O(u2)

which satisfy the form (7.10).

7.3 Reduction of the number of apparent singularities as the limit

In this subchapter we will analyze the limit lim
u→0

qu if ν±(u) take the form (7.9). We skip the proofs

of the following results as they are similar to the proofs in the previous subchapter.

LEMMA 7.7. Let x0, x3, ..., xd be distinct points on X , (U, z) a coordinate neighborhood of x0

with z(x0) = 0, ν±(u) = ± 3
4u ± ν

′u + O(u2) holomorphic functions on U \ {x0}, and q(i)u,±

defined as in (7.4) for u ∈ z (U), u ̸= 0. Then the family of meromorphic quadratic differentials

∑
s∈{±}

νs(u)q
(1)
u,s −

3

4

∑
s∈{±}

q(2)u,s, (7.20)

which is parameterized by U \ {x0}, extends to a family parameterized by U . The quadratic

differential ∆q(0)x0 corresponding to the extension to x0 is holomorphic on X , vanishes at x3, ...,

xd, and on U takes the form

∆q(0)x0
=

[
3

4
Ř(1)(z)− 3

2
R

(2)
0 (z)

]
dz2. (7.21)

Proof. Similar to the proof of lemma 7.4.

Fix a holomorphic projective structure, and denote by Dpr the corresponding SL-operator

that has no apparent singularity. In the following we use coordinates subordinate to the chosen

holomorphic projective structure.

PROPOSITION 7.8. Let x0, x3, ..., xd be distinct points on X such that 2x0 + x3 + ...xd is Q-

generic. Let z be a coordinate on U subordinate to the chosen holomorphic projective structure,
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with z(x0) = 0. Let ν3(u), ..., νd(u) be holomorphic functions on U , ν±(u) = ± 3
4u±ν

′u+O(u2)

holomorphic functions on U \ {z0}, and {Du = Dpr + qu}u∈z(U),u ̸=0 the corresponding family

of SL-operators parameterized by U \ {x0} where qu is defined as in (7.6), with {q(0)u }u∈z(U),u ̸=0

the corresponding family of holomorphic quadratic differentials.

If there exists a holomorphic quadratic differential q(0)0 with q(0)0 = lim
u→0

q
(0)
u , then {Du}u∈z(U),u̸=0

extends to a family of SL-operators parameterized by U . The SL-operator corresponding to the

extension to x0 is D0 = Dpr + q0, where

q0
on (U,z)
= q

(0)
0 +∆q(0)x0

+

d∑
r=3

νr(0)q
(1)
0,xr
− 3

4

d∑
r=3

q
(2)
0,xr

, (7.22)

where ∆q
(0)
x0 is defined as in (7.21). In particular, the apparent singularities of D0 are simple and

located at x3, ..., xd with accessory parameters ν3(0), ..., νd(0).

Proof. The proof follows directly from lemma 7.7.

PROPOSITION 7.9. Let D be an SL-operator with div(D) = x3 + ... + xd for d ≤ 3g − 3,

and x0 be a point on X such that 2x0 + x3 + ...xd is Q-generic. Then there exists a coordinate

neighborhood (U, z) of x0 and a family of SL-operators {Du}u∈z(U) parameterized by U such

that

(i) D0 = D;

(ii) for u ̸= 0,Du has simple apparent singularities at x3, ..., xd and x± ∈ U with z(x±) = ±u;

(iii) for u ̸= 0, the accessory parameters ν±(u) of x± w.r.t. the local coordinate z, as functions

of u, have simple poles at u = 0 and Laurent expansions ν±(u) = ± 3
4u ± ν

′u+O(u2).

Furthermore, this family defines via taking monodromy a holomorphic mapU → Hom(π1, PSL2(C)),

which is injective for d < 2g − 2.

Proof. Similar to the proof of proposition 7.6.

Relation to isomonodromic operation. Bubbling is an isomonodromic operation that takes

as input a complex projective structure subordinate to a Riemann surface X ′ and a path γ on the
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underlying surface S, such that the restriction to γ of the developing map of the projective structure

is injective. By cutting open X ′ along γ and gluing in an entire copy of P1 along the image of

γ, one obtains another complex projective structure. After bubbling, the two end points of γ on

S have an angle excess of 2π under the developing map, and hence are apparent singularities of

the output projective coordinate. It is clear that the output projective structure realizes the same

projective monodromy representation as the input projective structure, but has two more apparent

singularities and is subordinate to a different complex structure X ′′ of the underlying surface S.

It is natural to ask if we can identify a given projective structure subordinate toX as the output

of a bubbling. The answer is it is sufficient to find two paths γ1 and γ2 which (i) start and end

at the same points, (ii) have the same image under the developing map, and (iii) bound a simply

connected subset of the surface [8]. The input projective structure and Riemann surface of the

bubbling can be recovered by “debubbling”, i.e. collapsing the subset bounded by γ1 and γ2.

We suggest that in the setup of proposition 7.8 and 7.9, x± are the apparent singularities

that appear as the result of a bubbling. In the region |z| ∼ |u| << 1, the leading orders of

Du takes the form ∂2z − 3u2

(z−u)2(z+u)2
. One can check that χ(z) =

(
z2 − u2

)−1/2
(z − u)2 and

χ(z) =
(
z2 − u2

)−1/2
(z + u)2 are solutions to this approximation of Du, and hence w = (z−u)2

(z+u)2

approximates the developing map. Since

w
(
ueiθ

)
= − tan (θ/2)2 = w

(
ue−iθ

)
,

the paths γ1 = ueiθ and γ2 = ue−iθ, for θ ∈ [0, π], have the same image under w(z). Hence,

for each u ̸= 0, we have identified an “approximate bubbling”: the copy of P1 glued in is the disc

defined by the boundary
{
|u|eiθ | θ ∈ [0, 2π]

}
. The suggested image is that the bubble glued in

“shrinks” as u→ 0 and completely disappears at the limit.

100



Appendix A

Rank-2 bundles as extensions of line bundles

Let X be a compact Riemann surface of genus g ≥ 2. Given a line bundle L on X , all rank-2

bundles on X of determinant Λ that admits L as a subbundle can be realized as an extension of the

form

0→ L→ E → L−1Λ→ 0. (A.1)

This is an example of an extension of L−1Λ by L.

We say two extensions of L−1Λ by L that realize E and E′ are equivalent if there exists an

isomorphism E
∼→ E′ that commutes with the embeddings of L into E and E′ (and hence also

commutes with the projections to L−1Λ ). The moduli space Ext
(
L−1Λ, L

)
of extensions of

L−1Λ by L is the set of all such extensions modulo these equivalences. It is well-known that

Ext
(
L−1Λ, L

)
is canonically isomorphic toH1

(
L2Λ−1

)
. The isomorphism is given by tensoring

(A.1) with LΛ−1 (or equivalently applying the functor Hom
(
L−1Λ,

)
) and taking the image of 1

via the coboundary map H0 (O) = H0
(
L−1Λ⊗ LΛ−1

)
→ H1

(
L2Λ−1

)
.

We will use this invariant formulation of the isomorphism Ext
(
L−1Λ, L

) ∼= H1
(
L2Λ−1

)
in the proof of Lange-Narasimhan’s result below [42]. On the other hand, we can understand

how (A.1) can be regarded as an element of H1
(
L2Λ−1

)
more concretely as follows. The data

equivalent to this s.e.s is E together with an embedding L
i
↪→ E. Concretely, with respect to the

local decomposition E|Uα
∼= L|Uα ⊕ (L−1Λ)|Uα over each open subset Uα indexed by α ∈ I, the

transition functions (E)αβ of E are of the form

(E)αβ =

lαβ lαβϵαβ

0 l−1αβλαβ

 (A.2)

where lαβ and λαβ are transition functions of L and Λ respectively. The cocycle conditions
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(E)αβ = (E)−1αβ and (E)αγ = (E)αβ(E)βγ are respectively equivalent to the constraints

ϵαβ = −l2βαλ−1βαϵβα, −ϵβγ + ϵαγ − l2γβλ−1γβ ϵαβ = 0. (A.3)

on the local functions ϵαβ . These two conditions are precisely the definition of a 1-cocyle of the

line bundle L2Λ−1, regarded as a locally free Oc-module. The first condition means that the local

functions ϵβα and ϵαβ , up to a sign, are representatives of the same section of L2Λ−1 over Uαβ ,

but in the representations defined by the restrictions
(
L2Λ−1

)
(Uα) |Uαβ

and
(
L2Λ−1

)
(Uβ) |Uαβ

respectively, with the isomorphism from the former to the latter given by multiplying with l2βαλ
−1
βα

18. The second condition can be read as the cocycle condition of the data (ϵαβ)α,β∈I written

in the restriction
(
L2Λ−1

)
(Uγ) |Uαβγ

. Therefore any extension of the form (A.2) defines a 1-

cocycle of L2Λ−1 and vice versa. One can show that the equivalences of 1-cocycle of L1Λ−1

and extensions of the form (A.1) are compatible with this correspondence, hence the isomorphism

Ext
(
L−1Λ, L

) ∼= H1
(
L2Λ−1

)
. The scaling of an embedding L into E corresponds to scaling the

extension (A.1), hence the moduli space we are interested in is P := PH1
(
L2Λ−1

)
.

Secants and secant varieties of X in PPP. We first recall that an element of the projectivization

PV of a vector space V ∼= Cn+1, by definition representing a line in V , is equivalent to a hyper-

plane, i.e. a codimension-1 linear subspace, of the dual space V ∗. This hyperplane in V ∗ is defined

as the kernel of the line in V . In coordinates, if (vi) ∈ Cn is the coordinate of a representative ele-

ment of a line in V , then in the dual coordinates v̌i the corresponding hyperplane in V ∗ is defined

by the equation
∑
viv̌i = 0. Hence in our case where V is taken to be H1

(
L2Λ−1

) ∼= Cn+1,

the moduli space P ∼= Pn equivalently characterizes the hyperplanes in H0
(
KL−2Λ

)
via Serre

duality.

We will be mostly interested in the situation where deg
(
ΛL−2

)
≥ 2. In this case, due to

degree reason no point on X is a common zero of all sections of KL−2Λ, and hence imposing the
18If L2Λ−1 ∼= O(Q) for a divisor D then the corresponding 1-cocyle relation in O(Q), the sheaf of local meromor-

phic functions with poles bounded below by −Q, is −ϵβγ + ϵαγ − ϵαβ = 0. The factor l2γβλ
−1
γβ is needed when we

transit from the descriptions in terms of local functions to local sections of line bundles.
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vanishing condition at a given point p defines a hyperplane inH0
(
KL−2Λ

)
. We can define a map

Span : X −→ P

p 7→
[{
s ∈ H0

(
KL−2Λ

)
| s(p) = 0

}]
. (A.4)

One can describe this map in the homogeneous coordinates of P as follows. Let s0, ..., sn be

a basis of H0
(
KL−2Λ

) ∼= Cn+1 and (v̌i)
n
i=0 be the coordinates with respect to this basis. A

section s = (v̌i(s)) =
∑
v̌i(s)si vanishes at p if and only if

∑
v̌i(s)si(p) = 0. By definition

of Span(p) as the kernel of the space of all sections s satisfying
∑
v̌i(s)si(p) = 0, we can write

Span(p) = [s0(p), ..., sn(p)] in the dual coordinates on H1
(
L2Λ−1

)
and upon choosing a local

trivialization on a neighborhood of p (this coordination is independent of the choice of the local

trivialization since different choices differ by a locally nowhere-vanishing holomorphic function).

Furthermore, when deg
(
ΛL−2

)
≥ 3 then X

Span→ P is an embedding

Given an effective divisor D = p1 + ... + pd, define Span (D) to be the linear subspace

of P spanned by Span (p1), ..., Span (pd). By definition Span(D) is the projectivization of the

linear subspace in H1
(
L2Λ−1

)
which is the kernel of the subspace in H0

(
KL−2Λ

)
consisting

of sections vanishing at D. For a generic divisor D = p1 + ... + pd of degree d ≤ n + 1,

the space of such sections is of codimension d, or equivalently the matrix (si (pj)) formed by

homogeneous coordinates of Span (pj) is of maximal rank d. For such a generic D, the points

Span(p1), ..., Span(pd) are linearly independent and hence Span(D) is of dimension d− 1. Hence

Span(D) = P for a generic effective divisor D of degree d ≥ n + 1 = h0
(
KL−2Λ

)
. This

reflects the fact the only section of KL−2Λ that vanishes at such a generic divisor D is the zero

section (since we only have h0
(
KL−2Λ

)
−1 degrees of freedom to move the zeroes of sections of

KL−2Λ), and hence by definition any nonzero element of H1
(
L2Λ−1

)
can represent an element

in Span(D).

Given an effective divisor D of degree d we say Span(D) is a d-secant of X in P. We say the

closure of the union of all such d-secants the d-secant variety of X in P and denote it by Secd(X).

It can be shown that Secd(X) is an irreducible variety of dimension 2d− 1 if it is not already the

whole P . In particular, Sec1 (X) is the embedding of X in P.
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Explicit constructions of secants of X in PPP. Before discussing an explicit construction of the

extensions that define Span(D), we recall a formulation of the Serre duality. Given a divisor Q on

X , the spaceH0 (K−Q) of global meromorphic differentials whose poles are bounded below byQ

is canonically isomorphic to the dual of the space H1 (O(Q)) of equivalence classes of 1-cocyles

whose poles are bounded below by −Q. This canonical isomorphism is defined via

⟨., .⟩ : H0 (K−Q)×H1 (O(Q)) −→ H1 (K)
Res∼= C,

(ω, [ϵαβ]) 7→ [ωϵαβ]. (A.5)

By construction, for ω ∈ H0 (K−Q) and ϵαβ ∈ H1 (O(Q)), the product ωϵαβ is regular and

is a 1-cocyle of the sheaf K of holomorphic differentials. The isomorphism H1 (K)
Res∼= C can

be described in terms of the Mittag-Leffler distributions of the 1-cocyles of K. Recall that a

Mittag-Leffler distribution of a 1-cocyle ωαβ of K is a collection (ωα) of local meromorphic

differentials on each Uα, such that ωαβ = ωα − ωβ: by construction Res
p
(ωα) = Res

p
(ωβ) for

all p ∈ Uα ∩ Uβ . If (ω′α) is another Mittag-Leffler distribution of ωαβ , then (ωα − ω′α) defines

a global meromorphic differential on X , and hence
∑
p∈X

Res
p

(ωα − ω′α) = 0. It follows that the

assignment [ωαβ] 7→ Res ([ωαβ]) :=
∑
p∈X

Res
p

(ωα) defines a well-defined morphism, and it can be

shown to be an isomorphism by dimension count and checking that the image is nonzero.

To make use of this formulation of the Serre duality in terms of meromorphic differentials and

functions, it is at first convenient to characterize L2Λ−1 as a divisor Q, and match the holomor-

phic sections of KL−2Λ and 1-cocyles of L2Λ−1 with the corresponding meromorphic objects in

K−Q andO(Q) respectively. To be even more concrete, let us characterize L and Λ respectively in

terms of some divisors DL =
∑
lipL,i and DΛ =

∑
λipΛ,i, which we can assume to be distinct.

Suppose U = {Uα}α∈I is a covering of X with unique indices α(L, i) and α(Λ, i) ∈ I satis-

fying pL,i ∈ Uα(L,i) and pΛ,i ∈ Uα(Λ,i). We can obtain a new covering by refining each Uα(L,i)

into U ′(L,i) ∪ DL,i, where U ′(L,i) = Uα(L,i) \ {pL,i} and DL,i is a small neighborhood with local

coordinate zL,i centered at pL,i not intersecting any other elements of U , and similarly refining

Uα(Λ,i) into U ′(Λ,i) ∪ DΛ,i. The line bundle L is defined over U ′ with trivial transition functions

everywhere except (L)U ′
(L,i)

DL,i
:= z−liL,i . The transition functions of Λ and L2Λ−1, which can be
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characterized by Q := 2DL−DΛ =
∑

i 2lipL,i−
∑

j λjpΛ,j , are defined similarly over U ′. With

the line bundles defined this way, there is a canonical isomorphism from L2Λ−1 to O(Q), defined

by multiplication by z−2liL,i on DL,i, by zλi
Λ,i on DΛ,i, and by 1 elsewhere. Similarly, the sheaf of

holomorphic sections of KL−2Λ is canonically isomorphic to the sheaf K−Q of meromorphic

differentials with poles bounded below by Q, via multiplication by z2liL,i on DL,i, by z−λi
Λ,i on DΛ,i,

and by 1 elsewhere.

We now give an explicit construction of a representative of Span(p) ∈ P, which is unique

up to scaling. This representative extension is a modification around p of the split extension

L ⊕ L−1Λ: we add a upper triangular transition functions near p while keeping elsewhere the

diagonal transition functions with diagonal elements being transition functions of L and L−1Λ.

W.l.o.g. suppose p is contained in a unique element Uαp ≡ Up of the covering U ′ defined above.

Refining Up into U ′p = Up \ {p} and a small neighborhood Dp with local coordinate zp centered

at p, we define the extension E (ϵp) of L−1Λ by L via the transition function

(E (ϵp))DpU ′
p
=

1
ϵp
zp

0 1

 , (A.6)

while defining its transition functions elsewhere to be the same as those of L ⊕ L−1Λ. This

extension is characterized by the 1-cocyle of L2Λ−1 that takes the value z−1p ϵp on Dp ∩ U ′p and

is zero elsewhere. The corresponding 1-cocyle ϵ⃗p′ in O(Q), which is also zero everywhere except

on Dp ∩ U ′p, would take the same value if p /∈ Q since then w.l.o.g. we can assume Up contains

no point in Q and hence the isomorphism between the two sheaves on Up is just multiplication by

1. If p = pL,i then Up coincides with DL,i, in which cases
(
ϵ⃗p
′)
DpU ′

p
= z−1−2lip ϵp. Similarly, if

p = pΛ,i then
(
ϵ⃗p
′)
DpU ′

p
= z−1+λi

p ϵp.

PROPOSITION A.1. For any p ∈ X and any ϵp ̸= 0, the extension E (ϵp) represents Span(p).

Proof. It suffices to show that the Serre duality pairing of E (ϵp) with any section s ∈

H0
(
KL−2Λ

)
is ⟨E (ϵp) , s⟩ = ϵps(p). We do this by evaluating the Serre duality pairing of

the corresponding objects in H1 (O(Q)) and H0 (K−Q), namely
[
ϵ⃗p
′] and the meromorphic dif-

ferential ωs ∈ H0 (K−Q) corresponding to s. For p /∈ Q this follows from the fact that the

isomorphisms H1
(
L2Λ−1

) ∼→ H1 (O(Q)) and H0
(
KL−2Λ

) ∼→ H0 (K−Q) are locally just the
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identities. For p coinciding with pL,i or pΛ,i, this follows from how the isomorphisms cancel each

other.

Let E (p) := E (ϵp = 1). By definition an element of Span(D) for D = p1 + ... + pd can be

represented by a linear combination of E (p1), ..., E (pd), which we shall write as
∑d

i=1 ϵiE (pi).

In terms of transition functions, such an extension can be obtained by repeating the procedure of

constructing E (p) at each point in D (these procedures are commutative).

REMARK A.1. Suppose D = p1 + ... + pd is a divisor of degree d ≤ n + 1 such that Span(D)

is of dimension d − 1, i.e. given a basis s′0, ..., s′n of H0
(
KL−2Λ

)
the square matrix (s′i (pj))

is of maximal rank d.Then there exists a different basis s1, ..., sn of H0
(
KL−2Λ

)
satisfying

si(pj) = δij . The dual basis in H1
(
L2Λ−1

)
coincides with the basis provided by E(p1), ...,

E(pd). In particular if d = n + 1 then Span(D) = P, and E(p1), ..., E(pn+1 provide a basis for

H1
(
L2Λ−1

)
.

Secant varieties and Segre stratification. From the above discussion one can see that the

higher degree of D, the more modifications we make to the split extension L⊕L−1Λ to obtain an

element in Span(D). In this process we obstruct an embedding of L−1Λ into the rank-2 bundle,

and in a sense we go “further away” from the split extension which is the unique one that admits

both L and L−1Λ as subbundles. The following proposition, which is an adaptation of the results

in [42] [43], makes precise this statement.

With deg
(
ΛL−2

)
≥ 2, let E be a bundle arising as an extension of the form (A.1), [E] ∈

Pn the equivalence class of the extension up to scaling, and D an effective divisor. Let L′ :=

L−1Λ(−D) and denote by sD the canonical injection L′ → L−1Λ which introduces zeroes at D

to sections of L′.

PROPOSITION A.2. Suppose D is of degree d ≤ n = g− 2+deg
(
ΛL−2

)
. Then [E] ∈ Span(D)

if and only if there exists an injection (which is not necessarily an embedding) L′ → E such that

the composition L′ → E ↠ L−1Λ vanishes at D, i.e. it is sD up to scaling.

Proof. Abusing the notation we also denote the induced injection H0
(
KL−2Λ(−D)

)
→

H0
(
KL−2Λ

)
as sD, and by s∗D we mean the dual map H1

(
L2Λ−1

)
→ H1

(
L2Λ−1(D)

)
. Con-
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sider the commutative diagram

Hom (L′, E) Hom
(
L′, L−1Λ

)
H1
(
L2Λ−1(D)

)
Hom

(
L−1Λ, L−1Λ

)
H1
(
L2Λ−1

)
,

j δ

◦sD

γ

s∗D
(A.7)

where the upper and lower horizontal exact rows are induced by respectively applying the functor

Hom (L′, ) and Hom
(
L−1Λ,

)
to (A.1). Note that [E] = γ(1), and ◦sD(1) = sD. By commu-

tativity and exactness, observe that s∗D ([E]) = 0 if and only if sD ∈ im (j), i.e. sD is equal to a

composition of the form L′ → E ↠ L−1Λ.

Suppose [E] ∈ Span(D). Then by definition its representatives evaluate to zero all sections of

KL−2Λ that vanish at D. Since the image of sD contains only such sections, s∗D ([E]) = 0. It

follows that there exists some injectionL′ → E such that sD is the compositionL′ → E ↠ L−1Λ.

Suppose L′ → E is an injection such that sD is the composition L′ → E ↠ L−1Λ. It

follows that 0 = ⟨s∗D ([E]) , s′⟩ = ⟨[E], sD(s
′)⟩ for any section s′ ∈ H0

(
KL−2Λ(−D)

)
. A

priori im (sD) is contained in the space VD of all sections of KL−2Λ that vanish at D. But since

deg (D) ≤ n, the degrees of freedom to move the zeroes of sections of KL−2Λ, we can construct

an inverse of sD from VD to H0
(
KL−2Λ(−D)

)
, i.e. VD = im (sD). It follows that [E] evaluates

all of VD to zero, i.e. [E] ∈ Span(D).

COROLLARY A.3. Suppose deg (D) ≤ deg
(
ΛL−2

)
and if equality occurs then O(D) ≇ ΛL−2.

Then [E] ∈ Span(D′) for some effective divisor D′ belonging to the linear equivalence class [D]

if and only if there exists a nonzero injection L′ → E.

Proof. It suffices to show that with D being such an effective divisor then any nonzero

injection L′ → E does not factor through L ↪→ E, i.e. the composition L′ → E ↠ L−1Λ ∈

H0 (O(D)) is nonzero. If deg (D) < deg
(
ΛL−2

)
then deg (L′) > deg (L), so this follows. In

the other case, since L′ ≇ L, this also follows.

REMARK A.2. For deg (D) ≤ deg
(
ΛL−2

)
, the open dense subset of Span(D) defined as the

complement of ∪
D′<D

Span(D)′ consists precisely of the extensions corresponding to rank-2 bun-
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dles that admit both L and L′ as subbundles.

108



Appendix B

Higgs bundles in terms of extension classes

The lower-left components of the Higgs fields. Given a Higgs field ϕ on a rank-2 bundle E

realized as an extension of the form (A.1), consider the composition

cL(ϕ) : L ↪→ E
ϕ→ EK ↠ L−1ΛK, (B.1)

which is a section of the line bundle KL−2Λ. Concretely, this section can be realized as follows.

Suppose over each open set Uα and with respect to certain local frames of E|Uα that are adapted

to the embedding of L, the Higgs field takes the form ϕα =

aα bα

cα dα

 ⊗ 1K,α. These local

expressions of the Higgs field transforms as

ϕα = (E)αβϕβ(E)−1αβ

=

aβ + ϵαβcβ l2αβλ
−1
αβ

(
bβ − ϵαβ(aβ − dβ)− ϵ2αβcβ

)
l−2αβλαβcβ dβ − ϵαβcβ

⊗ (kαβ1K,α) , (B.2)

where 1K,α and kαβ are the local generators and transition functions of K. The local functions

{cα}α∈I in particular glue into a section cL(ϕ) ∈ H0(KL−2Λ). In particular, if cL(ϕ) vanishes

at x ∈ X , the subspace L |x⊂ E |x is an eigen-space of ϕ.

Note that, given a subbundle L of E, we have defined a map cL : End(E)⊗K → KL−2Λ in

(B.1). The kernel of cL consists of Higgs fields that preserve L, i.e. {ϕ ∈ End(E)⊗K | ϕ(L) ⊂

LK}. These Higgs fields are of upper-triangular form in local frames adapted to L. We can assign

a morphism E → LK to such a Higgs field as follows. Over each open set Uα and in local frames

adapted to L ↪→ E, an upper-triangular Higgs field of the form

aα bα

0 dα

 can be regarded as a

local morphism E |Uα→ (LK) |Uα defined by

1

0


α

7→ aα− dα and

0

1


α

7→ bα. If we transit
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from local frames of E |Uα to E |Uβ
, both adapted to the embedding L ↪→ E, using the transition

function (A.2), the local sections

1

0


α

and

0

1


α

now take the from

lβα
0


β

and

 lβαϵβα
l−1βαλβα


β

respectively. It follows from (B.2) that the local morphism E |Uβ
→ (LK) |Uβ

sends

lβα
0


β

7→ lβα(aβ − dβ) = lβαkβα(aα − dα),

 lβαϵβα
l−1βαλβα


β

7→ lβαϵβα(aβ − dβ) + l−1βαλβαbβ = lβαkβαbα. (B.3)

Hence these local morphisms glue into a morphism E → LK.

If we restrict to trace-zero Higgs fields, then this assignment furthermore is clearly unique. In

other words, the subbundle of End0(E)⊗K consisting of trace-zero Higgs fields preserving L is

isomorphic to Hom (E,LK) ∼= E∗LK, and so we have the s.e.s.

0→ E∗LK → End0(E)⊗K cL→ KL−2Λ→ 0. (B.4)

together with its induced l.e.s.

0→ H0 (E∗LK)→ H0 (End0(E)⊗K)
cL→ H0

(
KL−2Λ

)
→ H1 (E∗LK)→ ... (B.5)

The image of cL consists of all lower-left components (B.1) picked out from all trace-zero

Higgs fields on E using local frames adapted to L ↪→ E. We can compute its dimension by

computing the dimension of ker (cL) ∼= H0 (E∗LK). The Riemann-Roch theorem and Serre

duality give

h0 (E∗LK) = 2g − 2 + h0
(
L−1E

)
− deg

(
L−2Λ

)
. (B.6)

If E is stable and hence h0(End0(E)⊗K) = 3g − 3, we have

dim im (cL) = g − 1− h0
(
L−1E

)
+ deg

(
L−2Λ

)
. (B.7)
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In case deg
(
L−2Λ

)
> 0, we have h0

(
KL−2Λ

)
= g − 1 + deg

(
L−2Λ

)
, and hence im (cL)

is a subspace of codimension h0
(
L−1E

)
in H0

(
KL−2Λ

)
. If E is not “overcounted” as an

extension of the form (A.1), i.e. it admits a unique embedding from L up to scaling, then im (cL)

is a hyperplane in H0
(
KL−2Λ

)
. As shown in the discussion that follows, im (cL) is always

contained in the hyperplane defined as the kernel of the extension representing E. Hence when E

is not “overcounted”, a section of KL−2Λ forms the lower-left component of a Higgs field on E

if and only if it lies in the kernel of the extension representing E.

Serre duality constraint. We claim that ifL ↪→ E is a subbundle ofE and ϕ ∈ H0 (End0(E)⊗K)

a Higgs field on it, the section cL(ϕ) ∈ H0
(
KL−2Λ

)
defined by (B.1) satisfies

⟨cL(ϕ), [E]⟩ = 0, (B.8)

where [E] ∈ H1
(
L2Λ−2

)
is the equivalence class of an extension realizing E of the form (A.1),

and the pairing is via Serre duality. Equivalently, the image of cL is contained in ker ([E]) = {s ∈

H0(KL−2Λ) | ⟨s, [E]⟩ = 0}.

To see this, observe that by choosing N sufficiently high, we can choose p1, ..., pN ∈ X such

that cL(ϕ)(pi) ̸= 0 for all i = 1, ..., N and [E] corresponds to a point in Span(p1 + ... + pN ) ⊂

PH1
(
L2Λ−2

)
. Then we can define E in terms of its transition functions w.r.t. local frames

adapted to L that are of the form (A.6) for pi, ..., pN and are diagonal otherwise. The regularity

at each pi, i = 1, ..., N of the diagonal components of the local form (B.2) of ϕ implies that

−ϵpicL(ϕ)(zpi(pi)) is the residue at pi of a meromorphic differential that has a simple pole at

each pi and is holomorphic elsewhere. The sum of residues of such a differential must vanish. It

then remains to observe that ⟨cL(ϕ), [E]⟩ =
∑N

i=1 ϵpic(zpi(pi)).

Two special cases. There are two situations in which the image of cL can be described more

explicitly. One situation is when cL is injective, i.e. a Higgs field onE can be uniquely represented

by its lower-left component defined via (B.1). It follows from (B.6) that cL is injective when E is

not “overcounted”, i.e. h0
(
L−1E

)
= 1, and the degree of L is such that deg

(
L−2E

)
= 2g − 1.

In this case, the hyperplane ker([E]), which is of dimension 3g− 3, is in 1-1 correspondence with

trace-less Higgs fields on E.
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Another situation is when h0
(
L−2Λ

)
= 0. For example, this is generically true when E is not

a maximally stable bundle with L being its maximal subbundle, since then deg
(
L−2Λ

)
< g − 1.

In this case, there is an alternative way to (B.6) to compute h0 (E∗LK) by considering the s.e.s.

0→ KL2Λ−1 → E∗LK → K → 0. (B.9)

Here KL2Λ−1 is the bundle of nilpotent Higgs fields admitting L as the kernel, i.e. strictly upper-

triangular Higgs fields in the local frames adapted to L ↪→ E, while the quotient bundle K repre-

sents the diagonal elements of upper-triangular Higgs fields, according to the transformation rules

(B.2). It follows from the l.e.s.

0→ H0
(
KL2Λ−1

)
→ H0 (E∗LK)→ H0 (K)→ H1

(
KL2Λ−1

)
→ ... (B.10)

and Serre duality H1
(
KL2Λ−1

) ∼= H0
(
L−2Λ

)∗, which is zero by our assumption, that

h0 (E∗LK) = h0(K) + h0
(
KL2Λ−1

)
= g + h0

(
KL2Λ−1

)
. (B.11)

Hence

dim im(cL) = h0 (End0(E)⊗K)− h0 (E∗LK) = 2g − 3− h0
(
KL2Λ−1

)
. (B.12)

REMARK B.1. By comparing (B.6) and (B.11), we see that if h0
(
L−2Λ

)
= 0, then h0

(
L−1E

)
=

1 (no “overcount”).

The upper-right and diagonal components when deg (L−2Λ) ≤ g − 1deg (L−2Λ) ≤ g − 1deg (L−2Λ) ≤ g − 1. First, consider the

case where deg
(
L−2Λ

)
≤ g− 1. Then L2Λ−1 is isomorphic toOX(Q) with Q = Q0−

∑g
i=1 qi,

where Q0 is an effective divisor Q0 = q0,1 + ...+ q0,m for m ≥ 1. The Riemann-Roch theorem

h0 (KQ)− h0 (−Q) = m− 1, m ≥ 1. (B.13)

implies that h0 (−Q) = h0
(
L−2Λ

)
> 0 if and only if there exists a holomorphic differential

vanishing at q1, ..., qg. Indeed, recall that H0 (KQ) is the space of meromorphic differentials that
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have zeroes at q1, ..., qg and might have simple poles at q0,1, ..., q0,m. Since the sum of the residues

at q0,1, ..., q0,m of such differentials vanishes, the total degrees of freedom to adjust these residues

is at most m−1. Hence h0 (KQ) > m−1 if and only if there exists at least two such differentials

that have the same residue at each q0,j , j = 1, ..., m. Their difference is a holomorphic differential

that vanishes at q1, ..., qg. Note that the existence of such a holomorphic differential is equivalent

to the fact that the matrix ωi(qj), where ω1, ..., ωg is a basis of H0 (K), is degenerate. Hence

h0
(
L−2Λ

)
> 0 if and only if ωi(qj) is degenerate.

Suppose the extension realizing E represents an element in Span(D) ⊂ PExt
(
L−1Λ, L

)
for

some effective divisor D = p1 + ... + pdeg(D), i.e. according to (A.6) it differs from the split

bundle L⊕L−1Λ by transition functions of the form

1 ϵi/zi

0 1

 around pi. It follows from (B.2)

together with the explicit transition function (A.6) that, in local frames adapted to L, the diagonal

and upper-right components of a Higgs field preserving L can be represented respectively by

(a) a holomorphic differential A ∈ H0 (K),

(b) a meromorphic differential B ∈ H0 (KD+Q) (i.e. B vanishes at q1, ..., qg and is allowed to

have simple poles at each point pi of D and q0,j of Q0), the residue of which at each pi is

Res
pi

(B) = 2Res
pi

(Aϵi/zi) = 2A(pi)ϵi.

Given a fixed A ∈ H0 (K), there exists some meromorphic differential B0 ∈ H0 (KD+Q0),

which is allowed to have simple pole at each point of D and Q0, with the residue at pi being

2A(pi)ϵi. Such a meromorphic differentialB0 exists if and only if the sum of its residues vanishes,

i.e. the sum of residues at q0,1, ..., q0,m is equal to −2
∑deg(D)

i=1 A(pi)ϵi. If ω is a holomorphic

differential satisfying ω(qi) +B0(qi) = 0 for all i = 1, ..., g, then B := B0 +ω is a meromorphic

differential satisfying condition (2) above. Such a holomorphic differential ω is a solution to a non-

homogeneous linear system associated to ωi(qj), and exists if and only if ωi(qj) is non-degenerate.

Hence if and only if h0
(
L−2Λ

)
= 0, given any A ∈ H0 (K) there exists some Higgs field that is

L-invariant with the diagonal elements represented by A.

When h0
(
L−2Λ

)
= 0 and given a fixed holomorphic differentialA, the space of meromorphic

differentials B satisfying condition (2) above is isomorphic to H0
(
KL2Λ−1

)
. Indeed, let B be

such a meromorphic differential. We can keepA fixed and deform the residues Res
q0,i∈Q0

B by adding
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a meromorphic differential that vanishes at q1, ..., qg and has simple pole only at q0,1, ..., q0,m, i.e.

by adding an element ofH0 (KQ) ∼= H0
(
KL2Λ−1

)
. Hence the first term in (B.11) corresponds to

the freedom to choose the diagonal component, while the second term corresponds to the freedom

to choose the upper-right component of the Higgs fields once the diagonal components have been

fixed. In particular, if h0
(
KL2Λ−1

)
= 0 (which is the generic case when deg

(
L−2Λ

)
= g − 1),

the morphism H0 (E∗LK)→ H0 (K) in (B.10) is an isomorphism.

When h0
(
L−2Λ

)
= h0 (−Q) > 0, not all holomorphic differential make up the diago-

nal components of an L-invariant Higgs field. In this case, there exists some effective divisor

q′1 + q′2 + ... + q′g−m, m ≥ 1, that is linearly equivalent to −Q. Given a fixed A ∈ H0 (K), the

requirement of the vanishing sum of residues of B ∈ H0 (KD+Q) now translates to a constraint

on A:
∑deg(D)

i=1 A(pi)ϵi = 0. This reflects the fact that the morphism H0 (E∗LK) → H0 (K)

in (B.10) when h0
(
L−2Λ

)
> 0 is in general not surjective, and can even be zero. Once such

a meromorphic differential A satisfying
∑deg(D)

i=1 A(pi)ϵi = 0 exists, a meromorphic differen-

tial B satisfying condition (2) above is guaranteed to exist by a similar construction in the case

h0
(
L−2Λ

)
= 0.

Constraints on upper-right and diagonal components when deg (L−2Λ) ≥ gdeg (L−2Λ) ≥ gdeg (L−2Λ) ≥ g. As the de-

gree of L−2Λ increases there will be more constraints on the diagonal components. Consider

the case where L−2Λ ∼= OX(−Q) where −Q = q1 + ... + qg+m. Generically Q satisfies

h0 (−Q) = m + 1, or equivalently h0 (KQ) = 0. Let E be realized by an extension repre-

senting an element in Span(D) ⊂ P for some D = p1 + ... + pdeg(D). Note that for a generic

bundle E realized as an extension of L−1Λ by L, we need deg(D) = h0 (K−Q) = 2g − 1 +m.

In the following we suppose E is such a generic bundle and we set deg(D) = 2g − 1 +m.

The diagonal and upper-right components of an upper-triangular Higgs field

a b

0 −a

 are

respectively represented by a holomorphic differential A and a meromorphic differential B ∈

H0 (KD+Q), i.e. with zeroes at q1, ..., qg+m and simple poles at p1, ..., p2g−1+m satisfying

Res
pi

(B)− 2ϵiA(pi) = 0, i = 1, ..., 2g − 1 +m. (B.14)

When Q is in generic position, h0 (KD+Q) = 2g − 2. This implies that the residues at pi, i =
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1, ..., 2g− 1+m of an element of H0 (KD+Q) determine it, and furthermore only 2g− 2 of them

are free variables. Let ri(B) := Res
pi

(B) for 1 ≤ i ≤ 2g − 2 be the coordinates in H0 (KD+Q).

Then the rest of the residues Res
2g−1≤j≤2g−1+m

(B) are linear functions in r1(B), ..., r2g−2(B).

Equations for 1 ≤ i ≤ 2g − 2 then allows us to write Res
2g−1≤j≤2g−1+m

(B) as linear combinations

of A(pi). Plugging them in for 2g − 1 ≤ i ≤ 2g − 1 +m, we get a homogeneous linear system

of m + 1 equations for A ∈ H0(K) ∼= Cg. If m + 1 < g and if the linear system is of maximal

rank, there exists a (g − 1 −m)-dimensional family of solutions for A, and given each such A,

there exists a unique upper-triangular Higgs field with A representing the diagonal components

since (B) determines the residues of B and hence B itself. Comparing with (B.6), we see that the

(generic) assumption that the linear system is of maximal rank is equivalent to h0
(
L−1E

)
= 1

(no “overcount”).

The cases m = g − 1 and m = 0 are the two extreme cases. In the former case, as followed

from (B.6), there is generically no L-invariant Higgs field (and hence the lower-left components

are in 1-1 correspondence with Higgs fields). In the latter case, the only constraint on A comes

from the vanishing residue condition of B.
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Appendix C

Baker-Akhiezer divisors for GL2(C)GL2(C)GL2(C)-Higgs bundles

Consider the moduli space MH(GL2(C)) of rank-2 Higgs bundles where the determinant line

bundle of the underlying bundles is of odd degree. Via tensoring with a line bundle, this situation

is equivalent to one where the determinant line bundle det(E) of each underlying bundle E is of

degree 2g − 1. By Riemann-Roch, h0(E) ≥ deg(det(E)) − 2(g − 1) = 1, and so any such E

admits a morphism O → E.

Denote by Ms
H ⊂ MH(GL2(C)) the loci of Higgs bundles with non-degenerate spectral

curves. The notion of Baker-Akhiezer divisors we have defined (cf. definition 3.1) for trace-less

Higgs fields generalize to general rank-2 Higgs fields. The eigen-line bundle Φ of any Higgs

bundle (E, ϕ) ∈ Ms
H is isomorphic to π∗ϕ(K

−1)(D), where Sϕ
πϕ→ X is the corresponding spec-

tral curve and D is the Baker-Akhiezer divisor associated to the data
(
O i→ E, ϕ

)
. Note that

deg(D) = deg(K det(E)) = 4g − 3, the genus of the spectral curves. The advantage of work-

ing with Baker-Akhiezer divisors of this degree is that generically we will be able to determine

the spectral curve once we know the divisor, and hence knowing a point D in the symmetric

product (T ∗X)[4g−3] completely determines the data (O → E, ϕ). Within this appendix, by

Baker-Akhiezer divisors we will mean those of this type.

Undercount. If a bundle E with det(E) ∼= Λ of degree 2g − 1 has a nowhere-vanishing section

i ∈ H0(E) then it arises, up to scaling of i, as an extension of the form

0→ O i→ E → Λ→ 0. (C.1)

Extensions of this form are elements of Ext(det(E),O) ∼= H1
(
det(E)−1

) ∼= C3g−2. Not all of

the bundles that make up Higgs bundles inMs
H has a nowhere-vanishing section so that it could

fit in (C.1) though. These bundles are “undercounted” if we want to use (C.1) to model the moduli

of the bundles that make up Higgs bundles inMs
H .
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As an example, a generic Higgs bundle (E, ϕ) with E unstable has no embedding fromO and

so is “undercounted” in this sense. Indeed, let M ↪→ E be the unique destabilizing subbundle

of degree deg(M) ≥ deg(E)
2 = g − 1

2 , and suppose there exists a nowhere-vanishing morphism

O i→ E. Then i cannot factor through M ↪→ E as deg(M) > 0. Hence the composition

O → E → M−1Λ is nonzero. But deg
(
M−1Λ

)
≤ g − 1

2 , and so the condition h0(M−1Λ) > 0

can only be satisfied non-generically.

Nevertheless, the underlying bundle E of a generic point [E, ϕ] ∈ Ms
H fits in (C.1). Indeed,

consider a generic, non-degenerate spectral curve S. It follows from theorem 1 in [6] that a generic

bundle E can be recovered as the direct image of a line bundle Φ(R) on S , or equivalently it has

a Higgs field ϕ with eigen-line bundle Φ on S. Now, if such E has no nowhere-vanishing section,

then the Baker-Akhiezer divisor on S associated to (O s′→ E, ϕ) for any nonzero s′ ∈ H0(E) will

contain the pull-back from the zero divisor onX of s′. In other words, this Baker-Akhiezer divisor

lies in the set

{
D ∈ S[4g−3] | OX (π(D)) ∼= KΛ, D has some pull-back of a divisor from X

}
. (C.2)

Since this is a positive codimension subset of
{
D ∈ S[4g−3] | OX (π(D)) ∼= KΛ

}
, a generic point

[E, ϕ] ∈ Ms
H will not produce a Baker-Akhiezer divisor lying in this set and so will not be

“undercounted”.

We note that even whenE cannot be represented as an element ofH1
(
det(E)−1

)
, we can still

mark their occurrences by including the set (C.2) in our consideration. For example, although a

generic unstable bundleE with its destabilizing subbundleM is “undercounted” in (C.1), it always

admits sections of the form O sm→ M ↪→ E vanishing at an effective divisor m representing

M since deg(M) ≥ g. Hence while generically E would not be counted in (C.1), the Baker-

Akhiezer divisors associated to (M ↪→ E, ϕ), which contains π−1(m), are contained in (C.2). In

other words, Baker-Akhiezer divisors associated to sections that vanish somewhere 19 of these

“undercounted” Higgs bundles behave predictably.
19Note that these bundles will then fit in the s.e.s of the form 0 → O(div(s′)) → E → O(−div(s′))Λ → 0, where

div(s′) is the zero divisor of a nonzero section s′ ∈ H0(E), with Baker-Akhiezer divisor being the non-σ-invariant

part of the Baker-Akhiezer divisor associated to O s′→ E in discussion.
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Overcount and exceptional divisors. If a bundleE has two linearly independent sections, then

for any two Higgs field ϕ the two corresponding Baker-Akhiezer divisors would be different but

linearly equivalent. They are examples of exceptional divisors, i.e. in our case effective divisors of

degree 4g − 3 on a spectral curve that has a non-trivial family of linearly equivalent divisors. The

converse direction is also clear: two different but linearly equivalent effective divisors of degree

4g − 3 are Baker-Akhiezer divisors defining one same Higgs bundles (E, ϕ) but associated to

two linearly independent sections of E. We say a bundle E is “overcounted” if h0(E) ≥ 2. It

follows that E is over-counted if and only if the Baker-Akhiezer divisor associated to one/any data

(O → E, ϕ) is exceptional.

Note that our notions of “undercount” and “overcount” are not mutually exclusive, since a

bundle can have many linearly independent sections (overcounted) but none of them is nowhere-

vanishing (undercounted). For example, consider an unstable bundle E with destabilizing sub-

bundle M of degree deg(M) ≥ g + 1; these make up Higgs bundles in the strata lower than the

highest unstable stratum where deg(M) = g. Besides generically being “undercounted” as dis-

cussed above, it also admits at least two linearly independent sections factoring through M and so

is “overcounted”.

We note that, though, a generic Higgs bundle (E, ϕ) with E unstable is “undercounted” but

not “overcounted”. Indeed, in a generic situation, the destabilizing subbundle M ↪→ E is of

degree g and satisfies h0(M) = 1, h0(M−1 det(E)) = 0. All sections of E then factor through

M , which vanishes at g points on X , and so E is not “overcounted”. On the other hand, in a

non-generic situation where E is not “undercounted”, it would be “overcounted” due to having

nowhere-vanishing sections besides the sections induced by sections of M . Hence if a Higgs

bundle (E, ϕ) induces a Baker-Akhiezer divisor that is both non-exceptional and has no σ-invariant

contribution, E must be stable.

Similarly to the “undercount” situation, an “overcount” situation is non-generic since an ex-

ceptional divisor of degree 4g − 3 is non-generic on the spectral curve.

REMARK C.1. (a) There are two basic ways for a bundle E to be “overcounted”. First, E

might have a section swhose zero divisor div(s) is an exceptional divisor or has deg(div(s)) >

g (as in the above case where s is the composition O → M ↪→ E and deg(M) ≥ g + 1).
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The Baker-Akhiezer divisor associated to s then inherits the degrees of freedom to move

the π−1(div(s)) part around while staying in its linear equivalence class. Second, E might

have two or more linearly independent sections with the same zero divisor (which might be

trivial, as in the case of a nowhere-vanishing section). In this case the corresponding excep-

tional Baker-Akhiezer divisors have some degrees of freedom to move the non-σ-invariant

part around.

(b) Suppose E is overcounted and, in addition, is not split. Then either E has a section that

vanishes somewhere, or all of its sections are nowhere-vanishing and there are two linearly

independent, nowhere-vanishing sections i1 and i2 which must be be parallel at some 20

points. In the latter case, a linear combination of i1 and i2 induces a section of E that

vanishes at some of these points, bringing us to the former case. The Baker-Akhiezer di-

visor in the former case is contained in the set (C.2). In short, if E is overcounted and not

split, then the family of corresponding exceptional Baker-Akhiezer divisors contains some

divisors having some σ-invariant part.

(c) If E is split, then E = M ⊕M−1Λ with deg(M) ≥ g also admits a section of the form

O → M ↪→ E vanishing at an effective divisor m representing M . The Baker-Akhiezer

divisor associated to any data (O →M ↪→ E, ϕ) contains π−1(m).

The overall picture. We document in table 1 some examples of how the properties of the Baker-

Akhiezer divisors associated to certain data (O → E, ϕ) depends onE. The list of examples is not

exhaustive. Note that in the non-exceptional Baker-Akhiezer divisor row, a Higgs bundle (E, ϕ)

could only be categorized into one of the two columns, while in the exceptional Baker-Akhiezer

divisor row, it can fit in both columns.

Let NGL2 be the moduli space of stable rank-2 bundle of degree 2g − 1. Let N ′GL2
be the

loci consisting of stable bundles that has exactly one section up to scaling, and this section is

nowhere-vanishing; it is an open dense subspace of NGL2 . Let T ∗sN ′GL2
be the set of equivalence

classes of Higgs bundles made from these bundles such that the spectral curves of the Higgs fields

are non-degenerate. The construction of Baker-Akhiezer divisors using the unique up to scaling
20i1 and i2 are parallel at 2g − 1 points (counted with multiplicity), which is the zero divisor of the composition

i1 ↪→ E → Λ, where the last arrow is the quotient map of i2 ↪→ E.
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contains no pull-back of divisors from X contains pull-back of divisors from X

(induced by an embedding O ↪→ E) (induced by O → E with zeroes)
non- a generic stable bundle; a generic unstable bundle (with

exceptional NO unstable bundles; destabilizing subbundle of degree g);
(h0(E) = 1)

exceptional some bundles, both stable and unstable, a bundle admitting a subbundle
(h0(E) > 1) with maximal subbundle M satisfying that has > 1 linearly independent

h0(KM−2 det(E)) and h0(M−1 det(E)) > 0, section, e.g. unstable bundle with
e.g. E =M ⊕M−1 det(E) with M as such; destabilizing subbundle of degree > g;

Table 1: Properties and examples of Baker-Akhiezer divisors associated to (O → E, ϕ).

section of the underlying bundles defines a map BA : T ∗N s
GL2
→ (T ∗X)[4g−3]. The produced

Baker-Akhiezer divisors are non-exceptional and contain no pull-back of divisors from X .

(T ∗X)[4g−3]s

T ∗sN s
GL2

Ms
H,GL2

AsBA (C.3)

Given a generic point P in the image of BA, we can recover the unique spectral curve S

passing through the 4g−4 points in T ∗X defined by P. For each such spectral curve S, the image

of BA defines an open dense subset of the set of equivalence classes of divisors of degree 4g − 3.

By taking into account effective divisors of degree 4g − 3 of the other three types in table 1, we

can cover the rest of the equivalence classes and corresponding Higgs bundles. For example, by

including divisors that contains pull-back of divisors on X as summand, we would include all

Higgs bundles with unstable underlying bundles.

Completing the set of divisors for all non-degenerate spectral curve, we complete the image

of BA to an open dense subspace (T ∗X)[4g−3]s of (T ∗X)[4g−3] defined by all effective divisors

of degree 4g − 3 on all non-degenerate spectral curves. The Abel map on each non-degenerate

spectral curve together define a map As : (T ∗X)[4g−3]s →Ms
H,GL2

. The map As is surjective by

the completion we did.

120



References

[1] M. Atiyah, Complex analytic connections in fibre bundles, Transactions of the American

Mathematical Society, vol. 85, 181–207 (1957).

[2] O. Babelon, D. Bernard, M. Talon, Introduction to classical integrable systems, Cambridge

University Press (2003).

[3] A. Balasubramanian, J. Teschner, Supersymmetric field theories and geometric Langlands:

The other side of the coin, Proceedings of String Math 2016, Paris, Proceedings of Symposia

in Pure Mathematics, vol. 98, 79–106 (2018).

[4] A. Beilinson, V. Drinfeld, Opers, arXiv:math/0501398 (2005).

[5] A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable systems and Hecke eigen-

sheaves, available at https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf

(1992).

[6] A. Beauville, M. S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divi-

sor, Journal für die reine und angewandte Mathematik, vol. 398, 169-179 (1989).

[7] J.-L. Brylinsky, Transformations canoniques, dualité projective, théorie de Lefschetz, trans-
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