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Abstract

We describe how certain effective divisors, which we call Baker-Akhiezer divisors, on non-degenerate
spectral curves characterize S Lo (C)-Higgs bundles. To some extent, these divisors encode the
natural stratification on the Hitchin moduli space My of SLs(C)-Higgs bundles, and their de-
generation describes families of Higgs bundles that limit to lower strata. We show how apparent
singularities with their accessory parameters of S L-operators are analogues of Baker-Akhiezer di-
visors: they also encode to some extent the natural stratification on the de Rham moduli space Mg
of irreducible S Ly (C)-connections. In addition, a collision of two simple apparent singularities can
define a family of S L-operators whose limit is an .S L-operator with less apparent singularities and

encodes an irreducible S Ly (C)-connection in a lower stratum.






Zusammenfassung

Wir beschreiben, wie bestimmte effektive Divisoren, die wir Baker-Akhiezer Divisoren nennen,
auf nicht entarteten Spektralkurven, S Lo (C)-Higgs-Biindel charakterisieren. Bis zu einem gewis-
sen Grad kodieren diese Divisoren die natiirliche Stratifikation auf dem Hitchin-Modulraum M g
von S Lo (C)-Higgs-Biindeln, und ihre Entartung beschreibt Familien von Higgs-Biindeln, die sich
auf niedrigere Strata limitieren. Wir zeigen, wie scheinbare Singularitdten mit ihren Nebenparame-
tern von S L-Operatoren analog zu Baker Akhiezer-Divisoren sind: Sie kodieren auch in gewissem
MafBe die natiirliche Stratifikation auf dem de Rham Modulraum M g der irreduziblen S Ly (C)-
Zusammenhidnge. Auflerdem kann eine Kollision von zwei einfachen scheinbaren Singularititen
eine Familie von S L-Operatoren definieren, deren Grenzwert ein S L-Operator mit weniger schein-
baren Singularititen ist und einen irreduziblen S Ly (C)-Zusammenhang in einem unteren Stratum

kodiert.
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Chapter 1

Introduction

Let X be a compact Riemann surface of genus g > 2. The recurring themes in this thesis are

(a) to characterize S Ly (C)-Higgs bundles on X in terms of certain effective divisors, which we

will call Baker-Akhiezer divisors, on their associated spectral curves;

(b) to characterize S L-operators on X, which are natural objects that realize monodromy repre-

sentations in PSLy(C), in terms of their apparent singularities and accessory parameters;

(c) to demonstrate that apparent singularities with their accessory parameters are the analogues

of Baker-Akhiezer divisors, in particular in their degeneration behaviors.

Let M7 (A) be the moduli space of S Ly (C)-Higgs bundles on X with the underlying bundles
having determinant A. Hitchin [35] [36] showed that a generic point in M g (A) corresponds to the
isomorphism class of a line bundle satisfying certain conditions on the spectral curve associated
to the Higgs bundle, which is a double covering of X embedded into the total space of T*X. As
such line bundles can be represented by effective divisors upon adjusting the degrees [31], theme
(a) is hardly surprising.

Our particular way to introduce the so-called Baker-Akhiezer divisors to characterize Higgs
bundles, however, has the following important feature. It is known that My (A) admits a C*-
action which induces a stratification on it: the top open stratum consists of Higgs bundles with
stable underlying bundles, and the other strata consisting of Higgs bundles with unstable under-
lying bundles are determined by the degree of the destabilizing sub-line bundles [34] [35]. The
input data that define a Baker-Akhiezer divisor consist of a Higgs bundle [E, ¢] € My (A) with
a non-degenerate associated spectral curve and a sub-line bundle L of E. In particular, the degree
of the Baker-Akhiezer divisor defined by (L — E, ) is equal to deg(KL~2A). Therefore, to
some extent, Baker-Akhiezer divisors characterize the stratification on My (A) by their degrees.
In fact, for the cases where L is the destabilizing subbundle, these divisors were briefly discussed

in the original work of Hitchin [35], and recently revisited in [34] for different purposes.



Furthermore, one can understand how the lower strata compactify the higher ones in terms
of Baker-Akhiezer divisors. Namely, one can construct a family of Higgs bundles staying in one
stratum that limits to a point in a lower stratum, the corresponding Baker-Akhiezer divisors of
which contain no summand equal to the pull-back of a divisor on X but limit to an effective
divisor containing a summand of the form 7*(zg) for some zy € X. The family of effective
divisors on X defined by projecting Baker-Akhiezer divisors from the spectral curves displays a
collision of two points to zo and a disappearance of these points at the limit.

Another important feature of Baker-Akhiezer divisors is that they have analogues in the natural
objects on X that realize monodromy representations m; — P.SLo(C), which we will call projec-
tive monodromy representations. An .S L-operator, which is a collection of local Schrodinger-like
differential operators {Eﬁa + qa(zq)} that satisfy certain compatibility conditions upon transition
among the coordinated charts {(U,, z4)}, is such an object [39] [40]. By taking the ratio of two
linearly independent local solutions and analytically continuing to all of X, one obtains a projec-
tive monodromy representation. In general, to realize a projective monodromy representation, an
S L-operators needs to have apparent singularities, which are double poles of g, (2, ) with specific
Laurent tails and around which the projective monodromy is trivial. It turns out that apparent sin-
gularities with certain accessory parameters can be considered as the analogues of Baker-Akhiezer
divisors. For example, with the input data consisting of an irreducible S Lz (C)-holomorphic con-
nection and a sub-line bundle of the underlying bundle, one can induce an SL-operator. The
positions of the apparent singularities and their accessory parameters are then induced in a very
similar way to how Baker-Akhiezer divisors are defined.

The analogy between Baker-Akhiezer divisors and apparent singularities with their accessory
parameters extends to their limiting behavior. Namely, a family of projective connections defined
by colliding two simple apparent singularities and tuning their accessory parameters in a specified
way limits to a projective connection having two less apparent singularities.

In the following, we briefly recall the relevant geometric objects and moduli spaces before

summarizing the main results of this thesis.



1.1 Higgs bundles, holomorphic connections and projective connections

S Ly(C)-Higgs bundles. An SLo(C)-Higgs bundle is a pair (E,$) where E is a rank-2 holo-
morphic bundle and ¢ : F — FE ® K, where K is the canonical line bundle of X, is an
endormorphism of E twisted by holomorphic 1-forms and has zero trace. We say that ¢ is a
Higgs field on E. Such an SLs(C)-Higgs bundle is called stable (semi-stable) if all subbundles
L < E that are ¢-invariant, i.e. ¢(L) C L ® K, satisfy 2deg(L) < deg(det(E)) ( respectively,
2deg(L) < deg(det(E)) ). In other words, an S Ly(C)-Higgs bundle (E, ¢) with det(E) = A is

stable if and only if either E is stable, or if E is destabilized by L g then the O x-linear morphism
c1,(8): Lp > ES E® K — Ly'AK, (1.1)

where the last arrow is induced by the quotient of the embedding Ly — F, is non-zero. Gener-
alization of the composition (1.1) to the case where L is any subbundle of E (cf. (1.3)) will be a
central object in this thesis.

The Hitchin moduli space M (A) of stable S Lo (C)-Higgs bundles with the underlying bun-
dles having determinant A was first constructed by Hitchin [35] [36]. Let ! (E, ¢) € My (A) with
q = det(¢) € H°(K?) non-degenerate, i.e. the zeroes of q are all simple. Associated to ¢ is the
spectral curve S 5 X defined by solving for eigen-values of ¢. Central to the work of Hitchin
is the spectral correspondence between such a Higgs bundle (E, ¢) and the isomorphism class of
the eigen-line bundle L on S, defined by solving for an eigen-subspace of 7*(¢) at each point
on S,. One can recover (E, ¢) by taking the direct image of £ ® 7*(K'). The Hitchin fibration
h: My(A) — HO(K?) defined by [E, ¢] — det(¢) equips M (A) with an integrable struc-
ture; the functions on Mg (A) defined by h together with a choice of basis of H°(K?) are called
(classical) Hitchin Hamiltonians.

One can define a C*-action on Mg (A) by A.[E, ¢] = [E, A¢] for A € C*. The Biatynicki-
Birula stratification on My = Mpg(A) is induced by the C*-action and is the decomposition
My = Wiu( |E| W]J\;d) where Wy = {[E, ¢] € My(A) | E stable} is the top stratum, and
Wy ={[E,¢] € My(A) | E destabilized by L, deg(K L5*A) = d}.

"We will abuse the notations writing (E, ¢) also for the point it defines in M (A) unless an emphasis on the
isomorphisms that identify different Higgs bundles is needed.



S Ly(C)-connections. An S Ls(C)-holomorphic connection is a pair (F, V) where F is a holo-
morphic bundle with det(F) = Ox, and V : F — FK is a map of sheaves of holomorphic
sections that satisfies the Leibniz rule and induces the trivial connection on Ox. Such a holo-
morphic connection is equivalent to a flat S Ly(C)-connection on the underlying smooth bundle
and gives rise to monodromy representation in SLs(C) by developing parallel frames. The au-
tomorphism group of the underlying smooth bundle acts on the set of holomorphic connections
by conjugation, and we say two holomorphic connections are isomorphic if there is a smooth au-
tomorphism relating them. The de Rham moduli space Mg as a set consists of isomorphism
classes of irreducible S Ls(C)-holomorphic connections, which are those that leave no holomor-
phic subbundle invariant. It is known that Mg is complex smoothex analytic space of dimension
6g — 6 [53] [9].

Simpson [54] defined a natural stratification on M g which is analogous to the Biatynicki-
Birula stratification on My (Ox). It is defined by embedding both M4z and My (Ox) in the
Hodge moduli space M 7,4 of the so-called A-connections, and restricting the Biatynicki-Birula
stratification induced by a natural C*-action on M 7,4 to Myr and My (Ox). For My (Ox),
this restriction coincides with the Biatynicki-Birula stratification defined on it intrinsically. For
Mg, this defines the stratification Mg = W{F U (%Wﬁf), where W{E = {[F, V] € Mug |
F stable} and Wf\l,f = {[F,V] € Myg | F destabilized by Lp,deg(KL*) = d}.

Projective connections, projective structures and S L-operators. Given a representation
71(X) — PSLy(C), there are three equivalent types of objects that give rise to the same P.S Ly (C)-
monodromy up to conjugation. Since PSLy(C) is the automorphism group of P!, a natural ge-
ometric object that realizes this monodromy representation is a fiber bundle with P'-fibers and
locally constant PSS Ly(C)-valued transition functions, i.e. a flat P!-bundle. We call such a flat
P!-bundle together with a choice of global, nonparallel holomorphic section a projective connec-
tion. The global holomorphic section of a projective connection can be represented in the local
parallel frames of the flat bundle on each sufficiently small chart by a local holomorphic function
valued in C C P!, This defines a projective structure on X, namely a maximal atlas of coordinate
charts the values of which are related by Mobius transformations. An object of the third type, an

SL-operator, is a collection of local Schridinger-like differential operators {02 + ¢a(2q)} that



satisfy certain compatibility conditions upon transition among the coordinate charts {(Us, 24)}:
the solutions to these local differential operators transform as local sections of a line bundle of
degree 1 — ¢, such as K ~1/2, and define via their ratio a corresponding projective structure. There
is a natural notion of isomorphism among objects of each of these types.

To realize a generic projective monodromy representation in terms of an object of these types,
we will need to include apparent singularities, which are certain distinguished points around
which the projective monodromy representation is trivial. For a flat P'-bundle together with a
choice of a global section, apparent singularities are precisely where the section is tangential to
the local constant leaves (with respect to which the transition functions are locally constant). For
a projective structure, apparent singularities are points where the local functions have zero deriva-
tive, i.e. where they cannot serve as local coordinates. For an S L-operator D = {83a + ¢a(za)}
apparent singularities are the double poles of ¢, (z,) with specific Laurent tails. For example, for

x € U,, if

Ga(2a) = — — Vi 2o + 020 — 2a(2)), (12)

4(z0 — 2a(2))? 24 — 2a(x)

then x is called an apparent singularity of D with multiplicity 1, and v, ., € C is called the ac-
cessory parameter with respect to the local coordinate z,. The leading coefficients of the Laurent
series at apparent singularities of higher order satisfy higher order algebraic relations. Although
these leading coefficients depend on the choice of local coordinates, the algebraic relations they
satisfy are invariant upon a change of coordinates. These algebraic constraints guarantee that the
ratios of linearly independent solutions to the local differential operators are holomorphic, with
their derivatives vanishing to the right order at the apparent singularities.

Although we will occasionally refer to projective connections for geometric meaning, it is the
explicit nature of S L-operators that will help us carry out computation and prove results. This
approach relies on the fact that, with respect to a coordinate atlas {(U,, z4)} subordinate to a
holomorphic projective structure, i.e. one that has no apparent singularity 2, {qa (24 )dz2} glue

into a meromorphic quadratic differential. Chapter 6 and chapter 7 of this thesis are where this

2 An example of a holomorphic projective structure is provided by the universal covering of X via the uniformization
theorem: the realization of X as a quotient of the upper-half plane induces coordinate charts on X the value of which
are related by Mobius transformations.



approach is carried out.

1.2 Summary of main results

Baker-Akhiezer divisors. Consider (E,¢) € Mpy(A) with ¢ = det(¢) € H°(K?) non-

degenerate. Let us now take a subbundle L of E. On X, consider the composition
cr(¢): L — E3% EoK — LTIAK, (1.3)
where the last arrow is induced by the quotient of L — I, and on S, consider the composition
7 (L) < 7 (E) = L7 '7* (A), (1.4)

where the last arrow is the quotient of £ — 7*(E). Note that c1,(¢) # 0, as otherwise L is
¢-invariant and the zeroes of det(¢) have non-trivial multiplicity. We let D = Ele Z; be the
involution of the zero divisor of (1.4) and call it the Baker-Akhiezer divisor associated to the data
(L — E,¢) (definition 3.1). In fact, D depends only on the isomorphism class [L — E, ¢,
where isomorphisms of two such data are defined as isomorphisms of the underlying bundles that
commute with Higgs fields and embeddings of subbundles. We justify this terminology after the
proof of proposition 3.1.

Our first results, proposition 3.1 and theorem 3.7, relate Baker-Akhiezer divisors with zero
divisors of (1.3), characterize the eigen-line bundles in terms of Baker-Akhiezer divisors, and
establish the correspondence, up to a square-root of Ox, between these divisors and their defining

input. We summarize the main points of these results in the following.

THEOREM 1.1. Let S, 5 X be the spectral curve associated to a non-degenerate quadratic

differential ¢ € H°(K?).

(i) If D is the Baker-Akhiezer divisor of (L — E, ¢) with det(¢) = q, then (D) coincides with
the zero divisor of cr,(¢), and the eigen-line bundle of (E, ¢) is isomorphic to 7*(LK ') ®
Os, (D).

(ii) The construction of Baker-Akhiezer divisors and remembering the line bundle defines a bi-



Jjection

L a subbundle of E, D effective on S, contains
[L— E,¢] | det(E)=A, ¢ ([L], D) no pull-back of divisors on X,
det(¢) = ¢ KL72A = Ox(n(D))

The map induced by forgetting the subbundle, i.e. (L < E,$) — D, is a 229 : 1 map.

Apparent singularities as analogues of projection of Baker-Akhiezer divisors. Given an
S Lo (C)-holomorphic connection (F,V) and a subbundle L < F', the analogue of (1.3) is the
composition

e(V): L+ F3 FoK — LK, (1.5)

A priori this composition is only C-linear since it involves V, but since the morphism F @ K —
LK is induced from the quotient of the embedding L < F, c1(V) is overall Ox-linear and
hence is a section of K L~2. Clearly c1,(V) is non-zero if and only if L is not invariant by V; in
particular, if (F, V) is irreducible then any subbundle L would induce ¢z, (V) # 0. In this case,
the zero divisor of 1, (V) is an effective divisor x with K L=2 = Ox (x).

By choosing local flat frames of F' w.r.t. V, one can define a flat SL(C)-bundle FV and
then projectivize to obtain a flat P.SLy(C)-bundle P(FV) with P'-fibers. By projectivizing the
subbundle LY — F'V that corresponds to L — F, which we denote by LY — F'V, one defines a
section P(LY) of P(F'V). The projective monodromy representation of P(F'Y ) is the composition
of the monodromy representation in SLo(C) of F'V with the projection SLy(C) — PSLo(C),
Twisting the data (L — F, V) by a square-root of Ox and projectivizing would define the same
projective connection (P(EFY),P(LV)). We denote by [L — F, V| the isomorphism class of such
data, where isomorphisms are defined as isomorphisms of the underlying bundles that commute
with the holomorphic connections and embeddings of subbundles.

A rather explicit description of (P(FV),P(LV)) is found in its corresponding S L-operator as

a(z)  b(z)
c(2) —a(z)

follows. Suppose that in certain local frames adapted to L, V takes the form 0+



Then one can show that local differential operators of the form 9 + g(z) where

o= (- 23" - £3)

define an S L-operator that depends only on (F, V) and the embedding L < F. We denote this
S L-operator by D1, v). Then one can show furthermore that Dy, rv) is equivalent to the
projective connection (P(FV),P(LVY)).

Let R, (c) be the set of conjugacy classes of irreducible monodromy representations in
SLy(C). Let MY, M(()P,S) and MY, be the sets of isomorphism classes of S L-operators, projec-
tive connections and flat P.SLo(C) bundles with P! fibers, respectively, whose projective mon-
odromy representations are irreducible and lift to monodromy representations in SL2(C). Let
’R?DS L2(C) be the set of conjugacy classes of projective monodromy representations that lift to
those in Ry, (c). Denote by div(D) the effective divisor formed by the apparent singularities of
the S L-operator D counted with multiplicity. The following theorem summarizes important re-
sults from subchapter 5.5 and shows how apparent singularities are the analogues of the projection

to X of Baker-Akhiezer divisors.

THEOREM 1.2. (i) Given an irreducible SLy(C)-connection (F,V) and a subbundle L — F,

div(D(— pv)) is the zero divisor of c,(V).

(ii) The following diagram is commutative.

[L— F, V]|
— Mar — Rsr,(0)
[F,V] € Myr
2%/ l 2 229:1
229:1
1:1
MYy — M(()P,s) —_— M} —— R%SLQ(C).

\/

Here the first two vertical arrows projectivize the corresponding data, the arrows with targets



Rsry(c) and R(J]DSL2(<C) evaluate the conjugacy class of the monodromy representations,
and the arrows with targets Mggr and ./\/l(}, forget the subbundles and global section of the
respective data. All vertical arrows are surjective, with points in the same fiber, except for

the last vertical arrow, differing by a twist by a square-root of Ox.

We note that, analogous to how the degree of Baker-Akhiezer divisors encodes to some extent
the stratum a Higgs bundle is contained, the number of apparent singularities, counted with mul-
tiplicity, of an S L-operator D can encode the stratum a holomorphic connection [F, V] € Mg
is contained if the monodromy representation of F'V projects to the projective monodromy repre-
sentation realized by D. In particular, if D has fewer than 2g — 2 apparent singularities, then F' is

strictly unstable.

Accessory parameters as analogues of cotangent fiber coordinates of Baker-Akhiezer
divisors. While apparent singularities are analogues of the projection to X of Baker-Akhiezer
divisors, their respective accessory parameters are the analogues of the cotangent fiber coordinates
of Baker-Akhiezer divisors. To give a precise formulation of this statement, we will need the
following genericity condition for an effective divisor x on X. Let ()x be the sublinear space of
H°(K?) consisting of quadratic differentials whose zero divisors are bounded below by x, namely
Qx = {q € H°(K?) | x < div(q)} U {0 € HY(K?)}. We will say that x is Q-generic if the

dimension of ()x has the minimal, expected value, namely

39 — 3 —deg(x) for deg(x) < 39 — 3,
dim Qx =

0 for deg(x) > 3g — 3.

PROPOSITION 1.3. (Proposition 6.5) Suppose deg(A) — g is odd. Let qy be a non-degenerate
holomorphic quadratic differential, and ' + ... + xgg_?) be a reduced Q-generic divisor. If in
addition there is no exceptional divisor on the spectral curve Sy, projecting to «' + ... + xgg{,),

then there exist open neighborhoods V. C H°(K?) of qo, U, C X of x. and an embedding

U1 X ... X U3g_3 xV — MH(A),

(Z,q) = (w1, ..., 239-3,9) — [E(z,q), P(z,9)]



where det(¢(z4)) = q and E g q) admits a subbundle Lz with zero divisor of cr.(¢(z,q)) being

x1 + ... + x3¢g_3. Furthermore, there exist a coordinate z, on U, and an injective map of sets

Up X ... x Uzg_g x V.— {SL-operators },

(Z,q) = (1, ..., 239-3,q) — D(zq)

where Dz o\ has simple apparent singularities 1, ..., 343 with respective accessory parameters
V1, ..., V3g—3 Satisfying v2 +q(z(z)) =0forr=1,...,3g — 3.

Let x = x1 + ... + 4 be a reduced effective divisor. Fix a point [p1, ..., pq] € (T*X)[d] =
(T*X)%/S,, the d-fold symmetric product of the total space of the cotangent bundle of X, that
projects to x. Then the space of spectral curves that pass through pi, ..., pg and admits these
points as effective divisors and the space of .S L-operators having x as their apparent singularities
and same respective accessory parameters are both affine spaces * modeled on Q. In addition,

corollaries 3.8 and 5.8 together show how analogously constrained the input data are in this case.

PROPOSITION 1.4. (i) Two Higgs bundles [E1, ¢1], [E2, ¢2] € Mg (A) define the same point
in(T*X) 9] via the construction of Baker-Akhiezer divisor only if E1 = FEy ® N for some N
with N? = Ox.

(ii) Let Dy and D4y be S L-operators whose apparent singularities are all simple and projective
monodromy representations have lifts to irreducible monodromy representations in S La(C).
Then D1 and Do have the same apparent singularities and respective accessory parameters if
andonly if D1 ~ D, p, v,) and D2 ~ D(p, ., v,) for some L1 = La®N, F1 = FoQN
with N* = Ox.

The fact that the destabilizing subbundle of a strictly unstable bundle has a unique up to scaling
embedding has the following analogous consequences for Higgs bundles and S L-operators (cf.

corollaries 3.10 and 5.4).

PROPOSITION 1.5. (i) On a non-degenerate spectral curve, there is no exceptional divisor of

3If x has points of multiplicity 2, the same statement would hold for S L-operators (cf. proposition 5.7) but not for
Higgs bundles and spectral curves. In this sense S L-operators encode more information than spectral curves and Higgs
bundles.
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degree < 2g—2, i.e. an effective divisor of degree < 29— 2 is equivalent to no other effective

divisors.

(ii) Two projective connections with the same irreducible projective monodromy representation
that has a lift to SLo(C) and the same divisor of apparent singularities of degree < 2g — 2

are isomorphic.

Double points in Baker-Akhiezer divisors and double apparent singularities. The fol-
lowing propositions (propositions 4.3 and 7.6) show that one can form a double point in Baker-
Akhiezer divisor and a double apparent singularity by, respectively, colliding two simple points of

Baker-Akhiezer divisors and two simple apparent singularities.

PROPOSITION 1.6. (Proposition 4.3) Let (E, ¢) € My (A) with the associcated non-degenerate
spectral curve S = X and L be a subbundle of E such that cr(¢) has a double zero at xy € X
which is not a branch point of S. Let D be the Baker-Akhiezer divisor of (L — E, ¢) and %o be
the point with multiplicity 2 in D with w(Zo) = xzo. Let (U, z) be a coordinate neighborhood of
xo, where z(xg) = 0, U is simply connected and contains no branch point of S. Then there exist
a family of Higgs bundles {(Ey, ¢u) }ue-(uy and a family of line bundles { Ly },c.(u) of the same

degree as L parameterized by U such that
(i) [Lo] = [L] in Jacgeg(ry(X) and (Ey, ¢o) = (E, ¢) in My (A);
(ii) forallu € z(U), E, admits L, as a subbundle;

(iii) for all u # 0, the Baker-Akhiezer divisor of (L, < Ey, ¢y) is D — 2o + T4 + T_, where

T4 lie in the component of m=1(U) containing %o and are such that z(7(i+)) = +u.

Furthermore, these families define embeddings U — My (A) and U < Jacgeg(r)(X).

The following proposition is the analogue for .S L-operators of proposition 1.6 provided that
certain ()-genericity conditions are met with regard to the choice of the collision site x. We will
also need to tune the accessory parameters of the colliding simple apparent singularities for them

to form a double one at the limit.

11



PROPOSITION 1.7. (Proposition 7.6) Let D be an S L-operator with div(D) = 2zg+x3+ ...+ 24
being Q-generic and d < 3g — 3. Then there exists a coordinate neighborhood (U, z) of xo, where

U C U’ and z(x0) = 0, and a family of SL-operators {Dy}ye 7y parameterized by U such that
(i) Do =D
(ii) foru # 0, Dy, has simple apparent singularities at s, ..., tq and x4 € U with z(x4) = tu;

(iii) for u # 0, the accessory parameters vi(u) of x+ w.r.t. the local coordinate z, as functions
of u, have simple poles at v = 0 and Laurent expansions v4(u) = :Fﬁ + 1/37 +v'u..., where

21/0D is the accessory parameter of the double apparent singularity xo of D.

Furthermore, this family defines via taking monodromy a holomorphic map U — Hom(7w1, PSL9(C)),
which is injective for d < 2g — 2.

We expect that if the projective monodromy representation of D defines a point generic enough
in R(I]DS La(C) then such a family of S L-operators defines an embedding U — R%S L>(C) which
lifts to an embedding U — Ry, (c)-

In addition, one can check that if {(L,, — Fy, V,)} is a family of holomorphic connections
together with subbundles such that ¢z, (V,,) has zero divisor x4 + x3 + ... + x4 for u # 0 and
270 + 23 + ... + x4 for u = 0, then the family of S L-operators {Dy, := D, v,)} has v+ (u)
as simple apparent singularities with accessory parameters of the required form (cf. example 7.2).

Such a family {(L, < F,, V) } can be obtained by applying the so-called “conformal limit” [9]
to a family of Higgs bundles and sub-bundles provided by Proposition 1.6.

Reduction of the degree of Baker-Akhiezer divisors. Let [F, ¢] € My (A) with associated
non-degenerate spectral curve S = X, and L be a subbundle of E. The following proposition
(proposition 4.2) shows, given a point ¢y € X that is not a branch point of .5, the existence
of families of Higgs bundles parameterized by a neighborhood U of x( such that Higgs bundles
corresponding to points in U \ {z(} admit subbundles of degree deg(L) — 1, but their limit at z
is (E, ¢). Such a family defines an embedding U <— Mg (A).

PROPOSITION 1.8. (Proposition4.2) Let (E, ¢) € Mg (A) with associated non-degenerate spec-

tral curve S = X, and L be a subbundle of E. Given xo € X not a branch point of S, let (U, 2)
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be a coordinate neighborhood of xo, where z(xg) = 0, U is simply connected and contains no
branch point of S. Then there exist a family of Higgs bundles {(Ev, ¢u) }ue() and a family of
line bundles { L, },,c.(ur) of degree deg(L) — 1 parameterized by U such that

(i) [Lo] = [L ® Ox(—wo)] in Jacgeg(r)—1(X) and (Eo, o) = (E, ¢) in My (A);
(ii) forallu € z(U), (Ey, ¢u) has S as its spectral curve;
(iii) for all u # 0, E, admits L, as a subbundle;

(iv) for all u # 0O, the Baker-Akhiezer divisor of (L, — Ey,¢y) is D + &4+ + Z_, where D
is the Baker-Akhiezer divisor of (L — E,¢) and Z 4 lie in different distinct components of

7 W(U) with z(7(3+)) = Fu.

Furthermore, these families define embeddings U — My (A) and U < Jacgeg(r)—1(X).

Proposition 1.8 in particular shows how one could limit to a Biatynicki-Birula stratum from a
higher stratum. For simplicity we have limited to families of Higgs bundles staying on one fixed
smooth Hitchin fiber.

Given a family {[E, ¢u]}yc.(1r) constructed by proposition 1.8, one can use the C*-action on
My (A) to define a family of Higgs bundles {[F, ] }y-£0,uc-() parameterized by U \ {xo},
where [F),, ¢,] == u.[Ey, ¢y for each u # 0. In case E,, is unstable for all u € z(U), proposition
4.4 shows that the limit [Fy, o] = il_I)?% [E!, ¢! ] lies in the nilpotent cone * and admits Lo =
L ® Ox(—x) as a subbundle. Hence, the v — 0 limit of [F,, 1] stays in the same Biatynicki-
Birula stratum, in contrast to the limit [E, @] of [E, ¢,]. In the sense that [E,, ¢.,| = u™L.[Fy, ¥u],
one might regard the limiting behavior to a lower stratum of {[Ey, du]}u-0,uez(1) s @ blow-up of

the limiting behavior that remains in the same stratum of {[Fy, tu] }uzo uesu)-

Reduction of the number of apparent singularities. The analogy between Baker-Akhiezer
divisors and apparent singularities and their accessory data extends to the families of the corre-
sponding objects, the limits of which respectively have Baker-Akhiezer divisors and divisors of

apparent singularities of lower degree. The following proposition (proposition 7.9) is the analogue

*The nilpotent cone is the fiber over 0 of the Hitchin fibration h : Mg (A) — H°(K?).
3The limit [Fy, 1)o] provides an example of a theorem on the so-called very-stable Higgs bundles, those C*-fixed
points in M g (A) with associated upward flows intersecting the nilpotent cone only once, recently studied by [34].
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of proposition 1.8. We will again need some ()-genericity conditions for the “collision site”, and
tune the accessory parameters corresponding to the colliding apparent singularities for them to

“disappear” at the limit.

PROPOSITION 1.9. (Proposition 7.9) Let D be an S L-operator with div(D) = x3 + ... + x4 for
d < 3g — 3, and xq be a point on X such that 2xy + x3 + ...xq is Q-generic. Then there exists
a coordinate neighborhood (U, z) of x¢ and a family of S L-operators { Dy, },¢ =(U) parameterized

by U such that
(i) Do =D;
(ii) foru # 0, D,, has simple apparent singularities at xs, ..., xq and x4 € U with z(xy) = +u;

(iii) for w # 0, the accessory parameters vy (u) of x4 w.r.t. the local coordinate z, as functions

of u, have simple poles at u = 0 and Laurent expansions vy (u) = :l:% + v'u + O(u?).

Furthermore, this family defines via taking monodromy a holomorphic map U — Hom(71, PSLs(C)),
which is injective for d < 2g — 2.

We expect that such a family would generically define an embedding U — R?D SLa(C) which
lifts to an embedding U < R, (c)-

There exists a surgery of projective structures called bubbling, which takes a projective struc-
ture and a path on the surface that contains no apparent singularities as the input. This surgery cuts
open the underlying Riemann surface along the chosen path and glues in a copy of P' which is
also cut open along the image of the path under the local function defined by the projective struc-
ture [8]. The output is another projective structure which induces the same projective monodromy
representation, but is subordinate to a different Riemann surface, i.e. a different complex structure
for the underlying smooth surface, and has two extra apparent singularities. Now, for u € z(U)
let U, be the projective structure corresponding to D,, constructed in proposition 1.9. We found
evidences suggesting that, for u # 0, U, is the output of a bubbling that produces =4 (u) as the

two extra apparent singularities.
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1.3 Outlooks into geometric Langlands

One of the main motivations for the projects leading to this thesis is to understand explicitly the
geometric Langlands correspondence for the case where the Lie group is G = SLy(C). Certain
aspects of the geometric Langlands correspondence have been made explicitly in the cases where
the Riemann surface has genus zero [22] or one [19] and has punctures, and we would like to
emulate this success for the cases where the Riemann surface is compact and has genus > 2.

We now briefly describe a formulation of the geometric Langlands correspondence and the
explicit formulation in the genus zero case, before discussing how one can expect a generalization
of the strategy and how the results of this thesis fit in this scheme. Several of the constructions and
concepts that are not directly relevant to the content of this thesis will not be explained in details;

we will refer the readers to the references in this case.

Quantization of the Hitchin system and geometric Langlands. The formulation of the geo-
metric Langlands correspondence of our interest predicts a correspondence between flat P.S Ly (C)-
bundles on a Riemann surface X and objects called Hecke-eigensheaves on the moduli stack
Bungy, ) of SLo(C)-bundles on X [5] [23] 6. Using techniques inspired by conformal field
theories, Beilinson-Drinfeld [5] proved ’ this correspondence for a class of distinguished flat bun-
dles called opers [4] which in our case are precisely the holomorphic projective structures, i.e.
those without apparent singularities. They “quantized” the Hitchin system by constructing the
quantum Hitchin Hamiltonians, which are certain differential operators that act on a line bun-
dle on Bungy, (), commute with each other and have the classical Hitchin Hamiltonians as their
symbols. One then can argue that the sought-after Hecke eigen-sheaves can be encoded in the
eigen-functions of these quantum Hitchin Hamiltonians, with their eigen-values encoding the cor-
responding opers [23]. In this sense, the quantization of the Hitchin system is an essential in-
gredient to proving the geometric Langlands correspondence in the special case of holomorphic

projective structures.

SFor G = SLy(C), the Langlands dual group is “G = PSL2(C). In general, the geometric Langlands correspon-
dence is between Hecke eigensheaves on the moduli stack Bungy, ¢y of G-bundles and flat L G-bundles. For brevity,
we only summarize the geometric Langlands correspondence for the case G = SL2(C).

"Beilinson-Drinfeld proved the geometric Langlands correspondence for opers assuming that G is a connected
simply-connected simple Lie group.

15



Geometric Langlands on punctured spheres. Variants of the geometric Langlands correspon-
dence exist for the cases ¢ = 0 and 1, i.e. Riemann sphere and torus with punctures. The case
of the Riemann sphere with N punctures is more explicit, since one can essentially work with
a coordinate z for the whole Riemann surface. In this case, an open dense set of Bungy,(c) is
isomorphic to (P1)N—3 [22]. If the punctures are at z = zi,..., 2y, a projective structure or

equivalently an S L-operator without apparent singularities takes the form

N
82+Z Z_ZT2+ZZ_ZT (1.6)
r=1

With some proper setup, the Hecke-eigensheaf corresponding to such a holomorphic projective
structure can be encoded by the quantum Hitchin eigen-functions ¥,, with eigen-values equal to

the residues v = (14, ..., vi) of the “potential” in (1.6) [22],
H.Y, =v.9,, r=1,...,N. (1.7)

Here ¥, = VU, (y1,...,yn—3) is dependent on the coordinates yi, ..., yn—3 of (]P’l)[N_?’} C
Bungy,(c), and the quantum Hitchin Hamiltonians H, = H;(9y,, ..., Oyy_s, Y1, .-, Yn—3) are

second-order differential operators.

Sklyanin’s separation of variables. It is known that in this case the quantum Hitchin Hamil-
tonians H, can be identified with the Hamiltonians of the Gaudin model, which is a quantum
integrable spin chain model [29]. Sklyanin [55] discovered a trick to rewrite (1.7) to a more solv-

able form: one can show that there exists an integral transform

Oy (21, .., TN-3) :/dyl‘--dyN—BIC(yla--wyN—?nCUlv~-‘7CUN—3)\I/1/(?J1;~-7yN—3)7 (1.8)

where K(y1, ..., yn—3, 1, ..., n—3) is an explicit integration kernel [25] [52], that satisfies

N
( Z 2+Zx5 ) y(21, . xN_3) =0, s=1,.,N—3. (19

r=1
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Since (1.9) is a decoupled system of differential equations, this rewriting 8 of the eigen-value
problem (1.7) is called the separation of variables for the quantum Hitchin system in this case. Re-
markably, it also makes explicit the geometric Langlands correspondence: the integral transform
®, (x1,..,xNn_3) satisfies the very differential equation defining the projective structure to which

the Hecke-eigensheaf encoded in W, (y1, ..., yn—3) corresponds to.

Drinfeld’s construction of geometric Langlands. In [13], Drinfeld gave a construction of
the geometric Langlands correspondence for the case GL2(C) over the function field of a curve
over [F,. Frenkel [22] has reinterpreted Drinfeld’s construction in a geometric context and drew
comparison with Sklyanin’s separation of variables for the case S Ly (C).

The rough idea is as follows. Let X be a compact Riemann surface of genus g > 2. Let d be a
positive integer and n = d — 2g + 2. Let N be the moduli space of rank-2 bundles of degree n,
and N 51 the moduli space of rank-2 bundles of degree d admitting Ox as subbundles, i.e. a point

of Ngfl is an equivalence class of an extension of the form
0—-0x - F—A—0, deg(A) = n, (1.10)

modulo scaling °. Let jV : 91 —J ac, (X) be the map that sends a point in ./\/'2Tf1 that can be put
in the form (1.10) to [A] € Jac, (X). It is a projection with the fiber over [A] being PH(A~1).
Its dual projection is the map j : X4 — Jac,, (X)), where X d = xd /Sq is the d-fold symmetric
product of X, that sends an effective divisor D of degree d on X to [K ! ® Ox(D)]. The fiber
of j over [A] is PHO(KA).

£1 xld]

y / (1.11)
L

N™ Jac,, (X)

Leti : N3'; — N™ be the rational map that picks out [F] from (1.10). Its fiber over [F]

consists of sections of F' that are nowhere-vanishing. If n > 2g — 1, then the image of ¢ defines

8There are in total N — 3 Opun SLy(©) -linearly independent quantum Hitchin Hamiltonians.
9Scaling the embeddings of O x defines different equivalence classes of extensions, but the same subbundle in F'.
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an open dense set ' in A

Let n > 2g — 1. Now, given a monodromy representation p : m; — G'L2(C), let F; be a flat
rank-2 bundle that realizes p. Then one can construct a perverse sheaf Fpgd) = (7« F,?d)sd, where
7 is the quotient X d_ X [d}, on X!, There exists a transformation called Radon transform [7]
[44] [41] that, as j and jV are dual projective fibrations, induces a sheaf g; on Ngfl from Féd).
g can be shown [13] to be an irreducible perverse sheaf which is constant along the generic fiber
of 7, and hence is the pull-back of a perverse sheaf 77 on N™.

Frenkel in [22] sketched how one should expect certain analogue of F7' for the case SL(C)
induces the Hecke-eigensheaf corresponding to the projective monodromy representation p :
w1 — PSLy(C) defined by p. In particular, Frenkel showed that in the genus zero case, Sklyanin’s
separation of variables (1.8) is precisely a concrete realization of the passage from perverse sheaves
on X! defined by monodromy representations in SLy(C) to Hecke-eigensheaves that are geo-
metric Langlands counterparts of the induced projective monodromy representations.

It is suggested in [22] [52] that, for higher genus cases, one can emulate the success in genus
zero in understanding more explicitly the geometric Langlands correspondence by finding the
analogue of Sklyanin’s “separation of variables” (y1,...,yn—3) — (21,...,xnx—3). The idea is to

find a generalization of Sklyanin’s trick that would concretely realize Drinfeld’s idea.

Classical separation of variables. As a first step in this approach to geometric Langlands, one
can observe that, in the genus zero case, there is a change of variables of the classical Hitchin
system that inspires the integral transform (1.8). One looks at the expression of the Higgs fields in
a local frame, picks out the lower-left component and its zeroes on the punctured Riemann sphere.
The lower-left component in this case is a function on the punctured Riemann surface that is linear
in the cotangent fiber coordinates of (IP’l)N*3 C Bungy,(c) that are conjugate to ¥, ..., yN—3, and
the zeroes of the lower-left component are the variables x1, ..., xy—_3. The change of variables
from (y1, ..., yn—3) together with their conjugate variables to (z1, ..., zy—_3) together with their

conjugate variables at the classical level then induces a natural analogue at the quantum level,

19A holomorphic rank-2 bundle on X of degree > 2g — 1 always has sections by Riemann-Roch theorem. The image
of ¢ then only misses the bundles that have no nowhere-vanishing sections, which form a positive-codimensional loci
in /™ since their Baker-Akhiezer divisors induced by these sections are of positive codimension on the corresponding
spectral curves (cf. appendix C).
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which leads to the rewriting (1.9) of (1.7).

Returning to this thesis, on a compact Riemann surface X of genus > 2, observe that in local
frames adapted to a subbundle L. — E the lower-left component of a Higgs field E is precisely
cr.(¢) as defined in (1.3). By theorem 1.1, its zeroes are the projections to X of the Baker-Akhiezer
divisors defined by (L — E,¢). We therefore expect that, if it is indeed possible to have an
explicit reformulation of the quantum Hitchin eigen-functions in terms of the S Lo (C)-operator
provided by the geometric Langlands correspondence, the projection to X of Baker-Akhiezer
divisors will play a role similar to the “separated variables” x1, ..., T y_3.

In fact, some results supporting this expectation have been obtained in an ongoing project
[12]. The basis of these results, which is a separation of variables of classical Hitchin systems, is
reported in our paper [10]. This classical separation of variables amounts to a (rational) symplec-
tomorphism T* Ny ,, — (T*X)!9, where Ny, is the moduli spaces of pairs (rank-2 bundle with
fixed determinant A, subbundle of degree n). One notes that these moduli spaces are contained in
a diagram obtained by adapting Drinfeld’s diagram (1.11) to the case G = SLy(C), i.e. fixing the

determinant A,

Nin /\\/m — s XM

z‘// \ JV/ . (1.12)
K

Na Pic?

In appendix C, we have also sketched such a change of variables at the classical level for the case

G = GL(C).

Generalization to higher ranks. Laumon [44] suggested a generalization of Drinfeld’s con-
struction of geometric Langlands correspondence to higher ranks via a diagram that is similar
to (1.11) and (1.12) but extends further to the left. One achieves this by again modeling mod-
uli spaces of rank-r holomorphic bundles in terms of the spaces of extensions by rank-(r — 1)
holomorphic bundles, and then applying a chain of Radon transforms .

It is natural to expect that this can be realized by an analogue of Sklyanin’s separation of

variables in higher ranks [22], and in particular, we expect that the projection to X of a general-

"'The challenge, as pointed out in [22], is to prove that the Radon transforms are irreducible perverse sheaves.
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ization of Baker-Akhiezer divisors in higher rank cases should also play the roles of the separated
variables. Hausel-Hitchin [34] recently studied a variant of this generalization of Baker-Akhiezer

divisors for higher ranks, albeit for different purposes.

Analytic geometric Langlands. We would like to point out an example of success in approach-
ing geometric Langlands from the point of view of separation of variables. In [52], by supposing
that there exists an integral transform of the form (1.8) that satisfies (1.9), Teschner was led to
propose that the geometric Langlands counterparts of holomorphic projective connections with
monodromy representations in PSLy(R) (up to conjugation) can be encoded by single-valued
quantum Hitchin eigen-functions. It is natural to regard the single-valued quantum Hitchin Hamil-
tonians as the analogues of automorphic forms in the original Langlands program.

The set of holomorphic projective connections with monodromy representations in P.S Lo (R)
is discrete in the moduli space of projective connections, and hence a fit interpretation of this corre-
spondence is that one has imposed a natural quantization condition in addition to the quantization
of the Hitchin system constructed by Beilinson-Drinfeld. Etingof-Frenkel-Kazhdan [15] [16] [17]
further supported this interpretation of a quantization condition by showing that, for the genus
zero case, the single-valued quantum Hitchin eigen-functions are automatically square-integrable,

which is a necessary condition from the physicist’s point of view.

Generalization to projective structures with apparent singularities. There is an unpub-
lished construction by Beilinson-Drinfeld sketched by Frenkel in [23] which claims a generaliza-
tion of the correspondence between holomorphic projective structures and Hecke-eigensheaves
to general projective structures, i.e. those with apparent singularities. We expect that this can be
achieved by generalizing the separation of variables techniques including the poles defining appar-
ent singularities of the corresponding .S L-operators. In particular, we expect that our work in this
thesis showing the analogy between Baker-Akhiezer divisors and apparent singularities with their
accessory parameters will help to make this approach explicit. As pointed out in [23], one chal-
lenge would be to show that two projective structures that are not equivalent, in particular having

different apparent singularities, but yield equivalent projective monodromy representations would
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yield equivalent Hecke-eigensheaves !2. One necessary condition would be that the corresponding
quantum Hitchin eigen-functions have the same conjugacy classes of monodromy around their
singular loci in Bungy,, ), which consist of bundles that admit nilpotent Higgs fields.

We believe that understanding Higgs bundles and projective structures in terms of divisors
that play analogous roles, i.e. Baker-Akhiezer divisors and apparent singularities as this thesis

demonstrates, is the first key step in this approach to geometric Langlands.

"’Frenkel in section 9.6 of [23] pointed out the challenge that, a priori, the constructed Hecke-eigensheaves are
dependent on the choices of Borel reductions of the flat P.SL2(C)-bundle that satisfies the oper condition on the
complement of a finite set of X. Such a Borel reduction is simply a section of the P.SL2(C)-bundle, and the finite set
on which the oper condition fails consists of the zeroes of its differential. By theorem 1.2, different Borel reductions of
a flat PSL2(C)-bundle, whose projective monodromy representation can be lifted to SL2(C), are the projectivization
of different subbundles of a flat S L2 (C)-bundle whose monodromy representations in S L2 (C) is a lift.
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Chapter 2

Moduli spaces of stable bundles and Higgs bundles

Throughout this thesis, X is a compact Riemann surface of genus g > 2. In this chapter we
review the relevant results of moduli spaces of bundles and Higgs bundles, with an emphasis on

the natural stratification on them.

2.1 Moduli spaces of bundles

Given a rank-2 holomorphic bundle F, we say a subbundle M of E is a maximal subbundle of
E if deg(M) > deg(L) for all other subbundles L of E. A rank-2 holomorphic bundle E with
det(E) = A is called stable if

s(F) == deg(AM~?),

where M is a maximal subbundle of E, is positive. In other words, for E being stable s(F) has
0 as a strict lower bound. It follows by a theorem of Nagata [45] that s(E) < g. Hence, since
s(F) = deg(A) mod 2, max s(F) = g if g = deg(A) mod 2 and max s(E) = g — 1 otherwise.

Given a line bundle A on X, the moduli space of stable bundles A/y with fixed determinant
A on X as a set consists of isomorphisms classes of such stable bundles. It is known that N}y is
a smooth complex projective variety of complex dimension 3g — 3 [49] [47]. For s = deg(A)
mod 2 and in the range 1 < s < g — 2, let Na(s) = {[E] € Na | s(E) = s}. Then N(s) is
an irreducible algebraic variety of dimension 2g + s — 2. The closure in N of these algebraic
varieties define a natural stratification on A/ which we call the Segre stratification [42].

It is known that if s(E) = g, then the set of its maximal subbundles is of dimension 1 [42].
On the other hand, a generic bundle E with s(F) = g — 1 only has a finite number of maximal
subbundles, and a generic bundle E with s(E) < ¢g — 1 has only one maximal subbundle. If
however FE is strictly unstable, i.e. s(E£) < 0, then E has a unique maximal subbundle L.

Regardless of the value of s(F), if M is a maximal subbundle of F then its embedding into E

is unique up to a scaling, i.e. h°(M~1E) = 1.
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2.2 Moduli spaces of Higgs bundles

An SLy(C)-Higgs bundle is a pair (E, ¢) where E is a holomorphic rank-2 bundle and ¢ €
H°(Endy(F) ® K) is a trace-less holomorphic endomorphism of E twisted by holomorphic one-
forms.

It is known that the moduli space M 7 (A) of S Ly (C)-stable Higgs bundles with the underlying
bundles having determinant A has dimension 6g — 6 [36]. Since tensoring a Higgs bundle with a
line bundle keeps the parity of the degree of the determinant and leaves the Higgs fields intact in
a covariant way, Mg (A) = Mg(A') if and only if deg(A) — deg(A’) is even. In other words,
the moduli spaces of S Ly (C)-Higgs bundles are of two isomorphism classes, defined by whether
deg(A) is odd or even. We will often write My = My (A) when it is not necessary to emphasize
the choice of A. We will also often call both (F, ¢) and its isomorphism class a Higgs bundle, and
abuse the notation by simply writing (E, ¢) for [(E, ¢)] € My unless an emphasis on the fact

that distinct Higgs bundles can be identified via isomorphisms is called for.

2.2.1 Underlying bundles of stable Higgs bundles

For a stable bundle F of determinant A, any traceless Higgs field ¢ € H°(Endg(F) ® K) defines

a stable Higgs bundle (E, ¢) and hence a point [E, ¢] € M. One can show that a Higgs field

¢ € H°(Endo(E) ® K ) defines a cotangent vector on the moduli space N = A/ of stable bundles

with determinant A. Hence T*N C M . This embedding is in fact open dense. In addition, M g

can be equipped with a natural symplectic structure which restricts to the canonical one on T*N.
Not all rank-2 unstable bundles form stable Higgs bundles. We refer to [35] for a complete

classification.

PROPOSITION 2.1. [35] (E, ¢) is stable if and only if one of the following conditions holds
(i) E is stable,
(ii) E is strictly semi-stable and g > 2,

(iii) E = L ® U is strictly semi-stable and g = 2, where the rank-2 bundle U is either decom-

posable or an extension of Ox by itself,

(iv) E is destabilized by subbundle Ly — E with h° (KLEQA) > 1,
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(v) E=Lp® L' Awith h°(KL;*A) = 1.

For our purpose, it will be instructive to understand the cases of strictly unstable bundles in
details. We now review the representation of Higgs bundles in terms of extensions of line bundles

before discussing these cases.

Higgs bundles in terms of extensions of line bundles. Suppose E can be realized as an ex-

tension of a line bundle L~'A by L, i.e. there exists a s.e.s.
0=>L—>FE—L'A—=0. (2.1a)

An extension of this form is equivalent to the data of a subbundle L — F, or equivalently a
collection of the transition functions of E' of the form

lag lageaﬁ
(E)ag = (2.1b)

0 Io5Map
where [,3 and \,g are respectively transition functions of L and A. A Higgs field ¢ on E then

defines the composition

(@)L EXE®K - L7IAK. 2.1¢)

In other words, the embedding L < E defines amap ¢y, : H (Endy(E) ® K) — H® (KL2A).
We might later simply write ¢ = cp(¢) when the input data (L — FE, ¢) are clear in context.

Concretely, if over an open set U, C X the Higgs field takes the local form

aq  ba
o = ( ) (2.1d)

Ca —Qu

in certain local frames adapted L < F, then {c,} glue into the global section c,(¢) of K L—2A.
Note that c,(¢) = 0 if and only if L is ¢-invariant.

The space of extension classes of the form (2.1a) is canonically isomorphic to H!(L2A~1),
which is dual to H°(K L=2A) via Serre duality. One could show that forall ¢ € H (Endg(F) ® K)

the pairing via Serre duality of the class [E] € H'(L2A~") of the extension (2.1a) and c1,(¢) €
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HO(KL2A) satisfies
([E], c(9)) = 0. 2.2)
In other words, the image of ¢y, is contained in the hyperplane
ker([E]) = {c € H'(KL™?A) | ([E], c) = 0}

defined by (2.1a). See appendix B for the proof of this Serre duality constraint and a detailed

analysis of the image of c..

Underlying unstable bundles. Let E be a strictly unstable bundle with determinant A and a
destabilizing subbundle Lr — F, i.e. deg(L;°A) < 0. If L < E is another subbundle, then
deg(L) < deg(L,'A): otherwise the composition L < E — LA is zero, which is impossible
by the assumption that L and L are different subbundles of E. It follows that L is the unique
subbundle that destabilizes E, and furthermore its embedding into E is unique up to scaling.
Hence a Higgs field ¢ on E defines a stable Higgs bundle if and only if c;,,(¢) € H 0K LEZA)
is nonzero.

If hO(K L;;2A) > 1, which is the generic case when deg( K L;;2A) > g, then one can show
that there are Higgs fields on E that define stable Higgs bundles, i.e. im(cr,,) contains nonzero
elements of H(K L;JQA). Indeed, one can show that E* LK is isomorphic to the bundle of trace-
less Higgs fields preserving Ly (cf. appendix B), and hence ¢y, fits in the induced long exact

sequence
0— H(E*LpK) — H° (Endo(E) ® K) =% H° (KLZ*A) —» H' (B*LEK) — ... (2.3)

It follows from Serre duality and the fact that Lz has a unique up to scaling injection into F' that
W (E*LpK) = h%(L;'E) = 1. Hence if h°( K L;*A) > 1 then im(cy,,,) has positive dimension.

On the other hand, if h°( K L;*A) = 1, which is the generic case when deg(KL;?A) < g,
then it follows from the Serre duality constraint (2.2) that (E, ¢) is stable if and only if ¢, , (¢) # 0
and E = L @& Li;'A.
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2.2.2 Spectral correspondence and integrable structure

The Hitchin fibration h : My — HY(K?) associates to the isomorphism class of a Higgs bundle
(E, ¢) the quadratic differential ¢ = det(¢). A generic Hitchin fiber is isomorphic to an abelian
variety, namely the Prym variety of the associated spectral curve. This endows My with the
structure of an algebraic integrable system [36].

To see this, first note that associated to a quadratic differential ¢ = det(¢) is a “spectral
curve” S; embedded in the total space of 7% X. The spectral curve encodes the eigen-values of

the Higgs field: concretely, if u is the coordinate of an open set U C X, v the fiber coordinate of

- a(u)  bu) :
the restriction of 7% X to U and ¢(u) = locally, then locally S is defined by

c(u)  —a(u)
v? + q(u) = v? — a(u)? — b(u)c(u) = 0. (2.4)

The morphism S, % X induced by T*X — X is a 2 : 1 covering that branches at the zeroes
of det(¢). The involution o of S, interchanges points corresponding to the eigenvalues v =
+(—q(u))/? of ¢(u). We say a quadratic differential ¢ and its associated spectral curve Sy are
non-degenerate if the zeroes of ¢ are all simple. In this case, S, is a smooth compact Riemann
surface of genus § = 4¢g — 3, and in particular 7*(K) has a canonical section defined by v that
vanishes precisely at the ramification divisor R, of S,. A spectral curve S, is called degenerate
when ¢ has zeroes of non-trivial multiplicity; the most degenerate case is ¢ = 0, and we call the

fiber h~1(0) the nilpotent cone.

Eigen-line bundles. In the non-degenerate case, up to isomorphism, a Higgs bundle (E, ¢) with
q = det(¢) corresponds to a sub-line bundle £ of 7*(E) on S,, defined as the kernel of the
morphism (7*(¢) —v) : 7*(E) — 7*(E'® K) [35]. In other words at each point p = (u,v) € S,
L as a subbundle of 7*(FE) is defined by the eigen-subspace of 7*(¢)(p) with the eigen-value v.
Since 7*(¢)(p) also has —v as its eigen-value, which defines o(p) = (u, —v), one can similarly
define a sub-line bundle of 7*(E) with these eigen-values, which is nothing but ¢*(£). The line

bundles £ and o*(L) are called the eigen-line bundles of (E, ¢); they coincide at the ramification
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points of S % X and satisfy
Lo (L)=r* (Ao KY). (2.5)

Conversely, given a line bundle £ satisfying (2.5), one can show that the direct image 7. (£ ®
7*(K)) is a rank-2 bundle, whose determinant is isomorphic to A and pull-back to .S, contains
L and 0*(L) as subbundles. A Higgs field can be constructed from the fact that, at p € S,
7™ (¢) |p acts on L |, and o*(L) |, with eigen-values corresponding to p and o(p) respectively.

By construction, the eigen-line bundles of this Higgs bundle are £ and *(L).

Prym variety and integrable structure. Condition (2.5), which relates the fixed determinant
of the underlying rank-2 bundles on X and the eigen-line bundles on .S, in fact implies that the
Hitchin fiber h~!(¢) is isomorphic to the Prym variety of Sy if ¢ has only simple zeroes.

The Prym variety Prym(.S,) is the subset of the Jacobian of S, defined as the kernel of the
norm map 7, : Jaco(Sy) — Jaco(X) that sends the equivalence class [D] of degree-0 divisor D
on S, to [r(D)]. It is known that Prym(S,) = {[L] € Jaco(S;) | L ® 0*(L) = Og, } if we regard
Jacy(.Sy) as the set of isomorphism classes of degree-0 line bundles on S;;. Then choosing any line
bundle £, that satisfies condition (2.5) allows us to define an isomorphism A ~!(q) = Prym(S,)
by [E.¢] — [Lo™' ® L(p,4)] where L 4) is the eigen-line bundle of (E,¢). Since a line
bundle satisfies (2.5) if and only if it is the eigen-line bundle of a Higgs bundle having S, as
its spectral curve, we have defined such an isomorphism simply by identifying a point in h~!(q)

with 0 € Prym(S,).

REMARK 2.1. For S, non-degenerate, pulling-back line bundles from X to S, defines an embed-
ding 7* : Jaco(X) — Jacg(S,). The intersection of Prym(S;) and the copy of Jaco(X) is the

discrete set of 229 points {7*L | L®? = Ox}.

2.2.3 Natural stratification

C~-fixed points. The Hitchin moduli space admits a C*-action defined as \.[E, ¢| = [E, \¢] for
A € C*. The fixed point locus M% of the C*-action is a subset of the nilpotent cone h~1(0).
Clearly M% contains the zero section N 2 {(F,0) | E € N} of T*N' C My. The other
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C*-fixed points have also been classified: for F destabilized by M, a Higgs bundle (F, ¢) € Mg
is C*-fixed if and only if (E, ¢) ~ (Er, ¢c) Where

) 0 0
Ey =M@ M A, Ge = ; (2.6)
c 0
with some nonzero ¢ € HY(K M ~2A) [35][34]. We write
M =NU (UNa), Ni = {[En, ¢c] | deg(c) = d}, 27)

where A and N, are connected components of ME  with0 < d < 2g — 2 if deg(A) is even and
1<d<2g—1ifdeg(A) is odd.

Upward flows of C*-fixed points. An important property of the Hitchin fibration is properness
and equivariance with respect to the C*-action on My [48] [34]. This implies that any point
[E, ¢] € My has a well-defined limit )lg% [E,\p] € Mp. For [E, ¢] with E stable, (E, Ap) is
also stable for any A € C and hence )1\11}1%) [E,\¢] = [E,0]. For E unstable with L the destabi-
lizing subbundle, since (E,0) is not a stable Higgs bundle the limit is different: we have in fact

)l\ir%[E, Ap] = [Enr, ¢c] as in (2.6) with M = L and ¢ = cr,,(¢) = cap(¢pe). We can illustrate
—

ATV20
this by, for each A € C*, considering the automorphism g, = 1/2 of E and noting
0 A

its actions on the transition functions (E),g of £ in local frames adapted to Lg as

1 [ (LE)ap  (Lp)apeas g (Le)ap  AMLp)apcas : (2.8)

0 (LE)a6<A)a5 0 (LE)aﬁ(A)aB

which at the limit A — 0 provides the transition functions of Fj;. The action of g on the Higgs

field A¢ is

. IOV Aa A%
g (A\)g=yg g= ,
A —Aa c =\

which at the limit A — 0 provides ¢..
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We note that, regardless of whether F is stable or not, if Ly — E' is a maximal subbundle of
E, then it is also the maximal subbundle of the underlying bundle at the limit /l\in% [E, ¢]. For a
—

C*-fixed point o, we say W,, == {[E,¢] € My | a = )l\in%[E, A¢|} is the upward flow of .
—

EXAMPLE 2.2. For E stable and o = (E,0), W|g g is the cotangent fiber T[’;J]/\/' C T*N C

M. If deg(A) is even, upon choosing a spin structure K 1/2_ at the other extreme is the upward

0 0
flow of « = | K2 K—1/2, . This upward flow intersects each Hitchin fiber A~ (q)
1 0

0 —
at precisely one point defined by | K'1/2 @ K—1/2, 1 and is called the Hitchin section.
1 0

There are 229 such Hitchin sections corresponding to 229 choices of K 172,

It is known that W, is Lagrangian for any o € M%’, which is the generalization of the fact

that Wg ) is Lagrangian in T*N C My for E stable [9]. The decomposition
Mp =Wy U (IE'WNd)’

where W = UFWa for each connected component F' of ME", is called the Biatynicki-Birula
ac
stratification of My. Note that Wy = T*N inherits a natural stratification from the Segre

stratification on A/ and its union with IEIWN , 18 a natural generalization.
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Chapter 3

Baker-Akhiezer divisors

In this chapter we introduce the notion of Baker-Akhiezer divisors on non-degenerate spectral
curves. The input data to define these divisors consist of a Higgs bundles with non-degenerate
associated spectral curve and an injection of a line bundle to the underlying rank-2 bundle. While
the terminology for these divisors is new and inspired by the literature on integrable systems, the
usage of these divisors is not entirely new. Hitchin in his original paper [35] already characterized
Higgs bundles with underlying unstable bundles in terms of these divisors, and the recent work
[34] of Hausel-Hitchin also made extensive use of them in particular in their analysis for different

purposes.

3.1 Definitions and basic properties

Explicit definition of Baker-Akhiezer divisors. Let (£, ¢) be a semi-stable Higgs bundle with
an associated non-degenerate quadratic differential ¢, and L < FE a subbundle. Then ¢ = c¢1.(¢) €
HO(KL72\) defined as in (2.1c) is nonzero: otherwise the zeroes of ¢ will have multiplicity.
Consider its zero divisor div(c) = Zf x;. Ateach x;, equation (2.4) for the spectral curve S 5 X
reduces to v? — a(u(z;))? = 0. If z; is not a branch point, then the two points in 7! (z;)
are unambiguously labeled by v = +a(u(x;)); in this case let Z; be the point defined by v =

—a(u(x;)). If z; is a branch point then let Z; be the ramification point 71 (x;). We define

D= Zm (3.1)

Clearly D is dependent only on the data (L — E, ¢). We say D is the Baker-Akhiezer divisor
of this data. We will write D = D (L — E, ¢) when we want to emphasize this dependence,
otherwise we will simplify the notation. Inspired by [35] and [34], in definition 3.1 we will
characterize these divisors in an invariant way and include the case where the injection L — E

has zeroes and hence does not define a subbundle.
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REMARK 3.1. Since ¢ = det(¢) has only simple zeroes, if a branch point of S, % X is con-
tained in div(c) then it must have multiplicity 1. The corresponding ramification point then has
multiplicity 1 in the Baker-Akhiezer divisor D. Hence by construction D contains no part equal

to the pull-back of a divisor on X 3.

The following proposition describes the eigen-line bundles £ and o* (L) of (E, ¢) in terms of
L and D. The result has a straightforward generalization to the case G Ly (C). Hausel-Hitchin [34]

has noted similar results in the case where E is unstable.

PROPOSITION 3.1. Let (E, ¢) be an S Lo(C)-Higgs bundle with associated non-degenerate spec-
tral curve S = X. Let L be a subbundle of E and D the Baker-Akhiezer divisor of the data
(L — E,¢). Then

L7 (K™'L)® Os (D), o*(L) 27 (K™'L) ® Og (0(D)). (3.2)

Proof. We will abuse the notations by using the same notations to denote the local functions on

X and their pull-backs on S this in particular applies to components of ¢ and transition functions

of E. In the local frames of 7*(FE) adapted to the pull-back of (2.1a) from X to S, one can

v+ a(u)
c(u)

and hence are local sections of £ < 7* (E). As we transit from one component in 7~}(U,,) to

check that local sections of the form ( ) are eigen-vectors of 7*¢ with eigen-value v,

one intersecting component in 7~ 1(Ug), these local sections transform as

—1
Vo T Gq 1 [ Ya + aq lcxﬁ laﬂecxﬁ Vo + G

= (E)as = ) . (3.3)

Noting the transformation of the Higgs field (B.2), we can rewrite (3.3) as

Vo + Qg vg + ag

— z;ﬁlkaﬁ = zﬁakﬁj . (3.4)
Ca ca cs

where ks is the transition function of K, and v, = kogvg (since they are fiber coordinates of

3The pull-back to S of a branch point on X, regarded as a divisor on X, takes multiplicity into account and so has
multiplicity 2.
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Vo + @
K). Note that “ “ | vanishes only at D, and hence can serve as a local frame of £ if U,
Ca
contains no point of D. In other words, away from neighborhoods of Z;, £ has the same transition

functions as 7 (LK ~1).

To get a local frame of £ on a component of 7! (U, ) containing #;, we can quotient out from
Vo T o the minimum of zero multiplicities of v, 4+ ao and ¢, at Z; . If x; € U, isnot a
Ca
branch point, (2.4) implies that this is the multiplicity of x; in div(c). If z; € U, is a branch point
and has multiplicity 1 in div(c), then Z; is a simple zero of v + a, = v + 7*(a,) and a double
Vo + Qo

zero of ¢, = 7*(c,) on S. In either case, we can quotient out from precisely the
Ca

multiplicity of z; in div(c) to construct a local frame of £. This explains the correction Og (D) to

™ (LK ') in(3.2). O

Vo + Q
REMARK 3.2. Since | “ | resembles Baker-Akhiezer functions in the integrable system

Ca
literature [2] we are inspired to associate the terminology ‘“Baker-Akhiezer” to its zero divisor D.

EXAMPLE 3.3. Let g be a non-degenerate quadratic differential. Recall that the intersection of
the Hitchin fiber h~!(q) with the Hitchin section corresponding to the spin structure K 172 s
—-q

0
defined by | K 12 K12, . The Baker-Akhiezer divisors of the data defined by
1 0

this Higgs bundle and taking K1/2 and K~'/2 as subbundles are respectively the trivial divisor
and the ramification divisor R, on S, ™4 X. Since Os,(Ry) = m;(K), it follows from (3.2) that
the eigen-line bundle is isomorphic to 7 (K —1/2) either way.

Following the discussion on isomorphisms between generic Hitchin fibers and Prym varieties,

one can define the isomorphism I, y1/2 h=1(q) = Prym(S,) thatidentifies | K'/2 @ K~1/2, ,

with 0 € Prym(S,). If [E,#] € h™'(q) and D is the Baker-Akhiezer divisor of some data
(L = E,¢), then I, ;1/2 sends [E, ¢] to the isomorphism class of the line bundle W;(LK_I/Q) ®
Os, (D). In particular, the intersection of h~*(q) with another Hitchin section corresponding to

another spin structure K /2 0%2 is mapped to the isomorphism class of 7* ((9;(/2). Hence I j1/2
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maps points on the 229 Hitchin sections surjectively to Prym(S,) N 7* (Jaco(X)).

Formal definition of Baker-Akhiezer divisors. We now give an invariant and slightly more
general definition of Baker-Akhiezer divisors. This characterization of these divisors has featured
in [35] [34].

Suppose (E, ¢) is a Higgs bundle with non-degenerate spectral curve S = X. The eigen-line

bundle £ of (E, ¢) is a subbundle of 7* (£) and hence defines an extension
0= L—7"(E)— L7 (A) = 0. (3.5)

Let L — FE be an injection which possibly has zeroes. We will in particular denote by “L — E”
an injection which has no zero, i.e. an embedding that makes L into a subbundle of £. Consider

the composition
(L) — 7 (E) — L7 '7* (A). (3.6)

The support of the zero divisor of this composition consists of the pull-back of the support of the
zero divisor of L — E and points where 7% (L) coincides with £ as subbundles of 7*(E).
Suppose L — FE has no zero, and hence F can be realized as an extension of the form (2.1a).

We claim that the zero divisor of (3.6) is (D) where D is defined as in (3.1). Indeed, if a local

x
frame of £ takes the form [ | in some local frame of * (E) adapted to the pull-back of (2.1a),
T2
then an S Ls(C)-change of local frames of 7* (F) from one adapted to 7*(L) < 7n*(E) to one
—1

T Y1 2~
adapted to £ — 7*(E) can take the form Y (Y Y . One then can take

T2 Y2 —I2 I

2 ) as alocal frame of 7*(L) in certain local frame of 7*(E) adapted to £ — 7*(E), and

so locally the composition (3.6) can be modeled as 1 +— v — —x9. It then follows from

—X9
T

the explicit construction of in the proof of proposition 3.1 that indeed formula (3.1) gives
Z2
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the involution of the zero divisor of (3.6).

DEFINITION 3.1. Given a Higgs bundle (E, ¢) with non-degenerate spectral curve S — X and
an injection L — F, the Baker-Akhiezer divisor associated to these data is the involution of the
zero divisor of the composition 7* (L) — ©* (E) — L~ 17* (A).

The cases where L — E has zeroes is a straightforward generalization. Indeed, if L — E
has B as its zero divisor, then there exists a subbundle L(B) := L ® Ox(B) — E such that
its composition with the canonical injection of sheaves L 2§ L(B) defines L — E. The Baker-
Akhiezer divisors of (L — E, ¢) is equal to 7*(B) plus that of (L(B) — E, ¢), with the latter
containing no part equal to the pull-back of a divisor on X (cf. remark 3.1). The proof of the

following proposition, which generalizes proposition 3.1, is straightforward.

PROPOSITION 3.2. Let D be the Baker-Akhiezer divisor of (L — E,¢) on a non-degenerate

spectral curve S = X. Then

(a) D contains *(B) for some effective divisor B on X if and only if L — FE vanishes at
B, counted with multiplicity. In particular, D contains no part equal to the pull-back of a

divisor on X if and only if L is a subbundle of E, and in this case D is given by (3.1);
(b) the eigen-line bundle L of (E, ¢) is isomorphic to * (LK) @ Og(D);
(c) D satisfies Ox(m(D)) = KL2A, where A = det(E).

Anti-symmetrization of Baker-Akhiezer divisors. The following proposition shows that, while
the construction of Baker-Akhiezer divisors depends not only on Higgs bundles but also on in-
jections from line bundles, the anti-symmetrization of these divisors are invariants of the Higgs

bundles themselves.

PROPOSITION 3.3. If D and D' are Baker-Akhiezer divisors of (E,¢) on S 5 X induced re-
spectively by injections L — FE and L' — FE, then D — o(D) ~ D' — o(D’). In particular,
D — (D) represents (o (L))" £ where L is the eigen-line bundle of (E, ¢).

Proof. Applying (3.2) to express £ and 0*(L) each in terms of D and D’, one can check that

Os (D — (D)) = (6*(£)) ' L= 0g (D' — (D). (3.7)
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REMARK 3.4. The anti-symmetrization D — o (D) of a Baker-Akhiezer divisor D on S, which
represents the line bundle (o*(£)) " £, can be expressed in another way. Following example 3.3,
consider the isomorphism I, y1/2 : h=1(q) = Prym(S,) defined by identifying 0 € Prym(S,)
with the intersection of h~!(q) with the Hitchin section corresponding to a spin structure K 1/2,
For (E, ¢) a Higgs bundle with det(¢) = ¢ and D its Baker-Akhiezer divisor induced by an
injection L — E, we have I g1/2([E, ¢]) = [W;(LK_I/Q) ® Og,(D)] and

21, x12([E, ¢)) = [m; (L°K ') ® Os,(2D)] = [D — o(D)] (3.8)

where we have used property (c) of proposition 3.2. It is in the sense that (3.8) is an invariant of
(£, ¢) that we may claim that the isomorphism I, z1/2 is somewhat “canonical” (there are still

229 such “canonical” isomorphisms corresponding to 229 distinct spin structures on X though).

3.2 Inverse construction

In the following we will show that, given the data (¢, D) where ¢ is a quadratic differential with
simple zeroes and D an effective divisor on the spectral curve S T X, we can construct the data
(L — E,¢) that defines D as its Baker-Akhiezer divisor. The solutions to this inverse problem
are not unique, since twisting one solution with a line bundle defines another. For solutions that
define Higgs bundle in the same moduli space M 7 (A), it will be clear shortly that they differ only
by a twist by a square-root of the trivial line bundle.

It is instructive to see first the existence and uniqueness up to isomorphism of the “normalized”
solutions, i.e. L. = Oy, and in the case where the injection is an embedding, i.e. L = Ox is a
subbundle, via an explicit construction. A more abstract proof can be found in the discussion

following theorem 8.1 in [35].

PROPOSITION 3.4. Let q be a non-degenerate quadratic differential and D = %1 + ... + T4 an

effective divisor on S 5 X that does not contain the pull-back of an effective divisor on X. Then
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there exist a rank-2 bundle E' that arises as an extension of N' = K~ @ Ox (n(D)) by Ox,
0—-0x -E = A —0, (3.9)

and a holomorphic Higgs field ¢' on E’ such that D is the Baker-Akhiezer divisor of (Ox — E', ¢').
The Higgs bundle (E', ¢') is unique up to isomorphism, and the embedding Ox — E' is unique
up to scaling.

Proof.  'We first note that the uniqueness statement of the proposition would follow from the
existence statement and the properties of Baker-Akhiezer divisors. Indeed, if D is simultaneously
the Baker-Akhiezer divisor of (Ox — E’,¢') and (Ox — E”, ¢"), then by proposition 3.1 both
(E',¢") and (E", ¢") are isomorphic to the direct image of Og, (D). To show uniqueness up to
scaling of the embeddings, observe that two embeddings i1,i : Ox < E’ define the same 1-
dimensional subspaces in the fibers of I over the zero divisor of the composition Ox ‘l—1> E' — N,
where the surjection is the quotient of 5. On the other hand, if they define the same Baker-
Akhiezer divisor D, then 7*(i1) and 7*(i2) define the same 1-dimensional subspaces in the fibers
of 7*(E) over D, and hence i; and iy define the same 1-dimensional subspaces in the fibers of £
over m(D). which is of degree deg(KA’) > deg(A’). Hence if D has no point with non-trivial
multiplicity, the composition Ox <l—l> E’ — A’ must vanish, which occurs if and only if i; and io
are scalings of each other. By an argument analogous to the discussion leading to definition 3.1,
one could show that this statement also holds with multiplicity counted.

To prove the existence statement, we now construct (E’, ¢') on an explicit covering. Let
x = m(D) = x1 + ... + x4, where z; = 7(Z;). Letp =p1 + ... +pmandq = q1 + ... + qn
be effective divisors such that A’ = Ox (p — q), and each pj, g has multiplicity 1 in p + q + x.
Let (U;, u;) be a small coordinate neighborhood of x; with u;(x;) = 0, and (U, , zp, ), (Ug,, 24, )
be similarly defined coordinate neighborhoods of p;, g; respectively. W.l.o.g. assume that these

neighborhoods do not intersect each other. Consider a covering of X defined by

{X"U1,...U4,Upy, ... Up,,  Ugy . Ug, )
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where X’ = X \ {supp(x + p + q)}. Our ansatz for the transition functions of E’ are

(E/)UZ'X/ = 0 1 ) (E/)Uij/ = ; (E/)quX’ = 1 (310)

0 2z,
where €; = €;(u;) is a holomorphic function of u; on U; N X’ = {u; # 0}. Let A be a holomorphic
differential and C' € €)_x_q4p a meromorphic differential that vanishes at x + q, counted with
multiplicity, and has simple poles at p1, ..., p,, 4. With B = (q — A2) /C' being a holomorphic
differential on X', our ansatz for ¢’ is that it takes the local form on X'. Then ¢ of

c -A
this form would be regular on all of X if its local forms

A+ (ez/uZ)C B — Q(Ei/ui)A - (61/uz>2c A Zgle A quB
C “ A (ei)w)C S \s,e -4 ) \le -a
G.11)

on U;, Uy, and U,, respectively are regular. In addition, it follows from the explicit construction
(3.1) of Baker-Akhiezer divisors that, if the function —A(u;) — :2C(u;) evaluated at u; = 0 is
equal to the square-root of q(u;) |4,—o that determines &; € 7 (x;) = {Z;,0(%;)}, then this
would give the Higgs bundle (E’, ¢') we seek. With the ansatz €;(u;) = €)'/ uy”_l, where €) € C
and |z;| is the multiplicity of x; in x, we can solve this condition, now a linear one, for a unique
) € C. This determines the tuple € = (e1(u1), ..., €4(uq)), which determines E’ as an extension

of A’ by Ox. A direct check shows that with the chosen A, B, C' and ¢, the expressions in (3.11)

are automatically regular. []

REMARK 3.5. i. The construction of (E’, ¢') in the proof of proposition 3.4 gives an explicit

description of the push-forward of Og, (D).

ii. The fact that A can be any holomorphic differential gives us some degrees of freedom to
adjust € = (eq, ..., €q), i.e. constructing equivalent extensions of A’ by Oy, and in particular

elements in the isomorphism class of E’. This reflects the fact that dimExt (A, Ox) =

'*By construction C' is unique up to scaling and is identified with the section of K'A’ having x as its zero divisor via
the isomorphism Q_x_q+p — KA' = Ox (x).
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RY(A ™) = B0 (K A') is smaller than d = deg(KA').

As an example, for any h < g consider a subset {xj,,...,z;,} C {z1,...,24} such that

dim{w € HY(K) | xj, + ...r;, < div(w)} = g — h (a generic situation). Then we can
choose A such that —A(u;, (z;,)) is equal to the square-root of ¢(u;, (z;,)) that determines
Zj,. This fixes €;, = 0 for k = 1, ..., h. We see explicitly here how the underlying bundle of
a Higgs bundle with a generic Baker-Akhiezer divisor of degree < g must be split (cf. the last

case in proposition 2.1).

We have assumed that D does not contain the pull-back of any effective divisor on X in
proposition 3.4 to construct £’ with an embedding Ox < E’. On the other hand, if D contains
the pull-back of some effective divisor on X, then there exists some effective divisor B on X such
that D — 7*(B) does not contain the pull-back of any effective divisor on X. It is straightforward

to generalize proposition 3.4 to this case.

PROPOSITION 3.5. Let D be an effective divisor on a non-degenerate spectral curve S, 5 X,
and suppose that B is an effective divisor on X such that D —m*(B) does not contain the pull-back
of any effective divisor. Then there exists a Higgs bundle (E', ¢'), where E' can be realized as an
extension of ' = K~ ® Ox(m(D) — B) by Ox, such that D is the Baker-Akhiezer divisor of
the data (OX(—B) BOx — F, qﬁ’). The Higgs bundle (E', ¢') is unique up to isomorphism,
and the embedding Ox — E' is unique up to scaling.

Proof. The proposition follows from applying proposition 3.4 to D — 7*(B) and noting that
Ox(—B) 28 Ox has B as its zero divisor. []

Propositions 3.4 and 3.5 give the inverse construction of the Baker-Akhiezer divisors in the
“normalized” situation where the line bundle is Ox and the determinant bundle A’ = K~ ! ®
Ox (m(D)) is determined by D. The following proposition is concerned with the situation where
the determinant bundle A is fixed, i.e. we work on a fixed moduli space of S'Ly(C)-Higgs bundles
Mpu(A).

PROPOSITION 3.6. Given an effective divisor D on a non-degenerate SLo(C)-spectral curve
S, = X and line bundles L, A on X satisfying KL™2\ =2 Ox(m(D)), there exists a unique

up to isomorphism SLy(C)-Higgs bundle (E, ¢) with det(E) = A, and a unique up to scaling
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injection L — E such that D is the Baker-Akhiezer divisor of (L — E, ¢). In particular, L — E

is a subbundle if and only if D contains no pull-back of an effective divisor on X.

Proof. Apply proposition 3.5 and tensor with L. [J

Let us define an isomorphism class [ — E, ¢] of the input data of Baker-Akhiezer divisors
by saying that two representative data are isomorphic if there are isomorphisms of the underlying
bundles and line bundles that commute with the injections and Higgs fields '°. Clearly Baker-
Akhiezer divisors defined by isomorphic data coincide. The following theorem summarizes the

invertible properties of the construction of BA-divisors.

THEOREM 3.7. Consider the moduli space My (\) of SLs (C)-Higgs bundles on X with the
underlying bundles of determinant A, and a non-degenerate quadratic differential q and spectral
curve Sy % X. Then the construction of Baker-Akhiezer divisors and remembering the line bundle
defines a bijection

det(E) = A, D effective on S,

(L — E,¢] «— < (L], D)
det(¢) =g KL72A = Ox(x(D))

In particular, this bijection restricts to a bijection in the cases of subbundles

L a subbundle of E, D effective on Sy, contains
[L — E,¢| det(E) = A, «— < ([L], D) no pull-back of divisors on X,
det(9) = g KL-2A = Ox(x(D))

The map induced by forgetting the subbundle, i.e. [L — E.,¢] — D, is a 2% : 1 map.

Proof. The bijective property follows from the inverse construction of Baker-Akhiezer divi-
sors (cf. proposition 3.6). The 229 covering property follows from the fact that twisting input data
by a square-root of Ox do not change the induced Baker-Akhiezer divisors. These twists exhaust
all possible input data of a Baker-Akhiezer divisor since its projection to X determines the line

bundle L up to such a twist. []

15Since scalings are isomorphisms of line bundles, scaling the injections from line bundles to rank-2 bundles will
define the same isomorphism class [L — E, ¢)].
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3.3 Discussion and some applications

Families of Higgs fields inducing the same point in 7% X%, A Baker-Akhiezer divisor of
degree d on a spectral curve defines a point in the symmetric product (7*X )[d} of T* X via the
inclusion of the spectral curve to the total space of 7*X. Givend < 3g — 3 and p = [p1, ..., p4] €
(T*X) [9] there exists a positive-dimensional family of spectral curves each of which goes through
P1, ..., g and admits an effective divisor defined by these points. For example, if the divisor x on X
defined by projecting p is reduced, this family of spectral curves is an affine space modeled over
@x. Hence one same point p € (T X )[d} corresponds to Baker-Akhiezer divisors on different
spectral curves associated to non-isomorphic Higgs bundles. The underlying bundles, however,

are constrained.

COROLLARY 3.8. Two Higgs bundles [Ey, ¢1], [Ea,¢2] € Mp(A) define the same point in
(T*X )[d] via the construction of Baker-Akhiezer divisors only if E1 = FEy ® N where N? = Ox.

Proof. Fori € {1,2}, let D; be the Baker-Akhiezer divisors on Sy, of the data (L; — Ej, ¢;)
such that D; and D induce the same point p = [p1,...,pg] € (T*X )[d]. Tensoring (L; —
E;, ¢;) with L, ! does not change the Baker-Akhiezer divisors and brings us to the situation where
proposition 3.4 can be applied: D; then is the unique up to isomorphism Baker-Akhiezer divisor
of some data (Ox < E., ¢.). In particular, if we choose the same differentials A and C in the
proof of proposition 3.4 in constructing (E}, ¢} ) and (EY, ¢)), we can construct F and E, out of
the same data (e1(uy), ..., €2(u2)). Hence E] = E). The proposition now follows from the fact

that B! = B; ® L; ' and L3 = L3. O

Recall that a bundle E, det(E) = A, is not maximally stable if it admits a subbundle Ly — E
satisfying deg (L;*A) < g — 1, i.e. deg (KLy°A) < 3g — 3. Hence a Higgs bundle (E, ¢) with
E not maximally stable will induce Baker-Akhiezer divisors of degree < 3g — 3 if we choose a
maximal subbundle of E for the input data. The following corollary follows immediately from the

above propositions and corollary.

COROLLARY 3.9. Let d < 3g — 3. Then for any point p = [p1,...,p4q] € (T*X)[d] there exists
a bundle E which is not maximally stable and a positive-dimensional family of Higgs fields on E,

such that the Baker-Akhiezer divisors of these data using a maximal subbundle of E all define p.
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Conversely, if E is not maximally stable, then any Higgs field on E is contained in a positive-
dimensional family of Higgs fields on F, such that the Baker-Akhiezer divisors of these data using

a maximal subbundle of E all define the same point in (T* X )[d] for some d < 3g — 3.

Exceptional divisors on non-degenerate spectral curves. Suppose dim{L — E} > 2, i.e.
there exists at least 2 linearly independent embeddings from L to E. Then any Higgs field ¢ on
E induces a positive-dimensional family of effective divisors on Sgeq(¢) all of which are equiv-
alent via the construction of Baker-Akhiezer divisors. If deg(KL 2A) < 4g — 3, the genus
of a non-degenerate spectral curve, then these Baker-Akhiezer divisors are exceptional divisors.
Conversely, by theorem 3.7, an exceptional divisor D on a non-degenerate spectral curve S, i.e.
deg(D) < 4g — 3, dim |D| > 1, that contains no pull-back of an effective divisor on X induces a

family of embeddings { L < E'} of dimension > 2.

COROLLARY 3.10. On a non-degenerate spectral curve there exists no exceptional divisor of
degree < 2g — 2.

Proof. An exceptional divisor of degree < 2g — 2 implies the existence of a strictly unstable
holomorphic rank-2 bundle E with destabilizing subbundle Ly such that dim{Lgp — E} > 2,

which is impossible. [

Caustics and theta divisor revisited. Consider the locus in a Hitchin fiber h=1(q) defined
by Higgs bundles with stable underlying bundles. The projection from this locus to the mod-
uli space N of stable bundles, defined by forgetting the Higgs fields, is a local diffeomor-
phism at a generic point. It fails to be a diffeomorphism at the locus where h~1(q) is tangen-
tial to the fibers of T*Ny C Mg (A). The projection to N of this locus, i.e. {[E] € Ny |
T ["]‘5]/\/' A is tangential to h=1(q)}, is called a caustic formed by h=1(q).

Hitchin [35] showed that for a stable bundle F, the two Lagrangian submanifolds T[E}N A and

h~1(q) of My (A) are tangential to each other at [E, ¢] if and only if the line bundle
T (K)(0*(£)7'L,

where L is the eigen-line bundle of (E, ¢), has a non-zero section. This is a non-generic condition
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since 7% (K ) (0*(£)) 1L is of degree § — 1. For D a Baker-Akhiezer divisor of (E, ¢) induced by
some injection L — E, since the ramification divisor R, satisfies Og, (R,) = 7*(K), it follows

from proposition 3.3 that we can reformulate this condition by requiring
R,+ D —o(D) (3.12)

to be effective on S;. By Riemann’s theorem the image of these divisors under the Abel-Jacobi
map S([Ig I Jaci1 (S,) = Jac(S,) is a translation of the theta divisor. '® Since the theta divisor
is of codimension 1 in Jac(S,), caustics formed by a smooth Hitchin fiber is of codimension 1 in
Na.

Since 7 (K) has g linearly independent sections that are pull-backed from X in addition to
the canonical section that vanishes at R, we have dim |R,| = h° (R,) — 1 > g. Let D° < D be
the o-invariant part of D, i.e. p < D if either p is a ramification point or p + o(p) < D. Then
D —o(D) =D —o(D') where D' = D — D?. Itis then easy to see that if D is sufficiently
o-invariant, i.e. the degree of D — D¢ is sufficiently low, then R, + D — o(D) is effective. In
fact, one could check that if deg (D — D7) < g then

R’ (R, + D — o(D)) > g — deg (D — D7) + 1 > 0. (3.13)

EXAMPLE 3.6. Let g be a non-degenerate quadratic differential, and x = =1 +... + x5 < div(q) a
divisor on X of degree h > 2g — 3, each point of which is a branch point of S;. Let X = 1 +...7),
where T; € S, is the ramification point corresponding to x;. For d < 3g — 3, if D is the Baker-
Akhiezer divisor of degree d induced by a Higgs bundle (E, ¢) together with a subbundle L — E
and is such that X = D < D, then deg(D — D?) < g and hence R, + D — o(D) is effective.
For fixed data (¢, x,d), it follows from proposition 3.6 that by varying D — X we can obtain
229 families of Higgs bundles of dimension (d — h), a generic Higgs bundle of which has stable

underlying bundle and hence projects to a point in the caustics formed by h=1(q) in Nj.

"®Note also the line bundle Os, (Rq+D—0(D)) is the image of (E, ¢) € h™'(q) under the composition of I, x1/2:
h™(q) = Prym(S,) (cf. remark 3.4) with the map Prym(S,) — Jac9~!(S,) defined by [L] — [7*(K) ® L?].
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Intersections of Hitchin fibers with C*-orbits in the unstable strata. The intersection of
a generic Hitchin fiber with a generic cotangent fiber of the moduli space of stable bundles is a
discrete set of 23973 points. A point at which a Hitchin fiber is tangential to a cotangent fiber
of the moduli space of stable bundles can be regarded as a double intersection point of these two
Lagrangian subspaces of M gr; hence the phenomena of caustics can be regarded as an enumerative
problem.

The generalization of the cotangent fiber of a stable bundle is the upward flow W for a a
C*-fixed point in M. Recall from the previous chapter that if £ is destabilized by Lz, then a
stable Higgs bundle (E, ¢) defines a point in W where a = (E), ¢..) is defined in (2.6),

Eyv=M@® M A, be = , (3.14)

with M = Lg and ¢ = ¢r,,(¢). The following proposition, which characterizes the intersection
points of W, with a smooth Hitchin fiber, follows from theorem 3.7 and the fact that an unstable
bundle has a unique destabilizing subbundle. A more general version of this result that applies to

arbitrary ranks was established by Hausel-Hitchin [34].

PROPOSITION 3.11. Let o« = (Epr, ¢c) be a C*-fixed point in My and q a non-degenerate
quadratic differential. Then Wt 0\ h=Y(q) is in 1-1 correspondence with
_ m(D) = div(c), D contains no
D effective on S, )
pull-back of a divisor on X
where the correspondence is defined by constructing Baker-Akhiezer divisors using the destabiliz-
ing subbundle M. In particular, generically ’WJ N h_l(q)‘ = 24e8(c) \which corresponds to the

case where no point in ¢ has non-trivial multiplicity or is a branch point of S,.
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Chapter 4

Degeneration of Baker-Akhiezer divisors

In this chapter we discuss certain types of families of Higgs bundles in My = Mg (A), the
underlying bundles of which admit subbundles of the same degree, that limit to a Higgs bundle
with the underlying bundle admitting a subbundle of higher degree. These types of families are
understood most easily in terms of the corresponding Baker-Akhiezer divisors, so we start from

this perspective.

4.1 Reduction of the degree of Baker-Akhiezer divisors

Let (F,¢) € My be a Higgs bundle with associated non-degenerate spectral curve S O X
with involution o, L < E a subbundle and D the Baker-Akhiezer divisor of (L — E, ¢). Recall
from proposition 3.2 that D does not contain any summand being the pull-back of a divisor on
X and satisfies L? = KA ® Ox(—n (D)), and the eigen-line bundle of (E, ¢) is isomorphic to
™(LK™') ® Og(D).

Consider a sufficiently small, simply connected open set U C X that does not contain a branch
point of S. Consider an effective divisor X = 2 + Z_ where 24 lie in distinct components of
7~1(U) and are such that , # o(Z_). In other words, for 74 = 7(Z4) we have x; # x_. By
theorem 3.7, D + X is the Baker-Akhiezer divisor of some Higgs bundle in M g induced by some
subbundle which is of degree deg(L) — 1 and is a square-root of KA® Ox (—n(D+X)). For each
%, there are 229 such square-roots. Varying X then induces 229 families of line bundles of degree
deg(L)—1. If U is sufficiently small, these families define distinct subsets in Jacqeg(1,)—1(X), each
of which, given a point xy € U, contains upon closure a unique square-root of KA @ (—m(D) —
2x0) as the limit of X — 7*(x). One particular family would contain L(—xg) upon closure. Let

Lx be the square-root of KA ® Ox(—n(D + X)) contained in that family, i.e.

lim [L;(] = [L X Ox(—xo)] € Jacdeg(L)_l(X) (4.1a)

X—7*(z0)
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forany xg € U.

Let (Lz < FE%, ¢z) be the data that induces D + X as its Baker-Akhiezer divisor. The eigen-
line bundle of (Es, ¢z) is isomorphic to 7*(LgxK ') ® Og(D + %). It follows from (4.1a) that
as X — 7*(wg), this family of line bundles limits to 7* (LK ~!) ® Og(D), which is the eigen-line

bundle of (£, ¢). In other words,

lim (Eg, ¢z) = (E,¢) € My (4.1b)

X—* (:Eo)

for any x¢ € U. This is clear in terms of Baker-Akhiezer divisors: for any xg € U, D + 7*(z0) is
the Baker-Akhiezer divisor induced by (FE, ¢) via the injection L ® Ox (—x() 2 I < E which

vanishes at zy. The following proposition summarizes our discussion.

PROPOSITION 4.1. Let (E,¢) € My with associated non-degenerate spectral curve S = X,
and L a subbundle of E. Let U C X be a simply connected open set that contains no branch point

of S. Then there exist embeddings

U — My, U’ — Jacgeg(r)-1(X),

x — (Ex, ¢x), x — [Lx], 4.2)
where U’ == {x = (z4,2_) € U? | xy # x_}, such that

(a) forall x € U', Ex admits Ly as a subbundle;

(b) for all x € U’, the Baker-Akhiezer divisor of (Lx — FEx,¢x) is D + T4 + Z_, where
T+ € 1 (x®) respectively and lie in distinct components of 7=(U), and D is the Baker-

Akhiezer divisor of (L — E, ¢);

(c) forallzg € U, lim [Lx] = [LR®Ox(—w0)]inJacgegry—1(X)and  lim (Ex, ¢x) =

T4 —TO—T— T4 —TO—T—

(E, ¢) in M.

In chapter 7 where we analogously analyze the collision limit of apparent singularities of S'L-
operators, we will find it convenient for calculation to specialize to the case where U is equipped

with a coordinate z with z(xg) = 0 for some zp € U and z(x+) = Fwu. It is instructive to now
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spell out the specialization of proposition 4.1 to this case in order to later see the analogy between

colliding points in the projection of Baker-Akhiezer divisors and apparent singularities.

PROPOSITION 4.2. Let (E,$) € My with associated non-degenerate spectral curve S 5 X,
and L be a subbundle of E. Given xy € X not a branch point of S, let (U, z) be a coordinate
neighborhood of xq, where z(xg) = 0, U is simply connected and contains no branch point of
S. Then there exist a family of Higgs bundles {(E,, qﬁu)}uEZ(U) and a family of line bundles
{Lu}uez) of degree deg(L) — 1 parameterized by U such that

(i) [Lo] = [L ® Ox(—mo)] in Jacgeg(r)—1(X) and (Eo, ¢o) = (E, ¢) in My;
(ii) forallu € z(U), (Ey, ¢y) has S as its spectral curve;
(iii) for all u # 0, B, admits L, as a subbundle;

(iv) for all u # 0O, the Baker-Akhiezer divisor of (L, < Ey,¢y) is D + &4 + Z_, where D
is the Baker-Akhiezer divisor of (L — E, ¢) and Z 4 lie in different distinct components of

7Y U) with z(7(2+)) = +u.

Furthermore, these families define embeddings U — My and U — Jacgeg(n)-1 (X).

We also note that if deg(D) < 2g — 2, these families limit to lower Bialynicki-Birula strata,
i.e. the strata of Higgs bundles with increasingly unstable underlying bundles. The limits of
these families compactify the open dense locus consisting of Higgs bundles with stable underlying

bundles into the whole Prym variety.

4.2 Double point in Baker-Akhiezer divisors

In the above discussion, we have analyzed families of Baker-Akhiezer divisors whose limits con-
tain a summand of the form 7*(z) for some xy € X. The following proposition is the counter-
part of proposition 4.2 for the case where the limit contains a double point that projects to 2zg. In
this case, unlike in proposition 4.2, the underlying bundle of the corresponding Higgs bundle at

the limit admits a subbundle of the same degree as in the family.

PROPOSITION 4.3 (PROPOSITION 1.8). Let (E, ¢) € My with the associcated non-degenerate

spectral curve S = X and L be a subbundle of E such that cr,($) has a double zero at to € X
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which is not a branch point of S. Let D be the Baker-Akhiezer divisor of (L — E, ¢) and %o be
the point with multiplicity 2 in D with w(Zo) = xzo. Let (U, z) be a coordinate neighborhood of
xo, where z(xg) = 0, U is simply connected and contains no branch point of S. Then there exist
a family of Higgs bundles {(Ey, ¢u) }ue-(uy and a family of line bundles { Ly }yc.(u) of the same

degree as L parameterized by U such that
(i) [Lo] = [L] in Jacyeg(r)(X) and (Ey, ¢o) = (E, ¢) in Mp;
(ii) for allu € z(U), E,, admits L, as a subbundle;

(iii) for all u # 0, the Baker-Akhiezer divisor of (L, < Ey, ¢y) is D — 2% + T4 + T_, where

T4 lie in the component of m=1(U) containing %o and are such that z(7(Z+)) = +u.

Furthermore, these families define embeddings U — My and U — Jacgeg(r) (X).
Proof. 'The proposition follows from the discussion preceding proposition 4.1 by requiring

T4 now to be contained in the same component of 71 (U) containing Zo. [l

4.3 Local model and scaling of families of Higgs bundles

In the following, we consider a family of Higgs bundles obtained by scaling a family of Higgs

bundles in proposition 4.2.

PROPOSITION 4.4. Let [E, ¢] € My with associated non-degenerate spectral curve S > X,
L be a subbundle of E, and xy € X which is not a branch point of S and not a zero of cr(¢).
Suppose E is destabilized by a subbundle L with deg(LE2A) < 2g—A4. Let (U, z) be a coordinate
neighborhood of xo and {[Ew, ¢u]}ue-(v) a family of Higgs bundles constructed by proposition
4.2 with (E, ¢) = (Eo, ¢o). Consider the family of Higgs bundle {[Fy, Vu]}ue=(v)uzo defined by
(o] = 1. Bu, ] for u # 0.

Then the limit [Fy, 1) = ql}_)r% [Fu, ¥y] exists, lies in the nilpotent cone and is not C*-invariant.
The underlying bundle Fy is destabilized by Ly = L ® Ox (—x0), and cr,, (1) has a double zero
at x.

Let A\ = u~! for u # 0. As we can write [Ey, ¢,] = A.[Fy, ] for A < oo, we can think

of the family {[Ey, du]}uecz(1),z20 as a blow-up of the family {Fy, ¥y }yex (1) uso- Note that
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while the latter stays in the same Biatynicki-Birula stratum at the limit, the former limits to a
point in a lower stratum. This is how one might understand the compactification of the Biatynicki-
Birula strata which completes a generic Hitchin fiber into a Prym variety involves certain “going
to infinity” ingredients.

In the following, we will prove proposition 4.4 by constructing an explicit local model for
{[Eu; bul fuez(v),z£0- The main ingredients of the construction are the Hecke transformations of
bundles and Higgs bundles, which have invariant definitions and work for higher rank cases as
well. We refer to [34] for a modern introduction of these ingredients. Since our goal is to have an

explicit local model, we will however not discuss these transformations in their invariant forms.

Modifying bundles. Let (£, $) € My with non-degenerate spectral curve S 5 X associated
to ¢ = det(¢). Let L be a subbundle of F, and zp € X such that x is not a zero of ¢, (¢) and not
a branch point of S;. Let (W, z) be a coordinate neighborhood of o, where z(zg) = 0, W’ is
simply-connected, contains no zero of ¢ and of ¢, (¢). Choose an atlas &’ on X that contains W’
as a chart, and define F in terms of transition functions on this atlas w.r.t. local frames adapted to
L — FE, i.e. the transition functions are of upper triangular form as in (2.1b)

To define E,, for u # 0 in terms of transition functions, we first refine the atlas 2/’ as follows.
Let U and V be simply-connected neighborhoods of xg such that U C V' C W/, and w.Lo.g.
assume that V' intersects no other elements of I/’. We define a refinement I/ of ' by refining W’
into W UV, where W = W'\ U. The transition function of E on this new atlas upon transiting
between W and V is the identity.

Now, for each nonzero u € z(U), let z (u) be points U defined by z(x4(u)) = d-u. Further-
more, given € = (e;,e_) € C2, we define the bundle E! z With transition functions on I/ that are

the same as those of E except

Z—U €4 Z+u e
(El2)yy = . 4.3)

Then E;, . admits L;, == L ® Ox(—24(u) — v—(u)) as a subbundle with L~'A the quotient
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bundle, i.e. it fits in the s.e.s.
-1
0— L, = E,.— L "A—=0.

REMARK 4.1. Compared with the notions of Hecke transformations of bundles [34], one can see
that Eq’%g is the result of two consecutive Hecke transformations from E at x4 and then at x_.
Hecke transformations of a bundle at a point p € X are defined using the choices of a subspace of
the fiber of that bundle at p. The parameter e, € C in (4.3), for example, encodes such a choice of
1-dimensional subspaces of £ |,, w.r.t. alocal frame of £ |y adapted to L |7. The limit e — oo
corresponds to the choice of the subspace of E |, +(u) defined by L | +(w)-

Let B, ¢ = E; - ® Ny where N, is a square-root of Ox(z4+ + ) such that }ng%)[Nu] =
[Ox (x0)] in the corresponding Picard component. Then E,, ¢ has the same determinant as that of
F and admits L,, := L}, ® N, as a subbundle. The transition functions on i of E,, zin local frames
adapted to the embedding L,, — E,, ¢ are the same as those of E; zin local frames adapted to L},

up to an “abelian” twist by the transition functions of NV,,.

Modifying Higgs bundles. Let D be the Baker-Akhiezer divisor of (L — FE,¢). We now
explain that to specific values of e € C, one can define Higgs fields ¢, 7 on E,, - such that
det(¢y, ) = ¢ = det(¢) and the projection to X of the Baker-Akhiezer divisor associated to
(Lu = Eyg, due) is

(D) + x4 (u) + z_(u). (4.4)

a b
Suppose ¢ = in local frames adapted to L — E. Away from V/, in local frames
c —a
adapted to L,,, we can let ¢,, - take the same form as ¢ there. It follows from the transition function

(4.3) of E,, zthaton V', ¢,, ¢ takes the form

pur v [ D) (4.52)

cu(2)  —au(2)
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ay(z) = a(z) —e_(z —u)e(z) — eqc(z), (4.5b)
bu(z) = —e2 (2 —u)?e(z) + 26— (2 — u?iajzg);zeicij)) —€e2c(2) +2eqa(z) + b(z)’ 450)
cu(z) = (z —u)(z +u)e. (4.5d)

The regularity condition of b,,(z) at x = +u implies

C+63 - 2a+e+ - b+ = 0,

dutc_e® +4u(a- —eyc)e— + (c_€f —2a_ep —b_) =0, (4.6)

where by a4, by and ¢+ we mean the evaluation of a,(z), b,(2) and ¢, (z) at z = Fu. The

solutions of (4.6) are

ayr £ /—q —a_ + e r(u)em & /—q_
eralw) = HEVTE (e (w) = pot(to- * v @)
Cc+ 2uc_
where ¢+ = q(2) |;=+u= —a+? — bic.. Here we have chosen a square-root of —q(z), which is

equivalent to marking a component of 7~ ().

Hence, for each nonzero u € z(U), if €4 take the values given in (4.7) then ¢, ¢ given by
(4.5) is a holomorphic Higgs field on E,, ¢ that satisfies condition (4.4). Let us denote the Baker-
Akhiezer divisor of (L, — E, ¢ ¢y e) by Dy = D + &4 + &_ where 7(Z+) = x4. As we have
marked a component of 7~ (W) by choosing a square-root y/—¢(z), we can be more specific

about z4+ by observing that

<:F\/—Q(U)> jE\/—q(—U)> for €= (e 4, € %)

(ay(u), ay(—u)) =
(Fv=a(). Fv/=a(u)) for&= (1. )

(4.8)

It follows in particular that if € = (e 4, e_ 1) then & lie in different components of 7~ (W).
In this case, the family {(Ey ¢, due) buez(0),uzo Yields liH(l)[Eu’g, buel = [E,¢] in Mg(A), and
u—

hence defines an example of proposition 4.2. On the other hand, if € = (e 4, €_ ) then Z4 lie in

50



the same component of 7! (W): the family {(Ey ¢, ¢u.e) bues(),uz0 then extends to an example

of proposition 4.3.

. 0
REMARK 4.2. For the case €= (e +,e_ +), we have e_(u) "= co. However,

. . —q(70)

is well-defined.

REMARK 4.3. The Higgs bundles (F, ¢, ¢, ¢), Where € take the values given in (4.7), can be
induced by applying Hecke transformations to (E, ¢) and tensoring with V,, to ensure det (£, ) =
det(FE)). Indeed, the regularity condition (4.6) with solutions (4.7) implies precisely that E;’g =
E,e® N, 1 is the result of two consecutive Hecke transformations from E at x4 and then z_.
These Hecke transformations for Higgs bundles are defined with the choice of the subspace of the
fibers at x4 being the eigen-spaces defined by the Higgs fields [34]. For € = (e4 +,€_ 1), the
limit e_ (u) “3% oo reflects that fact that as u — 0, the eigen-space over z_ defined by the Higgs
field limits to the subspace defined by the subbundle, to which our local frames are adapted (cf.

remark 4.1).

Proof of proposition 4.4. By the above discussion, the family {[Ey ¢, ¢l }uez (1) uso for € =
(€4 4,€— +) extends to a family constructed by proposition 4.2. Plugging e 1 (u) into e_ 1 (u) in

(4.7), with A = u~!, we rewrite the local form (4.5) of ¢y,zonV as

ay(z) = AMua(z) — (ue_)(z — u)e(z) — uepc(z)], (4.10a)
2
bu(z) = % [ = (z —u)?c(z)(ue)? + 2uPe_(z — u)(a(z) — e4c(2))
22—y (4.10b)
—u? (eic(z) —2eya(z) — b(2)) |,
cu(z) = (2 —u)(z + u)e. (4.10c)

We now regard [F),, 1, € Mp(A) as defined by the condition [E,, ¢, ¢, ¢] = A.[Fy, ). By our

assumption on the degree of the destabilizing subbundle I. = L g of E, the two isomorphic bundles
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F, and E, ¢ are both destabilized by L,, and are strictly unstable. Hence it has an automorphism

V20
of the form e | This automorphism together with the scaling that defines [Fy,, 1y]
0 A

allows us to write the local form on V' of v, as

“La,(z by (2
Yu |v= A au(z) Ahu(2) (4.11)
(z—u)(z +u)c —A"lay(z)

ua  u? ) a b i
and as outside V' (recall ¢,, ¢ takes the form there.) Noting that ue_ (u)

c —ua c —a
has a well-defined v — 0 limit (cf. remark 4.2), we can now compute the limit [Fy,¢p] =

liH(l) [Fy, ¥y] directly. We see that Fy is destabilized by Lo := L ® Ox(—x), and 1)y w.r.t. local
u—r

frames adapted to L takes the form

2
L o 2 v/ —a(zo0) _ —a(wo)
de i (ue)ze o] 7€

0 0
on V and outside V. In particular, 1)y is nilpotent and ¢, (1)o) has a double zero at x.
c 0

We note that (Fj, 1)) provides an example of a theorem by Hausel-Hitchin on “very-stable
Higgs bundle” [34]. These are the C*-fixed points in My whose upward flows intersect the

nilpotent cone only there and nowhere else. Since 1)y is nilpotent, the C*-fixed point (cf. (2.6))

0 0
lim k.[Fo, 0] = [EL,, deo] = | Lo ® Lg ' A, :
k—0
() 0
where ¢y = cr,(10), provides an example of non-very-stable Higgs bundles. The theorem of
Hausel-Hitchin says that we can indeed detect this simply by looking at the zero divisor of ¢y €
HO(KLy%A): a C*-fixed point [Eyy, ¢ is very-stable if and only if the zero divisor of ¢’ is

reduced.
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Chapter 5

Holomorphic connections, projective connections,

projective structures and SL-operators

5.1 Projective connections and projective structures

In the following, we recall the notions of projective connections and projective structures, two

geometric objects that naturally realize monodromy representations in PSLy(C) = PG L2 (C).

DEFINITION 5.1. A projective connection on X is a pair (P, s) where P is a flat PS Ly (C)-bundle
on X with P!-fibers and s : X — P is a global holomorphic section which is not parallel w.r.t.
the flat structure of P. The points where ds = 0 are called apparent singularities; the order of an

apparent singularity is the order of the zero of ds at that point.

We denote by div((P, s)) the divisor of apparent singularities, counted with multiplicity, of a
projective connection (P, s). Two projective connections (P, s1) and (Pa, s2) are isomorphic if
there exists an isomorphism P, — P> of holomorphic fiber bundles that commutes with s; and

sg. Clearly if (P, s1) is isomorphic to (P, s2), then div(( Py, s1)) = div((P, $2))-

DEFINITION 5.2. A projective structure is a maximal atlas {Uy}, .7 of X together with local
holomorphic functions {w, : U, — C} the values of which are related by Mobius transforma-

tions, i.e. forall z € U, N Us,

agaWa () + bga aga  bga
CBaWa () + dgo’

wg(x) = € SLy(C). (5.1)

Cpa  dpa
Apparent singularities are where dw, = 0; the order of an apparent singularity is the order of the
zero of dw,, at that point.

Note that w,, can serve as a local coordinate on U, if and only if U, contains no apparent
singularity. It is clear that a projective structure is determined once a local holomorphic func-

tion wy : U, — C is determined. Given a point = and the analytic continuation [y].wq, of wq
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along a closed path ~y containing z, the composition along ~y of the M&bius transformations maps
([v]-wa)(x) back to wq (z). In other words, the composition along a closed path of the Mdbius
transformations is the inverse of the P.S Ly(C)-action defined by analytic continuation. The holo-
morphic function w,, : X — P!, where X is the universal cover of X, defined by analytically
continuing wy,, is called a developing map of the projective structure.

Given a projective connection (P, s), by letting s be represented by local holomorphic func-
tions on charts of a sufficiently refined atlas of X, one can define local holomorphic functions the
values of which are related by constant P.SLo(C)-valued transition functions. A maximal atlas
together with these local holomorphic functions define a projective structure. Conversely, from the
local holomorphic functions of a projective structure one can define a section of a flat bundle with
P!-fibers, the constant PS Ly (C)-valued transition functions of which are the Mobius transforma-
tions. In other words, a projective structure is equivalent to an isomorphism class of projective

connections.

5.2 SL-operators

DEFINITION 5.3. Let N be a line bundle on X, defined via transition functions (N),g over
a coordinate covering U = {(Uay, za) }acz of X. An SL-operator D on N for the coordinate
covering U is a collection of meromorphic differential operators {D, = 83a + ¢o(2a) }aez such
that f,(z4) is a solution to D,, if and only if (V)4 fa is a solution to Dg |UamUﬁ' The points at
which <%)/ = 0, where f, 1 and f, o are two linearly independent solutions of D,,, are called
apparent singularities, with the order of the apparent singularity defined to be the order of the zero
of (%), Two S L-operators on N for two coordinate coverings are considered equivalent if
their union is also an S L-operator. An .S L-operator on NN is an equivalence class of S L-operators

on N for different coverings.

We denote by div(D) the divisor formed by apparent singularities, counted with multiplicity,

of the S L-operator D.

REMARK 5.1. It was shown in [39] that an S L-operator exists on a line bundle NV if and only if
deg(N) =1—g,suchas N = K ~1/2, Such an S L-operator then can be regarded as a differential
operator N — N K? whose principal symbol is 1 and subprincipal symbol is 0 [24].
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It is clear from the definition of S L-operators on NN that, if N’ is a flat line bundle with constant
transition functions, the same collection of local differential operators would define S L-operators
on both N and N ® N’. Hence the specific line bundle on which these local differential operators

act is not of interest to us. From now on, we will fix N = K —1/2

and by an S L-operator we will
mean an S L-operator on K ~1/2,
We now elaborate on the explicit forms of an S L-operator before showing its equivalence to

the notions of projective connections and projective structures.

Transformation rules of local differential operators. Similar to projective connections and
projective structures, an S L-operator is determined once we know its local form D, = afa +

¢a (%) over one coordinate open set (U, 24 ). This is because on the overlap U, N Usg,

2‘1/3(2,8(2&))(2/6(204))2 = 2¢a(2a) — {28; 2a} (5.2)
1 1 2
where {g(2), 2} == %7 -3 (gg—,> is the Schwarzian derivative of a function g(z). To see this, note
_ fa,l

that {w(2a), za} = 2qa(2a) Where w := - is the ratio of two linearly independent solutions to
D, [58]. On the overlap U,g, since fz1 = lgafa,1 and fg2 = I3, fa,2 are solutions to Dg, we
also have {w(z3), 23} = 2q3(25) as w = %. Then (5.2) follows from the transformations upon

a change of coordinates z, — 23(2o) of a Schwarzian derivative

{9(28(2a)), za} = (25)* {9(2), 28} + {25, a} -

There are two important consequences of (5.2) that we will exploit heavily in this work. One is
that if an .S L-operator D has no apparent singularity on U, and hence the ratio w,, of two linearly
independent local solutions can serve as a local coordinate, then D takes the simple form 812% in
terms of the local coordinate w,. Another is that in case the change of coordinate z, — 25(2q)
is a Mobius transformation, which occurs if and only if {23, 2o} = 0, it follows from (5.2) that
{ga(24)} glue into a quadratic differential whose local forms are qq, (24 )dz2.

Hence if the coordinate covering {(Uq, wq)} is a holomorphic projective structure, i.e. one
that has no apparent singularity, then the collection of local differential operators {81%}(!} defines

an S L-operator. Any other collection of local differential operators {612”(1 + go(wq)} defines an
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S L-operator if and only if {gq,(24)dz2} glue into a meromorphic quadratic differential.

Local forms near apparent singularities. It follows from (5.2) that, given a local coordinate
z, the SL-operator takes the form D, = 82 + § {w(z), 2} for w being the ratio of two linearly
independent solutions. Suppose now z = 0 is an apparent singularity. The Laurent tail of ¢(z) =
% {w(z), z} at z = 0 depends on the order of this apparent singularity, i.e. the order of the zero
of w' at z = 0. If it is a simple apparent singularity, i.e. w(2) = >, wyz® with w; = 0 and

wy # 0, then

3
D=9 5 +E+a+0() (5:3)
where ;1 = — 3% and go = — (122 )%. Hence
1+ qo = 0. (5.3b)

On the other hand, if z = 0 is a double apparent singularity, i.e. w = > k>0 wy2® with w; =

wy = 0 and w3 # 0, then

2 2v

D, =0?— > +7+q0+q1z+(’)(22) (5.4a)
where
2wy dw? — 15w3ws 4(8wj — 15wsw4ws)
v=—n—, Q=5 Q= 3
3ws Jws 27wy
One can check that
B g+ L —o. (5.4b)

2

Although the specific coefficients of the Laurent tails (5.3a) and (5.4a) depend on the coordinate 2
via the expansion of w(z), the polynomial constraints (5.3b) and (5.4b) they satisfy are invariant
upon a change of coordinates.

Using the Frobenius method one can obtain the Laurent expansions of the solutions around an

apparent singularity. If z = 0 is a simple apparent singularity, solutions to D, of the form (5.3)
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have the form
212 (Fo + pFyz + Faz? + (9(2)) ,

where F{y and F5 are the free parameters on which all higher order coefficients depend. If z = 0
is a double apparent singularity, solutions to D, of the form (5.4) have the form

2 U Fy+ \Fyz + ()\2 + %0) 224 Fy2® + (9(24)} ,
where Fjy and F3 are the free parameters on which all higher order coefficients depend. One can

check explicitly that the Wronskian W ( f1, f2) of two linearly independent solutions f; and fo of

these forms is holomorphic at z = 0, and hence the derivative of the ratio of two such solutions

A\ W f)
() -5 &)

admits z = 0 as its simple and double zeroes, respectively.

Correspondence to projective structures. A projective structure {Uy, Wq }acz gives rise to
an S L-operator as follows. On each U, containing no apparent singularity we define a differen-
tial operator D, = &?Ua, and on each U, containing some apparent singularities we use a local
coordinate z- and define the differential operator D, = 837 + 2 {wy(2y), 24}

On the other hand, given an S L-operator {D,, } on a line bundle N over a coordinate covering
U = {(Uq, za)}, one can define a projective structure by taking the ratios w, = % of two
linearly independent solutions to D, with Wronskian W ( fy 1, fo,2) = 1. It follows from (5.5) that
W 1s @ holomorphic function U, — C, and dw,, vanishes at the apparent singularity of the SL-
operator with the order equal to the order of the apparent singularities of D,. The local functions
wq and wg defined this way are related by a Mobius transformation since fg 1 and f3 o are linear
combinations of f,1 and f, 2 scaled by (IV)g,. Hence a projective structure is equivalent to an
isomorphism class of S L-operators, with the positions and order of apparent singularities matched.

The projective monodromy representation 71 (X) — P.S Ly that are inherent in the notions of a

projective connection and projective structure is realized in an S L-operator via the ratios w, of
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local solutions. Note that these ratios of local solutions are holomorphic at apparent singularities,

and hence the projective monodromy representations do not detect these singularities.

EXAMPLE 5.2. On a compact Riemann surface X of genus g > 2, the most distinguished projec-
tive connection is induced by the uniformization theorem, which realizes X as a quotient of the
upper-half plane and equips on it a distinguished maximal coordinate atlas {(U,, z4)} from the
upper-half plane. We call this the uniformizing projective structure of X. Since nowhere dz,, = 0,
the projective structure {(U,, o)} has no apparent singularity. The corresponding S L-operator
takes the form 33(1 in each U,. This uniformizing projective structure is distinguished in the sense
that the projective coordinates z,, all take values in the upper half-plane.

It follows from (5.2) that if ¢ is a holomorphic quadratic differential, then D,, := Bga +q(za)
glue into an S L-operator that has no apparent singularity. These form the space of holomorphic
projective connections, i.e. those that have no apparent singularities, which is an affine space
modeled over H°(K?2) =2 C3973, The isomorphism class of each such S L-operator is equivalent

to a maximal coordinate atlas that is also a projective structure.

REMARK 5.3. Although we do not need to be specific about the line bundle on which an SL-

—-1/2

operator acts and hence can assume it to be K , given a coordinate atlas subordinate to a

holomorphic projective structure {(U,, 4 )}, one can in fact define explicitly the transition func-
tions of a line bundle IV of degree 1 — g as follows. If U, and Ug both contain no apparent

a b
with gg, = po pe € SLs, then we de-
Coa  dBa

fine (N)ag = CgaWa + dga. Then (N),s defined this way satisfy the cocyle conditions. More

ApaWa +bﬂa
CRaWa +dﬁa

singularity and wg = ggo.-Wa =
crucially, (N),p and (N)ygwp are linear combinations of 1 and w, and hence are solutions to
Dy |u,,: hence if fg is a solution of Dg then (V)5 f3 is a solution of Dy, |17,

For U, containing some simple apparent singularities and U, not containing any apparent
singularities, it is slightly more complicated to define (V). First, observe that upon analytic
continuation (/N),~ has monodromy —1 around a simple apparent singularity contained in U..
This is because, around each such apparent singularity, a solution f, to D., has monodromy —1,

while (V) ay f~ has trivial monodromy upon analytic continuation since it is a linear combination

Aoy Wytbay

of 1 and w, = Con oo

, two solutions to 63}0. One way to make sure the transition functions
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of N involving U, satisfy the cocyle condition is to define a covering {U, }qcz such that U,
contains an even number of apparent singularities, counted with multiplicity, and these apparent

singularities are not contained in any other open set U,-,. Under these conditions, if f,; and

AyaWa +b'yo¢
CyaWa +d’ya

(N)ay = (cyaWa + dya) fA’%l — (yaWa + bya) f'/n?' Then (N)a~ f,1 and (N)qy f+,2 are linear

combinations of w, and 1 and hence are solutions of D, as desired. These local differential

f~,2 are two solutions to D~ with W (fy.1, fy2) = 1 and % = wy, = , we define

operators satisfy the transformation rules (5.2), and we hence have defined an S L-operator on N

over the coordinate covering {Uy, }aez-

1/2

Linearization. Let us from now on again fix N = K ~'/=. It is well-known that a local differen-

tial operator 8§a + ¢a(2q) is equivalent to the local linear differential operator

0 —qa(z
d-., ol 2a) (5.6)
1 0
!
A solution f,(z4) to 8§a + ¢a(2q) defines a solution “ 1 to (5.6). Given an S L-operator

(e

D = {Dy = 92 + qa(za)}, extending the linearization (5.6) to all of X defines a meromor-
phic connection Vp on a holomorphic bundle F5,,, which is the unique up to scaling non-trivial
extension of N = K~1/2 by K1/2,

To see this, note that given two solutions f, and fg to D, and Dg that represent the same

section of N, ie. fo = (N)agfs(2s), the transition function (Fyp),, maps the flat section

—f5(z8) . —fa(za)

into . It follows that

f5(2p) Jfa(za)

(Fop) g = #%(Nas ~(N)ag (5.7)
s 0 (N)ap

where the derivatives of z3 and (V). are with respect to z,. Since the canonical line bundle K
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can be characterized by transition functions of the form Z/B (2a), (5.7) defines F,, as an extension
0 KN=KY? 5 F,N=K1%0. (5.8)

~1/2
One can check that if we set (INV),5 = (zg (za)) , then upon conjugation with (5.7) the local

0 —qa(z 0 —qs(z
forms of the connection transform as 0, + da(za) = Oy + 4p(z) with
1 0 1 0
¢8(2a) and go(zq) following the transformation rules (5.2). In other words, we have defined F,,
. . 0 —qa(2a)) . .
such that there exists a connection Vp that on U,, takes the form 0, + in certain
1 0

local frames adapted to K'/2 < F,,.

EXAMPLE 5.4. If D = {D,} has no apparent singularity, then in particular Vp is a holomorphic

connection on F,,. Such a holomorphic connection (Fp,, Vp) is called an oper. Let {(Uy, wq )}

ApgaWa +b6a

csawatdsa then the

be a coordinate atlas induced by ratios of local solutions to D. If wg =

transition function of N = K ~1/2 can be taken to be (N) a5 = ¢gaWa + dga- It follows that the

CBaWa + dga) —c
transition of [y, takes the form (Fyp),,5 = (Cgatva + dga) pa . On each U,
0 CBaWo, + dﬁa

) 0 0 ) -1 0
the connection Vp takes the form 0,,, + , and the flat sections and span a

10 We 1

. 0 -1 .
local flat frame. Gauge transformation of the form g, = switch between local frames
1 we

adapted to K1/2 — F,, and these local flat frames, with respect to which the flat structure of

(Fyp, Vp) can be characterized by constant transition functions

(Bop.¥0)ap = 9o (Fop)ap 98 = . (5.9)

Note that one can write
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and hence (5.9) gives the transition functions of the coordinate atlas {(U,, —wq )}, which is sub-

ordinate to the same projective structure as {(Uq, wq )}

REMARK 5.5. If (U,,w,) contains some apparent singularities, then Vp is meromorphic on
1
0 —3{wy, 2}

1 0
define transition functions of F,, that satisfy the cocyle conditions, one can require U, to con-

U, and takes the form 8% + . Similar to the discussion in remark 5.3, to

tain an even number of apparent singularities and that these apparent singularities are not con-
tained in any other open set U,,. An explicit transition function can be defined by requir-

ing that, given solutions f, 1 and f, 2 to D, such that W (f, 1, fy2) = 1 and w, = %, the

—fl, —f 0
7.2 71 ) are flat sections of 05+ - This implies

fr2 o 10
—fl s —f! —c —a
(Fop) By ha ~ha = " " , and hence the transition function
2 cypwg +dyg  aypwg + by
of F,, w.r.t. local frames adapted to (5.8) is

columns of the matrix (Fop) 5,

—Cyg Syt aypfy2 _Cvﬁf§,1 + avﬁf:/,Q

(FOP)M = (5.10)

0 (cypwp + dyg) f;,l — (aypwg + byp) f&z

Note that this is compatible to the discussion in remark 5.3.

Not any S L-operator D can be linearized into a meromorphic connection Vp of the above
form on Fy,. For example, if D has an odd number of apparent singularities, then we cannot al-
ways group an even number of apparent singularities to apply (5.10); this is an expression of this
failure to linearize. However, if the projective monodromy of D has a lift to S' Lo, then such a lin-
earization exists. Indeed, as will be shown in the following, there exists an .S Ly (C)-holomorphic
connection (F, V) together with a subbundle L < F' such that its projectivization gives a projec-

tive connection equivalent to D. The number of apparent singularities will be even in this case.

5.3 Holomorphic connections and monodromy representations to SLs(C)

Let F*° be a smooth rank-2 bundle on X with a fixed isomorphism between its determinant line

bundle det(F*) and the trivial line bundle. We will let F** be the underlying smooth objects for
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the following holomorphic objects.

An SLy(C)-holomorphic connection V on an S Ls(C)-holomorphic bundle F' is a C-linear
map V : F' — FK satisfying the Leibniz rule V(fs) = 0f ® s+ fVs for any local holomorphic
function f and local section s of F', such that the induced connection on det(F) is the trivial
connection 0 : f +— f(z)dz. Since there is no (2,0)-form on a Riemann surface, (F,V) is
automatically a flat connection and gives rise to a monodromy representation p(pyvy : T —
S Lo (C) via developing local parallel frames. In this case, we say (F, V) realizes the monodromy
representation g = p(r,v)-

By changing to local frames of F' that consist of local parallel sections and using a new set of
transition functions with respect to these local flat frames, one can define a flat bundle F¥ with
constant S Lo (C)-valued transition functions, the composition of which along a closed path ~ is
p(rw)([7])- Since the transition functions of FV are constant, O is a well-defined holomorphic
connection on FV. The changes of local frames define an isomorphism F l) FV such that
V = ftodo f,and we say (F,V) and (FV, ) are isomorphic as holomorphic connections.
In general, for two SLo(C)-holomorphic connections (F1, V1) and (Fa, Va), we say they are
isomorphic if there exists an smooth automorphism of the underlying bundle F'*® relating V; and
V.

On the other hand, given a monodromy representation p : 71 (X) — SLy(C), it is straight-
forward to define a flat rank-2 bundle F” with constant S Ly(C)-valued transition functions that
realizes p. Clearly a holomorphic connection (F, V) realizes p if and only (F, V) is isomorphic

to (F?,d) as holomorphic connections.

Moduli spaces. Let Crs be the set of flat connections on the smooth rank-2 bundle F*® that in-
duces the trivial connection on the trivial line bundle det(F}). Then Cps is an infinite dimensional
affine space modeled on Q!(X,Endy(F})), where Endg(Fy) is the bundle of traceless endomor-
phisms of Fy. It has a complex structure induced by SL9(C) [58] and admits an action by conju-
gation from the gauge group G(Fy) of smooth automorphisms of Fj that act trivially on det(F).

We define the de Rham moduli space by

Mg = CE /G (Fy),
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where C}?I C Cps is the subspace of irreducible flat connections, i.e. ones that leave no smooth
subbundle of F'¥ invariant. It is known that M is a smooth complex analytic space of complex
dimension 6g — 6 [53] [9]. By the above discussion, M is also the moduli space of irreducible
S Lo (C)-holomorphic connections, i.e. ones that leave no holomorphic subbundle of the underly-
ing S Ly (C)-holomorphic bundle invariant.

Consider the set Hom(my, SL2(C)) of homomorphisms from 71 to SLy(C). It has the struc-
ture of an affine variety, and admits an action from S L2 (C) by conjugation. We define the S Lo (C)-

representation variety by
Rsr,(c) = Hom"" (1, SLy(C))//SLa(C)

where Hom"" (71, SL2(C)) is the subspace of irreducible monodromy representations and the
double slash indicates invariant theoretic quotient [S3] [58]. It is known that Ry, (c) is an ir-
reducible affine variety of complex dimension 6g — 6. Taking the monodromy representation of
an irreducible S Ly (C)-holomorphic connection gives an irreducible monodromy representation

in SLy(C), and this defines a homeomorphism Myr — Rgr,(c) [58].

Simpson’s stratification on M ;. There exists a natural stratification on Mg that is very
similar to the stratification on My described in chapter 2. Simpson [54] defines this stratification
in terms of A-connections, which we summarize as follows.

A A-connection is a triple (A, F, V), where A € C, F is a holomorphic bundle, and V) :
F — FK is a map between sheaves of holomorphic sections satisfying a A-scaled Leibniz rule
Va(fs) = A0f ® s+ fV s for any local holomorphic function f and local section s of F'. Hence
a (A = 0)-connection is a Higgs bundle and a (A = 1)-connection is a holomorphic connection.
The Hodge moduli space M 4 of irreducible A-connections has a projection Mf,q — C that
picks out the factor A, with the fibers over 0 and 1 being M 7 (Ox) and M p respectively. This
projection is equivariant w.r.t. the C*-action on M g7, defined by t.[\, F, V] = [tA, F,tV,] for

t € C*. The set M%*Od of C*-fixed points in M p,4 are the same as the set of C*-fixed points on
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My (Ox) C Mpoq (cf. (2.7)), i.e.
MGy = M5 (Ox) = N'U (gm) |

It is known that }5% t.[F, V] exists and is contained in M%, , for all [F, V] € Myr C Mpioa,
where we have regarded the holomorphic connection [F, V] as a (A = 1)-connection. If F'is

stable then 71in%t.[F, V] = [F,0] € N. If F is destabilized by L, consider
ﬁ
1, (V):Lp > F % FK — Ly K. (5.11)

Then it is known that }iH(l)t.[F, V] = [ELp, ¢c) € Nyfore = ¢, (V) € H(KL;*) and d =
—

deg(div(c)) = deg(KLy?) (recall the definitions of these Higgs bundles in (2.6)). For a €

MG 1, let WIE . Mg consist of all points [F, V] with }/i_r}%t.[F, V] = «. The Simpson’s

stratification on My is the decomposition
dR dR
Mar = Wi U (LdJWNd>

where WX[R = U Wit and Wi = U W2 We note that, similar to the stratification on
aeN d aENy
My, the degree d = deg(K L~2) of the zero divisor of c¢1,(V) € H(K L~2) for a subbundle L
of maximal degree of F' tells which stratum a point [F, V] € Mg is in: if 0 < d < 2g — 2 then
[F,V] € Wi, and if d > 2g — 2 then [F, V] € WiE.
Note that, upon fixing a spin structure K'/2, Wy is a Hitchin section in M 1 (Ox) and ngR
is the space of opers in Mgyp (cf. example 5.4). The underlying bundles K/2 @& K—1/2 and Fop

are the most unstable ones defining the objects in the corresponding moduli spaces.

REMARK 5.6. That W, C Mg and Wo‘lm C Mg are biholomorphic via the so-called “confor-
mal limit” is proved for the case a being a stable Higgs bundle by [9]. The first example of this
biholomorphism is for the case where « is the intersection of a Hitchin section with the nilpotent
cone, i.e. a biholomorphism between a Hitchin section and a space of opers. This was first conjec-
tured by Gaiotto [27] and proved by Dumitrescu-Fredrickson-Kydonakis-Mazzeo-Mulase-Neitzke
[14].
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5.4 From holomorphic connections to projective connections

Lifts of projective monodromy representations. Given a projective monodromy representa-
tion p : m — PSLy(C), we say p : mp — SLo(C) is alift of p if p is equal to the composition
of p with the projection SLo(C) — PSLy(C). Concretely, it means that for generators A;—; g,

Bj_i,. 4 of m representing a basis of cycles of X, one can find p(4;), p(B;) € SL2(C) that
projects to p(A;), p(B;j) € PSLy(C) and satisfy

[(Ag), (By)] . [6(A1), 5(B1)] = 1. (5.12)

A projective monodromy representation p, if it has a lift to SLy(C), has in total 229 lifts
modulo conjugation: these lifts correspond to the freedom to choose the sign {+} for the lifts
of p(A;) and p(B;) to SLy(C), since these signs cancel after taking the commutator in (5.12).
On the other hand, two monodromy representations pi, 2 : m — SLo(C) are lifts of the
same projective monodromy representation if and only if p1([C]) = %p2(][C]) for any genera-
tor C € {Ai,..., Ay, By, ..., Bg}. In practice, we will care about lifts of projective monodromy

representations modulo conjugation.

LEMMA 5.1. Two SLa(C)-holomorphic connections (Fi1, V1), (Fs, Va) have monodromy repre-
sentations p1, pa : 1 — SLo(C) that are lifts of the same projective monodromy representation
up to conjugation if and only if F| = Fy ® N for some line bundle N with N?> = Ox.

Proof. The condition p1([y]) = £p2([y]) for any closed path ~ is equivalent to the fact that
the two flat bundles Flv ! and F2v 2 are such that F! 1v = F2v 2 ® N where N is a flat line bundle

with constant transition functions valued in {4-1}. This occurs if and only if N? = Ox. [

Projectivization. Given a holomorphic connection (F, V), we can projectivize the S Lo (C)-flat
bundle F'V to obtain a PS Ly (C)-flat bundle P(FV), the P!-fibers of which are the projectivization
of the fibers of F'V. The constant P.S Ly (C)-valued transition functions of P(F'V) are induced by
the constant S Lo(C)-valued transition functions of F'V via the projection SLy(C) — PSLo(C).
Let L — F be a subbundle that is not invariant by V, and L = LY < FV the corresponding

subbundle induced by the isomorphism F' — FV. Then P(LV) defines a section of P(FV) and
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hence a projective connection. Conversely, if (P, s) is a projective connection with projective mon-
odromy representation which has a lift to SLo(C), then (P, s) is equivalent to (P(FV),P(LY))

for some holomorphic connection (F, V) and subbundle L of F'.

Irreducible projective monodromy representations. We say a projective monodromy repre-
sentation p : 1 — PSLy(C) is reducible if p(m1) C PSLy(C) = Aut(P!) has a fixed point on
P!, and irreducible if it is not reducible. Clearly if p has a lift to SLo(C), it is irreducible if and
only if its lift is irreducible.

Similar to how irreducible monodromy representations in SLs(C) are in 1-1 correspondence
with irreducible flat S L, (C)-connections, irreducible projective monodromy representation are in
1-1 correspondence with flat P.S Ly(C)-bundles with P*-fibers that have no global parallel section.
Furthermore, if an irreducible projective monodromy representation p has a lift p in S Ly (C) which

is realized by an irreducible holomorphic connection (F, V), then P = P(FY) realizes p.

Inducing apparent singularities. Given an S L, (C)-holomorphic connection (F, V) and a sub-

bundle L of F', the composition
er(V): L= F% FK — LK, (5.13)

where the last arrow is induced by the quotient F — L~ of the embedding L < F, is nonzero
if L is not invariant by V. Hence in particular if (F, V) is irreducible then for all subbundle L of
F we have c1,(V) # 0. A priori, unlike (2.1¢) which is Ox-linear, (5.13) is only C-linear since it
involves V. However, since FKX — L~'K is induced from the quotient map of L < F, overall
(5.13) is O x-linear.

The following proposition shows that the zero divisor of (5.13) is the loci of apparent singu-
larities. In this sense, (5.13) is the analogue of (2.1c), and apparent singularities are the analogues

of the projection to X of Baker-Akhiezer divisors.

PROPOSITION 5.2. Suppose (F,V) is a holomorphic connection and L — F a subbundle not
invariant by N. Then the divisor of apparent singularities div((P(FV),P(LV))) of the projective
connection (P(FV),P(LV)) coincides with the zero divisor of c,(V).

Proof. Observe that if the embedding LY — FV is generated by local sections of the form
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, where 4; and i, have no common zero, then upon projectivization P(LV) takes the form
i2
i1/io. The apparent singularities of (P(FV),P(LV)) hence are the zeroes of i}iy — 7175, counted

{ 0
with multiplicity. If in a neighborhood ¢; (or 72) is nowhere-vanishing, then ! (or
ia 1/i1
(51 71/22 . . v
, respectively) switches between the local flat frames of (£, J) and local frames
12 0

adapted to LY < FV, in which V takes the form

a 0 2 0
0+ " (or 0+ 2 , respectively). (5.14)

-/ -/
.y .. 4 .y . i

Since the lower-left component locally represents the composition (5.13), the proposition follows.

O]

Let (F1,V1) and (F», V3) be two irreducible S Ly (C)-holomorphic connections with mon-
odromy representations that project to the same projective monodromy up to conjugation. By
lemma 5.1, F; = F» @ N where N2 = Ox. If Ly is a subbundle of F5, then there exists
a subbundle L; = Ly ® N of Fy such that ¢z, (V1) is identified with cz,(V2) via the iso-
morphism KL7? = KL;% In particular, the projective connections (IP’(Flv 1),]P’(lel)) and
(P(F,'2),P(Ly?)) are isomorphic.

We say two data (L; < Fj, V1) and (Lo < Fb, V3) are isomorphic if there is an isomor-
phism L 5 L, that commutes with an isomorphism F} 5 F, which makes (F1, V1) isomorphic
to (Fy,V3). The projective connections (P(F\!),P(LY'*)) and (P(Fy?),P(Ly?)) clearly are
isomorphic if and only if (L1 < F;, V1) and (Lo < F», V3) are isomorphic.

Let ROP SLs(C) be the set of conjugacy classes of projective monodromy representations that
are irreducible and have lifts to SLy(C). Let M[()P’s) and MY, be the set of isomorphism classes
of projective connections and flat P.S Lo (C)-bundles with P*-fibers respectively, whose projective
monodromy representations define points in ROP SLa(C)"

The proof of the following proposition follows from lemma 5.1 and the above discussion.

PROPOSITION 5.3. The following diagram, where the first two vertical arrows are defined by
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projectivizing the corresponding data, is commutative.

(L PV
[~ —— Mir —— Rsr,(C)

[F,V] € Mar
l229~1 2291 229.1

0

M(()RS) } M?D ’ RPSLQ((C)

All vertical arrows are surjective, with points in the same fiber of the first two vertical arrows

differing by a twist of a flat line bundle whose square is Ox.

EXAMPLE 5.7. Let D be an S L-operator having no apparent singularity, and (K/2 < F,,, Vp)
the linearization data of D. We claim that the projective connection defined by projectivizing
these data (P,s) = (P(Fy?),P ((K 1/ 2)VP)) is equivalent to the projective structure defined
by {(Ua,wa)}, Where w, are ratios of local solutions to D. As discussed in example 5.4, the
flat structure of P is characterized by projecting the S Lo-constant transition functions (5.9). On

U,,wy) and in the local flat frame that differs from a frame adapted to K 1/2 by the change of
P y g

-1 1 w
basis g, = , the generator of (K'/2)V? takes the form g! = ). The

1 w, 0 -1
section s is hence locally represented by the local function —w,,. Hence the projective connection

(P, s) corresponds to the coordinate atlas {(U,, —w,)}, which can also be obtained by locally

solving D. Note that this is consistent with the S Lo-constant transition functions (5.9) of FOVpD.

REMARK 5.8. Given an irreducible projective monodromy representation p : m; — PSLo(C),
we can ask how many projective connections with different sets of apparent singularities can re-
alize p. If p has a lift  in SLy(C), then it can be realized by the flat bundle P(FV) where
(F,V) is an SLy(C)-holomorphic connection realizing p. Different subbundles of F' upon pro-
jectivization define different sections of P(F'V), with the maximal subbundle(s) of F' defining the
section(s) of P(FV) with the minimal number of apparent singularities. In particular, for g odd
and deg(F) = 0, if F' is maximally stable, i.e. s(F') = g — 1, then it has exactly 29 maximal
subbundles. In other words, for g odd, a sufficiently generic projective monodromy representation

is realized by exactly 29 projective connections up to isomorphism [33], all of which have 3g — 3
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apparent singularities counted with multiplicity.

COROLLARY 5.4. Two projective connections with the same irreducible projective monodromy
representations up to conjugation that have lifts to SLo(C) and the same divisors of apparent

singularities of degree < 2g — 2 are isomorphic.

Proof. Two such projective connections are the projectivization of a holomorphic connection
(F, V) and subbundles L1, Ly of F such that ¢z, (V), cr,(V) both vanish at x and are identified
via the isomorphism KL7? = Ox(x) = KLy2. But deg(x) < 2g — 2, therefore L; and Ly

destabilize F' and must be the same subbundle of F'. [

5.5 From holomorphic connections to SL-operators

Associated SL-operators. Given the initial data (L — F,V), we want to have a concrete

construction of an S L-operator that corresponds up to equivalence to the projective connection

a(z) bz
(P(FV),P(LV)). To this end, suppose V = 0, + (2 8(z) in certain local frames adapted
co(2) —a(z)

to L. Consider the local differential operator 02 + ¢(z) where

q(z) = —b(2)e(z) — (a(z) - 26;((?))2 - (a(z) - ;;8) (5.15)

We claim that local differential operators of this form define an S L-operator, the isomorphism
class of which depends only on the isomorphism class of the data (L — F, V). To see this, we
need to show that ¢(z), which is defined from the local form of V in some specific local frames
of F' adapted to L, is invariant upon a change between local frames adapted to L and transforms
appropriately upon a change of coordinates. To see this, let g(z) be a gauge transformation of

upper-triangular form and determinant equal to 1: it defines a change between two local frames of

. . S az(z)  ba(z)
F adapted to L. An explicit calculation shows that, if g~"Vg = 0, + , then

c2(z)  —az(2)
the function defined by replacing a(z), b(z), ¢(2) by aa(z), ba(2), c2(2) respectively in (5.15) is

equal to ¢(z). In fact, this shows that if (L’ < F”, V') is another data isomorphic to (L — F, V),
we would obtain the same local meromorphic function defined by (5.15).

For the transformation of ¢(z) upon a change of coordinates z — w, first note that the com-
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ponents a(z), b(z), c¢(z) in the affine part of the local expression of V are local holomorphic

one-forms. Hence what we need to show is ¢(z) and

qwmz—mwwww—(%wwfgzgﬁ3%mgwm_%ﬁﬁ?>

where

satisfy the transformation rule 2¢(z(w))z'(w)? — 2¢w (w) = {w, z}. An explicit calculation shows
that this indeed is the case, and hence {9? + ¢(z)} define an S L-operator.

Now suppose z = 0 is a simple zero of ¢(z). Then the Laurent expansion of (5.15)

q@:31+hw—

" /" 4 2
31 c (0)] 1 0)? + a(0)c"(0) <:C (0) ) +0(z).  (5.16)

0z 2¢/(0) 4¢(0)

makes z = 0 an apparent singularity. While apparent singularities can be regarded as the analogues

of the projection to X of Baker-Akhiezer divisors, the accessory parameter

a(0) — (5.17)

can be regarded as the analogue of the coordinate —a(0) of the point in the Baker-Akhiezer divisor
projecting to z = 0. The Laurent expansion of ¢(z) also makes a double zero of ¢1,(V) a double

apparent singularity. This enables us to make the following definition.

DEFINITION 5.4. Given an irreducible S L (C)-holomorphic connection (F, V) and a subbundle
L — F, the associated SL-operator Dy, v) takes the local form 02 + ¢(z) where ¢(z) is

defined in (5.15). The divisor of apparent singularities div(D(;,rv)) coincides with the zero

divisor of ¢, (V).

PROPOSITION 5.5. Let (F, V) be an irreducible S Ly (C)-holomorphic connection and L — F a
subbundle. Then the associated S L-operator D, r v) is equivalent to the isomorphism class of

the projective connection (P(FY),P(LV)).
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Proof. Suppose (U, w) is a coordinate chart subordinate to a projective structure correspond-
ing to D1, rv), such that U contains no apparent singularity. We will show that the section

P(LY) of P(FV) is locally represented by the function —w on U, and this suffices to prove the

g , a(w)  b(w) .
proposition. To this end, suppose V = 9,, + in some local frames adapted to
c(w)  —a(w)

L, and, upon choosing a square-root of ¢(w), observe that the holomorphic gauge transformation

a— c(w)*1/2 0 1 a(w)— ;C((Z)) |
0 c(w)'/? 0 1
puts V into the form
a b 0 —qglw
' o + G =0, + aw))
c —a 1 0

where g(w) is defined by the same formula as in (5.15). Since 92, + g(w) is the local differential
operator representing D, ) and since w is a developing map of this local differential operator,
-1

we have ¢(w) = 0. Then and are two local parallel sections that can define a local
1 w

frame of F'. In this local parallel frame, the generator of L takes the form

-1

which defines the local function —w upon projectivization. []

REMARK 5.9. Let (Ly < F5,V3) be the data obtained from (L; < Fj, V) by twisting
by a square-root of Ox. Similar to how the projective connections (P(Flv 1)7IP’(L1V1)) and
(IP’(FQW),IP’(LQVQ)) are isomorphic, we also have Dy, ., v,) is equivalent to Dz, vs)-
There exists in total 229 such data, which differ from each other by a twist by a square-root of Oy,

that define the same S L-operator up to equivalence.
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Inverse construction. The following proposition is the analogue of proposition 3.4; the proof

also follows a similar strategy.

PROPOSITION 5.6. Let D be an S L-operator with simple apparent singularities x1, ..., xq, where
d is even. Then given a line bundle L satisfying KL=2 = Ox(x), where x = x1 + ... + 4,
there exists a unique up to isomorphism holomorphic connection (F,N) such that F' admits L as

a subbundle and D is equivalent to D1, ).

Proof. Choose x¢ € X and effective divisors p = p1 + ...pm, 4 = q1 + ... + g, such that
L = Ox(q—p)and x + xg + p + q is a reduced effective divisor. Let U,, Up;» Uy, be small
neighborhoods with respective coordinates z, zp,, zq, that vanish at x,, p;, g respectively. Let
V1, ..., Vg € C be the accessory parameters of the apparent singularities x1, ..., x4 of D w.r.t. local
coordinate z1, ..., Zq4.

We will define F' in terms of its transition functions on the covering
{X", U0, U1y Ugy Upyy ooy Up,  Ugy s oy U
where X’ = X \ {supp(x + 2o + p + q)}, with the ansatz

1 e/ zo- 0 2, 0
(Fu.x = v J (F)Uij' =" ) (F)quX/ - N ’
0 1 0 2, 0 z!

A B
for the transition functions of F'. If V takes the form 0 + on X', where A, B and C
Cc -A

are meromorphic differentials on X that are holomorphic on X', then it takes the local form

A T/ T B_ 2 r/~r A_ r/~r 2 T 2
o, + + (&7/2)C (€/2r) (€r/2)"C N 0 €/z; (5.18)
C —A—(&/z)C 0 0
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on U,, and

A 272B 21 0 A 22 B —z-1 0
azpj + pj + Py and azqk 4 qk + qk
ZIQ)J_ c -A 0 —zp_jl zq_]f c -A 0 z(;gl
(5.19)

on Up, and Uy, respectively. To prove the proposition, we will now show that there exist mero-
morphic differentials A, B, C' and a tuple (€g, €1, ..., €4) € CH1 (which defines F as an extension
of L~! by L) such that (i) the diagonal components in (5.18) and (5.19) are regular, (ii) D locally
takes the form 9, + ¢p(z) with ¢p(z) defined as in (5.15), and (iii) v, is the accessory parameter
at x, via (5.17).

To this end, let C' € op_0q = H O(KL=?) be a (unique up to scaling) meromorphic differ-
ential with div(C') = x — 2p + 2q. Let A have simple poles at xg, p1, ..., Pms @1, s Gn With

residues

ResA = —1 = —ResA, ResA = n —m = deg(L),
pj qk X0

and is holomorphic elsewhere: such a meromorphic differential exists as the sum of its residues

vanishes. We define F via the tuple (eg, €1, ..., €4) € C?*! by requiring

e0C(z0(x0)) + (n —m) =0,

C//(Zr) |2.=0

A(zr) |zp= r/r =0 — 7~ -~
() rvmo +erC'(ar) Lm0~y [

=vy.forr=1,....d.

The first condition ensures regularity of the diagonal components of (5.18) at x, while the second
condition ensures that v, is the accessory parameter at x, via (5.17).

Let (V, z) be a coordinate open subset of X', and suppose D can be represented by 0, +

1o 2

qp(z) on V. Let B be defined by analytic continuation from _g?z()z ) _ C%Z) (A(z) — zcc(é ))> -
, /

% (A(z) — 7200((?)> to all of X. Noting that ¢p(z) upon analytic continuation to (U, \ {z,}, z)

will have simple apparent singularity at x,, with accessory parameters v,., one can check explicitly

that the expressions in (5.18) are regular with such A, B and C for r = 1, ..., d. A similar check

73



can be done at z( by noting that egC'(20) |zy=0= —%esA, and at p; (gi) by noting that there C' has
a double pole (zero, respectively). Hence we have deoﬁned a holomorphic connection (F, V) and
an embedding L — F'. By construction, gp is equal to the local meromorphic function defined as
in (5.15) with A, B and C as the input data, and so D = D(;,pv). The uniqueness statement
follows from the fact that we have chosen a line bundle L satisfying K L~2 = Ox (x) among 229

of them. [

EXAMPLE 5.10. As an application of proposition 5.6 and a consistency check, let D be an SL-
operator having no apparent singularity. Then D ~ D(;,pv) where L = K 1/2 Since ¢y =
deg(K'/?) = g — 1 is nonzero, F is a non-trivial extension of K~/2 by K'/2. Hence (F, V) is

1/2 is consistent with the well-known fact

an oper. The fact that F' is a non-trivial extension of K~
that a holomorphic bundle admits a holomorphic connection if and only if all of its indecomposable

factors are of degree 0.

SL-operators with the same apparent singularities and accessory parameters. Let x =
x1 + ... + x4 be an effective divisor such that the multiplicity of x;, z; < x, is at most 2. For
d < 3g — 3, in general there are more than one S L-operator with the divisor of apparent singulari-
ties being x and the same accessory parameters. Indeed, let us fix a coordinate atlas subordinate to
a holomorphic projective structure, and suppose the atlas contains the coordinate neighborhoods
(Ur, 1), «ooy (Ug, 2q) Of 21, ..., zq. Suppose D = {02 + q(za)}, where {q(zq)dz2} glue into a
meromorphic quadratic differential, is an S L-operator with div(D) = x and respective accessory
parameters v, ..., Vg W.I.t. the coordinates 21, ..., z4. Then given a holomorphic quadratic differ-
ential Ag € H°(K?) with x < div(Aq), {82, + q(za) + Aq(24)} defines another S L-operator
with apparent singularities x1, ..., 4 and respective accessory parameters vy, ..., V4.

Conversely, two S L-operators that share the same simple apparent singularities and accessory
parameters define a holomorphic quadratic differential that vanishes at the simple apparent sin-
gularities. It is straightforward to see that if x; has multiplicity 2 in xp and hence is a double
apparent singularity, this statement still holds. Let us now recall, given an effective divisor x on
X, the linear space Qx < H°(K?) of quadratic differentials with zero divisors bounded below

by x, namely Qx = {q € H°(K?) | x < div(¢q)} U {0 € H°(K?)}. The following proposition
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summarizes the above discussion.

PROPOSITION 5.7. Let x = x1 + ... + x4 be an effective divisor such that the multiplicity of x;,

r; < X, is at most 2. Then the set
{ D | div(D) = x with the same accessory parameters }

is an affine space modeled on Qx < H°(K?).

The following is the analogue of corollary 3.8.

COROLLARY 5.8. Let D1 and D5 be S L-operators whose apparent singularities are all simple
and projective monodromy representations have lifts to S Lo(C). Then Dy and Do have the same
apparent singularities and respective accessory parameters if and only if Dy ~ D1, <,y v,) and
Dy ~ D(1,,,v,) Where L1 = Lo @ N, F1 = F» @ N for some square-root N of Ox. In
particular, one can choose L1 = Lo and F| = F5.

Proof.  Similar to the proof of corollary 3.8, the key point is to observe that in the proof of
proposition 5.6, the positions of the apparent singularities and their accessory parameters define a

unique rank-2 holomorphic bundle realized as the extension of line bundles. []

Varying apparent singularities. In general, there exist different S L-operators having differ-
ent apparent singularities that realize the same projective monodromy. Indeed, an irreducible
S Ly (C)-holomorphic connection (F, V) together with different subbundles of F' induce differ-
ent isomorphism classes of S L-operators with different apparent singularities. However, in case
the number of apparent singularities, counted with multiplicity, is less than 2g — 2, there exists a
unique subbundle that is maximal and destabilizes F'. Hence in this case, given a projective mon-
odromy representation with lift to S Lo (C), the isomorphism class of the S L-operators realizing it

is unique (cf. corollary 5.4).

A diagrammatic summary. Let MY be the set of equivalence classes of S L-operators whose

projective monodromy representations have lifts to irreducible monodromy representations in
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SLy(C). It follows from our above discussion that the following diagram is commutative.

[L — F,V]|
[F,V] € Mgr

' 229:1

1:1
Mp ———— Mpy ———— Mp —— Rig,

\/

Here the first two vertical arrows assign to the isomorphism class of the data (L — F,V) the

—— Mar —— Rs,(0)

equivalence class of D1, y vy and the isomorphism class of (P(F'Y),P(LY)). The arrow MY, —
M(])g is the equivalence between the notion of S L-operators and projective connections. The first
horizontal arrow of the first line and the second horizontal arrow of the second line respectively
forget the subbundles of the rank-2 bundles and the sections of flat P.SLo(C)-bundles with P!-
fibers. The arrows with targets Ry, (c) and R(I)D SL,(C) Compute monodromy representations. All
vertical arrows are surjective, where points in the same fiber of the first two vertical arrows differ

by a twist of a square-root of Ox.
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Chapter 6

Meromorphic quadratic differentials and S L-operators

In this and the next chapters, we will fix a holomorphic projective structure {(Uy, 24 ) }aez and
work with S L-operators on this maximal coordinate atlas. In these coordinate charts, an SL-
operator D with apparent singularities x1, ..., x4 takes the form {D,, = 830 + ¢p(2a) }aez Where
{gp(24)dz2} define a meromorphic quadratic differential gp that has poles precisely at the appar-
ent singularities x1, ..., x4. In addition, recall from (5.3) and (5.4) the Laurent tails of ¢p at the

apparent singularities, namely

3 v,
- _ . Oz — 6.1
ap(z) =) +— @) + 0+ O(2 — 2(z)) (6.1a)
with 2 + ¢, 0 = 0 (6.1b)
if z € U is a simple apparent singularity, and
2 z
ap(z) = — ot gz —2(2) ++O((2 — 2(2))?)  (6.2a)

(z—2(2))*  z—2()

with i3 + 4qzop. + 4gz1 =0 (6.2b)

if x € U is a double apparent singularity.

6.1 Meromorphic quadratic differentials

Laurent expansion at double poles of quadratic differentials. In the following, we demon-
strate a consistency check that upon a change of coordinates defined by a M&bius transformation,
while the coefficients of the Laurent expansion of a quadratic differential at a double pole change,
the constraints (6.1b) and (6.2b) are invariant.

In general, we can compute the leading terms of the transformation of the local expression of
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a quadratic differential at a double pole x upon a general change of coordinates z(w) — w as

q(2)dz? = dz? Z au(z — z(x))k

k>—2

= dw? [ 9-2 (Z//(x)/ZIS)_)qu_]?;)r Z(x)g—1 +0(1)], (6.3)

where 2'(2) = 2'(w) |y=w(z)- We see that the leading coefficient at a double pole of a meromor-
phic quadratic differential is invariant upon any change of coordinates (this invariant is sometimes
called the “quadratic residue” in the literature [56]). On the other hand, the accessory parameters
Va,i in (6.1a) and p, ; in (6.2a) transform non-trivially, depending on z(w).

In our case, however, since we work on coordinate charts induced by a fixed holomorphic
projective structure, the relevant changes of coordinates are Mobius transformations. Combined
with the specific values of the quadratic residues as in (6.1a) and (6.2a), the constraints (6.1b) and

(6.2b) on these coefficients are invariant, as we now demonstrate. Consider a Mobius transforma-
AZ3+B
CZ[} +D"

with A # 0in Up. If ¢a(20) = D3> 5 o k2% then gz(z5) = D k> 28k (25 — 25(37))k where

tion z,(23) = W.Lo.g. suppose z has coordinate z,(z) = 0 in U, and zg(x) = —B/A

48,—2 = qa,—2; 4.0 = (3A2C?)qa—2 — (34°C)qa,—1 + A'qu 0,
@p—1=—(2AC)qa,—2 + A%qa—1, qs1 = —(4A°C?)qa,—2 + (6A*C?)ga,—1 — (4A°C) a0

+ A% (6.4)

For generic values of g, 2, the constraints (6.1b) and (6.2b) will not be invariant. But one can

check that
Qé—l +4p0 = At (qi,_l + qa70) if go, o = _T’
qg’,—l +44p,095,—1 + 4431 = AS (qi,_l +4Ga,090,—1 + 4qa’1) if go, o = —2.

The invariance of these constraints upon a Mébius transformation of coordinates is consistent with
the fact that these constraints can be derived directly from the transformation rules (5.2) as in (5.3)

and (5.4). Our computations merely demonstrate this explicitly.
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Building blocks of meromorphic quadratic differentials. For each z € X, there exists
quadratic differentials that have poles at x and is holomorphic everywhere else. We will be in-
terested in those that have simple and double poles at x. We denote the space of all such mero-
morphic quadratic differentials as Q%2 and Q% respectively. Clearly Q%2 = HO (K 2 ®0x (J:))
and 052 = H (K% ® Ox(27)). In particular, elements of Q%2 (Q5'?) that are holomorphic at z
and hence on all of X correspond to sections of K% ® Ox (x) (respectively, K% ® Ox (2x)) that
admit x as a zero of multiplicity at least 1 (respectively, 2).

In the following we discuss, given a local coordinate z of p, certain quadratic differentials that
have simple and double pole at x with specific Laurent tails in the expansion w.r.t. z. We will
think of these specific quadratic differentials as building blocks, out of which we can construct all
other elements of Q%2 and Q%Q in a way such that we can control their Laurent tails w.r.t. 2.

To this end, first note that since h° (K% ® Ox (z)) = 3g— 2, an element in Q%? is fixed up to
scaling upon fixing 3g — 3 out of its 4g — 3 zeroes in total. Similarly, an element in Qg?f is fixed up
to scaling upon fixing 3g — 2 out of its 49 — 2 zeroes. To characterize the meromorphic quadratic
differentials that have non-trivial simple and double poles at x, let us first recall the notion of Q-
generic divisors. For an effective divisor x, let ()x be the space of quadratic differentials whose
zero divisors are bounded below by x. We will say x is (J-generic if the dimension of Q)x has the

minimal, expected value, namely

3g — 3 —deg(x) for deg(x) < 3g — 3,
dim Qx =

0 for deg(x) > 3g — 3.

Then an element of Q%2 (Q%@f) that has a non-trivial simple (respectively, double) pole at x is
characterized by the fact that if an effective divisor of degree 3g — 3 (respectively, 3g — 2) is
contained in its zero divisor (and hence determines it up to scaling), then this divisor is (J-generic.
It is almost obvious that by varying the pole x in its neighborhood we can construct a family of
quadratic differentials that is holomorphically parameterized by this neighborhood, while keeping

intact the freedom to choose the zeroes. Proposition 6.1 formalizes this intuition.

PROPOSITION 6.1. Let U C X be an open subset, i € {1,2}, d = 3g — 4 +i, and x% : U —
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X 2 x%(x) = z1(x) + ... + 24(x), be a holomorphic map such that, for all z € U and
r € {1,..,d}, z.(x) # x and x*(z) is Q-generic. Then there exists a family of meromorphic

quadratic differentials {qi)xd} U holomorphically parameterized by U such that
’ xe

(a) qg(j)xd has a simple (double) pole at x if i = 1 (respectively, i1 = 2) and is holomorphic on
X\ {z};

(b) x¥(x) is contained in the support of the zero divisor of qgi)xd

Proof. 'We show the proof for the case ¢ = 1 and d = 3g — 3; the case ¢ = 2 is similar.
For each fixed # € U, due to the hypotheses that z,.(z) # z and x%(x) is not contained in the
zero divisor of a holomorphic quadratic differential, the above observation already guarantees the
unique up to scaling existence of a meromorphic quadratic differential satisfying conditions (a)
and (b). Let —z + x%(x) + x3g—2 + ... + X443 be the divisor associated to such a quadratic
differential. This divisor is unique, hence x35_2(x) + ... + z44—3(x) is determined by x and
x%(z). More concretely, let ¢ be a holomorphic quadratic differential with zero divisor div(q) =
ry+ ...+, gand A: X — Jac(X) an Abel map. Then x35_2 + ... + x443 is the only point
inA loA (:E - Zk 1 Sa(x) + div(q)); in particular, h° (z35—9 + ... + 244—3) = 1. Since the
restriction of A to the set of effective divisors that are not special, i.e. { D € X9 | 0(D) =1} is
a biholomorphism, we have x3,_2(x), ..., 244—3(x) as holomorphic functions of z. Now, for each
x € U, note that the ratio of a quadratic differential with divisor —x + Xd(ZE) +T3g—2+ ... +Tag9-3

over ¢ is a meromorphic function defined on all of X and proportional to

[1295° Bz, ax(2)) I g0 Bz, 2n(x))

E(z,x) H?g 14 E(z,27%)

fe(2) =

) (6.5)

where E(x,y) is a prime form of X. Since E(x,y) is holomorphic in both of its variables, f,(z)

is holomorphic on U. Hence q d = fz(2)q(z) varies holomorphically with respect to z. [

The families parameterized by U that satisfies conditions (a) and (b) in proposition 6.1 are far
from unique: scaling one such family by a function holomorphic on U produces another. Given
a local coordinate z on U, however, we can look to control the Laurent tails of these quadratic
differentials w.r.t. z. The resulting “normalized” families would be unique, but we would be able

to impose less zeroes.
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PROPOSITION 6.2. Let (U, z) be an open coordinated subset of X.
I Letx*73 . U — XB973] 2 s x3973(2) = 21(2) + ... + 234_3, be a holomorphic map

such that for all v € U and r € {1,...,3g — 3}, x,(x) # = and x3973(z) is Q-generic. Then
(1)

there exists a unique family of meromorphic quadratic differentials {qz@,x} U holomorphically
xe

(4)

parameterized by U such that, for each x € U, qzzx <393 Satisfies conditions (a), (b) in Proposition

6.1, and furthermore takes the local form

d22 n R(Z)

_ % 2
(z — z(x))? z,x7x39*3<z)d’z ) (6.6)

where R(i)

© . x3a—3(2) is the restriction of a holomorphic function RO(21, 29) defined on (U, z) x

(U, 2) to the slice {z1 = z(x), 29 = z}.
2. Letx*97% . U — XB94, 2 x394(2) = z1(2) + ... + 2344, be a holomorphic map such
that for all v € U and r € {1,...,3g — 4}, x,(x) # x and x + x39~4(x) is Q-generic. Then

there exists a unique family of meromorphic quadratic differentials {q(()l:)Z - x39,4} o holomor-
bladh) b} ze
(@)

0ozz.x39—4 satisfies conditions (a), (b) in

phically parameterized by U such that, for each x € U, ¢

Proposition 6.1, and furthermore takes the local form

dz? n R(i)

m 0,2,2,x39—4 (Z)d227 (67)

where R\ (z) is the restriction of a function R(()i)(zl, z9), which is defined on (U, z1) %

0,z,2,x39—4
(U, z9) and vanishes at the diagonal {z1 = 23}, to the slice {z1 = z(x), 22 = z}.

Proof. 1. For ¢ = 1, consider a family {qg(cl) } U from Proposition 6.1. For each
xe

’x3g73
(1)

fixed z € U, we can scale g, 3, 3

into taking the local form (6.6) to construct qilgu For

i = 2, choose x34_2 € X \ U such that T3g—2 + x3973 i (Q-generic, and consider two fami-

lies {qg(f)x?,g,?, Lo 2} U for ¢« = 1,2 from Proposition 6.1. For each fixed z € U, combining
) 9 xe
scaling qi2>)c3g—2 SN and adding a scaling of qili <39—3» W€ can construct qizi 30— that takes the
k] g— » Ay

1)

Z,x

local form (6.6). Since ¢
(2)

x39-3 in general does not vanish at xgg_g(x), we can only in general

guarantee ¢, s, (%) to vanish at x*9~3(z). The uniqueness statement follows from the unique-

(@)

ness up to scaling of g ;.

2. By our assumption, for all z € U, there exists a unique up to scaling a holomorphic quadratic
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differential that vanishes at x39~%(z) and does not vanish at z. By adding proper scalings of this

(4)

2,2,x39 44134 _3

quadratic differential with the members of the family {q } . where x3,_3 is a
xe

point in X \ U, we can cancel the evaluation of ngwa»g,4 e (z) at z(x). O

REMARK 6.1. To emphasize the fact that the “normalized” forms (6.6) and (6.7) are only manifest
w.r.t. a choice of local coordinate, we have included the local coordinate in the notation of these

families of quadratic differentials.

Some technical results. In the coming chapter we will be interested in families of quadratic
differentials of certain forms. The idea is to work with families of “building blocks” of quadratic
differentials and analyze the limit of these families as the poles collide.

Let (U, z) be a coordinated neighborhood of zp € X andx’ = 23+ ... + x4 ford < 3g — 3 a
reduced effective divisor on X such that, for all z1,x9 € U, 1 + x2 + X’ is Q-generic. For each
r € {3,...,d}, let X, .= x' — . Then, refining U if necessary, we can choose some effective
divisors w = wg + wq41 + ... + wag—3 on X with support distinct from U U {3, ..., x4} such
that, for all 1, xo € U and r € {3, ...,d}, v1 + X' + w and z1 + x2 + X}, + W are Q)-generic.

Now, for each u € z(U), let z (u) be points in U having coordinates +u respectively. We use
the following short-hand notations for the unique families of quadratic differentials from proposi-
tion 6.2,

(i) . O o) _de*
Tut = Dozpewix = (z Fu)

+ R, (2)d22, ie{1,2},  (6.8)

u,

where Rq(;)i (z) is the restriction to the slice {(u, z) } of a function R(()i) (21, z) which is holomorphic

in both variables and vanishes at the diagonal {z = u}.

LEMMA 6.3. Fixi € {1,2}.
1. The functions %R(u{) (—u) and —%sz), (u) are holomorphic on U with variable u = z(x).
Furthermore, their evaluations at v = 0 are equal.

2. For each fixed z, the limit

RY, (z) - RY (z)) 6.9)
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exists. These limits define a holomorphic function on U with variable z.

Proof. 1. We need to show that the v — 0 limit of %RS)JF(—u) and —%R(i) (u) exist

u,—
and are equal. Consider the Taylor expansion of R(()i)(zl, 2) = D mn>0 R,(Q,nz{”z” at its zero

(21,2) = (0,0). Since R{}) = 0,

RY (u) == R{)(—u,u) = — (Ry,0 — Ro1) u+ O(u?),

U,—

RSL(_“) = R(()i) (u, —u) = (R1,0 — Ro,1) u + O(u?).
It follows that

lim l17-‘55}’}+(—u) — _lim L RY (u). (6.10)

u—0U u—0u  ©

2. For each fixed z, it follows from the Taylor expansion R(()i) (z1,2) = mezo R%),nzinz" that,

R0~ B () =203 RO 200 S R 20 R
n>0 n>0 n>0

is a holomorphic function on (S, u) that vanishes at v = 0; we can calculate

1 : i i
lim ~ (Rgp(z) — R{) (z)) =23 RY) 6.11)

u—0U >0
n>

6.2 Parameterize S L-operators

PROPOSITION 6.4. Let x| + ... + mgg_g be a reduced Q)-generic divisor on X. Then there exists

coordinate neighborhoods (U, z.) of each ., r € {1, ...,3g — 3}, and an injective map of sets

Up X ... x U, x C¥73 — {SL-operators }

(f, 17) = (I‘l, cy L3g—3, V15 -1y Vggfg) — D(f’g)

such that Dz ) has simple apparent singularities at each x, with respective accessory parameters

v, W.E.L. the local coordinates z;.
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Proof. Since =} + ... + xég—?) is Q-generic, there exists a neighborhood U, of z/. for each
r € {1,...,3g—3} such that, for all (21, ..., x3g—3) € Uy x ... x Usg4_3, the divisor 1+ ...+ x34—3
is Q-generic. Let 21, ..., z34—3 be coordinates on Uy, ..., U3, _3 respectively that are subordinate to
a fixed holomorphic projective structure. Then for each (7, V) = (x1, ..., x39—3, V1, ..., V39g-3) €

Up X ... x U, x C3973, we define a non-degenerate linear system of rank 3g — 3 in H°(K?) by

q(O)(ZT) ‘zT(xr) +V3 =0, r=1,...,39g — 3,

(0)

which admits a unique solution Uz,7)" The meromorphic quadratic differential

3%~ @ =W 0
q(f717) = _Z Z qO,ZT,J}T,QT + Z l/rqoazr7xr7§'r + q(f,ﬁ)’
r=1 r=1

where X, := x1+...+234_3 — 2, defines an S L-operator Dz, by its local form azr +q(z,9)(2r)

on (Uy, ;). Clearly the assignment (', /) = Dz 5 is injective. [
In the following we prove proposition 1.3.

PROPOSITION 6.5 (PROPOSITION 1.3). Suppose deg(A) — g is odd. Let qo be a non-degenerate
holomorphic quadratic differential and = + ... + xgg_3 be a reduced Q)-generic divisor. If in
addition there is no exceptional divisor on the spectral curve Sy, projecting to = + ... + xgg_?),

then there exist open neighborhoods V. C H°(K?) of qo, U, C X of x. and an embedding

Up X ... xUzg_g x V. — Mg (A),

(fa Q) = (xla <y L3g—3, Q) — [E(f,q% qb(f,q)]

where det(¢z q)) = q and E(z o) admits a subbundle Lz with the zero divisor of c,.(¢(z,q)) being

1 + ... + x39—3. Furthermore, there exist coordinate z, on U, and an injective map of sets

Up X ... x Uzg_g x V.— {SL-operators },

(f7 Q) = (331, "'73339737Q) — D(f,q)
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where Dz 4y has simple apparent singularities x1, ..., x3g—3 with respective accessory parameters
V1, woo, U3g—3 satisfying v2 + q(zr(x,)) = 0forr =1,...,3g — 3.

Proof. Forr € {1,...,3g — 3}, let U, be a neighborhood of 2. that contains no zero of g
and such that U, N U,y = () for r # r’. For each ¥ € U; x ... x Usy_3, choose a line bundle
L satisfying KL%zA = Ox(x1 + ...w34—3) in such a way that {Lz}zcv, x...xUs,_; 1 a family
holomorphically parameterized by Uy x ... x Uzy_3. Let V be a neighborhood of gq that contains
no degenerate holomorphic quadratic differential and such that, for each r € {1, ...,3g — 3}, the
subset ngSq le—1(w,) of T*X |y,, where S is the spectral curve defined by ¢ € V, has two
distinct components 7. As a particular consequence, if ¢ € V then ¢ has no zeroes located in
any of the neighborhood U,.. Since V' by construction allows us to choose a distinct component of
ngSq l=—1(v,)> foreach r € {1,...,3g — 3}, one can assign to (z,,q) € U, x V a point &, on S
that projects to x, in a way such that (x,, q¢) — Z,(x,, ¢) defines a holomorphic function U, xV —
T*X |y,. Given (Z,q) € Uy x ... x Uzg—3 x V, let D(Z, q) be the effective divisor on .S, defined
by Zii_l?’ T, (zr, q). By proposition 3.6, there exists a unique Higgs bundle (Ez ), ¢(z4)) such
that det(¢(z,4)) = ¢ and E(z ) admits Lz as a subbundle inducing D(Z, q) as the corresponding
Baker-Akhiezer divisor. One can, if necessary, further refine U, and V' so that D(&Z, q) is not an
exceptional divisor on S, for all (Z,q) € Uy x ... x Usg—3 x V. Then the assignment (Z, q) —
[E@q), (b(f,q)] is injective. By appealing to the fact that the complex structure of each smooth
Hitchin fiber is compatible with the variation of effective divisors on the corresponding spectral
curve and that the Hitchin fibration is holomorphic, one sees that (%, q) — [E(z,q), ¢(z,q)] defines
an embedding.

Now, let 21, ..., 234—3 be coordinates on Uy, ..., Usy_3 respectively that are subordinate to a
fixed holomorphic projective structure. For each (z,,q) € U, x V, let v,(z,,q) € C be such that
Z,(z,, q) has coordinate (z,(z,), (2, q)) in the local frame of T*X |y, defined by dz,. The

second part of the proposition now follows from proposition 6.4. []

"One can define such V' by making sufficiently small perturbation of 3g — 4 simple zeroes of qo together with
scaling.
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Chapter 7

Collision of apparent singularities

In this chapter, we analyze the limit when two simple apparent singularities collide. As two simple
apparent singularities approach each other, each contributes and blows-up the coefficient ¢ o in
the Laurent expansion in (6.1a) at the other one. The constraint (6.1b) implies that their accessory
parameters will also blow-up. We will show that, if these respective accessory parameters blow-up
in a particular way, the limit upon collision will be either an S L-operator with a double apparent

singularity at the collision site, or an S L-operator with two less apparent singularities.

7.1 Setup

7.1.1 Conditions on the collision site.
For2 < d < 3g — 3, let 7p and X’ = x3 + ... + x4 be reduced effective divisors on X such that

zo £ x’ and
20 + x’ is Q-generic. (7.1)

A consequence if this condition is that for all pairs of distinct points z; and x> in a sufficiently

small neighborhood U of x(, we have
x1 + 29 + X' is Q-generic. (7.2)

Condition (7.2) is equivalent to requiring that, given a basis q = (¢1, ..., g3g—3) of H 0 (K%), the
d x (3g — 3) matrix qy k = qk(zr(xr))ifffgg_ig, defined by evaluating g, at ;- using some local

coordinate z,, is of maximal rank d. This condition is satisfied by a generic choices of zy and x'.

Determinant with simple zero at x. Consider the case where d = 3g — 3, and x(, x’ satisfy
condition (7.1). Then upon choosing local coordinates and a basis q = (g) of H°(K?), any z1,

x9 € U define a (3g — 3) x (3g — 3) non-degenerate matrix q, x (1, z2).
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We will in the following evaluate g, at £1 and x2 using the same local coordinate z on U.
Furthermore, we will make the following choices of x; and x2. W.1.0.g., suppose z(xo) = 0. Then
for each u € z(U), let 21 (u) and x2(u) be points in U that have coordinates +u respectively; in
particular, 79 = x1(0) = x2(0). Then a choice of a basis q = (g) of H(K?) and local
coordinates z3, ..., z3g—3 for x3, ..., £35_3 together define a function det(q, x)(u) : U = 2(U) —
C. This function is holomorphic in u and vanishes only at v = 0, since at v = 0 the matrix q y is
degenerate. The following proposition shows that if we use a certain family (q;w)ig: 713 of basis of
H°(K?) that also varies holomorphically in u, the zero at u = 0 of the corresponding determinant

is simple.

LEMMA 7.1. Let xg and X' = x1+...x34—3 satisfy (7.1), and (U, z), x1(u), x2(u) be constructed
as above. Then there exists a family q,, = {(qk7u)29213}uez(U) of basis of H*(K?) that is param-
eterized by U and is such that the function det(qy x)(u), where dr x = G u(2r(21)), has a simple
zero at u = 0.

Proof. For each k in the range 3 < k < 3g — 3 and each u € z(U), there exists a unique
up to scaling quadratic differential that vanishes at x1(u), xo(u) and all z, with » # k. By
our assumption on xy and x’, this quadratic differential does not vanish at x,. By scaling, for
3 < k < 3g — 3, we define a unique quadratic differential g;, ,, with gy ,, (2,(2y)) = 0. We
now define ¢ = q1, and g2 = g2, independent of u as follows. Let g; be a (unique up to
scaling) holomorphic quadratic differential that vanishes at xo + x’. By our assumption on z( and
x/, its zero at xg is simple. For some z(, € U with z{, # xo, let g2 be a (unique up to scaling)
holomorphic quadratic differential that vanishes at z(, + x’. By our assumption on z¢ and x/, g2
does not vanish at zp and hence is linearly independent from ¢;. Then for each u € z(U), let

(@) = (q1,42, q3,us --» q3g—34): this forms a basis of H(K?) for each u € z(U). It follows
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that the function

a(z(z1))  ga(z(z1)) 0
det(ari)(w) = | qi(2(22))  q2(2(22)) 0
0 0 I(39-5)x(3g-5)

= q1(2(21))g2(2(22)) — q1(2(22))g2(2(1))
= 24} ((20)))g2(2(z0))u + O(u?) (7.3)

has a simple zero at v = 0. [J

7.1.2 Families of meromorphic quadratic differentials.

Given x and x’ satisfying condition (7.1), let (U, z), (Us, 23), ..., (Ug, 24) be some respective
coordinate neighborhoods of zg, x3, ..., x4, which do not intersect each other and are subordinate
to a fixed holomorphic projective structure. W.Lo.g., let z(z9) = 0; for each u € z(U), let
z4(u) € U be defined by z(z4) = tu. Let x, .= x' — z;.

Let vy (u), vs3(u), ..., v4(u) be holomorphic functions from U \ {zo} to C. We want to
characterize a family of SL-operators {Dy }ye(t7),ux0 holomorphically parameterized by U \
{zo}, where D, has simple apparent singularities at x4 (u), x3, ..., ¢4 and respective accessory
parameters v (u), v3(u), ..., vg(u) w.rt. local coordinates z, z3, ..., zg. We do this by writing
Dy = Dpr + qu, where D), is an SL-operator defined by the chosen holomorphic projective
structure, and ¢, is a meromorphic quadratic differential built in terms of the “building blocks”.
One set of the “building blocks” comes from (6.8),

5 dz? ()

2 .
(Z T u)z + Ru,:l:(z)dz ) (S {172}a (74)

(@ . () on
qu,:i: T qO,z,xi,w—l—x’

IS

some u — 0 limits of which are discussed in lemma 6.3. We also use the following short-hand

notations

() () 3<r<d,

qu,l‘r = qO,zT T, T T XL +W—wq?
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for “normalized” quadratic differentials that have simple/double pole at x,- and vanishes at
Ty + Ty + T3+ o Tp—1 + Tpg1 + oo + Tg + W1 + - W3g—3.

We also denote the v — 0 limits of these families by

i i on (Uyz) dz? i i i
q(() ) = q((],,)z,zo,w+x’ = Zi + R(() : (Z)d’227 q((),;)rr = q((),)zr,mr,Qmo—l—x;—s—w—wo' (75)

REMARK 7.1. We have defined ql(f)i upon choosing a divisor w = wg +wq41 + ...w3¢—3. Choos-

ing a different choice of w amounts to translating the definitions of qff)i and qq(f,)% by a holomor-

phic quadratic differential that vanishes at x" and x4 + x_ + x/. respectively.

Now, to construct ¢, from the “building blocks”, for each nonzero u € z(U), let
3 d 3 &
w=a+ D waapd = Y all+ D mwal), - 7> a6
se{£} se{£} r=3 r=3

where q&o) is the holomorphic quadratic differential that makes g, satisfy condition (6.1b), which

now due to the construction of q?(f)i and qq(f;)wr takes the form

3
0 (2) le=tu = —va () ~ v2 (g2 () o=t +7005(2) == Cxlw),  (170)
qz(LO)(ZT) ’zrzzr(xr) = _VT’(U)27 for3 <r <d.
(7.7b)
The functions vy (u), v3(u), ..., v4(u) define via these constraints (7.7) for each v # 0 a non-

homogeneous linear system in H° (Kg() Due to condition (7.1), the homogeneous linear system
is of maximal rank d. It follows that, for each v # 0, the non-homogeneous linear system (7.7)
defines via its solutions a (3g — 3 — d)-dimensional subspace in H°(K?), and hence a (39— 3 —d)-
dimensional family of meromorphic quadratic differentials ¢,, with the appropriate Laurent tails at
T4, T3, ..., g defined by vy (u), v3(u), ..., vg(u).

-3

We can represent the linear system (7.7) more explicitly by using the family q,, = {(qku)zg: 1 Fuex(U)

of basis of H°(K?) constructed in lemma 7.1. For u # 0, let qq(f]) = 229;13 Ej(u)qiu. Then
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(7.7) decouples into a 2 x 2 linear system representing (7.7a),

QI(Z) ‘z:u QQ(Z) |z:u El(u) C—l—(u)
- , (7.82)
01(2) lz=—u @2(2) lo=—u) \E2(v) C—(u)
and a trivial (d — 2) x (d — 2) one representing (7.7b),
E.(u) = —v,(u)? for 3 < r < d. (7.8b)

For d < 3¢ — 3, the expansion coefficients E,(u) with r in the range d < r < 3g — 3 are not
constrained and parameterize the (3g — 3 — d)-dimensional subspace in H°(K?) consisting of

solutions to (7.7).

Limits of the solutions to the linear systems. We will be interested in families of meromorphic
quadratic differentials {qu}uez(U%u#O that have well-defined limits gg = ilg% @, With the Laurent
tails at the poles having the appropriate forms to make these poles apparent singularities. In other
words, we are interested in families {DU}UEZ(U) of SL-operators parameterized by U, with D,,
for u # 0 having simple apparent singularities at x, x3, ..., 4 and Dy being the limit as x; and
z_ collide.

More specifically, we will study families determined by v3(u), ..., ¥4(u) being holomorphic

for all w € z(U), and v+ (u) holomorphic at u # 0 and having the Laurent expansions at u = 0 of

the form
3 / 2
vi(u) = :I:@:I:Vu—k(?(u ) (7.9
or
1 / 2
ui(u):q:@—l—yozlzyu—i—(’)(u ). (7.10)

LEMMA 7.2. Suppose v3(u), ..., vq(u) : U = z(U) — C are holomorphic functions, and v+ (u) :
U = z(U) — C are meromorphic functions with simple poles and Laurent expansions at v = 0

of either the form (7.9) or (7.10). Then the induced non-homogeneous linear system (7.7) limits to
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a degenerate d x (3g — 3) linear system of rank d — 1.

Proof. This can be checked explicitly by plugging (7.9) and (7.10) in (7.7a). Specifically,
the coefficients at the orders u ' and u” of v (u) ensure that C. (u) are regular at u = 0, while
the coefficients at the order u! of v (u) together with part 1 of Lemma 6.3 ensure that C'; (0) =

C_(0) = Cop, where

- - %lin%)%RS)_(u) for vi(u) = £ +v/u+ O(u?),
Coy = u= 7 (7.11)
-3+ — %iii)r%)%Ru,_(u) for vy (u) = FL£ +vo £ v'u+ O(u?).

Then the linear system (7.7) limits to

¢ (0) = Cy, 40 (z,(2,)) = =1 (0)?, (7.12)

for 3 < r < d. Note that the dimension of (), must have the minimal value 3g — 2 — d since

otherwise condition (7.1) will be violated. This yields the rank d; of the system (7.12). [J

LEMMA 7.3. Let xg, T3, ..., 4 satisfy condition (7.1), vy € C, and ¢ € H°(K?) a holomorphic
quadratic differential. Then there exist holomorphic functions vs(u), ..., v4(u) : 2(U) — C and
vi(u) : z(U \ {xo}) — C with Laurent expansions at u = 0 of the forms (7.9) or (7.10) (with vy
as the coefficient of order u°), and a family of holomorphic quadratic differentials {q&o)}uez(U)

such that
(i) q&o) solves the linear system (7.7) defined by vy (u), v3(u), ..., vg(u) for u # 0;

(ii) q(()o) = q solves the corresponding limit linear system (7.12).

Proof. We will make use of the representation (7.8) of (7.7) using a family q,, = {(qku)igz _13}UEZ(U)
of basis of H°(K?) constructed in lemma 7.1. Let us use the basis corresponding to u = 0 and
expand ¢ = 29: Ed E,qu,o. We need to show that there exist 4 (u) of the prescribed forms such

that the solutions to (7.8a),

@1 (w)C-(uv) = (=) Cy (u)
@1 (w)g2(—u) = q1(—u)g2(u)

. BEy(u) = . (7.13)
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where C1 (u) are defined as in (7.7), have well-defined u — 0 limits which are equal to E? and ES
respectively. To this end, denote by N (u) and Na(u) the respective numerators in (7.13). Since
llth_rr}%)Ci(u) = Cy (cf. (7.11)), both Ny (u) and No(u) are holomorphic and vanish at v = 0. Since
the denominators of (7.13) have simple zero at u = 0 by lemma 7.1, the v — 0 limits of E(u)
and Es(u) are well-defined by L’Hépital’s rule. These limits are determined by the coefficient at
order u' of Ni(u) and No(u). With Ru i( )= mn RY n(£u)™2", one can compute explicitly
these coefficients to be

_ 2(0)
2

—A(vyo2+v_2)+3 (Ro,% - Rg’o + Ré}()) — Rﬁ + R(gl%)} N

5(0)
2

/
0
No(u) = — ql; ) [4V1 +3R{) ~ 33512} u+ O(u?)

(4V1 + 3R% — 3R(()1%> u+ O(u?),

for the ansatz vy (u) = £ £ vju+ vy 2u? + O(u?), and

0
Ny (u) = _QQé ) [81/01/1 + 4wy (Rg}; ~RY) ) + RS — R + RS+ 3RY) — 3R\ | u
/
0
+ q2; ) [41/3 — 4 + Ré}% — RS())] u + O(u?)

/
0
No(u) = 40 (—48 + 41 — B+ REQ) u + O(u?)

for the ansatz vy (u) = :Fﬁ + vp £ viu 4 vg u? + O(u?).

Since ¢2(0) and ¢ (0) are non-zero, we can tune (v, v4 o) in the first case and (v, 1) in
the second case to tune the coefficients of order u! of Ni(u) and Na(u) as we want. Hence
there exist holomorphic functions vy (u) : U \ {xg} — C with the Laurent expansion at u =
0 of the form (7.9) or (7.10), so that limEl(u) = EY and qlg%EQ(u) = EY. For3 < r <
d, let v, € C be such that E? = —1/2

ro

(Eq(u), Ea(u), E3(u), ..., E3g_3(u)) = (El( ), Ea(u), EY, ..., B9, 3) then defines for each u #

and define v,(u) = v, for all w € z(U). The tuple
0 a holomorphic quadratic differential q = Zi E},(u)qg,,, that solves the linear system (7.8)

defined by (v (u), v3(u), ..., vg(u)), with hrr(l) q& ) = q a solution to the corresponding limit linear
u—r

system (7.12). [J
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7.2 Double apparent singularity as the limit

In this subchapter we will analyze the limit lin}) qu if V4 (u) take the form (7.10).
u—r

LEMMA 7.4. Let xq, x3, ..., xq be distinct points on X, (U, z) a coordinate neighborhood of x
with z(z0) = 0, vi(u) = F£= + v £ v'u+ O(u?) holomorphic functions on U \ {z}, and qq(f)i
defined as in (7.4) for u € z (U), u # 0. Then the family of meromorphic quadratic differentials

3
> vwlwail =5 > ad (7.14)

se{+} se{+}

which is parameterized by U \ {x}, extends to a family parameterized by U. The meromorphic
quadratic differential qg(f)) corresponding to the extension to xg is holomorphic on X \ {xo},
vanishes at xs, ..., xq, and on U takes the form

2 2y 1
a2 = @) = [~ + =2 +2moR () - 5

where R (z2) is defined in part 2 of lemma 6.3 and Rg) (z) defined in (7.5).

Proof. We will show explicitly that, as a multi-variable function with variables » and z,
(7.14) limits to (7.15) as u — 0. To this end, it suffices to show that given any z # 0, the
u — 0 limit of the evaluation of (7.14) at z is the evaluation of (7.15) at z. Plugging vy (u) =

Fi + vy £ vu+ O(u?) into (7.14) yields

—222 — 2 N 2uyz Rq(ill_(z) - R
(z—u)?(z4+u)?  (z—u)(z+u) 4u

(7.16)

Here we have ignored the factor dz? and denoted by O(u)(z) a function with variables u and z
such that, given any 2z’ # 0, the function F,/(u) := O(u)(z) |,—. is holomorphic on {u | 0 <
lu| < |2'|/2} with F./(u) ~ O(u). It follows that ilg})@(u)(z) = O(u)(2) |u=0, which a priori
defines a function in z, is the zero function. By a similar argument, we can take the v — 0 limit

of the other terms in (7.16) explicitly and obtain qg(f)) as in (7.15) as the limit.
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To show that qg(g? is holomorphic on X \ {z¢}, it suffices to show holomorphicity on X \ U.

Given p € X \ U and a coordinate neighborhood (V, w) of p, let qq(f)i (w)dw? be the local form of
qz(f)i on V. We want to show that the evaluation of (7.14) at p, which defines the function
3 1 1 1
> wa(walwe) = 7 3 awe) = g (~auk ) + L @) + 00)

4 4
se{+} se{£}

(7.17)

in u which is holomorphic at u # 0 has a well-defined v — 0 limit. Since qg)i = q((]i), which is

holomorphic on X\ {0}, it suffices to show that the leading term - ( qq(}l( (p)) + q(%)_ (w(p)))
of (7.17) has a well-defined v — 0 limit. This is achieved by an argument similar to the proof
of part 2 of lemma 6.3. Furthermore, for p € {us, ..., uq}, since (7.17) vanishes for u # 0, it is

identically zero for all u € z(U). O

In the following, we fix a holomorphic projective structure and a corresponding S L-operator
D, (which has no apparent singularity). Recall again that any other S L-operator can be written
as Dy, + g where ¢ is a meromorphic quadratic differential having double poles with appropriate

Laurent tails in coordinates subordinate to the chosen holomorphic projective structure.

PROPOSITION 7.5. Let xq, 3, ..., £q be distinct points on X such that 2xg + x3 + ...xq is Q-
generic. Let z be a coordinate on U subordinate to the chosen holomorphic projective structure,
with z(xo) = 0. Let v3(u), ..., va(u) be holomorphic functions on U, vi(u) = F4= + v £
v'u 4+ O(u?) holomorphic functions on U \ {2}, and {Dy = Dp, + qu}ue:(v),uzo the corre-
sponding family of S L-operators parameterized by U \ {x¢} where q, is defined as in (7.6), with
{qu Yuez () usto the corresponding family of holomorphic quadratic differentials.
If there exists a holomorphic quadratic differential q(() ) with q(O) = hm q( ) then {Du}ue 2(U),u0

extends to a family of S L-operators parameterized by U. The S L-operator corresponding to the

extension to xq is Dy = Dy, + qo, where

d
on (U2) o 3 (2)
% +¢P () + Z_; v (0 - 2_33 Ty, - (7.18)
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(Recall the definition of q(()izr in (7.15).) In particular, the apparent singularities of Dy consists of a
double apparent singularity at xy with accessory parameter vy, and simple apparent singularities
at s, ..., xq with respective accessory parameters v3(0), ..., v4(0).

Proof. The existence of Dy = Dy, + qo with ¢g of the form (7.18) follows from the definition

(7.6) of g, and lemma 7.4. Let ¢;,“?(z) be the regular part on U of go(z), i.e.

re, 2 2vg
6 =) - (-5 ) i
0 1 1.

To prove the proposition, it remains to show that the coefficients of the Laurent tail of go(z) satisfy

the condition making z a double apparent singularity, i.e. for ¢/ (2) = 37,5 qo.x2* we have

=0. (7.19)

To this end, for each u # 0, let ¢,/ (z) be the regular part on U of q,(z), i.e.

@9(2) = qu(z) — <—4( 3 _ 3 n vy (u) n V(u))

z—u)? Az4+u)?  z—u  z+u

=)+ Y w@RNE -2 Y RO +Zw u)afl) (= qu

se{+} se{x}

As a function of both u and z, the leading term in u of ¢,"?(2) comes from the leading terms

in vi(u )R( ) ’(z) and is equal to —(Rf}l(z) - R(l)_(z))/(élu). By part 2 of lemma 6.3, this

U,
has a well-defined v — 0 limit. Hence ¢;,”/(z) has a well-defined v — 0 limit, and in fact
gu(2) 2 gp0(2).
Now, this enables us to expand ¢, (2) = 37, >0 Gm.nu™ 2", where letting m = 0 gives the
coefficients gg,, of the Taylor expansion ¢,“’(z) = ano qo,n?". Plugging this expansions of

reg

¢y~ (2) and and v4 (u) into condition (6.1b) for z = +u,

31
vi(u)? — 1 pral) 3,9 (£u) = 0, u # 0,
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we obtain a series of constraints by order of w starting from the order «~2. The constraints up

1

to order w~ " are automatically satisfied by the leading terms of v4 (u). Solving the constraints at

order u° and u!, we obtain (7.19). [

PROPOSITION 7.6. (Proposition 1.7) Let D be an S L-operator with div(D) = 2xg+x3+ ...+ x4
being Q-generic and d < 3g — 3. Then there exists a coordinate neighborhood (U, z) of xo, where

U C U’ and z(x0) = 0, and a family of SL-operators { Dy }ye (1) parameterized by U such that
(i) Do =Dy
(ii) foru # 0, Dy, has simple apparent singularities at s, ..., tq and x4+ € U with z(x4) = tu;

(iii) for w # 0, the accessory parameters v (u) of x+ w.r.t. the local coordinate z, as functions
of u, have simple poles at uw = 0 and Laurent expansions v4(u) = :Fﬁ + I/OD +v'u..., where

21/0D is the accessory parameter of the double apparent singularity xq of D.

Furthermore, this family defines via taking monodromy a holomorphic map U — Hom(71, PSLs(C)),
which is injective for d < 2g — 2.

Proof.  Fix a holomorphic projective structure with corresponding SL-operator Dp,, and
choose coordinate neighborhoods (U, z,) of z, for 3 < r < d and (U, z) of = subordinate to
this holomorphic projective structure, where U satisfies condition (7.1). We can write D = D, +
qp, Where ¢p is a meromorphic quadratic differential with local expression —mdzf +
dz,% +...onU,,3 <r <d,and —Z%sz + @alz2 + ... on U. Then there exists a unique

holomorphic quadratic differential q(()O) (D) such that ¢p can be written in the form (7.18), i.e.

vP
z—zr(zr)

0 1 3 2
ap=a5 (D) +ad208) + D vPasd, — 1Y dva,-
By lemma 7.3, there exist holomorphic functions v3(u), ..., v4(u) : 2(U) = C, va(u) : 2(U \

{zp}) — C with Laurent expansions at u = 0 of the forms (7.10) (in particular, with IJOD as the

coefficient of order u”), and a family {q&o)}uez(U) of holomorphic quadratic differentials with
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limq(o) = q(()o) (D) such that

u—0

3 39—3 3 39—3
— 0 n_ 2 (2) (1n 2 (2)
Gu = qy + Z Vs(u)qu,s 4 qu,s + VT(u)qu,zT 4 Z qu,xra u 7& 07
se{t} se{x} r=3 r=3

is a meromorphic quadratic differential with simple apparent singularities at s, ..., zgand z € U
with z(zy) = £wu. By proposition 7.5, ¢y = iigbqu = qp, and hence {Dy, = Dy + qu fuec-(1)
defines a family we seek.

To see that taking the projective monodromy representation of D,, defines a holomorphic map
U — Hom(my, PSL2(C)), consider a coordinate neighborhood (V, w), where V is distinct from
U U {xs,...,z4} and w is subordinate to the chosen holomorphic projective structure. On (V, w),
D,, takes the form 92, + ¢, (w) where q,(w) is a function holomorphic on U x V. By standard
results on differential equations that vary holomorphically with respect to deformation parame-
ters [38], the local solutions to 92 + g, (w) are holomorphic functions on U x V. Analytically
continuing the ratio of two such linearly independent solutions defines the projective monodromy
representation of D,,, which is now holomorphic in w. By corollary 5.4, if the number of apparent

singularities is less than 2g — 2 to start with, this holomorphic map is injective. []

EXAMPLE 7.2. Let d € Z4 be even, and zg, z3, ..., 4, (U,2) and x4 as in proposition 7.6.
Suppose {(Fu, Vi) }uez(v) is a family of irreducible S Lz (C)-holomorphic connections where F),
admits a subbundle L,, such that the zero divisor of ¢z, (V) is x4 (u) + x5 + ... + x4 foru # 0
and 2z¢ + x3 + ... + x4 for u = 0. In other words, at the limit v — 0, ¢z, (V,,) forms a double
Zero at xg.

We claim that the accessory parameters vy (u) of the apparent singularities x4 (u) from the

induced family {D,, = DL, Fu,vu)}u;ﬁo are of the form (7.10). Suppose on U and in certain

au(z)  bu(2)
local frame adapted to L,,, V,, takes the form 0, + . Then a,(z), by(z) and

cu(2)  —au(2)
cu(z) are holomorphic on both u and z. In particular, we can write ¢, (2) = (z — u)(z + u) fu(2)

where f,(2) is a function holomorphic on both u and z such that for all u € z(U), f,,(#) is nonzero

everywhere on U. Expanding a,,(2) = >, ;0 @mau™2" and fi(2) = > <o fmau™2", one
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can observe that the accessory parameters of the apparent singularities xz+ of D,, (cf. (5.17)) have

Laurent expansions

cr(fu) 1 fo1
:t __u\—"7 — . _ ) :t
ay(Fu) 1! () Ft (ao,o T ap1 +aip
)u + O(u?)

fg1+ forfro— foo(2fo2 + fi1)
+ )
250

which satisfy the form (7.10).

7.3 Reduction of the number of apparent singularities as the limit

In this subchapter we will analyze the limit liH(l) qu if v4 (u) take the form (7.9). We skip the proofs
u—r

of the following results as they are similar to the proofs in the previous subchapter.

LEMMA 7.7. Let xq, x3, ..., xq be distinct points on X, (U, z) a coordinate neighborhood of x
with z(zg) = 0, va(u) = £2 + v'u + O(u?) holomorphic functions on U \ {xo}, and qff,)i
defined as in (7.4) for w € z (U), u # 0. Then the family of meromorphic quadratic differentials

3
Y. vewall = D ald (7.20)

se{£} se{£}

which is parameterized by U \ {xo}, extends to a family parameterized by U. The quadratic
differential Aqg(c?,) corresponding to the extension to xq is holomorphic on X, vanishes at xs, ...,

x4, and on U takes the form

3

RO (z) — 5R((f)(z) dz2. (7.21)

Proof. Similar to the proof of lemma 7.4. [

Fix a holomorphic projective structure, and denote by D,, the corresponding S L-operator
that has no apparent singularity. In the following we use coordinates subordinate to the chosen

holomorphic projective structure.

PROPOSITION 7.8. Let xq, 3, ..., £q be distinct points on X such that 2xg + x3 + ...xq is Q-

generic. Let z be a coordinate on U subordinate to the chosen holomorphic projective structure,
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with z(z) = 0. Let vg(u), ..., v4(u) be holomorphic functions on U, vy (u) = 2 £1/u+O(u?)
holomorphic functions on U \ {20}, and {Dy = Dpr + qu}uex()usto the corresponding family
of S L-operators parameterized by U \ {xo} where q,, is defined as in (7.6), with ~{(]1(L0)}ue A(U)ut0
the corresponding family of holomorphic quadratic differentials.

If there exists a holomorphic quadratic differential q(()o) with q(()o) = 511}% qq(LO), then {Dy }yc 2(U),u0
extends to a family of S L-operators parameterized by U. The S L-operator corresponding to the
extension to xq is Dy = Dy, + qo, where

d
on (U,z 3
0" 7 6 + 2q0 + 3 v (0)l), — T i (7.22)

where Aq;(n?)) is defined as in (7.21). In particular, the apparent singularities of Dy are simple and

located at x3, ..., xq with accessory parameters v3(0), ..., v4(0).

Proof. The proof follows directly from lemma 7.7. [

PROPOSITION 7.9. Let D be an SL-operator with div(D) = x5 + ... + x4 for d < 3g — 3,
and xy be a point on X such that 2xg + x3 + ...xq is QQ-generic. Then there exists a coordinate
neighborhood (U, z) of xo and a family of SL-operators {Dy}ye.(uy parameterized by U such

that
(i) Do = D;
(ii) for u # 0, D,, has simple apparent singularities at xs, ..., xq and x4 € U with z(x4) = +u;

(iii) for u # 0, the accessory parameters vi(u) of x4+ w.r.t. the local coordinate z, as functions

of u, have simple poles at w = 0 and Laurent expansions vy (u) = :I:% + v'u+ O(u?).

Furthermore, this family defines via taking monodromy a holomorphic map U — Hom(71, PSLs(C)),
which is injective for d < 2g — 2.
Proof. Similar to the proof of proposition 7.6. [

Relation to isomonodromic operation. Bubbling is an isomonodromic operation that takes

as input a complex projective structure subordinate to a Riemann surface X’ and a path ~ on the
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underlying surface .S, such that the restriction to 7y of the developing map of the projective structure
is injective. By cutting open X’ along 7 and gluing in an entire copy of P! along the image of
v, one obtains another complex projective structure. After bubbling, the two end points of v on
S have an angle excess of 27 under the developing map, and hence are apparent singularities of
the output projective coordinate. It is clear that the output projective structure realizes the same
projective monodromy representation as the input projective structure, but has two more apparent
singularities and is subordinate to a different complex structure X" of the underlying surface S.

It is natural to ask if we can identify a given projective structure subordinate to X as the output
of a bubbling. The answer is it is sufficient to find two paths «; and 2 which (i) start and end
at the same points, (ii) have the same image under the developing map, and (iii) bound a simply
connected subset of the surface [8]. The input projective structure and Riemann surface of the
bubbling can be recovered by “debubbling”, i.e. collapsing the subset bounded by v; and ~».

We suggest that in the setup of proposition 7.8 and 7.9, x4 are the apparent singularities
that appear as the result of a bubbling. In the region |z| ~ |u| << 1, the leading orders of

D, takes the form 92 — % One can check that x(z) = (2% — u2)71/2 (z — u)? and
(z—u)?

GFu)?

x(z) = (22 —u?) 12 (2 + u)? are solutions to this approximation of D,,, and hence w =

approximates the developing map. Since
w (uew) = —tan (0/2)? = w (ue_i9> ,

the paths ;1 = ue® and v = ue™", for § € [0, 7], have the same image under w(z). Hence,
for each u # 0, we have identified an “approximate bubbling”: the copy of P! glued in is the disc
defined by the boundary {|ule? | 6 € [0,2n]}. The suggested image is that the bubble glued in

“shrinks” as v — 0 and completely disappears at the limit.
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Appendix A

Rank-2 bundles as extensions of line bundles

Let X be a compact Riemann surface of genus g > 2. Given a line bundle L on X, all rank-2
bundles on X of determinant A that admits L as a subbundle can be realized as an extension of the

form
0—>L—FE—L''A—-0. (A.1)

This is an example of an extension of L~'A by L.

We say two extensions of L~'A by L that realize F and E’ are equivalent if there exists an
isomorphism E = E’ that commutes with the embeddings of L into E and E’ (and hence also
commutes with the projections to L~'A ). The moduli space Ext (L_IA, L) of extensions of
L='A by L is the set of all such extensions modulo these equivalences. It is well-known that
Ext (L‘lA, L) is canonically isomorphic to H! (LZA_l). The isomorphism is given by tensoring
(A.1) with LA~ (or equivalently applying the functor Hom (L_IA7 ,)) and taking the image of 1
via the coboundary map H® (O) = H® (L~'A® LA™') — H' (L?A71).

We will use this invariant formulation of the isomorphism Ext (L‘lA, L) ~ f! (L2A_1)
in the proof of Lange-Narasimhan’s result below [42]. On the other hand, we can understand
how (A.1) can be regarded as an element of H' (L?A~') more concretely as follows. The data
equivalent to this s.e.s is F together with an embedding L <i> E. Concretely, with respect to the
local decomposition E|7, = Ly, @ (L~'A)|y,, over each open subset U,, indexed by a € Z, the

transition functions (£),s of £ are of the form

lag laﬁﬁaﬁ
(E)ag = (A.2)

0 IogMas

where [,3 and A\, are transition functions of L and A respectively. The cocycle conditions
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(E)ag = (E);é and (E)qy = (E)as(E) s, are respectively equivalent to the constraints
€ap Ba ,30:6,30“ €8y + €ary N8 ’yﬁeaﬁ . ( . )

on the local functions €,3. These two conditions are precisely the definition of a 1-cocyle of the
line bundle L2A~1, regarded as a locally free O.-module. The first condition means that the local
functions €g, and €,4, up to a sign, are representatives of the same section of L?>A~! over Uag,
but in the representations defined by the restrictions (L*A~1') (Uy) |, and (L2A™1Y) (Up) v,
respectively, with the isomorphism from the former to the latter given by multiplying with l% o Agal
18 The second condition can be read as the cocycle condition of the data (e,3)q,5ez Written

in the restriction (L?A™") (U,) |v,,,. Therefore any extension of the form (A.2) defines a 1-
cocycle of L?A~" and vice versa. One can show that the equivalences of 1-cocycle of L'A~!
and extensions of the form (A.1) are compatible with this correspondence, hence the isomorphism
Ext (L7'A,L) = H' (L?A™1). The scaling of an embedding L into E corresponds to scaling the

extension (A.1), hence the moduli space we are interested in is P := PH 1 (LQA_l).

Secants and secant varieties of X in IP. We first recall that an element of the projectivization
PV of a vector space V =2 C"*!, by definition representing a line in V, is equivalent to a hyper-
plane, i.e. a codimension-1 linear subspace, of the dual space V' *. This hyperplane in V'* is defined
as the kernel of the line in V. In coordinates, if (v;) € C" is the coordinate of a representative ele-
ment of a line in V/, then in the dual coordinates ¥; the corresponding hyperplane in V* is defined
by the equation " v;©; = 0. Hence in our case where V is taken to be H'! (LQA_I) ~ Cntl,
the moduli space P = P" equivalently characterizes the hyperplanes in H° (K L~2A) via Serre
duality.

We will be mostly interested in the situation where deg (AL_Q) > 2. In this case, due to

degree reason no point on X is a common zero of all sections of K L ~2A, and hence imposing the

BIf L2A~" = O(Q) for a divisor D then the corresponding 1-cocyle relation in O(Q), the sheaf of local meromor-
phic functions with poles bounded below by —@Q), is —€gy + €ay — €ag = 0. The factor 135/\;5 is needed when we
transit from the descriptions in terms of local functions to local sections of line bundles.
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vanishing condition at a given point p defines a hyperplane in H° (K L_QA). We can define a map

Span: X — P
pr [{s € HY (KL?A) | s(p) =0}]. (A4)
One can describe this map in the homogeneous coordinates of PP as follows. Let sg, ..., s, be

a basis of H° (K L_2A) =~ C"*! and (0;)1_, be the coordinates with respect to this basis. A
section s = (0;(s)) = > 0i(s)s; vanishes at p if and only if > 0;(s)s;(p) = 0. By definition
of Span(p) as the kernel of the space of all sections s satisfying > 0;(s)s;(p) = 0, we can write
Span(p) = [s0(p), ..., sn(p)] in the dual coordinates on H' (L?A~!) and upon choosing a local
trivialization on a neighborhood of p (this coordination is independent of the choice of the local
trivialization since different choices differ by a locally nowhere-vanishing holomorphic function).
Furthermore, when deg (AL_Q) > 3 then X SEL)H P is an embedding

Given an effective divisor D = p; + ... 4+ pg, define Span (D) to be the linear subspace
of IP spanned by Span (p1), ..., Span (pg). By definition Span(D) is the projectivization of the
linear subspace in H'! (LQA_l) which is the kernel of the subspace in H° (K L_ZA) consisting
of sections vanishing at D. For a generic divisor D = p; + ... + pg of degree d < n + 1,
the space of such sections is of codimension d, or equivalently the matrix (s; (p;)) formed by
homogeneous coordinates of Span (p;) is of maximal rank d. For such a generic D, the points
Span(p), ..., Span(p,) are linearly independent and hence Span(D) is of dimension d — 1. Hence
Span(D) = P for a generic effective divisor D of degree d > n + 1 = h? (KL™2A). This
reflects the fact the only section of K L~2A that vanishes at such a generic divisor D is the zero
section (since we only have h? (K L_QA) — 1 degrees of freedom to move the zeroes of sections of
K L72A), and hence by definition any nonzero element of H' (L2A*1) can represent an element
in Span(D).

Given an effective divisor D of degree d we say Span(D) is a d-secant of X in . We say the
closure of the union of all such d-secants the d-secant variety of X in P and denote it by Secy(X).
It can be shown that Secy(X) is an irreducible variety of dimension 2d — 1 if it is not already the

whole P . In particular, Sec; (X) is the embedding of X in PP.
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Explicit constructions of secants of X in P. Before discussing an explicit construction of the
extensions that define Span(D), we recall a formulation of the Serre duality. Given a divisor () on
X, the space H? (K —q) of global meromorphic differentials whose poles are bounded below by @
is canonically isomorphic to the dual of the space H' (O(Q)) of equivalence classes of 1-cocyles

whose poles are bounded below by —(@). This canonical isomorphism is defined via

(2 HY (K_o) x H' (0(Q)) — H' (K) = C,

(w, [€as)) = [weag]- (A.5)

By construction, for w € H®(K_g) and eq5 € H' (O(Q)), the product we,gs is regular and
is a 1-cocyle of the sheaf K of holomorphic differentials. The isomorphism H'! (K) R%es C can
be described in terms of the Mittag-Leffler distributions of the 1-cocyles of K. Recall that a
Mittag-Leffler distribution of a 1-cocyle wqg of K is a collection (ws) of local meromorphic
differentials on each U,, such that w,3 = w, — wg: by construction Rgs(wa) = Rgs(wB) for
all p € Uy N Ug. If (w),) is another Mittag-Leffler distribution of wyg, then (wo — wy,) defines
a global meromorphic differential on X, and hence ) Res (w, — w),) = 0. It follows that the
assignment [wqg] — Res ([wag]) = peZXRgs (wa) degfli:(s a well-defined morphism, and it can be
shown to be an isomorphism by dimension count and checking that the image is nonzero.

To make use of this formulation of the Serre duality in terms of meromorphic differentials and
functions, it is at first convenient to characterize L2A~1! as a divisor (), and match the holomor-
phic sections of K L~2A and 1-cocyles of L2A~! with the corresponding meromorphic objects in
K_¢g and O(Q) respectively. To be even more concrete, let us characterize L and A respectively in
terms of some divisors Dy, = lipr,; and Dy = Y \jpa ;, which we can assume to be distinct.
Suppose U = {Uq} 7 is a covering of X with unique indices (L, ) and (A, i) € T satis-
fying pri € Uqr,;) and pa,;i € Uqa ;). We can obtain a new covering by refining each U,y ;)
into U(’LJ.) U Dy, ;, where U(’L’i) = Uq(r,i) \ {pL,i} and Dy ; is a small neighborhood with local
coordinate zy,; centered at py,; not intersecting any other elements of /, and similarly refining

Ua(a,i into U (’ Ay Y Dai- The line bundle L is defined over U’ with trivial transition functions

DL, = zzl?. The transition functions of A and L2A !, which can be

everywhere except (L)U(, D .
Lyi , )
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characterized by Q) .= 2Dy, — Dpy =), 2lipr; — Zj AjPA,;j» are defined similarly over U'. With
the line bundles defined this way, there is a canonical isomorphism from L2A~! to O(Q), defined
by multiplication by zﬁli on Dy, ;, by ,z/’\\‘Z on Dy ;, and by 1 elsewhere. Similarly, the sheaf of
holomorphic sections of K L~2A is canonically isomorphic to the sheaf K _¢q of meromorphic
differentials with poles bounded below by (), via multiplication by zil; on Dy ;, by zxi‘z on Dy ;,
and by 1 elsewhere.

We now give an explicit construction of a representative of Span(p) € P, which is unique
up to scaling. This representative extension is a modification around p of the split extension
L @ L~'A: we add a upper triangular transition functions near p while keeping elsewhere the
diagonal transition functions with diagonal elements being transition functions of L and L~TA.
W.Lo.g. suppose p is contained in a unique element U, = U, of the covering U/’ defined above.
Refining U, into U, = U, \ {p} and a small neighborhood D,, with local coordinate z, centered

at p, we define the extension E (¢,) of L~A by L via the transition function

1 &
(E(ep))DpU;J: 0 1p ) (A.6)

while defining its transition functions elsewhere to be the same as those of L @& L~'A. This
extension is characterized by the 1-cocyle of L*A~! that takes the value z, e, on D), N U}, and
is zero elsewhere. The corresponding 1-cocyle €, in O(Q), which is also zero everywhere except
on D, N Uz’,, would take the same value if p ¢ @ since then w.l.o.g. we can assume U,, contains
no point in ) and hence the isomorphism between the two sheaves on U, is just multiplication by
1

= z; 17 %i¢,. Similarly, if

1. If p = pg; then U, coincides with Dy ;, in which cases (&) - -
P~p

— 1 IS EDY
p = pa.i then (& )DPU;, =% o

PROPOSITION A.1. Forany p € X and any €, # 0, the extension E (€,) represents Span(p).
Proof. It suffices to show that the Serre duality pairing of E (¢,) with any section s €
HY (KL2A) is (E (ep),s) = eps(p). We do this by evaluating the Serre duality pairing of
the corresponding objects in H! (O(Q)) and H° (K_g), namely [€;'] and the meromorphic dif-
ferential ws € H° (K_g) corresponding to s. For p ¢ Q this follows from the fact that the
isomorphisms H! (L*A~1) 5 H' (O(Q)) and H° (KL™2A) = H° (K_g) are locally just the
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identities. For p coinciding with pr, ; or py ;, this follows from how the isomorphisms cancel each

other. [

Let E (p) = E (ep = 1). By definition an element of Span(D) for D = p; + ... + pg can be
represented by a linear combination of E (p1), ..., E (pg), which we shall write as Zle &E (pi).
In terms of transition functions, such an extension can be obtained by repeating the procedure of

constructing F (p) at each point in D (these procedures are commutative).

REMARK A.l. Suppose D = pj + ... + pg is a divisor of degree d < n + 1 such that Span(D)
is of dimension d — 1, i.e. given a basis s, ..., s}, of H* (KL™2A) the square matrix (s} (p;))
is of maximal rank d.Then there exists a different basis s1, ..., s, of H® (KL 2A) satisfying
si(pj) = 6i;. The dual basis in H* (L?A~') coincides with the basis provided by E(p1), ...,
E(pq). In particular if d = n + 1 then Span(D) = P, and E(p1), ..., E(pn+1 provide a basis for
H' (L2A7Y).

Secant varieties and Segre stratification. From the above discussion one can see that the
higher degree of D, the more modifications we make to the split extension L & L~ 1A to obtain an
element in Span(D). In this process we obstruct an embedding of L~ A into the rank-2 bundle,
and in a sense we go “further away” from the split extension which is the unique one that admits
both L and L~ A as subbundles. The following proposition, which is an adaptation of the results
in [42] [43], makes precise this statement.

With deg (AL_Q) > 2, let E be a bundle arising as an extension of the form (A.1), [E] €
P the equivalence class of the extension up to scaling, and D an effective divisor. Let L' =
L7'A(—D) and denote by sp the canonical injection L' — L~!A which introduces zeroes at D

to sections of L’.

PROPOSITION A.2. Suppose D is of degree d < n = g — 2+ deg (AL_Q). Then [E] € Span(D)
if and only if there exists an injection (which is not necessarily an embedding) L' — E such that
the composition L' — E — L'\ vanishes at D, i.e. it is sp up to scaling.

Proof.  Abusing the notation we also denote the induced injection H° (K L_QA(—D)) —
H° (KL™2A) as sp, and by s}, we mean the dual map H* (L*A~!) — H' (L*A~!(D)). Con-
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sider the commutative diagram

Hom (L', E) —— Hom (I/, L='A) —%— H' (L2A=(D))
OSDT S*DT (A7)
Hom (L~'A,L7'A) —— H' (L?A™Y),

where the upper and lower horizontal exact rows are induced by respectively applying the functor
Hom (L', _) and Hom (LA, _) to (A.1). Note that [E] = (1), and osp(1) = sp. By commu-
tativity and exactness, observe that s, ([E]) = 0 if and only if sp € im (j), i.e. sp is equal to a
composition of the form L' — E — LA,

Suppose [E] € Span(D). Then by definition its representatives evaluate to zero all sections of
KL72A that vanish at D. Since the image of sp contains only such sections, s% ([E]) = 0. It
follows that there exists some injection L' — E such that sp is the composition L' — E — L™1A.

Suppose L' — E is an injection such that sp is the composition L/ — E — L7'A. It
follows that 0 = (s}, ([E]),s) = ([E], sp(s')) for any section s’ € H’ (KL 2A(—D)). A
priori im (sp) is contained in the space Vp of all sections of K'L~2A that vanish at D. But since
deg (D) < n, the degrees of freedom to move the zeroes of sections of K L~2?A, we can construct
an inverse of sp from Vp to H® (KL™?A(—D)), i.e. Vp = im (sp). It follows that [E] evaluates

all of Vp to zero, i.e. [E] € Span(D). O

COROLLARY A.3. Suppose deg (D) < deg (AL™?) and if equality occurs then O(D) 2 AL™2.
Then [E] € Span(D') for some effective divisor D’ belonging to the linear equivalence class [D]
if and only if there exists a nonzero injection L' — F.

Proof. It suffices to show that with D being such an effective divisor then any nonzero
injection L' — E does not factor through L < E, i.e. the composition L' — E — L™'A ¢
H°(O(D)) is nonzero. If deg (D) < deg (AL™?) then deg (L") > deg (L), so this follows. In

the other case, since L' 2 L, this also follows. [

REMARK A.2. For deg (D) < deg (AL™?), the open dense subset of Span(D) defined as the

complement of U Span(D)’ consists precisely of the extensions corresponding to rank-2 bun-
D'<D
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dles that admit both L and L’ as subbundles.
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Appendix B

Higgs bundles in terms of extension classes

The lower-left components of the Higgs fields. Given a Higgs field ¢ on a rank-2 bundle

realized as an extension of the form (A.1), consider the composition
cr(¢): L E% EK — LIAK, (B.1)

which is a section of the line bundle K L~2A. Concretely, this section can be realized as follows.

Suppose over each open set U, and with respect to certain local frames of F|, that are adapted
ao b

to the embedding of L, the Higgs field takes the form ¢, = T et K,o- These local
Ca do

expressions of the Higgs field transforms as

bo = (B)asds(E)7}

_ ag + €a8C3 liﬂ)\;ﬁl <bﬁ - Eaﬁ(aﬁ - d5> B Eiﬁcﬁ) ® (k‘ BlK ) (B.2)

lopAascs dg — €apCs
where 15 , and kg are the local generators and transition functions of /K. The local functions
{ca }aer in particular glue into a section c,(¢) € HY(KL™2A). In particular, if c1,(¢) vanishes
atz € X, the subspace L |,C FE |; is an eigen-space of ¢.
Note that, given a subbundle L of E, we have defined a map ¢y, : End(E) ® K — KL 2A in
(B.1). The kernel of ¢y, consists of Higgs fields that preserve L, i.e. {¢ € End(F) ® K | ¢(L) C
LK}. These Higgs fields are of upper-triangular form in local frames adapted to L. We can assign

a morphism & — LK to such a Higgs field as follows. Over each open set U, and in local frames

ao b
adapted to L — E, an upper-triangular Higgs field of the form “ 7] canbe regarded as a
0 dqo

1 0
local morphism E' |y, — (LK) |y, defined by — ao — dg, and — by, If we transit
0 1

o «
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from local frames of E |y, to E |y, both adapted to the embedding L — E, using the transition

1 0 l [ga€
function (A.2), the local sections and now take the from pe and B? pe
0 N 1 N 0 5 l B ABa 5
respectively. It follows from (B.2) that the local morphism E |y, — (LK) |y, sends
lga
— lga(ag — dﬁ) = l@akga(aa — da),
0
B
lgacp -
T “ —> lﬁaega(ag — dg) + lﬁi)\gabﬁ = lﬂakgaba. (B.3)
l/;a Aﬁa

B

Hence these local morphisms glue into a morphism £ — LK.

If we restrict to trace-zero Higgs fields, then this assignment furthermore is clearly unique. In
other words, the subbundle of Endy(E) ® K consisting of trace-zero Higgs fields preserving L is
isomorphic to Hom (E, LK) = E*LK, and so we have the s.e.s.

0 — E*LK — Endy(E) ® K %% KL72A — 0. (B.4)
together with its induced l.e.s.
0— H°(E*LK) — H° (Endo(E) ® K) 5 H° (KL™?A) — H' (E*"LK) — ...  (B.5)

The image of cy, consists of all lower-left components (B.1) picked out from all trace-zero
Higgs fields on E using local frames adapted to L — E. We can compute its dimension by
computing the dimension of ker (c;) = H°(E*LK). The Riemann-Roch theorem and Serre

duality give
W (E*LK) =29 — 2+ h" (L7'E) —deg (L7?A). (B.6)
If E is stable and hence h°(Endg(F) ® K) = 3g — 3, we have

dimim(cy) =g —1—h° (LT'E) + deg (L2A) . (B.7)
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In case deg (L_QA) > 0, we have h° (KL_2A) =g—1+deg (L_QA), and hence im (cy,)
is a subspace of codimension h’ (L7'E) in H? (KL2?A). If E is not “overcounted” as an
extension of the form (A.1), i.e. it admits a unique embedding from L up to scaling, then im (cr)
is a hyperplane in H° (K L_QA). As shown in the discussion that follows, im (cz) is always
contained in the hyperplane defined as the kernel of the extension representing E. Hence when F
is not “overcounted”, a section of K L~2A forms the lower-left component of a Higgs field on E

if and only if it lies in the kernel of the extension representing F.

Serre duality constraint. We claim thatif L < F'is a subbundle of F and ¢ € H" (Endy(E) ® K)
a Higgs field on it, the section ¢y, (¢) € H® (K L™2A) defined by (B.1) satisfies

<CL(¢)7 [E]> =0, (B.8)

where [E] € H' (L?A~?) is the equivalence class of an extension realizing F of the form (A.1),
and the pairing is via Serre duality. Equivalently, the image of ¢y, is contained in ker ([E]) = {s €
HO(KL72A) | (s, [E]) = 0}.

To see this, observe that by choosing NV sufficiently high, we can choose p1, ..., py € X such
that ¢z, (¢)(p;) # 0 forall i = 1,..., N and [E] corresponds to a point in Span(p; + ... + py) C
PH! (LQA_Q). Then we can define E in terms of its transition functions w.r.t. local frames
adapted to L that are of the form (A.6) for p;, ..., py and are diagonal otherwise. The regularity
at each p;, © = 1,..., N of the diagonal components of the local form (B.2) of ¢ implies that
—ep,cr(9)(2p, (pi)) is the residue at p; of a meromorphic differential that has a simple pole at
each p; and is holomorphic elsewhere. The sum of residues of such a differential must vanish. It

then remains to observe that (cy(¢), [F]) = Zfi 1 €p;¢(2p; (D3))-

Two special cases. There are two situations in which the image of ¢y, can be described more
explicitly. One situation is when cy, is injective, i.e. a Higgs field on E can be uniquely represented
by its lower-left component defined via (B.1). It follows from (B.6) that ¢y, is injective when E is
not “overcounted”, i.e. h° (L_lE) = 1, and the degree of L is such that deg (L_QE) =2g — 1.
In this case, the hyperplane ker([E]), which is of dimension 3¢g — 3, is in 1-1 correspondence with

trace-less Higgs fields on E.
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Another situation is when h° (L_2A) = 0. For example, this is generically true when E is not
a maximally stable bundle with L being its maximal subbundle, since then deg (L™2A) < g — 1.

In this case, there is an alternative way to (B.6) to compute 2° (E* LK) by considering the s.e.s.
0— KL*A™' - E*LK — K — 0. (B.9)

Here K L?A~! is the bundle of nilpotent Higgs fields admitting L as the kernel, i.e. strictly upper-
triangular Higgs fields in the local frames adapted to L — E, while the quotient bundle K repre-
sents the diagonal elements of upper-triangular Higgs fields, according to the transformation rules

(B.2). It follows from the l.e.s.
0— H°(KL*A™') - H°(E*LK) — H° (K) — H' (KL*A™') — ... (B.10)
and Serre duality H'! (K LQA_I) =~ HO0 (L_QA)*, which is zero by our assumption, that
hW(E*LK) = h°(K)+ h° (KL*A™') = g+ h (KL*ATY). (B.11)
Hence
dimim(cz) = h® (Endo(E) ® K) — h® (B*LK) =29 — 3 — h° (KL*A™'). (B.12)

REMARK B.1. By comparing (B.6) and (B.11), we see that if h° (L™2A) = 0, then h® (L' E) =

1 (no “overcount”).

The upper-right and diagonal components when deg (L=2A) < g — 1. First, consider the
case where deg (L™2A) < g — 1. Then LA~ is isomorphic to Ox (Q) with Q = Qo — >-7_; a,

where () is an effective divisor Q)9 = go,1 + ... + go,m for m > 1. The Riemann-Roch theorem
h (Kg) — h° (-Q) =m — 1, m > 1. (B.13)

implies that A% (—Q) = h° (L*2A) > 0 if and only if there exists a holomorphic differential

vanishing at qi, ..., 4. Indeed, recall that O(K, o) is the space of meromorphic differentials that
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have zeroes at ¢1, ..., g, and might have simple poles at g 1, ..., go,m- Since the sum of the residues
at go,1, ..., qo,m of such differentials vanishes, the total degrees of freedom to adjust these residues
is at most m — 1. Hence h° (K, @) > m — 1if and only if there exists at least two such differentials
that have the same residue at each qq ;, j = 1, ..., m. Their difference is a holomorphic differential
that vanishes at g1, ..., ¢;. Note that the existence of such a holomorphic differential is equivalent
to the fact that the matrix w;(g;), where wi, ..., wy is a basis of H® (K), is degenerate. Hence
h® (L72A) > 0 if and only if w;(q;) is degenerate.

Suppose the extension realizing E represents an element in Span(D) C PExt (L*IA, L) for
some effective divisor D = p; + ... + Pyeg(p), 1.€. according to (A.6) it differs from the split

€ /%

1
bundle L& LA by transition functions of the form around p;. It follows from (B.2)
0 1

together with the explicit transition function (A.6) that, in local frames adapted to L, the diagonal

and upper-right components of a Higgs field preserving L can be represented respectively by

(a) a holomorphic differential A € H (K),

(b) a meromorphic differential B € H 0 (Kp+q) (i.e. B vanishes at qi, ..., ¢4 and is allowed to
have simple poles at each point p; of D and qp ; of o), the residue of which at each p; is
Rpe_s (B) = 2Rpe_s (Ae;/z;) = 2A(pi)e;.

Given a fixed A € H°(K), there exists some meromorphic differential By € H° (Kpiq,)s
which is allowed to have simple pole at each point of D and )y, with the residue at p; being
2A(p;)e€;. Such a meromorphic differential By exists if and only if the sum of its residues vanishes,
i.e. the sum of residues at qo 1, ..., go,m 1s equal to —2 Z?igl(D) A(p;)e€i. If w is a holomorphic
differential satisfying w(q;) + Bo(g;) = O foralli = 1, ..., g, then B := By + w is a meromorphic
differential satisfying condition (2) above. Such a holomorphic differential w is a solution to a non-
homogeneous linear system associated to w;(¢; ), and exists if and only if w;(g;) is non-degenerate.
Hence if and only if k% (L~2A) = 0, given any A € H" (K) there exists some Higgs field that is

L-invariant with the diagonal elements represented by A.
When h° (L_QA) = 0 and given a fixed holomorphic differential A, the space of meromorphic
differentials B satisfying condition (2) above is isomorphic to H? (KL*A~1). Indeed, let B be

such a meromorphic differential. We can keep A fixed and deform the residues Reé2 B by adding
q0,i €0
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a meromorphic differential that vanishes at g1, ..., ¢, and has simple pole only at go 1, ..., go,m. 1.€.
by adding an element of H? (K) = H® (KL*A~'). Hence the first term in (B.11) corresponds to
the freedom to choose the diagonal component, while the second term corresponds to the freedom
to choose the upper-right component of the Higgs fields once the diagonal components have been
fixed. In particular, if h® (K L?A~") = 0 (which is the generic case when deg (L™2A) = g — 1),
the morphism H® (E* LK) — H° (K) in (B.10) is an isomorphism.

When 1Y (L72A) = h°(—Q) > 0, not all holomorphic differential make up the diago-
nal components of an L-invariant Higgs field. In this case, there exists some effective divisor
Q1+ @y + o + qg_p,> m > 1, that is linearly equivalent to —Q. Given a fixed A € HO (K), the
requirement of the vanishing sum of residues of B € H° (K D+¢Q) how translates to a constraint
on A: Z?ﬁ%w) A(p;)e; = 0. This reflects the fact that the morphism H° (E*LK) — H° (K)
in (B.10) when h° (L™2A) > 0 is in general not surjective, and can even be zero. Once such
a meromorphic differential A satisfying Z?igl(D) A(p;)e; = 0 exists, a meromorphic differen-
tial B satisfying condition (2) above is guaranteed to exist by a similar construction in the case

h? (L72A) = 0.

Constraints on upper-right and diagonal components when deg (L‘2A) > g. As the de-
gree of L2A increases there will be more constraints on the diagonal components. Consider
the case where L™2A = Ox(—Q) where —Q = ¢ + ... + gg+m. Generically Q satisfies
R (—Q) = m + 1, or equivalently h° (Kg) = 0. Let E be realized by an extension repre-
senting an element in Span(D) C P for some D = p; + ... + Pdeg(p)- Note that for a generic
bundle E realized as an extension of L™A by L, we need deg(D) = h? (K_g) = 2g — 1 + m.

In the following we suppose E is such a generic bundle and we set deg(D) = 2g — 1 + m.

a
The diagonal and upper-right components of an upper-triangular Higgs field are
0 —a
respectively represented by a holomorphic differential A and a meromorphic differential B €
HY (Kp+q), i.e. with zeroes at g, ..., ¢g+m and simple poles at p1, ..., p2g—1+m satisfying

Res(B) — 2¢;A(p;) =0, i=1,...,2g—14+m. (B.14)
pi

When @ is in generic position, h° (K D+Q) = 2g — 2. This implies that the residues at p;, i =
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1,...,29 — 1+ m of an element of H® (K ) determine it, and furthermore only 2g — 2 of them

are free variables. Let r;(B) := Res(B) for 1 < i < 2g — 2 be the coordinates in H° (Kpq)-
pi

Then the rest of the residues Res (B) are linear functions in 71(B), ..., rog—2(B).
29—1<j<2g—1+m
Equations for 1 < ¢ < 2g — 2 then allows us to write Res (B) as linear combinations

29—1<j<2g—1+m
of A(p;). Plugging them in for 2g — 1 < i < 2¢g — 1 + m, we get a homogeneous linear system

of m + 1 equations for A € HY(K) = CY9. If m + 1 < g and if the linear system is of maximal
rank, there exists a (g — 1 — m)-dimensional family of solutions for A, and given each such A,
there exists a unique upper-triangular Higgs field with A representing the diagonal components
since (B) determines the residues of B and hence B itself. Comparing with (B.6), we see that the
(generic) assumption that the linear system is of maximal rank is equivalent to h° (L_lE) =1
(no “overcount”).

The cases m = g — 1 and m = 0 are the two extreme cases. In the former case, as followed
from (B.6), there is generically no L-invariant Higgs field (and hence the lower-left components
are in 1-1 correspondence with Higgs fields). In the latter case, the only constraint on A comes

from the vanishing residue condition of B.
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Appendix C

Baker-Akhiezer divisors for G Ly(C)-Higgs bundles

Consider the moduli space M (GL2(C)) of rank-2 Higgs bundles where the determinant line
bundle of the underlying bundles is of odd degree. Via tensoring with a line bundle, this situation
is equivalent to one where the determinant line bundle det(E) of each underlying bundle E is of
degree 29 — 1. By Riemann-Roch, h?(E) > deg(det(E)) — 2(g — 1) = 1, and so any such E
admits a morphism O — E.

Denote by M3, C Mg (GL2(C)) the loci of Higgs bundles with non-degenerate spectral
curves. The notion of Baker-Akhiezer divisors we have defined (cf. definition 3.1) for trace-less
Higgs fields generalize to general rank-2 Higgs fields. The eigen-line bundle ® of any Higgs
bundle (E, ) € Mj; is isomorphic to 7} (K ~1(D), where S, ™ X is the corresponding spec-
tral curve and D is the Baker-Akhiezer divisor associated to the data ((9 BN FE, ¢). Note that
deg(D) = deg(K det(E)) = 4g — 3, the genus of the spectral curves. The advantage of work-
ing with Baker-Akhiezer divisors of this degree is that generically we will be able to determine
the spectral curve once we know the divisor, and hence knowing a point D in the symmetric
product (T*X )[4973] completely determines the data (O — FE,¢). Within this appendix, by

Baker-Akhiezer divisors we will mean those of this type.
Undercount. If a bundle E with det(E) = A of degree 2¢g — 1 has a nowhere-vanishing section
i € H°(E) then it arises, up to scaling of 7, as an extension of the form

0505%E—A—0. (C.1)

Extensions of this form are elements of Ext(det(E),0) = H' (det(E)~') = C39~2. Not all of
the bundles that make up Higgs bundles in M7, has a nowhere-vanishing section so that it could
fitin (C.1) though. These bundles are “undercounted” if we want to use (C.1) to model the moduli

of the bundles that make up Higgs bundles in M3;.
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As an example, a generic Higgs bundle (F, ¢) with E unstable has no embedding from O and
so is “undercounted” in this sense. Indeed, let M — FE be the unique destabilizing subbundle
of degree deg(M) > degT(E) = g — 1, and suppose there exists a nowhere-vanishing morphism
O - E. Then i cannot factor through M — E as deg(M) > 0. Hence the composition
O — E — M~1A is nonzero. But deg (M ~'A) < g — 3, and so the condition h%(M~1A) > 0
can only be satisfied non-generically.

Nevertheless, the underlying bundle E of a generic point [E, ¢| € M7 fits in (C.1). Indeed,
consider a generic, non-degenerate spectral curve .S. It follows from theorem 1 in [6] that a generic
bundle E can be recovered as the direct image of a line bundle ®(R) on S , or equivalently it has
a Higgs field ¢ with eigen-line bundle ® on S. Now, if such £ has no nowhere-vanishing section,
then the Baker-Akhiezer divisor on S associated to (O S E , ¢) for any nonzero s’ € H°(E) will
contain the pull-back from the zero divisor on X of s’. In other words, this Baker-Akhiezer divisor

lies in the set
{D e $19731 | Ox (n(D)) = KA, D has some pull-back of a divisor from X} . (C2)

Since this is a positive codimension subset of { D € S149=31 | Ox (n(D)) = KA}, a generic point
[E,¢] € M3, will not produce a Baker-Akhiezer divisor lying in this set and so will not be
“undercounted”.

We note that even when E cannot be represented as an element of H' (det(E)~"), we can still
mark their occurrences by including the set (C.2) in our consideration. For example, although a
generic unstable bundle E with its destabilizing subbundle M is “undercounted” in (C.1), it always
admits sections of the form @ 2% M < E vanishing at an effective divisor m representing
M since deg(M) > g. Hence while generically E would not be counted in (C.1), the Baker-
Akhiezer divisors associated to (M < E, ¢), which contains 7! (m), are contained in (C.2). In
other words, Baker-Akhiezer divisors associated to sections that vanish somewhere '° of these

“undercounted” Higgs bundles behave predictably.

Note that these bundles will then fit in the s.e.s of the form 0 — O(div(s')) — E — O(—div(s’))A — 0, where
div(s’) is the zero divisor of a nonzero section s’ € H°(E), with Baker-Akhiezer divisor being the non-o-invariant

v
part of the Baker-Akhiezer divisor associated to O %+ E in discussion.
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Overcount and exceptional divisors. If a bundle £ has two linearly independent sections, then
for any two Higgs field ¢ the two corresponding Baker-Akhiezer divisors would be different but
linearly equivalent. They are examples of exceptional divisors, i.e. in our case effective divisors of
degree 4g — 3 on a spectral curve that has a non-trivial family of linearly equivalent divisors. The
converse direction is also clear: two different but linearly equivalent effective divisors of degree
4g — 3 are Baker-Akhiezer divisors defining one same Higgs bundles (E, ¢) but associated to
two linearly independent sections of . We say a bundle E is “overcounted” if h%(E) > 2. It
follows that F is over-counted if and only if the Baker-Akhiezer divisor associated to one/any data
(O — E, ¢) is exceptional.

Note that our notions of “undercount” and “overcount” are not mutually exclusive, since a
bundle can have many linearly independent sections (overcounted) but none of them is nowhere-
vanishing (undercounted). For example, consider an unstable bundle E with destabilizing sub-
bundle M of degree deg(M) > g + 1; these make up Higgs bundles in the strata lower than the
highest unstable stratum where deg(M) = g. Besides generically being “undercounted” as dis-
cussed above, it also admits at least two linearly independent sections factoring through M and so
is “overcounted”.

We note that, though, a generic Higgs bundle (F, ¢) with E unstable is “undercounted” but
not “overcounted”. Indeed, in a generic situation, the destabilizing subbundle M <— F is of
degree g and satisfies hO(M) = 1, h°(M ! det(E)) = 0. All sections of F then factor through
M, which vanishes at g points on X, and so F is not “overcounted”. On the other hand, in a
non-generic situation where F is not “undercounted”, it would be “overcounted” due to having
nowhere-vanishing sections besides the sections induced by sections of M. Hence if a Higgs
bundle (E, ¢) induces a Baker-Akhiezer divisor that is both non-exceptional and has no o-invariant
contribution, £ must be stable.

Similarly to the “undercount” situation, an “overcount” situation is non-generic since an ex-

ceptional divisor of degree 4g — 3 is non-generic on the spectral curve.

REMARK C.1. (a) There are two basic ways for a bundle E to be “overcounted”. First, £
might have a section s whose zero divisor div(s) is an exceptional divisor or has deg(div(s)) >

g (as in the above case where s is the composition O — M < FE and deg(M) > g + 1).
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The Baker-Akhiezer divisor associated to s then inherits the degrees of freedom to move
the 7~ (div(s)) part around while staying in its linear equivalence class. Second, F might
have two or more linearly independent sections with the same zero divisor (which might be
trivial, as in the case of a nowhere-vanishing section). In this case the corresponding excep-
tional Baker-Akhiezer divisors have some degrees of freedom to move the non-o-invariant

part around.

(b) Suppose F is overcounted and, in addition, is not split. Then either £ has a section that
vanishes somewhere, or all of its sections are nowhere-vanishing and there are two linearly
independent, nowhere-vanishing sections i; and i which must be be parallel at some 2°

points. In the latter case, a linear combination of 7; and i induces a section of E that

vanishes at some of these points, bringing us to the former case. The Baker-Akhiezer di-

visor in the former case is contained in the set (C.2). In short, if E is overcounted and not

split, then the family of corresponding exceptional Baker-Akhiezer divisors contains some

divisors having some o-invariant part.

(c) If E is split, then E = M @& M~'A with deg(M) > g also admits a section of the form
O — M < FE vanishing at an effective divisor m representing M. The Baker-Akhiezer

divisor associated to any data (O — M < E, ¢) contains 7~ *(m).

The overall picture. We document in table 1 some examples of how the properties of the Baker-
Akhiezer divisors associated to certain data (O — E, ¢) depends on E. The list of examples is not
exhaustive. Note that in the non-exceptional Baker-Akhiezer divisor row, a Higgs bundle (E, ¢)
could only be categorized into one of the two columns, while in the exceptional Baker-Akhiezer
divisor row, it can fit in both columns.

Let NGz, be the moduli space of stable rank-2 bundle of degree 2g — 1. Let N, be the
loci consisting of stable bundles that has exactly one section up to scaling, and this section is
nowhere-vanishing; it is an open dense subspace of Ngr,. Let Ty N 1, be the set of equivalence
classes of Higgs bundles made from these bundles such that the spectral curves of the Higgs fields

are non-degenerate. The construction of Baker-Akhiezer divisors using the unique up to scaling

295, and iy are parallel at 2g — 1 points (counted with multiplicity), which is the zero divisor of the composition
i1 < E — A, where the last arrow is the quotient map of io — E.
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contains no pull-back of divisors from X
(induced by an embedding O — FE)

contains pull-back of divisors from X
(induced by O — E with zeroes)

non- a generic stable bundle; a generic unstable bundle (with
exceptional NO unstable bundles; destabilizing subbundle of degree g);
(h(E) = 1)
exceptional some bundles, both stable and unstable, a bundle admitting a subbundle
(WP (E) > 1) with maximal subbundle M satisfying that has > 1 linearly independent

hO(KM~2det(E)) and h°(M ! det(E)) > 0,
e.g. E= M @ M~!det(E) with M as such;

section, e.g. unstable bundle with
destabilizing subbundle of degree > g;

Table 1: Properties and examples of Baker-Akhiezer divisors associated to (O — E, ¢).

section of the underlying bundles defines a map BA : T*N§ Ly — (T*X )[49_3]. The produced

Baker-Akhiezer divisors are non-exceptional and contain no pull-back of divisors from X.

(T*X)[4g—3]

s

V’ Xﬁ) (C.3)

*A[S . s
TiNG L, H,GL,

Given a generic point P in the image of BA, we can recover the unique spectral curve S
passing through the 4g — 4 points in 7% X defined by P. For each such spectral curve .S, the image
of BA defines an open dense subset of the set of equivalence classes of divisors of degree 4g — 3.
By taking into account effective divisors of degree 4g — 3 of the other three types in table 1, we
can cover the rest of the equivalence classes and corresponding Higgs bundles. For example, by
including divisors that contains pull-back of divisors on X as summand, we would include all
Higgs bundles with unstable underlying bundles.

Completing the set of divisors for all non-degenerate spectral curve, we complete the image
of BA to an open dense subspace (7 X )[849 =3 of (T*X )[4973} defined by all effective divisors
of degree 4g — 3 on all non-degenerate spectral curves. The Abel map on each non-degenerate
spectral curve together define a map A® : (T*X )L4g =8l My Gr,- The map A® is surjective by

the completion we did.
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