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1. Introduction 
The energy of particles accelerated in a cyclotron is 

limited by their relativistic mass increase which changes 
the period of their revolution. The principle of phasing 
discovered by Veksler1,2) permitting the parameters of 
the accelerator to be changed with the time made it possible 
to overcome that restriction. The development of 
accelerators whose parameters do not change with the 
time was recently initiated. In the electronic model of the 
cyclotron by McMillan and his collaborators3,4), constant 
frequency of revolution is obtained by increasing the 
magnetic field with the radius. The focusing of particles 
is ensured by azimuthal variation of the magnetic field 
according to Thomas's method5,6). However, the application 
of increasing fields is not the only method whereby 
constant frequency of revolution can be maintained. 
In 1950, one of the present authors7) suggested a direct 

current magnet consisting of a number of similar wedgeshaped 
sections for use in ring accelerators in which the 
period of particle revolution depends on the energy. However, 
a magnet consisting of wedge-shaped sections can 
also be used in a cyclotron. This method permits the 
maintenance of constant frequency of particle revolution 
in the absence of radial increase of the magnetic field and 
even if they decrease in radius—a condition which may be 
sometimes useful. 
The motion of particles in cyclotrons with a sectioned 

magnet system with homogeneous (or almost homogeneous) 
fields H in the sections and fields x H in the intermediate 
spaces between them is discussed in the present 
paper. Some of the results of the calculations set forth 
below are probably in some relation to the clover leaf type 
accelerator suggested by McMillan et al.,3,4) the theory of 
which has not yet been published. 

2. Conditions of cyclotron resonance 
In a cyclotron, the period Tλ of the r.f. voltage applied to 

the dees must equal the period of revolution of a particle 
round its orbit 

T = S/βc (2.1) 

where S is the length of the orbit and βc is the velocity of 
the particle. 
Introducing the mean field term 

= 
Hds = Hrdν 

= Eβ dν = 2ΠEβ (2.2) = 
ds 

= 

S = eS dν = eS (2.2) 

where ν is the angle of the trajectory bend and E is the 
particle energy, the equation (2.1) may be written in the 
form: 

T = 2ΠE/ce (2.3) 

Thus to ensure constancy of the period of revolution, the 
mean magnetic field round the orbit must grow with 
increasing energy. If the magnet consists of sections of 
different magnetic field values which do not increase along 
the radius, an increase of the mean field can be obtained 
if suitable boundaries of magnet sections are selected. 
This means that the part of the trajectory which passes 
sections of greater intensity of the magnetic field must 
increase, while the part of the trajectory passing sectors 
where the values of the magnetic field are low must decrease. 
Let us examine a magnet composed of N sections 
with H field. In the intermediate spaces between them, 
the magnetic field equals x H (where x < 1). For a closed 
orbit, the following relations will be correct in such a 
magnet: 

N (ν1 + ν2) = 2π (2.4) 
where ν1 is the angle of trajectory bend in a sector with 
field H and ν2 is the angle of the bend in the intermediate 
space with a field x H, 

T = Nr (V1 + ν2/x)/βc (2.5) 
where the radius r of the orbit curvature in a sector with 
field H is 

r = Eβ/eH (2.6) 

* This paper was presented in title only. 
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Introducing the notations 
ζ = E/E0, ζm= TceH/2πE0 (2.7) 

where E0 = m0c2 is the energy of a particle at rest, the 
following equations may be obtained for the angles of the 
bend and the radius of curvature: 

ν1 = 
2Π 1-x ζm (2.8) ν1 = 
2Π 1-x ζ (2.8) ν1 = N 1-x 

(2.8) 

ν2 = 2π x 
( 
ΖM -1) (2.9) ν2 = N 1-x ( ζ -1) (2.9) 

r1 = r = E0 √ζ2-1 ; r2 = 
r (2.10) r1 = r = eH √ζ

2-1 ; r2 = X (2.10) 

For positive values of the coefficient x, the angles ν1 and 
ν2 must be positive, but for x < 0 ν2 must be < 0. 
The following restrictions in the choice of parameters 

and the limiting energy are obtained from it: 
ζ < ζM (2.11) 

x < ζ/ζ (2.12) 
The values of maximum RM and minimum R m of the 
distances from the orbit to the centre of the accelerator 
can also be easily calculated: 

RM = r [ + ( 1 -1) 
sin π x 

( 
ΖM 

-1) ] (2.13) RM = r [ + ( 1 -1) 
sin N 1-x ( I -1) ] (2.13) RM = r [ + ( x -1) sin π 

] (2.13) RM = r [ + ( x -1) sin N 
] (2.13) 

Rm = r 1 
-( 

1 
-1) 

sin π 1-x ζm/ζ ] (2.14) Rm = r 1 
-( 

1 
-1) 

sin N 1-x ] (2.14) Rm = r x -( x -1) 
sin N 1-x ] (2.14) Rm = r x -( x -1) sin Π/N 

] (2.14) 

In the particular case of x = 0, when no magnetic field 
is present in the intermediate spaces between the sections 
and the motion of the particles in these spaces is linear, 
a number of formulae can be simplified: 

lim ν1 = ν = 2Π/N (2.8a) 

lim ν2 = 0 (2.9a) 
x → 0 

lim r2 = ∞ (2.10a) 
x → 0 

lim Rm 
x → 0 

= R = r[1 + ( ζm -1) 
π/N ] (2.13a) lim Rm 

x → 0 
= R = r[1 + ( ζ -1) sin Π/N 

] (2.13a) 

lim Rm = y = [1 + ( 
ζ 
- ) 

π/N 
] (2.14a) lim Rm = y = [1 + ( ζ - ) tg Π/N ] (2.14a) x→0 

= y = [1 + ( ζ - ) tg Π/N ] (2.14a) 

lim r2ν2 = l = r • 2π/N • (ζM/ζ - 1) (2.15a) 
x→0 

where l is the length of the linear part of the trajectory 
and y is the distance from the middle point of that part 
to the centre of the accelerator. 

3. Focusing 
The influence on the particle of the magnetic field varying 

step-wise is equivalent to the influence of a thin lens 
of focal distances fz for vertical motions and fr for radial 
motions 

∆( 
dz 
) = ( 

dz 
)2-( 

dz 
)1=-

z (3.1) ∆( dS ) = ( dS )2-( dS )1=- fz (3.1) 

∆( 
dρ 
)-( 

dρ 
)2=( 

dρ 
)1=-

ρ (3.2) ∆( dS )-( dS )2=( dS )1=- fr (3.2) 

where z and ρ are the vertical and radial deviations of the 
particle from the closed orbit at the point where the orbit 
intersects the edge of the magnetic ssctor and, S is the 
length counted along the trajectory 

fz = rctgγ/1-x = -fr (3.3) 

The angle γ between the line normal to the sector 
boundary and the line to the trajectory is considered 
positive if the part of the trajectory passing into the weaker 
field x H is located on the same side of the normal line 
as that in which the curvature centre of the part of the 
trajectory passing into the stronger field H is located. 
The number of vertical and radial oscillations of the 

particle per revolution can be found by means of methods 
developed for strong-focusing accelerators8) provided 
the focusing or defocusing influence of the edges is taken 
into account. 

ωz = ωzT = Nμz ; ωr = Nμr (3.4) ω = 2π = 2π ; ω = 2π (3.4) 

In the case of homogeneous magnetic fields or fields 
which deviating slightly from homogenity, the following 
equation is obtained for μz and μr: 

COS μ = C1C2-1 (x 
η2 + 1 η1 )s 1s 2- 1 

( 
1 C1 S2 + c2 S1 ) COS μ = C1C2-1 (x η1 

+ x η2 
)s 1s 2- i ( x C1 η2 

+ c2 η1 ) 

× r + r ) + 
1 S1 S2 r2 (3.5) × f1 

+ f2 ) + 2x η1 η2 f1f2 
(3.5) 
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where 
S1 = sinη1ν1;S2 = sinη2ν2;c1 = cosη1ν1;c2 = cosη2ν2 

(3.6) 

η1 = 
√n1 ;η2 = { √n2 

for vertical motion 
(3.7) η1 = √1-n1 

;η2 = { √1-n2 for radial motion (3.7) 

n1 = -
r ∂H ; η2 = -1 r ∂(xH) (3.8) n1 = -H ∂ρ ; η2 = -x2 H ∂ρ (3.8) 

For a particular case of homogeneous magnetic fields 
(n1 = n2 = 0) we obtain 

cos μz = 1-(1-x) (ν1 + ν2/x) tgγ1 + tgγ2 cos μz = 1-(1-x) (ν1 + ν2/x) 2 
+ (1-x)

2 
ν ν2 tgγ1 tgγ2 + 2 ν x tgγ1 tgγ2 

(3.9) 

cos μr = cos ν1 cos ν2 - ½(x + 1/x) sin ν1 sin ν2 
+ (1-x) (sin ν1 cos ν2 + 1/x • cos ν1 sin ν2) tgγ1 + tgγ2 + (1-x) (sin ν1 cos ν2 + 1/x • cos ν1 sin ν2) 2 

+ (1-x)
2 
sin ν1 sin ν2 tgγ1 tgγ2. + 2x sin ν1 sin ν2 tgγ1 tgγ

2. 
(3.10) 

By means of simple but tedious calculations which are 
omitted here, the connection of the angles γ1 and γ2 with 
the form of the line R m (θ) can be found representing 
the geometrical place of the middle points of the trajectory 
parts in the intermediate spaces between magnet sections, 
i.e. the points where the distances of the orbits from the 
centre of the accelerator are minimum. 

tgγ1 = 
A1-B2ξ ;tgγ2 = 

A1+B2ξ (3,11) tgγ1 = A2+B1ξ ;tgγ2 = A2-B1ξ (3,11) 

where 
ξ = Rm dθ/dRm (3.12) 

θ is the azimuthal angle, 

A1 - ( 
dr2 -1) sin ν2 + r2 dν2 = 

(1 - x) sin ν1 sin ν2 + π (ζ2-1) ζm x (cos ν1 sin ν2 - 1 sin π ) 
(3.13) A1 - ( 

dr2 -1) sin ν2 + r2 dν2 = 
(1 - x) sin 2 sin 2 + N (ζ

2-1) ζ3 x (cos 2 sin 2 -1-x sin N ) (3.13) A1 - ( dRm 
-1) sin 2 + 2 dRm 

= 
sin π - (1-x) sin ν1 - π (ζ2-1) ζm x cos ν1 

(3.13) A1 - ( dRm 
-1) sin 2 + 2 dRm 

= 
sin N - (1-x) sin 2 -N (ζ

2-1) ζ3 x cos 2 
(3.13) 

A2 = dr2 -( 
dr2 - 1) cos ν2 = 

sin π -(1-x) sin ν1 cos ν2 - π (ζ2-1) ζM x cos ν1 cos ν2 
(3.14) A2 = dr2 -( 

dr2 - 1) cos ν2 = 
sin N -(1-x) sin 2 cos 2 -N (ζ

2-1) ζ3 x cos 2 cos 2 (3.14) A2 = dRm -( dRm 
- 1) cos 2 = sin π -(1-x) sin ν1 - π (ζ2-1) ζM x cos ν1 (3.14) A2 = dRm -( dRm 
- 1) cos 2 = sin N -(1-x) sin 2 -N (ζ

2-1) ζ3 x cos 2 
(3.14) 

B1= ( r2 -1) sin ν2 = (1-x) sin ν1/2•sin ν2/2 B1= ( Rm -1) sin 2 = sin Π/N - (1-x) sin ν1/2 
(3.15) 

B2= r2 -( 
r2 -1) cos ν2 B2= Rm -( Rm 

-1) cos 2 

= sin π/N - (1-x) sin ν1/2•cos ν2/2 = sin π/N - (1-x) sin ν1/2 
(3.16) 

The left equalities (3.13-3.16), as well as the equations 
(3.1)-(3.12) apply not only to the cyclotron but also to 
the ring phasotron. 
The expressions contained in the formulae (3.9) and 

(3.10) may be found from (3.11). 

tgγ1 + tgγ2 = A1A2 + B1B2ξ
2 
; tgγ1 tgγ2 = 

A12-B22ξ2 
2 = A22-B12ξ2 ; tgγ1 tgγ2 = A22-B12ξ2 

(3.17) 

For symmetrical magnet sections 
tgγ1 = tgγ2 = A1/A2 (ξ = 0) (3.18) 

For a particular case (x = 0) where magnetic fields in 
the immediate spaces between sections are absent9), 
formulae (3.13)-(3.16) become much simplified 

lim A1 
x→0 

= 1 dl = ζM/ζ3-1 tgπ/N lim A1 
x→0 

= 2 dy = N/πtg π/N + ζM/ζ3-1 tgπ/N 

(3.13a) 

lim A2 
x→0 

= 1 (3.14a) lim A2 
x→0 

= 1 (3.14a) 

limB1 
x→0 

= 1 l = ζM/ζ - 1 tg π/N limB1 
x→0 

= 2 y = N/π-tg π/N+ζM/ζ-1 
tg π/N 

(3.15a) 
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lim B2 
x → 0 

= 1 (3.16a) 

The use of asymmetrical magnet sections (ξ ≠ 0) permits 
an increase in vertical focusing and results at the same 
time in an increase in the number of radial oscillations 
per revolution. Some features of this method also occur 
in Kerst's method 10,11) suggested for accelerators with 
radially increasing magnetic fields. 

4. Energy limit 
The energy limit obtainable in a cyclotron is characterized 

by the point of intersection of the stability boundary 
ζ (ζM) at which cos (μz = 1 with the boundary at which 
cos μr = - 1. For the case x = 0, ξ = 0, we get: 

ζmax2 1 + N/π • ctg π/N (4.1) 

With growing ξ the energy limit increases and approaches 
(for either value of x) the value corresponding to 

ζmax2 
1 (4.2) ζmax2 1-N/2π • sin2π/N (4.2) 

Thus, when the number of sections is greater the energy 
limit also increases and becomes a linear function of N 
when the values of N are large. 

ζmax ≈ N/π (4.3) 

The stability region is intersected by resonance lines. 
The most harmful are those between the frequency of 
vertical oscillations and the frequency of revolution and 
those of coupling between the frequency of vertical and 
radial oscillations. They can be eliminated by various 
methods. One effective method is to choose the coefficient 
x > 0.4, but the stability region and the energy limit 
decrease as x increases. Values of ζmax for N = 3 and 
4 and ξ = 3 for various values of the coefficient x are 
given in Table 1. 

TABLE I. 
Dependence of ζmax on x values, ξ — 3 

ζmax 
x N = 3→ N = 4 
0 1.34 1.67 
0.5 1.20 1.60 
0.9 1.027 1.027 

Resonance lines between the frequency of radial oscillations 
and revolution frequency intersect the stability 
region only if N ≥ 4. Another effective method of 
eliminating resonance is to use nonhomogeneous fields, 

i.e. introduce variable coefficients (ζM(ζ) and x (ξ) (Thomas-type 
cyclotron). In this way, no passage through resonance 
is needed to reach an energy of about 500 Mev for protons. 

5. Parameters tolerances 
Two criteria determining parameter tolerances can be 

given. 
(a) Stability criterion 
Parameter tolerances should not disturb the stability 

of orbits or cause a passage through resonance. 
The tolerance for the value of magnetic field homogeneity 

can be established from equations (3.4) and (3.5). 

4 ∆ωz = 2π | ∆ cos μz | = 4π ζM 1 4 ω = N sin ΜZ = N ζ (1-x) sin μz 
× |[n1 (1-x) ζM + n2x2 ( ζM - 1 ) ] | « 1 × |[n1 (1-x) ζ + n2x

2 ( ζ - 1 ) ] | « 1 

(5.1) 
Tolerances for the other parameters can be found in the 
same way. 
A phasing criterion is of particular significance for a 

moderate amplitude of the accelerating voltage V. 
(b) Phasing criterion 
The phase shift φ of the electric field for particle passages 

through the accelerating slit, resulting from the tolerances 
for the parameters of the accelerator, must not exceed an 
accepted value depending on the values of phase φi at 
the beginning and φk at the end of acceleration. Let us 
examine the requirements for magnetic field stabilization. 
A variation of the magnetic field for a value ∆H/H = h 
causes a change in the period of particle revolution by a 

value which does not depend upon the coefficients x and 
ξM 
T = T0ζ(ζ2 + 2h + h2)-½ (5.2) 

The latter formula permits the determination of the velocity 
of phase variation of a particle. 

ρ= dφ = eVcosφ dφ = ω—ω0 = 
2π 
[ 
(ζ2 + 2h + h2)½ 

-1] ρ= dt = E0T dξ 
= ω—ω0 = T0 [ ζ -1] 

(5.3) 
The expression determining the admitted value of h, 
obtained after integrating, is 

eV | sin φK - sin φ1 | =|√ζmax2 + 2h + h2-(ζmax + h) E0 2π 
=|√ζmax2 + 2h + h2-(ζmax + h) 

(5.4) 
from which 

|h|≈ ζmax eV | sin φK-φi | (5.5) |h|≈ ζmax - 1 E0 2π (5.5) 
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DISCUSSION 

V. Migulin: R. B. Neal told us about the advantages 
of linear accelerators. 
With reference to Livingston's paper, however, in 

the region of a few Bev circular machines have definite 
advantages. Would one of the groups compare the advantages 
of linear and circular machines? 
R. Hofstadter: We easily have an external beam in 

Linacs and the question is, if one can get one out of circular 
machines. The energy can be easily varied from 
nearly 0 to maximum in linacs. It may be possible to do 
it with circular machines, but I do not know anything 
about it. 
J. J. Livingood: The Russian results on the section 

magnet system are analogous to those obtained by M. H. 
Foss, L. C. Teng and E. A. Crosbie theoretically at Argonne. 
The fields are uniform radially and azimuthally 
except for the sudden change from H to H prime. This 
should permit a simpler construction than with the curved 
poles of Thomas' machine. If one is willing to put up 
with very weak vertical focusing, at least one or both 
limiting lines of the sectors can be linear. Both boundaries 
must be curved if one wants strong vertical focusing. 
A. A. Kolomenski: We examined both homogeneous 

and inhomogeneous fields inside one sector. Homogeneous 
fields are easier to produce and will be used. Historically 

the idea was to have no field at all in the intermediate 
section. 
A. Roberts: My results presented on Monday did not 

seem to be in agreement with these. Kolomenski said 
that with 4 sectors one could obtain up to 500 Mev, 
which I guess is the one-half integral resonance. Has he 
means to avoid the one-third resonance which occurs with 
4 sectors? 
A. A. Kolomenski: In the paper presented, only linear 

resonances are considered. Work done on non-linearities 
in Moscow are not reported. The avoidance of the vertical 
resonance only was outlined here. 
D. J. Judd: I might remark that there is no difference 

in principle between the properties of cyclotrons having 
square-wave or discontinuous variations of magnetic 
field with azimuth, such as discussed in the preceding 
paper, and those having sinuosidal or other periodic 
variations, such as that proposed by Thomas and 
incorporated in the electron model cyclotrons built at 
Berkeley several years ago. In the pioneering theoretical 
work of McMillan at Berkeley in 1949, square-wave 
fields were considered; both the cases of uniform 
fields with radially varying azimuthal extent and of wedge 
sectors with rising fields were treated. Results similar 
to those described in the present paper were obtained. He 
dealt both with configurations having x = 0 and with 

those having finite and varying x. In the square-wave 
cases, one may obtain rigorous closed analytic expressions 
for the linearized betatron oscillation frequencies, and 
thus may study energy limits, which cannot be so conveniently 
obtained by extending the work of Thomas, 
treating sinusoidal fields by successive approximations. 
There is one important difference between square and 

sinuosidal fields. The former must give way to the latter 
as one approaches the center of the cyclotron. I carried 
out detailed design calculations for the model cyclotrons 
at Berkeley, starting in 1950, and found that it was simpler, 
in calculating the required fields analytically to the required 
accuracy, to retain the sinusoidal form at all radii, so as 
to avoid the necessity of making this transition. An additional 
motivation was that I discovered an exact scalar 
magnetic potential function for the required field, which 
greatly simplified the construction of the magnet pole 
pieces. 
The precision of the fields in the models may be judged 

by the fact that electrons were accelerated to about 70 Kev 
by r.f. voltages of 25 volts, so that the particles stayed 
in phase for over 3000 turns. This was not limited by 
field precision but by the energy gain required to enable 
the electrons to clear the source structure on the first turn. 
I would like to inquire for details on the model for the 

10 Gev Russian machine, specially the number of sectors, 
field gradients, number and position of the straight sections. 
A. M. Stolov: 4 straight sections with the injector in 

one and the accelerating electrodes in the other 3. The 
field gradient n = 0.7 to 0.55 is not constant with radius 
but in these limits the radius is R = 2 metres in the magnet 
sectors. We have 600 mm. straight section, C shaped 
magnet cross section, 0.5 sec. rise time, 1 pulse in 3 sec. 
M. H. Blewett: If you had C-shaped magnets in the 

model, why did you change to H-shaped magnets in the 
machine? 
A. M. Stolov: It was not an engineering model, but a 

model to study particle orbits. In the large magnets we 
felt we would have a better field distribution if the magnets 
were symmetric and more stable mechanically. 
J. J. Livingood: Where is this model with AG described? 
A. M. Stolov: This model has weak focusing and was 

made several years ago. 
M. G. N. Hine: I understood from E. G. Komar's 

talk that a 600 Mev AG model was made. 
A. M. Stolov: These were two different things. This 

weak focusing model has been made. At the moment we 
build a model of an 200-600 Mev AG proton accelerator 
to be used to study Vladimirski's accelerator properties. 
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T. A. Welton: There is a disagreement as to correct 
variation of Qr with energy in a fixed frequency cyclic 
accelerator. 
I reduced the formulas of H. Roberts and E. M. Moroz 

given in standard form to smooth approximation and even 
performed the calculation outlined by Roberts and also 
performed by Moroz. The result is that my derivation 
disagrees with Roberts', agrees with Symon's and agrees 
with Moroz' and Rabinovich's. There is a clear-cut 
disagreement between Roberts and Teng and on the other 
hand Symon's, my own and Moroz' results. 
The Qr = 3/2 resonance with 4 sectors comes quite low. 
The first integral resonance comes as high as 350 Mev. 
D. W. Kerst: An elementary difficulty encountered 

with spiral ridges are the non-linear stop bands. If in a 
non-linear machine one plots the permissible initial amplitude 
or radial betatron oscillations for not loosing particles 
against our parameter σ = μ, our experimental work 
on a digital computer gives us blanks (fig.) at 

σ = Π (linear stability limit), 
2Π/3 (quadratic non-linearity), 
2Π/4 (cubic non-linearity), 

whereas according to P. A. Sturrock and J. Moser the 
cubic non-linearity is sometimes harmless. 
For one spiral gap accelerator we are not sure we have 

no trouble at the cubic non-linearity resonance. 
M. G. N. Hine: As a comment to M. G. White's 

paper about injecting the possible total amount into a 
conventional type of constant gradient or alternating 
gradient synchrotron, I have no definite figure to quote, 
but my impression is that the highest current determined 
eventually by the space charge can be obtained practically 
as easily with single turn injection as with multiturn injection. 

Although at the start of multiturn injection the particles 
are lying on different radii, these radii come together after 
¼ wavelength of synchrotron oscillation, so that beam 
will look much as if it were injected on a single turn. 
I feel that injecting a large current into a single turn will 

be easier than injecting a lower current in many turns. 
M. H. Hamermesh: To miss the injector it is better 

to use multiturn injection on 24 turns. 
J. B. Adams: We thought that the limitation is due to 

space charge. 
M. H. Hamermesh: Yes, finally, but you cannot 

possibly get to it. 
M. G. N. Hine: With the fairly large energy accelerators 

with small aperture milliamperes can be easily 
obtained for 1-turn injection and this takes you already 
into the space charge limited region. 
M. H. Hamermesh: In our case we were not limited 

by space charge after 24 turns of injection. 
A. Roberts: I would like to make a comment on 

M. G. White's proposal. 
At the Rochester cyclotron we used various rotating 

condensers with ceramic blades. Our 1st condenser had 
no failure in 4 years. Now we had 3 failures last year, 
due to radiation damage. The radiation level is only a 
few hundred watts. White can get several kW of 
radiation, so he should inquire about the effect of such 
a radiation on the ceramic chamber. Neutron yields are 
very intense. 
M. G. White: We hope to get the beam largely outside 

the chamber eventually. 
R. L. Thornton: The experience of people with electron 

synchrotrons using ceramic vacuum chambers will rule 
out this eventuality. 
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E. M. McMillan: This is not really quite right. 
V. I. Veksler: The neutron level in gamma-ray machines 

is much less than in proton machines so that experience 
might not be relevant. 
K. Johnsen: Hine's point is important. 
In a given machine with a given aperture, a given acceptance 

phase space is to be filled with a beam of the highest 
possible intensity. If the injected beam has a small emittance 
(small area in phase space), one gains by using multiturn 
injection, and the beams corresponding to the various 
turns are aligned beside each other in the acceptable phase 
space. However, if on can increase the beam intensity 
by increasing the emittance of the beam until it is of the 
same size as the acceptance in phase space of the vacuum 
chamber without decreasing the density in phase space 
inside the beam, then nothing is gained by using multiturn 
injection. What type of injector one has available 
or is prepared to chose therefore also has some influence 
on the problem in practice. 
J. P. Blewett: Is the point raised by Hamermesh 

covered by Johnsen's comment? 
M. H. Hamermesh: All we did was to take reasonable 

values for quality and intensity and to calculate the optimum 
number of turns which could be injected, which 
gave the figure of 24 turns I quoted. 
V. I. Veksler: I would like to make some remarks 

about the question on beam density. I agree with 
Hamermesh, because one must consider not only the radial 
extent of the beam to be of importance, but also the vertical 

direction extent of beam to be important. The net injection 
result would be that it is more advantageous to use 
multiturn injection. 
G. K. Green: In constant gradient machines one must 

consider 4 dimensional phase space. The radial position 
and velocity spread at betatron oscillation frequencies is 
much less important in AG machines, and we agree with 
Johnsen for the AG machine. 
F. C. Shoemaker: With reference to Hine's 

comment, if the injector energy is modulated upwards 
to match the magnetic field increase, so that the 
beam is always injected on the equilibrium orbit, the entire 
area of phase space for synchrotron oscillations is uniformly 
covered with beam which will not bunch down to 
a small diameter in the chamber. 
W. M. Brobeck: Regarding H versus C magnet shape, 

I must remark that C magnets use single plates. 
In the Bevatron with a 2 × 6 foot aperture planned, a 

single plate C magnet was impractical. Do you have the 
same situation with the Russian machine? 
A. M. Stolov: With the C shaped magnet, if the aperture 

is small, one single sheet may be stable. But the 
10 Bev machine with 8 m2 in cross section had to be made 
of component parts in its cross section. Also we have 
always weak focusing. The gradient tolerance for the 
machine is 0.036 gauss/cm. In this case the symmetry 
of the magnet system is of primary importance, otherwise 
high current on compensating windings to fix up field 
defects would be needed. 


