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ABSTRACT

Classical machine learning, extensively utilized across diverse domains, faces limitations in speed, efficiency, parallelism, and processing of
complex datasets. In contrast, quantum machine learning algorithms offer significant advantages, including exponentially faster computa-
tions, enhanced data handling capabilities, inherent parallelism, and improved optimization for complex problems. In this study, we used
the entanglement enhanced quantum kernel in a quantum support vector machine to train complex respiratory datasets. Compared to clas-
sical algorithms, our findings reveal that quantum support vector machine (QSVM) performs better with higher accuracy (45%) for complex
respiratory datasets while maintaining comparable performance with linear datasets in contrast to their classical counterparts executed on a
2-qubit system. Through our study, we investigate the efficacy of the QSVM-Kernel algorithm in harnessing the enhanced dimensionality of
the quantum Hilbert space for effectively training complex datasets.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0240894

I. INTRODUCTION

In the ever-evolving landscape of machine learning (ML) in
various sectors, from accelerating industrial automation to revealing
the fundamental aspects of nature. ML algorithms have demon-
strated remarkable efficacy in processing and analyzing data across
multiple dimensions.'~ However, the performance of the ML algo-
rithms is very dependent on the input datasets, which have lim-
itations in training random datasets and intricate optimizations.
Classical algorithms, such as classical support vector machines
(SVMs), are extensively utilized in solving various problems in
diverse domains; their strength lies in their ability to effectively
solve classification problems, particularly through the use of ker-
nel functions. Their capability to handle non-linear relationships
between features makes them suitable for a wide range of appli-
cations, including bioactivity modeling, protein classification, and
image enhancement.”” As the feature space becomes large and the
kernel functions become computationally expensive to estimate,
SVM faces challenges in successfully solving such problems. The
choice of kernel function and regularization parameter are key

parameters to effectively training the datasets.® In addition, the com-
putational complexity of increasing the non-linearity of kernels can
lead to higher power consumption, posing practical challenges in
real-world applications.”*

In contrast, quantum machine learning algorithms, including
quantum support vector machines, have been performing better in
speed, efficiency, and parallel processing of complex datasets.”
Different quantum machine algorithms have been utilized for var-
ious tasks, including drug discovery,'” classification of particles pro-
duced by the large hadron collider (LHC),'* detection of quantum
anomalies,'” calculation of electronic structure,'® and monitoring of
healthcare.!” Quantum SVM (QSVM) offers a significant speed-up
gain in overall run-time complexity.'® The inherent volatility of ran-
dom data, their high-dimensional feature spaces, and the absence of
clear patterns result in compromised accuracy and computational
efficiency. Despite concerted efforts to enhance the performance of
classical SVMs in such datasets through custom kernel functions
and dimensionality reduction techniques, the problem persists. The
ZZ feature map of QSVM plays a crucial role in transforming ran-
dom data into a higher-dimensional space, thereby enhancing the
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training of QSVM in comparison to classical SVM. It is a non-linear
mapping that extracts local properties of the input data, allowing for
a more effective representation of the data in a higher-dimensional
space.'” This transformation is significant, as it changes the relative
position between data points, making the dataset easier to classify in
the feature space.‘“() In addition, the QSVM kernel method utilizes
the large dimensionality of the quantum Hilbert space to replace the
classical feature space, further enhancing the discriminative power
of the QSVM.*"

In this work, we used QSVM to classify the random dataset
of different breathings acquired by the piezoelectric sensor (see
supplementary material, Sec. I for a detailed description of the
sensor fabrication and data acquisition). By merging the princi-
ples of quantum computing with the established SVM framework,
our approach harnesses the intrinsic parallelism of the quantum
realm and the ability to handle superpositions and entanglements.
Using quantum-enhanced kernel functions (KQ-SVM) seeks to nav-
igate the intricacies of random data distributions and offers a viable
solution to classical SVM limitations. Through empirical analyses
spanning random-infused datasets, our research validates the supe-
rior performance of KQ-SVM, with 45% higher precision than its
classical counterparts. Therefore, our study makes a pivotal advance-
ment in quantum machine learning, setting a precedent for future
explorations into the integration of quantum computing into the
realm of data analysis.

Il. METHODS

Kernel methods and quantum computing represent two
intriguing yet distinct approaches for deciphering complex data.
While both have their merits, quantum algorithms, particularly
Quantum Support Vector Machines (QSVMs), demonstrate superi-
ority, especially when dealing with random datasets. Kernel methods
rely on the application of kernel functions to project data into a
higher-dimensional feature space, unraveling intricate relationships
within the data. This method, while effective, operates within the
constraints of classical computation. However, quantum comput-
ing leverages the principles of quantum mechanics, utilizing qubits
that exhibit superposition and entanglement to manipulate infor-
mation in ways beyond classical capabilities.”””” Quantum SVMs,
specifically designed for quantum computers, provide a unique
advantage by harnessing the power of quantum parallelism to pro-
cess information more efficiently than classical SVMs. One notable
distinction lies in the data representation paradigms employed by
these approaches. Kernel methods visualize data as points that reside
within the feature space, a representation limited by the classical
computational framework.””" Quantum computers, on the con-
trary, utilize qubits existing in a vast Hilbert space, allowing for a
more nuanced and flexible representation of the data. This funda-
mental difference underscores the diverse avenues through which
information can be captured and manipulated, giving quantum
algorithms an edge in handling complex, unpredictable datasets.

Although kernel methods have excelled in various ML tasks,
boasting a well-established theoretical framework and diverse algo-
rithms, they may face challenges when dealing with highly random
datasets where the underlying patterns are elusive and non-linear.
Quantum SVMs, on the other hand, offer a promising solution
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to this issue. The inherent quantum parallelism allows these algo-
rithms to explore multiple solutions simultaneously, providing a
more robust approach to capture intricate patterns in seemingly
chaotic data. These are computationally demanding problems where
classical SVMs and kernel methods may struggle due to their inher-
ent limitations. The quantum advantage lies in its ability to process
large amounts of information in parallel, offering a potential break-
through for solving problems that were once deemed impractical for
classical computation.

The captivating journey into the heart of a QSVM is a metic-
ulous exploration of the intricate dance of quantum states, feature
transformations, and learning algorithms that orchestrate this pow-
erful ML tool. It begins with the preparation of qubits, the fun-
damental building blocks of quantum computation, in a specific
configuration, which lays the foundation for subsequent transforma-
tions.”* The dynamical map then takes center stage, orchestrating
the evolution of the quantum state under the combined influence
of the input data and the chosen kernel function.”””” This map
acts as a translator, encoding the complex relationship between raw
data and the feature space where classification ultimately occurs.’
As the qubits evolve through this map, their state transforms into
the evolved density matrix, reflecting the inherent uncertainty that
defines the quantum realm. The measured feature vector then col-
lapses the quantum wavefunction, transforming the probabilistic
quantum state into a concrete classical vector suitable for classi-
fication algorithms. This vector serves as the bridge between the
quantum realm and the classical world, carrying the distilled essence
of the data within the feature space.

The feature map plays a pivotal role in this transformation,
acting as a portal that transports the data from its original input
space to a higher-dimensional realm known as the feature space.
Within this expanded canvas, complex relationships between data
points that were previously hidden can become readily apparent,
potentially leading to superior classification accuracy in challeng-
ing datasets. The training function plays a crucial role in guiding
the behavior of the dynamical map and the resulting feature map,
ultimately enabling the QSVM to navigate the vast feature space and
distinguish between classes effectively. By meticulously optimizing
this function through a training process, the QSVM gradually refines
its ability to separate the data in the feature space, ultimately lead-
ing to more accurate classifications (Fig. 1).'1%° Classical SVM seeks
to find a hyperplane that maximizes the margin between the two
classes. The decision function f(x) for SVM is

f(x) =w-¢(x) +b, ey

where ¢: Rd — F is the feature map that transforms the input
data into a higher-dimensional feature space F. The optimization
problem is

2n
miil % Hw||2 + CZ max (0,1 — y;(w- ¢(xi) + b)), (2)
Wy i=1

where w is the weight vector, b is the bias term, |w]?* is the squared
norm of w, C is the regularization parameter, ¢(x;) is the feature
mapping of input x;, y; is the label, and max[0,1 - y,(w ¢(xi) + b)]
is the hinge loss, which measures the penalty for misclassified points
and the degree of correctness for correctly classified points that lie
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FIG. 1. Visual representation illustrat-
ing the conceptual flow of the quantum
support vector machine (QSVM).
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within the margin. Classical SVM uses a feature map ¢ : R" - H to
map input data x € R” to a higher-dimensional feature space H as
¢(x) with the kernel function,

K(xix7) = ¢(x1) - $(x))- ®)
This leads to the following decision function of SVM:

N
f(x)= Z a;yiK (xi,x) + b, (4)
ps

where a; are the Lagrange multipliers, y, € {~1, 1} are the labels, and
b is the bias term.

While quantum feature maps input x to a quantum state
|¢,(x)) in Hilbert space Hg,

|64(x)) = U(x)[0). (5)

Entangling gates such as the CNOT gate create correlations
between qubits,

CNOT(0) ® +)) = (00} + 1)), ©

where U(x) is a quantum circuit parameterized by x, which leads
to generating the quantum kernel as an inner product between
quantum states,

Ko (xi,%7) = [(q (x1) |9 (%)) @)

Quantum feature maps embed data into an exponentially larger
space, enabling better separation of complex data distributions,

H =span{|0),[1),...,]2" - 1)}. (8)

Entangled states represent dependencies between features more
effectively than classical methods,

2"-1
lp(x)) = > a(x)Ik). ©)
k=0
The quantum kernel naturally incorporates non-linear boundaries,
making it ideal for datasets with complex structures. The quantum
kernel is defined as

2"-1 2

> (xi)e(x))

k=0

Kquantum (xi: Xj) = > (10)

quantum measurement

where x; and x; are the input feature vectors, and cx(x) represents
the coefficients of the quantum state corresponding to the input x.
Further entanglement maps to an entangled quantum state |¢ e (%)),

|$q.e(x)) = Ue(x)lentangled state), (11)
where U, (x) is an entanglement operation based on the input x. This
leads to the entanglement-enhanced quantum kernel. The entangle-
ment introduced by the ZZ feature map allows the kernel to naturally
incorporate non-linear boundaries, making it ideal for datasets with
complex structures such as respiratory data. The entangled state
representation is

|ent(x)) = exp (iX1X2Z®Z)(%(|OO>+‘11))), (12)

where x; and x, are components of the input feature vector x, and
Z ® Z represents the tensor product of Pauli-Z operators acting on
the qubits. The enhanced quantum kernel with entanglement is

Koo (xi:%)) = [{9g. (x1) g (1)), (13)

N
f(x) =3 aiyiKge(xix) + b, (14)
i=1

The higher accuracy of the quantum SVM is attributed to
the entangled quantum states effectively mapping data to a much
higher-dimensional space compared to classical or nonentangled
quantum mappings, capturing intricate correlations between fea-
tures, representing complex patterns more effectively, and the
decision function now leverages the enhanced kernel.

lll. LITERATURE REVIEW

Quantum support vector machines (QSVMs) have emerged
as a promising approach in quantum machine learning, lever-
aging quantum computational advantages for classification tasks.
Rebentrost et al.” proposed a quantum implementation of sup-
port vector machines (SVMs) with logarithmic complexity in the
size of feature vectors and training sets, highlighting their expo-
nential speedup compared to classical counterparts. This work
utilized quantum matrix inversion techniques and principal com-
ponent analysis (PCA) to efficiently compute inner products in
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high-dimensional feature spaces, demonstrating their applicabil-
ity in big data scenarios where classical algorithms face signifi-
cant computational challenges. Expanding on this foundation, Li
et al”’ experimentally realized a QSVM algorithm on a four-qubit
nuclear magnetic resonance (NMR) system, showcasing its abil-
ity to classify handwritten digits with minimal features. The study
emphasized the potential of QSVMs to address resource-intensive
machine learning tasks by transforming training data into quantum
feature spaces and optimizing hyperplanes through quantum par-
allelism. Their work demonstrated the feasibility of implementing
quantum machine learning algorithms on current quantum devices.
Building on the integration of kernel methods and quantum com-
puting, Blank et al’' introduced a quantum classifier based on
quantum state fidelity. This approach allows for tailored quantum
kernels, enabling the design of weighted power sums of quantum
state fidelities and showcasing the flexibility of quantum circuits
for kernel customization. The classifier’s performance was validated
through experiments on IBM’s quantum cloud platform, highlight-
ing the practical benefits of leveraging quantum Hilbert spaces for
machine learning tasks. Applications of QSVMs in large-scale prob-
lems were explored by Wu ef al.'* in high-energy physics analyses
at the Large Hadron Collider (LHC). This study applied a quantum
kernel estimator to classify collision events associated with Higgs
boson production, demonstrating comparable performance to clas-
sical algorithms while utilizing the high dimensionality of quantum
state spaces. The research underscored the potential for quantum
machine learning to address computational bottlenecks in process-
ing vast datasets, as encountered in physics experiments. From a
theoretical perspective, Opper and Urbanczik’ analyzed the gener-
alization performance of SVMs using statistical physics. Their work
revealed the universal asymptotics of learning curves, showing that
SVMs with infinite kernel complexity can achieve optimal gener-
alization error, even in noisy data scenarios. This insight provides
a theoretical basis for employing high-dimensional feature spaces,
such as those enabled by quantum kernels, in machine learning
tasks.

gﬁ%e“cz

f1 f1
a0-{EHE] =

2 (=) —
0 {T{F] =
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FIG. 2. (a) Respiratory complex dataset. (b) Breast cancer dataset. (c) 2-qubit
equivalent quantum circuit. Where £ and % represent two distinct features, and
C1 and C, represent the two classes.
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IV. RESULTS AND DISCUSSION

In our investigation of unfolding the power of kernel-enhanced
quantum machine learning (QML) models, such as the Kernel-
Enhanced Quantum Support Vector Machine (KQ-SVM), on ran-
dom datasets compared to classical SVMs, the following equations
have been considered: 1. Classical SVM Optimization Problem: The
classical SVM solves the following optimization problem to find
the optimal hyperplane. In order to test the strength of the KQ-
SVM in comparison to the classical SVM, various datasets have
been selected, such as the breast cancer dataset, the Iris dataset, and
the randomly generated respiratory datasets. Figure 2(a) provides a
visual representation of the respiratory dataset in a two-dimensional
feature space, where fi on the x axis and f, on the y axis represent the
two features.

The breast cancer dataset has been taken as a linear dataset,
where the two classes are distinguishable [Fig. 2(b)]. A quantum
circuit of 2 qubits comprising the two Hadamard gates to create
the entanglement and two ploy x-gates has been utilized to per-
form the quantum measurement of both datasets [Fig. 2(c)]. The
QSVM enhanced with the kernel has been found to perform more
accurately with 45% higher accuracy for the randomly acquired res-
piratory dataset. While providing almost comparable performance
for the separate classes of the breast cancer dataset, for a compre-
hensive discussion on the machine learning and quantum machine
learning algorithms, see supplementary material, Sec. II.

This approach holds promise for more accurate classifications
by addressing complex relationships within the data.”® It depicts the
learning journey of a quantum circuit, showing that as the depth
of the circuit increases, its training precision increases, indicating
its ability to grasp more refined patterns in the data. This suggests
that the model effectively uses quantum computing to learn complex
relationships and improve its diagnostic capabilities.

Understanding the specific operations and interactions within
this circuit is crucial for interpreting its predictions and ensur-
ing its transparency and reliability in medical applications.”””’ The

(a)
00000
SR Q-Q’e
E 2 XX e’ev
5 10
(c) d
o0 II’ 7‘]
q1 3 IO‘I
¢ HHEl—e S T [
. P PIo) *—
a-{H1HHP - @— [}
C4’ 3 Yo Y1 Y2 3

FIG. 3. (a) Iris dataset for different classes. (b) Training accuracy vs depth plot.
(c) Equivalent quantum circuit for classification of the Iris dataset. Where f and %
are the features, Cy, C,, and Cs are the three different classes, o, and d are the
training accuracy and depth, respectively.
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potential of combining kernel methods and quantum computing for
breast cancer diagnosis is further supported by the literature. To
extend our investigation to more than binary classes, we have uti-
lized the Iris dataset, which has three classes. Figure 3(a) presents a
scatter plot that depicts instances of a dataset with features related to
classification. However, the lack of clear labeling obscures the spe-
cific attributes used for classification, making precise interpretations
difficult to find. The quantum circuit learning journey shows an
increase in the training accuracy as the depth of the circuit increases,
indicating its ability to grasp more refined patterns in the data
[Fig. 3(b)]. Quantum circuit, emphasizing the importance of under-
standing its functionality, specific gates, and connections to interpret
the results and discern the potential advantages of this approach.
The 4-qubit quantum circuit consists of a 4-Hadamard gate to
create the entanglement [Fig. 3(c)]. The ability of quantum circuits
to uniformly address the Hilbert space has been linked to classifica-
tion accuracy, emphasizing the relevance of quantum computing in
machine learning tasks.”””' The experiment depicted in the image
explores the impact of different kernel types and learning rates on
the performance of a machine learning model [Fig. 4(a)]. The study
involved the use of a linear kernel, a polynomial kernel, a radial
basis function (RBF) kernel, and a sigmoid kernel, with variations in
the learning rate for each kernel. Performance evaluation was per-
formed on both training and test data. The findings revealed that
the choice of kernel and learning rate significantly influences model
performance. For example, the RBF kernel with a learning rate of
0.01 exhibited the highest accuracy of 50% on the training data but
the lowest accuracy of 40% on the testing data, indicating poten-
tial overfitting. In contrast, the linear kernel with a learning rate of
0.5 achieved the best performance on the test data with an accuracy
of 60%, suggesting a better generalization to unseen data. However,
it showed a lower accuracy of 57% in the training data, indicating
potential underfitting. The other kernels yielded mixed results, with
the polynomial kernel achieving 53% precision on the training data
and 50% on the testing data, and the sigmoid kernel achieving 48%
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accuracy on the training data and 40% on the testing data. These
results underscore the critical importance of carefully selecting the
kernel and learning rate for machine learning models. The evalua-
tion metrics for training the classical and quantum algorithms have
indicated that there is not much deviation in accuracy when training
the linear data, while for the random datasets [a detailed classifica-
tion report has been provided in the supplementary material, Sec.
III], quantum machine learning performs better with higher accu-
racy, 45% [Fig. 4(b)]. It indicates the different evaluation metrics,
such as precision, recall, and F1 score, to compare the performance
among different databases, where i indicates the iris dataset, r indi-
cates the randomly generated respiratory dataset, and b represents
the breast cancer dataset. The optimal choice depends on the specific
problem and the dataset, emphasizing the need for experimentation
to identify the best combination for a given task.”” *

V. CONCLUSION

Classical SVMs often struggle with complex and randomly dis-
tributed datasets, compromising their accuracy and efficiency. Our
proposed KQ-SVM leverages quantum-enhanced kernel functions
and quantum parallelism to address these challenges. Empirical
analysis across diverse datasets shows KQ-SVM significantly outper-
forms classical SVMs, achieving over 45% higher accuracy on com-
plex datasets while maintaining comparable performance on linear
datasets. This research demonstrates the transformative potential
of quantum computing in machine learning, paving the way for
enhanced performance and accuracy in real-world applications.

SUPPLEMENTARY MATERIAL

The supplementary material provides detailed information on
the experimental procedures, including the fabrication and charac-
terization of the piezoelectric sensor (Fig. S1) and the acquisition

(b)
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FIG. 4. (a) Comparison of different support vector machine (SVM) kernel functions (SIG: sigmoid, RBF: radial basis function, POLY: polynomial, and LIN: linear) across
four key phases of SVM testing: KNL (kernel selection), LRN (learning), TRN (training), and TST (testing). The Y axis represents the normalized kernel outputs generated
during these phases. Each curve corresponds to a specific kernel function, showing its behavior throughout the SVM workflow. (b) Performance comparison of classical SVM
and quantum SVM for three datasets: R (respiratory), | (Iris), and B (breast cancer). The performance metrics on the X axis include ACC (accuracy), PRE (precision), REC
(recall), and F1 (F1 score). The bars are color-coded to distinguish classical SVM (subscript “c”) and quantum SVM (subscript “q"), with the Y axis representing the normalized

performance indices (PI) ranging from 0 to 1.
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of respiratory data (Fig. S2). It also includes the development and
implementation of quantum and classical machine learning algo-
rithms, with performance evaluations presented through confusion
matrices for various datasets (Figs. S3 and S4). A classification
report comparing quantum and classical models (Table S1) and an
overview of quantum gate operations are provided at the end. See
the supplementary material for a detailed discussion on sensor fabri-
cation, respiratory data acquisition, machine learning and quantum
machine learning model development, and the classification reports
of different algorithms.
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