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We discuss an influence of short-time electron cor-
relation on quantum excitation of particle oscillations
by synchrotron radiation. The effect should decrease the
"natural” beam emittance and can be observable at
reasonable intensities at 1-2 GeV energy.

Introduction. The excitation of synchrotron and
betatron oscillations in the cyclic electron accelerators
and storage rings due to quantum nature of radiation
significantly affects their characteristics and operating
mode. Together with radiation cooling, which is a pure
classical effect, this effect defines equilibrium emittance
of the beam. The emittance has a macroscopic value,
although it is proportional to Compton wavelength of
electron A =1w/mc.

The effect of quantum excitation of oscillations
similar to diffusion increase of beam phase volume has
been calculated theoretically both in quantum and semi-
classical theory and was confirmed in experiments. On
the one hand, the semi-classical approach seems to be
natural since quantum numbers, that correspond to mac-
roscopic betatron and synchrotron oscillations are
enormously high. On the other hand, it is based on "fea-
sible", semi-insight statistical point of view, which have
to be justified by experiments and quantum theory in-
side the bounds of the last. (The existing quantum the-
ory uses single particle wave functions approach.) Semi-
classical approach is based on single-particle theory as
well, i.e. it ignores all correlation effects, connected to
large number of radiating particles. Since the decrease
of quantum excitation is of a large practical importance,
we will try to study this approach and apply it to the
case of high-density beam, when the correlation effects
cannot be neglected. Quantum solution of this problem
seems to be quite complicated but even the semi-
classical approach leads us to the qualitatively new
effects.

Main assumptions of single particle theory are:

¢  Quantum excitations are defined mostly by quanta

with energy 'qa)oys, which is a higher range of syn-
chrotron radiation spectra. Here y is electron's Lorentz
factor, wy=c/R its angular frequency. Characteristic time
of quantum radiation transition (radiation of one quan-
tum) t_,4=2/wyy. During this time electron pass

distance of approximately R/y>>A, whereA =R /y’is a
wavelength of the characteristic quanta. Time 7,4 is
significantly less than any of characteristic times of
electron motion are. The recoil looks like a one-time
kick, and sequence of such kicks is the white noise, that
leads to diffusion of particles in the phase space.

The average number of quanta, radiated during the
time 1,4 has the order of the fine structure constant
a =~ 1/137 << 1. The minuteness of this number means
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that consecutive quanta are emitted statistically inde-
pendently

Phases of the fields radiated by the electron in the
given direction in two consequent turns are random.
This means that the spectra in short wave range in real-
ity will be continuos, like the one of random process.

o  The radiation of each quantum corresponds to loss
of energy (and momentum) for one electron. For this to
be perfectly true the distance between electrons should
be significantly larger than wavelength, i.e. the density
should be rather low. Otherwise, the quantum is radiated
by a system of few particles, which accepts the recoil
momentum of quantum.

The violation of the last assumption means the co-
herence of synchrotron radiation and lead to changes in
its spectra and total intensity. However this spectra is
coherent only if coherent position of two and more
electrons is kept during several turns,

Let us consider a simple one-dimensional chain of N
electrons, that are dispense by normal dispersion law on
average distance A/N from each other with uncertainty
of position 9, completely random on consequent tumns.
In a far-field zone, the field from such system is a pack
of randomly distributed similar short pulses with length

of =1/ 03073- which repeats (with other realization of

distribution) after the time of 2n/w,. Simple calculation
gives the following spectral intensity of synchrotron
radiation of such system.
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where W, (0) - spectral radiation intensity of one elec-
tron (See Fig. 1). The first term corresponds to fully
incoherent radiation, and the second describes coherent
effects. The term in square bracket gives interference
modulation of spectra. However, in the most significant
high-frequency range of spectra, wavelengths are
smaller than the position uncertainty § and this modula-
tion decreases exponentially; that means that radiation is
completely incoherent. Note that the number of particles
in radiation zone of length A at certain incidental mo-
ments can be larger than one.

The last can significantly change the recoil momen-
tum of each particular electron during radiation of one
quantum. Really, n particles, which find themselves
simultaneously in near-field zone (radiation zone) -and

keep their relative positicn at least during the time 14,
behave like organic whole, and share recoil momentum
and energy loss. The fact that the number of quanta is
increased proportionally to n?, does not play significant
role, since this happens, as shown above, due to soft

coherent part of spectra, when the number of high-
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Fig. 1 1-Spectrum intensity per one electron of an one-dimensional
chain of electrons with fixed average separation and uncertainty of
position; 2 - spectra of single electron.

energy incoherent quanta is proportional to n only. For
assurance we consider n to be less than 137, so the
probability of radiation of two coherent consequent
high-energy quanta in the same direction is negligible
small. ,

Excitation of oscillations by radiation fluctuation.
Let us, for example, consider linear synchrotron oscilla-
tion of value u — deviation of energy from its equilib-
rium value E; [2].

During the radiation du/dt does not change and u
jumps down on the value € — quantum energy, that
gives the change of amplitude:
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Let us average this expression with probability of
radiation of quantum no per unit time P(u,w), which in
the quasi-classical approximation is equal to :

P(u,0)= | (W2 (@) + Wieon (@)] 3)
nw

. The coherent part of the spectral intensity W7, (©)
should not depend on single particle energy, and inco-
herent part is equal to:
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where n is number of electrons, participating in the act
of emission, p, _ probability of such realization. By
averaging we get:
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For estimation we can put € =nw/n and neglect the
terms with W ,(0) which are significant only at low
frequencies, where € is very small. Then by average
over possible realizations (number n) and spectra, for
the diffusion coefficients we get:
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where W is total intensity of synchrotron radiation of a
single particle, < € >»<nw/n > - average loss of energy
per one particle, and I', = dW, /9E, is a well-known
constant of radiation dumping of synchrotron oscillation
3]

: ]Calc'ulated values of diffusion coefficients give the
evolution in time of distribution function by amplitude
F(A,t) defined by Fokker-Plank like equation:
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The stabilized distribution is: F, =a-exp(-a®/2);
a=,/2I,/We and gives the mean-square stabilized
amplitude:

A2l =W_e/T, ®

Congregate radiation zone. By congregate radia-
tion zone, we will understand space volume, such that
when several electrons appear in this zone for a short
time T,y they behave as one congregate radiator that
accepts the total recoil momentum. One can get an idea
about size and configuration of this zone, considering
near zone fields. Let us consider one electron, moving
along circumference; observation point is on fixed an-
gular distance p. (For simplicity we assume the motion
to be plane). From general equation for retarded fields,
we found force acting at point p [1].
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Anti-symmetrical and diverging at p — 0 part we
identify as Coulomb interaction of two electrons. It is
not relevant to considered effect, at least since it does
not change the average momentum of interacting parti-
cles. We will come back to this question later.

Radiation part of the force F.(u) is strongly asymmetric
and in relativistic case it is practically equal to zero
behind radiating particle. In the point where the particle
is situated (u — 0) self-interaction force is equal to the

4y*¢’/3R?, well known value of the recoil momentum
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Fig. 2 Tangential electromagnetic force acting from back electron to

forward one without Coulomb part vs. angular distance between
electrons.

=

per unit time transferred by radiation. Radiation part of
force F () vs. angle p is shown in the Fig. 2. One can
see that this force became practically

equal to zero at u about (1.5-2)-y'3. Therefore, we might
conclude that the electrons radiate independently, when
distance between them is larger than 2 v,

When the pair radiates collectively back and fore
electrons share recoil momentum in some proportion.
However since to the moment of next photon radiation
(=137R / cy ) the given pair will decay with large prob-
ability, the “back” electron might become a “fore” one
in the other pair; i.e. in average the electron in pair ra-
diation will lose half of photon momentum. If there are
n electrons simultaneously in the zone of congregate
radiation, each of them will get one n™ of photon mo-
mentum. Transverse dimension of congregate radiation
zone can be obtained from alike but more complicated
calculations. However, it is quite easy to see that while
radiation concentrated in a small angle of approximately
v" one can consider the wave as a plane one. Hence the
transverse dimensions are y times lager than longitudi-
nal one and have an order of y2 in units of circumfer-
ence radius. Thus, taking into consideration qualitative
character of all relations above we will consider the
volume of the congregated radiation zone to be equal to
R’’. It is interesting that zone of congregate radiation
defined this way does not depends on radiation fre-
quency and is defined only by upper bound of the radia-
tion spectrum.

The average number of particles n, which are si-
multaneously in near-field zone at the moment of
quantum emission, depends on their distribution over
the bunch. For simplicity, we can use Poisson distribu-
tion with:

Pa (13)

Here a=vN, (v is ratio of this zone volume to the
volume of the whole bunch, N is number of particles in
bunch). The announced effect consists in decrease of
value n”' (averaged over spectra).

Equilibrium emittance. We will estimate the effect
in a case when bunch dimensions are defined only by
quantum fluctuation. Although the existing accelerators
do not satisfy this condition, there are certain experi-
ments on direct measurement of quantum limits. The

=exp(n)A® /n!; <n”! >= (1-exp(f)) /i
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equilibrium mean-square dimensions of the bunch can
be presented as follows

A2 =C,a’*RAy?/n
A2=C,RA/Q?n (12)
Af =C, 137 ctgd, /qyn

where A is the Compton wavelength, & — momentum
compaction factor, q — harmonic number, Q — be-
tatron tune and ¢; — equilibrium phase. Numeric coef-
ficients C are of order of unity and are defined by
structural functions and distribution of radiation damp-
ing decrements [3]. Since our calculations are qualita-
tive only, one need not to define such coefficients with
more precision.

In accordance with consideration above for an aver-
age number of electrons in the congregate radiation
zone we get

{R3Nn3/2/y7A A A_ for A2>nRZpy
1+ xzht z
R3Nr1/75AXA,c for A§<nR2/y4
Last condition appears because the vertical size of the
bunch can be smaller than congregate zone. For the
other degrees of freedom this seems unrealistic (A, has
the lowest value due to the specific of vertical oscilla-
tions excitations by quanta coming away from orbit

plane). For simplicity we replace above equation by a
single one

4
(14)

AA
R6

Rn(n 1)

—e(al+

)

By substituting, we get a relation between the num-
ber of particles in the bunch and a value of n that char-
acterizes compression of the bunch due to the density
effect.

N2 = (15)
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N2=NZ,Ln 12»7(n+n0), (16)
where
A
N2 =137C,C, A
Rq
(17)
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In absence of other perturbations, the density effect
amplifies itself: the smaller the bunch size for fixed
number of particles is the higher density and the lower
quantum excitations are. Formally, it leads to radiation
collapse at N>Nj i.e. n - o (See Fig. 3), although at
large n many assumption made above are violated.
Note the interesting hysteresis like behavior of the
medel at n,>2. It can provide additional possibilities
for achieving higher bunch density by optimal choos-
ing of function N(t) and y(t). The threshold value of
particle number N, for the energy of about 1GeV is



Fig. 3 Normalized number of electronlslin bunch vs. average number
of electrons in congregate radiation zone. 1 — for ng=t; 2 — for
ne=10

practically obtainable and has an order of 10''-10"%,

Unfortunately, for the higher energy the number N,
is unachievable high.

Conclusion. Principal possibility to decrease a
bunch size below limits, defined by quantum fluctua-
tions will open interesting perspectives for cooler
rings, for producing super-short electron bunches and
for synchrotron radiation sources (possibly coherent).
Therefore, despite of qualitative character of our ar-

guments they give basis for more detailed study of
density effect: quantum theoretical and experimental.
Even in semi-classical considerations some moments
need additional study. For example the Coulomb field
in the congregate zone is comparable or exceeds the
radiation field that requires consideration of intra-
beam scattering. (We are grateful to A.N. Skrinsky).
Concerning this question, we can note a somewhat dif-
ferent physical nature of these two effects, one of
which is quantum one and another — pure classical
and depending on velocity distribution of particles. In
addition at n>>1 intra-beam scattering can not be con-
sidered as two-particle effect and need a special con-
sideration.
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