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We discuss an influence of short-time electron cor­

relation on quantum excitation of particle oscillations 
by synchrotron radiation. The effect should decrease the 
"natural" beam emittance and can be observable at 
reasonable intensities at 1-2 GeV energy. 

Introduction. The excitation of synchrotron and 
betatron oscillations in the cyclic electron accelerators 
and storage rings due to quantum nature of radiation 
significantly affects their characteristics and operating 
mode. Together with radiation cooling, which is a pure 
classical effect, this effect defines equilibrium emittance 
of the beam. The emittance has a macroscopic value, 
although it is proportional to Compton wavelength of 
electron = η/mc . 

The effect of quantum excitation of oscillations 
similar to diffusion increase of beam phase volume has 
been calculated theoretically both in quantum and semi-
classical theory and was confirmed in experiments. On 
the one hand, the semi-classical approach seems to be 
natural since quantum numbers, that correspond to mac­
roscopic betatron and synchrotron oscillations are 
enormously high. On the other hand, it is based on "fea­
sible", semi-insight statistical point of view, which have 
to be justified by experiments and quantum theory in­
side the bounds of the last. (The existing quantum the­
ory uses single particle wave functions approach.) Semi-
classical approach is based on single-particle theory as 
well, i.e. it ignores all correlation effects, connected to 
large number of radiating particles. Since the decrease 
of quantum excitation is of a large practical importance, 
we will try to study this approach and apply it to the 
case of high-density beam, when the correlation effects 
cannot be neglected. Quantum solution of this problem 
seems to be quite complicated but even the semi-
classical approach leads us to the qualitatively new 
effects. 

Main assumptions of single particle theory are: 
• Quantum excitations are defined mostly by quanta 
with energy ηω0γ3, which is a higher range of syn­
chrotron radiation spectra. Here γ is electron's Lorentz 
factor, ω0=c/R its angular frequency. Characteristic time 
of quantum radiation transition (radiation of one quan­
tum) τrad≈2/ω0γ. During this time electron pass 
distance of approximately R/γ>>λ, where λ≈R/γ3 is a 
wavelength of the characteristic quanta. Time τrad is 
significantly less than any of characteristic times of 
electron motion are. The recoil looks like a one-time 
kick, and sequence of such kicks is the white noise, that 
leads to diffusion of particles in the phase space. 

• The average number of quanta, radiated during the 
time τrnd has the order of the fine structure constant 
α ≈ 1/137 <<1. The minuteness of this number means 

mat consecutive quanta are emitted statistically inde­
pendently 
• Phases of the fields radiated by the electron in the 
given direction in two consequent turns are random. 
This means that the spectra in short wave range in real­
ity will be continuos, like the one of random process. 
• The radiation of each quantum corresponds to loss 
of energy (and momentum) for one electron. For this to 
be perfectly true the distance between electrons should 
be significantly larger than wavelength, i.e. the density 
should be rather low. Otherwise, the quantum is radiated 
by a system of few particles, which accepts the recoil 
momentum of quantum. 

The violation of the last assumption means the co­
herence of synchrotron radiation and lead to changes in 
its spectra and total intensity. However this spectra is 
coherent only if coherent position of two and more 
electrons is kept during several turns. 

Let us consider a simple one-dimensional chain of N 
electrons, that are dispense by normal dispersion law on 
average distance ∆/N from each other with uncertainty 
of position δ, completely random on consequent rums. 
In a far-field zone, the field from such system is a pack 
of randomly distributed similar short pulses with length 
of ≈ 1/ω0γ3, which repeats (with other realization of 
distribution) after the time of 2π/ω0. Simple calculation 
gives the following spectral intensity of synchrotron 
radiation of such system. 

W(ω) = N + [ sin
2(∆ω/2c) -N]exp(- ω

2δ2 ). (1) W0(ω) 
= N + [ sin2(∆ω/2Nc) -N]exp(- 2c2 ). (1) 

where W 0 (0) - spectral radiation intensity of one elec­
tron (See Fig. 1). The first term corresponds to fully 
incoherent radiation, and the second describes coherent 
effects. The term in square bracket gives interference 
modulation of spectra. However, in the most significant 
high-frequency range of spectra, wavelengths are 
smaller than the position uncertainty S and this modula­
tion decreases exponentially; that means that radiation is 
completely incoherent. Note that the number of particles 
in radiation zone of length X at certain incidental mo­
ments can be larger than one. 

The last can significantly change the recoil momen­
tum of each particular electron during radiation of one 
quantum. Really, n particles, which find themselves 
simultaneously in near-field zone (radiation zone) and 
keep their relative position at least during the time τrad, 
behave like organic whole, and share recoil momentum 
and energy loss. The fact that the number of quanta is 
increased proportionally to n2, does not play significant 
role, since this happens, as shown above, due to soft 
coherent part of spectra, when the number of high-
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Fig. 1 1-Spectrum intensity per one electron of an one-dimensional 
chain of elections with fixed average separation and uncertainty of 
position; 2 - spectra of single electron. 

energy incoherent quanta is proportional to n only. For 
assurance we consider n to be less than 137, so the 
probability of radiation of two coherent consequent 
high-energy quanta in the same direction is negligible 
small. 

Excitation of oscillations by radiation fluctuation. 
Let us, for example, consider linear synchrotron oscilla­
tion of value u — deviation of energy from its equilib­
rium value Es [2]. 

During the radiation du/dt does not change and u 
jumps down on the value ε — quantum energy, that 
gives the change of amplitude: 

∆A = - u ε + ε
2 

(1- u
2 
);(∆A)2 = u

2 
E 2 (2) ∆A = -A ε + 2A (1-A2 );(∆A)

2 = 
A2 E

2 (2) 

Let us average this expression with probability of 
radiation of quantum ηω per unit time P(u,ω), which in 
the quasi-classical approximation is equal to : 

P(u,ω) = 1 [Wncoh(ω) + Wnincoh(ω)] (3) P(u,ω) = 
ηω 

[Wncoh(ω) + Wnincoh(ω)] (3) 

The coherent part of the spectral intensity Wncoh (ω) 
should not depend on single particle energy, and inco­
herent part is equal to: 

Wnincoh = npn W 0 (u,ω) = (nWs(ω)+n u 
∂Ws(ω) 

)Pn (4) Wnincoh = npn W 0 (u,ω) = (nWs(ω)+n u ∂Es )Pn (4) 

where n is number of electrons, participating in the act 
of emission, pn _ probability of such realization. By 
averaging we get: 
V =<∆A P(u,ω)>= 
- A ∂WS εn + 1 ε

2 
(Wcoh(ω) + nWs(ω)); (5) -2 ∂Es ηω + 4A ηω (Wcoh(ω) + nWs(ω)); (5) 

D= 1 <(∆A)2 P(u,ω)>= 1 ε
2 
(Wcoh(ω) + nWs(ω)). (6) D= 2 <(∆A)

2 P(u,ω)>= 4 ηω (Wcoh(ω) + nWs(ω)). (6) 
For estimation we can put ε = ηω/n and neglect the 

terms with WCoh(ω) which are significant only at low 
frequencies, where ε2 is very small. Then by average 
over possible realizations (number n) and spectra, for 
the diffusion coefficients we get: 

<v>=-A rs + < ε > W s ; < D > = < ε > Ws, (7) <v>=- 2 rs + 4A W s ; < D > = 4 Ws, (7) 
where W s is total intensity of synchrotron radiation of a 
single particle, <ε>≈<ηω/n> - average loss of energy 
per one particle, and s = ∂Ws /∂ES is a well-known 
constant of radiation dumping of synchrotron oscillation 
[3]. 

Calculated values of diffusion coefficients give the 
evolution in time of distribution function by amplitude 
F(A,t) defined by Fokker-Plank like equation: 
∂F + 1 ∂ A ( < V > - < D > ∂ )F = 0 (8) ∂t + A ∂A A ( < V > - < D > ∂A 

)F = 0 (8) 

The stabilized distribution is: Fst = a exp(-a2 /2); 
a = √2s/Wsε and gives the mean-square stabilized 
amplitude: 

A 2
s t = W s ε / s (9) 
Congregate radiation zone. By congregate radia­

tion zone, we will understand space volume, such that 
when several electrons appear in this zone for a short 
time τrad they behave as one congregate radiator that 
accepts the total recoil momentum. One can get an idea 
about size and configuration of this zone, considering 
near zone fields. Let us consider one electron, moving 
along circumference; observation point is on fixed an­
gular distance µ. (For simplicity we assume the motion 
to be plane). From general equation for retarded fields, 
we found force acting at point µ [1]. 

Fτ(µ) = e
2 
γ-2(2sin µ' - βsin µ')-3 x 

(10) 

Fτ(µ) = R 2 γ
-2(2sin 2 - βsin µ')

-3 x 

(10) x {sin µ'-2β2 cos µ'sin µ' + (10) x {sin µ'-2β2 cos µ'sin 2 + (10) 

+ γ2β2(sin µ'-2β2 sin µ' )(cos µ'-1)} 

(10) 

+ γ2β2(sin µ'-2β2 sin 2 )(cos µ'-1)} 

(10) 

where 

µ'-µ = 2 |sin µ' 
|. 

µ'-µ = 2 |sin 2 
|. 

(11) 

At small µ' µ ≈ µ'-β|µ'|+ µ'3 / 24 and 
R2 

Fτ = 
|µ| + { -4γ4/3 for µ>0 (12) 

e2 Fτ = γ2µ3 + { 0 for µ<0 
(12) 

Anti-symmetrical and diverging at µ → 0 part we 
identify as Coulomb interaction of two electrons. It is 
not relevant to considered effect, at least since it does 
not change the average momentum of interacting parti­
cles. We will come back to this question later. 
Radiation part of the force Fτ(µ) is strongly asymmetric 
and in relativistic case it is practically equal to zero 
behind radiating particle. In the point where the particle 
is situated (µ → 0) self-interaction force is equal to the 
4γ4e2/3R2, well known value of the recoil momentum 
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Fig. 2 Tangential electromagnetic force acting from back electron to 
forward one without Coulomb part vs. angular distance between 
electrons. 
per unit time transferred by radiation. Radiation part of 
force Fτ(µ) vs. angle µ is shown in the Fig. 2. One can 
see that this force became practically 
equal to zero at µ about (1.5-2).γ-3. Therefore, we might 
conclude that the electrons radiate independently, when 
distance between them is larger than 2γ-3. 

When the pair radiates collectively back and fore 
electrons share recoil momentum in some proportion. 
However since to the moment of next photon radiation 
(≈137R/cγ)the given pair will decay with large prob­
ability, the "back" electron might become a "fore" one 
in the other pair; i.e. in average the electron in pair ra­
diation will lose half of photon momentum. If there are 
n electrons simultaneously in the zone of congregate 
radiation, each of them will get one nth of photon mo­
mentum. Transverse dimension of congregate radiation 
zone can be obtained from alike but more complicated 
calculations. However, it is quite easy to see that while 
radiation concentrated in a small angle of approximately 
γ-1 one can consider the wave as a plane one. Hence the 
transverse dimensions are y times lager than longitudi­
nal one and have an order of γ-2 in units of circumfer­
ence radius. Thus, taking into consideration qualitative 
character of all relations above we will consider the 
volume of the congregated radiation zone to be equal to 
R3y"7. It is interesting that zone of congregate radiation 
defined this way does not depends on radiation fre­
quency and is defined only by upper bound of the radia­
tion spectrum. 

The average number of particles n, which are si­
multaneously in near-field zone at the moment of 
quantum emission, depends on their distribution over 
the bunch. For simplicity, we can use Poisson distribu­
tion with: 
pn =exp()n/n!; <n-1>= (1-exp())/ (13) 
Here = vN , (v is ratio of this zone volume to the 
volume of the whole bunch, N is number of particles in 
bunch). The announced effect consists in decrease of 
value n-1 (averaged over spectra). 

Equilibrium emittance. We will estimate the effect 
in a case when bunch dimensions are defined only by 
quantum fluctuation. Although the existing accelerators 
do not satisfy this condition, there are certain experi­
ments on direct measurement of quantum limits. The 

equilibrium mean-square dimensions of the bunch can 
be presented as follows 

Ax2 = C x α 2 R γ 2 /n 
A z

2 = C Z R / Q 2 n (12) 
Aτ2 =Cτ137α.ctgΦs /qγn 

where is the Compton wavelength, α — momentum 
compaction factor, q — harmonic number, Q — be­
tatron tune and Φs — equilibrium phase. Numeric coef­
ficients C are of order of unity and are defined by 
structural functions and distribution of radiation damp­
ing decrements [3]. Since our calculations are qualita­
tive only, one need not to define such coefficients with 
more precision. 

In accordance with consideration above for an aver­
age number of electrons in the congregate radiation 
zone we get 

n = 1 + { R
3Nn3/2/γ7Ax Az Aτ for Az2>nR2/γ4 .(14) n = 1 + { 
R3Nn/γ5AxAτ for Az2<nR2/γ4 

.(14) 

Last condition appears because the vertical size of the 
bunch can be smaller than congregate zone. For the 
other degrees of freedom this seems unrealistic (Az has 
the lowest value due to the specific of vertical oscilla­
tions excitations by quanta coming away from orbit 
plane). For simplicity we replace above equation by a 
single one 

N 2 = Ax
2Aτ2 (A2

 + 
R2n 

) 
(n-1)2 

Y14 (15) N 2 = 
R6 (A2

 + 
Y4 

) n3 Y14 (15) 

By substituting, we get a relation between the num­
ber of particles in the bunch and a value of n that char­
acterizes compression of the bunch due to the density 
effect. 

N 2 = N 2 (n-1)2 
(n + n0), (16) N 2 = N 2 

n3 (n + n0), (16) 

where 

N02 = 137CxCτ Aα
2ctgΦs γ11; N02 = 137CxCτ Rq γ11; 

(17) 

n0 = C Z 
γ4 n0 = C Z R Q 2 

In absence of other perturbations, the density effect 
amplifies itself: the smaller the bunch size for fixed 
number of particles is the higher density and the lower 
quantum excitations are. Formally, it leads to radiation 
collapse at N>N0 i.e. n → ∞ (See Fig. 3), although at 
large n many assumption made above are violated. 
Note the interesting hysteresis like behavior of the 
model at n0>2. It can provide additional possibilities 
for achieving higher bunch density by optimal choos­
ing of function N(t) and y(t). The threshold value of 
particle number N0 for the energy of about lGeV is 
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Fig. 3 Normalized number of electrons in bunch vs. average number 
of electrons in congregate radiation zone. 1 — for no=1; 2 — for 
no=10 
practically obtainable and has an order of 1011-1012. 

Unfortunately, for the higher energy the number N0 
is unachievable high. 

Conclusion. Principal possibility to decrease a 
bunch size below limits, defined by quantum fluctua­
tions will open interesting perspectives for cooler 
rings, for producing super-short electron bunches and 
for synchrotron radiation sources (possibly coherent). 
Therefore, despite of qualitative character of our ar­

guments they give basis for more detailed study of 
density effect: quantum theoretical and experimental. 
Even in semi-classical considerations some moments 
need additional study. For example the Coulomb field 
in the congregate zone is comparable or exceeds the 
radiation field that requires consideration of intra-
beam scattering. (We are grateful to A.N. Skrinsky). 
Concerning this question, we can note a somewhat dif­
ferent physical nature of these two effects, one of 
which is quantum one and another — pure classical 
and depending on velocity distribution of particles. In 
addition at n»1 intra-beam scattering can not be con­
sidered as two-particle effect and need a special con­
sideration. 
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