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Abstract

In this thesis, we study generalizations of well-known Majorana fermion models, in-
cluding the SYK model and the Klebanov-Tarnopolsky tensor model. The models are
compared at finite and large N, where we find that the models simplify considerably
and can even become solvable.

In chapter 2] we study quantum mechanical models in which the dynamical degrees
of freedom are real fermionic tensors of rank five and higher. For the tensors of rank
five, there is a unique O(N)? symmetric sixth-order Hamiltonian leading to a solvable
large N limit dominated by the melonic diagrams. We solve the large N Schwinger-
Dyson (SD) equations for higher rank Majorana tensor models and show that they
match those of the corresponding SYK models exactly.

In chapter [} we study a family of tensor models of complex fermions, with a
six fermion interaction whose index structure resembles the topology of a prism. The
model is dominated by melonic diagrams in the large /N limit after introducing an aux-
iliary field. We consider interactions that preserve the U(1) global symmetry, solving
the SD equations at large N and examining the bilinear spectrum. We find a complex
scaling dimension in the U(1) charged sector in addition to an O(1) gap between the
ground and first excited states. This model has a negative charge compressibility.

In chapter [4] we present a class of Hamiltonians H for which a sector of the Hilbert
space invariant under a Lie group G, which is not a symmetry of H, possesses the
essential properties of many-body scar states. These include the absence of thermal-
ization and the ‘revivals’ of special initial states. Our study of an extended 2D tJU

model illustrates the properties of the invariant scars and supports our findings.
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Chapter 1

Introduction

In this chapter, we introduce and motivate the study of models where the number
of the degrees of freedom, N, becomes very large. In this large N limit, several
models simplify, becoming more tractable and sometimes even analytically solvable.
We begin by briefly reviewing well known limits in the cases of vector and matrix
models, and then move on to describe the large N behavior of tensor models and the
Sachdev-Ye-Kitaev (SYK) model, which are a focus of this work. We end this chapter
with a general overview of various metrics of quantum chaos, which we use later on
to understand information preservation in thermalizing systems.

The SYK model is an example of a strongly interacting chaotic system that is
exactly solvable at large N. It is valuable to understand this and closely related
models, namely tensor models, so we can learn about how chaotic behavior and
similar properties appear in other strongly interacting models. This model is not only

relevant in high energy theory, but it is one that is also very relevant in condensed



matter theory, and in fact originated from a model of a random quantum Heisenberg
magnet [1]. Because of its random couplings, the SYK model requires averaging
over many ensembles, and so it is not a usual quantum mechanical model. Tensor
models, however, do not require this averaging over disorder and share many of the
large N properties of the SYK model. In fact, quantum mechanical models in which
the dynamical degrees of freedom are fermionic tensors of rank 3 and higher have
attracted much attention in recent literature, starting with the papers [2,3].

At large N, the dominating diagrams for both the tensor and SYK models are
the same, and their dominant ‘melonic’ diagrams can be studied and simply summed
[3-11] (for reviews, see [12-15]). As a result, the large N tensor and SYK models
are closely related, although there are also some important differences [15]. These
differences are manifest in the small N exact diagonalizations of the Hamiltonians
[16-21], since it is harder to numerically study the spectrum of the tensor model
as the Hilbert space has dimension ~ 2V <q_1>/2, whereas the SYK Hilbert space has
dimension ~ 2V/2. However, we expect to numerically observe chaotic features, like
a dip ramp plateau structure in the spectral form factor (SFF), in the tensor models
at large enough N. Furthermore, these models are solvable at large N and may
be considered as examples of holography. The SYK and tensor models have (nearly)
conformal behavior at large NV and the SYK model may be dual to the two-dimensional
Anti-de Sitter (AdSs) space [|4]. This duality is further supported when we examine
the chaos properties of the model. The SYK model has a SFF characteristic of a
random Gaussian matrix, and it saturates the chaos bound, as we would expect for

a model dual to a black hole [22].



In addition to studying the spectral and chaos properties of the SYK and tensor
models, we also study the chaos properties of several vector and matrix models. We
are particularly interested in models with a chaotic bulk and a non-thermalizing
subsector. These non-thermalizing states are called scar states, and a key property is

that they violate the eigenstate thermalization hypothesis (ETH).

1.1 Large N Limits

A notable example of the utility of large N methods is in the application to the O(N)

ferromagnet. The model has energy E' = —J ..\ 7i; - 7i; where 1l = (nt,...,n")

Y

ii? =1, J > 0 and (ij) are the nearest neighbor lattice sites. This model has a second

order phase transition, and close to the critical 5./, has the action [15],

S = /dd
:/ddx

where the auxiliary field o is introduced in the second line. Integrating out the N ¢;

2
= (Vo) + m7<b? + % (eb?)ﬂ
(1.1.1)

o b o 1 5
5 (V6:)° = 506} + 0|,

fields gives a 1/N expansion for the scaling dimensions, see [15],23],24]. The resulting
expansion matches very closely with numerical results [25].

Another useful application of the large N methods is in SU(N) gauge theory,
where ‘t Hooft defined the large N limit keeping ¢°N fixed (g is the Yang-Mills
coupling) [26]. In d = 3, [27] found that at large N, finite volume corrections to the
glueball masses are suppressed. This is because the glueball operators are single trace,

whereas the finite volume states are double trace and therefore will be subleading at



large N. The 1/N mass expansion,

M C1 Co

where g?N is the ‘t Hooft coupling, has good agreement with the low-lying glueball
masses [1527].

In this section, we review two examples of large N limits in some detail. This first
is that of a vector model and the second is that of a matrix model. Vector models have
degrees of freedom that transform as N-component vectors, whereas matrix models

have degrees of freedom that transform as matrices of size N x M.

1.1.1 Vector model

To illustrate the large N simplifications of the vector model, we can consider an exam-
ple where we have an O(N) symmetric theory with N scalar fields in zero dimensions
with a double trace %(qﬁ“(ﬁaf interaction. We start by writing the general partition

function for theory with the ¢? interaction [15],

n o0 d(b 1. . 1 hich
7 i 6—§¢l¢z—ﬁe]ijkl¢z¢j¢]¢l 1.1.3
1/ o

Here, J;ji; is a fully symmetric tensor. We can write the logarithm of Z via the graph
expansion at various orders of interaction, see figure [1.1}

The single vertex interaction is the figure eight diagram, and double vertex di-
agrams are the ‘melonic’ diagram and the triple bubble diagram. The symmetry

factors of the expansion are determined combinatorially, and each vertex has a factor
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Figure 1.1: Left: figure eight diagram, middle: ‘melonic’ diagram, right: triple bubble
diagram.

of —Jjr. And so we can write the logarithm of Z as follows,

Jiijj 1 JijhiJijhi + Jiikt Jjjh + O(J%) (1.1.4)

log 7 — —
o8 8 9. 4l 91

Now let us consider the O(N) symmetric model with the £ (¢'¢’)? interaction. In
this case, we let Jii be equal to %(040x + 040k + 0i0). Now we can expand the

coeflicients in equation (|1.1.4)) in terms of d;;,

Jiijj = g(éiidjj + 2045045) = %(N2 +2N)
3g3 2 392 2
JijrrJijn = 7((5@‘5“) + 6;;0k10ik 01 + 0ij0ki0i0k) = T(N +2N) (1.1.5)

2 2
JiikiJjju = %(5ii5kl + Girbit + 0 )? = %N(N + 2)2.

Plugging this into equation (1.1.4)) and dividing both sides by N, we have

log Z N+2 N+2, (N+2)?2, 5
— 1.1,
N o 9t 9T 9 ol (1.1.6)

Above, the first term corresponds to the connected snail diagram, the second corre-
sponds to the melon graph, and the third corresponds to the triple bubble diagram.
We can also note the powers of N in each of these diagrams by labeling the indices

and counting the closed index loops. If we want this expansion to be finite in the



Figure 1.2: Left: Graphical representation of the quartic interaction vertex in equa-
tion (1.1.8). Right: Graphical representation of the quartic interaction vertex in
equation (|1.2.1)).

large N limit, we must hold A = gN fixed. We can think of sending N to infinity

while we send g to 0, so gN remains constant. Rewriting equation (1.1.6]) terms of \,

logZ 1+2/N\ M [(1+2/N o (1+2/N +4/N? 5
~ —)\( o )+N< — )t 0 + O\ (1.1.7)

When we do this, it is clear that the melonic diagrams are suppressed at order %
So for sufficiently small coupling, we can write our partition function as a convergent

sum corresponding to the snail diagrams.

1.1.2 Matrix model

The second class of large N limits we discuss are called matrix models. Here we
have N? degrees of freedom and our particles are treated as real N x N matrices.
We let each index have O(N) symmetry so that the model is in the bi-fundamental
representation. We let the model have a quartic interaction term, and we can represent

the interaction vertex as a two color fat graph, see figure [1.2]



In this example, we only consider the single trace (™71 72271 $"272) interaction,

and can write the partition function as follows,

Z = ﬁ /OO %e*%@wmﬁwmdﬂljw”“d’”” (1.18)
i1 e V2T

Using a similar procedure to the vector model, we can solve for the log of the

partition function to get the following,

logZ 2N +1

N?+2N +3 2+(2N+1>2 )
N2 T 9

1.1,
2883 s I (1.1.9)

g+

We can see that we have a finite solution when we keep A = g/N fixed. Except in
this case, the melons and snails both contribute, so more diagrams survive compared

to the vector model, making this a more complex model.

1.2 Klebanov-Tarnopolsky and SYK Models

1.2.1 Tensor model

The third class of large N limits we examine is tensor models. In this section, we
consider the rank three four fermion Klebanov-Tarnopolsky tensor model, proposed
and solved in [3]. It is an O(N)? symmetric quantum mechanical model for Majo-
rana fermions, and the unique non-trivial quartic (maximally single trace) interaction
vertex is represented in figure [[.2 The three indices are distinguishable, and each

fermion pair shares exactly one index in common. Here, repeated indices are summed



Figure 1.3: The graphical representation of the tetrahedral operator in equation
(11.2.1)).

over and each of the indices ranges from 1 to N.
Htetra — %wabcwab/c’wa/bc’wa/b’c Where, {waibic," wajbjCj} — §9y 5bibj 5Ci% (121>

This is called a ‘tetrahedral’ interaction because of the form of its corresponding
graph, see figure[I.3] In the interaction graph, we let each edge of the graph represent
an index contraction, the vertices represent the fermions, and the distinct colors
represent the three distinct O(N) groups.

The model transforms under the tri-fundamental representation of O(N)3:
e — MO ME MY My, My, My € O(N). (1.2.2)

We consider only this tetrahedral interaction of the four allowed quartic operators
since the others have a smaller vertex to index loop ratio, and thus decay to zero

at a faster rate. The allowed quartic operators include the unique ¢ = 4 tetrahe-



dral operator in equation ([1.2.1), and three ‘pillow operators’ of the general form
heabiergfosbieryasbaca arbocs E|

Using the same method as for the vector and matrix examples, we can expand
the the log of the partition function of the model via the graph expansion, see figure
1.1l The snail diagram gives us one factor of g and one factor of N from a single
index loop. The middle, melonic diagram, gives us a factor of g2 from the two vertices
along with a factor of N? from three closed index loops. Finally, the last triple bubble
diagram has two vertices giving us a factor of ¢? with only two closed index loops
giving a factor of N2. Only including the terms with largest contribution from each

of the three diagrams, we have,

=O(gN)+ O (¢°N*) + O (¢°N?) + ...
O

o()eomeoll)e

In the second line we let A = gN3?2. When we hold )\ constant, we can see that
the melonic diagram has the only surviving contribution in the large N limit. Since
only the melonic diagram survives in the large N limit, the tensor models appear to
be simpler than the matrix models reviewed earlier in section [1.1.2], These diagrams
are the same as in the Sachdev-Ye-Kitaev (SYK) model [4,[29-33], where the quartic
interactions contain a random four-index tensor.

The melonic dominance in this model can be proved using Euler’s theorem, which

states that f = x + e — v, where f, e, and v are the numbers of faces, edges, and

2The three quartic terms of ‘pillow’ topology |11] are the quadratic Casimir operators of the three
SO(N) groups [28| and are, therefore, determined by the group representation. In the gauged model
they vanish.
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Figure 1.4: Left: The melonic diagram with interaction vertex (1.2.1). Right: The
melonic fat graph of ((1.2.1)) where we have erased the blue lines.

S~
=

vertices respectively, and x is the Euler characteristic. To use Euler’s theorem, we
will draw fat graphs, meaning we erase one of the three colors in the graph, and count
the number of loops from two colors at a time. In this theory we have e = 2v, so we
can simplify to f = x +v. We want to use this equation to calculate a bound on the
number of faces, f, or closed loops, because this gives us the factors of N.

Let us first focus of the fat graph with only green and red, as in figure [I.4} we will
call the green line index a and the red line index ¢. Thus the total number of faces of
this diagram is f,. = f,+ f.. Adding the faces in the three possible fat graphs, we get
that fop + foe + fae = 2(fa + fo + fe) = Xab + Xoe + Xac + 3v. Following the derivation
in [3], we can use the fact that the Euler character, y, is equal to 2 — 2¢ to find a
bound on the number of faces. We get f;,; < 3 + 37” since the genus is nonnegative,
g > 0. The proof is completed in |3| by showing that all graphs saturating this bound
are melonic. Since the leading free diagrams contribute at order N3, we find the large
N limit when \ = ¢g?N3.

We can sum up the melonic contributions to the propagator to find the full two
point function in the IR limit, and we can also study the four point function to get the

spectrum of bilinears. Both calculations are done in detail for the general ¢ tensor

10



model with the maximally single trace interaction in chapter 2 To demonstrate
that the tensor models with the tetrahedral interaction term have the same large N
behavior as the corresponding SYK model, we will briefly sketch the computation
of the two point function for the rank three, ¢ = 4 tensor model with the following
action [3],

i abc abc 9 abe,ablc a'bea'b e
S:/dt§¢b6twb+zwb¢b @O e, (1.2.4)

Since the melonic diagrams dominate, these are the only diagrams we consider when
we consider the full two point function, see figure [I.5 We first write the bare propa-

gator,

<T (W(tw’b’c’ (0))> — 590 6% 5 G (1), (1.2.5)

0

where Go(t) = sign(t)/2. We can express the Schwinger Dyson equation for the two

point function, which results from the summation of all melonic diagrams:
Gt —t) =Gyt —t')+¢g*N? / dty dty Go(t — t1)G(t; — 12)*G(ta — ). (1.2.6)
By taking the Fourier transform of , we have the following expression of G(w),
G(w) = (—iw — X(w)) ", N(t) = ¢* N*G(t)®. (1.2.7)

We assume that in the IR, the X will dominate the derivative term and we make the

following conformal ansatz,

G(t) = aji?fit), sign(t)

3
a
N(t) = ¢*N? £[6a (1.2.8)

11



Taking the Fourier transform of ((1.2.8)), we have the following expressions,

Y(w) = 216Aiﬁ%a351gn(w)92]\fﬂw!m1. B
Using that G(w) = —1/3(w) in the IR limit,
—1=GW)E(w) = —2"a'g’ Nir (fg " i;?g /_2 iAg) N w[*7%, (1.2.10)
where,
i T3 ANG-A) .

- mg2N3T(1 — A)D(A)
We find that A = 1/4, and we can now substitute these values into our ansatz to

solve for the propagator,

_(TEHATE - 4) M sign(t)
G(t) = (Wgstm - A)F(A)) [#]2

B 1 14 sign(t)
- 47 g2 N3 muz )

We show in section that equation ([1.2.12)) matches that of the ¢ = 4 SYK model

(1.2.12)

at large N. The spectrum of bilinear operators of this model is explored in |3|, and
a key result is that the scaling dimensions have a solution that is responsible for

quantum chaos in the model and is the mode dual to gravity, as is the case in the

SYK model.

12
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Figure 1.5: We must sum all melonic contributions to find the full two point function.
On the far left is the bare propagator, and the others are examples of contributing
melonic diagrams.

1.2.2 SYK model

The SYK model is a model describing N Majorana fermions, with a small number, g,

of random interactions at a time. The Hamiltonian of the model is as follows [4,34]:

1q/2
= (l > Do Ty, where {1, Uy} = . (1.2.13)

q!
1<j1<...<Jg<N

Here j is a mean zero random gaussian variable that has variance,

<J? >:%‘

J1---Jq

(1.2.14)

The model defines a quantum mechanical system that shares some properties
with a two-dimensional black hole in AdS. Namely, when we solve the model at large
N in the 1/N expansion, the correlation functions of this model agree with those of
a two-dimensional black hole. The 1/N expansion allows us to pick out and evaluate
the dominant Feynman diagrams at large N, just like in the tensor model.

The melonic diagrams dominate for this model at large N. Let us define a face
as a cycle made of alternating propagator and disorder lines. Each face contributes a
factor of N, and each disorder line contributes a factor of N~ Thus, the melonic

diagrams maximize the number of faces for a given number of vertices. Examples of

13



Figure 1.6: Examples of the melonic contributions to the full two point function of
the SYK model. The dotted lines represent the average over disorder.

melonic contributions to the SYK two point function are presented in figure [I.6] and
a detailed diagrammatic proof of melonic dominance is presented in [35].

Here we show that the full two point function of the ¢ = 4 SYK model and is
equal to . First, let us write the ¢ = 4 SYK Hamiltonian,

6.2

- (1.2.15)

1 .
H= 12 Z Jiji Vitbjriby, with (J2) =

1<i<j<k<I<N

The Schwinger Dyson equations match those of the ¢ = 4 tensor model presented in

section [I.2.1]
Gw) = (—iw—3W)™", 2@ =J*G(t). (1.2.16)

Thus, the resulting two point function of the SYK model matches that of the tensor
model with J? = g2 N3. We explore more properties of the SYK model in chapters
and [3} in particular, we study the chaos properties as well as higher ¢ computations

in comparison to the corresponding tensor model.

1.2.3 Complex SYK model

The tensor models and the SYK model may both be generalized to include complex
fermions. In chapter , we study a ‘prismatic’ complex tensor model (rank three,

q = 6) along with its analogous ¢ = 6 disordered model, which we call the ¢ = 6 WL-

14



SYK model, due to the Wishart Laguerre (WL) coupling we find. In this section, we
first introduce the complex SYK (¢cSYK) model by adding a global U(1) symmetry,
in addition to a chemical potential, to the standard SYK model, and we discuss a few
key findings in the ¢ = 4 ¢SYK model.

We start by writing the ¢SYK Hamiltonian [36],

H= Y le<.,,<jq/27,ﬂ<“_<kq/2A{wj.l...zp;mzpkl...wkqm}, (1.2.17)

J1<..<Jq/2
ki1<..<kg/o

where A{...} is equal to the antisymmetrized product of the Majorana fermions.
The antisymmetrization preserves the particle hole symmetry of the model, mean-

ing this model is invariant under w; <+ ;. The variance of the random coupling

Jj1<...<jq/2,k1<...<kq/2 is given by,

(

We will focus on the model with ¢ = 4 with the following Hamiltonian is,

‘]j1<..‘<jq/2,]€1<...<]€q/2

2> — 2 (Q/Q);ifﬁ_ DI} (1.2.18)

1
H= ) Jj1j2k1k2§{w;1w;27wk1wk2}

J1<J2,k1<kz

1 1
= Y T <§w;1w}2wklwk2+§wk1wk2wj-le~2) (1.2.19)

J1<j2,k1<kz

= Z Jj1j2k1k2 <¢;1¢;2¢k1¢k2 + Bjij2k1k2> )

J1<j2,k1<kz

15



Figure 1.7: This is an example of a melonic contribution to the two point function
of the ¢ = 4 complex SYK model as defined in ((1.2.19)).

and the B,k 5, term arises from normal ordering the terms in the second line of

equation ([1.2.19)) using the relations {1;,¢,;} = 0 and {!, P} =0y

Bjij2k1k2
1 i i i i
= 5 <5j1k1¢j2wk2 + 5j2k2¢j1¢k‘1 - 6j1k2wj21/]k‘1 - 6j2]g177bj1¢k2 + 5j1k25j2k1 — 5j1k’15j2k’2> .
(1.2.20)
The global U(1) charge @ is defined as follows,

1 N

_ ot | = i, — —
Q- Z = || = vl - 3 (1.2.21)

We write the Schwinger Dyson equations for this theory by noting that the melonic
diagrams are again the only contributing diagrams at large N. An example of one of
these contributing melonic diagrams is provided in figure [[.7, The Schwinger Dyson

equations are,

Git)= (8, —pu—X)",  I(t)= J2Gt)2 (~G(~1)). (1.2.22)
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These equations differ not only by the form of ¥, but also by the form of the bare
propagator, as now we consider the addition of the chemical potential u. However, in
the IR, we can simplify and neglect the bare propagator term, Go(t) = —(9; — u)~L.
Since the global U(1) symmetry breaks down to a local U(1) symmetry in the IR, we
must add a complex phase factor to our ansatz for the IR solution of the two point

function. The full two point function in the IR is reported in [36] as,

:FbAeiﬂ'S :FblfAeiTrS
G(+t) = TR B(*t) = RS
1.2.23
here b (1 —2A)sin(27A) ( )
wher =

4rrcos(mA +in€)cos(tA —in€)’

where £ is known as the spectral asymmetry, which is a key feature of the complex
SYK model. Another interesting feature of the cSYK model that we may examine
is the charge compressibility, K. This quantity may be found numerically through
quadratically fitting the ground state energy in each charge sector, Ey(Q), versus the
charge sector, Q, using the equation Ey(Q) = Ey+ Q?*(2NK)~!. For the ¢ = 4 cSYK
model, the compressibility is found to be a small positive value, K ~ 1.04 [36]. We
examine several other properties, including the charge compressibility, of our ¢ = 6
WL-SYK model in chapter 3] Interestingly, we find that our model has a negative

charge compressibility.

1.3 Quantum Chaos

Random matrices and chaotic systems are topics studied in a wide variety of fields

including biology, finance, number theory, and physics; in fact, much progress in the
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field was made by Eugene Wigner with applications in nuclear physics [37]. We can
better understand several properties of our system using knowledge from random ma-
trix theory. Namely, by studying the symmetries of our model, we can determine the
corresponding so called ‘Dyson ensemble,” and then we may make several generaliza-
tions of our model at large N stemming from the expected eigenvalue statistics.
There are three main random matrix ensembles corresponding to the Hermitian
models that we study in this paper; these are commonly known as the Wigner ensem-
bles consisting of the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary
Ensemble (GUE), and the Gaussian Symplectic Ensemble (GSE). The GOE is time
reversal invariant and is a random real symmetric matrix (H = H') where the entries
are drawn from a normal Gaussian distribution. The GUE is not time reversal invari-
ant and is a random Hermitian matrix (H = H') where the entries are drawn from
a complex Gaussian distribution. Finally, the GSE is time reversal invariant (but
breaks rotational symmetry) and is comprised of real quaternion matrices, meaning
that the coefficients ¢; are real in the following general form of the 2 x 2 complex

matrix,

M = coEy + c1 By + coFEy + c3E5, where

10 0 i 0 —1 i 0 (1.3.1)

We can construct the GSE by imposing the symmetry condition M;; = M;;, leading
to real diagonal entries for M, and by summing the direct products between matrices

with entries drawn from a normal Gaussian distribution and the above E; matrices.
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1.3.1 Level spacings distribution

Here, we sketch the derivation of the probability density function (pdf) of the spacing
between the eigenvalues of a simple 2 x 2 GOE, following the calculations presented

in [38]. We first define a simple GOE matrix,
H= . (1.3.2)

where a and ¢ are sampled from A(0,1) and b is sampled from N(0, 3); here, we let
N (11, 0?) represent the normal distribution with mean z and variance o?. We can solve
for the eigenvalues of H through the characteristic equation, (a —\)(c—\) —b* = 0 to
get that 2\ s =a+c=* \/m. Thus, the spacing between the eigenvalues
iss=A—X\y = \/m. Now we can write the pdf of the spacing as follows,

7(12 2 2
—a” e,b

\/_\/%\F 5(s — \/(a — )2 + 4b%), (1.3.3)

P(s):/ da dbdeS——

since our variables are drawn from a normal distribution. To simplify the calculations,
we change variables using the substitutions a = (r cos(0) + ¢)/2, ¢ = (¢ —rcos(6))/2,
and b = (rsin(6))/2,

1 [e's) 2m oo —_r
112 / dr / dor(r — s)e 7o)/ (1.3.4)

s2/4 __ —s2/4
=1 1/22ﬁse = 56 .

(=72 cos? 0+¢2)/46(—r2 sin? 6)/4
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We can rescale this expression by the mean level spacing, § = /7, to get

P(s) = VaP(v/as) = (ns/2)e ™/, (1.3.5)

Equation ([1.3.5)) is known as Wigner’s surmise, and furthermore, Wigner derived an

approximation for P(s) that can be used at large N [38-40],

~

Py (B,s) = AsPe B2, (1.3.6)

where A and B are normalization constants, and § = 1,2 and 4 corresponds to the

pdf of the eigenvalue spacings of the GOE, the GUE, and the GSE respectively.

0.06
7 —GOE (4096) |
0.05 — GUE (4096)
004" GSE (4096)| |
»
~— 0.03 1
[l
0.02 i
0.01r ]
0 : ! ! \‘
0 0.5 1 1.5 2 2.5 3

spacing (s) <107

Figure 1.8: The level spacings, or ‘unfolded,” plots for the GOE, GUE, and GSE with
212 distinct eigenvalues.
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Let us note here that as we send s — 0, the P(s) also falls towards 0, see figure
[I.8 In other words, the probability of two eigenvalues having near identical values
is extremely small. This phenomenon is known as level repulsion, and is a property
of random matrices. This is in contrast to the spacings pdf of i.i.d. real random
variables, which display Poisson statistics; thus as s — 0, the probability of s grows
large. We can plot the P(s) of our models and observe how the distribution compares
to what we expect from the corresponding Winger ensemble. This plot gives us

information about the correlation functions of close eigenvalues.

1.3.2 Spectral form factor

We can gain information about the longer range correlations of eigenvalues by exam-

ining the spectral form factor (SFF),

g(t,pB) = |Tr(e_ﬁH_th)|2/Tr(e_5H)2. (1.3.7)

The main elements of the SFF for a random matrix is a dip ramp plateau structure.
The ramp is caused by the repulsion of eigenvalues that are far apart; these eigenvalues
are anti-correlated, which is why the ramp is below the plateau. One can think of the
eigenvalue spectrum as comprising a crystal, and the ramp and plateau are a measure
of the rigidity or ‘floppiness’ of the crystalline structure.

The plateau is a result of generic level repulsion, as degeneracies are unlikely. The
ramp and plateau occur at later times and thus probe shorter distances—they are a

result of a phenomena known as spectral rigidity. The ramp and plateau behavior are
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Figure 1.9: The SFF for the GOE, GUE, and GSE, all of size 2!3, display the dip
ramp plateau structure with slight differences in depth and shape of the dip, the ramp
slope, and sharpness of the ramp to plateau transition.

universal features of chaotic systems, and emerge from the realization that near the
center of the semi-circle of eigenvalue density, the pair correlation function is expressed
as the square of the sine kernel. By Fourier transforming the pair correlation function
of the eigenvalue density for the random matrix, we can see that ¢(t,0) has a ramp up
to what is known as the plateau time ¢,, and a constant value after ¢,. This derivation
can be found in [22|. The time that the ramp starts is known as the ‘Thouless time.’
Like the scrambling time, it is of order logN but it has a different prefactor [41,/42].
This Thouless time gives the time scale for energy to diffuse across the system. The

dip occurs at early times and so it probes larger distances; it is the Fourier transform
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of the entire spectrum. For a random matrix that follows the Winger-Dyson semicircle
distribution, the slope of the dip resembles the Bessel function, and this is what we
see when we plot its SFF. A chaotic system is expected to have these properties since

they share the same nearest-neighbor statistics of the respective RMT ensemble, see

figure [1.9]

1.3.3 Level spacings ratio

Another measure of quantum chaos we study is closely related to the level spacings
discussed earlier, and is called the consecutive level spacings ratio mean value, (r).
This quantity is often used when examining transitions in spectral statistics [43]. The

ratio, r is equal to,
S

r =

T where s; = \j11 — A (1.3.8)

Here, ); is the i*® eigenvalue. Starting from the Gaussian ensemble joint probability
distribution of three consecutive eigenvalues, [40] derives the analog of the Wigner sur-

mise for the probability distribution of the consecutive level spacings ratio, Py (f3,r):

(r 4+ 12)#
(147 +72)+7

Pw(B,1) = Ag (1.3.9)

where Ag is a normalization constant, and 5 = 1,2, and 4 corresponds to the GOE,
GUE, and GSE respectively. Note that we see level repulsion here; when we allow
r — 0, the probability of the ratio P(r) also approaches a small value. We can now
restrict the values of 7 to have support [0, 1], and we call this new value 7. To compute

(1), we use the fact that Py (8,7) = 2 Py (5,7)0(1 — r) as in [40]. We can now find

23



the analytical expressions for (7),

r(r+r?)
(147 +r2) 7

(F)g = / dr2Ag6(1 —r) (1.3.10)
0

The values of Az used are computed in [40], and are equal to 4/27, 81/3/(4r),

and 729/3/(47) for B = 1,2, and 4. We find that (#), = 4 — 2v/3 ~ 0.5359,

(), = 2¢/3/m — 1/2 = 0.6027, and (7), = 321/3/(157) — 1/2 ~ 0.6762 for the GOE,

GUE, and GSE respectively. We compare to these reference values throughout this

work.

1.4 Overview

I thank Igor Klebanov, Kiryl Pakrouski, Fedor Popov, and Wenli Zhao for their
valuable collaboration on much of the work presented in this thesis.

Chapter [2| is based largely on work done with Igor Klebanov and Fedor Popov
in |44]. I presented this work as a poster in the Strings 2019 conference [45]. We in-
troduce the higher order generalization of the tensor model. We examine the growing
number of O(N)?~! invariant tensor interactions for ¢ > 6, noting that the maximally
single-trace interaction is no longer unique. We review symmetries of the rank five,
g = 6 model, and examine the spectral properties and compare to those of the corre-
sponding ¢ = 6 SYK model. We study the SFF of our models as well as the large N
scaling dimensions of the fermion bilinears.

Chapter [3]is based on work in progress done with Simone Giombi, Igor Klebanov,

and Wenli Zhao [46]. We introduce the complex fermionic prismatic tensor model,
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and consider U(1) preserving interactions. We study the properties of these models,
namely the large N scaling dimensions of the bilinears. Finally, we consider the
(complex) disordered analog of this model, and note that this model differs from [36]
by a broken charge conjugation symmetry and what could be interpreted as a negative
charge compressibility.

Chapter |4 is based on work done with Igor Klebanov, Kiryl Pakrouski, and Fedor
Popov in [47] and [48]. In this chapter, we focus on models containing scar states, and
develop a general framework for construction. We find that many body scar states
comprise a group invariant sector of the Hilbert space. These scar states are useful for
preserving information of a system over time, and can be realized experimentally. We
construct scars in models of varying dimensionality (vector and matrix models), and
we also show that several well known scar states can be written via our framework
of construction. We support our results numerically with several quantifications of

quantum chaos in addition to ETH violation computations and visualizations.
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Chapter 2

Majorana fermion quantum

mechanics for higher rank tensors

2.1 Introduction and summary

This chapter is based on [44]. We study the Klebanov-Tarnopolsky tensor model that
is generalized to higher rank. Rank ¢ — 1 tensor models with ¢ > 4 have been the
subject of several studies relevant to our paper [3,49-51]. A comprehensive study
of various invariant interaction vertices for a single tensor of rank ¢ — 1 was carried
out in [50,51]. For ¢ > 8 there is a very rapidly growing number of ‘generalized
tetrahedral” interaction vertices, i.e. those that satisfy the constraint that every pair
of tensors has exactly one index contraction| As pointed out in [49], their counting

is a mathematical problem isomorphic to scheduling of the round-robin tournament.

2This is to be contrasted with the Gurau-Witten model [2,5] for ¢ flavors of rank ¢ — 1 Majorana
fermion tensors, where the interaction is uniquely fixed by the O(N)24=1)/2 symmetry.
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Following [50] we mostly focus on the special subclass of such interactions which are
‘maximally single-trace” — their stranded diagrams stay connected if all but two of
the colors are erased. This facilitates the combinatorial analysis of the Feynman
diagrams in the large N limit. It is conjectured that the maximally single-trace
(MST) interaction vertices, which are known in mathematical literature as perfect
1-factorizations, exist for any even ¢ > 2. They have been proven to exist when
either ¢ — 1 or ¢/2 is prime [52,/53], as well as in some other cases, such as q =
16, 28, 36, 40, 50, 126, 170, etc.

A part of our paper is devoted to a careful analysis of the Majorana tensor theory
in 0 + 1 dimension with rank-5 tensors as the dynamical degrees of freedom. The
unique generalized tetrahedral interaction was written down in |3|, and the Hermitian

Hamiltonian is

g aibicidiey, j,a1bacadses, azbacsdser ,jasbscadies, asbscidses, azbicsdaes
Hy = i (grosbreternbaenduen yoatuenduesgasbiendea e des gosbicndees

(2.1.1)
wagblcgdzeg wagbgcldgeg ,l/}a2b302d1 es wa2b263d361 wal bacadaes walblcldl el) )

We can graphically depict this interaction by representing each fermion as a vertex of
a graph, and each index contraction between pairs of fermions as an edge connecting
two vertices (see figure 2.1). In the large N limit, where A* = g2 N' is held fixed, the
melonic diagrams dominate. The factor of ¢ is necessary to make Hg real; it is a new
feature compared to the rank-3 Hamiltonian (1.2.1). The Hamiltonian has
SO(N)® symmetry, as well as some discrete symmetries. Some aspects of this tensor
model are similar to the O(N)? tensor model. The energy spectra in both models

are symmetric under £ — —F since an interchange of any two of the O(N) groups
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Figure 2.1: A graphical representation of the unique ‘generalized tetrahedral’ inter-
action for ¢ = 6, given in (2.1.1). Each line represents an index contraction, while
different colors correspond to different groups. This interaction is maximally single-
trace, since erasing any set of three colors leaves the diagram connected.

sends H — —H. However, there are also some differences: for example, in the O(N)?
model the time-reversal is not a symmetry since it acts as 7 'H7T = —H due to the
factor ¢ present in the Hamiltonian ([2.1.1).

The O(N)® model also has some differences from the ¢ = 6 SYK model. In
particular, at small IV the structure of the spectra are rather different. This is due
to the large number of continuous and discrete symmetries, which makes the tensor
spectrum highly degenerate. The ¢ = 6 SYK spectrum is compared with the corre-
sponding Q-hermite polynomial, which is calculated in the double scaling limit, where
Nsyk — 00, ¢ — 0o with ¢?/Ngyk held fixed [22,54]. We find very good agreement,
which suggests that the ¢ = 6 SYK model shares some spectral properties with the
double scaled model.

The structure of the paper is as follows. In section [2.2] we discuss the structure

of the Hamiltonian (2.1.1)) and its symmetries and use them to explain some of the
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degeneracies that we observe in the singlet spectrum in section 2.3} In section
we numerically study the spectrum of the tensor model and the ¢ = 6 SYK model
and investigate the differences between the spectral properties at finite N. In section
we discuss some properties of higher ¢ tensor models. The Schwinger-Dyson
equations of the O(N)® and O(N)" models are computed in section 2.6, We show the
existence of the solution of these equations in the IR limit, and that it is invariant
under conformal transformations. Additionally, we study the spectrum of the singlet
bilinear and some of the non-singlet bilinears and show that they are identical to the

SYK model.

2.2 Hamiltonian and its symmetries

The model contains a set of N> Majorana fermions 1% with the anti-commutation

relations:
{l/Jabcde’ wa/b’c’d/e’} _ 5aa’ (Sbb/ 600’5dd’5ee/ ) (221)

We will first work at the ‘classical level,” where we ignore the delta-function terms
on the RHS of (2.2.1) and treat the fermions as real grassman numbers. Then the

Hamiltonian we consider is

Heooss = ig¢a1b101d1€1¢a16262d262¢a2b2c3d3e1¢a2b3czd1e3¢a3b301d362¢a3b1cgd263 ‘ (2.2.2)
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This is the unique sextic term with O(N)® symmetry where any pair of fields have one
index contraction [3]. The factor ¢ is inserted so that the Hamiltonian is Hermitian.
The correct quantum Hamiltonian 1} is H = Hoass + H Lass.

We can show that H..s changes sign under permutation of two O(N) groups. For

example, when we permute O(N). and O(N),, the fermions transform as

wabcde o wabdce. (223>
/
S0, Helass — H{j,os Where
Hll — igwalblcldlel¢alb262d262wa2b263d361 wazbgcldgegwa3bgc3d162wa3blczd363 (2 2 4)
class ° e

Dropping the quantum delta-function terms in (2.2.1)), and bringing it to the form so

that the fields are read from right to left, we have

(,:lass = _igwa3b132d3e3wa3b303d1€2wa2b301d263wa2b263d361wa1b202d262¢alb1c1d161 ] (225)
We find that H],.. = —H.ass; this can be seen explicitly by relabeling the indices

ai <> as, €1 <> ez, by <> b3,
Cg — €1, C1—C3, C3—Cy, (2.:2.6)

d3 — dl, dl — dg, d2 — d3.

We examine the behavior under the other O(/N) permutations and find that H' = —H

in all cases, see table Therefore, the symmetry group of the Hamiltonian includes
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Group Permutation Index relabeling

C1 <7 Cg, €1 < €3, dg g d3,
a; — asg, as — as, as — ay,
O(N)a and O(N)b bl — bg, b3 — bg, b2 — bl.
Qo <> as, bl S bg, C1 <> Co,
O(N)b and O(N)C d1 < dQ, €1 < €9.

ai <> as, e1 < ez, by <> bg,
Cg = C1, C3—>Cg €1 —>Cs,
O(N)c and O(N)d d3 — dl, dl — dg, dg — d3.
Qg < asz, b1 — bg, C1 <> Cg,
O(N)d and O(N)e dl ad dQ, €1 <> €9.

Table 2.1: Group permutations that send H to —H.

the alternating group As. This is related to the fact that it is a maximally single-
trace (MST) operator. We expect that the A, ; symmetry also holds for the MST
Hamiltonians with higher even gq.

When we use the quantum anti-commutation relations , the Hamiltonian
is not Hermitian. Adding the Hermitian conjugate, we find . It is then
possible to check that under a permutation of two indices Hg — — Hg, establishing
the As symmetry at the quantum level. In the second term of Hg we may bring
the variables back into the same position as in the first term. To do this we need
to make 15 permutations, which give rise to 15 additional quartic terms. Indeed,
we can add possible quartic terms to the quantum Hamiltonian , but as it is
shown in the section [2.7] they do not preserve the As symmetry mentioned above.
The Hamiltonian can be also obtained via the path integral formulation of the
model with real grassmanian variables, and by calculating the corresponding operator
by Weyl ordering. Another way to see this is to notice that this is the only operator

up to the sixth order in fermions that respects the A5 symmetry.
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We may choose the representation where each 1% is a Hermitian matrix with
real entries. Thus, in a given basis is a Hermitian matrix with imaginary
entries; therefore, it is antisymmetric. This means that its eigenvalues are real and
come in pairs +F. This implies that the spectrum has symmetry under £ — —F,
which is a desired property. The proof is the following: let us start with some real
matrix, H'. From H' we can construct a Hermitian matrix, H = i(H' — H'"). All
entries of this matrix are complex, H = —H*, and by definition, H' = H, where H'
is the adjoint. We can therefore conclude that HT = —H. We write the characteristic
equation:

det(H — M) =0 = det(H" — XI) = det(H + ) =0 (2.2.7)

Thus we have shown that the energy spectrum of (2.1.1]) is symmetric. Another way
to see this is to consider the time reversal symmetry, which we discuss in the following

section.

2.2.1 Discrete symmetries

As in |18] we can introduce an operator that sends H — —H. This is called the per-
mutation operator, and it implements an O(N) group pair swap. We can implement

this operation by introducing the following operator

P — abede wabcde _|_1/]abced PT abcdeP __ .abced 298
s= [ v ] ) P Ps =gt (228)
a,b,c,d=e a,b,c,d>e

which exchanges the last two indices of each fermion in the interaction.
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For convenience, it is better to work with Dirac fermions, which can be built in

the following way

¢abcd(2nfl) + Z'wabcd(Qn)

7 :

B abed(2n—1) __ ;. /abed(2n)
gobedn _ ¥ \/éw L (229)

wabcdn -

and they satisfy the usual commutation relations of the Dirac fermions,

{15} =015, {Ur, s} ={¢r, s} =0. (2.2.10)

This formalism has manifest O(N)* x SU(N/2) symmetry, but does not manifest
the original O(N)® symmetry. We can normal order each of these terms to get the

following Hamiltonian plus several quartic terms which are not included here.

Hg =1igx
[vf gkl jyiopar ntplw sjugqu Jsthor fnouvm _ijklm,iopar.sjuqu ntplw Jstkor fnouvm
oI yiopar y sjugu Jntplw,Jsthor fijklm. _nowvmiopqr ntplw,fsjuqu fisther. Jijkim
il sthor ) suqu pntpl iopgr fnowvm. _yisklm.sthor, ntpl  sjuqu Jiopar fnouvm

_i_wnouvmwstkvrwntplw&sjqu &iopqr,&ijklm - wnouvmwstkvrwsjqu ,lzntplquiopqr&ijklm}

We notice a symmetry under the exchange of ¢p@¢d(m) — _q)abed(2n) ip) Hamiltonian
(2.1.1). It corresponds to the charge conjugation symmetry, C, pen s qpobedn,
Under this exchange, each term gains a negative sign during normal ordering, and

this results in preservation of the original Hamiltonian: CHC~! = H. We can define
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the charge conjugation operator,

C = [ v, (2.2.11)

abedn

In the case of the ¢ = 4 tensor model [1§] there is an anti-unitary time-reversal

symmetry T, that acts in the following way
TiT—' = —i, Typebedep—1 — yobede g -t _ g
In the case of the Hamiltonian this is not a symmetry of the theory. Indeed,
TH¢T' = —Hg,

which shows that 7" is not a symmetry of the theory. From this one can see that
the eigenvectors come in the pairs (|F),T |E)) with opposite energies. In the rep-
resentation where 1% are real matrices and the Hamiltonian is a pure imaginary
matrix, the action of T' coincides with complex conjugation 1" = K. Let us consider
an eigenstate |FE) = ¢;|e;), where |e;) is a basis that we build with the use of the
vacuum and the creation operators 1)**. Then

-1 * _ * * * * *
KH&UK == H6,ij == _Hﬁ’i]’, H6’Z'jCj - ECi = HG -C, — ECi, Hﬁyz‘j 5= —Ec.

4J 7] 4

(2.2.12)
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From this one can notice that if the ¢; are real then it corresponds to the zero state.

Indeed,

<E|H|E> = CiH6,ijCj = —CZHg ¢ = 0. (2213)

st

To get a symmetry of the Hamiltonian out of the time reversal symmetry, we
can combine it with the permutation operator P45 to get Ty5s = T Py5. This operator
interchanges two representations of the A5 group. The existence of such a symmetry
explains the 6-fold degeneracy of ground state in the numerical studies of the N = 2
model. The symmetries As together with Ty form the S5 symmetry group.

With the discrete symmetries of our ¢ = 6, O(N)® symmetric tensor model de-
scribed above, we are now in a position to find the corresponding random matrix
model to describe quantitative properties of the spectrum of the model. This is typ-
ically done by mapping our model to a random matrix theory ensemble. There are
general rules for choosing the associated ensemble based on the various symmetries of
the model [55]. The set of possible ensembles we consider is known as the Andreev-
Altland-Zirnbaur (AAZ) ten-fold classification. The symmetries we will use to classify
our model are the time reversal symmetry (TRS), and the permutation symmetry de-
scribed above, P;;. As noted above, our Hamiltonian does not posses TRS, like the
q = 6 SYK model [4]. In the absence of TRS, we can take P = +1, and we can
classify this Hamiltonian as belonging to the AIII ensemble of the AAZ ten-fold classi-

fication [56]. With this classification, we find that the corresponding random matrix

ensemble is a chiral Gaussian Unitary Ensemble (chGUE) [57]. We may also use
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our knowledge of these discrete symmetries to examine the singlet spectrum and its

degeneracies, which is done in the following section.

2.3 The spectrum of eigenstates of the O(2)° model

In this section, we will study the spectrum of the Hamiltonian for N; = 2.
The number of different Majorana fermions in this theory is 2° so that there are
216 = 65536 states. We can represent each fermion by a gamma matrix of SO(32).
We construct the pure real gamma matrices of SO(32) by taking tensor products of
Pauli spin matrices, as described in [58|. After substituting them into the Hamiltonian
(2.1.1)) we obtain a matrix which can be diagonalized using a computer program.
We begin by describing the SO(N)® invariant states in our theory. They are
present only when N is even, and we restrict to this case. In order to count the
number of these states, we follow the method of |18]. We gauge the free theory to
get
Sg = / At [YabedeOrtabede + AgyayVabedeWanbede + - - - (2.3.1)

The procedure of gauging eliminates all non-singlet states from the spectrum. Indeed,
if we calculate the path integral on the circle of the length 8 and first take the integral
over the gauge field we get a constraint J', = 0 — the generator of rotations must be

equal to zero. After that, we take the integral over fermions to get,

5
/ 0] TTIAATE™S = trng 1 = Nagirs (2.32)

=1
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If we first calculate the path integral over fermions and gauge the A® to Cartan

subalgebra, where A’ is a skew-symmetric matrix, we get that

5 N 1 2 3 4 5
. T, *ry *wy, . tx
Nsinglets = 215/HdQZSO(N) H Hcos [ i k> 53 ka ks
i=1 ki=1,..ks=1 +
(2.3.3)
Here, i,k = 1,...,N/2 and degO(N) are coordinates and a Haar measure of the

ith group. The second product is taken for all possible combinations of the signs.
Roughly speaking, the integrand is a character of SO(N)® and we can decompose
it via the characters of the irreducible representations of the group to count the
number of the representations. For the case SO(2)°, the integral gives 222
singlet states, agreeing with the numerical results. Using the same method, we may
count the number of singlet states for models of different ranks. For instance, the

O(2)* x O(4) model has 106096 singlets.

Energy Spectrum of the 0(2)5 Singlets

o Energy Count | Percent
z —64+/10 ~ —202.386 | 6 2.70
g —64v/2 ~ —90.51 30 13.51
=l 0 150 | 67.57

64+/2 =~ 90.51 30 13.51
H H 641/10 ~ 202.386 6 2.70
ol M il

L L
-200 -150 -100 -50 50 100 150 200

0
Energy (9)

Figure 2.2: The spectrum of the SO(2)° invariant states in the O(2)° tensor model.
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We can see that the degeneracy of each state of the singlet spectrum for N = 2 is
a multiple of six. The six-fold degeneracy is explained in section [2.2.1 by the discrete
symmetry Ss. From the precise numerical eigenvalues we can deduce their exact
analytic form: 64v/10 ~ 202.386 and 64v/2 =~ 90.51. Eigenvalues expressible in terms
of square roots have appeared in other tensor models with low N [18-21].

Furthermore, from precise numerical results we have been able to infer the exact
expressions for the full spectrum of the O(2)° tensor model. The energies are found
to be roots of even polynomial equations up to order 6. This is presumably due to
the fact that the various symmetries of H allow for mixing of at most six states. The
polynomials have only even powers because they must be invariant under £ — —F,
which follows from the fact that H — —H under exchange of any two colors. The
results are displayed in figure 2.2l Most of the eigenvalues may be expressed in
terms of square roots or nested square roots, which were seen in other tensor model
spectra [18-21]. The remaining 18 energies are given by the roots of three distinct

even sixth-order polynomials. One of the equations is

E® — 8704FE* 4 15794176 E% — 3221225472 = 0 . (2.3.4)
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Degeneracy Energy (in units of g)
6 +644/10
30 +64+/2
32 +64+/42
80 +161/18 + 615
80 +£16,/2 (5 + v/21)
160 +32v/11
160 +16,/2 (9 + v/57)
160 +16V/13 + /73
160 ES — 8704E% + 15794176 B2 — 3221225472 = 0
160 ES — 12800E* + 40960000 E% — 805306368 = 0
192 ES — 20992E* + 53215232E2% — 1275068416 = 0
110 +128
180 +64+/3
240 +32v/10
320 +48
320 +161/9 + V73
480 +75v/2
480 +1/519 & 21/37514
808 +32/6
860 +64
992 +324/3
1120 +16+/2
1208 +324/2
1440 +164/10
1600 +16
3200 +32
31772 0

Table 2.2: The exact spectrum of the SO(2)° tensor model. The expressions agree
with the numerical results up to 11 digits past the decimal.
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Its six solutions are given in terms of £ = i’/ 5023 + 3244+/533 as follows:

3 §
4 424 124i 12 128i
E34:i\/870 55 55424i 8 8i

1 433
Fia= :I:16\/— (34 F =4 g> ~ £79.1523

; % v =6 Wg ~ +46.9662,

8704 55424 554241 128 128
E56=i\/ - ’ :

3 36 VaE 5 St g e 2T (2.3.5)

The roots of the other sixth-order polynomials may be expressed analogously. The
total number of states listed in table[2.2{adds up to 65536 = 216 = 2V/2 g5 it contains
the full spectrum, which is shown in figure [2.3]

It is interesting to apply the Poincaré recurrence theorem to our system; the
theorem states that after a finite amount of time, a state could return arbitrarily
close to the the initial state [59]. The amount of time it takes for the state to return
close to the initial state is known as the Poincaré recurrence time, and it is a quantity
that we can compute. To find the recurrence time, we first consider an arbitrarily

chosen initial state, which can be decomposed in terms of the eigenstates,

(1) = e p(0)) = Y e e, |¢n) (2.3.6)

n

where Y |c,|* = 1, the |¢,) are the energy eigenstates, and we set |¢(0)) =

Y nCnl0n). It follows that the distance between the initial state and the state at
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Eigenvalues of the 0(2)"S tensor model

7000

6000 -

5000 -

ity

= 4000 -

Multiplici

3000

2000 -

1000 -

ln all !
-200 -150 -100 -50 0 50 100 150 200

Energy (9)

Figure 2.3: Energy spectrum of the O(2)° tensor interaction. There are 31772 zero
energy states; not all are displayed.
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time ¢ is expressed as,
16(8)) = [9O)* =2 leal* (1 = cos(Ent)) (2.3.7)

We can now define the recurrence time, ¢, as the time at which |[¢(t)) — |[¢(0))] < €
for any small ¢ > 0. When this condition is met, we may conclude that the state
|t (trec)) is arbitrarily close to the initial state [¢). The Poincaré recurrence theorem
guarantees the existence of such a time, and here we sketch the proof of the existence

following [60]. First we will split the sum on the RHS of equation (2.3.7)) into two

parts:
Z len|? (1 — cos(Eynt)) = 2 len)? (1 — cos(Eyt)) + Z lcn)? (1 — cos(E,Lt)). (2.3.8)

Let us first focus on the second term in equation ({2.3.8]). We note that

> el (1 = cos(Ent) <2 el (2.3.9)

since the largest value the quantity (1 — cos(F,t)) can take on is 2. The sum on the
RHS of equation (2.3.9) can be made arbitrarily small by making m larger. And thus,

we can conclude that there exists some € > 0 such that,

o 2
3" leal? (1 — cos(Ent)) < % (2.3.10)
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We now move on to examine the first term in equation (2.3.8]). Using a result of the
theory of almost-periodic functions, we may conclude that there exists a time ¢ such

that,

m—1 2
3 feal? (1 — cos(Eqt)) < EZ (2.3.11)
n=0

By taking the sum of equation (2.3.11]) and equation (2.3.10]), we can conclude that

there exists a t that satisfies,

[l9(2)) — 1(0))] < e (2.3.12)

Next we would like to find the recurrence time explicitly. Fortunately, if the exact
expression for the energies F, are known, the Lenstra-Lenstra-Lovasz (LLL) lattice
basis reduction algorithm may be used to calculate the recurrence time [61]. Namely,
the condition for the ¢, can be rewritten in the following form. We are looking

for the number ¢, such that
max ‘Enq — | Eng] ‘ < e, (2.3.13)

where the expression |z| rounds x to the nearest integer. The recurrence time can

L We can construct the lattice basis in the form

be expressed in terms of q as tyec = 5=

gl = (17QE17QE27 cee 7QEn)a

(€:); = i, (2.3.14)
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and apply the LLL algorithm, so that the first basis vector has the form,

—

1= (0.Q (B —p). QB —p2),...), (aBi—p)<Q 7, (2.3.15)

where p; are integer numbers, and () is a large integer chosen to adjust precision.
Therefore, the number ¢ found by the LLL algorithm is the required ¢ for the condition
(2.3.13]).

Applying this algorithm for the spectrum of our model, we find that the recurrence

time 1s

tree = 218516231876133437533409856498158380135794428¢* ~ 2.18 % 10%°g ™,

-6

‘ < 0.5% 1072, (2.3.16)

2.4 Comparison with the ¢ =6 SYK model

In this section we calculate the energy spectrum and the spectral form factor of the
Nsyk = 26 , ¢ = 6 SYK model and compare with corresponding results of the O(2)°

tensor model. The ¢ = 6 SYK model Hamiltonian is

, . , , Oiriv oo 04
HSYK =1 Z ji1---i6¢i1¢iz'“¢i67 <]i1---i6]j1---j6> = JQM . (2'4‘1)

N5
1<i1<...<ig<NsyK SYK

In this case there are 2'3 = 8192 states, and each fermion is assigned to a gamma

matrix of SO(26).
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Energy spectrum of the q = 6, Nva =26 SYK model

. SYK spectrum

—— Q-Hermite spectral density

120 -

100

[
o

Multiplicity
3

40

20

Energy (J) %1073

Figure 2.4: The energy spectrum of the ¢ = 6 SYK model with Ngykx = 26, averaged

over 49 samples.
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In figure we can see that there are large energy gaps in the tensor model,
whereas the SYK model has a much denser spectrum and displays a near semi-circular
distribution of eigenvalues that is characteristic of random matrices. Upon examining
the energy spectrum, we can see the £ — —FE symmetry in the ¢ = 6 model due to the
time-reversal symmetry, which is not present in the ¢ = 4 SYK model. We provide a
fit for the energy spectrum as shown in figure 2.4l This fit is the spectral density that
corresponds to the ()-Hermite polynomial with ) equal to a combinatorial factor, 7,
that encodes the suppression of crossing diagrams in the Wick contractions of gamma
matrices. The suppression factor is derived in [62],

(7 2O e

p=0

The @-Hermite spectral density, pom(E), is the following [22,62,63|,

pon(E) = Ay/1 - <E/Eo>2f[ [1 - (25) e

where A =~ 104 is the normalization constant, which imposes that the total number

(2.4.3)

of states is equal to 2Vsvi/2 = 8192, E; ~ —0.0032 J is the ground state energy, and
n ~ —0.0072 is the suppression factor. The spectral density, , is calculated in
the double scaled limit, where Ngyx — 00, ¢ — o0, and ¢?/Nsyk fixed. We can see
that there is strong agreement with the Q-hermite polynomial and the ¢ = 6 SYK
energy spectrum, which indicates that this model is a very good approximation of

the double scaled limit.
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GUE § = 0, L = 560000

i
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time
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time (J7)
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SYKq 6, NSYK—26 ﬂ—1560J
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Figure 2.5: Top: SFF for the gaussian unitary ensemble (GUE) associated with the
g = 6, Nsyk = 26 SYK model at § = 0. Middle: SFF for the ¢ = 6, Ngyx = 26,
£ =0 SYK model averaged over 49 samples. Bottom: SFF for the ¢ = 6, Nsyk = 26,

10° 10" 102 103 10* 10° 108 107
time ()

B = 1560 J~! SYK model averaged over 49 samples.
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Additionally, we can examine and compare the spectral form factor (SFF) for
the SYK and tensor models (similar calculations in tensor models with ¢ = 4 were
performed in [16,17]). The SFF is a measure of the discreteness of the energy spectrum

and can be defined as [22,64]

g(t,B) = |Z(t,B)|*/Z(B)?, where Z(t,3) = Tr(e PH-HY) (2.4.4)

In figure and figure [2.6] we display plots of the SFF for the ¢ = 6 SYK and tensor
models. For comparison, we have also plotted the SFF of the corresponding random
matrix theory (RMT) ensemble, which is determined by the value of Nsykx mod 8 [22].
In our case, we plot for Ngyxk = 26, which is associated with the gaussian unitary
ensemble (GUE). The SFF for the GUE that we have plotted is calculated in [65],

and we have included the result at infinite temperature below:

11—t t<?2L

0, t> 2L

J1(t) is the Bessel function of the first kind, and contributes to the early time oscilla-
tions of the GUE. L sets the size of the ensemble of random Hermitian matrices, and
is related to the plateau time as ¢, = 2L.

We can see that the SFF for the SYK model has the same features of the corre-
sponding RMT ensemble, indicating properties of quantum chaos; in particular, the
dip-ramp-plateau structure is present (see figure . Some of these properties are

more difficult to see in the tensor model because the gaps in the energy spectrum
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are sizable for the available value of N. However, we can notice a dip and plateau
structure in our tensor model, which suggest signs of chaotic behavior, but there is
no obvious ramp (see figure [2.6)).

Despite clear differences in the finite N behavior of the tensor model and SYK
model, we find that the large N solutions of the two models are identical. Before
solving the large N models, we will discuss higher ¢ tensor models followed by the

large N limit and the melonic dominance of our tensor model.

2.5 Tensor models with ¢ > 6

We begin with a discussion of ¢ = 8, where the Majorana fermion tensor is of rank
seven, and the model has O(N)” symmetry. In a ‘generalized tetrahedral” interaction
vertex, every two tensors have exactly one index in common. In contrast to the ¢ = 6
case, there are six distinct such ¢ = 8 interactions [50,/51|. However, only one of
these interactions has the property that it stays connected whenever any 5 colors are
erased. This is the maximally single-trace (MST) vertex in the terminology of [50],
and we will show that in the Majorana model it produces a Hamiltonian which is
fully antisymmetric under interchange of the O(N) groups. The problem of finding
the MST interactions is equivalent to the problem of finding the perfect 1-factorization
of the complete graphs [52]. There are two classes where the existence of the perfect
1-factorizations has been proven: for graphs with p 4+ 1 vertices or 2p vertices, where

p is an odd prime number.
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Figure 2.6: SFF for the O(2)® tensor model for three values of 5. Top: 8 = 0, middle:
B = 0.0250 ¢!, and bottom: B = 0.150 g~'. Note that the fluctuations for the
bottom subfigure are much smaller than the two above — this is because the SFF is
calculated at a lower temperature.
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Figure 2.7: A graphical representation of the unique maximally single-trace tensor
interaction for ¢ = 8. It stays connected when any 5 out of the 7 colors are erased.

The ¢ = 8 MST interaction is shown in figure This interaction is called the
canonical coloring [51]; this means that if we erase any set of 5 colors, we are left with
an octagon composed of alternating colors. We can show the antisymmetry of this

fermionic interaction as follows. Let us erase all colors except for groups O(N), and

O(N), to get,

__ .5aibicidier fig1,),a1bacedaes faga ,,a2b1c3dses f3g2,,/,a2b3c1daea fags
Hg =1 Jig1y), 2924, Js924), fag (2.5.1)

¢03b403d1 eafags waabzc4d461f3g4 wa4b302d3€4f194 wa4b4c4d263f491 .

— H2 — Wlbl¢a1b2¢a2b1¢a2b3¢a3b4¢a3b2¢a4b3¢a4b4- (2_5.2)

Now let us exchange the O(N), and O(N), groups of Hj to get,

Hé — walblwa2b1walb2wa3b2wa4b3wa2b3wa3b4wa4b4
— _wallnwalewCLQlHwa2b3wa3b4wa3b2wa4b3wa4b4 — _H2.

(2.5.3)
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Figure 2.8: The graphical representation of a ¢ = 8 tensor interaction which is not
maximally single-trace. If we erase all but the blue and red stands, the graph becomes
disconnected.

This is in contrast to the other ¢ = 8 interactions that satisfy the constraint that
one index is shared among any two pairs of fermions, all of which are provided in figure
2 of [51]. We give an example of a non-MST interaction in figure[2.8] corresponding to
figure 2,a in [51]. When we erase all but two colors, we are left with two disconnected
diagrams, which means this interaction is symmetric under exchange of these two
colors.

Let us now comment on the ¢ = 8 MST interaction. Since there is no i in this
interaction, we have the time reversal symmetry. The £ — —F symmetry comes
from the antisymmetry under the exchange of two gauge groups. This interaction

(¢—1)(g—2)
2

is melonic and scales as g?N = ¢?N?!. In section , we will calculate the
scaling dimensions of the bilinears of this model, and also include the result for general
q tensor models.

We will define the group of coloring automorphisms, which will be used in calcu-

lating the propagator. One can think of a coloring automorphism as a permutation
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Figure 2.9: The graphical representation of the maximally single-trace tensor inter-
action for ¢ = 10.

of the vertices of the interaction graph in a way that preserves the colors of the edges.
Paper [51] explores these symmetries in more detail, and shows that the group of
coloring automorphisms is Z5. Furthermore, proves that for ¢ = 42", u odd,
melonic tensor models, the group of coloring automorphisms, which we will denote
as Aut, can be at most Z3 for u = 1 and Zy ' for u > 1.

There are six distinct ¢ = 8 interactions that satisfy the constraint that each pair
of Majorana fermions has a single index contraction. The difference between them is
the order of the coloring automorphism group, which is taken into account in .
The more symmetry our interaction has, the larger the order of the automorphism
group will be. It follows that the ¢ = 8 fully symmetric diagram has the largest group
order, with Aut = Z3 [51]. As noted in section [2.6] the |Aut| factor cancels out in the
spectra calculation.

The number of possible ‘generalized tetrahedral” interactions increases very rapidly

with ¢ ,: for ¢ = 8 it is 6, for ¢ = 10 it is 396, and for ¢ = 12 it is 526, 915, 620.
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Figure 2.10: Melonic corrections to the propagator. These are the only diagrams
that survive at large N.

However, at least for ¢ = 8 and 10 the maximally single-trace vertex, or perfect one-
factorization, is unique [50|.|E| For ¢ = 10, the MST vertex is shown in figure (see

also figure 5 of [50]).

2.6 Large-N scaling dimensions of the fermion bilin-
ears

Due to the melonic dominance for the rank ¢—1 tensor models with MST interactions,
we can sum the Feynman diagrams in these large-N theories. This allows us to
calculate the propagator of fermionic fields and the spectrum of fermion bilinear
operators. We expect the large-N solution of the MST tensor models to be similar to
that of the SYK models, which also exhibit the melonic dominance. Indeed, in [49]
it was shown that the four-point function for a rank ¢ — 1 tensor model has the same
kernel as the SYK model four-point function with a ¢ fermion interaction. In this
section we present further results along these lines.

The large-N Schwinger-Dyson equation for the tensor model two point function

with a six fermion interaction is represented diagrammatically in figure 2.10f. We can

PThe smallest value of ¢ where the MST vertex is not unique is 12. We thank Fidel Schaposnik
Massolo for informing us of this and providing a reference, [53].
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write the Schwinger-Dyson equations from the diagrams in figure [2.10, We start with

an MST ¢-tensor interaction,

(g=1)(g—2)

G(t) = (TY()Y(0)) = (0 —2)", E=qlAutlg’N "= G, (2.6.1)

where |Aut| is the order of the automorphism group of the interaction (see section

, and ¢|Aut| is the number of contributing Feynman diagrams [51]. We introduce

(g—1)(g—2)

A2 = g|Aut|g? N~ 2, and we make the assumption that in the IR regime the X

will dominate the derivative. Thus, we use the following conformal ansatz,

_ asign(t) _pa% Tsign(t)

We take the Fourier transform of (2.6.2) and arrive at,

ra-A
G(w) = 21_2Aiﬁ¥a\w\m_lsign(w),
[(1/2+ A)
M- (g-1)a) (262
Y(w) = 2172V /r RS . a® Ysign (w) N2 |w|?@ DAL
(@) VR g e Ay @)
In the IR limit we assume that we can neglect the derivative and get G = —1/%.

From this we arrive at

T(1— AD(L— (g — 1)A)

2T A2+ - na) ™ 26

—1=G(w)E(w) = —22_2qAaq)\27rF
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1 3_
It follows that A = 1/¢q and a? = ACRLIIE: A;. Thus, we have that the propagator

TAT(I—A)D(A

is,

Q=

sign(t)
WZA ’

G(t) = (F(% + AT — A)) (2.6.5)

TAD(1— A)T(A)

which exactly matches that of the general ¢ SYK model [66]. For ¢ = 6 and ¢ = 8 we

have,

Go(t) = ( V3 )6 sien(t) () = ( ’ )8 sign(t) (2.6.6)

92 |[¢|1/3 7 8mA2cot ()

Using this propagator we can study the spectrum of bilinear operators.

Let us first compare the combinatorial factors in the ladder diagrams, shown
in figure to those in the melonic diagrams for the two-point function, shown
in figure . As stated above, there are ¢|Auf| Feynman diagrams that must
be counted for each melon insertion. We note that the ladder diagrams may be
constructed by ‘cutting’ one of the internal legs of the melonic diagrams for the two-
point function. There are (¢ — 1) choices of which leg to cut. This means that, for
every diagram in figure , we can make (¢ — 1) ladder diagrams by cutting the
different internal propagators. So, we have a combinatoricial factor of q(¢ — 1) Aut|
for the ladder diagram. Thus, the factors of |Aut| cancel in the operator spectra
calculation, and we find that the spectrum is identical to that of the corresponding ¢

SYK model. The calculation is presented in the following.
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Figure 2.11: A few of the ladder diagrams that contribute to the four-point function.

] _

Figure 2.12: Examples of planar diagram contributions to the six-point diagram for
the O(N)® model. There is also another contribution class of diagrams called ‘contact’
diagrams that are not pictured here [66]. Corrections to the six point function are
made by inserting ladder diagrams and melonic corrections.

The kernel comes from one rung of the ladder in figure [2.11} In the general ¢ case,

we get that the kernel exactly matches that of the general ¢ SYK model [4]:
Kq = Kq(tl, tg, t3,t4) = —(q — 1))\2G(t13)Gq_2(t34)G(tQ4). (267)

For the ¢ = 6 and ¢ = 8 case, we have

Ko = Ko(t1,t2;t3,ts) = —5A\2G(t13)G* (t34) G (t24),
(2.6.8)

Kg = K(tl, tg, t3, t4) = —7)\2G(t13>G6(t34)G(tg4).

We substitute the ansatz for the spectrum of singlet bilinears as

Viyoiig_1j1.gg1 (t15 t2) = (TO(00) s, iy, (01)0j, g, (F2))

sign(t1 — tg)
ig—1Jg—1 m’

:51'1]'1...(5
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where h is the dimension of the operator O(t). The spectrum of operators for the

q = 6 model is computed as follows:

A

KU(tl,tg) = /dtgdt4K(t1,tg;tg,t4)v(t3,t4) =

o3 gy, 80t — ta)sign(ts — ta)sign(ts —ta)
o 3Aly
97T [t — tal3 |ts — ta] 37" [ts — to]5

_ PE-ATA-4) TA+HT(E+A-1F)
where  g,(h) = =5 PO+A)TA) TE-A-DI(I-A+1) (2.6.9)

2

= ga(R)v(t1,t2),

and A = %. The scaling dimensions of bilinear operators wabcdea§”+1¢abcde are de-

termined by the equation g,(h) = 1, and its form coincides with that for the SYK

model [4]:
B PE-A)T(1-A) T(A+HT(+A-1) _ 1
ga(h) = =(g = 1) FE+A)TA) TE-A-DHT(1-A+L)" "7y
(2.6.10)

after setting ¢ = 6. There is a solution at A = 2, which is the mode dual to the exci-
tation in Jackiw-Teitelboim dilaton gravity |67-70]. One can show that the spectrum
has the following asymptotic behavior, h — 2n +4/3 as n — 0.

In contrast to the SYK model, the tensor model contains operators which are
SO(N) symmetry generators, such as Juo = YapedeVarvede- 1f there are no ladder
corrections to this operator, we would find that its scaling dimension is A; = 2A, =
%; this would contradict the conservation of such charges. In fact, one can verify that
there are ladder corrections to the operator which are non-vanishing in the melonic

large N limit |28] (see figure [2.13)). Their feature is that, due to the antisymmetry in
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A wabc¢a’ be

Figure 2.13: The insertion of the colored operator can suppress some diagrams,
in contrast to the insertion of the singlet operator. For example, if one inserts the
operator of the form @/}ab,,,yzaf ”Hl/)ab...yz/, only one diagram contributes in the large
N limit, compared to the (¢ — 1) contributions from a singlet operator. Figure is
adapted from reference [44].

a and o, the relevant eigenfunctions are symmetric [28]:

o(t1, ) = (TO(00)tr (1) (t)) — 5,Jm. (2.6.11)

Thus, we have

K (tlv t2

(t, —t ty—t
\/_/ dtsdt i sign(ts — ta)sign(ts — t2) = go(M)u(tr, ts). (2.6.12)
1

—%H%—Mbﬂﬁ—bh

In general [71],

A==, (26.13)

FA-HT(A+2—-3)T(1-A)I(3/2-A) 1
G+t-Ara-a-Hrild+a)r@)’ q’

and here we set ¢ = 6.
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I - h =3.58 h=4.36 h=5.45

1| h=1 ° — k= ga(h)
k = gs(h)
k=1

0 - 1 -

Figure 2.14: The dimensions of bilinear operators in the O(N)® model.

The equation for the scaling dimensions in the symmetric sector is gs(h) = 1, and
one can check that h = 0 is a solution of this equation; it corresponds to a conserved
charge. The asymptotic behavior of the eigenvalues is h — 2n + 1/3, corresponding

2
to operators YapedeOf " Varbede-

In an analogous manner, we can compute the spectrum of operators for ¢ = 8§,

/ dtgdt4K(t1, tg; t3, t4)’U(t3, t4) = ga(h)v(tl, tz)

21 /dt gt sign(t; — t3)sign(ts — t4)sign(te — t4) (2.6.14)
T ot () 3Aly
8meot(g) t1 — tg\i‘tg — t4’£fh’t2 _ t4|i

where g,(h) is given by (2.6.10) with ¢ = 8. The scaling dimension is determined
by the equation g,(h) = 1. We can verify that there are no complex modes, that

ga(h) = go(1 — h), and that there exists a solution at h = 2, see figure [2.15]
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: h=1 h=2.30 h =345 h=4.27 h 5.34
1 4 — k=ga(h)
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Figure 2.15: The dimensions of bilinear operators in the O(N)” model.

We can similarly examine the symmetric sector, where our ansatz is now,

1

t1,t —_—
(17 2) |t1—t2|1/4 he

(2.6.15)

Performing the analogous calculations, we find that,

3 /dt3dt sign(t1 — t3)Sign(t2 — t4)

dtsdt IS (t, by b, L) u(t 1) = —————
/ dta B (1, tai o, t)ultan fa) = — oy = talifts — tal Tty — t]d

= gs(R)v(t1,t2) (2.6.16)

and gs(h) is obtained from ([2.6.13)) by setting ¢ = 8.
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2.7 SO(N)® invariant quartic operators

In this section we classify the SO(N)® invariant quartic operators in the theory
according to their transformational properties under the action of the dis-
crete symmetry S discussed in section [2.2.1 We will show that these operators
do not transform nicely under the A; C S5 symmetry which consists of the even
permutations of the five O(N) groups. In order to find the possible singlet quartic
operators, we must find all the distinct ways the indices of the four fermions may
be contracted. We pictorially represent the quartic operators of the theory in table
2.4 We represent each fermion as a vertex and the index contractions are repre-
sented by edges connecting the distinct vertices. We can denote the number of edges
connecting each vertex to the others by three integers p,, py, and p.. To find the
possible quartic operators in this theory we consider all possible combinations of
integers p,, pp, and p. that satisfy the relations that the number of edges at each
vertex is five (p, + p» + po = 5) and that a fully connected quartic operator must
not have more than four strands shared between two nodes (5 > p, > p, > p. > 0).
We find the following triples: (4,1,0), (3,2,0), (3,1,1), and (2,2,1). Each triplet
corresponds to the construction of a quartic term displayed in table and they
are of the following form: qp@brerdiergazbecidiezqarbicadzeny)azbzcadaer corresponding to
(2,2,1) in row 1, ypubrerdiergjazbacadzeryjabierdienyjazbacadaez corresponding to (4,1,0) in
row 2, ypubradiergjazbaeadicryjarbierdzenyazbreadaez corregponding to (3,2,0) in row 3, and
corresponding to (3,1,1) in row 4 is yparbrerdieryjazbaeadiezyjarbrerdzezyazboeadzer

Now we can find the irreducible representations of S5 of each of the possible quartic

operators and show that none transform nicely under A;. We use character theory to
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do this. Let us first note that S5 is a symmetric group consisting of 120 permutations
of five elements. The conjugacy classes of S5 are included in the top row of table [2.4]
and include:

1. No change, which we denote as 1 in the top row of table [2.4]

2. Interchanging two elements, which we denote as (12).

3. Cycling three elements, which we denote as (123).

4. Cycling four elements, which we denote as (1234).

5. A cyclic permutation of all five elements, which we denote as (12345).

6. Interchanging two pairs of elements, which we denote as (12)(34).

7. Interchanging two elements and cycling the remaining three elements, which we
denote as (12)(345).

We must consider the number of fixed points (the character) of each of the oper-
ators under the action of each of the conjugacy classes of S5. In terms of our quartic
operators, we may think of a conjugacy class acting by interchanging some number of
O(N) groups/colors. For example, the conjugacy class (12)(345) can be thought of as
the relabeling a <+ b and ¢ — d — e — ¢ in the quartic operator. There are 20 such
relabelings in this example, since there are (g): 10 ways to choose the set of three
and 2 ways to order each cycle. The negative values represent the exchange of an
odd number of vertices of the operator under the conjugacy class. By calculating the
inner products of the characters of the operators with the characters of the irreducible
representation, we can find the correct group decomposition [72].

As an illustration, we include a detailed computation of the character of the

quartic operator in row 2 of table 2.4f qpeibrerdierqpazbacadacryparbierdiesyazbacadzen 0t
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Figure 2.16: We can exchange the black line for any of the other four colors. Thus,

there are five possible diagrams of this type. This diagram corresponds to type
(4’ 17 O) — walblcldlelwazbzcgdztﬁ¢a1b101d162wa2b262d262.

us note that there are five different diagrams of this type, see figure [2.16] since the
only degree of freedom here is the choice of the top/bottom rung, and we have five
indices to choose from. Therefore, the character for the column 1 is five. Now, let
us find the character for the (12) column. We let (12) correspond to a <+ b. We
find that our operator is invariant only when neither a nor b is the top/bottom rung.
There are only three diagrams of this type, so the character of column (12) is three.
Next, we let (123) correspond to a — b — ¢ — a. The invariant diagrams are those
that have d or e as the top/bottom rung. Thus, the character of column (123) is
two. We let (1234) correspond to a — b — ¢ — d — a. Now there is only one
invariant diagram: the one with ¢ as the top/bottom rung. Finally, we let (12)(34)
correspond to a <> b and ¢ <> d. The single invariant diagram here is again the one
with ¢ as the top/bottom rung. So, the character for both (1234) and (12)(34) is
one. The remaining two columns, (12345) corresponding toa —b —c—d — e —a
and (12)(345) corresponding to a <+ b and ¢ - d — e — a, leave none of the five

diagrams invariant and have character equal to zero.
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Now that we have the characters for this quartic operator, we can find its de-
composition in terms of Sy irreducible representation. To do this, we must refer to
the character table of the S irreducible representations, see table [2.3] We define the

character vector of our quartic operator () (row 2 in table [2.3]),
xo = (5,3,2,1,0,1,0). (2.7.1)

We define the inner product of two characters as,

(xi, xj) = @l Z |91Xi,9X5.9- (2.7.2)

geG

where |G| is the order of the group, ¢ is the conjugacy class, and |g| is the order of
the conjugacy class. We take the inner product of xo with itself to determine how

many irreducible representations of S5 make up @,

1
(X0, Xq) = ﬁ(52-1+32-10+22-20+12-30+02-24+12-15+02-20) =2,
5
(2.7.3)
where we have used that |S5| = 120. Since (xq, xo) is equal to the sum of two squares

(12+12%), we determine that our operator @ consists of two irreducible representations

of S5. To find which ones, we must take the inner product of xg with x; where
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i =1...7 indicates the irreducible representation as defined in table [2.3]

1
(xg:x1) =75 (5-1+3-104+2-20+1-30+1-15) =1

| S5
1
<XQ,X2>:m@-1—3-10+2-20—1-30+1-15)20
5
1
(XQ,X:»,)Zm(5-1-4—3-10.2+2.20.1):0
5
1
<XQ:X4>:m(5-1-4+3-10-2—|—2.20.1):1 (2.7.4)
5
1
<XQ,X5>:m(a1-5+3-10-1—2-20-1—1-30~1+1-15-1):o
5
1
(xo:X6) = = (5-1-6—-1-15-2) =0
| S5
1

<XQ,X7>:m(@1~5—3-10.1—2~20-1+1-30~1+1-15-1):0
5

Thus, we can conclude that our operator @) can be decomposed into 1 €p 4.
This computation was done for the possible quartic operators of O(N)%; their

character tables and irreducible representations of S5 are summarized in table [2.4]

2.8 Appendix: Subchromatic interactions

We consider subchromatic interactions in this section, meaning the rank of the tensor
for a size ¢ interaction term is < (¢ — 1). Specifically, we consider a rank three, ¢ = 8
Hamiltonian, and a rank four, ¢ = 8 Hamiltonian. The MST interaction is no longer

unique in both cases. The paper [73| finds that, for an order ¢ and rank r MST
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Irreducible 1 10 20 30 24 éf 2) ?? 2)
Representation | 1 (12) [(123) |(1234) |(12345) (3 4) (345)
1 1 1 1 1 1 1 1
2 1 -1 1 -1 1 1 -1
3 4 -2 1 0 -1 0 1
1 1 2 1 0 -1 0 -1
5 5 |1 1 -1 0 1 1
6 6 0 1 -2 0
7 5 | -1 1 1 0 1 -1

Table 2.3: The character table of the irreducible representations of S5. The number
above each conjugacy class in the first row is the order of that class. Here, 1 is the
trivial representation, 2 is the sign representation, 3 is the product of the standard
and sign representation, 4 is the standard representation, 5 is the irreducible five
dimensional representation, 6 is the exterior square of the standard representation,
and 7 is the product of the sign and the irreducible five dimensional representation.

operators | 1 | (12) | (123)|(1234)| (12345) Efli i; 8’ 2)5) irreps
X 153 0 -1 0 -1 0 4D6D5
~_ —
//—/‘\
s |3 2 1 0 1 0 14
Vo
10 | 4 1 0 0 2 1 1P4Ps5
10 | 2 1 0 0 -2 -1 106

Table 2.4: Character Table for Quartic Operators. 1 is the trivial representation, 4 is
the standard representation, 6 is the exterior square of the standard representation,
and 5 is the irreducible 5 dimensional representation.
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interaction, the melonic diagrams dominate with the quantity
A2 = g2 Nrla-2)/2 (2.8.1)
held constant in the large N limit.

2.8.1 Rank three, ¢ =38

We write an MST interaction for the rank three, ¢ = 8 interaction, which contains a

set of N® Majorana fermions 1®¢ with the anti-commutation relation,
{¢abc 77Z}a,’b’c’} _ 5aa’5bb’5cc’ (2 8 2)
The interaction term corresponding to the MST interaction depicted in figure is,
Hg ronks ~ gq/}a1b161¢a1b262¢a2b102¢a2b303¢a3b4c3wangC4¢a4b3C4¢a4b4c1‘ (283)

The Hermitian Hamiltonian is H = Hg yanks + H, ;rankg, and in the classical approx-
imation where we neglect the delta terms , the interaction changes sign under
any interchange of two O(N) groups. When we take into account, we no longer
find that H — —H under the permutation of any two O(N) groups. This is due to
the sextic terms that appear during anticommutation. We note that this model does
not possess the spectral mirror symmetry property characteristic of the SYK model.

The large N limit of this theory must be taken while holding ¢ N? fixed [73].
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Figure 2.17: A graphical representation of a rank three, ¢ = 8 MST interaction.

Group Permutation Index relabeling
O(N), and O(N), C3 > Cy.
O(N)b and O(N)c as <> Qaq, bl — bg, C1 <> Ca.

ai <> asg, as <> a4, b3 g b4,
O(N), and O(N), Cl1 ¢ Co,  C3 4> Cy.

Table 2.5: Group permutations that send H to —H in the classical approximation
of the rank three, ¢ = 8 MST interaction ([2.8.3)).

This interaction has O(N)? symmetry, and here we study the spectrum of the
Hermitian rank three, ¢ = 8 model with O(2) x O(3)? symmetry. Here we have
18 Majorana fermions with 2% = 512 states. We let the Majorana fermions be the
gamma matrices of SO(18), see figure . This energy spectrum is not symmetric

about any shift in energy.

2.8.2 Rank four, g =28

We begin by writing an MST interaction for the rank four, ¢ = 8 interaction. This

model contains a set of N* Majorana fermions 1/?°? with the usual anti-commutation
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relation,

{gpebed ' edy = go g 5 5 (2.8.4)

The interaction term corresponding to figure below is,

HS,rank4 ~ ig¢a1b1c1d1 ¢a1b202d2 ¢a2b103d2 2#(12173C4d3 ¢a3b403d3 ¢a3b201d4wa4b3czd4¢a4b4C4d1 ]

(2.8.5)

This Hamiltonian is Hermitian, and as in the ¢ = 6 MST interaction, we may
consider the action of the time reversal operator, 7', on (2.8.5)). Similar to the ¢ =6
MST interaction, this interaction does not possess time reversal symmetry because

of the i needed to make the Hamiltonian real,

TiT™' = —i, TyY®T ' =y THT ' =—H;s. (2.8.6)

From , we see that the eigenvalues come in pairs with opposite energies, and
so this interaction has an £ — —FE symmetry. The large N limit of this theory must
be taken while holding g? N'? fixed [73].

This interaction has O(N)* symmetry. We can study the spectrum of the ¢ = 8
model with O(2)® x O(3) symmetry. Here we have 24 Majorana fermions with 2'2 =
4096 states. We let the Majorana fermions be the gamma matrices of SO(24), see
figure [2.20]

The spectral form factor (SFF) for the O(2)* and the O(2)® x O(3) models are

very similar to those calculated for the rank five MST ¢ = 6 model. As expected,
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Figure 2.19: A graphical representation of a rank four, ¢ = 8 MST interaction.

we do not see a dip-ramp-plateau structure as we can only examine small N due to
computability constraints.

Interestingly, working at the classical level where we neglect quantum correc-
tions due to , we find that Hg is neither invariant nor equal to —Hg under
permutation of two of the O(N) groups. This was checked numerically with the as-
sumption that there are only four distinct types of index relabeling in our case of
the rank four tensor. These relabelings correspond to the conjugacy classes of Sy,
and the number of ways to relabel corresponds to the order of each conjugacy class.
The first kind of index relabeling are cycles of size four, for example, we can allow
a; — ay — ay — as — a;. For each index, there are six possible size four cycles.
The second kind of relabeling are cycles of size three, for example, we can allow
by — b3 — by — by. For each index, we have eight possible size three cycles. The
third kind of relabeling we have is a pair swap; there are three distinct pair swaps
for each index and an example is ¢; <+ ¢3 and ¢3 <> ¢4. The last type of relabeling

is a single swap, and there are six possibilities for each index; an example of a single
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Figure 2.20: Energy spectrum of the rank four, ¢ = 8 model with O(2)3 x O(3) model.
There are 1440 zero energy states; not all are displayed.
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swap is do <> d3. Therefore, for each index we have 24 possible relabeling options,
including the option of taking no action. We can exchange any two indices, and loop
though all possibilities of index relabelings to find that none return the original terms
in the Hamiltonian.

In summary, we find that the rank three, ¢ = 8 model is invariant under time
reversal, and at the classical level has an O(N) group pair swap symmetry that sends
H — —H. We do not find either of these properties in the rank four, ¢ = 8 model.
Additionally, we find that the spectrum of the rank three model is asymmetric, in
contrast to that of the rank four model (where the spectral symmetry can be seen

through the action of the time reversal operator that sends H — —H).
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Chapter 3

Prismatic quantum mechanics with

complex fermions

3.1 Introduction

This chapter is based on ongoing work [46]. As discussed in the previous chapters,
we know that by suitably choosing the tensor (MST) or SYK interaction, one can
produce models with a novel large N limit where the dominant Feynman diagrams
are so-called ‘melons,” [3,/21,2844L[73H78|. Without the need of introducing quenched
disorder, tensor models provide a playground for the N AdS;/NCFT; correspondence
more similar to its higher dimensional cousins. Regardless of the bulk interpretation,
it is interesting to search for possible tensor models with a stable nearly conformal

fixed point. While bosonic models are much more natural in d > 1, the negative
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bare dimension of a boson in 1d makes it less desirable than fermionic modelsF] The
simplest fermionic tensor model one can write down consists of a real anticommuting
e H = gip@eqhabeyp’byh@’Ve and it has a stable nearly conformal fixed point in
the IR |3]. Fixing the number of O(NN) indices, the next interaction that is dominant

in the large N limit would be the so-called ‘prismatic’ interaction
Og = 2pa1blc1walbz@wazblczwagbsclQ/Ja3b263wazbs%7 (3_1.1)

which vanishes due to anticommuting fermions. To avoid that, one can either con-
sider the bosonic version, which has been studied extensively in |74], or consider the
complex fermion model [

In our paper, we study a ¢ = 6 complex prismatic rank-3 tensor model along with
its random counterpart, a ¢ = 6 complex fermionic model with a Wishart-Laguerre
random coupling. We will call this the ¢ = 6 WL-SYK model. To find this WL
coupling, we start by constructing the disordered version of our prismatic tensor
model. We integrate out the auxiliary field to find a cSYK-like model with a key
difference in the coupling term: the random Gaussian coupling is changed to be a
product of two Gaussians, J;;x ‘]iTjkl' The tensor model of primary interest to us is the

one with U(1) preserving interactions,

S = /dt (il/_}abcatwabc i Xabcxabc + %(walblclz/}meCQwazbwz)—cazbzq 4 hC)) , (312)

#Known bosonic tensor models in 1d are either unstable or have operators with negative scaling
dimensions [74].

PWhen working with real fermions, it is natural to consider the 8-fermion interaction, which we
shall report elsewhere.

76



where a complex fermionic auxiliary field is introduced to give rise to the melonic
dominance at the price of including an additional field. The disordered (WL-SYK)

version of the model,

S = / dty (w(wi —XX'+ Y (Cyux vty + h.c.)) : (3.1.3)
i 1<j<k<I<N

shares the same Schwinger-Dyson equations for 2-point and 4-point correlators, and
can be naturally viewed as a fermionic version of [79].

Here, we briefly note some differences between the ¢ = 4 ¢cSYK model and our
g = 6 WL-SYK model. For the ¢ = 4 ¢SYK model, the compressibility is found to
be a small positive value, K =~ 1.04 [36], whereas in our ¢ = 6 model we find that
K is negative. In contrast to the ¢ = 4 ¢SYK model, we find that our Hamiltonian
does not preserve charge conjugation symmetry. In particular, our Hamiltonian is
odd under charge conjugation, and the spectrum is symmetric around £ = 0 as a
result. We also find that there is a gap between separating the ground state from
the first excited state, which is supported by the exponential decay in the correlation
functions.

The paper is organized as follows. In section we define the prismatic tensor
model along with the analogous random model in section [3.3] and we discuss the con-
tinuous and discrete symmetries of both models. In section [3.4] we analyze the large
N behavior of the models, working out the conformal solutions and the spectrum of
bilinear operators. In section we study exact diagonalization results and compute

the charge compressibility of our random model.
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3.2 Prismatic tensor model

In this section we introduce the unique O(N)? symmetric prismatic tensor interaction

that preserves the U(1) symmetry,

E — izzabcatwabc + %<¢a1b161¢a1b262wa2b162&a3b3011/70,3{)2631;[12()363 _|_ hc> (321)

This interaction is called prismatic, because the graph (where each vertex represents
a fermion and each colored edge represents a shared index between two fermions)
looks like a prism, see figure [3.2] At the classical level, where we ignore the anti-

commutation relations, we find that the Hamiltonian,

H = %(¢a1b101¢a1b202¢a25162,&(13b3011/_)113172637;(121)303 + h.C.), (3.2_2)

is invariant under the exchange of any pair of O(N) groups. For example, we can

swap O,(N) <> O.(N) such that 1€ < 1)@ and so we have,

Ha<—>c — g(¢a1b101¢a2b261¢a2b102&aﬁgcg,&agbg@,&agbgcg + hC) (32?))

We can exchange indices a; <> ag and ¢; <> ¢ to find the original terms in the

Hamiltonian,

Ha<—>c — (wa2b162wa1b202¢a1b101 @a2b303¢a3b203&a3b301 + hC) (324>

(2R
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Through making an even number of exchanges, we find that H = H,..., and this is
also the case with the other possible O(N) group permutations. Thus we find that
there is a discrete S3 symmetry associated with permuting O(N) groups. In addition
to this discrete O(N) swapping symmetry, we also find that charge conjugation, where

e &3 h¢ maps H — —H as seen in figure .

Eigenvalues of the 0(2)3 prismatic tensor model
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Figure 3.1: The full spectrum of the O(2)® prismatic tensor model, see equation
B22).

By introducing an auxiliary field x*°, whose bare propagator is merely a contact

term, we can rewrite the model with tetrahedron interaction,

L= Z-z/_}abcatwabc o Xabcxabc + %(walbICIwaleCQwalecQXGQbQCl + hC) (325>
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walblcl w&leCQ

Figure 3.2: The graph that corresponds to the prismatic tensor interaction.

This model has a scaling symmetry in the IR and in addition to the U(1) symmetry,

U(l) . wabc N eiawabc’ Xabc N efBiOzXabc’ Scaling . wabc N )\wabc’ Xabc N )\73Xabc.

(3.2.6)

3.3 Random model

In this section we consider the random version of the prismatic model introduced in

section

L= + ”’“‘w WPkt + ”’“w T v (3.3.1)

where J;ji; is a complex random variable, with the indices 7, j, and £ fully anti-

symmetric. To construct J;;;, we start with a complex random variable 7;j;,; such
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that <T‘ijkl,-z_—'i’j’k’l’> ~ 5i,i’5j,j’5k,k’6l,l’~ We let Jijkl be equal tO,

Z sign(0) (a1 To(0).0().0(k)t + 02 Tho) 00k + @3To6) 100) 0k + UTo@) o) o)) -
oES3

(3.3.2)

We find that there is one degree of freedom in J;j, as

<Jijkl<]i’j’k’l’> ~ 6 (aial + a;ag + a§a3 + CLZCL4) (6i,i’5j,j’6k,k’5l,l’ + .. ) +
2 (ajag + a1ay — ajas + ayas — ajaz + agas + ajas — ayaq + azas + ajay — aga) + asay)
(01,018,410 Ot + ) -

(3.3.3)

Upon normalizing J, we may define

. 2(&2((13 — ay -+ 1) + (I3(CL4 — 1) + (l4)
N 3(a3+ a3+ a3+ 1)

: (3.3.4)

where without loss of generality, we set a; = 1, and a; € R. The s admits range

between —1 and % We let the random variable obey,

— J?
<Jijkl‘]i/j’k’l/> = W (5i,i/5j,j/6k,k’5l,l/ + te + /{:61'7[/5]'73'/5]{;7]4;/5[71'/ —|_ e ) . (335)
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We integrate out the random coupling, to obtain a bilocal action that describes the

theory:

§=— /dt (PO + )

(3.3.6)
- JQ/dtdt/ (W X DX (E) + 3 X (P TOEX(E)) -
The model has U(1) symmetry with
Y= e, x — e By, (3.3.7)

and in the IR, the second line in (3.3.6) dominates. The model has enhanced dif-
feomorphism symmetry, and becomes nearly conformal. There is also an additional
scaling symmetry:

v =N, x = A3y, (3.3.8)

and as a result, we expect that there is a h = 1 operator in the conformal spectrum

of the model.

3.4 Conformal solution

In this section, we consider the conformal solution, where the off-diagonal correlator
is set to zero. We denote Gy(t) = + (¢ (t)¢'(0)) and G, (t) = +(x'(t)x(0)). The
conformal solution turns out to be tricky, and so we will explain it in detail. We

note that the interaction in (3.3.1) needs to be marginal in the infrared, so it is

necessary that 3A, + A, = 1. Since we have introduced the auxiliary field, x, we
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Eigenvalues of the N = 14, q = 6 WL-SYK model
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Figure 3.3: The full spectrum of the N = 14, ¢ = 6 WL-SYK model, see equation
(13.3.1)).

have a tetrahedral interaction and thus we have melonic dominance. We can write

the Schwinger-Dyson equations,

Gylt) = () = 220 Gy = (g = B g
O — Xy(t) 1-%.(t)

Sy(t) = —€— = 3NGy(t)°Gy(t), Iy(t) =----=NGy(t)’.  (34.2)

The dashed lines represent the y propagator, and A\? = ¢2N? for the tensor model

and A2 = J? for the WL-SYK model. In the IR limit, we can drop the free terms,
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and make the following ansatz:

Gull) = bysign(t) Go(t) = b,sign(t)

3.4.3
e S ( )

Note that the unitarity bound requires 0 < Ay, < %, and in order for the conformal
approximation to be valid, we need é <Ay < %

The ansatz assumes a particular symmetry of the correlator: G(t) =
—G(—t). Such an assumption relies on the charge conjugation symmetry. Indeed,

if the ground state is charge conjugation invariant, for ¢t > 0,

G(t)

I
—
ASY
—~

~
S~—
<
S

o
N—
~—

I
—
<
—~

~
S~—
S|
—~

o
S~—
~

I
—
<
S

()
S~—
S|
—~

N
S~—
~

I

|

Q
—~~

N
N—

(3.4.4)

However, the model (3.3.1)) explicitly breaks the charge conjugation symmetry by the
mass term of y. Nevertheless, in the IR, this term is absent. We take the Fourier

transform of (3.4.3)), and work in dimension d = 1.

ePlsign(t)b
Gulp) = [ B
[t (3.4.5)
= 2iby|p[*** L eos(Aym)T(1 — 2A,)sign(p).
Then we can use the relationship Gy, = —1/3y/, to get an expression for 3/, in

momentum space. Finally, we can Fourier transform back to position space to get
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the following expression:

(1) = _/d_p —”
e 21 2iby |p|*Avteos(Aym)T(1 — 2A,)sign(p)

[P0 (2 — 24y )sign(t) tan(Ay )
B 2mby (1 — 2A,)
_[EPAe2(1 — 24 )sign(t)tan(A )
B 27hy

(3.4.6)

We have similar equations for ¥, (¢) except with b, instead of by, and A, instead

of Ay. Simplifying by combining (3.4.2) and (3.4.6), and by using the relationship
Ay =1-3Ay, we get:

(1 —2A,)tan(Aym)
N2b3b, = ¢67T e (3.4.7)
N, (6Ay — Dtan(m(1 —3A,)) (3.4

2T

Now we combine equations (3.4.7) and (3.4.8]), and simplify the ratios of gamma

functions to get our final transcendental equation for the scaling dimension of ¢ in

dimension d = 1:

| _T@—28))T(6A, — 1)
— 3T(6A)T(1 —2Ay)

(1 — 2A¢)tan(A¢,7T)
3(6Ay — Dtan(m(1 — 3Ay))’

(3.4.9)

We can solve ([3.4.9) numerically to get the allowed values of A, see figure . Our
first solution is at Ay ~ 0.311 and A, ~ 0.068, as shown in figure [3.4}
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1

Figure 3.4: The numerical solution to equation (3.4.9)). Here we simplified notation
such that A = Ay. Note that Ay, = 1/6 is not a solution here.

There is another solution in the IR if we assume the bare kinetic term of y, which
produces a shift in momentum space, is not negligible. On dimensional grounds, it

necessarily implies A, = %, and Ay = %. We now show that is consistent. We rewrite

the momentum space equation,

1 1

= Gy(—w), — Gy (~w), (3.4.10)

—iw — Xy (w)

and we note that when Ay = 2, ¥, (w) ~ O (1), and the bare term is not negligible,

whereas Xy (w) ~ O (\w\%>, and the kinetic term is of a higher order in the IR.
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Therefore we may solve,

Ly(w)Gy(w) = =1, (1 + X (w))Gy (w) = 1.

We now consider the following conformal ansatz,

bysign(t)

Gult) = " G0 = ad(t) +

|t|2A.¢, ’

We take the Fourier transform of (3.4.12)) to get,

Gy(p) = Qibw|p\2Aw_1cos(Aw7r)F(1 — 2A,)sign(p),

Gy (p) = a + 2ib, [p|*** cos(A,m)T(1 — 2A, )sign(p).

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

Next, we find the self energy in position space. The expression for ¥,(t) is exactly

the same as in equation (3.4.6). We write the expression for X, (¢) below:

S(t) = [ 58 (e e Gyp)

d ) _
(1) — / D et (0 4+ 21D [P cos(AmIT(1 — 28, Jsign(p))
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We simplify the above expression for X, (¢) by setting A, = 1/2, and so cos(A,m)I'(1—
2A,) = /2.

() =0(t) — / ;l—ie_ipt (a + inbysign(p)) "

1 dp _, , )

:5<t)‘m/ o€ (0= imbysign(p))
o(t 1 d
ad(t) N p

—ipt /- .
T@ree Taree ) | rheisn()

S 1) J—— <6(t) _ M) .

a2+ b2m? alt|

(3.4.15)

Now we may express the self energy using equation (3.4.2)) along with expression
(3.4.15)),

2 busien(?) _a (5@) _ bx&n@) , (3.4.16)

=B = X em, = 00~ ali]

Sy(t) = 32 b?z; <a5(t) n bxsign(t)> _ |t|2Aw*2(1 — 2A,)sign(t)tan(Ay )

[t 225 2mhy
(3.4.17)
We allow A, =1/2 and A, = 1/6 to simplify,

S (1) = ylﬁﬁsjg—n(t) —5t) - —2(s(t) - bysign(t) (3.4.18)

e it a? + b27? alt| ’ o

b bysign(t) sign(t)

Sy(t) = 3032 (a&t + =X ): : 3.4.19
¢( ) |t|2/3 ( ) |t| 3\/571_[)1”“5/3 ( )

We can find the constraints on the coefficients by solving equations (3.4.18) and
(3.4.19), and we note that the 6(¢) term in equation (3.4.19)) does not contribute in
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dimensional regularization, and so we neglect it while solving for the constraints. The

constraints are,

b 1
=1, A% =—2X 23, = ———. 4.2
’ P a2+biﬁ2’ 3 PYUX 3\/§7r (3 0)

a
a? + biﬁ

We can solve the above system of equations to find the values for a, b,, by,

_ _ )2
P NE Sk S ek N S (3.4.21)

R AT )

Now we may write the expressions for Gy (t) and G, (t), combining equations (3.4.12)
and (3.4.21]),

1/3
Gy(t) = A Sﬁg) , (3.4.22)
(V3 — )
G (t) = m—_"a(w | VOVS — msien(t) (3.4.23)

9v3 9v3m [t
where we let Ay, =1/6 and A, = 1/2. The finite temperature solutions are included

below,

A3 s 3
Gy(T) = - ——— | sign(7), 3.4.24
o= [58%1 an(r) (3.424)
= 9v3 —m T sign (7 S pom)
Gy(1) = (0V3)? [Bsin%] gn(7) + (1 9\/3) st (3.4.25)
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3.4.1 Spectrum of bilinears

In this section, for ease of notation, we let A = Ay, and so A, = 1 —
3A.  We consider the U(1) neutral sector first, examining the matrix elements
(O (to) (1)1 (t2)), (Oi(to) ™ (t1)1™(ta)), and (O (to)X**(t)x**(t2)). We
can also consider bilinear operators in the U(1) charged sector, like the matrix
element (O} (o)™ (t1)x**(tz)). Throughout this section, we use the following

relations and notations as used in reference [3| to simplify our expressions,

liy:6(1—x,x+y—1)i(5(1—y7$+y—1)—5(1_x71_y))7
/du sign(u — t1)sign(u — t) e 1
lu —t1]*u — £2]° “O [ttt

/du sign(u — t3) _ - sign (1)

u—ti|*fu—tofb P [tpgfertt

(3.4.26)

where B(z,y) =T'(2)['(y)/T'(x + y) and t15 = t; — to.

3.4.1.1 U(1) neutral sector

To find the spectrum of bilinears, we would like to solve the following integral eigen-

value equation:

g(h)U(tQ,tl,tQ) = /dtgdt4K(t17t2;t3,t4)1}(t0,t3,t4), (3427)

where the kernel K (t1,s;t3,t4) is given by a 2 X 2 matrix with entries corresponding

to each four point interaction of (3.2.5)).
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Figure 3.5: Left column: The numerical solutions of the SD equations for Gy, (top)
and G, (bottom) with no allowed off diagonal correlators and with
BA = 120 in blue, compared to the finite temperature solutions found in equations
and , in red. The reason why the solutions in blue and red do not
agree, particularly for Gy, is because the conformal solution is unstable and is likely
not the real solution when we numerically solve the SD equations. Top right: The SD
solution with an added constraint such that the ground state is in the () = 0 charge
sector. Bottom right: The log plot of G with no symmetry constraints enforced.
The linear portion indicates the exponential decay of the Green’s function.
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(3.4.28)

B no contributing diagram

6N Gy (t13) G (t2a) Gy (t3a) Gy (taa) —3N2Giy(t1a)Gyp(tas)Gy(tss)?
3N2G, (t14) Gy (t23) Gy (tsa)? 0

where the top left entry is ¢ — 1), the top right is ¢ — Yx, and the bottom
left is yx — 1. The bottom right contribution to yx — Yx is not allowed given
the interaction term, and so its kernel element is zero. From the previous section, we
know the propagators have the form,
bysign(t)
Gy(t) = —=——=,
v(t) e

bysign(t) — ab(t) bysign(t)

Gy (t) = ad(t) + S 262

In the second line, we used the relationship A, = 1 — 3A. We can find the kernel
elements in the antisymmetric or symmetric sector. In the antisymmetric sector, the

conformal vectors have the form,

sign (t12)
gy (to, 1, t2) = e
. 3.4.29
sign(t12) ( )
Ugx(to, t1, t2) = [traP-05—7
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where above we have used SL(2) invariance to send ¢, to infinity. First, let us calculate

the contribution from the 19 — yx diagram. We need to integrate,

—3>\2/dtgdt4G¢(t14)Gw(tgg)G¢(t34)2UXX<t0,tg, f}4>
bysign (t14)sign(tas)sign(tss)
|t14’2A’t23‘2A‘t34|2_2A_h

sign(tlg)
= 3>\2b$ZQ+A,2—2A—hl1—h,2A‘t12|T—h’

(3.4.30)

= —3)\? / ditsdt,

Next we will evaluate the 1) — 1) diagram.

6/\2/dtgdt4G¢(t13)Gw(t24)G¢(t34)GX(t34)Udjw(t0, t3,t4)

b bysign(tys)sign (tas)sign (tss)
[ fy4 [P [t5a 22—

= 6\ / dtsdt, (3.4.31)

|t13

_ sign(t12)
= —GAQb?pbxl;A,2—2A—hll—h,2A |t15[280"

For the yxy — 1) diagram, we will have contributions from the contact term in the

XX propagator.

3)\2/dtgdt4GX(t14)GX(tzg)Gw(t34)2ﬂd‘)w<to,t3, t4>

bysign(taz) bfpsign(t;%)
2-65 [65—h

beign<t14>
|t14‘276A

= 3)\2 / dtsdty(ad(tiy) + )(ad(tas) + ™ (3.4.32)

» sign(t12) 272721+ - sign(t12)
V|t15]0A—R —3A b¢bxl2—6A,6A—hl1—h,2—6AW-

|t34

= —3)\%24%b
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Now we can solve for g(h) and get that, in the antisymmetric case,

g(h)ay) = _6>‘2bfbbxl5ra,z—m—hlf—h,m7
g(h)a2) = SAZbZLDG_AQ—QA—hll_—h,ZAv (3.4.33)

g(h)@1) = _3/\2‘12(75) - 3/\2bibil;—GA,GA—hll_—h,Z—ﬁA‘

We can find the eigenvalues of g(h) and set one of them equal to 1 to find the scaling

dimensions of the bilinears. This is equivalent to the condition,

Mo —1 glh
dot — | 9P sz | (3.4.34)

g(h) —1

Thus, we find the following constraint for h and can see that it is symmetric under

h—1—h.

1= _6)‘2bfbbxl2+A,2—2A—hl;—h,2A - 9>‘4b16pl;rA,2—2A—hlf—h,2A (a2 + bil;—m,m—hlf—hz—m) :
(3.4.35)
In the antisymmetric case, we verify that h = 2 is a solution, see figure [3.6]

Similarly, we can consider the symmetric sector with conformal vectors,

i B 1
Vg (to, t1, t2) = TtraPA

1
Uy (to, t1,ta) = [fra P68

(3.4.36)
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Figure 3.6: The dimensions of U(1) neutral bilinear operators in the antisymmetric
sector of the prismatic tensor model. We note that h = 2 is the first solution.

We find that the corresponding g(h) matrix elements for the symmetric case are,

g(h)a = 6)‘2535 lQAl hla—oaA_h2ns
g<h>(1:2) = _3)‘2%@&1—}:, 9—9A—h2A" (3.4.37)

g(h)@1) = 3A GQ% + 3)\2%62[2 6a.1-hleA_n2 6A-

In this case, the constraint on A is,

ey 2137 7+ - 416 2 27+ -
1 =06A bwbxl2A,1—h 2-2A—h,2A —9Ab ZQA 1-hba—2A—h2A (a + bxl2—6A,1—h 6A—h,2—6A) .

(3.4.38)
Here, we expect and verify that there is a solution at h = 1, see figure
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— k=gs(h)
k=1

Figure 3.7: The dimensions of U(1) neutral bilinear operators in the symmetric sector
of the prismatic tensor model. We note that h = 0 and h = 1 are both solutions.

3.4.1.2 U(1) charged sector

Now we consider the charged bilinear operator Oy ~since, unlike the other charged
operator O@X, it has melonic contributions at large N. The kernel element for the

channel ¥y — 1y takes the form,
K = 3XNGy(t14) Gy (ta3) Gy (t34)*. (3.4.39)

The conformal vectors for the symmetric and antisymmetric sectors are as follows,
sign(tlz)
Ui (to, 11, t2) = [t -250"

. 1
Ui (to, t1, t2) = T 287

(3.4.40)
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Let us now calculate the contribution from this ¥y — ¥y diagram in the antisym-

metric sector. We must integrate,

3)\2/dtgdt;le<t14)GX(t23)G¢(t34)2’017jx(t0,t3,t4)

bysign(ta3) bisign(tm)sign(t%)
_ 2 X
=3\ /dtgdt4 (ad(tgg) + |t23|2_6A |t14’2A’t34‘1+2A_h (3441)

1 B sign(t12)
_ 91273 + + —_—
=3A b¢ (a lQA,l+2A—h|tl2|T_h - bx l2A,1+2A—hl4A—h,2—6A |t12|1—2A—h ’

We note that in this case we have mixing between the symmetric and antisymmetric

sectors. We now compute the )y — ¥y diagram in the symmetric sector.

3)\2 / dtgdt;le (t14) GX (tgg)Gw (t34)2vfl)x (to, t3, t4)

b,sign(tas) by,sign(tia)
=32 [ dtsdty | ad(t X
/ 3dty (a (tag) + Ita3|2 68 ) [tra|22[t5e| 1 F2A

2,3 _ sign(tlg) _ 1
= 3\%}, (ale_h,mW + by I3 _4n_non 1+28-h2-6A Ty T2A R | -

(3.4.42)
Let us express K in terms of the basis of conformal vectors vy, and vy, ,
—3N%B3 b, 1 N 3N22al) _
K wOx b2a 1+2A—RlaA—h2—6A p@laA 1424 —h (3.4.43)
3)‘21)52@ lf+2A—h,2A 3)‘2b§pbx 12+—4A—h,2Alf+2A—h,2—6A
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We find the constraint on h by solving,

2137 1+ - 203 a1t
—3A bwbx l2A,1+2A7hl4A7h,276A -1 3A bwal2A,1+2A7h

det =0.

3)‘2@“ lion—non 3)‘2531& l;r—4A—h,2Al;+2A—h,2—6A -1
(3.4.44)

We plot equation as a function of the imaginary part of h = % + is in figure
, and we find a unique complex mode at h =~ %+ 1.074i. This complex mode implies
that the nearly conformal fixed point is unstable. Furthermore, from the dual AdS,
perspective, this mode corresponds to a scalar with mass below the Breitenlohner-
Freedman stability bound, since the m? of the scalar field dual to the operator of

dimension A is equal to |15],80,81],

m? = h(h —1)
1
= - (3.4.45)

where in the second line we have used that A is in the form of h = % +1s.

Since the conformal solutions have a complex mode, we can conclude that the full
solutions require relaxing the constraints on the allowed correlators. We do not expect
to find a continuum of states in our spectrum, and indeed find an O(1) gap between

the ground state and first excited state in our exact diagonalization computations.
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Figure 3.8: We find a unique complex mode in the U(1) charged sector at h =
1 +1.0744.
5 +

3.4.2 Finite temperature solutions

Let us now consider the solutions to the Schwinger-Dyson equation at finite temper-

ature 1/,
Sy (t)/J? = 3GL(G (B —1), By (t)/J* =GB —1), (3.4.46)
L Gw), — L G(—w) (3.4.47)
—iw—Sy(w) T = w) T &

For a given solution, the boundary condition requires:

Gol0%) = Go(07) = AT} =1, Gu(0) + Gu(07) = [0, 6] = 20/,
(3.4.48)
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where (@) is the U(1) charge. Therefore, at finite temperature, we expect

Gu(0) + Gu(B) = 1, Gy(0) — Gy(B) = 2Q/N. (3.4.49)

The low temperature numerical solution to the Schwinger-Dyson equation, which is

not conformal (see figure [3.5), suggests that
Gu(0) =0, Gu(B) =L (3.4.50)

That in turn suggests that the ground state has charge —%, which is exactly the
oscillator vacuum. That is consistent with the exact diagonalization analysis. In fact,
we may add a chemical potential term to our model to shift the ground state away

from the QQ = —% sector.

3.5 Exact diagonalization results

We construct the Hamiltonian

H =36 Z Jijr iy [%Ej@zk@/;ly %Dllﬁ)k/@/)jl]

ig<k<lj'<k'<l

(3.5.1)
= > T [P T,
BRI AL
where the real random coefficients J;;; are constructed through
1
Jijl = 71 Z Tkt (3.5.2)

0ESy,
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where T}z, is only non zero when ¢ < j < k <[, and for a given such set of {1, j, k,(},

they are drawn from the distribution

(Tiji L jir) = %Jj, (3.5.3)
for some coupling J. Such a Hamiltonian corresponds to the Lagrangian
L=~ + T (VX + D) + X (3.54)
since we can integrate out Y’ to obtain
X' = Jiuah? !, (3.5.5)
and rewrite the Lagrangian to be
— 'O+ TijraJijren IR T (3.5.6)
whose Hamiltonian is given by
H = Jigr Jgald" 0708 0701, (3.5.7)
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where we take the normal ordering of the operators. The Lagrangian can be re-written

in terms of 7y, and we obtain,

L=~ +X'\'+
+7 D Tow (WX — IR — i — '+ he)
1<j<k<l

(3.5.8)

Now we integrate out 7j;;, which gives an action

S:/dt(—@/?iaﬂ/ﬂ#;zix) /dtdti %J; Z IR TR Y, (3.5.9)

32
1<j<k<l

where
T (4) = (WW@DW — itk — itk — byt + h.c.) . (3.5.10)

Note since J;jz is real, we need to consider also correlators between ¢'¢" and '\’

etc. For a solution with no mixed correlator, the action takes a simple form

2

16 N3

/ At (£ (1) ()0 ()" (1) ()X () T (t)
(3.5.11)

S = /dt (="’ + X'X') +

Introducing the Lagrange multipliers, we obtain the large N action similar to what

we had before. Note for the Hamiltonian, the ground state energy is given by

(OLHI0) = =6 T3y (3.5.12)
,7,k,l
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We substitute the definition of J to obtain,

3J%2 (N
EON_W(zL)

NJ? n 3J2 B 1172 n 3J2
16 8 16N ~ 8N?

(3.5.13)

~ —

We find very good agreement (< 0.5% discrepancy) between the ground state energy
for small N, displayed in figure and the predicted energy from equation (3.5.13)).
At large N, this is close to the numerical ED result, which is Eq/N ~ —0.057J2, see

figure . We can also look at one fermion states 1*|0). It’s helpful to note that
XX} = 3o {008 0N + B g (3.5.14)
Also note that
HY"|0) = 6350 Jij010" |0) + Egib” [0) . (3.5.15)

The expectation value of the first excited state energy is given by

2

J
ElNEOJFEJF"' (3.5.16)

Thus, we expect the energy gap in our spectrum should be close to J2/16. We find
a large discrepancy between the energy gap prediction and the exact diagonalization

results for N = 12, 13, and 14. Perhaps a larger sample size is needed here.
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Figure 3.9: Plot of the ground state energy, Fy, versus N.

3.5.1 Entropy

We can compute the entropy of our model via exact diagonalization results. From
the full spectrum, we can compute the partition function Z, the free energy F', and
the average energy (F) as follows,

5.1
7 , (3.5.17)

Z=Y e F=—plogZ, and (E)

where E,, are the eigenvalues of our model ([3.5.7)).
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Using the above equations (3.5.17)), the entropy density is found via,

N

BB %F. (3.5.18)

= »

The entropy density is shown in figure |3.10, We can see that in the high temperature

regime, the entropy density tends towards a log 2 limit.

0.8

0.7

0.6

0.5
—N=14

N=10
—N=38

0.4 0.6 0.8 1

T

Figure 3.10: Plot of the entropy density derived from the exact diagonalization results
with NV = 8, 10, and 14.
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3.5.2 Charge compressibility

The global U(1) charge @ is defined as follows,
1 N
Q=35 [vhu] =Y vlui- 3. (3.5.19)

We numerically compute the charge compressibility by quadratically fitting the plot of
the ground state energy within each charge sector versus the charge sector according

to the equation,

Ey(Q) = By + Q*(2NK) ™. (3.5.20)

Here, Ey(Q) is the ground state within a specific charge sector, and Ej is the ground
state energy. The fits are displayed in figure [3.11], and the average value of K from
the best fit parameters is ~ —12.6755.

In our model, the ground state is in the —% charge sector. We find that by adding

a chemical potential term, p, to our Hamiltonian,
H = Hy+ puQ, (3.5.21)

we are able to shift the ground state energy from the @) = —% sector to the Q) =
0 sector. Here, p is chosen such that the oscillator vacuum is annihilated by the
Hamiltonian. Further, we add a term quadratic in (), which keeps the ground state

in the Q) = 0 sector, and also gives a positive charge compressibility.

H = Hy+ pQ + Q> (3.5.22)
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Figure 3.11: Plot of the ground state energy, Ey, versus () for several values of N with
no chemical potential term added to the Hamiltonian. We can find the approximate
charge compressibility K of our system by fitting the data to a quadratic form. We
find that (K) ~ —12.6.
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Figure 3.12: Plot of the ground state energy, Fy, versus () for several values of N
with Hamiltonian (3.5.22)). We can find the approximate charge compressibility K of
our system by fitting the data to a quadratic form. We find that (K) =~ 0.769.

We find that the charge compressibility is K ~ 0.769 as shown in figure |3.12] using

the model (3.5.22)) with p = 7.

3.6 Appendix: The dynamical y model

Here, we study the model from equation (3.2.5)) where the auxiliary field x is promoted
to a dynamic field. The scaling dimension is again determined by,

| — (1 —2Ay)tan(Ay)

~ 3(6A, — Dtan(m(1 — 3A,)) (3.6.1)
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as solved in equation (|3 in section
The first solution is at Ay ~ 0.311 and A, ~ 0.068, see figure @ Similarly, the

constants b, and b, satisfy the same condition provided in equation (3 ,

(1 —2Ay)tan(Ay)
N2b3b, = ¢67T (3.6.2)
Using the conformal ansatz that,
bysign(t b,sign(t
Gy(t) = &n()’ G, (t) = &n() (3.6.3)

|t‘2AX ’t‘2A¢’ ’

where A, = 1—3A,. We evaluate the U(1) neutral sector bilinear spectrum following

the same procedure as section to find the following constraint equations,

L= _GAbebbxl;A,QfQAfhll_fhﬂA_9)‘4b21bil;A,2f2Afhl1_fh,2Al;;6A,6Afhl1_fh,276Av (3.6.4)

1 :6/\Qbibxl;A,17hl2_72A7h,2A 9>‘4b¢b2@A1 nla—on— h2Al2 6A,1— nlea— h,2—6A" (3.6.5)

Here, equation (3.6.4) comes from the antisymmetric sector and equation (3.6.5)

comes from the symmetric sector. The plots of equations ) and - are

displayed in figures|[3.13],[3.14] and [3.15| The antisymmetric sector contains the h = 2

mode and has no complex modes. Curiously, we see a solution before h = 2, see figure

B.13
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/N

Figure 3.13: The scaling dimension Ay in the antisymmetric sector of the dynamic
x model. We a solution before the h = 2 mode at h ~ 1.2. The next few solutions
are at h ~ 3.14, 3.85,5.80, 7.76, . ..

3.7 Appendix: Chaos properties of the ¢ = 6 WL-

SYK model

We briefly consider the chaotic properties of our ¢ = 6 WL-SYK model. We compute
the spectral form factor (SFF), the level spacings ratio (r), and plot the level spacings
distribution for the N = 14, ¢ = 6 WL-SYK model. Below, we briefly review the

definition of these quantities. The spectral form factor g(¢, 3) is defined as,
g(t, 8) = [Tr(e =12/ Tr(e”P1)?, (3.7.1)

and a dip ramp plateau structure in the SFF plot is characteristic of a chaotic system.

The level spacings distribution is the probability density function (pdf) of the spacing
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Figure 3.14: The scaling dimension A, in the symmetric sector of the dynamic x
model. We are missing the solutions at h = 0 and h = 1. The first few solutions are
at h =~ 4.11,4.31,6.41,8.46,10.48, . ..

A
15
1.0 -
— k= gs(1/2+i h)
0.5 k=1
0.0 1 S S Y [ S S SN R S
1 2 3

Figure 3.15: Plot of (3.6.5) as a function of the imaginary part of h = § + is. There
are two solutions at h = % +0.285¢ and h = % + 1.157:. These correspond to the two
missing h = 0 and h = 1 modes from the symmetric sector.
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between the eigenvalues, and the level spacings ratio, r, is equal to,

Sg
r =

T where s; = \j11 — \;. (3.7.2)

The mean spacings ratio is equal to (r) ~ 0.386 for the Poisson ensemble, and (r) ~
0.536, (r) ~ 0.603, and (r) ~ 0.676 for the Gaussian orthogonal ensemble (GOE),
the Gaussian unitary ensemble (GUE), and the Gaussian symplectic ensemble (GSE)
respectively [40].

We find that our model has the dip ramp plateau structure characteristic of a
chaotic system for small inverse temperature 3, see figure [3.16, However, our model
has (r) ~ 0.453, which is between that of the Poisson distribution and the Wigner-
Dyson ensembles. We can see this intermediate behavior in the level spacings distri-
bution, see figure [3.16| Presumably, with larger N we will see the (r) value and the

level spacings plot approach those of a Wigner-Dyson ensemble.
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Figure 3.16: Top: The SFF for the N = 14, ¢ = 6 WL-SYK model at three different
values of inverse temperature 5. We see the dip ramp plateau structure characteristic
of a chaotic system. Bottom: Plot of the level spacings distribution for the N = 14,
g = 6 WL-SYK model. We can see that the distribution lies between that of the
Poisson ensemble and the GUE.
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Chapter 4

Many Body Scars as a Group

Invariant Sector of Hilbert Space

4.1 Introduction

This chapter is based on [47] and [48]. The concept of many-body scar states has
recently emerged as a novel type of weak ergodicity breaking [82-101]. These states
are typically found in the bulk of the spectrum and thus play a role at high tempera-
tures. The scars are special because they have low (area-law) entanglement entropy,
do not thermalize, and lead to the exact ‘revivals’ of the initial state of the system
initialized with scars. Therefore, the information stored in the system does not dissi-
pate at finite temperature, holding promise for potential applications of such states

in quantum information processing.
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The current knowledge of the nature of this phenomenon is based on the identifi-
cation of scars in a variety of systems, such as the AKLT spin chain [82], interacting
fermionic models [83,88,/90,(91], the spin-1 XY model [89], frustrated spin systems [97],
and a spin—% domain-wall conserving model [98,99|. In some cases [90,(94}/100], the
scar states are related to the well-known n-pairing states of the Hubbard model,
which form a family under the SU(2) symmetry called pseudospin [102-104]. There
has been experimental observation of the approximate revivals [105], yet a general
understanding of the underlying structures leading to the existence of scars is not yet
available.

The Hamiltonians exhibiting scars can be often brought to the form H = Hy+ Hy,
such that H; breaks some of the symmetries of Hy and has a special property that it
annihilates a subsector of the Hilbert space S consisting of eigenstates of Hy. In this
chapter, we discuss how the symmetry properties of the Hilbert space can be used
to construct scars systematically. We analyze a rich class of models where the scar
subsector S is invariant under the action of a continuous group G, which is bigger
than the symmetry of the full Hamiltonian. The requisite Hermitian operator H;
must have the form H; = ) ; O;T;, where T} are generators of the symmetry group
G and Oj; is any operator s.t. the product O,T; is Hermitian. For Hy, the simplest
option is that it has symmetry G, i.e. [Ho,T;] = 0, but the most general condition is
that,

[Ho, C&) = W - C&, (4.1.1)

where W is some operator and C% is the quadratic Casimir of the group G. Then

the states invariant under G are eigenstates of Hy.
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We find that, for any Hamiltonian of the form
H=H+Y O, (4.1.2)

the dynamics of the scar subsector S is governed by H, and is decoupled from the
rest of the spectrum controlled by H. If the ergodic properties of Hy and H are
sufficiently different every state in the decoupled sector S will not thermalize with
the rest of the system and will thus violate the eigenstate thermalization hypothesis
(ETH) [106(108]. Because of the decoupling, the unitary time evolution starting from
a state in the invariant sector cannot mix it with the rest of the system. In addition,
if the energy gaps between the states from the invariant subsector have a common
divisor ] then the unitary time evolution of a state from the invariant sector will
exhibit revivals: the initial state will return to itself after equal time intervals (this
is similar to the recurrence time introduced in section of chapter [2). Therefore
the states in S possess all of the defining properties of the many-body scar states. To
our knowledge, such general constructions have not been discussed previously, and
we present their concrete examples.

The general class of models we study includes the famous Fermi-Hubbard model
and its deformations. In this context we show that, in addition to the family of states
which transform as spin-N/2 under the pseudospin symmetry (the n-pairing states),
which were recently shown to be scar states in [90}/94,/100|, there is another family

of scar states. This second family, whose states may be explicitly written down as

(4.2.6) or (4.3.6), is invariant under the U(N) symmetry which acts on the degrees

#This happens, for example, when the energies of all states in S are integers in some units.
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of freedom on all N lattice sites; it forms a multiplet of spin-N/2 under the SU(2)

which is the physical rotational symmetry in the Fermi-Hubbard and related models.

4.2 Specific constructions

The structure of the Hilbert space determines the existence and properties of the

invariant subspace S. We will focus on the Hilbert space of M fermionic oscillators
{er, Yy =6, LI'=1,...,M, (4.2.1)

which has dimension 2™ and is acted on by U(M). The Hilbert space forms a spinor
representation of O(2M), which acts on the 2M Majorana fermions, and we can
choose G to be any of its subgroups. The choice of G provides an important handle
on the dimension of the scar subspace: the smaller the group G, the bigger the
invariant scar sector S.

For M = 2N one may interpret [109] this Hilbert space as that of a lattice model
with NV sites and two fermionic degrees of freedom per site (they may correspond to the
two states of a spin-1/2 fermion). The Hilbert space and the structure of the invariant
subspace S we consider are thus identical to that in a number of spin-1/2 models, such
as Hubbard, Hirsch and their deformations. There are two useful ways this Hilbert
space can be factorized [18,]110|: according to the representations of U(N) x SU(2)
or according to the representations of O(N) x SO(4) = O(N) x SU(2) x SU(2)
(the relevance of group SO(4) was noted long ago in the context of Hubbard model

[103,/104]). Choosing a singlet representation of U(N) fixes the (N + 1)-dimensional
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Figure 4.1: Schematic representation of the Hilbert space and model (4.2.4)). Each line
corresponds to a hopping 7; or some bilinear operator in terms of fermion operators.
Figure is adapted from reference [47].

spin-NN/2 representation of SU(2) - the maximal representation of SU(2) in the given
Hilbert space. An analogous relation for orthogonal groups indicates that the O(N)
singlets transform in the (N/2,0)+(0, N/2) representation of SO(4) ~ SU(2)xSU(2),
where we labeled the SU(2) representations by their spin J. Thus, there are two sets
of (N +1) invariant O(N) states; each one is invariant under one of the SU(2) groups
and transforms as spin-/N/2 under the other.

We see that there are two natural choices for the subgroup of U(2N): G = U(N)
or G = O(N), both acting on the degrees of freedom on all N lattice sites. The
lattice may be thought of as one-dimensional, as in figure but the specific way
the U(N) or O(N) indices are mapped to spatial lattice indices is not important for
the purposes of finding scars. In particular, the lattice can be of arbitrary dimension,
frustrated, and can have any boundary conditions.

The hopping term on this lattice is T = > tuu ¢! cuo, where the first index

aa’ o

of ¢4, labels the sites, the second index the ‘spin,” and t,, is the hopping strength

118



Hermitian matrix. One can see that, for a general complex t,,/, the hopping T is a
generator of SU(N) that acts on the indices a (see [18]). Adding the charge @ to the
set of generators we would obtain generators of U(N). For purely imaginary ¢, the
hopping T is a generator of SO(N), and for real t,, the situation depends on the

parity of V.

4.2.1 Vector Example

Following the prescription (4.1.2) we first have to choose H, that will control the
scar subsector; it must satisfy (4.1.1)). We will use the following integrable fermionic

Hamiltonian [18§],

HO =92 (CLO_CLU,CGIUC&/O./ — CLUCZ/OCQU/Ca/UI)
+2(2— N)Q+ N(2—N) | (4.2.2)

{C(l0'7c;2/o-/}:5a0/50'0',7 azl,...7N,U:1’...,27

where summation over repeated indices is implied. It may be viewed as a generalized
Hubbard interaction term which has a continuous symmetry O(N) x O(2), in addition
to the usual U(1) symmetry with conserved charge Q) = %[c:fw,caa]. It is a special
case, Ny = N3 = 2, of the O(N;) x O(N3) x O(N3) fermionic tensor model [3}1§].
While in general the tensor model is not integrable 21|, for N3 = 2 it is [18,/110],
and all of the energies are integer. Because of the O(N) x O(2) symmetry we have
[Ho, Ctyny) = W - Cfyy # 0 and [Hy, G )] = 0 in agreement with which

ensures the group-invariant states from S are eigenstates of this Hj.
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The singlets in S have several quantum numbers [110], which can be used to
distinguish them (none of them are conserved by the full Hamiltonian (4.2.4))). This

includes particle number () and one of the SU(2) charges,
Q2 = —1 (cllcag — cjﬁca1> =cl 0% Cagr - (4.2.3)

To control the energies of the singlets and the period of revivals, we can add a@) +
BQs to Hy. Adding also the hopping terms results in the Hamiltonian Hy = T +
Hy + a@ + BQy which remains integrable. If T is a generator of SO(N) (imaginary
amplitude) the problem can be solved analytically and T simply splits each of the
O(N) representations analogously to Zeeman splitting.

The full example Hamiltonian we will study numerically (N = 8, a = § = 1,

periodic boundary conditions) readﬂ

N N
H=Hr+4) OIT,+32) 09(Q, — 1), where (4.2.4)

a=1 a=1
(a+3)

T _ Z 1 T 2 i
Oa - |:q(l1’270',0'lca10'ca20'/ + qaLz,U,a’calaC@U' + h.c. )

CLLQ:(CL—FQ),O',O'/

O‘? - Z [CILJrloca lo + hCi| ) Qa = Z CooCac
o=1 o=1
T, = 8V2r >, ¢l cat1o is a translation-invariant nearest-neighbor hopping and a

generator of SU(N). The operator O acts on sites a+2 and a+ 3 which ensures that

. L. . 1.2
OT'T, is Hermitian and local. The coefficients Qa, 5o are random complex numbers

g

bThe Hamiltonian H = Hy + OT has the same properties with respect to the presence of the
many-body scar states.
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Figure 4.2: Histogram of the nearest neighbor eigenvalue spacings (inset, shown for
the even @ sector) and the spectral form factor (shown for the full spectrum) for the

model in (4.2.4).

and this choice of the (arbitrary according to (4.1.2])) operator O is intended to break
the symmetries of Hy and to make the bulk of the spectrum ergodic. Operators
(Qa — 1) complement T, to form the set of U(N) generators and the full Hamiltonian
is of the form for G = U(N).

Most states in the Hilbert space will be mixed by the randomness built into O
while the effective Hamiltonian for the U(N)-invariant states in S remains Hg =
Hy. The only remaining symmetry of H relates the sectors with odd and even @,
both described by the gaussian unitary ensemble (GUE) (see figure for the exact
numerical results). The time-reversal symmetry is broken by the operator ¢! c,, in

O,.
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Figure 4.3: Eigenstate (blue dots) and window-averaged (green line) expectation
values for M = —201101104{2(212. SU (8)-singlet states are shown in red triangles.

The probability distribution P(ry) of the level spacings (inset of figure 4.2))
agrees well with the GUE overlay. It contains information about the correla-
tion functions of close eigenvalues, whereas the spectral form factor, g(¢,5) =
| Tr(e PH=HY) |12/ Tr(e=PH)2 ) also contains information about longer range correla-
tions. The main elements of the spectral form factor (SFF) for a random matrix is a
dip ramp plateau structure (for a discussion of their physics, see [22]). The presence
of this structure in our system is another evidence of quantum chaos and ergodicity
in its bulk spectrum.

A more detailed characterization of ergodicity is provided in figure {4.3| where
we test the eigenstate thermalization hypothesis (ETH), which conjectures that for

any measurable local operator M, its expectation value in an eigenstate must be
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approximately the same as the window-average over the nearby states at the same
energy. We observe that the conjecture holds for most states in the spectrum while it
is clearly violated for the eleven SU(8) singlet states {|ny)} that do not thermalize.
The situation when the bulk of the spectrum (dimension 22V — N — 3) is ergodic while
an exponentially small subset of states is not (there are N +3 SU(N) singlets in our
Hilbert space), corresponds by definition to the violation of the strong formulation of
ETH (the weak formulation allows for a few ‘outlier’ states) [106-108|.

The singlet states violating strong ETH also clearly stand out in the time evo-
lution. Consider two initial states 1§, made exclusively of singlet eigenstates of H
and 1§, composed of the same number of generic states. In both cases we can write
|¢8/g) = > ¢y |tn), where |¢,) is an eigenstate of H with energy E,. We are inter-
ested in the squared projection of the time-evolved state on the initial wavefunction
F() = 1 Wole™™ o) 2 = 32, [enm P E=Em)™ Tt should relatively quickly go
to zero if the states are generic without particular correlations between energies FE,,.
Exact numerical results confirming this are shown in the right panel of figure 4.4 A
vanishing overlap with the initial state indicates that the information stored initially
has fully dissipated through thermalization. This phenomenon is closely related to
the dip seen in the SFF in figure [4.2]

For the singlet states, all of the energies FE,, are integer, which means that there
exists a (greatest) common divisor for all of the energy gaps between singlet states
E, - E,: w=gcd(F, — E,). After the time T' = k:%’r, k € Z all of the exponents
in f(7) are equal to 1. This constructive interference results in ‘revivals’ of the

(information stored in the) initial state with period t!. In our numerical example
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Figure 4.4: Time dependence of the fidelity f(7) for vector model with N = 8. The
11

initial state is a linear combination of 50 eigenstates of H and a = 3 |c,|? = 0.95.

n=1
Top: the initial state is dominated by 11 singlet states. The fidelity demonstrates
oscillations with the period T' &~ 3.14 and amplitude A ~ o?. Bottom: the initial
state is dominated by 11 generic high-energy states, the fidelity is quickly decaying.

w = 2, and thus we observe the revivals with period 7, as shown in the left panel
of figure [£.4] Note that, in this calculation 5 percent of generic states were admixed
to the initial state, but ideal revivals to f(7) = 1 would be observed otherwise. The

higher-frequency ‘revivals’ with smaller amplitude are due to the energy differences
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that are shared only by a subset of the singlet states. The energies of singlets are
controlled by Hy+ aQ) + SQ2; therefore, the period of the revivals is a function of the
parameters o and 8. While a pure state is coherently oscillating in our case, we note
that an interesting construction of environment-assisted, non-stationary dynamics for
mixed states was discussed in the literature recently [111].

Two of the scar states are tensor products of Bell-like states formed on each site:

0411a2) + 71410, C;rb —|—iCl
5, = ®| 1 2>\/§| 1 2>:H1722|0> (4.2.5)

0a1la2) — 7 ]141042) a zca
‘S?. ®| 1 2>\/_| 1Ya2 H 1 2

These states can be easily created in experiment and we provide the corresponding
gate sequences in figure [£.5] The energies of these states are given by Eg, = Ey +
aN + N = Nla+pf+2—N) and Eg, = Ey+aN — N = N2+ a— [ — N).
Initializing a system to an arbitrary superposition of these two states may be the
most accessible experimental demonstration of revivals.

The complete set of N + 1 states invariant under the U(N) symmetry [110] can
be constructed by acting repeatedly on the state |S;) with the bilinear operator

¢ =cl (0% —io")yycay (this is a ‘rotated’ version of the zeta-operator in [104]):

CTL

|nU> - on Nln!
\/ (N—n)!

1S1) (4.2.6)

withn=0,..., V.
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Another basis for this family of states is given in equation . One can see
that these states have the maximal possible spin-N/2 with respect to the index o,
i.e. they transform as a (N + 1)-dimensional representation of SU(2),, which is the
physical spin in the Fermi-Hubbard model. There is only one family which has the
maximal spin. Consequently, it is quite robust under the action of any perturbation
that preserves this spin. Namely, any spin-preserving perturbation will map this
representation to itself which means these states will continue to violate strong ETH
while the revivals may disappear as a result of changing their energies.

If instead of a complex hopping strength we chose a purely imaginary one (or a
real hopping strength and bipartite lattice), then the hopping terms are generators of
SO(N). Asit was explained in the introduction, the Hilbert space may be decomposed
[110] according to representations of O(N) x SO(4). There are 2N + 2 singlet states
that could be organized in two sets. One of these sets is |ny), for which the O(N) x

SU(2) symmetry is further enhanced to U(N). The other set of N + 1 states is

n N
n
no) = —====10) , n= d “chiely . (4.2.7)
(N—n)! a=1

with n = 0,..., N. These states are invariant under G = O(N) x SU(2) and also
U(N) x SU(2), where the SU(N) subgroup of U(N) is generated by spin flip hopping
terms along with spin-preserving hopping terms with imaginary amplitude. They
transform as spin-/N /2 under the pseudospin symmetry. They are equivalent to the
exact eigenstates of the Hubbard model originally identified using the celebrated 7-

pairing [102| and recently demonstrated to be many-body scar states [90,(100] (to
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Figure 4.5: Left panel: Circuit diagram of W, for construction of |S;) states (4.2.5).
H is the Hadamard gate, X is the Pauli-X gate, the line spanning the two sites
represents the CNOT gate from qubit 0 to target qubit 1, and P is the phase gate.
Right panel: Circuit diagram of W, gates needed to construct the singlet state | Sa).

obtain we need to transform from the real hopping amplitude used in [102] to
our imaginary one).

Let us emphasize that the Hamiltonian H does not respect all the symmetries
possessed by the two scar sectors. In particular, it breaks translation invariance while
both |no) and |ny) are manifestly invariant under lattice translations. Thus, the
scars appear in the enhanced symmetry sectors of Hilbert space, in accordance with
our general arguments.

Let us note that our construction of H; is similar to that in [94], in that hopping
T is used to annihilate S. Similarly to [100], [94] has discussed one of the two SU(2)
families of scar sectors in the context of the Hubbard model, although the O(N)

invariance of these states was not pointed out explicitly.
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4.3 Construction of group invariant states

The two states |S12) (4.2.5)) with zero entanglement entropy may be expressed as a
product state with the use of the gates W, and W, (see figure :

|Sl> = HWa |O> ) |SQ - H (431)

We will briefly review the construction of state |S;) via well known gates that
act on either one or two qubits at a time. First we will define the Hadamard gate,
H; it acts on a single qubit at a time, sending |0) — % and |1) — |0>\/§‘1>. The
Pauli gate, X, acts on a single qubit at a time, sending |0) — |1) and |1) — |0). It
is also known as the bit-flip gate. The phase gate, P, leaves |0) invariant and sends
|1) — i|1). The CNOT gate acts on two qubits at a time. It performs the ‘not’
operation on the second qubit only when the first is |1). We start with the state

|041042) and apply the Hadamard gate to the first qubit,

’0a10a2> + ’1a10a2>

Hi |041042) = NG (4.3.2)
Applying the Pauli-X gate to the second qubit of the output, we find
Xy Hy [0g1002) = Ounoz) + aalaz) (4.3.3)
V2
After applying the CNOT gate, we have the following,
CNOT, Xy Hy [0,10,) = Derlez) = 1n02). (4.3.4)

V2
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Finally, we find |S;) after applying the phase gate on the first qubit of the output,

Oa1la /11a10q
S1) = PLCNOT; Xo Hy |041042) = Oaaloz) + ¢ |1 2>. (4.3.5)

V2

We can perform similar computations to build |S5).
Let us also present another, rotated basis for the family of states (4.2.6]), which

are U(N) invariant and transform as spin-N/2 under the rotational SU(2) symmetry:

) = M ESY (4.3.6)

) = on [ _Nin!
(N—n)!

withn =0,..., N. Here

N N
S0 =T]eliloy . 18) =]]ek10) - (4.3.7)
a=1 a=1

We note that these states are singlets under the pseudospin symmetry. For the
Hamiltonian Hy in (4.2.1)), the states |y) are not eigenstates, while the states |ny)
given in (4.2.6)) are. However, for the Fermi-Hubbard and Heisenberg models, which
respect the SU(2) rotational symmetry, both |ny) and |ny) are eigenstates.

As shown in section 4.2.1], some singlet states in the vector model are related to
the n-pairing states discovered by Yang |102]. We can extend this construction to the
matrix model that was discussed in [18|. We start with the vacuum state |0) that is
naturally a singlet state, because it is annihilated by any hopping. Then in order to

build any other singlet state we can act with the creation operator and pair the index
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with the use of the § - pairing or € - pairing. Namely, we introduce

Ni/2

(J+)aa’ = C:rleLb, (K+)a1~~-aN1 = Ebl...bN2 H C:rzibi‘ (438)

=1

These operators automatically are singlets under the action of SOy(N). Then the
singlet states could be constructed out of the products and sums of the operators J,,
K by contracting indices with the use of d4q OT €4, ay-

The states with a small number of fermions could be built with the use of only
the operator matrix J,. We introduce M,, = (Jﬁ)aa, which is a singlet under the
action of SO,(N) x SO,(N). For example, acj:ing with M,, and their products we

can build singlet states as

|51) = M2 [0), [s2) = M3|0), [s3)= M3M4M§ 0), ... (4.3.9)

When the number of fermions is larger than N, we can use K, to build singlet

states. For example, when N is even we can have

|SE> = (K+)a1a1...aN/2aN/2 |0> . (4310)

For N = 2 the operator (K} ),, is the n-operator from [102].
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Figure 4.6: Correlator Gy = (¢}, c1o¢h,c41) evaluated for every eigenstate of the vector
1 n(N—n)
4~ 2N(N-1)"

model with N = 8. The value of Gy for this family of scar states is Gy =

In general we are able to express the dimension of the singlet subspace as an

integral [1§]

dim SO =
gNiNe 2
= dx;dy; (cos z; + cos y;)” X
VNl V]\&_[ z'yl J J
N1 N2
X H (cos z; — cos xy)* H (cosy; — cosyy)” (4.3.11)
i i
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where Vi, v, are the dimensions of the SO(IN) groups, which are equal to

T N Ny
Vi, = /H dx; x H (cos z; — cos xi/)2 ) (4.3.12)
g ii!

4.4 Two-dimensional tJU model

We illustrate the concepts discussed above using the example of a perturbed tJU
model on a 2D rectangular bipartite lattice. Here, we use the standard notation for

the fermion numbers at site :

ni = CZTTCiT . My = CLCii . My =N+ Ny (4.4.1)
N

The total fermion number is expressed as, @ = > n;. In addition, we can define the
i=1

spin operator at site 7 as,

- 1
Si = §cla5'aﬁcw, (442)

where ¢ are the Pauli matrices.
The Hamiltonian of the standard ¢tJU model [112H114] combines the Hubbard and

Heisenberg interactions

+UD nigng, — pQ (4.4.3)
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and can be viewed as a generalization of Hubbard or t-J models relevant for high-7.
superconductivity [115].

The Hy + OT decomposition of this model can be performed with respect to
the U(N) group, which gives us the |ny) family of group-invariant scars as seen in
. To construct this decomposition, we must introduce several useful generators
of SU(N). The generators of SU(N) include the spin-independent hopping terms

with generally complex amplitudes:
Ty; = Aelcjo +hec., AeC. (4.4.4)
We may now define a nearest-neighbor hopping with real amplitude,
T}y = clycjo + hec. (4.4.5)

As T<’Z.7 P is a Hermitian, spin-independent hopping term, it is a linear combination of
T;;, and thus belongs to the SU(N) algebra and will annihilate the SU(N) singlets.

Next, we define a set of generators of U(N),
Ki=nj—1, i=1,...N. (4.4.6)
In terms of the local magnetization M;,

K}=1-M?, (4.4.7)
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where M? = (n;s —n;))?. Lastly, we define a linear combination of SU(N) generators,

1
Cz'j = ——

1 (B Bji + EjiEij + KiK5) (4.4.8)

where Ej; = ¢l ¢;q are SU(N) generators.
Now, we can express S - S; in terms of the Cy; SU(N) generators. Let us first

expand g; . §j,

G . g — [ 1 1 1
45, - S; = (CiTCiT - CuCu) < CirCit — ¢CN> + < CirCiy + cwcm> (cﬁcﬂ + Cj¢CJ'T>
—(chey — e c c
A i “ir JT g+ N Jt
cjacmc}ﬁcjg + cjacm + c;acja

= —cl\Cja T,acw - C;acmcjﬁ% -

And so we can simplify,

Here, we decompose the ¢tJU Hamiltonian (4.4.3]) with respect to U(N),

HYY = thwcjg + JZS S + Uanan e,
(ij)o (i5)

Uz + ngy N + (0
_tZT,ﬁuz( +o”)_MQ+Uz(nim_ F ot )
U ) UN U

_tZT” N””+JZCU+Q(——M -ty (1 — (nip —ny)?)
(ig) ¢

J oo UN U
=t Tl + =N +J Cw+Q(——u) Z
i)

4
(i7) (
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where in the third line we let N{" denote the numbers of nearest-neighbor pairs in a
particular lattice. Rearranging, we have

J U UN

HtJU_ZNnn+Q(__M> _T+

tY Ty +7) Ci+ 5 Z P (4.4.10)
(i7) (i)

where we have used the Hy 4+ OT decomposition of individual terms , ,
(4.4.9). The first line of equation is Hy and acts on the invariant states with
a constant while the second OT line only consists of terms proportional to group
generators that annihilate the invariant states.

We recall that a group G-invariant states become scars in a model that can be
written as Ho+ ), OxT}, where T}, are generators of G. Note that a generator of any
subgroup of G is also a generator of G and can also appear as T}, in the decomposition.
The standard tJU model conserves the total physical spin. Therefore the states
|ny) form a separate symmetry sector of this model. To make them true scars we
break the total spin conservation by adding a perturbation. It is a symmetry-breaking
term of the OT form for a rectangular lattice in two dimensions, where i labels the

horizontal and j the vertical direction:

HY =" 1y (Mg + M) SE + gy (M + M) Sis™ (4.4.11)

7.7
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where 75, ¢;; € [0, 1] are real random numbers and

M;; = TMC;roCijT - C]MC;[ﬂCm ) (4.4.12)

hor __ T
SET =D ClipryjoCiio + .,

g

vert __ T
S5 =D clijoCiio +hec.,

o

where 77, qy are also random numbers, that we chose to be r); = 1.426974 and
qn = 2.890703.

The full Hermitian Hamiltonian we study numerically reads
HYY = HYY + BHY 4+ ~Q, (4.4.13)

where we added a term proportional to the SU(2)spi, generator ¢y . It acts as
Hy on |ny) and splits them according to the index n: Qs |ny) = (2n— N) |ny)). Note
that by increasing v we can make the scar state with maximum Qs, |S7) , the
ground state.

We may also consider a non-Hermitian perturbation to our model. One often
describes an open system by a non-Hermitian Hamiltonian that results from a re-
duction of the Hermitian Hamiltonian of the full system to an open subsystem. The
non-Hermitian Hamiltonian may not conserve the norm of the state which corre-
sponds to the probability leaking out or into the open system. To illustrate that

the invariant states remain stable and decoupled also in non-Hermitian systems with
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Hamiltonian Hy 4+ OT', we consider the following non-Hermitian term.

HPy =" (M — Mgyg)SE + ai (Mg — M) S (4.4.14)

1,3

Thus, the full non-Hermitian Hamiltonian we consider is
Hyy! = HY + B HY,, (4.4.15)

where for numerical investigations we set $; = 0.43. In both the Hermitian and the
non-Hermitian cases, the part of the full Hamiltonian that acts with a constant on

the invariant states is

E(|) vl = ZNl + (5 - M) Q— oy + Q2. (4.4.16)

The states in equation (4.2.6)) are not the eigenstates of (4.4.16)). Instead, the basis

in the SU(N)-invariant subspace determined by the Hamiltonian (4.4.16)) reads

151) (4.4.17)

where ( = Q3 — 1Q)1, as in (4.2.6)).
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Because both Hermitian and non-Hermitian models we consider have an exact
Hy + OT decomposition, they have the family |ny) as scars for any choices of the

coupling constants.

4.4.1 Numerical results

For the numerical experiment we use the N, x N, = 3 x 3 lattice and set t = —0.4,
J =1, U =8, p = 13. For 7y = 1 this corresponds to the g.s. filling of v =
% = 0.44(4), 11% below the half-filling which corresponds to the potentially high-
T.-relevant regime [116,]117]. For our simulation we instead choose v = 3.6. At this
value the half-filled |S}) state becomes the ground state. This simplifies the
initialization of the system to the scar subspace in experiment. Because |S7) is a
product state, it can alternatively be created by application of a simple gate circuit
on each site (see figure [£.5).

The level statistics parameters of r = 0.5306 (r“9F = 0.5359) and r,, = 0.7378
(r&inibre ~ ().74) are close to the values of the corresponding random ensembles (de-
fined in the introduction) and thus indicate that the bulk spectra of both systems
are fully chaotic. This is further elaborated by the gap distribution (figure and
and by the presence of the ‘dip-ramp-plateau’ structure in the spectral structure
factor plot figure typical for chaotic systems.

In the spectrum of the non-Hermitian Hamiltonian (4.4.15]) (see figure [4.8)) we

observe that all the scar states remain at the real axis and are not effected by the non-

¢The tJU model (4.4.3)) has another Hy+ OT decomposition, leading to a second family of group
invariant scars. This family is not presented here; however, the details of the second family of scars
is presented in [48§].

138



Hermitian terms. The non-Hermitian spectrum also has a ‘conjugation symmetry’:
for every state with energy a + b there is another state with energy a — ib. All the
observables measured in any two such states (such as entanglement entropy) are also
equal. For this reason we choose to plot such observables as a function of the real
part of the energy eigenvalue: Re F.

To demonstrate the violation of strong ETH we evaluate the ‘magnetic’
off-diagonal long-range order (ODLRO) correlator characteristic of the |ny) [47]
states. We observe (see figure that the corresponding expectation values are
significantly different in the invariant states relative to all the generic states in the
spectrum in both systems which allows us to conclude the invariant states are scars
in this system.

One of the most striking and counterintuitive features of the scar states in the
non-Hermitian Hamiltonian (4.4.15)) is the stable and coherent time evolution of the
scar subspace shown in figure[d.7] The system is initialized to a state that is a uniform
mix of all the 2N +2 = 20 scar states present in the system. This state is coming back
to itself exactly after the time intervals 27 /w =~ 20.94, where w = 0.3 is the greatest
common divisor of all the gaps between the scar states. The norm of the state is
preserved throughout, although the system is open (Hamiltonian is non-Hermitian)
and the probability density would flow in or out of the system for an initial state that
includes any admixture of a non-singlet generic states. As expected, stable revivals

are also observed for the Hermitian Hamiltonian.
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f(7)

Figure 4.7: Time dependence of the squared overlap between the initial state and a
time-evolved state for the non-Hermitian Hamiltonian (4.4.15)).

4.4.1.1 Spectrum

The imaginary and real components of the eigenvalues of equation (4.4.15|) are shown
in figure[4.8] While the majority of the eigenvalues of the non-Hermitian Hamiltonian
become complex the eigenvalues corresponding to the invariant scar states remain real
and the same as in the system without a non-Hermitian term. This demonstrates the
stability of the many-body scar states in suitably designed open systems.

The spectrum also exhibits the conjugation symmetry: for every eigenvalue £ =

E,. +iFE;,, there is a partner state with £ = E, — iE},,.

4.4.1.2 Quantum chaos in the Hermitian Hamiltonian

The mean level spacings ratio, (r), is often used to quantify chaos as well as spectral

transitions between Wigner-Dyson ensembles. The spacing ratio, r, is reviewed in the
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Figure 4.8: N, = 3 N, = 3 non-Hermitian ¢JU spectrum. All the particle number
sectors are plotted together. Figure is adapted from reference [47].

141



introduction,
Si

r= where, s; = N1 — A, (4.4.18)

Si—1
where )\; is the i*® eigenvalue. See equation for the definition for a non-
Hermitian system. The analytic mean level spacings ratios are calculated in [40], and
are (r) ~ 0.5359 , (r) ~ 0.6027, and (r) ~ 0.6762 for the GOE, GUE, and GSE
respectively.
Based on the figures [1.9) and [£.10] we can conclude that our Hermitian models
have a chaotic bulk; the SFF has a dip ramp plateau structure, and the level spacings

plots and (r) values closely match those of the GOE.

4.4.1.3 Quantum chaos in the non-Hermitian Hamiltonian

The Ginibre symmetry classes are the non-Hermitian analogs to the Dyson symmetry
classes. We can compute the level spacings of our non-Hermitian models and compare
to those of the Ginibre random matrix analog. It is also possible to compute com-
plex spacing ratios (r). For example, the Ginibre GUE (GinUE) (r) is numerically
determined to be ~~ 0.74 |118].

The definition of a nearest neighbor for a non-Hermitian matrix is [119):

d, = ming |E, — Ep|. (4.4.19)
The r-value is defined as [118].
dt —d,
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Figure 4.9: Quantum chaos for Hermitian ¢tJU 3x3 v = 3.6. Top: SFF. Bottom: Ps.
This model has (r) = 0.5306. (r)gurg = 0.6027 and (r)cor = 0.5359 [40]. Large
magnetic field v = 3.6 causes the correlations at one corresponding frequency that
results in the peak seen in the SFF plot soon after the dip. This peak is absent or
much reduced for the moderate magnetic field v = 1 (see figure
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Figure 4.10: Quantum chaos for Hermitian tJU 3x3 v = 1. Top: SFF. Bottom: Ps.
This model has (r) = 0.5284. (r)cug = 0.6027 and (r)gor = 0.5359.
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where V; is the nearest neighbor and N, is the next nearest neighbor.

We can see from figure [£.11] that our non-Hermitian model shows evidence of a
chaotic bulk. The level spacings plot fits closely to that of the Ginibre distribution,
and the (r) value of our model is also close to the Ginibre value. The interpretation
of the SFF for the non-Hermitian model is less straightforward, though we do see a
dip ramp plateau structure when considering only the real part of the eigenvalues.
The dip ramp plateau structure is less clear when considering only the magnitude or

imaginary part of the eigenvalues.

4.4.1.4 ETH violation

The violation of strong ETH by the scar states is demonstrated in figure for the
Hermitian and the non-Hermitian Hamiltonians. We evaluate the expectation values
for the operator that defines the off-diagonal long-range order of the scar family

considered:

GU - <CI;‘1leC$1y1¢012y2¢C$2y2T> (4421>

for |ny) introduced in [47].

Because of the high symmetry of the invariant states, this correlator, when evalu-
ated for scars, does not depend on the coordinates x1, y1, T2, Y2 [47]. For the numerical
evaluation we set the points 1 and 2 to be the most distant points in our system with

open boundaries: (z1,y1) = (1,1) and (z9,¥y2) = (3, 3).
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Figure 4.11: Top: SFF for non-Hermitian ¢tJU 3x3, Bottom: Ps for non-Hermitian
tJU 3x3. This model has (r) = 0.7378. For reference, the Ginibre value (r)ginvr =~
0.74 was supported numerically in |118].
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Figure 4.12: ETH violation by the scar states for the Hermitian Hamiltonian (4.4.13
(top) and ETH violation by the scar states for the non-Hermitian Hamiltonian (4.4.15
(bottom) for N,=3 N,=3. Shown is the expectation value (¢;|M|t);) evaluated for
every eigenstate v;, with @) = 9 (half-filling) M = Gy. The green line is the micro-
cononical (window) average.

147



The scar states are clearly away from the microcanonical average in both systems.
A very strong magnetic field is present in both systems and couples to the states
with non-zero magnetization. This results in the spikes seen in the data for the

non-Hermitian system which is apparently more susceptible to the magnetic field.

4.5 Discussion

The presence of group invariant scar states S is a property of a Hilbert space once the
conditions on the Hamiltonian outlined in this paper are satisfied. This universality
explains why the scar states identified to date in different models with the same
Hilbert space can be identical.

The group-invariance requirement is non-local, and the resulting scar states are
invariant under lattice translations. As a consequence, the degrees of freedom on all
of the sites become entangled which spreads the information over the whole system.
This leads to the relative insensitivity of group-invariant states to local perturba-
tions and protection of the quantum information [120]. The invariant scar states do
not thermalize and form a closed, decoherence-free subspace, where non-commuting
transformations can act and universal quantum computation may be performed [121].
This combination of properties makes the group-invariant scar states an interesting
platform for robust quantum information processing.

The gauge/gravity duality [122-124] is a set of correspondences between conven-
tional gauged models without gravity and higher-dimensional gravitational systems.

In quantum mechanical models, gauge fields are non-dynamical, so the gauging is
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equivalent to truncation of the Hilbert space to a group-invariant sector |2} 3}|18],
125H127|. It would be interesting to explore possible connections between the group-
invariant scars and gauge/gravity duality.

The broad framework we presented allows for constructing a model that could
be simply realized in experiment. An example Hamiltonian could be B,Q, +
Yo (Mg + Myyq) (clﬂgcaa + h.c.)7 where M, = ¢!, a1 — ¢! ,cqo is the magnetization
at site a. The eigenstates include the translationally invariant |ny) scars including
|S1) with Es, = BN and |Sy) with Eg, = —B,N. In addition, we have demonstrated
that the invariant scar subspace continues to undergo stable, coherent time evolution
in a class of suitably designed open systems with non-Hermitian Hamiltonian. This
greatly expands the realm of weak ergodicity breaking phenomena and will hopefully

inspire new theoretical and experimental studies.

149



Bibliography

1]

2|

3]

4]

[5]

(6]

7]

8]

9]

S. Sachdev and J. Ye, “Gapless spin-fluid ground state in a random quantum
Heisenberg magnet,” Phys. Rev. Lett. 70 (May, 1993) 3339-3342,
arXiv:cond-mat/9212030.

E. Witten, “An SYK-like model without disorder,” Journal of Physics A:
Mathematical and Theoretical 52 (Oct, 2019) 474002, arXiv:1610.09758.

I. R. Klebanov and G. Tarnopolsky, “Uncolored random tensors, melon
diagrams, and the Sachdev-Ye-Kitaev models,” Phys. Rev. D95 (2017), no. 4
046004, |arXiv:1611.08915.

J. Maldacena and D. Stanford, “Comments on the Sachdev-Ye-Kitaev model,”
Phys. Rev. D94 (2016), no. 10 106002, arXiv:1604.07818.

R. Gurau, “Colored Group Field Theory,” Commun. Math. Phys. 304 (2011)
69-93, larXiv:0907.2582.

R. Gurau and V. Rivasseau, “The 1/N expansion of colored tensor models in
arbitrary dimension,” Europhys. Lett. 95 (2011) 50004, arXiv:1101.4182.

R. Gurau, “The complete 1/N expansion of colored tensor models in arbitrary
dimension,” Annales Henri Poincare 13 (2012) 399-423, arXiv:1102.5759.

V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, “Critical behavior of
colored tensor models in the large N limit,” Nucl. Phys. B853 (2011) 174-195,
arXiv:1105.3122.

A. Tanasa, “Multi-orientable Group Field Theory,” J. Phys. A45 (2012)
165401, arXiv:1109.0694.

[10] V. Bonzom, R. Gurau, and V. Rivasseau, “Random tensor models in the large

N limit: Uncoloring the colored tensor models,” Phys. Rev. D85 (2012)
084037, arXiv:1202.3637.

150


https://arxiv.org/abs/cond-mat/9212030
https://arxiv.org/abs/1610.09758
https://arxiv.org/abs/1611.08915
https://arxiv.org/abs/1604.07818
https://arxiv.org/abs/0907.2582
https://arxiv.org/abs/1101.4182
https://arxiv.org/abs/1102.5759
https://arxiv.org/abs/1105.3122
https://arxiv.org/abs/1109.0694
https://arxiv.org/abs/1202.3637

[11] S. Carrozza and A. Tanasa, “O(N) Random Tensor Models,” Lett. Math.
Phys. 106 (2016), no. 11 15311559, arXiv:1512.06718.

[12] R. Gurau and J. P. Ryan, “Colored Tensor Models - a review,” SIGMA 8
(2012) 020, arXiv:1109.4812.

[13] A. Tanasa, “The Multi-Orientable Random Tensor Model, a Review,” SIGMA
12 (2016) 056, arXiv:1512.02087.

[14] N. Delporte and V. Rivasseau, “The Tensor Track V: Holographic Tensors,”
arXiv:1804.11101.

[15] I. R. Klebanov, F. Popov, and G. Tarnopolsky, “TASI Lectures on Large N
Tensor Models,” PoS TASI2017 (2018) 004, arXiv:1808.09434.

[16] C. Krishnan, S. Sanyal, and P. N. Bala Subramanian, “Quantum Chaos and
Holographic Tensor Models,” JHEP 03 (2017) 056, arXiv:1612.06330.

[17] C. Krishnan and K. V. P. Kumar, “Towards a Finite-N Hologram,” JHEP 10
(2017) 099, arXiv:1706.05364|

[18] I. R. Klebanov, A. Milekhin, F. Popov, and G. Tarnopolsky, “Spectra of
eigenstates in fermionic tensor quantum mechanics,” Phys. Rev. D97 (2018),
no. 10 106023, arXiv:1802.10263.

[19] C. Krishnan and K. P. Kumar, “Exact Solution of a Strongly Coupled Gauge
Theory in 0-+1 Dimensions,” Physical Review Letters 120 (May, 2018)
arXiv:1802.02502.

[20] C. Krishnan and K. V. P. Kumar, “Complete solution of a gauged tensor
model,” Advances in Theoretical and Mathematical Physics 23 (2019), no. 7
1805-1847, arXiv:1804.10103.

[21] K. Pakrouski, I. R. Klebanov, F. Popov, and G. Tarnopolsky, “Spectrum of
Majorana Quantum Mechanics with O(4)® Symmetry,” Phys. Rev. Lett. 122
(2019), no. 1 011601, jarXiv:1808.07455.

[22] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker,
D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random
Matrices,” JHEP 05 (2017) 118, arXiv:1611.04650.

151


https://arxiv.org/abs/1512.06718
https://arxiv.org/abs/1109.4812
https://arxiv.org/abs/1512.02087
https://arxiv.org/abs/1804.11101
https://arxiv.org/abs/1808.09434
https://arxiv.org/abs/1612.06330
https://arxiv.org/abs/1706.05364
https://arxiv.org/abs/1802.10263
https://arxiv.org/abs/1802.02502
https://arxiv.org/abs/1804.10103
https://arxiv.org/abs/1808.07455
https://arxiv.org/abs/1611.04650

[23] D. Poland, S. Rychkov, and A. Vichi, “The conformal bootstrap: Theory,
numerical techniques, and applications,” Reviews of Modern Physics 91 (Jan,
2019)arXiV:1805.04405.

[24] M. Moshe and J. Zinn-Justin, “Quantum field theory in the large N limit: a
review,” Physics Reports 385 (Oct, 2003) 69228, arXiv:hep-th/0306133.

[25] F. Kos, D. Poland, and D. Simmons-Duffin, “Bootstrapping the O(N ) vector
models,” Journal of High Energy Physics 2014 (Jun, 2014) arXiv: 1307 .6856.

[26] G. Hooft, “A planar diagram theory for strong interactions,” Nuclear Physics
B 72 (1974), no. 3 461-473.

[27] A. Athenodorou and M. Teper, “SU(N) gauge theories in 241 dimensions:
glueball spectra and k-string tensions,” Journal of High Energy Physics 2017
(Feb, 2017) arXiv:1609.03873.

[28] K. Bulycheva, I. R. Klebanov, A. Milekhin, and G. Tarnopolsky, “Spectra of
Operators in Large N Tensor Models,” Phys. Rev. D97 (2018), no. 2 026016,
arXiv:1707.09347.

[29] S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum
Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339,
arXiv:cond-mat/9212030.

[30] A. Kitaev, “A simple model of quantum holography,” Talks at KITP, April 7,
2015 and May 27, 2015.

[31] S. Sachdev, “Bekenstein-Hawking Entropy and Strange Metals,” Phys. Rev.
X5 (2015), no. 4 041025, arXiv:1506.05111.

[32] J. Polchinski and V. Rosenhaus, “The Spectrum in the Sachdev-Ye-Kitaev
Model,” JHEP 04 (2016) 001, arXiv:1601.06768.

[33] A. Kitaev and S. J. Suh, “The soft mode in the Sachdev-Ye-Kitaev model and
its gravity dual,” JHEP 05 (2018) 183, arXiv:1711.08467.

[34] D. J. Gross and V. Rosenhaus, “A generalization of Sachdev-Ye-Kitaev,”
Journal of High Energy Physics 2017 (Feb, 2017) arXiv:1610.01569.

[35] V. Bonzom, V. Nador, and A. Tanasa, “Diagrammatic proof of the large N
melonic dominance in the SYK model,” Letters in Mathematical Physics 109
(Jul, 2019) 2611-2624, arXiv:1808.10314,

152


https://arxiv.org/abs/1805.04405
https://arxiv.org/abs/hep-th/0306133
https://arxiv.org/abs/1307.6856
https://arxiv.org/abs/1609.03873
https://arxiv.org/abs/1707.09347
https://arxiv.org/abs/cond-mat/9212030
https://arxiv.org/abs/1506.05111
https://arxiv.org/abs/1601.06768
https://arxiv.org/abs/1711.08467
https://arxiv.org/abs/1610.01569
https://arxiv.org/abs/1808.10314

[36] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, “Notes on the complex
Sachdev-Ye-Kitaev model,” Journal of High Energy Physics 2020 (Feb, 2020)
arXiv:1910.14099.

[37] E. P. Wigner, “Characteristic Vectors of Bordered Matrices With Infinite
Dimensions,” Annals of Mathematics 62 (1955), no. 3 548-564.

[38] G. Livan, M. Novaes, and P. Vivo, “Introduction to Random Matrices,”
SpringerBriefs in Mathematical Physics (2018) arXiv:1712.07903.

[39] M. L. Mehta, “Random Matrices,” vol. 142 of Pure and Applied Mathematics.
Elsevier, 2004.

[40] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, “Distribution of the
Ratio of Consecutive Level Spacings in Random Matrix Ensembles,” Physical
Review Letters 110 (Feb, 2013) arXiv:1212.5611.

[41] H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka, “Onset of random
matrix behavior in scrambling systems,” Journal of High Energy Physics 2018
(Jul, 2018) larXiv:1803.08050.

[42] A. Altland and D. Bagrets, “Quantum ergodicity in the SYK model,” Nuclear
Physics B 930 (May, 2018) 45-68, arXiv:1712.05073.

[43] V. Oganesyan and D. A. Huse, “Localization of interacting fermions at high
temperature,” Phys. Rev. B 75 (Apr, 2007) 155111,
arXiv:cond-mat/0610854.

[44] 1. R. Klebanov, P. N. Pallegar, and F. K. Popov, “Majorana fermion quantum
mechanics for higher rank tensors,” Phys. Rev. D 100 (Oct, 2019) 086003,
arXiv:1905.06264.

[45] P. N. Pallegar, “Poster: Majorana fermion quantum mechanics for higher rank
tensors,” in Strings 2019-Brussels, Belgium, July, 2019.

[46] P. N. Pallegar and W. Zhao, “Prismatic quantum mechanics with complex
fermions.” Work in progress.

[47] K. Pakrouski, P. N. Pallegar, F. K. Popov, and 1. R. Klebanov, “Many-Body
Scars as a Group Invariant Sector of Hilbert Space,” Phys. Rev. Lett. 125
(Dec, 2020) 230602, arXiv:2007.00845.

153


https://arxiv.org/abs/1910.14099
https://arxiv.org/abs/1712.07903
https://arxiv.org/abs/1212.5611
https://arxiv.org/abs/1803.08050
https://arxiv.org/abs/1712.05073
https://arxiv.org/abs/cond-mat/0610854
https://arxiv.org/abs/1905.06264
https://arxiv.org/abs/2007.00845

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

K. Pakrouski, P. N. Pallegar, F. K. Popov, and I. R. Klebanov, “Group
theoretic approach to many-body scar states in fermionic lattice models,”
arXiv:2106.10300.

P. Narayan and J. Yoon, “SYK-like tensor models on the lattice,” JHEP
(2017) 83, [arXiv:1705.01554]

F. Ferrari, V. Rivasseau, and G. Valette, “A New Large N Expansion for
General Matrix-Tensor Models,” arXiv:1709.07366.

S. S. Gubser, C. Jepsen, Z. Ji, and B. Trundy, “Higher melonic theories,”
Journal of High Energy Physics 2018 (Sep, 2018) arXiv: 1806 .04800.

M. Kobayashi, “Perfect one-factorizations of the complete graph,” Nagasaki
university’s academic output site 4 (1988) 85-90.

C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs.
Chapman and Hall/CRC, 2006.

M. Berkooz, M. Isachenkov, V. Narovlansky, and G. Torrents, “Towards a full
solution of the large N double-scaled SYK model,” Journal of High Energy
Physics 2019 (Mar, 2019) arXiv:1811.02584.

A. Bernevig and T. Neupert, “Topological Superconductors and Category
Theory,” arXiv:1506.05805.

C. Krishnan, K. V. P. Kumar, and S. Sanyal, “Random Matrices and
Holographic Tensor Models,” JHEP 06 (2017) 036, arXiv:1703.08155.

M. Stephanov, J. Verbaarschot, and T. Wettig, “Random Matrices,” arXiv :
hep-ph/0509286.

D. Freedman and A. Van Proeyen, Supergravity. Cambridge, 2012.

V. Arnol‘d, Mathematical Methods of Classical Mechanics. Springer-Verlag,
1989.

P. Bocchieri and A. Loinger, “Quantum Recurrence Theorem,” Phys. Rev. 107
(Jul, 1957) 337-338.

J. Zhang and Y. Liu, “Witnessing a Poincaré recurrence with Mathematica,”
Results in Physics 7 (2017) 3373-3379, arXiv:1705.01444.

154


https://arxiv.org/abs/2106.10300
https://arxiv.org/abs/1705.01554
https://arxiv.org/abs/1709.07366
https://arxiv.org/abs/1806.04800
https://arxiv.org/abs/1811.02584
https://arxiv.org/abs/1506.05805
https://arxiv.org/abs/1703.08155
https://arxiv.org/abs/hep-ph/0509286
https://arxiv.org/abs/hep-ph/0509286
https://arxiv.org/abs/1705.01444

[62] Garcia-Garcia, Antonio M. and Verbaarschot, Jacobus J. M., “Analytical
Spectral Density of the Sachdev-Ye-Kitaev Model at finite N,” Phys. Rewv.
D96 (2017) 066012, arXiv:1701.06593.

[63] D. Bagrets, A. Altland, and A. Kamenev, “Power-law out of time order
correlation functions in the SYK model,” Nuclear Physics B 921 (Aug, 2017)
727-752, arXiv:1702.08902.

[64] A. M. Garcia-Garcia and J. J. M. Verbaarschot, “Spectral and thermodynamic
properties of the Sachdev-Ye-Kitaev model,” Phys. Rev. D94 (2016), no. 12
126010, arXiv:1610.03816.

[65] J. Cotler, N. Hunter-Jones, J. Liu, and B. Yoshida, “Chaos, complexity, and
random matrices,” Journal of High Energy Physics 2017 (Nov, 2017) 48,
arXiv:1706.05400.

[66] D. J. Gross and V. Rosenhaus, “All point correlation functions in SYK,”
Journal of High Energy Physics 2017 (Dec, 2017) larXiv:1710.08113.

[67] A. Almbheiri and J. Polchinski, “Models of AdS, backreaction and holography,”
JHEP 11 (2015) 014, arXiv:1402.6334.

[68] K. Jensen, “Chaos in AdS, Holography,” Phys. Rev. Lett. 117 (2016), no. 11
111601, arXiv:1605.06098.

[69] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its
breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP 2016 (2016),
no. 12 12C104, arXiv:1606.01857.

[70] J. Engelsoy, T. G. Mertens, and H. Verlinde, “An investigation of AdS,
backreaction and holography,” JHEP 07 (2016) 139, arXiv:1606.03438.

[71] K. Bulycheva, “A note on the SYK model with complex fermions,” JHEP 12
(2017) 069, [arXiv:1706.07411]

[72] W. Fulton and J. Harris, Representation Theory, A First Course.
Springer-Verlag, 1991.

[73| S. Prakash and R. Sinha, “Melonic dominance in subchromatic sextic tensor
models,” Physical Review D 101 (Jun, 2020) arXiv:1908.07178.

155


https://arxiv.org/abs/1701.06593
https://arxiv.org/abs/1702.08902
https://arxiv.org/abs/1610.03816
https://arxiv.org/abs/1706.05400
https://arxiv.org/abs/1710.08113
https://arxiv.org/abs/1402.6334
https://arxiv.org/abs/1605.06098
https://arxiv.org/abs/1606.01857
https://arxiv.org/abs/1606.03438
https://arxiv.org/abs/1706.07411
https://arxiv.org/abs/1908.07178

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

S. Giombi, I. R. Klebanov, F. Popov, S. Prakash, and G. Tarnopolsky;,
“Prismatic large N models for bosonic tensors,” Phys. Rev. D 98 (Nov, 2018)
105005, arXiv:1808.04344.

S. Giombi, I. R. Klebanov, and G. Tarnopolsky, “Bosonic tensor models at
large N and small €¢,” Phys. Rev. D96 (2017), no. 10 106014,
arXiv:1707.03866.

S. Prakash and R. Sinha, “A Complex Fermionic Tensor Model in d
Dimensions,” JHEP 02 (2018) 086, arXiv:1710.09357.

D. Benedetti, S. Carrozza, R. Gurau, and M. Kolanowski, “The 1/N
Expansion of the Symmetric Traceless and the Antisymmetric Tensor Models
in Rank Three,” Communications in Mathematical Physics 371 (Aug, 2019)
55-97, larXiv:1712.00249.

S. Carrozza, “Large N limit of irreducible tensor models: O(N) rank-3 tensors
with mixed permutation symmetry,” JHEP 06 (2018) 039,
arXiv:1803.02496.

J. Murugan, D. Stanford, and E. Witten, “More on Supersymmetric and 2d
Analogs of the SYK Model,” JHEP 08 (2017) 146, arXiv:1706.05362.

P. Breitenlohner and D. Z. Freedman, “Stability in gauged extended
supergravity,” Annals of Physics 144 (1982), no. 2 249-281.

I. R. Klebanov and E. Witten, “AdS/CFT correspondence and symmetry
breaking,” Nuclear Physics B 556 (1999), no. 1 89-114,
arXiv:hep-th/9905104.

S. Moudgalya, N. Regnault, and B. A. Bernevig, “Entanglement of exact
excited states of Affleck-Kennedy-Lieb-Tasaki models: Exact results,
many-body scars, and violation of the strong eigenstate thermalization
hypothesis,” Phys. Rev. B 98 (Dec, 2018) 235156, arXiv:1806.09624.

N. Shiraishi and T. Mori, “Systematic Construction of Counterexamples to the
Eigenstate Thermalization Hypothesis,” Phys. Rev. Lett. 119 (Jul, 2017)
030601, arXiv:1702.08227.

C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papi¢,
“Weak ergodicity breaking from quantum many-body scars,” Nature Physics
14 (May, 2018) 745-749, arXiv:1711.03528.

156


https://arxiv.org/abs/1808.04344
https://arxiv.org/abs/1707.03866
https://arxiv.org/abs/1710.09357
https://arxiv.org/abs/1712.00249
https://arxiv.org/abs/1803.02496
https://arxiv.org/abs/1706.05362
https://arxiv.org/abs/hep-th/9905104
https://arxiv.org/abs/1806.09624
https://arxiv.org/abs/1702.08227
https://arxiv.org/abs/1711.03528

[85] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis, Z. Papic¢,
M. Serbyn, M. D. Lukin, and D. A. Abanin, “Emergent SU(2) Dynamics and
Perfect Quantum Many-Body Scars,” Phys. Rev. Lett. 122 (Jun, 2019)
220603, arXiv:1812.05561.

[86] V. Khemani and R. Nandkishore, “Local constraints can globally shatter
Hilbert space: a new route to quantum information protection,” Phys. Rev. B
101 (2020), no. 17 174204, arXiv:1904.04815.

[87] P. Sala, T. Rakovszky, R. Verresen, M. Knap, and F. Pollmann, “Ergodicity
Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving
Hamiltonians,” Physical Review X 10 (Feb, 2020) arXiv:1904.04266.

[88] S. Moudgalya, A. Prem, R. Nandkishore, N. Regnault, and B. A. Bernevig,
“Thermalization and its absence within Krylov subspaces of a constrained
Hamiltonian,” arXiv:1910.14048.

[89] M. Schecter and T. Tadecola, “Weak Ergodicity Breaking and Quantum
Many-Body Scars in Spin-1 XY Magnets,” Phys. Rev. Lett. 123 (2019), no. 14
arXiv:1906.10131l

[90] O. Vafek, N. Regnault, and B. A. Bernevig, “Entanglement of Exact Excited
Eigenstates of the Hubbard Model in Arbitrary Dimension,” SciPost Phys. 3
(2017) 043, [arXiv: 1608. 06639

[91] T. Iadecola and M. Znidari¢, “Exact Localized and Ballistic Eigenstates in
Disordered Chaotic Spin Ladders and the Fermi-Hubbard Model,” Phys. Rev.
Lett. 123 (Jul, 2019) 036403, arXiv:1811.07903.

[92] N. Shibata, N. Yoshioka, and H. Katsura, “Onsager’s Scars in Disordered Spin
Chains,” Phys. Rev. Lett. 124 (2020), no. 18 180604, arXiv:1912.13399.

[93] A. A. Michailidis, C. J. Turner, Z. Papi¢, D. A. Abanin, and M. Serbyn,
“Stabilizing two-dimensional quantum scars by deformation and
synchronization,” Physical Review Research 2 (Jun, 2020) arXiv:2003.02825.

[94] D. K. Mark and O. I. Motrunich, “Eta-pairing states as true scars in an
extended Hubbard model,” Physical Review B 102 (Aug, 2020)
arXiv:2004.13800.

157


https://arxiv.org/abs/1812.05561
https://arxiv.org/abs/1904.04815
https://arxiv.org/abs/1904.04266
https://arxiv.org/abs/1910.14048
https://arxiv.org/abs/1906.10131
https://arxiv.org/abs/1608.06639
https://arxiv.org/abs/1811.07903
https://arxiv.org/abs/1912.13399
https://arxiv.org/abs/2003.02825
https://arxiv.org/abs/2004.13800

[95]

[96]

197]

98]

199]

[100]

[101]

[102]

103

[104]

[105]

K. Bull, I. Martin, and Z. Papié¢, “Systematic Construction of Scarred
Many-Body Dynamics in 1D Lattice Models,” Phys. Rev. Lett. 123 (Jul, 2019)
030601, larXiv:1903.10491|

V. Khemani, C. R. Laumann, and A. Chandran, “Signatures of integrability in
the dynamics of Rydberg-blockaded chains,” Phys. Rev. B 99 (Apr, 2019)
161101, farXiv: 1807.02108.

K. Lee, R. Melendrez, A. Pal, and H. J. Changlani, “Exact three-colored
quantum scars from geometric frustration,” Physical Review B 101 (2020),
no. 24 241111, larXiv:2002.08970.

D. K. Mark, C.-J. Lin, and O. I. Motrunich, “Unified structure for exact
towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models,”
Physical Review B 101 (2020), no. 19 195131, jarXiv:2001.03839.

T. Iadecola and M. Schecter, “Quantum many-body scar states with emergent
kinetic constraints and finite-entanglement revivals,” Physical Review B 101
(2020), no. 2 024306, arXiv:1910.11350.

“Eta-pairing in Hubbard models: From spectrum generating algebras to
quantum many-body scars,” arXiv:2004.13727.

G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V. Pepe, and
E. Ercolessi, “Real Time Dynamics and Confinement in the Z, Schwinger-Weyl
lattice model for 141 QED,” Quantum 4 (Jun, 2020) 281, arXiv:1909.04821.

C. N. Yang, “n pairing and off-diagonal long-range order in a Hubbard
model,” Phys. Rev. Lett. 63 (Nov, 1989) 2144-2147.

C. N. Yang and S. Zhang, “SO(4) symmetry in a Hubbard model,” Modern
Physics Letters B 4 (1990), no. 11 759-766.

S. Zhang, “SO(4) Symmetry of the Hubbard Model and its Experimental
Consequences,” International Journal of Modern Physics B 05 (1991),
no. 01n02 153-168, https://doi.org/10.1142/50217979291000110.

H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler,

S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuleti¢, and M. D. Lukin,
“Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551
(11, 2017) 579 EP—, arXiv:1707.04344.

158


https://arxiv.org/abs/1903.10491
https://arxiv.org/abs/1807.02108
https://arxiv.org/abs/2002.08970
https://arxiv.org/abs/2001.03839
https://arxiv.org/abs/1910.11350
https://arxiv.org/abs/2004.13727
https://arxiv.org/abs/1909.04821
https://doi.org/10.1142/S0217979291000110
https://arxiv.org/abs/1707.04344

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

114]

[115]

[116]

J. M. Deutsch, “Quantum statistical mechanics in a closed system,” Physical
Review A 43 (1991), no. 4 2046.

M. Srednicki, “Chaos and quantum thermalization,” Physical Review E 50
(1994), no. 2 888, arXiv:cond-mat/9403051.

M. Rigol, V. Dunjko, and M. Olshanii, “Thermalization and its mechanism for
generic isolated quantum systems,” Nature 452 (2008), no. 7189 854858,
arXiv:0708.1324.

X.-C. Wu, C.-M. Jian, and C. Xu, “Lattice models for non-Fermi liquids with
tunable transport scalings,” Phys. Rev. B 100 (Aug, 2019) 075101,
arXiv:1902.10154l

G. Gaitan, I. R. Klebanov, K. Pakrouski, P. N. Pallegar, and F. K. Popov,
“Hagedorn Temperature in Large N Majorana Quantum Mechanics,” Phys.
Rev. D 101 (2020), no. 12 126002, arXiv:2002.02066.

B. Buca, J. Tindall, and D. Jaksch, “Non-stationary coherent quantum
many-body dynamics through dissipation,” Nature Communications 10
(2019), no. 1 1730, arXiv:1804.06744.

S. Daul, D. J. Scalapino, and S. R. White, “Pairing Correlations on t — U — J
Ladders,” Phys. Rev. Lett. 84 (May, 2000) 4188-4191,
arXiv:cond-mat/9907301.

S. Basu, R. J. Gooding, and P. W. Leung, “Enhanced bound-state formation
in two dimensions via stripelike hopping anisotropies,” Phys. Rev. B 63 (Feb,
2001) 100506, arXiv:cond-mat/0010116.

F. C. Zhang, “Gossamer Superconductor, Mott Insulator, and Resonating
Valence Bond State in Correlated Electron Systems,” Phys. Rev. Lett. 90
(May, 2003) 207002, arXiv:cond-mat/0209272.

R. Micnas, J. Ranninger, and S. Robaszkiewicz, “Superconductivity in
narrow-band systems with local nonretarded attractive interactions,” Rev.
Mod. Phys. 62 (Jan, 1990) 113-171.

E. Dagotto, “Correlated electrons in high-temperature superconductors,” Reu.
Mod. Phys. 66 (Jul, 1994) 763-840, |arXiv:cond-mat/9311013.

159


https://arxiv.org/abs/cond-mat/9403051
https://arxiv.org/abs/0708.1324
https://arxiv.org/abs/1902.10154
https://arxiv.org/abs/2002.02066
https://arxiv.org/abs/1804.06744
https://arxiv.org/abs/cond-mat/9907301
https://arxiv.org/abs/cond-mat/0010116
https://arxiv.org/abs/cond-mat/0209272
https://arxiv.org/abs/cond-mat/9311013

[117]

[118]

[119]

[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]

M. Abram, M. Zegrodnik, and J. Spalek, “Antiferromagnetism, charge density
wave, and d-wave superconductivity in the extended t-J-U model: role of
intersite Coulomb interaction and a critical overview of renormalized mean
field theory,” Journal of Physics: Condensed Matter 29 (Aug, 2017) 365602,
arXiv:1607.05399.

L. Sa, P. Ribeiro, and T. c. v. Prosen, “Complex Spacing Ratios: A Signature
of Dissipative Quantum Chaos,” Phys. Rev. X 10 (Apr, 2020) 021019,
arXiv:1910.12784l

R. Hamazaki, K. Kawabata, N. Kura, and M. Ueda, “Universality classes of
non-Hermitian random matrices,” Phys. Rev. Research 2 (Jun, 2020) 023286,
arXiv:1904.13082.

A. Milekhin, “Quantum error correction and large N,” arXiv:2008.12869.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-Free Subspaces
for Quantum Computation,” Phys. Rev. Lett. 81 (Sep, 1998) 2594-2597,
arXiv:quant-ph/9807004.

J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38 (1999) 1113-1133,
arXiv:hep-th/9711200. [Adv. Theor. Math. Phys.2,231(1998)|.

S. S. Gubser, 1. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators
from noncritical string theory,” Phys. Lett. B428 (1998) 105-114,
arXiv:hep-th/9802109.

E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2
(1998) 253-291, arXiv:hep-th/9802150.

D. J. Gross and I. R. Klebanov, “One-dimensional string theory on a circle,”
Nucl. Phys. B 344 (1990) 475-498.

D. J. Gross and I. R. Klebanov, “Vortices and the nonsinglet sector of the
¢ = 1 matrix model,” Nucl. Phys. B 354 (1991) 459-474.

J. Maldacena and A. Milekhin, “To gauge or not to gauge?,” JHEP 04 (2018)
084, larXiv:1802.00428|

160


https://arxiv.org/abs/1607.05399
https://arxiv.org/abs/1910.12784
https://arxiv.org/abs/1904.13082
https://arxiv.org/abs/2008.12869
https://arxiv.org/abs/quant-ph/9807004
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/9802109
https://arxiv.org/abs/hep-th/9802150
https://arxiv.org/abs/1802.00428

	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Large N Limits
	1.1.1 Vector model
	1.1.2 Matrix model

	1.2 Klebanov-Tarnopolsky and SYK Models
	1.2.1 Tensor model
	1.2.2 SYK model
	1.2.3 Complex SYK model

	1.3 Quantum Chaos
	1.3.1 Level spacings distribution
	1.3.2 Spectral form factor
	1.3.3 Level spacings ratio

	1.4 Overview

	2 Majorana fermion quantum mechanics for higher rank tensors
	2.1 Introduction and summary
	2.2 Hamiltonian and its symmetries
	2.2.1 Discrete symmetries

	2.3 The spectrum of eigenstates of the O(2)5 model
	2.4 Comparison with the q=6 SYK model
	2.5 Tensor models with q>6 
	2.6 Large-N scaling dimensions of the fermion bilinears
	2.7 SO(N)5 invariant quartic operators 
	2.8 Appendix: Subchromatic interactions 
	2.8.1 Rank three, q = 8
	2.8.2 Rank four, q = 8


	3 Prismatic quantum mechanics with complex fermions
	3.1 Introduction
	3.2 Prismatic tensor model
	3.3 Random model
	3.4 Conformal solution
	3.4.1 Spectrum of bilinears
	3.4.1.1 U(1) neutral sector
	3.4.1.2 U(1) charged sector

	3.4.2 Finite temperature solutions

	3.5 Exact diagonalization results
	3.5.1 Entropy
	3.5.2 Charge compressibility

	3.6 Appendix: The dynamical  model
	3.7 Appendix: Chaos properties of the q = 6 WL-SYK model

	4 Many Body Scars as a Group Invariant Sector of Hilbert Space
	4.1 Introduction
	4.2 Specific constructions
	4.2.1 Vector Example

	4.3 Construction of group invariant states
	4.4 Two-dimensional tJU model 
	4.4.1 Numerical results
	4.4.1.1 Spectrum
	4.4.1.2 Quantum chaos in the Hermitian Hamiltonian  
	4.4.1.3 Quantum chaos in the non-Hermitian Hamiltonian
	4.4.1.4 ETH violation


	4.5 Discussion


