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Abstract

In this thesis, we study generalizations of well-known Majorana fermion models, in-

cluding the SYK model and the Klebanov-Tarnopolsky tensor model. The models are

compared at finite and large N , where we find that the models simplify considerably

and can even become solvable.

In chapter 2, we study quantum mechanical models in which the dynamical degrees

of freedom are real fermionic tensors of rank five and higher. For the tensors of rank

five, there is a unique O(N)5 symmetric sixth-order Hamiltonian leading to a solvable

large N limit dominated by the melonic diagrams. We solve the large N Schwinger-

Dyson (SD) equations for higher rank Majorana tensor models and show that they

match those of the corresponding SYK models exactly.

In chapter 3, we study a family of tensor models of complex fermions, with a

six fermion interaction whose index structure resembles the topology of a prism. The

model is dominated by melonic diagrams in the largeN limit after introducing an aux-

iliary field. We consider interactions that preserve the U(1) global symmetry, solving

the SD equations at large N and examining the bilinear spectrum. We find a complex

scaling dimension in the U(1) charged sector in addition to an O(1) gap between the

ground and first excited states. This model has a negative charge compressibility.

In chapter 4, we present a class of Hamiltonians H for which a sector of the Hilbert

space invariant under a Lie group G, which is not a symmetry of H, possesses the

essential properties of many-body scar states. These include the absence of thermal-

ization and the ‘revivals’ of special initial states. Our study of an extended 2D tJU

model illustrates the properties of the invariant scars and supports our findings.
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Chapter 1

Introduction

In this chapter, we introduce and motivate the study of models where the number

of the degrees of freedom, N , becomes very large. In this large N limit, several

models simplify, becoming more tractable and sometimes even analytically solvable.

We begin by briefly reviewing well known limits in the cases of vector and matrix

models, and then move on to describe the large N behavior of tensor models and the

Sachdev-Ye-Kitaev (SYK) model, which are a focus of this work. We end this chapter

with a general overview of various metrics of quantum chaos, which we use later on

to understand information preservation in thermalizing systems.

The SYK model is an example of a strongly interacting chaotic system that is

exactly solvable at large N . It is valuable to understand this and closely related

models, namely tensor models, so we can learn about how chaotic behavior and

similar properties appear in other strongly interacting models. This model is not only

relevant in high energy theory, but it is one that is also very relevant in condensed
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matter theory, and in fact originated from a model of a random quantum Heisenberg

magnet [1]. Because of its random couplings, the SYK model requires averaging

over many ensembles, and so it is not a usual quantum mechanical model. Tensor

models, however, do not require this averaging over disorder and share many of the

large N properties of the SYK model. In fact, quantum mechanical models in which

the dynamical degrees of freedom are fermionic tensors of rank 3 and higher have

attracted much attention in recent literature, starting with the papers [2, 3].

At large N , the dominating diagrams for both the tensor and SYK models are

the same, and their dominant ‘melonic’ diagrams can be studied and simply summed

[3–11] (for reviews, see [12–15]). As a result, the large N tensor and SYK models

are closely related, although there are also some important differences [15]. These

differences are manifest in the small N exact diagonalizations of the Hamiltonians

[16–21], since it is harder to numerically study the spectrum of the tensor model

as the Hilbert space has dimension ∼ 2N
(q−1)/2 , whereas the SYK Hilbert space has

dimension ∼ 2N/2. However, we expect to numerically observe chaotic features, like

a dip ramp plateau structure in the spectral form factor (SFF), in the tensor models

at large enough N . Furthermore, these models are solvable at large N and may

be considered as examples of holography. The SYK and tensor models have (nearly)

conformal behavior at largeN and the SYKmodel may be dual to the two-dimensional

Anti-de Sitter (AdS2) space [4]. This duality is further supported when we examine

the chaos properties of the model. The SYK model has a SFF characteristic of a

random Gaussian matrix, and it saturates the chaos bound, as we would expect for

a model dual to a black hole [22].
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In addition to studying the spectral and chaos properties of the SYK and tensor

models, we also study the chaos properties of several vector and matrix models. We

are particularly interested in models with a chaotic bulk and a non-thermalizing

subsector. These non-thermalizing states are called scar states, and a key property is

that they violate the eigenstate thermalization hypothesis (ETH).

1.1 Large N Limits

A notable example of the utility of large N methods is in the application to the O(N)

ferromagnet. The model has energy E = −J∑〈ij〉 ~ni · ~nj where ~n = (n1, . . . , nN),

~n2 = 1, J > 0 and 〈ij〉 are the nearest neighbor lattice sites. This model has a second

order phase transition, and close to the critical βJ , has the action [15],

S =

∫
ddx

[
1

2
(Oφi)

2 +
m2

2
φ2
i +

g

4

(
φ2
i

)2
]

=

∫
ddx

[
1

2
(Oφi)

2 − i

2
σφ2

i +
1

4g
σ2

]
,

(1.1.1)

where the auxiliary field σ is introduced in the second line. Integrating out the N φi

fields gives a 1/N expansion for the scaling dimensions, see [15,23,24]. The resulting

expansion matches very closely with numerical results [25].

Another useful application of the large N methods is in SU(N) gauge theory,

where ‘t Hooft defined the large N limit keeping g2N fixed (g is the Yang-Mills

coupling) [26]. In d = 3, [27] found that at large N , finite volume corrections to the

glueball masses are suppressed. This is because the glueball operators are single trace,

whereas the finite volume states are double trace and therefore will be subleading at
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large N . The 1/N mass expansion,

M

g2N
= c0 +

c1

N2
+

c2

N4
+ . . . (1.1.2)

where g2N is the ‘t Hooft coupling, has good agreement with the low-lying glueball

masses [15, 27].

In this section, we review two examples of large N limits in some detail. This first

is that of a vector model and the second is that of a matrix model. Vector models have

degrees of freedom that transform as N -component vectors, whereas matrix models

have degrees of freedom that transform as matrices of size N ×M .

1.1.1 Vector model

To illustrate the large N simplifications of the vector model, we can consider an exam-

ple where we have an O(N) symmetric theory with N scalar fields in zero dimensions

with a double trace g
24

(φaφa)2 interaction. We start by writing the general partition

function for theory with the φ4 interaction [15],

Z =
n∏
i=1

∫ ∞
−∞

dφi√
2π
e−

1
2
φiφi− 1

24
Jijklφiφjφjφl (1.1.3)

Here, Jijkl is a fully symmetric tensor. We can write the logarithm of Z via the graph

expansion at various orders of interaction, see figure 1.1.

The single vertex interaction is the figure eight diagram, and double vertex di-

agrams are the ‘melonic’ diagram and the triple bubble diagram. The symmetry

factors of the expansion are determined combinatorially, and each vertex has a factor
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Figure 1.1: Left: figure eight diagram, middle: ‘melonic’ diagram, right: triple bubble
diagram.

of −Jijkl. And so we can write the logarithm of Z as follows,

logZ = −Jiijj
8

+
JijklJijkl

2 · 4!
+
JiiklJjjkl

24
+O(J3) (1.1.4)

Now let us consider the O(N) symmetric model with the g
24

(φiφi)2 interaction. In

this case, we let Jijkl be equal to g
3
(δijδkl + δijδkl + δijδkl). Now we can expand the

coefficients in equation (1.1.4) in terms of δij,

Jiijj =
g

3
(δiiδjj + 2δijδij) =

g

3
(N2 + 2N)

JijklJijkl =
3g3

9
((δijδkl)

2 + δijδklδikδjl + δijδklδilδjk) =
3g2

9
(N2 + 2N)

JiiklJjjkl =
g2

9
(δiiδkl + δikδil + δilδik)

2 =
g2

9
N(N + 2)2.

(1.1.5)

Plugging this into equation (1.1.4) and dividing both sides by N , we have

logZ

N
= −N + 2

24
g +

N + 2

144
g2 +

(N + 2)2

144
g2 +O(g3) (1.1.6)

Above, the first term corresponds to the connected snail diagram, the second corre-

sponds to the melon graph, and the third corresponds to the triple bubble diagram.

We can also note the powers of N in each of these diagrams by labeling the indices

and counting the closed index loops. If we want this expansion to be finite in the
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Figure 1.2: Left: Graphical representation of the quartic interaction vertex in equa-
tion (1.1.8). Right: Graphical representation of the quartic interaction vertex in
equation (1.2.1).

large N limit, we must hold λ = gN fixed. We can think of sending N to infinity

while we send g to 0, so gN remains constant. Rewriting equation (1.1.6) terms of λ,

logZ

N
= −λ

(
1 + 2/N

24

)
+
λ2

N

(
1 + 2/N

144

)
+λ2

(
1 + 2/N + 4/N2

144

)
+O(λ3) (1.1.7)

When we do this, it is clear that the melonic diagrams are suppressed at order 1
N
.

So for sufficiently small coupling, we can write our partition function as a convergent

sum corresponding to the snail diagrams.

1.1.2 Matrix model

The second class of large N limits we discuss are called matrix models. Here we

have N2 degrees of freedom and our particles are treated as real N × N matrices.

We let each index have O(N) symmetry so that the model is in the bi-fundamental

representation. We let the model have a quartic interaction term, and we can represent

the interaction vertex as a two color fat graph, see figure 1.2.
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In this example, we only consider the single trace g
4
(φi1j1φi1j2φi2j1φi2j2) interaction,

and can write the partition function as follows,

Z =
n∏

i,j=1

∫ ∞
−∞

dφij√
2π
e−

1
2
φijφij+ g

24
φi1j1φi1j2φi2j1φi2j2 (1.1.8)

Using a similar procedure to the vector model, we can solve for the log of the

partition function to get the following,

logZ

N2
= −2N + 1

24
g +

N2 + 2N + 3

288
g2 +

(2N + 1)2

144
g2 + . . . (1.1.9)

We can see that we have a finite solution when we keep λ = gN fixed. Except in

this case, the melons and snails both contribute, so more diagrams survive compared

to the vector model, making this a more complex model.

1.2 Klebanov-Tarnopolsky and SYK Models

1.2.1 Tensor model

The third class of large N limits we examine is tensor models. In this section, we

consider the rank three four fermion Klebanov-Tarnopolsky tensor model, proposed

and solved in [3]. It is an O(N)3 symmetric quantum mechanical model for Majo-

rana fermions, and the unique non-trivial quartic (maximally single trace) interaction

vertex is represented in figure 1.2. The three indices are distinguishable, and each

fermion pair shares exactly one index in common. Here, repeated indices are summed

7



Figure 1.3: The graphical representation of the tetrahedral operator in equation
(1.2.1).

over and each of the indices ranges from 1 to N .

Htetra =
g

4
ψabcψab

′c′ψa
′bc′ψa

′b′c where, {ψaibici , ψajbjcj} = δaiajδbibjδcicj . (1.2.1)

This is called a ‘tetrahedral’ interaction because of the form of its corresponding

graph, see figure 1.3. In the interaction graph, we let each edge of the graph represent

an index contraction, the vertices represent the fermions, and the distinct colors

represent the three distinct O(N) groups.

The model transforms under the tri-fundamental representation of O(N)3:

ψabc →Maa′

1 M bb′

2 M cc′

3 ψa
′b′c′ ,M1,M2,M3 ∈ O(N). (1.2.2)

We consider only this tetrahedral interaction of the four allowed quartic operators

since the others have a smaller vertex to index loop ratio, and thus decay to zero

at a faster rate. The allowed quartic operators include the unique q = 4 tetrahe-
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dral operator in equation (1.2.1), and three ‘pillow operators’ of the general form

ψa1b1c1ψa2b1c1ψa2b2c2ψa1b2c2 .a

Using the same method as for the vector and matrix examples, we can expand

the the log of the partition function of the model via the graph expansion, see figure

1.1. The snail diagram gives us one factor of g and one factor of N from a single

index loop. The middle, melonic diagram, gives us a factor of g2 from the two vertices

along with a factor of N3 from three closed index loops. Finally, the last triple bubble

diagram has two vertices giving us a factor of g2 with only two closed index loops

giving a factor of N2. Only including the terms with largest contribution from each

of the three diagrams, we have,

logZ

N3
= O (gN) +O

(
g2N3

)
+O

(
g2N2

)
+ . . .

= O
(

λ√
N

)
+O

(
λ2
)

+O
(
λ2

N

)
+ . . .

(1.2.3)

In the second line we let λ = gN3/2. When we hold λ constant, we can see that

the melonic diagram has the only surviving contribution in the large N limit. Since

only the melonic diagram survives in the large N limit, the tensor models appear to

be simpler than the matrix models reviewed earlier in section 1.1.2. These diagrams

are the same as in the Sachdev-Ye-Kitaev (SYK) model [4,29–33], where the quartic

interactions contain a random four-index tensor.

The melonic dominance in this model can be proved using Euler’s theorem, which

states that f = χ + e − v, where f , e, and v are the numbers of faces, edges, and
aThe three quartic terms of ‘pillow’ topology [11] are the quadratic Casimir operators of the three

SO(N) groups [28] and are, therefore, determined by the group representation. In the gauged model
they vanish.

9



Figure 1.4: Left: The melonic diagram with interaction vertex (1.2.1). Right: The
melonic fat graph of (1.2.1) where we have erased the blue lines.

vertices respectively, and χ is the Euler characteristic. To use Euler’s theorem, we

will draw fat graphs, meaning we erase one of the three colors in the graph, and count

the number of loops from two colors at a time. In this theory we have e = 2v, so we

can simplify to f = χ+ v. We want to use this equation to calculate a bound on the

number of faces, f , or closed loops, because this gives us the factors of N .

Let us first focus of the fat graph with only green and red, as in figure 1.4; we will

call the green line index a and the red line index c. Thus the total number of faces of

this diagram is fac = fa+fc. Adding the faces in the three possible fat graphs, we get

that fab + fbc + fac = 2(fa + fb + fc) = χab + χbc + χac + 3v. Following the derivation

in [3], we can use the fact that the Euler character, χ, is equal to 2 − 2g to find a

bound on the number of faces. We get ftot ≤ 3 + 3v
2

since the genus is nonnegative,

g ≥ 0. The proof is completed in [3] by showing that all graphs saturating this bound

are melonic. Since the leading free diagrams contribute at order N3, we find the large

N limit when λ = g2N3.

We can sum up the melonic contributions to the propagator to find the full two

point function in the IR limit, and we can also study the four point function to get the

spectrum of bilinears. Both calculations are done in detail for the general q tensor
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model with the maximally single trace interaction in chapter 2. To demonstrate

that the tensor models with the tetrahedral interaction term have the same large N

behavior as the corresponding SYK model, we will briefly sketch the computation

of the two point function for the rank three, q = 4 tensor model with the following

action [3],

S =

∫
dt
i

2
ψabc∂tψ

abc +
g

4
ψabcψab

′c′ψa
′bc′ψa

′b′c. (1.2.4)

Since the melonic diagrams dominate, these are the only diagrams we consider when

we consider the full two point function, see figure 1.5. We first write the bare propa-

gator, 〈
T
(
ψabc(t)ψa

′b′c′(0)
)〉

0
= δaa

′
δbb
′
δcc
′
G0(t), (1.2.5)

where G0(t) = sign(t)/2. We can express the Schwinger Dyson equation for the two

point function, which results from the summation of all melonic diagrams:

G(t− t′) = G0(t− t′) + g2N3

∫
dt1 dt2G0(t− t1)G(t1 − t2)3G(t2 − t′). (1.2.6)

By taking the Fourier transform of (1.2.6), we have the following expression of G(w),

G(w) = (−iω − Σ(ω))−1 , Σ(t) = g2N3G(t)3. (1.2.7)

We assume that in the IR, the Σ will dominate the derivative term and we make the

following conformal ansatz,

G(t) =
a sign(t)

|t|2∆
, Σ(t) = g2N3a

3 sign(t)

|t|6∆
. (1.2.8)
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Taking the Fourier transform of (1.2.8), we have the following expressions,

G(ω) = 21−2∆i
√
π

Γ(1−∆)

Γ(1/2 + ∆)
a|ω|2∆−1sign(ω),

Σ(ω) = 21−6∆i
√
π

Γ(1− 3∆)

Γ(1/2 + 3∆)
a3sign(ω)g2N3|ω|6∆−1.

(1.2.9)

Using that G(ω) = −1/Σ(ω) in the IR limit,

−1 = G(ω)Σ(ω) = −22−8∆a4g2N3π
Γ(1−∆)Γ(1− 3∆)

Γ(1/2 + ∆)Γ(1/2 + 3∆)
|ω|8∆−2, (1.2.10)

where,

a4 =
Γ(1

2
+ ∆)Γ(3

2
−∆)

πg2N3Γ(1−∆)Γ(∆)
. (1.2.11)

We find that ∆ = 1/4, and we can now substitute these values into our ansatz to

solve for the propagator,

G(t) =

(
Γ(1

2
+ ∆)Γ(3

2
−∆)

πg2N3Γ(1−∆)Γ(∆)

)1/4
sign(t)

|t|2∆

=

(
1

4πg2N3

)1/4 sign(t)

|t|1/2 .

(1.2.12)

We show in section 1.2.2 that equation (1.2.12) matches that of the q = 4 SYK model

at large N . The spectrum of bilinear operators of this model is explored in [3], and

a key result is that the scaling dimensions have a solution that is responsible for

quantum chaos in the model and is the mode dual to gravity, as is the case in the

SYK model.
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Figure 1.5: We must sum all melonic contributions to find the full two point function.
On the far left is the bare propagator, and the others are examples of contributing
melonic diagrams.

1.2.2 SYK model

The SYK model is a model describing N Majorana fermions, with a small number, q,

of random interactions at a time. The Hamiltonian of the model is as follows [4, 34]:

H =

(
iq/2

q!

) ∑
1≤j1<...<jq<N

Jj1...jqψj1ψj2 . . . ψjq , where {ψj, ψk} = δjk. (1.2.13)

Here j is a mean zero random gaussian variable that has variance,

〈J2
j1...jq
〉 =

J2(q − 1)!

N q−1
. (1.2.14)

The model (1.2.13) defines a quantum mechanical system that shares some properties

with a two-dimensional black hole in AdS. Namely, when we solve the model at large

N in the 1/N expansion, the correlation functions of this model agree with those of

a two-dimensional black hole. The 1/N expansion allows us to pick out and evaluate

the dominant Feynman diagrams at large N , just like in the tensor model.

The melonic diagrams dominate for this model at large N . Let us define a face

as a cycle made of alternating propagator and disorder lines. Each face contributes a

factor of N , and each disorder line contributes a factor of N−(q−1). Thus, the melonic

diagrams maximize the number of faces for a given number of vertices. Examples of

13



Figure 1.6: Examples of the melonic contributions to the full two point function of
the SYK model. The dotted lines represent the average over disorder.

melonic contributions to the SYK two point function are presented in figure 1.6, and

a detailed diagrammatic proof of melonic dominance is presented in [35].

Here we show that the full two point function of the q = 4 SYK model and is

equal to (1.2.12). First, let us write the q = 4 SYK Hamiltonian,

H = − 1

12

∑
1≤i<j<k<l<N

Jijkl ψiψjψkψl, with 〈J2
ijkl〉 =

6J2

N3
. (1.2.15)

The Schwinger Dyson equations match those of the q = 4 tensor model presented in

section 1.2.1,

G(ω) = (−iω − Σ(ω))−1 , Σ(t) = J2G(t)3. (1.2.16)

Thus, the resulting two point function of the SYK model matches that of the tensor

model with J2 = g2N3. We explore more properties of the SYK model in chapters 2

and 3; in particular, we study the chaos properties as well as higher q computations

in comparison to the corresponding tensor model.

1.2.3 Complex SYK model

The tensor models and the SYK model may both be generalized to include complex

fermions. In chapter 3, we study a ‘prismatic’ complex tensor model (rank three,

q = 6) along with its analogous q = 6 disordered model, which we call the q = 6 WL-

14



SYK model, due to the Wishart Laguerre (WL) coupling we find. In this section, we

first introduce the complex SYK (cSYK) model by adding a global U(1) symmetry,

in addition to a chemical potential, to the standard SYK model, and we discuss a few

key findings in the q = 4 cSYK model.

We start by writing the cSYK Hamiltonian [36],

H =
∑

j1<...<jq/2
k1<...<kq/2

Jj1<...<jq/2,k1<...<kq/2 A{ψ†j1 . . . ψ
†
jq/2

ψk1 . . . ψkq/2}, (1.2.17)

where A{. . .} is equal to the antisymmetrized product of the Majorana fermions.

The antisymmetrization preserves the particle hole symmetry of the model, mean-

ing this model is invariant under ψ†j ↔ ψj. The variance of the random coupling

Jj1<...<jq/2,k1<...<kq/2 is given by,

〈∣∣∣Jj1<...<jq/2,k1<...<kq/2∣∣∣2〉 = J2 (q/2)!(q/2− 1)!

N q−1
. (1.2.18)

We will focus on the model with q = 4 with the following Hamiltonian is,

H =
∑

j1<j2,k1<k2

Jj1j2k1k2
1

2
{ψ†j1ψ

†
j2
, ψk1ψk2}

=
∑

j1<j2,k1<k2

Jj1j2k1k2

(
1

2
ψ†j1ψ

†
j2
ψk1ψk2 +

1

2
ψk1ψk2ψ

†
j1
ψ†j2

)
=

∑
j1<j2,k1<k2

Jj1j2k1k2

(
ψ†j1ψ

†
j2
ψk1ψk2 +Bjij2k1k2

)
,

(1.2.19)

15



Figure 1.7: This is an example of a melonic contribution to the two point function
of the q = 4 complex SYK model as defined in (1.2.19).

and the Bjij2k1k2 term arises from normal ordering the terms in the second line of

equation (1.2.19) using the relations {ψi, ψj} = 0 and {ψ†i , ψj} = δij:

Bjij2k1k2

=
1

2

(
δj1k1ψ

†
j2
ψk2 + δj2k2ψ

†
j1
ψk1 − δj1k2ψ†j2ψk1 − δj2k1ψ

†
j1
ψk2 + δj1k2δj2k1 − δj1k1δj2k2

)
.

(1.2.20)

The global U(1) charge Q is defined as follows,

Q =
∑
i

1

2

[
ψ†i , ψi

]
= ψ†iψi −

N

2
. (1.2.21)

We write the Schwinger Dyson equations for this theory by noting that the melonic

diagrams are again the only contributing diagrams at large N . An example of one of

these contributing melonic diagrams is provided in figure 1.7. The Schwinger Dyson

equations are,

G(t) = (∂t − µ− Σ(t))−1 , Σ(t) = J2G(t)2 (−G(−t)) . (1.2.22)
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These equations differ not only by the form of Σ, but also by the form of the bare

propagator, as now we consider the addition of the chemical potential µ. However, in

the IR, we can simplify and neglect the bare propagator term, G0(t) = −(∂t − µ)−1.

Since the global U(1) symmetry breaks down to a local U(1) symmetry in the IR, we

must add a complex phase factor to our ansatz for the IR solution of the two point

function. The full two point function in the IR is reported in [36] as,

G(±t) =
∓b∆e±πE

|t|2∆
, Σ(±t) =

∓b1−∆e±πE

|t|2(1−∆)
,

where b =
(1− 2∆)sin(2π∆)

4πcos(π∆ + iπE)cos(π∆− iπE)
,

(1.2.23)

where E is known as the spectral asymmetry, which is a key feature of the complex

SYK model. Another interesting feature of the cSYK model that we may examine

is the charge compressibility, K. This quantity may be found numerically through

quadratically fitting the ground state energy in each charge sector, E0(Q), versus the

charge sector, Q, using the equation E0(Q) = E0 +Q2(2NK)−1. For the q = 4 cSYK

model, the compressibility is found to be a small positive value, K ≈ 1.04 [36]. We

examine several other properties, including the charge compressibility, of our q = 6

WL-SYK model in chapter 3. Interestingly, we find that our model has a negative

charge compressibility.

1.3 Quantum Chaos

Random matrices and chaotic systems are topics studied in a wide variety of fields

including biology, finance, number theory, and physics; in fact, much progress in the
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field was made by Eugene Wigner with applications in nuclear physics [37]. We can

better understand several properties of our system using knowledge from random ma-

trix theory. Namely, by studying the symmetries of our model, we can determine the

corresponding so called ‘Dyson ensemble,’ and then we may make several generaliza-

tions of our model at large N stemming from the expected eigenvalue statistics.

There are three main random matrix ensembles corresponding to the Hermitian

models that we study in this paper; these are commonly known as the Wigner ensem-

bles consisting of the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary

Ensemble (GUE), and the Gaussian Symplectic Ensemble (GSE). The GOE is time

reversal invariant and is a random real symmetric matrix (H = HT ) where the entries

are drawn from a normal Gaussian distribution. The GUE is not time reversal invari-

ant and is a random Hermitian matrix (H = H†) where the entries are drawn from

a complex Gaussian distribution. Finally, the GSE is time reversal invariant (but

breaks rotational symmetry) and is comprised of real quaternion matrices, meaning

that the coefficients ci are real in the following general form of the 2 × 2 complex

matrix,

M = c0E0 + c1E1 + c2E2 + c3E3, where

E0 =

1 0

0 1

, E1 =

0 i

i 0

 , E2 =

0 −1

1 0

 , E3 =

i 0

0 −i

 . (1.3.1)

We can construct the GSE by imposing the symmetry condition M∗
ij = Mji, leading

to real diagonal entries for M , and by summing the direct products between matrices

with entries drawn from a normal Gaussian distribution and the above Ei matrices.
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1.3.1 Level spacings distribution

Here, we sketch the derivation of the probability density function (pdf) of the spacing

between the eigenvalues of a simple 2× 2 GOE, following the calculations presented

in [38]. We first define a simple GOE matrix,

H =

a b

b c

 . (1.3.2)

where a and c are sampled from N (0, 1) and b is sampled from N (0, 1
2
); here, we let

N (µ, σ2) represent the normal distribution with mean µ and variance σ2. We can solve

for the eigenvalues of H through the characteristic equation, (a−λ)(c−λ)−b2 = 0 to

get that 2λ1,2 = a+ c±
√

(a− c)2 + 4b2. Thus, the spacing between the eigenvalues

is s = λ1−λ2 =
√

(a− c)2 + 4b2. Now we can write the pdf of the spacing as follows,

P (s) =

∫ ∞
−∞

da db dc
e
−a2
2√
2π

e
−c2
2√
2π

e−b
2

√
π
δ(s−

√
(a− c)2 + 4b2), (1.3.3)

since our variables are drawn from a normal distribution. To simplify the calculations,

we change variables using the substitutions a = (r cos(θ) +φ)/2, c = (φ− r cos(θ))/2,

and b = (r sin(θ))/2,

P (s) =
1

2π3/2

∫ ∞
0

dr

∫ 2π

0

dθ

∫ ∞
−∞

dφ

∣∣∣∣−r4
∣∣∣∣ e(−r2 cos2 θ+φ2)/4e(−r2 sin2 θ)/4

=
1

4π1/2

∫ ∞
0

dr

∫ ∞
−∞

dφ r δ(r − s)e−(r2+φ2)/4

=
1

4π1/2
2
√
π s e−s

2/4 =
s

2
e−s

2/4.

(1.3.4)
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We can rescale this expression by the mean level spacing, s̄ =
√
π, to get

P̂ (s) =
√
πP (
√
πs) = (πs/2)e−πs

2/4. (1.3.5)

Equation (1.3.5) is known as Wigner’s surmise, and furthermore, Wigner derived an

approximation for P̂ (s) that can be used at large N [38–40],

P̂W (β, s) = Asβe−B s
2/2, (1.3.6)

where A and B are normalization constants, and β = 1, 2 and 4 corresponds to the

pdf of the eigenvalue spacings of the GOE, the GUE, and the GSE respectively.
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Figure 1.8: The level spacings, or ‘unfolded,’ plots for the GOE, GUE, and GSE with
212 distinct eigenvalues.
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Let us note here that as we send s → 0, the P (s) also falls towards 0, see figure

1.8. In other words, the probability of two eigenvalues having near identical values

is extremely small. This phenomenon is known as level repulsion, and is a property

of random matrices. This is in contrast to the spacings pdf of i.i.d. real random

variables, which display Poisson statistics; thus as s → 0, the probability of s grows

large. We can plot the P (s) of our models and observe how the distribution compares

to what we expect from the corresponding Winger ensemble. This plot gives us

information about the correlation functions of close eigenvalues.

1.3.2 Spectral form factor

We can gain information about the longer range correlations of eigenvalues by exam-

ining the spectral form factor (SFF),

g(t, β) = |Tr(e−βH−iHt)|2/Tr(e−βH)2. (1.3.7)

The main elements of the SFF for a random matrix is a dip ramp plateau structure.

The ramp is caused by the repulsion of eigenvalues that are far apart; these eigenvalues

are anti-correlated, which is why the ramp is below the plateau. One can think of the

eigenvalue spectrum as comprising a crystal, and the ramp and plateau are a measure

of the rigidity or ‘floppiness’ of the crystalline structure.

The plateau is a result of generic level repulsion, as degeneracies are unlikely. The

ramp and plateau occur at later times and thus probe shorter distances—they are a

result of a phenomena known as spectral rigidity. The ramp and plateau behavior are
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Figure 1.9: The SFF for the GOE, GUE, and GSE, all of size 213, display the dip
ramp plateau structure with slight differences in depth and shape of the dip, the ramp
slope, and sharpness of the ramp to plateau transition.

universal features of chaotic systems, and emerge from the realization that near the

center of the semi-circle of eigenvalue density, the pair correlation function is expressed

as the square of the sine kernel. By Fourier transforming the pair correlation function

of the eigenvalue density for the random matrix, we can see that g(t, 0) has a ramp up

to what is known as the plateau time tp, and a constant value after tp. This derivation

can be found in [22]. The time that the ramp starts is known as the ‘Thouless time.’

Like the scrambling time, it is of order logN but it has a different prefactor [41, 42].

This Thouless time gives the time scale for energy to diffuse across the system. The

dip occurs at early times and so it probes larger distances; it is the Fourier transform

22



of the entire spectrum. For a random matrix that follows the Winger-Dyson semicircle

distribution, the slope of the dip resembles the Bessel function, and this is what we

see when we plot its SFF. A chaotic system is expected to have these properties since

they share the same nearest-neighbor statistics of the respective RMT ensemble, see

figure 1.9.

1.3.3 Level spacings ratio

Another measure of quantum chaos we study is closely related to the level spacings

discussed earlier, and is called the consecutive level spacings ratio mean value, 〈r〉.

This quantity is often used when examining transitions in spectral statistics [43]. The

ratio, r is equal to,

r =
si

si − 1
, where si = λi+1 − λi. (1.3.8)

Here, λi is the ith eigenvalue. Starting from the Gaussian ensemble joint probability

distribution of three consecutive eigenvalues, [40] derives the analog of the Wigner sur-

mise for the probability distribution of the consecutive level spacings ratio, PW (β, r):

PW (β, r) = Aβ
(r + r2)β

(1 + r + r2)1+ 3β
2

, (1.3.9)

where Aβ is a normalization constant, and β = 1, 2, and 4 corresponds to the GOE,

GUE, and GSE respectively. Note that we see level repulsion here; when we allow

r → 0, the probability of the ratio P (r) also approaches a small value. We can now

restrict the values of r to have support [0, 1], and we call this new value r̂. To compute

〈r̂〉, we use the fact that PW (β, r̂) = 2PW (β, r)θ(1 − r) as in [40]. We can now find
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the analytical expressions for 〈r̂〉,

〈r̂〉β =

∫ ∞
0

dr 2Aβ θ(1− r)
r (r + r2)

(1 + r + r2)1+ 3β
2

. (1.3.10)

The values of Aβ used are computed in [40], and are equal to 4/27, 81
√

3/(4π),

and 729
√

3/(4π) for β = 1, 2, and 4. We find that 〈r̂〉1 = 4 − 2
√

3 ≈ 0.5359,

〈r̂〉2 = 2
√

3/π − 1/2 ≈ 0.6027, and 〈r̂〉4 = 32
√

3/(15π)− 1/2 ≈ 0.6762 for the GOE,

GUE, and GSE respectively. We compare to these reference values throughout this

work.

1.4 Overview

I thank Igor Klebanov, Kiryl Pakrouski, Fedor Popov, and Wenli Zhao for their

valuable collaboration on much of the work presented in this thesis.

Chapter 2 is based largely on work done with Igor Klebanov and Fedor Popov

in [44]. I presented this work as a poster in the Strings 2019 conference [45]. We in-

troduce the higher order generalization of the tensor model. We examine the growing

number of O(N)q−1 invariant tensor interactions for q > 6, noting that the maximally

single-trace interaction is no longer unique. We review symmetries of the rank five,

q = 6 model, and examine the spectral properties and compare to those of the corre-

sponding q = 6 SYK model. We study the SFF of our models as well as the large N

scaling dimensions of the fermion bilinears.

Chapter 3 is based on work in progress done with Simone Giombi, Igor Klebanov,

and Wenli Zhao [46]. We introduce the complex fermionic prismatic tensor model,
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and consider U(1) preserving interactions. We study the properties of these models,

namely the large N scaling dimensions of the bilinears. Finally, we consider the

(complex) disordered analog of this model, and note that this model differs from [36]

by a broken charge conjugation symmetry and what could be interpreted as a negative

charge compressibility.

Chapter 4 is based on work done with Igor Klebanov, Kiryl Pakrouski, and Fedor

Popov in [47] and [48]. In this chapter, we focus on models containing scar states, and

develop a general framework for construction. We find that many body scar states

comprise a group invariant sector of the Hilbert space. These scar states are useful for

preserving information of a system over time, and can be realized experimentally. We

construct scars in models of varying dimensionality (vector and matrix models), and

we also show that several well known scar states can be written via our framework

of construction. We support our results numerically with several quantifications of

quantum chaos in addition to ETH violation computations and visualizations.
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Chapter 2

Majorana fermion quantum

mechanics for higher rank tensors

2.1 Introduction and summary

This chapter is based on [44]. We study the Klebanov-Tarnopolsky tensor model that

is generalized to higher rank. Rank q − 1 tensor models with q > 4 have been the

subject of several studies relevant to our paper [3, 49–51]. A comprehensive study

of various invariant interaction vertices for a single tensor of rank q − 1 was carried

out in [50, 51]. For q ≥ 8 there is a very rapidly growing number of ‘generalized

tetrahedral’ interaction vertices, i.e. those that satisfy the constraint that every pair

of tensors has exactly one index contraction.a As pointed out in [49], their counting

is a mathematical problem isomorphic to scheduling of the round-robin tournament.
aThis is to be contrasted with the Gurau-Witten model [2,5] for q flavors of rank q− 1 Majorana

fermion tensors, where the interaction is uniquely fixed by the O(N)q(q−1)/2 symmetry.

26



Following [50] we mostly focus on the special subclass of such interactions which are

‘maximally single-trace’ — their stranded diagrams stay connected if all but two of

the colors are erased. This facilitates the combinatorial analysis of the Feynman

diagrams in the large N limit. It is conjectured that the maximally single-trace

(MST) interaction vertices, which are known in mathematical literature as perfect

1-factorizations, exist for any even q > 2. They have been proven to exist when

either q − 1 or q/2 is prime [52, 53], as well as in some other cases, such as q =

16, 28, 36, 40, 50, 126, 170, etc.

A part of our paper is devoted to a careful analysis of the Majorana tensor theory

in 0 + 1 dimension with rank-5 tensors as the dynamical degrees of freedom. The

unique generalized tetrahedral interaction was written down in [3], and the Hermitian

Hamiltonian is

H6 = i
g

2

(
ψa1b1c1d1e1ψa1b2c2d2e2ψa2b2c3d3e1ψa2b3c2d1e3ψa3b3c1d3e2ψa3b1c3d2e3−

ψa3b1c3d2e3ψa3b3c1d3e2ψa2b3c2d1e3ψa2b2c3d3e1ψa1b2c2d2e2ψa1b1c1d1e1
)
.

(2.1.1)

We can graphically depict this interaction by representing each fermion as a vertex of

a graph, and each index contraction between pairs of fermions as an edge connecting

two vertices (see figure 2.1). In the large N limit, where λ2 = g2N10 is held fixed, the

melonic diagrams dominate. The factor of i is necessary to make H6 real; it is a new

feature compared to the rank-3 Hamiltonian (1.2.1). The Hamiltonian (2.1.1) has

SO(N)5 symmetry, as well as some discrete symmetries. Some aspects of this tensor

model are similar to the O(N)3 tensor model. The energy spectra in both models

are symmetric under E → −E, since an interchange of any two of the O(N) groups
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Figure 2.1: A graphical representation of the unique ‘generalized tetrahedral’ inter-
action for q = 6, given in (2.1.1). Each line represents an index contraction, while
different colors correspond to different groups. This interaction is maximally single-
trace, since erasing any set of three colors leaves the diagram connected.

sends H → −H. However, there are also some differences: for example, in the O(N)5

model the time-reversal is not a symmetry since it acts as T −1HT = −H due to the

factor i present in the Hamiltonian (2.1.1).

The O(N)5 model also has some differences from the q = 6 SYK model. In

particular, at small N the structure of the spectra are rather different. This is due

to the large number of continuous and discrete symmetries, which makes the tensor

spectrum highly degenerate. The q = 6 SYK spectrum is compared with the corre-

sponding Q-hermite polynomial, which is calculated in the double scaling limit, where

NSYK →∞, q →∞ with q2/NSYK held fixed [22, 54]. We find very good agreement,

which suggests that the q = 6 SYK model shares some spectral properties with the

double scaled model.

The structure of the paper is as follows. In section 2.2 we discuss the structure

of the Hamiltonian (2.1.1) and its symmetries and use them to explain some of the
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degeneracies that we observe in the singlet spectrum in section 2.3. In section 2.4

we numerically study the spectrum of the tensor model and the q = 6 SYK model

and investigate the differences between the spectral properties at finite N . In section

2.5 we discuss some properties of higher q tensor models. The Schwinger-Dyson

equations of the O(N)5 and O(N)7 models are computed in section 2.6. We show the

existence of the solution of these equations in the IR limit, and that it is invariant

under conformal transformations. Additionally, we study the spectrum of the singlet

bilinear and some of the non-singlet bilinears and show that they are identical to the

SYK model.

2.2 Hamiltonian and its symmetries

The model contains a set of N5 Majorana fermions ψabcde with the anti-commutation

relations:

{ψabcde, ψa′b′c′d′e′} = δaa
′
δbb
′
δcc
′
δdd
′
δee
′
. (2.2.1)

We will first work at the ‘classical level,’ where we ignore the delta-function terms

on the RHS of (2.2.1) and treat the fermions as real grassman numbers. Then the

Hamiltonian we consider is

Hclass = igψa1b1c1d1e1ψa1b2c2d2e2ψa2b2c3d3e1ψa2b3c2d1e3ψa3b3c1d3e2ψa3b1c3d2e3 . (2.2.2)
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This is the unique sextic term with O(N)5 symmetry where any pair of fields have one

index contraction [3]. The factor i is inserted so that the Hamiltonian is Hermitian.

The correct quantum Hamiltonian (2.1.1) is H6 = Hclass +H†class.

We can show that Hclass changes sign under permutation of two O(N) groups. For

example, when we permute O(N)c and O(N)d, the fermions transform as

ψabcde ↔ ψabdce. (2.2.3)

So, Hclass → H ′class where

H ′class = igψa1b1c1d1e1ψa1b2c2d2e2ψa2b2c3d3e1ψa2b3c1d2e3ψa3b3c3d1e2ψa3b1c2d3e3 . (2.2.4)

Dropping the quantum delta-function terms in (2.2.1), and bringing it to the form so

that the fields are read from right to left, we have

H ′class = −igψa3b1c2d3e3ψa3b3c3d1e2ψa2b3c1d2e3ψa2b2c3d3e1ψa1b2c2d2e2ψa1b1c1d1e1 . (2.2.5)

We find that H ′class = −Hclass; this can be seen explicitly by relabeling the indices

a1 ↔ a3, e1 ↔ e3, b2 ↔ b3,

c2 → c1, c1 → c3, c3 → c2,

d3 → d1, d1 → d2, d2 → d3.

(2.2.6)

We examine the behavior under the other O(N) permutations and find that H ′ = −H

in all cases, see table 2.1. Therefore, the symmetry group of the Hamiltonian includes
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Group Permutation Index relabeling

O(N)a and O(N)b

c1 ↔ c2, e1 ↔ e3, d2 ↔ d3,
a1 → a2, a2 → a3, a3 → a1,
b1 → b3, b3 → b2, b2 → b1.

O(N)b and O(N)c

a2 ↔ a3, b1 ↔ b2, c1 ↔ c2,
d1 ↔ d2, e1 ↔ e2.

O(N)c and O(N)d

a1 ↔ a3, e1 ↔ e3, b2 ↔ b3,
c2 → c1, c3 → c2, c1 → c3,
d3 → d1, d1 → d2, d2 → d3.

O(N)d and O(N)e

a2 ↔ a3, b1 ↔ b2, c1 ↔ c2,
d1 ↔ d2, e1 ↔ e2.

Table 2.1: Group permutations that send H to −H.

the alternating group A5. This is related to the fact that it is a maximally single-

trace (MST) operator. We expect that the Aq−1 symmetry also holds for the MST

Hamiltonians with higher even q.

When we use the quantum anti-commutation relations (2.2.1), the Hamiltonian

(2.2.2) is not Hermitian. Adding the Hermitian conjugate, we find (2.1.1). It is then

possible to check that under a permutation of two indices H6 → −H6, establishing

the A5 symmetry at the quantum level. In the second term of H6 we may bring

the variables back into the same position as in the first term. To do this we need

to make 15 permutations, which give rise to 15 additional quartic terms. Indeed,

we can add possible quartic terms to the quantum Hamiltonian (2.1.1), but as it is

shown in the section 2.7, they do not preserve the A5 symmetry mentioned above.

The Hamiltonian (2.1.1) can be also obtained via the path integral formulation of the

model with real grassmanian variables, and by calculating the corresponding operator

by Weyl ordering. Another way to see this is to notice that this is the only operator

up to the sixth order in fermions that respects the A5 symmetry.
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We may choose the representation where each ψabcde is a Hermitian matrix with

real entries. Thus, in a given basis (2.1.1) is a Hermitian matrix with imaginary

entries; therefore, it is antisymmetric. This means that its eigenvalues are real and

come in pairs ±E. This implies that the spectrum has symmetry under E → −E,

which is a desired property. The proof is the following: let us start with some real

matrix, H ′. From H ′ we can construct a Hermitian matrix, H = i(H ′ − H ′T ). All

entries of this matrix are complex, H = −H∗, and by definition, H† = H, where H†

is the adjoint. We can therefore conclude that HT = −H. We write the characteristic

equation:

det(H − λI) = 0⇒ det(HT − λI) = det(H + λI) = 0 (2.2.7)

Thus we have shown that the energy spectrum of (2.1.1) is symmetric. Another way

to see this is to consider the time reversal symmetry, which we discuss in the following

section.

2.2.1 Discrete symmetries

As in [18] we can introduce an operator that sends H → −H. This is called the per-

mutation operator, and it implements an O(N) group pair swap. We can implement

this operation by introducing the following operator

P45 =
∏

a,b,c,d=e

ψabcde
∏

a,b,c,d>e

(
ψabcde + ψabced√

2

)
, P †45ψ

abcdeP45 = ψabced, (2.2.8)

which exchanges the last two indices of each fermion in the interaction.
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For convenience, it is better to work with Dirac fermions, which can be built in

the following way

ψabcdn =
ψabcd(2n−1) + iψabcd(2n)

√
2

, ψ̄abcdn =
ψabcd(2n−1) − iψabcd(2n)

√
2

, (2.2.9)

and they satisfy the usual commutation relations of the Dirac fermions,

{
ψI , ψ̄J

}
= δIJ , {ψI , ψJ} =

{
ψ̄I , ψ̄J

}
= 0. (2.2.10)

This formalism has manifest O(N)4 × SU(N/2) symmetry, but does not manifest

the original O(N)5 symmetry. We can normal order each of these terms to get the

following Hamiltonian plus several quartic terms which are not included here.

H6 = ig×[
ψijklmψiopqrψntplwψ̄sjuqwψ̄stkvrψ̄nouvm − ψijklmψiopqrψsjuqwψ̄ntplwψ̄stkvrψ̄nouvm+

+ψnouvmψiopqrψsjuqwψ̄ntplwψ̄stkvrψ̄ijklm − ψnouvmψiopqrψntplwψ̄sjuqwψ̄stkvrψ̄ijklm+

+ψijklmψstkvrψsjuqwψ̄ntplwψ̄iopqrψ̄nouvm − ψijklmψstkvrψntplwψ̄sjuqwψ̄iopqrψ̄nouvm+

+ψnouvmψstkvrψntplwψ̄sjuqwψ̄iopqrψ̄ijklm − ψnouvmψstkvrψsjuqwψ̄ntplwψ̄iopqrψ̄ijklm
]

We notice a symmetry under the exchange of ψabcd(2n) → −ψabcd(2n) in Hamiltonian

(2.1.1). It corresponds to the charge conjugation symmetry, C, ψ̄abcdn ↔ ψabcdn.

Under this exchange, each term gains a negative sign during normal ordering, and

this results in preservation of the original Hamiltonian: CHC−1 = H. We can define
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the charge conjugation operator,

C =
∏
abcdn

ψabcd(2n−1). (2.2.11)

In the case of the q = 4 tensor model [18] there is an anti-unitary time-reversal

symmetry T , that acts in the following way

TiT−1 = −i, TψabcdeT−1 = ψabcde, TH4T
−1 = H4.

In the case of the Hamiltonian (2.1.1) this is not a symmetry of the theory. Indeed,

TH6T
−1 = −H6,

which shows that T is not a symmetry of the theory. From this one can see that

the eigenvectors come in the pairs (|E〉 , T |E〉) with opposite energies. In the rep-

resentation where ψabcde are real matrices and the Hamiltonian is a pure imaginary

matrix, the action of T coincides with complex conjugation T = K. Let us consider

an eigenstate |E〉 = ci |ei〉, where |ei〉 is a basis that we build with the use of the

vacuum and the creation operators ψ̄abcde. Then

KH6,ijK
−1 = H∗6,ij = −H6,ij, H6,ijcj = Eci ⇒ H∗6,ijc

∗
j = Ec∗i , H6,ijc

∗
j = −Ec∗i .

(2.2.12)
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From this one can notice that if the ci are real then it corresponds to the zero state.

Indeed,

〈E|H|E〉 = ciH6,ijcj = −ciH∗6,ijcj = 0. (2.2.13)

To get a symmetry of the Hamiltonian out of the time reversal symmetry, we

can combine it with the permutation operator P45 to get T45 = TP45. This operator

interchanges two representations of the A5 group. The existence of such a symmetry

explains the 6-fold degeneracy of ground state in the numerical studies of the N = 2

model. The symmetries A5 together with T45 form the S5 symmetry group.

With the discrete symmetries of our q = 6, O(N)5 symmetric tensor model de-

scribed above, we are now in a position to find the corresponding random matrix

model to describe quantitative properties of the spectrum of the model. This is typ-

ically done by mapping our model to a random matrix theory ensemble. There are

general rules for choosing the associated ensemble based on the various symmetries of

the model [55]. The set of possible ensembles we consider is known as the Andreev-

Altland-Zirnbaur (AAZ) ten-fold classification. The symmetries we will use to classify

our model are the time reversal symmetry (TRS), and the permutation symmetry de-

scribed above, Pij. As noted above, our Hamiltonian does not posses TRS, like the

q = 6 SYK model [4]. In the absence of TRS, we can take P 2
ij = +1, and we can

classify this Hamiltonian as belonging to the AIII ensemble of the AAZ ten-fold classi-

fication [56]. With this classification, we find that the corresponding random matrix

ensemble is a chiral Gaussian Unitary Ensemble (chGUE) [57]. We may also use
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our knowledge of these discrete symmetries to examine the singlet spectrum and its

degeneracies, which is done in the following section.

2.3 The spectrum of eigenstates of the O(2)5 model

In this section, we will study the spectrum of the Hamiltonian (2.1.1) for Ni = 2.

The number of different Majorana fermions in this theory is 25, so that there are

216 = 65536 states. We can represent each fermion by a gamma matrix of SO(32).

We construct the pure real gamma matrices of SO(32) by taking tensor products of

Pauli spin matrices, as described in [58]. After substituting them into the Hamiltonian

(2.1.1) we obtain a matrix which can be diagonalized using a computer program.

We begin by describing the SO(N)5 invariant states in our theory. They are

present only when N is even, and we restrict to this case. In order to count the

number of these states, we follow the method of [18]. We gauge the free theory to

get

SG =

∫
dt
[
ψabcde∂tψabcde + A1

a1a2
ψa1bcdeψa2bcde + . . .

]
. (2.3.1)

The procedure of gauging eliminates all non-singlet states from the spectrum. Indeed,

if we calculate the path integral on the circle of the length β and first take the integral

over the gauge field we get a constraint J iab = 0 — the generator of rotations must be

equal to zero. After that, we take the integral over fermions to get,

∫
[dψ]

5∏
i=1

[dAi]eiS = trsing 1 = Nsinglets. (2.3.2)
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If we first calculate the path integral over fermions and gauge the Ai to Cartan

subalgebra, where Ai is a skew-symmetric matrix, we get that

Nsinglets = 215

∫ 5∏
i=1

dΩi
SO(N)

N∏
k1=1,...,k5=1

∏
±

cos

[
x1
k1
± x2

k2
± x3

k3
± x4

k4
± x5

k5

2

]
.

(2.3.3)

Here, xik, k = 1, . . . , N/2 and dΩi
SO(N) are coordinates and a Haar measure of the

ith group. The second product is taken for all possible combinations of the signs.

Roughly speaking, the integrand is a character of SO(N)5 and we can decompose

it via the characters of the irreducible representations of the group to count the

number of the representations. For the case SO(2)5, the integral (2.3.3) gives 222

singlet states, agreeing with the numerical results. Using the same method, we may

count the number of singlet states for models of different ranks. For instance, the

O(2)4 ×O(4) model has 106096 singlets.

Energy Count Percent

−64
√
10 ≈ −202.386 6 2.70

−64
√
2 ≈ −90.51 30 13.51
0 150 67.57

64
√
2 ≈ 90.51 30 13.51

64
√
10 ≈ 202.386 6 2.70

Figure 2.2: The spectrum of the SO(2)5 invariant states in the O(2)5 tensor model.
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We can see that the degeneracy of each state of the singlet spectrum for N = 2 is

a multiple of six. The six-fold degeneracy is explained in section 2.2.1 by the discrete

symmetry S5. From the precise numerical eigenvalues we can deduce their exact

analytic form: 64
√

10 ≈ 202.386 and 64
√

2 ≈ 90.51. Eigenvalues expressible in terms

of square roots have appeared in other tensor models with low N [18–21].

Furthermore, from precise numerical results we have been able to infer the exact

expressions for the full spectrum of the O(2)5 tensor model. The energies are found

to be roots of even polynomial equations up to order 6. This is presumably due to

the fact that the various symmetries of H allow for mixing of at most six states. The

polynomials have only even powers because they must be invariant under E → −E,

which follows from the fact that H → −H under exchange of any two colors. The

results are displayed in figure 2.2. Most of the eigenvalues may be expressed in

terms of square roots or nested square roots, which were seen in other tensor model

spectra [18–21]. The remaining 18 energies are given by the roots of three distinct

even sixth-order polynomials. One of the equations is

E6 − 8704E4 + 15794176E2 − 3221225472 = 0 . (2.3.4)
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Degeneracy Energy (in units of g)
6 ±64

√
10

30 ±64
√

2

32 ±64
√

42

80 ±16
√

18± 6
√

5

80 ±16
√

2
(
5±
√

21
)

160 ±32
√

11

160 ±16
√

2
(
9±
√

57
)

160 ±16
√

13±
√

73
160 E6 − 8704E4 + 15794176E2 − 3221225472 = 0
160 E6 − 12800E4 + 40960000E2 − 805306368 = 0
192 E6 − 20992E4 + 53215232E2 − 1275068416 = 0
110 ±128

180 ±64
√

3

240 ±32
√

10
320 ±48

320 ±16
√

9±
√

73

480 ±75
√

2

480 ±
√

519± 2
√

37514

808 ±32
√

6
860 ±64

992 ±32
√

3

1120 ±16
√

2

1208 ±32
√

2

1440 ±16
√

10
1600 ±16
3200 ±32
31772 0

Table 2.2: The exact spectrum of the SO(2)5 tensor model. The expressions agree
with the numerical results up to 11 digits past the decimal.
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Its six solutions are given in terms of ξ =
3
√

5023 + 324i
√

533 as follows:

E1,2 = ±16

√
1

3

(
34 +

433

ξ
+ ξ

)
≈ ±79.1523

E3,4 = ±
√

8704

3
− 55424

3ξ
+

55424i√
3ξ
− 128

3
ξ − 128i√

3
ξ ≈ ±46.9662,

E5,6 = ±
√

8704

3
− 55424

3ξ
− 55424i√

3ξ
− 128

3
ξ +

128i√
3
ξ ≈ ±15.2673. (2.3.5)

The roots of the other sixth-order polynomials may be expressed analogously. The

total number of states listed in table 2.2 adds up to 65536 = 216 = 2N
5/2, so it contains

the full spectrum, which is shown in figure 2.3.

It is interesting to apply the Poincaré recurrence theorem to our system; the

theorem states that after a finite amount of time, a state could return arbitrarily

close to the the initial state [59]. The amount of time it takes for the state to return

close to the initial state is known as the Poincaré recurrence time, and it is a quantity

that we can compute. To find the recurrence time, we first consider an arbitrarily

chosen initial state, which can be decomposed in terms of the eigenstates,

|ψ(t)〉 = e−iHt |ψ(0)〉 =
∑
n

e−iEntcn |φn〉 , (2.3.6)

where
∑

n |cn|2 = 1, the |φn〉 are the energy eigenstates, and we set |ψ(0)〉 =∑
n cn |φn〉. It follows that the distance between the initial state and the state at
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Figure 2.3: Energy spectrum of the O(2)5 tensor interaction. There are 31772 zero
energy states; not all are displayed.
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time t is expressed as,

||ψ(t)〉 − |ψ(0)〉|2 = 2
∑
n

|cn|2 (1− cos(Ent)) . (2.3.7)

We can now define the recurrence time, trec, as the time at which ||ψ(t)〉 − |ψ(0)〉| < ε

for any small ε > 0. When this condition is met, we may conclude that the state

|ψ(trec)〉 is arbitrarily close to the initial state |ψ〉. The Poincaré recurrence theorem

guarantees the existence of such a time, and here we sketch the proof of the existence

following [60]. First we will split the sum on the RHS of equation (2.3.7) into two

parts:

∑
n

|cn|2 (1− cos(Ent)) =
m−1∑
n=0

|cn|2 (1− cos(Ent)) +
∞∑
n=m

|cn|2 (1− cos(Ent)) . (2.3.8)

Let us first focus on the second term in equation (2.3.8). We note that

∞∑
n=m

|cn|2 (1− cos(Ent)) ≤ 2
∞∑
n=m

|cn|2, (2.3.9)

since the largest value the quantity (1− cos(Ent)) can take on is 2. The sum on the

RHS of equation (2.3.9) can be made arbitrarily small by making m larger. And thus,

we can conclude that there exists some ε > 0 such that,

∞∑
n=m

|cn|2 (1− cos(Ent)) <
ε2

4
. (2.3.10)

42



We now move on to examine the first term in equation (2.3.8). Using a result of the

theory of almost-periodic functions, we may conclude that there exists a time t such

that,
m−1∑
n=0

|cn|2 (1− cos(Ent)) <
ε2

4
. (2.3.11)

By taking the sum of equation (2.3.11) and equation (2.3.10), we can conclude that

there exists a t that satisfies,

||ψ(t)〉 − |ψ(0)〉| < ε. (2.3.12)

Next we would like to find the recurrence time explicitly. Fortunately, if the exact

expression for the energies En are known, the Lenstra-Lenstra-Lovász (LLL) lattice

basis reduction algorithm may be used to calculate the recurrence time [61]. Namely,

the condition (2.3.7) for the trec can be rewritten in the following form. We are looking

for the number qrec, such that

max
n

∣∣Enq − bEnqe∣∣ < ε, (2.3.13)

where the expression bxe rounds x to the nearest integer. The recurrence time can

be expressed in terms of q as trec = q
2π
. We can construct the lattice basis in the form

~e1 = (1, QE1, QE2, . . . , QEn) ,

(~ei)j = δi,j, (2.3.14)
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and apply the LLL algorithm, so that the first basis vector has the form,

~b1 = (q,Q (qE1 − p1) , Q (qE2 − p2) , . . .) , (qEi − pi) < Q−
1

n+1 , (2.3.15)

where pi are integer numbers, and Q is a large integer chosen to adjust precision.

Therefore, the number q found by the LLL algorithm is the required q for the condition

(2.3.13).

Applying this algorithm for the spectrum of our model, we find that the recurrence

time is

trec = 218516231876133437533409856498158380135794428g−1 ≈ 2.18 ∗ 1045g−1,∣∣∣∣1− ∣∣∣∣Z(trec)

Z(0)

∣∣∣∣∣∣∣∣ < 0.5 ∗ 10−2. (2.3.16)

2.4 Comparison with the q = 6 SYK model

In this section we calculate the energy spectrum and the spectral form factor of the

NSYK = 26 , q = 6 SYK model and compare with corresponding results of the O(2)5

tensor model. The q = 6 SYK model Hamiltonian is

HSYK = i
∑

1≤i1<...<i6<NSYK

ji1...i6ψi1ψi2 ...ψi6 , 〈ji1...i6jj1...j6〉 = J2 δi1j1 . . . δi6j6
N5

SYK

. (2.4.1)

In this case there are 213 = 8192 states, and each fermion is assigned to a gamma

matrix of SO(26).
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Figure 2.4: The energy spectrum of the q = 6 SYK model with NSYK = 26, averaged
over 49 samples.
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In figure 2.3, we can see that there are large energy gaps in the tensor model,

whereas the SYK model has a much denser spectrum and displays a near semi-circular

distribution of eigenvalues that is characteristic of random matrices. Upon examining

the energy spectrum, we can see the E → −E symmetry in the q = 6 model due to the

time-reversal symmetry, which is not present in the q = 4 SYK model. We provide a

fit for the energy spectrum as shown in figure 2.4. This fit is the spectral density that

corresponds to the Q-Hermite polynomial with Q equal to a combinatorial factor, η,

that encodes the suppression of crossing diagrams in the Wick contractions of gamma

matrices. The suppression factor is derived in [62],

η =

(
NSYK

q

)−1 q∑
p=0

(−1)p
(
q

p

)(
NSYK − q
q − p

)
. (2.4.2)

The Q-Hermite spectral density, ρQH(E), is the following [22,62,63],

ρQH(E) = A

√
1− (E/E0)2

∞∏
k=0

[
1−

(
2
E

E0

)2
1

1 + ηk + η−k

]
(2.4.3)

where A ≈ 104 is the normalization constant, which imposes that the total number

of states is equal to 2NSYK/2 = 8192, E0 ≈ −0.0032 J is the ground state energy, and

η ≈ −0.0072 is the suppression factor. The spectral density, (2.4.3), is calculated in

the double scaled limit, where NSYK → ∞, q → ∞, and q2/NSYK fixed. We can see

that there is strong agreement with the Q-hermite polynomial and the q = 6 SYK

energy spectrum, which indicates that this model is a very good approximation of

the double scaled limit.
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Figure 2.5: Top: SFF for the gaussian unitary ensemble (GUE) associated with the
q = 6, NSYK = 26 SYK model at β = 0. Middle: SFF for the q = 6, NSYK = 26,
β = 0 SYK model averaged over 49 samples. Bottom: SFF for the q = 6, NSYK = 26,
β = 1560 J−1 SYK model averaged over 49 samples.
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Additionally, we can examine and compare the spectral form factor (SFF) for

the SYK and tensor models (similar calculations in tensor models with q = 4 were

performed in [16,17]). The SFF is a measure of the discreteness of the energy spectrum

and can be defined as [22,64]

g(t, β) = |Z(t, β)|2/Z(β)2, where Z(t, β) = Tr(e−βH−iHt) . (2.4.4)

In figure 2.5 and figure 2.6, we display plots of the SFF for the q = 6 SYK and tensor

models. For comparison, we have also plotted the SFF of the corresponding random

matrix theory (RMT) ensemble, which is determined by the value of NSYK mod 8 [22].

In our case, we plot for NSYK = 26, which is associated with the gaussian unitary

ensemble (GUE). The SFF for the GUE that we have plotted is calculated in [65],

and we have included the result at infinite temperature below:

g(t)GUE = L2

(
J1(2t)

t

)2

+ L− L×


1− t

2L
, t < 2L

0, t > 2L

(2.4.5)

J1(t) is the Bessel function of the first kind, and contributes to the early time oscilla-

tions of the GUE. L sets the size of the ensemble of random Hermitian matrices, and

is related to the plateau time as tp = 2L.

We can see that the SFF for the SYK model has the same features of the corre-

sponding RMT ensemble, indicating properties of quantum chaos; in particular, the

dip-ramp-plateau structure is present (see figure 2.5). Some of these properties are

more difficult to see in the tensor model because the gaps in the energy spectrum
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are sizable for the available value of N . However, we can notice a dip and plateau

structure in our tensor model, which suggest signs of chaotic behavior, but there is

no obvious ramp (see figure 2.6).

Despite clear differences in the finite N behavior of the tensor model and SYK

model, we find that the large N solutions of the two models are identical. Before

solving the large N models, we will discuss higher q tensor models followed by the

large N limit and the melonic dominance of our tensor model.

2.5 Tensor models with q > 6

We begin with a discussion of q = 8, where the Majorana fermion tensor is of rank

seven, and the model has O(N)7 symmetry. In a ‘generalized tetrahedral’ interaction

vertex, every two tensors have exactly one index in common. In contrast to the q = 6

case, there are six distinct such q = 8 interactions [50, 51]. However, only one of

these interactions has the property that it stays connected whenever any 5 colors are

erased. This is the maximally single-trace (MST) vertex in the terminology of [50],

and we will show that in the Majorana model it produces a Hamiltonian which is

fully antisymmetric under interchange of the O(N) groups. The problem of finding

the MST interactions is equivalent to the problem of finding the perfect 1-factorization

of the complete graphs [52]. There are two classes where the existence of the perfect

1-factorizations has been proven: for graphs with p+ 1 vertices or 2p vertices, where

p is an odd prime number.
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Figure 2.6: SFF for the O(2)5 tensor model for three values of β. Top: β = 0, middle:
β = 0.0250 g−1, and bottom: β = 0.150 g−1. Note that the fluctuations for the
bottom subfigure are much smaller than the two above — this is because the SFF is
calculated at a lower temperature.
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Figure 2.7: A graphical representation of the unique maximally single-trace tensor
interaction for q = 8. It stays connected when any 5 out of the 7 colors are erased.

The q = 8 MST interaction is shown in figure 2.7. This interaction is called the

canonical coloring [51]; this means that if we erase any set of 5 colors, we are left with

an octagon composed of alternating colors. We can show the antisymmetry of this

fermionic interaction as follows. Let us erase all colors except for groups O(N)a and

O(N)b to get,

H8 = ψa1b1c1d1e1f1g1ψa1b2c2d2e2f2g2ψa2b1c3d3e3f3g2ψa2b3c1d4e2f4g3 (2.5.1)

ψa3b4c3d1e4f2g3ψa3b2c4d4e1f3g4ψa4b3c2d3e4f1g4ψa4b4c4d2e3f4g1 −→

−→ H2 = ψa1b1ψa1b2ψa2b1ψa2b3ψa3b4ψa3b2ψa4b3ψa4b4 . (2.5.2)

Now let us exchange the O(N)a and O(N)b groups of H2 to get,

H ′2 = ψa1b1ψa2b1ψa1b2ψa3b2ψa4b3ψa2b3ψa3b4ψa4b4

= −ψa1b1ψa1b2ψa2b1ψa2b3ψa3b4ψa3b2ψa4b3ψa4b4 = −H2.

(2.5.3)
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Figure 2.8: The graphical representation of a q = 8 tensor interaction which is not
maximally single-trace. If we erase all but the blue and red stands, the graph becomes
disconnected.

This is in contrast to the other q = 8 interactions that satisfy the constraint that

one index is shared among any two pairs of fermions, all of which are provided in figure

2 of [51]. We give an example of a non-MST interaction in figure 2.8, corresponding to

figure 2,a in [51]. When we erase all but two colors, we are left with two disconnected

diagrams, which means this interaction is symmetric under exchange of these two

colors.

Let us now comment on the q = 8 MST interaction. Since there is no i in this

interaction, we have the time reversal symmetry. The E → −E symmetry comes

from the antisymmetry under the exchange of two gauge groups. This interaction

is melonic and scales as g2N
(q−1)(q−2)

2 = g2N21. In section 2.6, we will calculate the

scaling dimensions of the bilinears of this model, and also include the result for general

q tensor models.

We will define the group of coloring automorphisms, which will be used in calcu-

lating the propagator. One can think of a coloring automorphism as a permutation
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Figure 2.9: The graphical representation of the maximally single-trace tensor inter-
action for q = 10.

of the vertices of the interaction graph in a way that preserves the colors of the edges.

Paper [51] explores these symmetries in more detail, and shows that the group of

coloring automorphisms is Zn2 . Furthermore, [51] proves that for q = u2v, u odd,

melonic tensor models, the group of coloring automorphisms, which we will denote

as Aut, can be at most Zv2 for u = 1 and Zv−1
2 for u > 1.

There are six distinct q = 8 interactions that satisfy the constraint that each pair

of Majorana fermions has a single index contraction. The difference between them is

the order of the coloring automorphism group, which is taken into account in (2.6.1).

The more symmetry our interaction has, the larger the order of the automorphism

group will be. It follows that the q = 8 fully symmetric diagram has the largest group

order, with Aut = Z3
2 [51]. As noted in section 2.6, the |Aut| factor cancels out in the

spectra calculation.

The number of possible ‘generalized tetrahedral’ interactions increases very rapidly

with q [50,51]: for q = 8 it is 6, for q = 10 it is 396, and for q = 12 it is 526, 915, 620.
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Figure 2.10: Melonic corrections to the propagator. These are the only diagrams
that survive at large N .

However, at least for q = 8 and 10 the maximally single-trace vertex, or perfect one-

factorization, is unique [50].b For q = 10, the MST vertex is shown in figure 2.9 (see

also figure 5 of [50]).

2.6 Large-N scaling dimensions of the fermion bilin-

ears

Due to the melonic dominance for the rank q−1 tensor models with MST interactions,

we can sum the Feynman diagrams in these large-N theories. This allows us to

calculate the propagator of fermionic fields and the spectrum of fermion bilinear

operators. We expect the large-N solution of the MST tensor models to be similar to

that of the SYK models, which also exhibit the melonic dominance. Indeed, in [49]

it was shown that the four-point function for a rank q− 1 tensor model has the same

kernel as the SYK model four-point function with a q fermion interaction. In this

section we present further results along these lines.

The large-N Schwinger-Dyson equation for the tensor model two point function

with a six fermion interaction is represented diagrammatically in figure 2.10. We can
bThe smallest value of q where the MST vertex is not unique is 12. We thank Fidel Schaposnik

Massolo for informing us of this and providing a reference, [53].
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write the Schwinger-Dyson equations from the diagrams in figure 2.10. We start with

an MST q-tensor interaction,

G(t) = 〈Tψ(t)ψ(0)〉 = (∂t − Σ)−1 , Σ = q|Aut|g2N
(q−1)(q−2)

2 Gq−1, (2.6.1)

where |Aut| is the order of the automorphism group of the interaction (see section

2.5), and q|Aut| is the number of contributing Feynman diagrams [51]. We introduce

λ2 = q|Aut|g2N
(q−1)(q−2)

2 , and we make the assumption that in the IR regime the Σ

will dominate the derivative. Thus, we use the following conformal ansatz,

G(t) =
a sign(t)

|t|2∆
, Σ(t) = λ2a

q−1sign(t)

|t|2(q−1)∆
. (2.6.2)

We take the Fourier transform of (2.6.2) and arrive at,

G(ω) = 21−2∆i
√
π

Γ(1−∆)

Γ(1/2 + ∆)
a|ω|2∆−1sign(ω),

Σ(ω) = 21−2(q−1)∆i
√
π

Γ(1− (q − 1)∆)

Γ(1/2 + (q − 1)∆)
aq−1sign(ω)λ2|ω|2(q−1)∆−1.

(2.6.3)

In the IR limit we assume that we can neglect the derivative and get G = −1/Σ.

From this we arrive at

−1 = G(ω)Σ(ω) = −22−2q∆aqλ2π
Γ(1−∆)Γ(1− (q − 1)∆)

Γ(1/2 + ∆)Γ(1/2 + (q − 1)∆)
|ω|2q∆−2. (2.6.4)
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It follows that ∆ = 1/q and aq =
Γ( 1

2
+∆)Γ( 3

2
−∆)

πλ2Γ(1−∆)Γ(∆)
. Thus, we have that the propagator

is,

G(t) =

(
Γ(1

2
+ ∆)Γ(3

2
−∆)

πλ2Γ(1−∆)Γ(∆)

) 1
q sign(t)

|t|2∆
, (2.6.5)

which exactly matches that of the general q SYK model [66]. For q = 6 and q = 8 we

have,

G6(t) =

( √
3

9πλ2

) 1
6

sign(t)

|t|1/3 , G8(t) =

(
3

8πλ2cot(π
8
)

) 1
8 sign(t)

|t|1/4 . (2.6.6)

Using this propagator we can study the spectrum of bilinear operators.

Let us first compare the combinatorial factors in the ladder diagrams, shown

in figure 2.11, to those in the melonic diagrams for the two-point function, shown

in figure 2.10 . As stated above, there are q|Aut| Feynman diagrams that must

be counted for each melon insertion. We note that the ladder diagrams may be

constructed by ‘cutting’ one of the internal legs of the melonic diagrams for the two-

point function. There are (q − 1) choices of which leg to cut. This means that, for

every diagram in figure 2.10, we can make (q − 1) ladder diagrams by cutting the

different internal propagators. So, we have a combinatoricial factor of q(q − 1)|Aut|

for the ladder diagram. Thus, the factors of |Aut| cancel in the operator spectra

calculation, and we find that the spectrum is identical to that of the corresponding q

SYK model. The calculation is presented in the following.
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Figure 2.11: A few of the ladder diagrams that contribute to the four-point function.

Figure 2.12: Examples of planar diagram contributions to the six-point diagram for
the O(N)5 model. There is also another contribution class of diagrams called ‘contact’
diagrams that are not pictured here [66]. Corrections to the six point function are
made by inserting ladder diagrams and melonic corrections.

The kernel comes from one rung of the ladder in figure 2.11. In the general q case,

we get that the kernel exactly matches that of the general q SYK model [4]:

K̂q = Kq(t1, t2; t3, t4) = −(q − 1)λ2G(t13)Gq−2(t34)G(t24). (2.6.7)

For the q = 6 and q = 8 case, we have

K̂6 = K6(t1, t2; t3, t4) = −5λ2G(t13)G4(t34)G(t24),

K̂8 = K(t1, t2; t3, t4) = −7λ2G(t13)G6(t34)G(t24).

(2.6.8)

We substitute the ansatz for the spectrum of singlet bilinears as

vi1...iq−1,j1...jq−1(t1, t2) = 〈TO(∞)ψi1...iq−1(t1)ψj1...jq−1(t2)〉

= δi1j1 . . . δiq−1jq−1

sign(t1 − t2)

|t1 − t2|2∆−h ,
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where h is the dimension of the operator O(t). The spectrum of operators for the

q = 6 model is computed as follows:

K̂v(t1, t2) =

∫
dt3dt4K(t1, t2; t3, t4)v(t3, t4) =

= −5
√

3

9π

∫
dt3dt4

sign(t1 − t3)sign(t3 − t4)sign(t4 − t2)

|t1 − t3|
1
3 |t3 − t4|

5
3
−h|t4 − t2|

1
3

= ga(h)v(t1, t2),

where ga(h) = −5
Γ
(

3
2
−∆

)
Γ (1−∆)

Γ
(

1
2

+ ∆
)

Γ (∆)

Γ
(
∆ + h

2

)
Γ
(

1
2

+ ∆− h
2

)
Γ
(

3
2
−∆− h

2

)
Γ
(
1−∆ + h

2

) , (2.6.9)

and ∆ = 1
6
. The scaling dimensions of bilinear operators ψabcde∂2n+1

t ψabcde are de-

termined by the equation ga(h) = 1, and its form coincides with that for the SYK

model [4]:

ga(h) = −(q − 1)
Γ
(

3
2
−∆

)
Γ (1−∆)

Γ
(

1
2

+ ∆
)

Γ (∆)

Γ
(
∆ + h

2

)
Γ
(

1
2

+ ∆− h
2

)
Γ
(

3
2
−∆− h

2

)
Γ
(
1−∆ + h

2

) , ∆ =
1

q

(2.6.10)

after setting q = 6. There is a solution at h = 2, which is the mode dual to the exci-

tation in Jackiw-Teitelboim dilaton gravity [67–70]. One can show that the spectrum

has the following asymptotic behavior, h→ 2n+ 4/3 as n→∞.

In contrast to the SYK model, the tensor model contains operators which are

SO(N) symmetry generators, such as Jaa′ = ψabcdeψa′bcde. If there are no ladder

corrections to this operator, we would find that its scaling dimension is ∆J = 2∆ψ =

1
3
; this would contradict the conservation of such charges. In fact, one can verify that

there are ladder corrections to the operator which are non-vanishing in the melonic

large N limit [28] (see figure 2.13). Their feature is that, due to the antisymmetry in
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ψabcψa′bc

Figure 2.13: The insertion of the colored operator can suppress some diagrams,
in contrast to the insertion of the singlet operator. For example, if one inserts the
operator of the form ψab...yz∂

2n+1
t ψab...yz′ , only one diagram contributes in the large

N limit, compared to the (q − 1) contributions from a singlet operator. Figure is
adapted from reference [44].

a and a′, the relevant eigenfunctions are symmetric [28]:

v(t1, t2) = 〈TO(∞)ψI(t1)ψJ(t2)〉 = δIJ
1

|t1 − t2|1/3−h
. (2.6.11)

Thus, we have

K̂v(t1, t2) =
−
√

3

9π

∫
dt3dt4

sign(t1 − t3)sign(t4 − t2)

|t1 − t3|
1
3 |t3 − t4|

5
3
−h|t4 − t2|

1
3

= gs(h)v(t1, t2). (2.6.12)

In general [71],

gs(h) = −Γ
(
∆− h

2

)
Γ
(
∆ + h

2
− 1

2

)
Γ (1−∆) Γ (3/2−∆)

Γ
(

1
2

+ h
2
−∆

)
Γ
(
1−∆− h

2

)
Γ
(

1
2

+ ∆
)

Γ (∆)
, ∆ =

1

q
, (2.6.13)

and here we set q = 6.
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h = 1 h = 2 h = 2.42 h = 3.58 h = 4.36 h = 5.45

1 2 3 4 5
h

-1

0

1

2

k

k = ga(h)

k = gs(h)

k = 1

Figure 2.14: The dimensions of bilinear operators in the O(N)5 model.

The equation for the scaling dimensions in the symmetric sector is gs(h) = 1, and

one can check that h = 0 is a solution of this equation; it corresponds to a conserved

charge. The asymptotic behavior of the eigenvalues is h → 2n + 1/3, corresponding

to operators ψabcde∂2n
t ψa′bcde.

In an analogous manner, we can compute the spectrum of operators for q = 8,

∫
dt3dt4K(t1, t2; t3, t4)v(t3, t4) = ga(h)v(t1, t2)

= − 21

8πcot(π
8
)

∫
dt3dt4

sign(t1 − t3)sign(t3 − t4)sign(t2 − t4)

|t1 − t3|
1
4 |t3 − t4|

7
4
−h|t2 − t4|

1
4

(2.6.14)

where ga(h) is given by (2.6.10) with q = 8. The scaling dimension is determined

by the equation ga(h) = 1. We can verify that there are no complex modes, that

ga(h) = ga(1− h), and that there exists a solution at h = 2, see figure 2.15.
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h = 1 h = 2 h = 2.30 h = 3.45 h = 4.27 h = 5.34

1 2 3 4 5
h

-1

0

1

2

k

k = ga(h)

k = gs(h)

k = 1

Figure 2.15: The dimensions of bilinear operators in the O(N)7 model.

We can similarly examine the symmetric sector, where our ansatz is now,

v(t1, t2) =
1

|t1 − t2|1/4−h
. (2.6.15)

Performing the analogous calculations, we find that,

∫
dt3dt4K(t1, t2; t3, t4)v(t3, t4) = − 3

8πcot(π
8
)

∫
dt3dt4

sign(t1 − t3)sign(t2 − t4)

|t1 − t3|
1
4 |t3 − t4|

7
4
−h|t2 − t4|

1
4

= gs(h)v(t1, t2) , (2.6.16)

and gs(h) is obtained from (2.6.13) by setting q = 8.
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2.7 SO(N)5 invariant quartic operators

In this section we classify the SO(N)5 invariant quartic operators in the theory

(2.1.1) according to their transformational properties under the action of the dis-

crete symmetry S5 discussed in section 2.2.1. We will show that these operators

do not transform nicely under the A5 ⊂ S5 symmetry which consists of the even

permutations of the five O(N) groups. In order to find the possible singlet quartic

operators, we must find all the distinct ways the indices of the four fermions may

be contracted. We pictorially represent the quartic operators of the theory in table

2.4. We represent each fermion as a vertex and the index contractions are repre-

sented by edges connecting the distinct vertices. We can denote the number of edges

connecting each vertex to the others by three integers ρa, ρb, and ρc. To find the

possible quartic operators in this theory we consider all possible combinations of

integers ρa, ρb, and ρc that satisfy the relations that the number of edges at each

vertex is five (ρa + ρb + ρc = 5) and that a fully connected quartic operator must

not have more than four strands shared between two nodes (5 > ρa ≥ ρb ≥ ρc ≥ 0).

We find the following triples: (4, 1, 0), (3, 2, 0), (3, 1, 1), and (2, 2, 1). Each triplet

corresponds to the construction of a quartic term displayed in table 2.4, and they

are of the following form: ψa1b1c1d1e1ψa2b2c1d1e2ψa1b1c2d2e2ψa2b2c2d2e1 corresponding to

(2, 2, 1) in row 1, ψa1b1c1d1e1ψa2b2c2d2e1ψa1b1c1d1e2ψa2b2c2d2e2 corresponding to (4, 1, 0) in

row 2, ψa1b1c1d1e1ψa2b2c2d1e1ψa1b1c1d2e2ψa2b2c2d2e2 corresponding to (3, 2, 0) in row 3, and

corresponding to (3, 1, 1) in row 4 is ψa1b1c1d1e1ψa2b2c2d1e2ψa1b1c1d2e2ψa2b2c2d2e1 .

Now we can find the irreducible representations of S5 of each of the possible quartic

operators and show that none transform nicely under A5. We use character theory to
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do this. Let us first note that S5 is a symmetric group consisting of 120 permutations

of five elements. The conjugacy classes of S5 are included in the top row of table 2.4

and include:

1. No change, which we denote as 1 in the top row of table 2.4.

2. Interchanging two elements, which we denote as (12).

3. Cycling three elements, which we denote as (123).

4. Cycling four elements, which we denote as (1234).

5. A cyclic permutation of all five elements, which we denote as (12345).

6. Interchanging two pairs of elements, which we denote as (12)(34).

7. Interchanging two elements and cycling the remaining three elements, which we

denote as (12)(345).

We must consider the number of fixed points (the character) of each of the oper-

ators under the action of each of the conjugacy classes of S5. In terms of our quartic

operators, we may think of a conjugacy class acting by interchanging some number of

O(N) groups/colors. For example, the conjugacy class (12)(345) can be thought of as

the relabeling a↔ b and c→ d→ e→ c in the quartic operator. There are 20 such

relabelings in this example, since there are
(

5
3

)
= 10 ways to choose the set of three

and 2 ways to order each cycle. The negative values represent the exchange of an

odd number of vertices of the operator under the conjugacy class. By calculating the

inner products of the characters of the operators with the characters of the irreducible

representation, we can find the correct group decomposition [72].

As an illustration, we include a detailed computation of the character of the

quartic operator in row 2 of table 2.4: ψa1b1c1d1e1ψa2b2c2d2e1ψa1b1c1d1e2ψa2b2c2d2e2 . Let
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Figure 2.16: We can exchange the black line for any of the other four colors. Thus,
there are five possible diagrams of this type. This diagram corresponds to type
(4, 1, 0) = ψa1b1c1d1e1ψa2b2c2d2e1ψa1b1c1d1e2ψa2b2c2d2e2 .

us note that there are five different diagrams of this type, see figure 2.16, since the

only degree of freedom here is the choice of the top/bottom rung, and we have five

indices to choose from. Therefore, the character for the column 1 is five. Now, let

us find the character for the (12) column. We let (12) correspond to a ↔ b. We

find that our operator is invariant only when neither a nor b is the top/bottom rung.

There are only three diagrams of this type, so the character of column (12) is three.

Next, we let (123) correspond to a → b → c → a. The invariant diagrams are those

that have d or e as the top/bottom rung. Thus, the character of column (123) is

two. We let (1234) correspond to a → b → c → d → a. Now there is only one

invariant diagram: the one with c as the top/bottom rung. Finally, we let (12)(34)

correspond to a ↔ b and c ↔ d. The single invariant diagram here is again the one

with c as the top/bottom rung. So, the character for both (1234) and (12)(34) is

one. The remaining two columns, (12345) corresponding to a→ b→ c→ d→ e→ a

and (12)(345) corresponding to a ↔ b and c → d → e → a, leave none of the five

diagrams invariant and have character equal to zero.
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Now that we have the characters for this quartic operator, we can find its de-

composition in terms of S5 irreducible representation. To do this, we must refer to

the character table of the S5 irreducible representations, see table 2.3. We define the

character vector of our quartic operator Q (row 2 in table 2.3),

χQ = 〈5, 3, 2, 1, 0, 1, 0〉 . (2.7.1)

We define the inner product of two characters as,

〈χi, χj〉 =
1

|G|
∑
g∈G

|g|χi,gχj,g, (2.7.2)

where |G| is the order of the group, g is the conjugacy class, and |g| is the order of

the conjugacy class. We take the inner product of χQ with itself to determine how

many irreducible representations of S5 make up Q,

〈χQ, χQ〉 =
1

|S5|
(
52 · 1 + 32 · 10 + 22 · 20 + 12 · 30 + 02 · 24 + 12 · 15 + 02 · 20

)
= 2,

(2.7.3)

where we have used that |S5| = 120. Since 〈χQ, χQ〉 is equal to the sum of two squares

(12 +12), we determine that our operator Q consists of two irreducible representations

of S5. To find which ones, we must take the inner product of χQ with χi where
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i = 1 . . .7 indicates the irreducible representation as defined in table 2.3.

〈χQ, χ1〉 =
1

|S5|
(5 · 1 + 3 · 10 + 2 · 20 + 1 · 30 + 1 · 15) = 1

〈χQ, χ2〉 =
1

|S5|
(5 · 1− 3 · 10 + 2 · 20− 1 · 30 + 1 · 15) = 0

〈χQ, χ3〉 =
1

|S5|
(5 · 1 · 4− 3 · 10 · 2 + 2 · 20 · 1) = 0

〈χQ, χ4〉 =
1

|S5|
(5 · 1 · 4 + 3 · 10 · 2 + 2 · 20 · 1) = 1

〈χQ, χ5〉 =
1

|S5|
(5 · 1 · 5 + 3 · 10 · 1− 2 · 20 · 1− 1 · 30 · 1 + 1 · 15 · 1) = 0

〈χQ, χ6〉 =
1

|S5|
(5 · 1 · 6− 1 · 15 · 2) = 0

〈χQ, χ7〉 =
1

|S5|
(5 · 1 · 5− 3 · 10 · 1− 2 · 20 · 1 + 1 · 30 · 1 + 1 · 15 · 1) = 0

(2.7.4)

Thus, we can conclude that our operator Q can be decomposed into 1
⊕

4.

This computation was done for the possible quartic operators of O(N)5; their

character tables and irreducible representations of S5 are summarized in table 2.4.

2.8 Appendix: Subchromatic interactions

We consider subchromatic interactions in this section, meaning the rank of the tensor

for a size q interaction term is < (q− 1). Specifically, we consider a rank three, q = 8

Hamiltonian, and a rank four, q = 8 Hamiltonian. The MST interaction is no longer

unique in both cases. The paper [73] finds that, for an order q and rank r MST
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Irreducible
Representation

1
1

10
(1 2)

20
(1 2 3)

30
(1 2 3 4)

24
(1 2 3 4 5)

15
(1 2)
(3 4)

20
(1 2)
(3 4 5)

1 1 1 1 1 1 1 1
2 1 -1 1 -1 1 1 -1
3 4 -2 1 0 -1 0 1
4 4 2 1 0 -1 0 -1
5 5 1 -1 -1 0 1 1
6 6 0 0 0 1 -2 0
7 5 -1 -1 1 0 1 -1

Table 2.3: The character table of the irreducible representations of S5. The number
above each conjugacy class in the first row is the order of that class. Here, 1 is the
trivial representation, 2 is the sign representation, 3 is the product of the standard
and sign representation, 4 is the standard representation, 5 is the irreducible five
dimensional representation, 6 is the exterior square of the standard representation,
and 7 is the product of the sign and the irreducible five dimensional representation.

operators 1 (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)
(3 4)

(1 2)
(3 4 5) irreps

15 3 0 -1 0 -1 0 4
⊕

6
⊕

5

5 3 2 1 0 1 0 1
⊕

4

10 4 1 0 0 2 1 1
⊕

4
⊕

5

10 2 1 0 0 -2 -1 4
⊕

6

Table 2.4: Character Table for Quartic Operators. 1 is the trivial representation, 4 is
the standard representation, 6 is the exterior square of the standard representation,
and 5 is the irreducible 5 dimensional representation.
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interaction, the melonic diagrams dominate with the quantity

λ2 = g2N r(q−2)/2 (2.8.1)

held constant in the large N limit.

2.8.1 Rank three, q = 8

We write an MST interaction for the rank three, q = 8 interaction, which contains a

set of N3 Majorana fermions ψabc with the anti-commutation relation,

{ψabc, ψa′b′c′} = δaa
′
δbb
′
δcc
′
. (2.8.2)

The interaction term corresponding to the MST interaction depicted in figure 2.17 is,

H8,rank3 ∼ gψa1b1c1ψa1b2c2ψa2b1c2ψa2b3c3ψa3b4c3ψa3b2c4ψa4b3c4ψa4b4c1 . (2.8.3)

The Hermitian Hamiltonian is H = H8,rank3 +H†8,rank3, and in the classical approx-

imation where we neglect the delta terms (2.8.2), the interaction changes sign under

any interchange of two O(N) groups. When we take (2.8.2) into account, we no longer

find that H → −H under the permutation of any two O(N) groups. This is due to

the sextic terms that appear during anticommutation. We note that this model does

not possess the spectral mirror symmetry property characteristic of the SYK model.

The large N limit of this theory must be taken while holding g2N9 fixed [73].
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Figure 2.17: A graphical representation of a rank three, q = 8 MST interaction.

Group Permutation Index relabeling
O(N)a and O(N)b c3 ↔ c4.
O(N)b and O(N)c a3 ↔ a4, b1 ↔ b2, c1 ↔ c2.

O(N)a and O(N)c
a1 ↔ a2, a3 ↔ a4, b3 ↔ b4,

c1 ↔ c2, c3 ↔ c4.

Table 2.5: Group permutations that send H to −H in the classical approximation
of the rank three, q = 8 MST interaction (2.8.3).

This interaction has O(N)3 symmetry, and here we study the spectrum of the

Hermitian rank three, q = 8 model with O(2) × O(3)2 symmetry. Here we have

18 Majorana fermions with 29 = 512 states. We let the Majorana fermions be the

gamma matrices of SO(18), see figure 2.18. This energy spectrum is not symmetric

about any shift in energy.

2.8.2 Rank four, q = 8

We begin by writing an MST interaction for the rank four, q = 8 interaction. This

model contains a set of N4 Majorana fermions ψabcd with the usual anti-commutation
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Figure 2.18: Energy spectrum of the rank three, q = 8 model with O(2) × O(3)2

model.
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relation,

{ψabcd, ψa′b′c′d′} = δaa
′
δbb
′
δcc
′
δdd
′
. (2.8.4)

The interaction term corresponding to figure 2.19 below is,

H8,rank4 ∼ igψa1b1c1d1ψa1b2c2d2ψa2b1c3d2ψa2b3c4d3ψa3b4c3d3ψa3b2c1d4ψa4b3c2d4ψa4b4c4d1 .

(2.8.5)

This Hamiltonian is Hermitian, and as in the q = 6 MST interaction, we may

consider the action of the time reversal operator, T , on (2.8.5). Similar to the q = 6

MST interaction, this interaction does not possess time reversal symmetry because

of the i needed to make the Hamiltonian real,

TiT−1 = −i, TψabcT−1 = ψabc, TH8T
−1 = −H8. (2.8.6)

From (2.8.6), we see that the eigenvalues come in pairs with opposite energies, and

so this interaction has an E → −E symmetry. The large N limit of this theory must

be taken while holding g2N12 fixed [73].

This interaction has O(N)4 symmetry. We can study the spectrum of the q = 8

model with O(2)3 ×O(3) symmetry. Here we have 24 Majorana fermions with 212 =

4096 states. We let the Majorana fermions be the gamma matrices of SO(24), see

figure 2.20.

The spectral form factor (SFF) for the O(2)4 and the O(2)3 × O(3) models are

very similar to those calculated for the rank five MST q = 6 model. As expected,
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Figure 2.19: A graphical representation of a rank four, q = 8 MST interaction.

we do not see a dip-ramp-plateau structure as we can only examine small N due to

computability constraints.

Interestingly, working at the classical level where we neglect quantum correc-

tions due to (2.8.4), we find that H8 is neither invariant nor equal to −H8 under

permutation of two of the O(N) groups. This was checked numerically with the as-

sumption that there are only four distinct types of index relabeling in our case of

the rank four tensor. These relabelings correspond to the conjugacy classes of S4,

and the number of ways to relabel corresponds to the order of each conjugacy class.

The first kind of index relabeling are cycles of size four, for example, we can allow

a1 → a2 → a4 → a3 → a1. For each index, there are six possible size four cycles.

The second kind of relabeling are cycles of size three, for example, we can allow

b2 → b3 → b1 → b2. For each index, we have eight possible size three cycles. The

third kind of relabeling we have is a pair swap; there are three distinct pair swaps

for each index and an example is c1 ↔ c3 and c2 ↔ c4. The last type of relabeling

is a single swap, and there are six possibilities for each index; an example of a single
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Figure 2.20: Energy spectrum of the rank four, q = 8 model with O(2)3×O(3) model.
There are 1440 zero energy states; not all are displayed.
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swap is d2 ↔ d3. Therefore, for each index we have 24 possible relabeling options,

including the option of taking no action. We can exchange any two indices, and loop

though all possibilities of index relabelings to find that none return the original terms

in the Hamiltonian.

In summary, we find that the rank three, q = 8 model is invariant under time

reversal, and at the classical level has an O(N) group pair swap symmetry that sends

H → −H. We do not find either of these properties in the rank four, q = 8 model.

Additionally, we find that the spectrum of the rank three model is asymmetric, in

contrast to that of the rank four model (where the spectral symmetry can be seen

through the action of the time reversal operator that sends H → −H).
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Chapter 3

Prismatic quantum mechanics with

complex fermions

3.1 Introduction

This chapter is based on ongoing work [46]. As discussed in the previous chapters,

we know that by suitably choosing the tensor (MST) or SYK interaction, one can

produce models with a novel large N limit where the dominant Feynman diagrams

are so-called ‘melons,’ [3,21,28,44,73–78]. Without the need of introducing quenched

disorder, tensor models provide a playground for the NAdS2/NCFT1 correspondence

more similar to its higher dimensional cousins. Regardless of the bulk interpretation,

it is interesting to search for possible tensor models with a stable nearly conformal

fixed point. While bosonic models are much more natural in d > 1, the negative
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bare dimension of a boson in 1d makes it less desirable than fermionic models.a The

simplest fermionic tensor model one can write down consists of a real anticommuting

ψabc: H = gψabcψab
′c′ψa

′bc′ψa
′b′c, and it has a stable nearly conformal fixed point in

the IR [3]. Fixing the number of O(N) indices, the next interaction that is dominant

in the large N limit would be the so-called ‘prismatic’ interaction

O6 = ψa1b1c1ψa1b2c2ψa2b1c2ψa3b3c1ψa3b2c3ψa2b3c3 , (3.1.1)

which vanishes due to anticommuting fermions. To avoid that, one can either con-

sider the bosonic version, which has been studied extensively in [74], or consider the

complex fermion model.b

In our paper, we study a q = 6 complex prismatic rank-3 tensor model along with

its random counterpart, a q = 6 complex fermionic model with a Wishart-Laguerre

random coupling. We will call this the q = 6 WL-SYK model. To find this WL

coupling, we start by constructing the disordered version of our prismatic tensor

model. We integrate out the auxiliary field to find a cSYK-like model with a key

difference in the coupling term: the random Gaussian coupling is changed to be a

product of two Gaussians, JijklJ†ijkl. The tensor model of primary interest to us is the

one with U(1) preserving interactions,

S =

∫
dt
(
iψ̄abc∂tψ

abc − χ̄abcχabc +
g

6
(ψa1b1c1ψa1b2c2ψa2b1c2χ̄a2b2c1 + h.c.)

)
, (3.1.2)

aKnown bosonic tensor models in 1d are either unstable or have operators with negative scaling
dimensions [74].

bWhen working with real fermions, it is natural to consider the 8-fermion interaction, which we
shall report elsewhere.
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where a complex fermionic auxiliary field is introduced to give rise to the melonic

dominance at the price of including an additional field. The disordered (WL-SYK)

version of the model,

S =

∫
dt
∑
i

(
ψ̄i∂tψ

i − χ̄iχi +
∑

1≤j≤k≤l≤N

(Cijklχ̄
iψjψkψl + h.c.)

)
, (3.1.3)

shares the same Schwinger-Dyson equations for 2-point and 4-point correlators, and

can be naturally viewed as a fermionic version of [79].

Here, we briefly note some differences between the q = 4 cSYK model and our

q = 6 WL-SYK model. For the q = 4 cSYK model, the compressibility is found to

be a small positive value, K ≈ 1.04 [36], whereas in our q = 6 model we find that

K is negative. In contrast to the q = 4 cSYK model, we find that our Hamiltonian

does not preserve charge conjugation symmetry. In particular, our Hamiltonian is

odd under charge conjugation, and the spectrum is symmetric around E = 0 as a

result. We also find that there is a gap between separating the ground state from

the first excited state, which is supported by the exponential decay in the correlation

functions.

The paper is organized as follows. In section 3.2 we define the prismatic tensor

model along with the analogous random model in section 3.3, and we discuss the con-

tinuous and discrete symmetries of both models. In section 3.4, we analyze the large

N behavior of the models, working out the conformal solutions and the spectrum of

bilinear operators. In section 3.5 we study exact diagonalization results and compute

the charge compressibility of our random model.
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3.2 Prismatic tensor model

In this section we introduce the unique O(N)3 symmetric prismatic tensor interaction

that preserves the U(1) symmetry,

L = iψ̄abc∂tψ
abc +

g

6
(ψa1b1c1ψa1b2c2ψa2b1c2ψ̄a3b3c1ψ̄a3b2c3ψ̄a2b3c3 + h.c.). (3.2.1)

This interaction is called prismatic, because the graph (where each vertex represents

a fermion and each colored edge represents a shared index between two fermions)

looks like a prism, see figure 3.2. At the classical level, where we ignore the anti-

commutation relations, we find that the Hamiltonian,

H =
g

6
(ψa1b1c1ψa1b2c2ψa2b1c2ψ̄a3b3c1ψ̄a3b2c3ψ̄a2b3c3 + h.c.), (3.2.2)

is invariant under the exchange of any pair of O(N) groups. For example, we can

swap Oa(N)↔ Oc(N) such that ψabc ↔ ψcba, and so we have,

Ha↔c =
g

6
(ψa1b1c1ψa2b2c1ψa2b1c2ψ̄a1b3c3ψ̄a3b2c3ψ̄a3b3c2 + h.c.). (3.2.3)

We can exchange indices a1 ↔ a2 and c1 ↔ c2 to find the original terms in the

Hamiltonian,

Ha↔c =
g

6
(ψa2b1c2ψa1b2c2ψa1b1c1ψ̄a2b3c3ψ̄a3b2c3ψ̄a3b3c1 + h.c.). (3.2.4)
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Through making an even number of exchanges, we find that H = Ha↔c, and this is

also the case with the other possible O(N) group permutations. Thus we find that

there is a discrete S3 symmetry associated with permuting O(N) groups. In addition

to this discrete O(N) swapping symmetry, we also find that charge conjugation, where

ψabc ↔ ψ̄abc, maps H → −H as seen in figure 3.1.
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Figure 3.1: The full spectrum of the O(2)3 prismatic tensor model, see equation
(3.2.2).

By introducing an auxiliary field χabc, whose bare propagator is merely a contact

term, we can rewrite the model with tetrahedron interaction,

L = iψ̄abc∂tψ
abc − χ̄abcχabc +

g

6
(ψa1b1c1ψa1b2c2ψa2b1c2χ̄a2b2c1 + h.c.). (3.2.5)
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ψa1b1c1 ψa1b2c2

ψ̄a3b3c1 ψ̄a3b2c3

ψ̄a2b3c3

ψa2b1c2

Figure 3.2: The graph that corresponds to the prismatic tensor interaction.

This model has a scaling symmetry in the IR and in addition to the U(1) symmetry,

U(1) : ψabc → eiαψabc, χabc → e−3iαχabc, Scaling : ψabc → λψabc, χabc → λ−3χabc.

(3.2.6)

3.3 Random model

In this section we consider the random version of the prismatic model introduced in

section 3.2.

L = −ψ̄i∂tψi +
Jijkl
3!

ψiψjψkχ̄l +
J̄ijkl
3!

ψ̄iψ̄jψ̄kχl + χ̄iχi, (3.3.1)

where Jijkl is a complex random variable, with the indices i, j, and k fully anti-

symmetric. To construct Jijkl, we start with a complex random variable Tijkl such
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that 〈TijklT̄i′j′k′l′〉 ∼ δi,i′δj,j′δk,k′δl,l′ . We let Jijkl be equal to,

∑
σ∈S3

sign(σ)
(
a1Tσ(i),σ(j),σ(k),l + a2Tl,σ(i),σ(j),σ(k) + a3Tσ(i),l,σ(j),σ(k) + a4Tσ(i),σ(j),l,σ(k)

)
.

(3.3.2)

We find that there is one degree of freedom in Jijkl, as

〈J̄ijklJi′j′k′l′〉 ∼ 6 (a∗1a1 + a∗2a2 + a∗3a3 + a∗4a4)
(
δi,i′δj,j′δk,k′δl,l′ + . . .

)
+

2 (a∗1a2 + a1a
∗
2 − a∗1a3 + a∗2a3 − a1a

∗
3 + a2a

∗
3 + a∗1a4 − a∗2a4 + a∗3a4 + a1a

∗
4 − a2a

∗
4 + a3a

∗
4)(

δi,l′δj,j′δk,k′δl,i′ + . . .
)
.

(3.3.3)

Upon normalizing J, we may define

κ =
2(a2(a3 − a4 + 1) + a3(a4 − 1) + a4)

3 (a2
2 + a2

3 + a2
4 + 1)

, (3.3.4)

where without loss of generality, we set a1 = 1, and ai ∈ R. The κ admits range

between −1 and 1
3
. We let the random variable obey,

〈J̄ijklJi′j′k′l′〉 =
J2

6N3
(δi,i′δj,j′δk,k′δl,l′ + · · ·+ κδi,l′δj,j′δk,k′δl,i′ + . . . ) . (3.3.5)
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We integrate out the random coupling, to obtain a bilocal action that describes the

theory:

S =−
∫
dt
(
ψ̄∂tψ + χ̄χ

)
− J2

∫
dtdt′

(
ψiψjψkχ̄l(t)ψ̄iψ̄jψ̄kχl(t′) + 3κψiψjψkχ̄l(t)ψ̄lψ̄jψ̄kχi(t′)

)
.

(3.3.6)

The model has U(1) symmetry with

ψ → eiαψ, χ→ e−3iαχ, (3.3.7)

and in the IR, the second line in (3.3.6) dominates. The model has enhanced dif-

feomorphism symmetry, and becomes nearly conformal. There is also an additional

scaling symmetry:

ψ → λψ, χ→ λ−3χ, (3.3.8)

and as a result, we expect that there is a h = 1 operator in the conformal spectrum

of the model.

3.4 Conformal solution

In this section, we consider the conformal solution, where the off-diagonal correlator

is set to zero. We denote Gψ(t) = 1
N
〈ψ̄i(t)ψi(0)〉 and Gχ(t) = 1

N
〈χ̄i(t)χi(0)〉. The

conformal solution turns out to be tricky, and so we will explain it in detail. We

note that the interaction in (3.3.1) needs to be marginal in the infrared, so it is

necessary that 3∆ψ + ∆χ = 1. Since we have introduced the auxiliary field, χ, we
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Figure 3.3: The full spectrum of the N = 14, q = 6 WL-SYK model, see equation
(3.3.1).

have a tetrahedral interaction and thus we have melonic dominance. We can write

the Schwinger-Dyson equations,

Gψ(t) = 〈ψ̄ψ〉 =
sign(t)

∂t − Σψ(t)
, Gχ(t) = 〈χ̄χ〉 =

sign(t)

1− Σχ(t)
, (3.4.1)

Σψ(t) = = 3λ2Gψ(t)2Gχ(t), Σχ(t) = = λ2Gψ(t)3. (3.4.2)

The dashed lines represent the χ propagator, and λ2 = g2N3 for the tensor model

and λ2 = J2 for the WL-SYK model. In the IR limit, we can drop the free terms,
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and make the following ansatz:

Gψ(t) =
bψsign(t)

|t|2∆ψ
, Gχ(t) =

bχsign(t)

|t|2∆χ
. (3.4.3)

Note that the unitarity bound requires 0 ≤ ∆ψ ≤ 1
3
, and in order for the conformal

approximation to be valid, we need 1
6
< ∆ψ ≤ 1

3
.

The ansatz (3.4.3) assumes a particular symmetry of the correlator: G(t) =

−G(−t). Such an assumption relies on the charge conjugation symmetry. Indeed,

if the ground state is charge conjugation invariant, for t > 0,

G(t) = 〈ψ̄(t)ψ(0)〉 = 〈ψ(t)ψ̄(0)〉 = 〈ψ(0)ψ̄(−t)〉 = −G(−t). (3.4.4)

However, the model (3.3.1) explicitly breaks the charge conjugation symmetry by the

mass term of χ. Nevertheless, in the IR, this term is absent. We take the Fourier

transform of (3.4.3), and work in dimension d = 1.

Gψ(p) =

∫
dt
eiptsign(t)bψ
|t|2∆ψ

= 2ibψ|p|2∆ψ−1cos(∆ψπ)Γ(1− 2∆ψ)sign(p).

(3.4.5)

Then we can use the relationship Gψ/χ = −1/Σψ/χ to get an expression for Σψ/χ in

momentum space. Finally, we can Fourier transform back to position space to get
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the following expression:

Σψ(t) = −
∫

dp

2π

−eipt
2ibψ|p|2∆ψ−1cos(∆ψπ)Γ(1− 2∆ψ)sign(p)

=
|t|2∆ψ−2Γ(2− 2∆ψ)sign(t)tan(∆ψπ)

2πbψΓ(1− 2∆ψ)

=
|t|2∆ψ−2(1− 2∆ψ)sign(t)tan(∆ψπ)

2πbψ
.

(3.4.6)

We have similar equations for Σχ(t) except with bχ instead of bψ, and ∆χ instead

of ∆ψ. Simplifying by combining (3.4.2) and (3.4.6), and by using the relationship

∆χ = 1− 3∆ψ, we get:

λ2b3
ψbχ =

(1− 2∆ψ)tan(∆ψπ)

6π
, (3.4.7)

λ2b3
ψbχ =

(6∆ψ − 1)tan(π(1− 3∆ψ))

2π
. (3.4.8)

Now we combine equations (3.4.7) and (3.4.8), and simplify the ratios of gamma

functions to get our final transcendental equation for the scaling dimension of ψ in

dimension d = 1:

1 =
Γ(2− 2∆ψ)Γ(6∆ψ − 1)

3 Γ(6∆ψ)Γ(1− 2∆ψ)

=
(1− 2∆ψ)tan(∆ψπ)

3 (6∆ψ − 1)tan(π(1− 3∆ψ))
.

(3.4.9)

We can solve (3.4.9) numerically to get the allowed values of ∆ψ, see figure 3.4. Our

first solution is at ∆ψ ≈ 0.311 and ∆χ ≈ 0.068, as shown in figure 3.4.
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Figure 3.4: The numerical solution to equation (3.4.9). Here we simplified notation
such that ∆ = ∆ψ. Note that ∆ψ = 1/6 is not a solution here.

There is another solution in the IR if we assume the bare kinetic term of χ, which

produces a shift in momentum space, is not negligible. On dimensional grounds, it

necessarily implies ∆χ = 1
2
, and ∆ψ = 1

6
. We now show that is consistent. We rewrite

the momentum space equation,

1

−iw − Σψ(w)
= −Gψ(−w),

1

−1− Σχ(w)
= −Gχ(−w), (3.4.10)

and we note that when ∆χ = 1
2
, Σχ (w) ∼ O (1) , and the bare term is not negligible,

whereas Σψ (w) ∼ O
(
|w| 23

)
, and the kinetic term is of a higher order in the IR.
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Therefore we may solve,

Σψ(w)Gψ(w) = −1, (1 + Σχ(w))Gχ(w) = −1. (3.4.11)

We now consider the following conformal ansatz,

Gψ(t) =
bψsign(t)

|t|2∆ψ
, Gχ(t) = aδ(t) +

bχsign(t)

|t|2∆χ
. (3.4.12)

We take the Fourier transform of (3.4.12) to get,

Gψ(p) = 2ibψ|p|2∆ψ−1cos(∆ψπ)Γ(1− 2∆ψ)sign(p), (3.4.13)

Gχ(p) = a+ 2ibχ|p|2∆χ−1cos(∆χπ)Γ(1− 2∆χ)sign(p). (3.4.14)

Next, we find the self energy in position space. The expression for Σψ(t) is exactly

the same as in equation (3.4.6). We write the expression for Σχ(t) below:

Σχ(t) =

∫
dp

2π

(
e−ipt − e−ipt/Gχ(p)

)
= δ(t)−

∫
dp

2π
e−ipt

(
a+ 2ibχ|p|2∆χ−1cos(∆χπ)Γ(1− 2∆χ)sign(p)

)−1
.
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We simplify the above expression for Σχ(t) by setting ∆χ = 1/2, and so cos(∆χπ)Γ(1−

2∆χ)→ π/2.

Σχ(t) = δ(t)−
∫

dp

2π
e−ipt (a+ iπbχsign(p))−1

= δ(t)− 1

a2 + b2
χπ

2

∫
dp

2π
e−ipt (a− iπbχsign(p))

= δ(t)− a δ(t)

a2 + b2
χπ

2
+

1

a+ b2
χπ

2

∫
dp

2π
e−ipt (iπbχsign(p))

= δ(t)− a

a2 + b2
χπ

2

(
δ(t)− bχsign(t)

a |t|

)
.

(3.4.15)

Now we may express the self energy using equation (3.4.2) along with expression

(3.4.15),

Σχ(t) = λ2
b3
ψsign(t)

|t|6∆ψ
= δ(t)− a

a2 + b2
χπ

2

(
δ(t)− bχsign(t)

a |t|

)
, (3.4.16)

Σψ(t) = 3λ2
b2
ψ

|t|4∆ψ

(
aδ(t) +

bχsign(t)

|t|2∆χ

)
=
|t|2∆ψ−2(1− 2∆ψ)sign(t)tan(∆ψπ)

2πbψ
.

(3.4.17)

We allow ∆χ = 1/2 and ∆ψ = 1/6 to simplify,

Σχ(t) = λ2
b3
ψsign(t)

|t| = δ(t)− a

a2 + b2
χπ

2

(
δ(t)− bχsign(t)

a |t|

)
, (3.4.18)

Σψ(t) = 3λ2
b2
ψ

|t|2/3
(
aδ(t) +

bχsign(t)

|t|

)
=

sign(t)

3
√

3πbψ|t|5/3
. (3.4.19)

We can find the constraints on the coefficients by solving equations (3.4.18) and

(3.4.19), and we note that the δ(t) term in equation (3.4.19) does not contribute in
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dimensional regularization, and so we neglect it while solving for the constraints. The

constraints are,

a

a2 + b2
χπ

2
= 1, λ2b3

ψ =
bχ

a2 + b2
χπ

2
, 3λ2b3

ψbχ =
1

3
√

3π
. (3.4.20)

We can solve the above system of equations to find the values for a, bχ, bψ,

a =
9
√

3− π
9
√

3
, b2

χ =
9
√

3− π
π(9
√

3)2
, b3

ψ =
λ−2√

π(9
√

3− π)
. (3.4.21)

Now we may write the expressions for Gψ(t) and Gχ(t), combining equations (3.4.12)

and (3.4.21),

Gψ(t) =

 λ−2√
π(9
√

3− π)

1/3

sign(t)

|t|1/3 , (3.4.22)

Gχ(t) =
9
√

3− π
9
√

3
δ(t) +

√
9
√

3− π
9
√

3π

sign(t)

|t| , (3.4.23)

where we let ∆ψ = 1/6 and ∆χ = 1/2. The finite temperature solutions are included

below,

Gψ(τ) =
λ−

2
3

(π(9
√

3− π))
1
6

[
π

β sin πτ
β

] 1
3

sign(τ), (3.4.24)

Gχ(τ) =

√
9
√

3− π
π(9
√

3)2

[
π

β sin πτ
β

]
sign(τ) +

(
1− π

9
√

3

)
βδ(τ)

π
. (3.4.25)
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3.4.1 Spectrum of bilinears

In this section, for ease of notation, we let ∆ = ∆ψ, and so ∆χ = 1 −

3∆. We consider the U(1) neutral sector first, examining the matrix elements〈
Onψ(t0)ψ̄abc(t1)ψabc(t2)

〉
,
〈
Onχ(t0)ψ̄abc(t1)ψabc(t2)

〉
, and

〈
Onψ(t0)χ̄abc(t1)χabc(t2)

〉
. We

can also consider bilinear operators in the U(1) charged sector, like the matrix

element
〈
Onψχ(t0)ψabc(t1)χabc(t2)

〉
. Throughout this section, we use the following

relations and notations as used in reference [3] to simplify our expressions,

l±x,y = β(1− x, x+ y − 1)± (β(1− y, x+ y − 1)− β(1− x, 1− y)) ,∫
du

sign(u− t1)sign(u− t2)

|u− t1|a|u− t2|b
= l+a,b

1

|t12|a+b−1
,∫

du
sign(u− t2)

|u− t1|a|u− t2|b
= l−a,b

sign(t12)

|t12|a+b−1
.

(3.4.26)

where β(x, y) = Γ(x)Γ(y)/Γ(x+ y) and t12 = t1 − t2.

3.4.1.1 U(1) neutral sector

To find the spectrum of bilinears, we would like to solve the following integral eigen-

value equation:

g(h)v(t0, t1, t2) =

∫
dt3dt4K(t1, t2; t3, t4)v(t0, t3, t4), (3.4.27)

where the kernel K(t1, t2; t3, t4) is given by a 2× 2 matrix with entries corresponding

to each four point interaction of (3.2.5).
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Figure 3.5: Left column: The numerical solutions of the SD equations for Gψ (top)
and Gχ (bottom) with no allowed off diagonal correlators (3.4.1) and (3.4.2) with
βλ = 120 in blue, compared to the finite temperature solutions found in equations
(3.4.24) and (3.4.25), in red. The reason why the solutions in blue and red do not
agree, particularly for Gψ, is because the conformal solution is unstable and is likely
not the real solution when we numerically solve the SD equations. Top right: The SD
solution with an added constraint such that the ground state is in the Q = 0 charge
sector. Bottom right: The log plot of Gψ with no symmetry constraints enforced.
The linear portion indicates the exponential decay of the Green’s function.
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K =


no contributing diagram


=

6λ2Gψ(t13)Gψ(t24)Gψ(t34)Gχ(t34) −3λ2Gψ(t14)Gψ(t23)Gψ(t34)2

3λ2Gχ(t14)Gχ(t23)Gψ(t34)2 0

 ,
(3.4.28)

where the top left entry is ψ̄ψ → ψ̄ψ, the top right is ψ̄ψ → χ̄χ, and the bottom

left is χ̄χ → ψ̄ψ. The bottom right contribution to χ̄χ → χ̄χ is not allowed given

the interaction term, and so its kernel element is zero. From the previous section, we

know the propagators have the form,

Gψ(t) =
bψsign(t)
|t|2∆

,

Gχ(t) = aδ(t) +
bχsign(t)
|t|2∆χ

= aδ(t) +
bχsign(t)
|t|2−6∆

.

In the second line, we used the relationship ∆χ = 1 − 3∆. We can find the kernel

elements in the antisymmetric or symmetric sector. In the antisymmetric sector, the

conformal vectors have the form,

vψ̄ψ(t0, t1, t2) =
sign(t12)

|t12|2∆−h ,

vχ̄χ(t0, t1, t2) =
sign(t12)

|t12|2−6∆−h ,

(3.4.29)
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where above we have used SL(2) invariance to send t0 to infinity. First, let us calculate

the contribution from the ψ̄ψ → χ̄χ diagram. We need to integrate,

−3λ2

∫
dt3dt4Gψ(t14)Gψ(t23)Gψ(t34)2vχ̄χ(t0, t3, t4)

= −3λ2

∫
dt3dt4

b4
ψsign(t14)sign(t23)sign(t34)

|t14|2∆|t23|2∆|t34|2−2∆−h

= 3λ2b4
ψl

+
2∆,2−2∆−hl

−
1−h,2∆

sign(t12)

|t12|2∆−h .

(3.4.30)

Next we will evaluate the ψ̄ψ → ψ̄ψ diagram.

6λ2

∫
dt3dt4Gψ(t13)Gψ(t24)Gψ(t34)Gχ(t34)vψ̄ψ(t0, t3, t4)

= 6λ2

∫
dt3dt4

b3
ψbχsign(t13)sign(t24)sign(t34)

|t13|2∆|t24|2∆|t34|2−2∆−h

= −6λ2b3
ψbχl

+
2∆,2−2∆−hl

−
1−h,2∆

sign(t12)

|t12|2∆−h .

(3.4.31)

For the χ̄χ → ψ̄ψ diagram, we will have contributions from the contact term in the

χ̄χ propagator.

3λ2

∫
dt3dt4Gχ(t14)Gχ(t23)Gψ(t34)2vψ̄ψ(t0, t3, t4)

= 3λ2

∫
dt3dt4(aδ(t14) +

bχsign(t14)

|t14|2−6∆
)(aδ(t23) +

bχsign(t23)

|t23|2−6∆
)
b2
ψsign(t34)

|t34|6∆−h

= −3λ2a2b2
ψ

sign(t12)

|t12|6∆−h − 3λ2b2
ψb

2
χl

+
2−6∆,6∆−hl

−
1−h,2−6∆

sign(t12)

|t12|2−6∆−h .

(3.4.32)
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Now we can solve for g(h) and get that, in the antisymmetric case,

g(h)(1,1) = −6λ2b3
ψbχl

+
2∆,2−2∆−hl

−
1−h,2∆,

g(h)(1,2) = 3λ2b4
ψl

+
2∆,2−2∆−hl

−
1−h,2∆,

g(h)(2,1) = −3λ2a2b2
ψ − 3λ2b2

ψb
2
χl

+
2−6∆,6∆−hl

−
1−h,2−6∆.

(3.4.33)

We can find the eigenvalues of g(h) and set one of them equal to 1 to find the scaling

dimensions of the bilinears. This is equivalent to the condition,

det =

g(h)(1,1) − 1 g(h)(1,2)

g(h)(2,1) −1

 = 0. (3.4.34)

Thus, we find the following constraint for h and can see that it is symmetric under

h→ 1− h.

1 = −6λ2b3
ψbχl

+
2∆,2−2∆−hl

−
1−h,2∆ − 9λ4b6

ψl
+
2∆,2−2∆−hl

−
1−h,2∆

(
a2 + b2

χl
+
2−6∆,6∆−hl

−
1−h,2−6∆

)
.

(3.4.35)

In the antisymmetric case, we verify that h = 2 is a solution, see figure 3.6.

Similarly, we can consider the symmetric sector with conformal vectors,

vψ̄ψ(t0, t1, t2) =
1

|t12|2∆−h ,

vχ̄χ(t0, t1, t2) =
1

|t12|2−6∆−h .

(3.4.36)
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Figure 3.6: The dimensions of U(1) neutral bilinear operators in the antisymmetric
sector of the prismatic tensor model. We note that h = 2 is the first solution.

We find that the corresponding g(h) matrix elements for the symmetric case are,

g(h)(1,1) = 6λ2b3
ψbχl

+
2∆,1−hl

−
2−2∆−h,2∆,

g(h)(1,2) = −3λ2b4
ψl

+
2∆,1−hl

−
2−2∆−h,2∆,

g(h)(2,1) = 3λ2a2b2
ψ + 3λ2b2

ψb
2
χl

+
2−6∆,1−hl

−
6∆−h,2−6∆.

(3.4.37)

In this case, the constraint on h is,

1 = 6λ2b3
ψbχl

+
2∆,1−hl

−
2−2∆−h,2∆ − 9λ4b6

ψl
+
2∆,1−hl

−
2−2∆−h,2∆

(
a2 + b2

χl
+
2−6∆,1−hl

−
6∆−h,2−6∆

)
.

(3.4.38)

Here, we expect and verify that there is a solution at h = 1, see figure 3.7.
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Figure 3.7: The dimensions of U(1) neutral bilinear operators in the symmetric sector
of the prismatic tensor model. We note that h = 0 and h = 1 are both solutions.

3.4.1.2 U(1) charged sector

Now we consider the charged bilinear operator Onψχ since, unlike the other charged

operator On
ψ̄χ
, it has melonic contributions at large N . The kernel element for the

channel ψχ→ ψχ takes the form,

K = 3λ2Gψ(t14)Gχ(t23)Gψ(t34)2. (3.4.39)

The conformal vectors for the symmetric and antisymmetric sectors are as follows,

vaψχ(t0, t1, t2) =
sign(t12)

|t12|1−2∆−h ,

vsψχ(t0, t1, t2) =
1

|t12|1−2∆−h .

(3.4.40)
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Let us now calculate the contribution from this ψχ → ψχ diagram in the antisym-

metric sector. We must integrate,

3λ2

∫
dt3dt4Gψ(t14)Gχ(t23)Gψ(t34)2vaψχ(t0, t3, t4)

= 3λ2

∫
dt3dt4

(
aδ(t23) +

bχsign(t23)

|t23|2−6∆

)
b3
ψsign(t14)sign(t34)

|t14|2∆|t34|1+2∆−h

= 3λ2b3
ψ

(
a l+2∆,1+2∆−h

1

|t12|4∆−h − bχ l
+
2∆,1+2∆−hl

−
4∆−h,2−6∆

sign(t12)

|t12|1−2∆−h

)
.

(3.4.41)

We note that in this case we have mixing between the symmetric and antisymmetric

sectors. We now compute the ψχ→ ψχ diagram in the symmetric sector.

3λ2

∫
dt3dt4Gψ(t14)Gχ(t23)Gψ(t34)2vsψχ(t0, t3, t4)

= 3λ2

∫
dt3dt4

(
aδ(t23) +

bχsign(t23)

|t23|2−6∆

)
b3
ψsign(t14)

|t14|2∆|t34|1+2∆−h

= 3λ2b3
ψ

(
a l−1+2∆−h,2∆

sign(t12)

|t12|4∆−h + bχ l
+
2−4∆−h,2∆l

−
1+2∆−h,2−6∆

1

|t12|1−2∆−h

)
.

(3.4.42)

Let us express K in terms of the basis of conformal vectors vaψχ and vsψχ,

K =

−3λ2b3
ψbχ l

+
2∆,1+2∆−hl

−
4∆−h,2−6∆ 3λ2b3

ψa l
+
2∆,1+2∆−h

3λ2b3
ψa l

−
1+2∆−h,2∆ 3λ2b3

ψbχ l
+
2−4∆−h,2∆l

−
1+2∆−h,2−6∆

 . (3.4.43)
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We find the constraint on h by solving,

det

−3λ2b3
ψbχ l

+
2∆,1+2∆−hl

−
4∆−h,2−6∆ − 1 3λ2b3

ψa l
+
2∆,1+2∆−h

3λ2b3
ψa l

−
1+2∆−h,2∆ 3λ2b3

ψbχ l
+
2−4∆−h,2∆l

−
1+2∆−h,2−6∆ − 1

 = 0.

(3.4.44)

We plot equation (3.4.44) as a function of the imaginary part of h = 1
2

+ is in figure

3.8, and we find a unique complex mode at h ≈ 1
2
+1.074i. This complex mode implies

that the nearly conformal fixed point is unstable. Furthermore, from the dual AdS2

perspective, this mode corresponds to a scalar with mass below the Breitenlohner-

Freedman stability bound, since the m2 of the scalar field dual to the operator of

dimension h is equal to [15,80,81],

m2 = h(h− 1)

= −1

4
− s2

= m2
BF − s2.

(3.4.45)

where in the second line we have used that h is in the form of h = 1
2

+ is.

Since the conformal solutions have a complex mode, we can conclude that the full

solutions require relaxing the constraints on the allowed correlators. We do not expect

to find a continuum of states in our spectrum, and indeed find an O(1) gap between

the ground state and first excited state in our exact diagonalization computations.
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Figure 3.8: We find a unique complex mode in the U(1) charged sector at h ≈
1
2

+ 1.074i.

3.4.2 Finite temperature solutions

Let us now consider the solutions to the Schwinger-Dyson equation at finite temper-

ature 1/β,

Σψ(t)/J2 = 3G2
ψ(t)Gχ(β − t), Σχ(t)/J2 = G3

ψ(β − t), (3.4.46)

1

−iw − Σψ(w)
= −Gψ(−w),

1

−1− Σχ(w)
= −Gχ(−w). (3.4.47)

For a given solution, the boundary condition requires:

Gψ(0+)−Gψ(0−) =
1

N
{ψ̄i, ψi} = 1, Gψ(0+) +Gψ(0−) =

1

N
[ψ̄i, ψi] = 2Q/N,

(3.4.48)
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where Q is the U(1) charge. Therefore, at finite temperature, we expect

Gψ(0) +Gψ(β) = 1, Gψ(0)−Gψ(β) = 2Q/N. (3.4.49)

The low temperature numerical solution to the Schwinger-Dyson equation, which is

not conformal (see figure 3.5), suggests that

Gψ(0) = 0, Gψ(β) = 1. (3.4.50)

That in turn suggests that the ground state has charge −N
2
, which is exactly the

oscillator vacuum. That is consistent with the exact diagonalization analysis. In fact,

we may add a chemical potential term to our model to shift the ground state away

from the Q = −N
2
sector.

3.5 Exact diagonalization results

We construct the Hamiltonian

H = 36
∑

i,j<k<l,j′<k′<l′

JijklJij′k′l′ [ψ̄
jψ̄kψ̄l, ψl

′
ψk
′
ψj
′
]

=
∑

i,j,k,l,j′,k′,l′

JijklJij′k′l′ [ψ̄
jψ̄kψ̄l, ψl

′
ψk
′
ψj
′
],

(3.5.1)

where the real random coefficients Jijkl are constructed through

Jijkl =
1

24

∑
σ∈S4

Tσ(ijkl), (3.5.2)
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where Tijkl is only non zero when i < j < k < l, and for a given such set of {i, j, k, l},

they are drawn from the distribution

〈TijklTi′j′k′l′〉 =
6J2

N3
, (3.5.3)

for some coupling J. Such a Hamiltonian corresponds to the Lagrangian

L = −ψ̄i∂tψi + Jijkl
(
ψiψjψkχ̄l + ψ̄iψ̄jψ̄kχl

)
+ χ̄iχi. (3.5.4)

since we can integrate out χi to obtain

χi = Jjkliψ
jψkψl, (3.5.5)

and rewrite the Lagrangian to be

− ψ̄i∂tψi + JijklJij′k′l′ψ
jψkψlψ̄l

′
ψ̄j
′
ψ̄k
′
, (3.5.6)

whose Hamiltonian is given by

H = Jij′k′l′Jijkl[ψ̄
l′ψ̄j

′
ψ̄k
′
, ψjψkψl], (3.5.7)
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where we take the normal ordering of the operators. The Lagrangian can be re-written

in terms of Tijkl, and we obtain,

L =− ψ̄i∂tψi + χ̄iχi+

+
1

4

∑
i<j<k<l

Tijkl
(
ψiψjψkχ̄l − ψiψjψlχ̄k − ψiψlψkχ̄j − ψlψjψkχ̄i + h.c.

)
.

(3.5.8)

Now we integrate out Tijkl, which gives an action

S =

∫
dt
(
−ψ̄i∂tψi + χ̄iχi

)
+

∫
dtdt′

1

32
× 6J2

N3

∑
i<j<k<l

I ijkl(t)Ī ijkl(t′), (3.5.9)

where

I ijkl(t) =
(
ψiψjψkχ̄l − ψiψjψlχ̄k − ψiψlψkχ̄j − ψlψjψkχ̄i + h.c.

)
. (3.5.10)

Note since Jijkl is real, we need to consider also correlators between ψiψi and ψiχ̄i,

etc. For a solution with no mixed correlator, the action takes a simple form

S =

∫
dt
(
−ψ̄i∂tψi + χ̄iχi

)
+

J2

16N3

∫
dtdt′ψ̄i(t)ψi(t′)ψ̄j(t)ψj(t′)ψ̄k(t)ψk(t′)χl(t)χ̄l(t′)

(3.5.11)

Introducing the Lagrange multipliers, we obtain the large N action similar to what

we had before. Note for the Hamiltonian, the ground state energy is given by

〈0|H|0〉 = −6
∑
i,j,k,l

J2
ijkl. (3.5.12)
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We substitute the definition of J to obtain,

E0 ∼ −
3J2

2N3

(
N

4

)
∼ −NJ

2

16
+

3J2

8
− 11J2

16N
+

3J2

8N2
.

(3.5.13)

We find very good agreement (< 0.5% discrepancy) between the ground state energy

for small N , displayed in figure 3.9, and the predicted energy from equation (3.5.13).

At large N, this is close to the numerical ED result, which is E0/N ∼ −0.057J2, see

figure 3.9. We can also look at one fermion states ψ̄i|0〉. It’s helpful to note that

{χ̄i, χi} = 3JijklJijk′l′{ψ̄lψ̄k, ψk
′
ψl
′}+ 3JijklJij′k′l′ψ̄

lψj
′
ψl
′
ψ̄j. (3.5.14)

Also note that

Hψ̄I |0〉 = 6JijklJijkIψ̄
l |0〉+ E0ψ̄

I |0〉 . (3.5.15)

The expectation value of the first excited state energy is given by

E1 ∼ E0 +
J2

16
+ . . . (3.5.16)

Thus, we expect the energy gap in our spectrum should be close to J2/16. We find

a large discrepancy between the energy gap prediction and the exact diagonalization

results for N = 12, 13, and 14. Perhaps a larger sample size is needed here.
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Figure 3.9: Plot of the ground state energy, E0, versus N .

3.5.1 Entropy

We can compute the entropy of our model via exact diagonalization results. From

the full spectrum, we can compute the partition function Z, the free energy F , and

the average energy 〈E〉 as follows,

Z =
∑
n

e−βEn , F = −βlogZ, and 〈E〉 =

∑
nEn e

−βEn

Z
, (3.5.17)

where En are the eigenvalues of our model (3.5.7).
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Using the above equations (3.5.17), the entropy density is found via,

S

N
=
β〈E〉
N
− βF

N
. (3.5.18)

The entropy density is shown in figure 3.10. We can see that in the high temperature

regime, the entropy density tends towards a log 2 limit.
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Figure 3.10: Plot of the entropy density derived from the exact diagonalization results
with N = 8, 10, and 14.
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3.5.2 Charge compressibility

The global U(1) charge Q is defined as follows,

Q =
∑
i

1

2

[
ψ†i , ψi

]
=
∑
i

ψ†iψi −
N

2
. (3.5.19)

We numerically compute the charge compressibility by quadratically fitting the plot of

the ground state energy within each charge sector versus the charge sector according

to the equation,

E0(Q) = E0 +Q2(2NK)−1. (3.5.20)

Here, E0(Q) is the ground state within a specific charge sector, and E0 is the ground

state energy. The fits are displayed in figure 3.11, and the average value of K from

the best fit parameters is ≈ −12.6755.

In our model, the ground state is in the −N
2
charge sector. We find that by adding

a chemical potential term, µ, to our Hamiltonian,

H = H0 + µQ, (3.5.21)

we are able to shift the ground state energy from the Q = −N
2

sector to the Q =

0 sector. Here, µ is chosen such that the oscillator vacuum is annihilated by the

Hamiltonian. Further, we add a term quadratic in Q, which keeps the ground state

in the Q = 0 sector, and also gives a positive charge compressibility.

H = H0 + µQ+ γQ2. (3.5.22)
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Figure 3.11: Plot of the ground state energy, E0, versus Q for several values of N with
no chemical potential term added to the Hamiltonian. We can find the approximate
charge compressibility K of our system by fitting the data to a quadratic form. We
find that 〈K〉 ≈ −12.6.
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Figure 3.12: Plot of the ground state energy, E0, versus Q for several values of N
with Hamiltonian (3.5.22). We can find the approximate charge compressibility K of
our system by fitting the data to a quadratic form. We find that 〈K〉 ≈ 0.769.

We find that the charge compressibility is K ≈ 0.769 as shown in figure 3.12, using

the model (3.5.22) with µ = γ.

3.6 Appendix: The dynamical χ model

Here, we study the model from equation (3.2.5) where the auxiliary field χ is promoted

to a dynamic field. The scaling dimension is again determined by,

1 =
(1− 2∆ψ)tan(∆ψπ)

3 (6∆ψ − 1)tan(π(1− 3∆ψ))
(3.6.1)
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as solved in equation (3.4.9) in section 3.4.

The first solution is at ∆ψ ≈ 0.311 and ∆χ ≈ 0.068, see figure 3.4. Similarly, the

constants bψ and bχ satisfy the same condition provided in equation (3.4.7),

λ2b3
ψbχ =

(1− 2∆ψ)tan(∆ψπ)

6π
(3.6.2)

Using the conformal ansatz that,

Gψ(t) =
bψsign(t)

|t|2∆χ
, Gχ(t) =

bχsign(t)

|t|2∆ψ
, (3.6.3)

where ∆χ = 1−3∆ψ. We evaluate the U(1) neutral sector bilinear spectrum following

the same procedure as section 3.4 to find the following constraint equations,

1 = −6λ2b3
ψbχl

+
2∆,2−2∆−hl

−
1−h,2∆−9λ4b6

ψb
2
χl

+
2∆,2−2∆−hl

−
1−h,2∆l

+
2−6∆,6∆−hl

−
1−h,2−6∆, (3.6.4)

1 = 6λ2b3
ψbχl

+
2∆,1−hl

−
2−2∆−h,2∆ − 9λ4b6

ψb
2
χl

+
2∆,1−hl

−
2−2∆−h,2∆l

+
2−6∆,1−hl

−
6∆−h,2−6∆. (3.6.5)

Here, equation (3.6.4) comes from the antisymmetric sector and equation (3.6.5)

comes from the symmetric sector. The plots of equations (3.6.4) and (3.6.5) are

displayed in figures 3.13, 3.14, and 3.15. The antisymmetric sector contains the h = 2

mode and has no complex modes. Curiously, we see a solution before h = 2, see figure

3.13.
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Figure 3.13: The scaling dimension ∆ψ in the antisymmetric sector of the dynamic
χ model. We a solution before the h = 2 mode at h ≈ 1.2. The next few solutions
are at h ≈ 3.14, 3.85, 5.80, 7.76, . . .

3.7 Appendix: Chaos properties of the q = 6 WL-

SYK model

We briefly consider the chaotic properties of our q = 6 WL-SYK model. We compute

the spectral form factor (SFF), the level spacings ratio 〈r〉, and plot the level spacings

distribution for the N = 14, q = 6 WL-SYK model. Below, we briefly review the

definition of these quantities. The spectral form factor g(t, β) is defined as,

g(t, β) = |Tr(e−βH−iHt)|2/Tr(e−βH)2, (3.7.1)

and a dip ramp plateau structure in the SFF plot is characteristic of a chaotic system.

The level spacings distribution is the probability density function (pdf) of the spacing
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Figure 3.14: The scaling dimension ∆ψ in the symmetric sector of the dynamic χ
model. We are missing the solutions at h = 0 and h = 1. The first few solutions are
at h ≈ 4.11, 4.31, 6.41, 8.46, 10.48, . . .
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Figure 3.15: Plot of (3.6.5) as a function of the imaginary part of h = 1
2

+ is. There
are two solutions at h = 1

2
+ 0.285i and h = 1

2
+ 1.157i. These correspond to the two

missing h = 0 and h = 1 modes from the symmetric sector.
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between the eigenvalues, and the level spacings ratio, r, is equal to,

r =
si

si − 1
, where si = λi+1 − λi. (3.7.2)

The mean spacings ratio is equal to 〈r〉 ≈ 0.386 for the Poisson ensemble, and 〈r〉 ≈

0.536, 〈r〉 ≈ 0.603, and 〈r〉 ≈ 0.676 for the Gaussian orthogonal ensemble (GOE),

the Gaussian unitary ensemble (GUE), and the Gaussian symplectic ensemble (GSE)

respectively [40].

We find that our model has the dip ramp plateau structure characteristic of a

chaotic system for small inverse temperature β, see figure 3.16. However, our model

has 〈r〉 ≈ 0.453, which is between that of the Poisson distribution and the Wigner-

Dyson ensembles. We can see this intermediate behavior in the level spacings distri-

bution, see figure 3.16. Presumably, with larger N we will see the 〈r〉 value and the

level spacings plot approach those of a Wigner-Dyson ensemble.
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q = 6 WL-SYK model. We can see that the distribution lies between that of the
Poisson ensemble and the GUE.
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Chapter 4

Many Body Scars as a Group

Invariant Sector of Hilbert Space

4.1 Introduction

This chapter is based on [47] and [48]. The concept of many-body scar states has

recently emerged as a novel type of weak ergodicity breaking [82–101]. These states

are typically found in the bulk of the spectrum and thus play a role at high tempera-

tures. The scars are special because they have low (area-law) entanglement entropy,

do not thermalize, and lead to the exact ‘revivals’ of the initial state of the system

initialized with scars. Therefore, the information stored in the system does not dissi-

pate at finite temperature, holding promise for potential applications of such states

in quantum information processing.
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The current knowledge of the nature of this phenomenon is based on the identifi-

cation of scars in a variety of systems, such as the AKLT spin chain [82], interacting

fermionic models [83,88,90,91], the spin-1 XY model [89], frustrated spin systems [97],

and a spin-1
2
domain-wall conserving model [98, 99]. In some cases [90, 94, 100], the

scar states are related to the well-known η-pairing states of the Hubbard model,

which form a family under the SU(2) symmetry called pseudospin [102–104]. There

has been experimental observation of the approximate revivals [105], yet a general

understanding of the underlying structures leading to the existence of scars is not yet

available.

The Hamiltonians exhibiting scars can be often brought to the form H = H0 +H1,

such that H1 breaks some of the symmetries of H0 and has a special property that it

annihilates a subsector of the Hilbert space S consisting of eigenstates of H0. In this

chapter, we discuss how the symmetry properties of the Hilbert space can be used

to construct scars systematically. We analyze a rich class of models where the scar

subsector S is invariant under the action of a continuous group G, which is bigger

than the symmetry of the full Hamiltonian. The requisite Hermitian operator H1

must have the form H1 =
∑

j OjTj, where Tj are generators of the symmetry group

G and Oj is any operator s.t. the product OjTj is Hermitian. For H0, the simplest

option is that it has symmetry G, i.e. [H0, Tj] = 0, but the most general condition is

that,

[H0, C
2
G] = W · C2

G, (4.1.1)

where W is some operator and C2
G is the quadratic Casimir of the group G. Then

the states invariant under G are eigenstates of H0.
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We find that, for any Hamiltonian of the form

H = H0 +
∑
a

OaTa, (4.1.2)

the dynamics of the scar subsector S is governed by H0 and is decoupled from the

rest of the spectrum controlled by H. If the ergodic properties of H0 and H are

sufficiently different every state in the decoupled sector S will not thermalize with

the rest of the system and will thus violate the eigenstate thermalization hypothesis

(ETH) [106–108]. Because of the decoupling, the unitary time evolution starting from

a state in the invariant sector cannot mix it with the rest of the system. In addition,

if the energy gaps between the states from the invariant subsector have a common

divisor a, then the unitary time evolution of a state from the invariant sector will

exhibit revivals: the initial state will return to itself after equal time intervals (this

is similar to the recurrence time introduced in section 2.3 of chapter 2). Therefore

the states in S possess all of the defining properties of the many-body scar states. To

our knowledge, such general constructions have not been discussed previously, and

we present their concrete examples.

The general class of models we study includes the famous Fermi-Hubbard model

and its deformations. In this context we show that, in addition to the family of states

which transform as spin-N/2 under the pseudospin symmetry (the η-pairing states),

which were recently shown to be scar states in [90, 94, 100], there is another family

of scar states. This second family, whose states may be explicitly written down as

(4.2.6) or (4.3.6), is invariant under the U(N) symmetry which acts on the degrees
aThis happens, for example, when the energies of all states in S are integers in some units.
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of freedom on all N lattice sites; it forms a multiplet of spin-N/2 under the SU(2)

which is the physical rotational symmetry in the Fermi-Hubbard and related models.

4.2 Specific constructions

The structure of the Hilbert space determines the existence and properties of the

invariant subspace S. We will focus on the Hilbert space of M fermionic oscillators

{cI , c†I′} = δII′ , I, I ′ = 1, . . . ,M , (4.2.1)

which has dimension 2M and is acted on by U(M). The Hilbert space forms a spinor

representation of O(2M), which acts on the 2M Majorana fermions, and we can

choose G to be any of its subgroups. The choice of G provides an important handle

on the dimension of the scar subspace: the smaller the group G, the bigger the

invariant scar sector S.

For M = 2N one may interpret [109] this Hilbert space as that of a lattice model

withN sites and two fermionic degrees of freedom per site (they may correspond to the

two states of a spin-1/2 fermion). The Hilbert space and the structure of the invariant

subspace S we consider are thus identical to that in a number of spin-1/2 models, such

as Hubbard, Hirsch and their deformations. There are two useful ways this Hilbert

space can be factorized [18, 110]: according to the representations of U(N) × SU(2)

or according to the representations of O(N) × SO(4) = O(N) × SU(2) × SU(2)

(the relevance of group SO(4) was noted long ago in the context of Hubbard model

[103, 104]). Choosing a singlet representation of U(N) fixes the (N + 1)-dimensional
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Figure 4.1: Schematic representation of the Hilbert space and model (4.2.4). Each line
corresponds to a hopping Ti or some bilinear operator in terms of fermion operators.
Figure is adapted from reference [47].

spin-N/2 representation of SU(2) - the maximal representation of SU(2) in the given

Hilbert space. An analogous relation for orthogonal groups indicates that the O(N)

singlets transform in the (N/2, 0)+(0, N/2) representation of SO(4) ∼ SU(2)×SU(2),

where we labeled the SU(2) representations by their spin J . Thus, there are two sets

of (N +1) invariant O(N) states; each one is invariant under one of the SU(2) groups

and transforms as spin-N/2 under the other.

We see that there are two natural choices for the subgroup of U(2N): G = U(N)

or G = O(N), both acting on the degrees of freedom on all N lattice sites. The

lattice may be thought of as one-dimensional, as in figure 4.1, but the specific way

the U(N) or O(N) indices are mapped to spatial lattice indices is not important for

the purposes of finding scars. In particular, the lattice can be of arbitrary dimension,

frustrated, and can have any boundary conditions.

The hopping term on this lattice is T =
∑
aa′,σ

taa′ c
†
aσca′σ, where the first index

of caσ labels the sites, the second index the ‘spin,’ and taa′ is the hopping strength
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Hermitian matrix. One can see that, for a general complex taa′ , the hopping T is a

generator of SU(N) that acts on the indices a (see [18]). Adding the charge Q to the

set of generators we would obtain generators of U(N). For purely imaginary taa′ the

hopping T is a generator of SO(N), and for real taa′ the situation depends on the

parity of N .

4.2.1 Vector Example

Following the prescription (4.1.2) we first have to choose H0 that will control the

scar subsector; it must satisfy (4.1.1). We will use the following integrable fermionic

Hamiltonian [18],

H0 = 2
(
c†aσc

†
aσ′ca′σca′σ′ − c†aσc†a′σcaσ′ca′σ′

)
+2(2−N)Q+N(2−N) , (4.2.2)

{caσ, c†a′σ′} = δaa′δσσ′ , a = 1, . . . , N , σ = 1, . . . , 2 ,

where summation over repeated indices is implied. It may be viewed as a generalized

Hubbard interaction term which has a continuous symmetry O(N)×O(2), in addition

to the usual U(1) symmetry with conserved charge Q = 1
2
[c†aσ, caσ]. It is a special

case, N2 = N3 = 2, of the O(N1) × O(N2) × O(N3) fermionic tensor model [3, 18].

While in general the tensor model is not integrable [21], for N3 = 2 it is [18, 110],

and all of the energies are integer. Because of the O(N) × O(2) symmetry we have

[H0, C
2
U(N)] = W · C2

U(N) 6= 0 and [H0, C
2
O(N)] = 0 in agreement with (4.1.1) which

ensures the group-invariant states from S are eigenstates of this H0.
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The singlets in S have several quantum numbers [110], which can be used to

distinguish them (none of them are conserved by the full Hamiltonian (4.2.4)). This

includes particle number Q and one of the SU(2) charges,

Q2 = −i
(
c†a1ca2 − c†a2ca1

)
= c†aσσ

2
σσ′caσ′ . (4.2.3)

To control the energies of the singlets and the period of revivals, we can add αQ +

βQ2 to H0. Adding also the hopping terms results in the Hamiltonian HT = T +

H0 + αQ + βQ2 which remains integrable. If T is a generator of SO(N) (imaginary

amplitude) the problem can be solved analytically and T simply splits each of the

O(N) representations analogously to Zeeman splitting.

The full example Hamiltonian we will study numerically (N = 8, α = β = 1,

periodic boundary conditions) readsb

H = HT + 4
N∑
a=1

OT
a Ta + 32

N∑
a=1

OQ
a (Qa − 1), where (4.2.4)

OT
a =

(a+3)∑
a1,2=(a+2),σ,σ′

[
q1
a1,2,σ,σ′c

†
a1σ
c†a2σ′ + q2

a1,2,σ,σ′c
†
a1σ
ca2σ′ + h.c.

]
,

OQ
a =

2∑
σ=1

[
c†a+1σc

†
a−1σ + h.c.

]
, Qa =

2∑
σ=1

c†aσcaσ .

Ta = 8ei
√

2π
∑

σ c
†
aσca+1σ is a translation-invariant nearest-neighbor hopping and a

generator of SU(N). The operator OT
a acts on sites a+2 and a+3 which ensures that

OT
a Ta is Hermitian and local. The coefficients q1,2

a1,2,σ,σ′
are random complex numbers

bThe Hamiltonian H = H0 + OT has the same properties with respect to the presence of the
many-body scar states.
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Figure 4.2: Histogram of the nearest neighbor eigenvalue spacings (inset, shown for
the even Q sector) and the spectral form factor (shown for the full spectrum) for the
model in (4.2.4).

and this choice of the (arbitrary according to (4.1.2)) operator O is intended to break

the symmetries of H0 and to make the bulk of the spectrum ergodic. Operators

(Qa− 1) complement Ta to form the set of U(N) generators and the full Hamiltonian

is of the form (4.1.2) for G = U(N).

Most states in the Hilbert space will be mixed by the randomness built into O

while the effective Hamiltonian for the U(N)-invariant states in S remains HS =

H0. The only remaining symmetry of H relates the sectors with odd and even Q,

both described by the gaussian unitary ensemble (GUE) (see figure 4.2 for the exact

numerical results). The time-reversal symmetry is broken by the operator c†aσcaσ in

Oa.
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Figure 4.3: Eigenstate (blue dots) and window-averaged (green line) expectation
values forM = −2c†11c11c

†
12c12. SU(8)-singlet states are shown in red triangles.

The probability distribution P (rk) of the level spacings (inset of figure 4.2)

agrees well with the GUE overlay. It contains information about the correla-

tion functions of close eigenvalues, whereas the spectral form factor, g(t, β) =

|Tr(e−βH−iHt)|2/Tr(e−βH)2, also contains information about longer range correla-

tions. The main elements of the spectral form factor (SFF) for a random matrix is a

dip ramp plateau structure (for a discussion of their physics, see [22]). The presence

of this structure in our system is another evidence of quantum chaos and ergodicity

in its bulk spectrum.

A more detailed characterization of ergodicity is provided in figure 4.3 where

we test the eigenstate thermalization hypothesis (ETH), which conjectures that for

any measurable local operator M, its expectation value in an eigenstate must be
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approximately the same as the window-average over the nearby states at the same

energy. We observe that the conjecture holds for most states in the spectrum while it

is clearly violated for the eleven SU(8) singlet states {|nU〉} that do not thermalize.

The situation when the bulk of the spectrum (dimension 22N−N−3) is ergodic while

an exponentially small subset of states is not (there are N + 3 SU(N) singlets in our

Hilbert space), corresponds by definition to the violation of the strong formulation of

ETH (the weak formulation allows for a few ‘outlier’ states) [106–108].

The singlet states violating strong ETH also clearly stand out in the time evo-

lution. Consider two initial states ψs0, made exclusively of singlet eigenstates of H

and ψg0 , composed of the same number of generic states. In both cases we can write

|ψs/g0 〉 =
∑
cn |ψn〉, where |ψn〉 is an eigenstate of H with energy En. We are inter-

ested in the squared projection of the time-evolved state on the initial wavefunction

f(τ) = | 〈ψ0|e−iHt|ψ0〉 |2 =
∑

n,m |cncm|2e−i(En−Em)τ . It should relatively quickly go

to zero if the states are generic without particular correlations between energies En.

Exact numerical results confirming this are shown in the right panel of figure 4.4. A

vanishing overlap with the initial state indicates that the information stored initially

has fully dissipated through thermalization. This phenomenon is closely related to

the dip seen in the SFF in figure 4.2.

For the singlet states, all of the energies En are integer, which means that there

exists a (greatest) common divisor for all of the energy gaps between singlet states

En − Em: ω = gcd(En − Em). After the time T = k 2π
ω
, k ∈ Z all of the exponents

in f(τ) are equal to 1. This constructive interference results in ‘revivals’ of the

(information stored in the) initial state with period t1r. In our numerical example
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Figure 4.4: Time dependence of the fidelity f(τ) for vector model with N = 8. The

initial state is a linear combination of 50 eigenstates of H and α =
11∑
n=1

|cn|2 = 0.95.

Top: the initial state is dominated by 11 singlet states. The fidelity demonstrates
oscillations with the period T ≈ 3.14 and amplitude A ≈ α2. Bottom: the initial
state is dominated by 11 generic high-energy states, the fidelity is quickly decaying.

ω = 2, and thus we observe the revivals with period π, as shown in the left panel

of figure 4.4. Note that, in this calculation 5 percent of generic states were admixed

to the initial state, but ideal revivals to f(τ) = 1 would be observed otherwise. The

higher-frequency ‘revivals’ with smaller amplitude are due to the energy differences
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that are shared only by a subset of the singlet states. The energies of singlets are

controlled by H0 +αQ+βQ2; therefore, the period of the revivals is a function of the

parameters α and β. While a pure state is coherently oscillating in our case, we note

that an interesting construction of environment-assisted, non-stationary dynamics for

mixed states was discussed in the literature recently [111].

Two of the scar states are tensor products of Bell-like states formed on each site:

|S1〉 =
⊗
a

|0a11a2〉+ i |1a10a2〉√
2

=
∏
a

c†a1 + ic†a2√
2

|0〉 (4.2.5)

|S2〉 =
⊗
a

|0a11a2〉 − i |1a10a2〉√
2

=
∏
a

c†a1 − ic†a2√
2

|0〉 ,

These states can be easily created in experiment and we provide the corresponding

gate sequences in figure 4.5. The energies of these states are given by ES1 = E0 +

αN + βN = N(α + β + 2 − N) and ES2 = E0 + αN − βN = N(2 + α − β − N).

Initializing a system to an arbitrary superposition of these two states may be the

most accessible experimental demonstration of revivals.

The complete set of N + 1 states invariant under the U(N) symmetry [110] can

be constructed by acting repeatedly on the state |S1〉 with the bilinear operator

ζ = c†ab(σ
3 − iσ1)bb′cab′ (this is a ‘rotated’ version of the zeta-operator in [104]):

|nU〉 =
ζn

2n
√

N !n!
(N−n)!

|S1〉 , (4.2.6)

with n = 0, . . . , N .
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Another basis for this family of states is given in equation (4.3.6). One can see

that these states have the maximal possible spin-N/2 with respect to the index σ,

i.e. they transform as a (N + 1)-dimensional representation of SU(2)σ, which is the

physical spin in the Fermi-Hubbard model. There is only one family which has the

maximal spin. Consequently, it is quite robust under the action of any perturbation

that preserves this spin. Namely, any spin-preserving perturbation will map this

representation to itself which means these states will continue to violate strong ETH

while the revivals may disappear as a result of changing their energies.

If instead of a complex hopping strength we chose a purely imaginary one (or a

real hopping strength and bipartite lattice), then the hopping terms are generators of

SO(N). As it was explained in the introduction, the Hilbert space may be decomposed

[110] according to representations of O(N)× SO(4). There are 2N + 2 singlet states

that could be organized in two sets. One of these sets is |nU〉, for which the O(N)×

SU(2) symmetry is further enhanced to U(N). The other set of N + 1 states is

|nO〉 =
ηn√
N !n!

(N−n)!

|0〉 , η =
N∑
a=1

c†a1c
†
a2 , (4.2.7)

with n = 0, . . . , N . These states are invariant under G = O(N) × SU(2) and also

Ũ(N)×SU(2), where the S̃U(N) subgroup of Ũ(N) is generated by spin flip hopping

terms along with spin-preserving hopping terms with imaginary amplitude. They

transform as spin-N/2 under the pseudospin symmetry. They are equivalent to the

exact eigenstates of the Hubbard model originally identified using the celebrated η-

pairing [102] and recently demonstrated to be many-body scar states [90, 100] (to
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|a, 0〉 H P

|a, 1〉 X

|a, 0〉 H Z P

|a, 1〉 X

Figure 4.5: Left panel: Circuit diagram of Wa for construction of |S1〉 states (4.2.5).
H is the Hadamard gate, X is the Pauli-X gate, the line spanning the two sites
represents the CNOT gate from qubit 0 to target qubit 1, and P is the phase gate.
Right panel: Circuit diagram of W̃a gates needed to construct the singlet state |S2〉.

obtain (4.2.7) we need to transform from the real hopping amplitude used in [102] to

our imaginary one).

Let us emphasize that the Hamiltonian H does not respect all the symmetries

possessed by the two scar sectors. In particular, it breaks translation invariance while

both |nO〉 and |nU〉 are manifestly invariant under lattice translations. Thus, the

scars appear in the enhanced symmetry sectors of Hilbert space, in accordance with

our general arguments.

Let us note that our construction of H1 is similar to that in [94], in that hopping

T is used to annihilate S. Similarly to [100], [94] has discussed one of the two SU(2)

families of scar sectors in the context of the Hubbard model, although the O(N)

invariance of these states was not pointed out explicitly.
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4.3 Construction of group invariant states

The two states |S1,2〉 (4.2.5) with zero entanglement entropy may be expressed as a

product state with the use of the gates Wa and W̃a (see figure 4.5):

|S1〉 =
N∏
a=1

Wa |0〉 , |S2〉 =
N∏
a=1

W̃a |0〉 . (4.3.1)

We will briefly review the construction of state |S1〉 via well known gates that

act on either one or two qubits at a time. First we will define the Hadamard gate,

H; it acts on a single qubit at a time, sending |0〉 → |0〉+|1〉√
2

and |1〉 → |0〉−|1〉√
2

. The

Pauli gate, X, acts on a single qubit at a time, sending |0〉 → |1〉 and |1〉 → |0〉. It

is also known as the bit-flip gate. The phase gate, P , leaves |0〉 invariant and sends

|1〉 → i |1〉. The CNOT gate acts on two qubits at a time. It performs the ‘not’

operation on the second qubit only when the first is |1〉. We start with the state

|0a10a2〉 and apply the Hadamard gate to the first qubit,

H1 |0a10a2〉 =
|0a10a2〉+ |1a10a2〉√

2
. (4.3.2)

Applying the Pauli-X gate to the second qubit of the output, we find

X2H1 |0a10a2〉 =
|0a11a2〉+ |1a11a2〉√

2
. (4.3.3)

After applying the CNOT gate, we have the following,

CNOT1X2H1 |0a10a2〉 =
|0a11a2〉+ |1a10a2〉√

2
. (4.3.4)
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Finally, we find |S1〉 after applying the phase gate on the first qubit of the output,

|S1〉 = P1 CNOT1X2H1 |0a10a2〉 =
|0a11a2〉+ i |1a10a2〉√

2
. (4.3.5)

We can perform similar computations to build |S2〉.

Let us also present another, rotated basis for the family of states (4.2.6), which

are U(N) invariant and transform as spin-N/2 under the rotational SU(2) symmetry:

|ñU〉 =

(∑
a

c†a1ca2

)n
2n
√

N !n!
(N−n)!

|S̃2〉 , (4.3.6)

with n = 0, . . . , N . Here

|S̃1〉 =
N∏
a=1

c†a1 |0〉 , |S̃2〉 =
N∏
a=1

c†a2 |0〉 . (4.3.7)

We note that these states are singlets under the pseudospin symmetry. For the

Hamiltonian H0 in (4.2.1), the states |ñU〉 are not eigenstates, while the states |nU〉

given in (4.2.6) are. However, for the Fermi-Hubbard and Heisenberg models, which

respect the SU(2) rotational symmetry, both |ñU〉 and |nU〉 are eigenstates.

As shown in section 4.2.1, some singlet states in the vector model are related to

the η-pairing states discovered by Yang [102]. We can extend this construction to the

matrix model that was discussed in [18]. We start with the vacuum state |0〉 that is

naturally a singlet state, because it is annihilated by any hopping. Then in order to

build any other singlet state we can act with the creation operator and pair the index
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with the use of the δ - pairing or ε - pairing. Namely, we introduce

(J+)aa′ = c†abc
†
a′b, (K+)a1...aN1

= εb1...bN2

N1/2∏
i=1

c†aibi . (4.3.8)

These operators automatically are singlets under the action of SOb(N). Then the

singlet states could be constructed out of the products and sums of the operators J+,

K+ by contracting indices with the use of δaa′ or εa1...aN .

The states with a small number of fermions could be built with the use of only

the operator matrix J+. We introduceMn =
∑
a

(
Jn+
)
aa
, which is a singlet under the

action of SOa(N) × SOb(N). For example, acting with Mn and their products we

can build singlet states as

|s1〉 =M2 |0〉 , |s2〉 =M3 |0〉 , |s3〉 =M3M4M2
2 |0〉 , . . . (4.3.9)

When the number of fermions is larger than N , we can use K+ to build singlet

states. For example, when N is even we can have

|sε〉 = (K+)a1a1...aN/2aN/2 |0〉 . (4.3.10)

For N = 2 the operator (K+)aa is the η-operator from [102].
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Figure 4.6: Correlator GU = 〈c†11c12c
†
42c41〉 evaluated for every eigenstate of the vector

model with N = 8. The value of GU for this family of scar states is GU = 1
4
− n(N−n)

2N(N−1)
.

In general we are able to express the dimension of the singlet subspace as an

integral [18]

dimSO =

=
4N1N2

VN1VN2

π∫
−π

N1,N2∏
i,j=1

dxidyj (cosxi + cos yj)
2×

×
N1∏
i 6=i′

(cosxi − cosxi′)
2
N2∏
i 6=i′

(cos yi − cos yi′)
2 , (4.3.11)
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where VN1,N2 are the dimensions of the SO(N) groups, which are equal to

VN1 =

π∫
−π

N1∏
i

dxi ×
N1∏
i 6=i′

(cosxi − cosxi′)
2 . (4.3.12)

4.4 Two-dimensional tJU model

We illustrate the concepts discussed above using the example of a perturbed tJU

model on a 2D rectangular bipartite lattice. Here, we use the standard notation for

the fermion numbers at site i:

ni↑ = c†i↑ci↑ , ni↓ = c†i↓ci↓ , ni = ni↑ + ni↓ . (4.4.1)

The total fermion number is expressed as, Q =
N∑
i=1

ni. In addition, we can define the

spin operator at site i as,

~Si =
1

2
c†iα~σαβciβ, (4.4.2)

where ~σ are the Pauli matrices.

The Hamiltonian of the standard tJU model [112–114] combines the Hubbard and

Heisenberg interactions

H tJU = t
∑
〈ij〉σ

c†iσcjσ + J
∑
〈ij〉

~Si · ~Sj+

+U
∑
i

ni↑ni↓ − µQ (4.4.3)
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and can be viewed as a generalization of Hubbard or t-J models relevant for high-Tc

superconductivity [115].

The H0 + OT decomposition of this model can be performed with respect to

the U(N) group, which gives us the |ñU〉 family of group-invariant scars as seen in

(4.3.6). To construct this decomposition, we must introduce several useful generators

of SU(N). The generators of SU(N) include the spin-independent hopping terms

with generally complex amplitudes:

Tij = λc†iσcjσ + h.c., λ ∈ C. (4.4.4)

We may now define a nearest-neighbor hopping with real amplitude,

T ′〈i,j〉 = c†iσcjσ + h.c. (4.4.5)

As T ′〈i,j〉 is a Hermitian, spin-independent hopping term, it is a linear combination of

Tij, and thus belongs to the SU(N) algebra and will annihilate the SU(N) singlets.

Next, we define a set of generators of U(N),

Ki = ni − 1 , i = 1, . . . N . (4.4.6)

In terms of the local magnetization Mi,

K2
i = 1−M2

i , (4.4.7)
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whereM2
i = (ni↑−ni↓)2. Lastly, we define a linear combination of SU(N) generators,

Cij = −1

4
(EijEji + EjiEij +KiKj) , (4.4.8)

where Eij = c†iacja are SU(N) generators.

Now, we can express ~Si · ~Sj in terms of the Cij SU(N) generators. Let us first

expand ~Si · ~Sj,

4~Si · ~Sj =
(
c†i↑ci↑ − c†i↓ci↓

)(
c†j↑cj↑ − c†j↓cj↓

)
+
(
c†i↑ci↓ + c†i↓ci↑

)(
c†j↑cj↓ + c†j↓cj↑

)
−
(
c†i↑ci↓ − c†i↓ci↑

)(
c†j↑cj↓ − c†j↓cj↑

)
= −c†iαcjαc†jβciβ − c†jαciαc†iβcjβ − c†iαciαc†jβcjβ + c†iαciα + c†jαcjα

= 1− EijEji − EjiEij −KiKj

And so we can simplify,

~Si · ~Sj =
1

4
+ Cij. (4.4.9)

Here, we decompose the tJU Hamiltonian (4.4.3) with respect to U(N),

H tJU = t
∑
〈ij〉σ

c†iσcjσ + J
∑
〈ij〉

~Si · ~Sj + U
∑
i

ni↑ni↓ − µQ

= t
∑
〈ij〉

T ′〈i,j〉 + J
∑
〈ij〉

(
1

4
+ Cij

)
− µQ+ U

∑
i

(
ni↑ni↓ −

ni↑ + ni↓
2

+
ni↑ + ni↓

2

)

= t
∑
〈ij〉

T ′〈i,j〉 +
J

4
Nnn

1 + J
∑
〈ij〉

Cij +Q

(
U

2
− µ

)
− UN

2
+
U

2

∑
i

(
1− (ni↑ − ni↓)2)

= t
∑
〈ij〉

T ′〈i,j〉 +
J

4
Nnn

1 + J
∑
〈ij〉

Cij +Q

(
U

2
− µ

)
− UN

2
+
U

2

∑
i

K2
i ,
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where in the third line we let Nnn
1 denote the numbers of nearest-neighbor pairs in a

particular lattice. Rearranging, we have

H tJU =
J

4
Nnn

1 +Q

(
U

2
− µ

)
− UN

2
+

t
∑
〈ij〉

T ′〈ij〉 + J
∑
〈ij〉

Cij +
U

2

∑
i

K2
i , (4.4.10)

where we have used the H0 + OT decomposition of individual terms (4.4.5), (4.4.7),

(4.4.9). The first line of equation (4.4.10) is H0 and acts on the invariant states with

a constant while the second OT line only consists of terms proportional to group

generators that annihilate the invariant states.

We recall that a group G-invariant states become scars in a model that can be

written as H0 +
∑

k OkTk where Tk are generators of G. Note that a generator of any

subgroup of G is also a generator of G and can also appear as Tk in the decomposition.

The standard tJU model (4.4.3) conserves the total physical spin. Therefore the states

|ñU〉 form a separate symmetry sector of this model. To make them true scars we

break the total spin conservation by adding a perturbation. It is a symmetry-breaking

term of the OT form for a rectangular lattice in two dimensions, where i labels the

horizontal and j the vertical direction:

Hp
H =

∑
i,j

rij(M̃ij + M̃(i+1)j)S
hor
ij + qij(M̃ij + M̃i(j+1))S

vert
ij , (4.4.11)
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where rij, qij ∈ [0, 1] are real random numbers and

M̃ij = rMc
†
ij↑cij↑ − qMc†ij↓cij↓ , (4.4.12)

Shor
ij =

∑
σ

c†(i+1)jσcijσ + h.c. ,

Svert
ij =

∑
σ

c†i(j+1)σcijσ + h.c. ,

where rM , qM are also random numbers, that we chose to be rM = 1.426974 and

qM = 2.890703.

The full Hermitian Hamiltonian we study numerically reads

H tJU
h = H tJU + βHp

h + γQ2 , (4.4.13)

where we added a term proportional to the SU(2)spin generator Q2 (4.2.3). It acts as

H0 on |ñU〉 and splits them according to the index n: Q2 |ñU〉 = (2n−N) |ñU〉). Note

that by increasing γ we can make the scar state with maximum Q2, |S1〉 (4.4.17), the

ground state.

We may also consider a non-Hermitian perturbation to our model. One often

describes an open system by a non-Hermitian Hamiltonian that results from a re-

duction of the Hermitian Hamiltonian of the full system to an open subsystem. The

non-Hermitian Hamiltonian may not conserve the norm of the state which corre-

sponds to the probability leaking out or into the open system. To illustrate that

the invariant states remain stable and decoupled also in non-Hermitian systems with
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Hamiltonian H0 +OT , we consider the following non-Hermitian term.

Hp
nH =

∑
i,j

(M̃ij − M̃(i+1)j)S
hor
ij + qij(M̃ij − M̃i(j+1))S

vert
ij . (4.4.14)

Thus, the full non-Hermitian Hamiltonian we consider is

H tJU
nh = H tJU

h + β1H
p
nh, (4.4.15)

where for numerical investigations we set β1 = 0.4β. In both the Hermitian and the

non-Hermitian cases, the part of the full Hamiltonian that acts with a constant on

the invariant states is

E
|ñU 〉
0 =

J

4
Nnn

1 +

(
U

2
− µ

)
Q− UN

2
+ γQ2. (4.4.16)

The states in equation (4.2.6) are not the eigenstates of (4.4.16). Instead, the basis

in the SU(N)-invariant subspace determined by the Hamiltonian (4.4.16) reads

|ntJU〉 = |nU〉 =
ζn

2n
√

N !n!
(N−n)!

|S1〉 , (4.4.17)

|S1〉 =
∏
a

c†a1 + ic†a2√
2

|0〉 ,

where ζ = Q3 − iQ1, as in (4.2.6).
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Because both Hermitian and non-Hermitian models we consider have an exact

H0 + OT decomposition, they have the family |ñU〉 as scars for any choices of the

coupling constants.c

4.4.1 Numerical results

For the numerical experiment we use the Nx × Ny = 3 × 3 lattice and set t = −0.4,

J = 1, U = 8, µ = 1.3. For γ = 1 this corresponds to the g.s. filling of ν =

Q
2N

= 0.44(4), 11% below the half-filling which corresponds to the potentially high-

Tc-relevant regime [116, 117]. For our simulation we instead choose γ = 3.6. At this

value the half-filled |S1〉 state (4.4.17) becomes the ground state. This simplifies the

initialization of the system to the scar subspace in experiment. Because |S1〉 is a

product state, it can alternatively be created by application of a simple gate circuit

on each site (see figure 4.5).

The level statistics parameters of r = 0.5306 (rGOE = 0.5359) and rnh = 0.7378

(rGinibre ≈ 0.74) are close to the values of the corresponding random ensembles (de-

fined in the introduction) and thus indicate that the bulk spectra of both systems

are fully chaotic. This is further elaborated by the gap distribution (figure 4.9 and

4.11) and by the presence of the ‘dip-ramp-plateau’ structure in the spectral structure

factor plot figure (4.9) typical for chaotic systems.

In the spectrum of the non-Hermitian Hamiltonian (4.4.15) (see figure 4.8) we

observe that all the scar states remain at the real axis and are not effected by the non-
cThe tJU model (4.4.3) has another H0 +OT decomposition, leading to a second family of group

invariant scars. This family is not presented here; however, the details of the second family of scars
is presented in [48].
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Hermitian terms. The non-Hermitian spectrum also has a ‘conjugation symmetry’:

for every state with energy a + ib there is another state with energy a − ib. All the

observables measured in any two such states (such as entanglement entropy) are also

equal. For this reason we choose to plot such observables as a function of the real

part of the energy eigenvalue: ReE.

To demonstrate the violation of strong ETH we evaluate the ‘magnetic’ (4.4.21)

off-diagonal long-range order (ODLRO) correlator characteristic of the |ñU〉 [47]

states. We observe (see figure 4.12) that the corresponding expectation values are

significantly different in the invariant states relative to all the generic states in the

spectrum in both systems which allows us to conclude the invariant states are scars

in this system.

One of the most striking and counterintuitive features of the scar states in the

non-Hermitian Hamiltonian (4.4.15) is the stable and coherent time evolution of the

scar subspace shown in figure 4.7. The system is initialized to a state that is a uniform

mix of all the 2N+2 = 20 scar states present in the system. This state is coming back

to itself exactly after the time intervals 2π/ω ≈ 20.94, where ω = 0.3 is the greatest

common divisor of all the gaps between the scar states. The norm of the state is

preserved throughout, although the system is open (Hamiltonian is non-Hermitian)

and the probability density would flow in or out of the system for an initial state that

includes any admixture of a non-singlet generic states. As expected, stable revivals

are also observed for the Hermitian Hamiltonian.
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Figure 4.7: Time dependence of the squared overlap between the initial state and a
time-evolved state for the non-Hermitian Hamiltonian (4.4.15).

4.4.1.1 Spectrum

The imaginary and real components of the eigenvalues of equation (4.4.15) are shown

in figure 4.8. While the majority of the eigenvalues of the non-Hermitian Hamiltonian

become complex the eigenvalues corresponding to the invariant scar states remain real

and the same as in the system without a non-Hermitian term. This demonstrates the

stability of the many-body scar states in suitably designed open systems.

The spectrum also exhibits the conjugation symmetry: for every eigenvalue E =

Er + iEim there is a partner state with E = Er − iEim.

4.4.1.2 Quantum chaos in the Hermitian Hamiltonian

The mean level spacings ratio, 〈r〉, is often used to quantify chaos as well as spectral

transitions between Wigner-Dyson ensembles. The spacing ratio, r, is reviewed in the
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U

Figure 4.8: Nx = 3 Ny = 3 non-Hermitian tJU spectrum. All the particle number
sectors are plotted together. Figure is adapted from reference [47].
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introduction,

r =
si
si−1

where, si = λi+1 − λi, (4.4.18)

where λi is the ith eigenvalue. See equation (4.4.20) for the definition for a non-

Hermitian system. The analytic mean level spacings ratios are calculated in [40], and

are 〈r〉 ≈ 0.5359 , 〈r〉 ≈ 0.6027, and 〈r〉 ≈ 0.6762 for the GOE, GUE, and GSE

respectively.

Based on the figures 4.9 and 4.10, we can conclude that our Hermitian models

have a chaotic bulk; the SFF has a dip ramp plateau structure, and the level spacings

plots and 〈r〉 values closely match those of the GOE.

4.4.1.3 Quantum chaos in the non-Hermitian Hamiltonian

The Ginibre symmetry classes are the non-Hermitian analogs to the Dyson symmetry

classes. We can compute the level spacings of our non-Hermitian models and compare

to those of the Ginibre random matrix analog. It is also possible to compute com-

plex spacing ratios 〈r〉. For example, the Ginibre GUE (GinUE) 〈r〉 is numerically

determined to be ≈ 0.74 [118].

The definition of a nearest neighbor for a non-Hermitian matrix is [119]:

dα = minβ |Eα − Eβ| . (4.4.19)

The r-value is defined as [118].

rn =

∣∣∣∣dN1
n − dn
dN2
n − dn

∣∣∣∣ (4.4.20)
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Figure 4.9: Quantum chaos for Hermitian tJU 3x3 γ = 3.6. Top: SFF. Bottom: Ps.
This model has 〈r〉 = 0.5306. 〈r〉GUE = 0.6027 and 〈r〉GOE = 0.5359 [40]. Large
magnetic field γ = 3.6 causes the correlations at one corresponding frequency that
results in the peak seen in the SFF plot soon after the dip. This peak is absent or
much reduced for the moderate magnetic field γ = 1 (see figure 4.10)
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Figure 4.10: Quantum chaos for Hermitian tJU 3x3 γ = 1. Top: SFF. Bottom: Ps.
This model has 〈r〉 = 0.5284. 〈r〉GUE = 0.6027 and 〈r〉GOE = 0.5359.

144



where N1 is the nearest neighbor and N2 is the next nearest neighbor.

We can see from figure 4.11, that our non-Hermitian model shows evidence of a

chaotic bulk. The level spacings plot fits closely to that of the Ginibre distribution,

and the 〈r〉 value of our model is also close to the Ginibre value. The interpretation

of the SFF for the non-Hermitian model is less straightforward, though we do see a

dip ramp plateau structure when considering only the real part of the eigenvalues.

The dip ramp plateau structure is less clear when considering only the magnitude or

imaginary part of the eigenvalues.

4.4.1.4 ETH violation

The violation of strong ETH by the scar states is demonstrated in figure 4.12 for the

Hermitian and the non-Hermitian Hamiltonians. We evaluate the expectation values

for the operator that defines the off-diagonal long-range order of the scar family

considered:

GU = 〈c†x1y1↑cx1y1↓c
†
x2y2↓cx2y2↑〉 (4.4.21)

for |ñU〉 introduced in [47].

Because of the high symmetry of the invariant states, this correlator, when evalu-

ated for scars, does not depend on the coordinates x1, y1, x2, y2 [47]. For the numerical

evaluation we set the points 1 and 2 to be the most distant points in our system with

open boundaries: (x1, y1) = (1, 1) and (x2, y2) = (3, 3).
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Figure 4.11: Top: SFF for non-Hermitian tJU 3x3, Bottom: Ps for non-Hermitian
tJU 3x3. This model has 〈r〉 = 0.7378. For reference, the Ginibre value 〈r〉GinUE ≈
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Figure 4.12: ETH violation by the scar states for the Hermitian Hamiltonian (4.4.13)
(top) and ETH violation by the scar states for the non-Hermitian Hamiltonian (4.4.15)
(bottom) for Nx=3 Ny=3. Shown is the expectation value 〈ψi|M |ψi〉 evaluated for
every eigenstate ψi, with Q = 9 (half-filling) M = GU . The green line is the micro-
cononical (window) average.
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The scar states are clearly away from the microcanonical average in both systems.

A very strong magnetic field is present in both systems and couples to the states

with non-zero magnetization. This results in the spikes seen in the data for the

non-Hermitian system which is apparently more susceptible to the magnetic field.

4.5 Discussion

The presence of group invariant scar states S is a property of a Hilbert space once the

conditions on the Hamiltonian outlined in this paper are satisfied. This universality

explains why the scar states identified to date in different models with the same

Hilbert space can be identical.

The group-invariance requirement is non-local, and the resulting scar states are

invariant under lattice translations. As a consequence, the degrees of freedom on all

of the sites become entangled which spreads the information over the whole system.

This leads to the relative insensitivity of group-invariant states to local perturba-

tions and protection of the quantum information [120]. The invariant scar states do

not thermalize and form a closed, decoherence-free subspace, where non-commuting

transformations can act and universal quantum computation may be performed [121].

This combination of properties makes the group-invariant scar states an interesting

platform for robust quantum information processing.

The gauge/gravity duality [122–124] is a set of correspondences between conven-

tional gauged models without gravity and higher-dimensional gravitational systems.

In quantum mechanical models, gauge fields are non-dynamical, so the gauging is
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equivalent to truncation of the Hilbert space to a group-invariant sector [2, 3, 18,

125–127]. It would be interesting to explore possible connections between the group-

invariant scars and gauge/gravity duality.

The broad framework we presented allows for constructing a model that could

be simply realized in experiment. An example Hamiltonian could be ByQ2 +∑
a (Ma +Ma+1)

(
c†a+1σcaσ + h.c.

)
, where Ma = c†a1ca1 − c†a2ca2 is the magnetization

at site a. The eigenstates include the translationally invariant |nU〉 scars including

|S1〉 with ES1 = ByN and |S2〉 with ES2 = −ByN . In addition, we have demonstrated

that the invariant scar subspace continues to undergo stable, coherent time evolution

in a class of suitably designed open systems with non-Hermitian Hamiltonian. This

greatly expands the realm of weak ergodicity breaking phenomena and will hopefully

inspire new theoretical and experimental studies.
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