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Abstract

A first determination of the mass scale set by the lightest neutrino remains a crucial outstanding
challenge for cosmology and particle physics, with profound implications for the history of the
Universe and physics beyond the Standard Model. In this thesis, we present the results from
three methodological papers and two applications that contribute to our understanding of the
cosmic neutrino background.

First, we introduce a new method for the noise-suppressed evaluation of neutrino phase-space
statistics. Its primary application is in cosmological N-body simulations, where it reduces the
computational cost of simulating neutrinos by orders of magnitude without neglecting their
nonlinear evolution. Second, using a recursive formulation of Lagrangian perturbation theory,
we derive higher-order neutrino corrections and show that these can be used for the accurate
and consistent initialisation of cosmological neutrino simulations. Third, we present a new code
for the initialisation of neutrino particles, accounting both for relativistic effects and the full
Boltzmann hierarchy. Taken together, these papers demonstrate that with the combination of the
methods described therein, we can accurately simulate the evolution of the neutrino background
over 13.8 Gyr from the linear and ultra-relativistic régime at z = 10° down to the non-relativistic
yet nonlinear régime at z = 0. Moreover, they show that the accuracy of large-scale structure
predictions can be controlled at the sub-percent level needed for a neutrino mass determination.

In a first application of these methods, we present a forecast for direct detection of the neutrino
background, taking into account the gravitational enhancement (or indeed suppression) of the
local density due to the Milky Way and the observed large-scale structure within 200h~' Mpc. We
determine that the large-scale structure is more important than the Milky Way for neutrino masses
below 0.1eV, predict the orientation of the neutrino dipole, and study small-scale anisotropies.
We predict that the angular distribution of neutrinos is anti-correlated with the projected matter
density, due to the capture or deflection of neutrinos by massive objects along the line of sight.

Finally, we present the first results from a new suite of hydrodynamical simulations, which includes
the largest ever simulation with neutrinos and galaxies. We study the extent to which variations
in neutrino mass can be treated independently of astrophysical processes, such as feedback from
supernovae and black holes. Our findings show that baryonic feedback is weakly dependent on
neutrino mass, with feedback being stronger for models with larger neutrino masses. By studying
individual dark matter halos, we attribute this effect to the increased baryon density relative to
cold dark matter and a reduction in the binding energies of halos. We show that percent-level
accurate modelling of the matter power spectrum in a cosmologically interesting parameter range
is only possible if the cosmology-dependence of feedback is taken into account.
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Introduction 1

The first cosmologists lived in Miletus, once a Greek metropolis on the Meander looking
out over the Icarian Sea. As early as the sixth century BC, they speculated about the
Universe and relied on observation and reason to devise naturalistic theories of the cosmos
[1-4]. They held that all of nature was made of one substance, taking celestial bodies out
of the realm of the mystical and placing people and stars on equal footing. In so doing,
they anticipated the existence of universal laws of nature. The first real demonstration of
this premise occurred in the 17th century, when Newton discovered his law of universal
gravitation. However, it was not until the 20th century, following the developments of
quantum mechanics and nuclear physics, that hydrogen was revealed as the primary
building block of stars and nuclear fusion as the energy source that fuels them [5, 6].

A Universe governed by laws becomes itself a laboratory. A modern example is the solar
neutrino problem. Neutrinos are subatomic particles produced in nuclear reactions. In
the 1960s, when the Homestake experiment first detected neutrinos produced in the
sun, physicists discovered a tension between the prevailing model of the sun and the
detected number of neutrinos, which was smaller than expected by a factor of three
[7, 8]. One possible explanation was that the solar model was flawed, but no modification
could accommodate all observations. An alternative solution was that neutrinos were not
the massless particles predicted by the Standard Model of particle physics, but rather
mixtures of particles with different masses [9, 10]. This allows the identity of neutrinos
to fluctuate over time, a phenomenon known as neutrino oscillations. The problem was
finally settled in the years between 1998 and 2002 when the Super-Kamiokande, Sudbury
Neutrino Observatory, and KamLAND experiments found evidence of neutrino oscillations
and reconciled the Homestake findings with the solar model prediction [11-13].

Neutrinos are the last Standard Model particles for which the masses have not been
measured. Our knowledge of neutrino oscillations indicates that at least two of the
three known neutrinos' have masses greater than zero, but the absolute mass scale is
unknown. This problem is now under siege from two opposing directions. The first
approach involves KATRIN, a laboratory experiment the size of a small factory that
measures the energy spectrum of electrons produced in radioactive decay [14]. Since
neutrinos are massive, they carry away a small amount of mass energy, which shows up

!The electron neutrino, muon neutrino, and tau neutrino; see Chapter 3.
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Figure 1.1: The distribution of galaxies depends on the neutrino mass fraction f,. The plots
show the distribution of dark matter halos (where galaxies are born) in simulations without and
with neutrinos. The arrow on the right shows the free-streaming length Ag, corresponding to
the size of collapsing regions that neutrinos can escape. This was much larger in the past. The
radius of the circles is about 650 million light-years. The size of the dots indicates halo mass.

in the energy spectrum of electrons produced in the same interaction. While KATRIN is
ongoing, future experiments are planned with even greater sensitivity [15]. The second
approach involves a multitude of astronomical observatories [16-18] that search for the
gravitational effects of neutrinos. Although individual neutrinos must be very light, they
were created in large numbers in the Big Bang (hundreds per cm? today), making them
the most abundant particles in the Universe, second only to photons. This means that
their collective mass has a gravitational effect of cosmological consequence [19-22].

One of the most promising sources of information on neutrinos is the large-scale distri-
bution of galaxies in the Universe [23-25]. Because their masses are small, neutrinos
move much faster than other particles given the same kinetic energy. This allows them
to escape regions that are collapsing under the influence of gravity, which inhibits the
growth and clustering of galaxies. Figure 1.1, which is based on computer simulations,
shows that galaxies become less clustered as the neutrino mass fraction f, increases from
0% to 10%. At this level, the effect of neutrinos can even be seen by eye, but the mass
fraction could be as small as 0.45%. To detect neutrino masses, we must therefore be
able to distinguish between 0% and 0.45% with statistical significance. This requires not
only large numbers of observations, but also theoretical calculations that are accurate at
the sub-percent level. In Part II of this thesis, we will develop new tools for accurate
neutrino calculations and show that this requirement can be met.



Completing the laboratory and cosmological measurements of the neutrino mass is one
of the major challenges for physics in the coming years. If the two measurements agree,

2 is really

it would demonstrate that the additional radiation seen in the early Universe
due to neutrinos, confirming a basic prediction of the Big Bang model: the existence of a
Cosmic Neutrino Background. It would also confirm that we understand the formation of
structure in the Universe at the sub-percent level and constrain the properties of the dark
sector [26, 27]. At the same time, as with the solar neutrino problem, any tension could
indicate a flaw in our models, suggesting non-standard neutrino properties or cosmology.
Even absent a laboratory measurement, cosmological data can be tested against neutrino
oscillations and establish the way neutrino masses are ordered [28, 29]. The measurement
is obviously important for particle physics, constraining the mechanism that generates

neutrino masses, which must involve physics beyond the Standard Model [30-32].

The thesis is divided into three parts:

e Part I. Background: The first part introduces some background material on
cosmology and neutrinos, but is intended to be brief.

e Part II. Technology: This part develops methods for doing highly accurate
computer simulations of the evolution of neutrinos and the formation of structure in
the Universe. We begin by introducing a new method for evaluating statistics of the
neutrino distribution, which can be used on-the-fly in simulations and significantly
reduces the amount of noise without making any approximations. We then develop
a perturbation theory for dark matter in the presence of neutrinos and use this to
accurately determine the initial conditions of the simulations. Finally, we consider
the initial conditions of the neutrinos themselves, taking into account the fact that
neutrinos move at nearly the speed of light throughout much of cosmic history.

e Part IIl. Prediction: In the third part, we present two applications of the
new methods. First, we perform a comprehensive analysis of the local neutrino
background. Among other things, we forecast event rates for direct detection
experiments and show that the largest structures in the Universe cast shadows on
the neutrino background. In the last chapter, we present the first results from a
new suite of galaxy formation simulations, called FLAMINGO. We demonstrate
that the outflows of black holes are more powerful in models with neutrinos and
discuss the implications for future observations.

However, we begin in the next section with an accessible introduction to one of the first
astronomical indicators of the neutrino mass, by way of analogy to moonlight.

2The detections of Neg ~ 3 from the Cosmic Microwave Background and light elemental abundance.
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Figure 1.2: This painting by Claude-Joseph Vernet (1771) depicts a Mediterranean seaport at
night. I'd like to imagine that this is Miletus and that the philosophers by the fire are engaged in
a debate about moonlight, perhaps putting their theory to test.

1.1. A moonlight parable

Could you use a magnifying glass to set a piece of paper on fire with moonlight? The
answer is counter-intuitive to many, as reflected by online discussions of this topic [33-36].
The apparent magnitude of a full moon is mo, = —12.74, compared with me = —26.74 for
the sun. This means that the moon is only 1/400000 times as bright as the sun. Could
we compensate with a really big magnifying glass or a clever system of lenses? We will
use geometry to show that this is not possible. Bear with me; the same reasoning will
also tell us something about the neutrino mass and the nature of dark matter.

There is a limit to the extent to which light can be magnified. If light is concentrated
onto a smaller area, then its angular spread must increase. In the following box, we
motivate the law of conservation of étendue, which says that the quantity

U = Asin? 6, (1.1.1)

is constant for a bundle of light rays. In this expression, A is the area covered by the
light and 6 is the spread in directions.
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Figure 1.3: Geometric illustration of conservation of étendue, based on a similar figure in [37].

Consider the set-up depicted in Fig. 1.3. A spherical source S of radius r emits light
that propagates outward until it hits a larger surface A of radius d. At a point p
on A, the light from S is spread over an angle 6 determined by the tangents to S
that intersect in p. The area of the surface is A = 4wd?. Trigonometry tells us that
Asin? 0 = 4mr? = Ag, where Ag is the surface area of the source. As this holds
for an arbitrary surface at any distance d, we have in fact shown that the product

Asin? 6 is conserved as the light spreads out.

If the surface A were the interface between two media with refractive indices nq, and
ne, then the incoming angle 6; and outgoing angle 6 would be related by Snell’s law:
n1sinf; = ngsin fy. Hence, in that case, the conserved quantity would be An? sin? 6.
This holds more generally® and is known as the law of conservation of étendue [37].
For simplicity, we set n = 1 above, but this does not affect our conclusion.

“Technically, the conserved quantity is dU = n2dA cos 0dS), where n is the refractive index of the
medium, dA is the area element, and df2 is the solid angle.

What does this mean for our moonlit fire? The best we could hope to do is concentrate
the light from an incoming area A;, onto an area Ay, related by
Ain Sil’l(@out)Q

max — = ~ y 1.1.2
Cha Aot Sin (02 50000 ( )

where we used the fact that the maximum angular spread for the output is 6oy = 90°
and that the angular size of the moon is 6;, = 0.26°. It follows that the maximum flux is
still only 1/8 that of the unmagnified sun. Since pieces of paper do not spontaneously
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ignite when left out in the sun, no magnifying glass will do the trick with moonlight.
The magnification makes it appear as if the moon fills the sky and, at some point, we
simply run out of sky.

Notice that the étendue of a bundle of light is the product of the spread in location (A)
and the spread in direction (sin? @) of the rays. The equivalent for a group of particles
would be the product of the spread in position (Az) and spread in momentum (Ap). In
fact, the two are entirely equivalent: étendue can be seen as a volume in phase space.
Phase space is the 6-dimensional space in which particles are simultaneously assigned a
position (z,y, z) and momentum (ps, py, p.). Both étendue and phase space volume are
related to entropy. They are all measures of spread and disorder. It is worth noting that
while étendue is conserved for idealized optics, it may increase in practice but can never
decrease. The equivalent statement for particles is that their volume in phase space can
only grow or stay the same. This may call to mind the second law of thermodynamics.

In the 1930s, astronomers found that stars and galaxies were moving faster than could
be explained with Newtonian mechanics, given the amount of matter that was visible
[38-40]. This eventually led to the notion that galaxies could be immersed in halos of
invisible dark matter [41-44]. A simple model for the distribution of mass in a galaxy is
the singular isothermal sphere. At radius r, the mass density in this model is given by

0.2

) =5 s (1.1.3)

where G is Newton’s constant and o is the spread in velocities of the particles.

During the 1970s, neutrinos were thought to be perfect candidates for dark matter [45-47].
They could be produced in abundance during the Big Bang, do not emit any light, and
definitely exist. If neutrinos are responsible for the additional mass in galaxies, they must
clump together sufficiently strongly. However, just as we saw for moonlight, neutrinos
cannot be compressed beyond a certain limit. In a classic paper, Tremaine & Gunn [48]
used the conservation of phase space volume to make a statement about the neutrino
mass, under the assumption that neutrinos dominate the mass in galaxies.

In the early Universe, neutrinos were not clumped together but distributed nearly
homogeneously. If the initial spread in positions was (Azj,)? and if the maximum
concentration is Chax, then the mass density of the neutrinos satisfies

my

< P —
IO(T) — Cmax (A:L‘m)3’

(1.1.4)

where m,, is the neutrino mass.
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Neutrinos belong to the class of fermion particles, which satisfy the Pauli exclusion
principle. This principle states that no two particles can occupy the same quantum
state. In phase space, quantum states can be thought of as discrete points separated by
multiples of Planck’s constant k. The Pauli exclusion principle then imparts the following

inequality on the phase space volume:
Az3Ap® > h3. (1.1.5)

Demanding that the initial phase space volume (in the early Universe) is less than or
equal to the final phase space volume (when they are part of the halo), we find that the
neutrinos cannot be compressed by more than

(Al’in)3 (Apout)3 mga?’

— — _ 3
Cmax - (Al’out)B - (Apln)g - h3 (AI‘IH) Y (]‘16)

where we used (Apin)? > h3/(Axiy)? and Apow = m,o. Note that it is the conservation
of phase space volume and not just the exclusion principle that gives rise to the limit.
The same argument would work for classical particles following a Maxwell-Botzmann
distribution®. Combining equations (1.1.3), (1.1.4), and (1.1.6), we conclude that

h3 1/4

This says that the neutrino mass m, must be larger than some quantity that depends on
the radius r and velocity dispersion o of galaxies, connecting the modest neutrino with
objects comprising billions of suns.

In the original paper [48], this argument led to a value of m, > 24eV. Not long after, a
laboratory measurement of m, =~ 30eV for the electron neutrino was reported [49]. This
was spectacular, because a mass of this magnitude would correspond to a flat Universe
dominated by neutrinos. However, some of the first cosmological simulations showed that
the distribution of galaxies and the properties of galaxy clusters in such a model would
be incompatible with observations [24, 50, 51], suggesting that the reported value was
wrong. Indeed, a recent laboratory constraint from KATRIN indicates that m, < 0.8eV
[14], which on its own shows that neutrinos cannot be responsible for more than ~ 20%
of the dark matter. In this case, the bound (1.1.7) does not apply and we must resort to
alternative calculations. Nevertheless, this short history reveals that the simultaneous
pursuit of cosmological and laboratory strategies is of tremendous value.

3But not for particles with a Bose-Einstein distribution, which is unbounded at low energies.
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This chapter introduces the ACDM model, the Eulerian and Lagrangian
approaches to the perturbation theory of structure formation, and the
role of N-body simulations. We establish conventions and point out
ways in which neutrinos are special.

2.1. The ACDM model

The ACDM model, fashionably called the standard model of cosmology, ties together a
range of observations of the Universe at different epochs with an economical theory and a
limited number of parameters [52-54]. Let us be equally parsimonious in our recitation of
its ingredients. In its simplest form, the ACDM model assumes a spatially homogeneous
and isotropic geometry given by the Friedmann-Lemaitre-Robertson-Walker metric!

ds® = —dt* + a(t)?dx?, (2.1.1)

with a scale factor a(t), whose present value is normalized to 1. In an expanding Universe,
the wavelengths of photons emitted at time ¢ are redshifted by a factor 14z = a(t)~!. We
will frequently work with conformal time 7, defined such that ds? = —a?(dr? — dx?).

According to the model, the main categories of matter are dark energy, cold dark matter,
baryons, neutrinos, and photons. The assumptions of homogeneity and isotropy imply
that matter behaves as a perfect fluid, described in terms of an energy density p(t) and
pressure P(t). In the rest frame of the fluid, we can write the conservation of energy as

p+3g(p+P) —0, (2.1.2)

where overdots denote time derivatives. For a constant equation of state w = P/p, the
solution is

p(t) o a(t)30+w), (2.1.3)

'In this chapter and the next, we set ¢ = 1.

11
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A gas of non-relativistic particles has negligible pressure (w = 0), whereas a photon gas
has radiation pressure (w = 1/3), and dark energy has negative pressure (in its simplest
form, w = —1). Neutrinos are rather special, having transitioned from relativistic to
non-relativistic velocities in recent cosmic history (0 < w(t) < 1/3). Given the total

energy density p of all these species, the Friedmann equation gives the Hubble rate as

. 2
87G
g2=(2) ==, 2.1.4
(a> 3P (2.1.4)

Energy densities are conveniently expressed as fractions of a critical value peit =
3HZ/(87G), where Hy = 100h kms~! Mpc™! is the value of the Hubble constant:

0 =P with i=c,b,u,,A (2.1.5)
Pecrit
for cold dark matter (CDM), baryons, neutrinos, photons, and dark energy. The Hubble
rate can then be expressed as

Qeo+ o

2 _ 2
H? = H? 3

Q0
+Q(a) + ﬁ + a1, (2.1.6)
where subscript 0 indicates present values. Approximately, Q.o = 0.26, (X, = 0.05,
Q0 =5x 1075 Q4 = 0.68. The evolution of the neutrino density ,(a) depends
non-trivially on the neutrino temperature 7, and masses m,; (Chapter 3). Its present
value is related to the sum of neutrino masses:

~ LMy (2.1.7)

“0 = 93.14K2°

where the masses are in eV and the value is somewhere in the range €2,,0 < 0.007. Closure
implies that ), €2; = 1, eliminating one free parameter. To describe the geometry, we
therefore need the following parameters: h, e, 2,71, m, ;, Wwhere Qe = Q¢ + (.

2.2. Structure formation

At the time of CMB decoupling, z ~ 1100, density perturbations in the Universe are of the
order 10~° and nearly Gaussian, as shown in Fig. 2.1. Perhaps its greatest achievement
is that the ACDM model can explain how these perturbations grow into the observed
large-scale structure (depicted in simulated form in Fig. 1.1), through the processes of
gravitational collapse and hierarchical structure formation.
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Figure 2.1: Temperature anisotropies of the Cosmic Microwave Background as measured by
the Planck satellite [55]. Variations are O(107°) after subtracting the dipole perturbation. In
Chapter 7, we will make predictions for the analogous map of the Cosmic Neutrino Background.

The density field can be decomposed as
p(x,7) = p(7) [L+6(x,7)], (2.2.1)

where p(7) is the mean density and §(x, 7) the density contrast. The statistical properties
of a Gaussian random field with mean zero are completely determined by its power
spectrum P(k), defined as

(6(k)6(K)*) = (2m)36®) (k + K) P(k), (2.2.2)

where §(k) is the Fourier transform of the density contrast, §® the Dirac delta function,
and we dropped the time dependence for a moment. In its simplest form, the model calls
for two additional parameters (Ag,ns) to describe the power spectrum:

272 E\™t

Pk,7) = T A (
P

3 T(k, )2, (2.2.3)

I a pivot scale,

where A; is the scalar amplitude, ns the spectral index, k, = 0.05 Mpc™
and T'(k,7) a transfer function that relates the density perturbations at some later time
7 to the primordial perturbations encoded by As and ns. The normalization A, can also

be expressed in terms of the amplitude of matter fluctuations on 8h~! Mpc scales os.

To set the stage, let us first consider the basics of structure formation without neutri-
nos, mostly following [56]. We will point out where common assumptions break down



2. Cosmology 14

for neutrinos. Allowing for perturbations in the metric (2.1.1), assuming only scalar
perturbations are present and working in Newtonian gauge, we have

ds? = a(7)? [-(1 + 2¢)dr? + (1 — 2¢)dx?] , (2.2.4)

where ¢ and v are the perturbations, ¢ being equal to the Bardeen potential ®. In the
non-relativistic limit, anisotropic stress vanishes and (¢ — ) = 0. This is not the case in
the presence of neutrinos, so long as the relativistic tail of the distribution function is
important. Ignoring neutrinos, the Poisson equation reads

V20(x,7) = %Qm(T)(CLH)25(X, T), (2.2.5)

where Qp, = Qe = Qe + Oy, and 6(x, 7) is the mass-weighted density contrast of CDM
and baryons. For collisionless non-relativistic particles (i.e. generally not neutrinos) with
mass m, moving in a gravitational potential ®, the equations of motion are

dx o) dp
R — = _ d. 2.2.
dr  ma’ dr may (2.2.6)

Liouville’s theorem that phase-space density is conserved gives rise to the collisionless
Boltzmann equation, also known as the Vlasov equation,

d 9 d d
& _pp= |2, & g, de
dr

9 1 o Vpl| f=0, (2.2.7)

where L is the Liouvillian and f(x,p,7) the phase-space distribution function.

2.2.1. Eulerian approach

In Eulerian perturbation theory, also known as standard perturbation theory or SPT, the
particle description is related to a fluid description by taking moments of the distribution
function. For non-relativistic particles, we define

p(x,7) = a_3/d3p m f(x,p,7), (2.2.8)
p(x, T)u(x,7) = a3 / d°p g £(x,p,7), (2.2.9)

p(x, T)ui (%, T)uj(x,7) + 045(x,7) = a_3/d3p % (x,p,7), (2.2.10)
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where o is the stress tensor. Taking moments of the Boltzmann equation (2.2.7) gives

0

5 TV [(1+0u =0, (2:211)
a—u+aHu+u'Vu:—V<I>—E. (2.2.12)
or p

Notice that the lowest moment of the Boltzmann equation gives the continuity equa-
tion (2.2.11), which depends on the first moment u. Meanwhile the first moment of
the Boltzmann equation gives the Euler equation (2.2.12), which depends on the second
moment o. We can carry out this expansion to successively higher moments, which is a
common strategy used to compute the neutrino perturbations (see Section 3.3). Unlike
for neutrinos near or below the free-streaming scale kg, the stress tensor can often be
neglected for CDM and baryons: o = 0. In this case, we obtain at first order:

a9
e .u= 2.2.1
87_+V u =0, ( 3)
0u | Hu = —vo. (2.2.14)
or

Separating 6(x,7) = D(7)d(x) into temporal and spatial factors, these two equations can
be combined with the Poisson equation (2.2.5) to give

d®D dD 3 9
Picking out the fastest growing solution, one obtains the first-order growth factor D4 (7).
If Qy, =1, one finds Dy (7) = a(7). Analytic expressions can also be given in the cases
that Qp, < 1;Q4 =0 [57], Qm + Q4 =1 [58, 59], and relevant in the presence of neutrinos:
Qcp + Qa < 1 (Chapter 5). The first-order solution can then be used in (2.2.11-2.2.12)
to obtain equations for the next higher order and so on. Indeed, the SPT equations can
be conveniently written and solved in recursive form [60, 61].

2.2.2. Lagrangian approach

An alternative philosophy is the Lagrangian approach. In Lagrangian perturbation theory
(LPT), one follows fluid trajectories

x(q,7) =q+(q,7), (2.2.16)
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where 1 is a displacement vector that maps initial particle positions q to final positions x.
In the single-stream limit, the Eulerian density contrast can be related to the displacement
via the conservation of mass equation

~1, (2.2.17)

where J(q, 7) is the determinant of the Jacobian of the coordinate transformation q — x.
The single-stream limit is not a good approximation for neutrinos near or below the
free-streaming scale kg, precluding the use of this equation. The Lagrangian version of
the Euler equation (2.2.12) becomes
Px 1 v (2.2.18)
— f+aH—=— . 2.
or? or x
To first order, Eq. (2.2.17) is simply § = —V . Using this in the equation of motion
above, one obtains the Zel’dovich solution [62]

V(1) =—-D(1)d(q, 1), (2.2.19)

where D(7) satisfies the same equation (2.2.15) as the first-order Eulerian solution. This
perturbation theory can similarly be carried out to higher orders. As in the case of SPT,
LPT can be formulated and solved recursively [59, 63-66].

2.3. Simulations

In addition to the basic Eulerian and Lagrangian schemes described above, many alterna-
tive perturbation theories have been developed over the years [e.g. 67-72]. Nevertheless,
all perturbation theories eventually break down and their range of applicability is limited
to linear and mildly nonlinear scales. This can be understood in many different ways.
The spherical collapse model shows that self-gravitating objects form when the linear
density contrast § =~ 1.68, at which point an expansion in §” cannot be expected to
converge. In practice, SPT breaks down long before this. Gravitational collapse also
generates virial motions, such that o;; # 0 inside collapsed regions. From the point
of view of effective field theory, integrating out short wavelength modes generates an
effective pressure term [73]. Either way, at this point the single stream limit is no longer
a good approximation. Although formally LPT remains consistent until after first shell
crossing [74], the use of (2.2.17) implies that it is no longer physical.

While perturbation theory eventually breaks down, the underlying phase-space description
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in terms of characteristic equations (2.2.6) and Boltzmann equation (2.2.7) remains valid.
These equations can be solved even in the deeply nonlinear régime with numerical
techniques. The essence of N-body simulations is to solve the Boltzmann equation by the
method of characteristics, i.e. by sampling the phase-space distribution f(x,p,7) with
discrete particles and tracing their evolution along characteristic curves. Conceptually,
the simplest approach is to compute the gravitational forces by direct summation over
the N (N — 1)/2 particle pairs. In practice, far more efficient algorithms are used.

Many modern N-body codes solve at least part of the problem with a spectral method,
known as the particle mesh (PM) approach [75]. Pure PM codes are fast but have a
force resolution determined by the size of the mesh, which limits their usefulness to low
resolution applications. To resolve highly nonlinear structures, adaptive methods are
called for. Two of the most common methods are the Tree-PM and FMM-PM algorithms,
which use the PM method for periodic large-scale gravitational forces and octree- or
multipole-based methods for the efficient evaluation of small-scale forces with greatly
improved force resolutions. The two main codes used in this thesis, SWIFT [76] and
GADGET-4 [77] employ these two algorithms. Other popular codes include? GLAM [78],
FASTPM [79], ABACUS [80], PKDGRAV3 [81], RAMSES [82], AREPO [83], CUBEP®M [84],
GEVOLUTION [85], CONCEPT [86], and GRAMSES [87].

Of particular interest are applications at the interface between cosmological perturbation
theory and simulations, a field that is now blossoming. The obvious example is the
set-up of initial conditions for cosmological simulations, a major theme in this thesis.
While in the single-stream limit (an assumption we cannot generally make for neutrinos;
Chapter 6), the initial displacements and velocities of particles are uniquely determined by
the LPT solutions (™ and v(® = d¢(™) /dr. Going to higher n brings with it substantial
benefits in terms of accuracy and computational expense [88, 89] (see Chapter 5). But
there are many other exciting applications. LPT has been to great success to speed up
the convergence of PM simulations [90] and can also be used as a cheap control variate to
improve the statistical properties of ensembles of simulations [91-93]. In similar vein, the
basic method for neutrino simulations introduced in Chapter 4 can be extended to higher-
order versions with perturbation theory. Combining the power of N-body simulations
to model the collisionless dynamics of dark matter particles with a Lagrangian bias
expansion allows the clustering of biased tracers to be modelled accurately and efficiently
[94]. On the Eulerian side, the SPT recursion relations can be formulated on a grid,
enabling generative analyses that are directly analogous to simulations [95].

Finally, N-body simulations provide the ideal platform for studying galaxy formation

2We will soon be adding our own to the mix: a scalable PM code called SEDULUS.
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in the cosmological context. There exist two broad philosophies in this field [96-98].
The first is to develop semi-analytical galaxy formation models based on the merger
histories and properties of dark matter halos in collisionless N-body simulations [e.g. 96].
The second is to integrate self-consistent galaxy formation models with hydrodynamical
simulations [e.g. 98], with methods such as smoothed particle hydrodynamics [99]. Since
the resolution of cosmological simulations is typically insufficient to resolve all relevant
processes, such as the evolution of stellar populations or the physics of black hole accretion
disks, effective “subgrid” models are used with free parameters that can be matched
to observations or chosen based on theoretical considerations. We will consider a first
application of the new FLAMINGO suite of hydrodynamical simulations in Chapter 8.
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This chapter introduces some background material on neutrinos in the
standard model, neutrino oscillations, current mass bounds, the role
of neutrinos in cosmology, and cosmological perturbation theory for
massive neutrinos. The structure mirrors that of the previous chapter,
introducing basic concepts first before dealing with linear perturbations.

3.1. Neutrinos in a nutshell

In the Standard Model of particle physics, neutrinos are massless fermions that only
participate in weak interactions [100]. There are three left-handed particles accompanying
charged leptons with different flavours: the electron neutrino v,, the muon neutrino v,
and the tau neutrinos v, and three corresponding anti-neutrinos 7., v, 7. The part of
the Standard Model Lagrangian involving neutrinos is

—9 - o9 _ oy
£ 2cos Oy Z VoLV VarL ), — VG Z Uar Yl W, +hec., (3.1.1)

=€, T =€, T

where ¢ is the coupling constant, 8y the Weinberg angle, v* are Dirac matrices, .1, €
{er,pr, 70} are the left-handed components of the charged leptons, and W, and Z,
are the weak bosons. The first term gives rise to neutral current interactions amongst
neutrinos and the second term to charged current interactions between neutrinos and
charged leptons. Neutrinos can be produced through processes like 5-decay:

SH — 3He' 4 ¢~ + 7. (3.1.2)

Interactions such as these produce neutrinos of definite flavour. However, the observation
of neutrino oscillations implies that the flavour states v, (with a = e, i, 7) are superposi-
tions of mass eigenstates v; (with ¢ = 1,2,3). The two are related by a unitary matrix,
known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [9, 10]:

3
va =Y Ukvi. (3.1.3)
i=1

19
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The mass states v; are eigenstates of the Hamiltonian with eigenvalue! E; = (p® + m?)l/ 2,
We can derive the expression for the neutrino oscillation probability by making some
simplifying assumptions, which ultimately gives the same result as a more complete
treatment based on wave packets [101-103]. Since the time evolution is described by the
Hamiltonian, it is the mass eigenstates that propagate: |v;(t)) = e~*Fi|1;). Now suppose
that a neutrino is produced with a definite flavour o and definite momentum p. After
propagating some distance, the flavour 3 is picked out with probability

2

P(a— B) = [(vslva(®)® = : (3.1.4)

3
> UgiUgie B4
7

where it was used that the mass states form an orthonormal basis (v;|v;) = &;;. For
relativistic neutrinos with equal momentum p, we can expand

Ei—Bj~—Y (3.1.5)

2

where Amgj =mj — m?. Pulling out a common factor e?£it for any j, we then obtain

i:U - —z'Am%jt
Vi XP | — 55—
i ’ 2p

This equation demonstrates two key properties of neutrino oscillations. First, it shows

2

Pla— ) = (3.1.6)

that neutrino oscillations are only possible if the mixing matrix is non-trivial, U # I,
and in the presence of non-zero neutrino masses, Am?j =% 0. It also shows that neutrino
oscillations are sensitive to the squared mass differences Amfj, but not to the absolute
mass scale. Cosmological observables are therefore complementary to neutrino oscillation
experiments by being sensitive to the sum of neutrino masses ) m, = ), m;.

The parameter space describing neutrino oscillations is quite large, consisting of the mass
squared differences Amfj and the matrix elements U,;, which can be parametrized in
terms of 3 mixing angles ¢;; and up to 3 phases. Our knowledge of these parameters
was accumulated over more than two decades by a large number of experiments using
neutrinos from various sources [103]. Solar neutrinos were first observed by the Homestake
experiment [7], while their oscillations were established by the Sudbury Neutrino Observa-
tory [12]. Solar neutrino oscillations provide information about Am3,, which is therefore
known as the solar mass splitting. Atmospheric neutrinos are produced when cosmic
rays hit the atmosphere, producing pions and kaons which subsequently decay, leading to

We set the scale factor a = 1 in this subsection for simplicity.
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predominantly muon and electron neutrinos. They were first detected at the Kolar Gold
Fields [104], while their oscillations were discovered by the Super-Kamiokande experiment
[11] and contribute information about |Am3,|, which is known as the atmospheric mass
splitting. In addition, particle accelerators and nuclear reactors provide controlled sources
of neutrinos used by many oscillation experiments starting with KamLAND [13]. The
current state of knowledge of the mass splittings, derived from global fits to the entire
experimental landscape, can be summarized as [29]

Am3, =m3 —m3 = 7427020 x 1075 eV, (3.1.7)
+2.51410 058 x 1073 eV? (NO),
Am3y = m3 —m? = 0027 (NO) (3.1.8)
—2.49715058 x 1073 eV? (10).
The sign of Am3; is known to be positive, but the sign of Am3; is unknown, which
leaves two possible mass orderings: m; < mg < mg with £ = 1 (normal ordering; NO) or
ms < my < mg with £ = 2 (inverted ordering; 10). There is currently a slight preference
for the normal ordering from oscillation data [28, 29]. Two crucial numbers can be
derived from these mass splittings. If the lightest neutrino is massless, we find that the
minimum possible value for the sum of neutrino masses is

0.06eV  (NO),
22 {O.lOeV (10). (3.1.9)

This is illustrated by the red and black curves in Fig. 3.1. As mentioned above, cosmolog-
ical observables are sensitive to the mass sum, but much less so to the individual masses
[105, 106]. Even so, cosmology can rule out the inverted ordering by establishing that
> >my, < 0.1eV. The strongest cosmological bounds are now hinting in this direction
[107-110], but the inverted ordering cannot yet be ruled out [111].

The best terrestrial constraint on the absolute mass scale comes from the KATRIN
detector, which places a bound of mg < 0.8 eV at the 90% C.L. [14] on an effective mass
for neutrinos involved in the S-decay of tritium (3.1.2), given by

S22 2 2 2 2 2 2
mg = \/012013m1 + 575CT3m5 + s7gms3, (3.1.10)

where ¢;; = cos;; and s;; = sin6;;. Assuming a degenerate mass spectrum, m; ~ mg =
mg, this corresponds to a neutrino mass sum of > m, < 2.4eV. Recent cosmological
limits are much stronger, as shown in Fig. 3.1, and are quoted below at the 95% C.L.
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Figure 3.1: Constraints on the sum of neutrino masses, > m,,, from KATRIN [14] and Planck [112],
showing the sum as a function of the lightest mass for the two possible mass orderings (normal
and inverted). The dotted line indicates where the masses become degenerate: my = mo &~ ma.

Assuming a degenerate mass spectrum, the Planck temperature, polarization, and lensing
likelihoods give a constraint of > m, < 0.24eV or Y m, < 0.26eV, depending on the
details of the high-¢ polarization analysis [112].

By complementing the CMB measurements from Planck with probes of the large-scale
structure, even stronger constraints are possible. Adding BAO data from BOSS DR12,
SDSS MGS, and 6dFGS leads to > m, < 0.12eV (degenerate), > m, < 0.15eV (normal),
and Y m, < 0.17eV (inverted) [113]. A full-shape analysis of the BOSS DRI11 redshift-
space power spectrum, combined with Planck temperature and polarization data and
JLA of Type Ia supernovae leads to Y m, < 0.18eV [114]. Combining instead SDSS
DR14 BOSS and eBOSS Lyman-« forest data with Planck temperature, polarization,
and lensing data and 6dFGS, SDSS, BOSS-LOWZ, CMASS DR12 measurements of BAO
leads to the strongest constraint yet: > m, < 0.09eV [108]. A similarly strong bound
was set through a combination of Planck temperature, polarization, and lensing data,
Pantheon Type Ia supernovae, SDSS BAO and RSD measurements of the growth rate:
> m, < 0.09eV by [109].

It is noteworthy that a recent analysis of the final data release of Planck (PR4) [115]
found a significantly relaxed upper bound of " m, < 0.4eV. This is primarily attributed
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to the disappearance of an anomalous preference for additional gravitational lensing
(A1, = 1.036 £ 0.051 is now consistent with no additional lensing-induced smoothing),
which is known to have a profound effect on the inferred neutrino mass [113, 115-117].

Based on this incomplete survey of results, all assuming the most basic ACDM + > m,
model, we make the following observations:

1. The assumed mass ordering becomes important as we near the hierarchical régime.
2. Full-shape power spectrum analyses are not necessarily the most constraining.
3. Geometry (BAO, supernovae, etc.) contributes a lot of constraining power.

4. The most constraining mass bounds stack many different cosmological observables
from different epochs.

5. Addressing the lensing anomaly in the CMB is important for a reliable neutrino
mass constraint.

Neutrinos are exactly massless in the Standard Model [100]. Therefore, we know that
the model is incomplete and must be extended to account for neutrino masses. This
can be done in many different ways. One possibility is to add one or more right-handed
neutrinos, v, which allows Dirac mass terms of the form

L = mvrvr + h.c., (3.1.11)

to be generated, similar to the way that mass terms are generated for the charged leptons
through the Higgs mechanism. If neutrinos are Majorana particles, masses can also be
generated without introducing additional particles. However, this comes at a price. The
neutrino would be its own anti-particle and conservation of lepton number would be
broken. Hence, determining the way that neutrino masses are realized in nature would
tell us about the symmetries and particles of the theory that lies beyond.

One way to determine whether neutrinos are Dirac or Majorana is to search for processes
that violate lepton number, such as neutrinoless double S-decay [118]. Neither neutrino
oscillations nor the usual cosmological probes can distinguish between Dirac and Majorana
neutrinos. However, the distinction does become relevant for direct detection of the
Cosmic Neutrino Background, as we will see in Chapter 7.
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3.2. Thermal history

In the early Universe, neutrinos are in thermal equilibrium with a hot plasma of electrons,
positrons, and photons through frequent weak interactions [53, 119-121]. As space
expands and the plasma cools down, the interaction rate I' ~ T° decreases faster than
the expansion rate H ~ T2, such that the interactions become rare when I" ~ H. This
happens around z ~ 10'° when Tyec ~ 1MeV. While the neutrinos are in thermal
equilibrium with the plasma, their energies follow a Fermi-Dirac distribution

f(x,p,7) = (297:)3 [1 +exp (&)]_1, (3.2.1)

where g5 is the number of degrees of freedom and 7}, is the neutrino temperature.

Because the masses m, < 1MeV, the neutrinos are relativistic at this stage and the
energy € = \/p? + a’m?2 = p. Therefore, the energy distribution can be expressed in terms
of the neutrino momentum p. After the neutrinos decouple, the neutrino temperature
and momentum both scale with redshift o (1 4 z)~!. Therefore, by Liouville’s theorem,
the momentum distribution (3.2.1) is preserved at zeroth order even after the neutrinos
become non-relativistic.

The electron mass, m, = 0.51 MeV, is not much smaller than the temperature at which
neutrinos decouple. Hence, not long after neutrino decoupling, it becomes favourable
for electrons and positrons to annihilate. Assuming that the neutrinos have completely
decoupled at this point, the entropy from e~ and e* is entirely transferred to the photons,
heating their temperature relative to the neutrino temperature by a factor

T, g\ V3 11\ /3
=< == 2.2
T (g_) T (3-2.2)

where g4 = 11/2 and g_ = 2 are the effective numbers of degrees of freedom before and
after electron-positron annihilation. Since the photon temperature is very well known
from the CMB, T, = 2.7255 K, it is convenient to express neutrino-related quantities
relative to the corresponding photon quantities. The number and energy densities of a
relativistic particle species with phase-space distribution (3.2.1) are given by

_3¢6)

px,7)=a" [ dpeflx,p.7) = g5 T (3.2.4)

For bosons with a Bose-Einstein distribution, similar to (3.2.1) but with a minus sign,
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we obtain the same expression without the factors 3/4 and 7/8. In the relativistic limit,
we therefore obtain

4/3
n, = %Neﬂ Ny, Py = g <141> Negr pry, (3.2.5)
where we have introduced the effective number of neutrino species Nqg =~ 3. In reality,
neutrino decoupling does not happen instantaneously and the process partially overlaps
with electron-positron annihilation. This introduces small perturbations in the energy
distribution (3.2.1) and also means that the temperatures are not exactly related by
(3.2.2). A full treatment of these processes, also accounting for flavour differences and
neutrino oscillations, yields a slightly greater value of Neg = 3.046 [122, 123]. We can
absorb the leading effect of the spectral distortions to (3.2.1) by slightly modifying the
neutrino temperature whilst keeping the Fermi-Dirac form [124], which is the strategy
followed in this thesis.

In the non-relativistic limit, e = am,,, we instead obtain p, = ) m, ;n,;, which gives
Eq. (2.1.7). In general, we need to evaluate the integral (3.2.4) numerically and sum over
the different neutrino species to obtain €, (a) = p,(a)/perit-

3.3. Linear perturbations

Although more limited in the range of scales where it is accurate, an Eulerian fluid
approximation can also be given for massive neutrinos. This is sometimes useful for
speeding up calculations or to gain physical insight [124, 125]. If we treat the neutrinos as
a perfect fluid, the stress tensor becomes 0;; = —PJ;;. We can then write the continuity
equation (2.2.11) and Euler equation (2.2.12) to first order as

00

p)
a%l +aHu= -V + 2V25, (3.3.2)

where we introduced the sound speed ¢ = §P/§p. Although obviously incorrect, it
is useful to consider the case where neutrinos are the dominant matter species with
Qm = Q, = 1. In that case, the combination of the Poisson equation (2.2.5) with the
continuity and Euler equations above yields
026 96 [3

52 a5 = 5(aH)2 - k%i] 6, (3.3.3)
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which is analogous to the Jeans equation. Defining the free-streaming scale as [120]

3aH
ke = 4/ S22, 3.3.4
y o

we see that on small scales, k > kg, the growth of density perturbations is suppressed

and 0 oscillates with frequency kcs. By contrast, on very large scales, k < kg, neutrinos
cluster like cold dark matter. If we approximate the sound speed by the velocity dispersion
of the unperturbed Fermi-Dirac distribution (3.2.1), we find that

15¢(5) T2
ol = gf?f))mg' (3.3.5)

This additionally shows that the free-streaming wavenumber scales as kg o< my,.

A complete treatment of linear neutrino perturbations is also possible [126]. We briefly
review the derivation here. To start with, the neutrino phase-space distribution is

decomposed into a background part and a perturbation part via

fxp,7)=fp)[1+ ¥(x,p,7,7)], (3.3.6)

where f(p) is the homogeneous Fermi-Dirac distribution (3.2.1) and the momentum
p = pn has been decomposed into a magnitude p and a unit vector n. With the metric
in Newtonian gauge (2.2.4), the acceleration can be written to first order as

dp ¢ 6

L Zp.V. 3.3.7

ar  Por p v ( )
Substituting this into the Boltzmann equation (2.2.7) and switching to Fourier space, we
find that the perturbation ¥ evolves as

(Z\f* L [gf—ie(k-ﬁ)#}} =

dlnp P

To solve this equation, ¥ is decomposed into a Legendre series?

o0

U(k, 2, p,7) = > (=)' (20 + 1) We(k,p, 7) Py(k - ). (3.3.8)
=0

2Note that we define the ¥, slightly differently than [126].
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Figure 3.2: Non-linear density perturbations for a neutrino species with m, = 0.1eV, computed
with the §f method (Chapter 4), relative to the linear theory prediction at k = 0.6 Mpc~ . The
grey bar represents a +10% error.

The Boltzmann equation then becomes an infinite tower of equations:

Oy _ _pky,  9¢dinf

or ¢ ' ordlnp’ (3.39)
oV, pk ek dlnf
L Pgy — 2w, - & 3.1
5 = 3. (%o 2) 3" Ty’ (3.3.10)
oYy pk

= Wy —(0+1)T for £>2. 311
or (2€+1)6[ -1 = D¥en], or b= (3:3.11)

This system of equations can be solved numerically if we truncate the hierarchy at some
¢ = lmax + 1. In Einstein-Boltzmann codes like CAMB [127] and CLASS [128], this is often
done with an Ansatz such as

v 1 =— VY — WUy m1-
Lmax—+ pk_T Lmax fmax

The momentum dependence sets these equations apart from the equivalent for photons.
The neutrino perturbations ¥ need to be integrated for pairs of (k,p) instead of being
functions of k£ alone. Without further approximations, this is often the slowest part of
Einstein-Boltzmann runs. Although the growth of neutrino perturbations is suppressed
below the free-streaming scale, they nevertheless become nonlinear at late times (Fig. 3.2),



3. Neutrinos 28

such that eventually the perturbation theory described above breaks down. Therefore,
it is natural to use cosmological simulations (Section 2.3) to self-consistently solve for
the gravitational evolution of cold dark matter, baryons, and massive neutrinos. Various
methods exist to treat neutrinos in N-body simulations (see [129, 130] for reviews). In
the next chapter, we will present a novel method and compare it with several alternatives
from the literature.
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Optimal nonlinear treatment

This chapter deals with the treatment of massive neutrinos in cosmo-
logical N-body simulations. It introduces a novel simulation method
that is unbiased and consistent, converging to the exact solution in the
large particle limit. We prove optimality, in terms of noise, within a
broad family of hybdrid methods that encompasses the commonly-used
particle and linear mesh methods as special cases.

An optimal nonlinear method for simulating relic neutrinos

ABSTRACT: Cosmology places the strongest current limits on the sum of
neutrino masses. Future observations will further improve the sensitivity
and this will require accurate cosmological simulations to quantify possible
systematic uncertainties and to make predictions for nonlinear scales, where
much information resides. However, shot noise arising from neutrino thermal
motions limits the accuracy of simulations. In this paper, we introduce a
new method for simulating large-scale structure formation with neutrinos that
accurately resolves the neutrinos down to small scales and significantly reduces
the shot noise. The method works by tracking perturbations to the neutrino
phase-space distribution with particles and reduces shot noise in the power
spectrum by a factor of O (102) at z = 0 for minimal neutrino masses and
significantly more at higher redshifts, without neglecting the back-reaction
caused by neutrino clustering. We prove that the method is part of a family of
optimal methods that minimize shot noise subject to a maximum deviation
from the nonlinear solution. Compared to other methods we find permille
level agreement in the matter power spectrum and percent level agreement in
the large-scale neutrino bias, but large differences in the neutrino component
on small scales. A basic version of the method can easily be implemented
in existing N-body codes and allows neutrino simulations with significantly
reduced particle load. Further gains are possible by constructing background
models based on perturbation theory. A major advantage of this technique is
that it works well for all masses, enabling a consistent exploration of the full

neutrino parameter space.
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4.1. Introduction

The discovery of neutrino masses [11-13] calls for extensions of the Standard Model of
particle physics and provides the only known form of dark matter. Measuring the masses
is crucial for understanding their origin and for constraining cosmological parameters.
While the neutrino mass squared differences are known to a few percent, the absolute
masses are unknown and there remain two possible mass orderings: normal and inverted.
A rich experimental programme is aimed at determining the mass ordering, measuring
the mass scale set by the lightest neutrino and completing the overall picture of neutrino
properties. Cosmology plays a vital role in this programme due its ability to provide
an independent and complementary constraint on the sum of neutrino masses, Y m,
[23, 25] with a potential sensitivity below 0.02 eV [131-133].

Ongoing and planned neutrino experiments will establish the mass ordering with a
discovery expected by the end of the decade. Although oscillation data have shown
persistent hints of normal ordering, this preference has decreased to 1.60 over the past year
[29]. The mass ordering can be established by exploiting matter effects in long baseline
neutrino oscillation experiments, as in DUNE [134], and in the Earth for atmospheric
neutrinos, as in ORCA [135] and HYPER-K [136], as well as vacuum oscillations in
medium baseline reactor neutrino experiments, specifically JuNO [137]. Each approach
is challenging, so information from multiple sources is essential. Single S-decay is the
experimental strategy of choice for direct mass searches and provides a model-independent
determination of neutrino masses, in particular the effective electron-neutrino mass. The
KATRIN experiment is ongoing and has put a bound of mg < 0.8 eV , assuming quasi-
degenerate neutrino masses, with the aim of reaching mg < 0.2 eV in the near future [14].
Project 8 will have the potential to set a limit of mg < 0.04 eV [15]. Neutrinoless double
B-decay can also provide information on neutrino masses [138-140], albeit entangled with
the value of the Majorana CP-violating phases and affected by uncertainty in the nuclear
matrix elements [141]. For a recent review see e.g. [142].

The complementarity between these different strategies is of great interest. A cosmological
measurement of Y m, would provide a target for direct mass searches [143, 144]. An
incompatibility between the two would indicate a non-standard cosmological evolution or
new neutrino properties. A cosmological bound of Y~ m, < 0.1eV would suggest a normal
mass ordering, which should be confronted with evidence from neutrino experiments.
Finally, there is a strong synergy with neutrinoless double S-decay. Knowing the mass
ordering and the sum of neutrino masses would narrow down the range of values for the
effective Majorana mass parameter, providing a clear target for future experiments.

Measuring the mass scale, and potentially ruling out the inverted mass ordering, is
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therefore a major target of near-term cosmological surveys, including DESI [16], EUCLID
[17], and LsST [18]. In order to analyse these surveys and to extract a mass measurement,
there has been a substantial effort to model precisely the effects of massive neutrinos
on structure formation. From the analytical side, a swathe of new techniques such as
time RG perturbation theory [114] and effective field theories [145, 146], promise to
push the validity of perturbation theory into the quasi-linear régime. In the nonlinear
régime, N-body simulations offer the most accurate picture of structure formation. Yet
incorporating neutrinos into N-body simulations has proved to be a challenge and some
doubts remain about the validity of neutrino simulations on small scales.

The main obstacle to simulating neutrinos is that, in contrast to cold dark matter and
baryons, neutrinos have a significant velocity dispersion. This effectively turns the
3-dimensional problem of structure formation, for which N-body simulations are well
suited, into a 6-dimensional phase-space problem. If no provisions are made, a far greater
number of simulation particles is needed to sample properly the phase-space manifold. A
further complication arises from the fact that neutrinos are relativistic at high redshifts,
such that simulations need to handle both the régime where neutrinos are best described
as radiation and the régime where neutrinos are better described as massive particles.

The first 3-dimensional cosmological neutrino simulations were carried out by [147] and
[50], when neutrinos were thought to be much more massive and the velocity dispersion
not as problematic. Modern simulations with sub-electronvolt neutrinos were pioneered
by [148, 149]. Neutrinos are most commonly included in simulations as particles whose
initial velocity is the sum of a peculiar gravitational component and a random component
sampled from a Fermi-Dirac distribution [148-160]. The main difficulty with particle
simulations is shot noise caused by the velocity dispersion. This problem is more severe
for the smallest neutrino masses, which are observationally most relevant. Because
neutrinos are a subdominant component, the error in the total matter distribution is
relatively small. However, shot noise obscures the small-scale behaviour of the neutrinos
and is clearly undesirable if one is interested in the neutrino component and its effect on
structure formation.

To overcome the problems with particle simulations, grid simulations evolve the neutrino
distribution using a system of fluid equations, which requires a scheme to close the
moment hierarchy at some low order [149, 161-168], or as a linear response to the non-
relativistic matter density [116, 169-171]. Even more efficiently, but in the same spirit
of treating neutrinos perturbatively, the total effect of neutrinos has been included as a
post-processing step in the form of a gauge transformation [172]. While these approaches
do not suffer from shot noise, they are not able to capture the full nonlinear evolution of
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the neutrinos at late times. This problem becomes more severe for more massive neutrinos,
but is present even for minimal neutrino masses. A number of hybrid simulations have
therefore combined grid and particle methods [164, 173, 174], typically transitioning from
a fluid method to a particle method at some redshift when the neutrinos become nonlinear.
Another interesting alternative is to integrate the Poisson-Boltzmann equations directly
on the grid [175].

The method proposed in this paper can be considered as a type of hybrid method that
integrates neutrino particles but only uses the information contained in the particles to
the extent that it is necessary. This is accomplished by dynamically transitioning from
a smooth background model to a nonlinear model at the individual particle level. It
relies on the noiseless (but approximate) background model as much as possible, thereby
producing the smallest amount of shot noise possible whilst solving the full nonlinear
system. The main idea is to decompose the phase-space distribution function f(z,p,t)
into a background model f(z,p,t) which can be solved without noise, and a perturbation
which is carried by the simulation particles:

f(z,p,t) = f(z,p,t) + 0 f(x,p,t). (4.1.1)

The choice of background model is arbitrary, but the method performs best whenever
f(z,p,t) is strongly correlated with f(z, p,t), in a way that will be made precise below. If
the choice of background model is poor, the method performs no worse than an ordinary
N-body simulation, except for the small amount of overhead associated with evaluating

f(x,p,t). Note that the background model is just an approximation of f and can itself
be a perturbed Fermi-Dirac distribution.

This type of method has a long history in other fields and is variably known as the method
of ‘perturbation particles’ or more commonly as the ‘0 f method’, which is the name
we shall adopt. [176] and [177] discussed the method of perturbation particles in stellar
dynamics. Around the same time, the §f method arose in plasma physics [178-181].
While the method of perturbation particles is not widely known today in astronomy,
the 6 f method is standard fare in plasma physics. A major difficulty in astronomical
applications is the absence of a background model that captures enough of the dynamics
to be useful. In contrast, plasma physicists are often interested in turbulent phenomena
arising in an otherwise stable system, with a natural candidate for a background model
f at hand. Our work is motivated by the fact that there is also a natural background
model for cosmic neutrinos, namely the phase-space density predicted by perturbation
theory. There is a major synergy between § f N-body simulations proposed here and
work on improved perturbation theory methods. A better background model means
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a smaller dependence on the particles and therefore further reduced shot noise. We

0™ order approximation, which is just a homogeneous

will show however that even the
redshifted Fermi-Dirac distribution, provides a significant improvement over ordinary

N-body methods.

The remainder of the paper is structured as follows. In Section 4.2, we derive the § f
method and describe its use as a variance reduction method for N-body simulations. We
also show that the method is part of a family of optimal hybrid methods. In Section 4.3,
we illustrate the method with a one-dimensional test problem. In Section 4.4, we discuss
how the method can be embedded in relativistic simulations. Our suite of simulations is
then described in Section 4.5. The method is compared with commonly-used alternatives
in Section 4.6. We consider higher-order background models based on perturbation theory
in Section 4.7. Finally, we conclude in Section 4.8.

4.2. Derivation

The phase-space evolution of self-gravitating collisionless particles is described by the
Poisson-Boltzmann equations, which in the single-fluid case read

sz[gﬁpv-vavp]f—o, (4.2.1)
V2® = 4nGp = 477G/d3p\/m2 + p?f(x,p,t). (4.2.2)

Here, ® is the gravitational potential, p the energy density, and f the phase-space density.
In general, the Liouville operator, L, acts on each fluid separately and the potential
should be summed over all fluid components. In relativistic perturbation theory, this
system can be written as a hierarchy of moment equations for the neutrinos, which
is solved to first order with Boltzmann codes such as CLASS [128] or cAMB [127]. To
extend our predictions to the nonlinear régime, we can use N-body codes, which solve
the Poisson-Boltzmann system by the method of characteristics. Characteristic curves
satisfy

dx dipi

— = and = —-Vo. 4.2.3

at 7 at (423)
By construction, one finds that df/d¢t = Lf = 0 along these curves. To infer statistics of
the phase-space distribution, we simulate N of these trajectories using marker particles.
We can freely choose the phase-space distribution, g, of our simulation particles at the

initial time. For instance, assuming an initially homogeneous spatial distribution and
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momenta from the Fermi-Dirac distribution, we would have g o« (exp{p/T,} + 1)7L.

Typically, one chooses g(x,p,ty) = f(x,p,to). Since Lg = 0, this equality then holds for
all t > ty. In general, a phase-space statistic is given by

A@J%ﬂAbz/ﬁ%f@mﬁA@mﬁ

72 £ le’p“ A(zi, piyt). (4.2.4)

-Twpza

Following the usual choice of setting g(z,p,to) = f(z,p, to), the sum reduces to a simple
average over marker particles. The error in our estimate of A is then o4/ V/N. Hence,
if the distribution, f(x,p,t), has a large intrinsic scatter, we need a large N to beat
down the noise. Alternatively, we might construct an estimator with a smaller error. Let
us therefore write the phase-space distribution function, f, as a background model, f,
together with some perturbation, df:

f(z,p,t) = f(x,p,t) +6f(x,p,t). (4.2.5)

We can reduce the error by only using the particles to estimate the perturbed distribution,
df. We replace (4.2.4) with

Az, t) = /d3p [f(z,p,t) +0f(z,p,t)| Az, p, 1) (4.2.6)
~ 7 8 f (w4, piy t) .
>~ Az, t) + — Z e —T0 0 A2, pis t). (4.2.7)
This is useful if
Alw.t) = [ & Flo.p.0A@p.0) (4.2.5)

can be computed efficiently and if f and f are strongly correlated, so that the second
term is small. The simplest choice of background model is a homogeneous Fermi-Dirac
distribution

s 1
(27r) @ap/(kau) + 1,

fz,p,t) = (4.2.9)
with gs internal degrees of freedom. Here, a = a(t) is the scale factor, T, = 1.95 K the
present-day neutrino temperature, and ap the present-day momentum. Since the noise
reduction scales with the correlation between f and f, we can achieve further gains by
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adding more information to the background model. The obvious next step is to use
perturbation theory to improve on (4.2.9). This option is considered in Section 4.7.

4.2.1. Implementation

In Appendix 4.E, we outline the practical steps needed to implement the method in
cosmological N-body simulations. In essence, whenever we sum over neutrino particles,
such as when calculating the gravitational force on a test particle, we replace the particle
mass with a statistically weighted mass:

g(l’z,pz,t) g(a;’uput)

m— mw; =m [ (4.2.10)
The weights are computed by comparing the true phase-space density with the background
model. We know the background model density, because we can evaluate (4.2.9) at any
time. We also know the true density for each particle, because Lf = Lg = 0 along
characteristic curves. It is therefore sufficient to record the two numbers f and g at
the initial sampled location of each particle in phase space. We note that any sampling
distribution g is valid provided that g # 0 almost everywhere f # 0. We will continue
to use the common choice, g = f, where f is the Fermi-Dirac distribution. In general,
the optimal choice of g will depend on the phase-space statistic of interest. Choosing a
distribution g that oversamples slower particles can provide an additional reduction in
shot noise. Given the homogeneous Fermi-Dirac background model (4.2.9), the neutrino
density becomes

pu(x,t) = py(t) + mei 6O (& — ;). (4.2.11)

Cosmological N-body simulations only compute the perturbed potential, since the
background density p is accounted for in the background equations. The only change
affecting the force calculation is therefore the weighting of the particles. The mean squared
weight, I = %<w2>, is a convenient statistic to quantify the importance of including the
neutrino particles. We show the evolution of I for a > m, = 0.1eV simulation with the
homogeneous background model (4.2.9) in Fig. 4.1. At early times, particles deviate very
little from their initial trajectory and the weights are negligible. We find that I = 4 x 10~
at 2 =20, =3x10"%at 2 =10, and I = 2 x 107° at z = 5. This early reduction is
important as shot noise at high redshifts inhibits the growth of physical structure and
can seed additional fluctuations that grow by gravitational instability. At late times,
when nonlinear effects become important, the weights increase to I =2 x 1074 at z = 2,
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Figure 4.1: Evolution of particle weights for a Y m, = 0.1eV cosmology, starting at different

redshifts z;. The mean squared particle weight (w?) represents the effective reduction in shot
noise.

I=1x10%atz=1,and I = 6.7 x 1073 at z = 0, independently of the starting redshift
of the simulation. This translates to a reduction in shot noise, o = 2VI/N, or an effective
increase in particle number at z = 0 by a factor (21)~! = 75. Finally, we note that one
can save computational resources by integrating only a fraction of the neutrino particles
as long as I remains small. We do not consider this possibility here.

4.2.2. Variance reduction

The df method is an application of the much more general control variates method
[181, 182]. This is a variance reduction technique commonly used in Monte Carlo
simulations. See [91] for another recent application in cosmology. We briefly review
the method here. Let A be a random variable with an unknown expectation E[A] = A.
Given independent random samples A;, the standard estimator is given by

1 N
= — A;. 4.2.12
A=+ ; (4.2.12)
The error in A is
2 12 0124
o3 =E[(A-A)7°] = 2. (4.2.13)
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Let B be another random variable for which the expected value E[B] = B is known. By
adding and subtracting, we can construct a control variate estimator for A:

N
i 1
A =+ Z :] + aBB, (4.2.14)

for any constant «. Like A, this is an unbiased and consistent estimator of E[A]. However,
the error in Ay is given by

2 1

T = N (0% + a0} — 2accov(4, B)). (4.2.15)

Therefore, the error can be reduced if A and B are correlated. Differentiating, we see
that the optimal value of « is given by

. cov(A,B)

af = (4.2.16)

B
For the Fermi-Dirac model considered above, o* is very close to unity and we simply set
a =1 at all times. In general, the value of o* could be estimated at runtime. This is
useful if we add more information about the unknown variable and extend the method
to a linear combination of multiple control variates (see Section 4.7). Furthermore,
the method can still be useful when a control variate is not exactly known but can be
estimated more efficiently than A.

4.2.3. Optimality

Let us consider how the § f method compares to other methods. To allow for the broadest
possible comparison, we will write down an arbitrary hybrid method that involves some
background model, f(z,p,t), such as a fluid description or linear response, and a discrete
sampling of the distribution with arbitrary particle weights, w;(t):

Fugn (2, p,) = a(t) f(x, p, t +Zw ()0 (x — 2)8P (p — p), (4.2.17)

where «a(t) is a weight function for the background. This parametrization captures
virtually all existing methods. The ordinary N-body particle method corresponds to
(o, w;) = (0,1) at all times. Pure grid-based methods have (o, w;) = (1,0). Existing
hybrid methods switch over from a grid method to a particle method after some time
ts, which corresponds to (o, w;) = (1 — q,q) with ¢(t) = I[t > ts] a step function. For
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simplicity, we consider only the case where all particles are switched on at the same time,
but the argument extends readily to the more practical case where only some particles
are switched on. Given a choice of weight function, a(t), for the background, what choice
of particle weights is optimal?

Let f(z,p,t) be the nonlinear distribution and g(x, p,t) the sampling distribution of the
markers. In the continuous limit, the expected error in the number density is given by

() = /dgp foyn (2, 1) —/d3p f(z,p,t) (4.2.18)
= [ @p(w@p09@p.0) +a®f@pt) - fapD).  (4219)

Meanwhile, the shot noise term in the power spectrum grows as the square of the particle
weights, so we want to minimize

3(w?) = /d3p Jw(z,p,t)’g(z,p, 1), (4.2.20)

subject to the constraint (¢) < n for some maximum error 7. Assume that the bound is
saturated. First, let us look for solutions that extremize the integral constraint. We find
the unique solution

w= ‘ng with 0f = f — af. (4.2.21)

This is the § f method introduced above, with optimal « given by (4.2.16). Any further
solution should extremize the Lagrangian,

L= %w(x,p,t)Qg(x,p, t) + /\<w(x,p, t)g(z,p,t) +a(t)f(z,p,t) — f(z,p, t)) (4.2.22)
Writing down the Euler-Lagrange equations
[w+ A gVpw + 3wV, + AwV,g = AV, f — @AV, f, (4.2.23)

one finds a family of quadratic solutions

w:—>\:|:1//\2+2)\5gf with 0f = f — af. (4.2.24)

The case A = 0 corresponds to the trivial solution w = 0. For A # 0, we obtain the
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minima

Sf 1 [6F)? 1 6f\°
= - —|—= Ol —=—=—] . 4.2.25
YT 2A<g)+ N3 g ( )
These solutions correspond to small perturbations around the d f method that trade some
accuracy for a possible reduction in shot noise. However, since the leading correction
is oc (0f)?, this is only possible if the background model is skewed with respect to the
nonlinear solution. Typically, the skewness and the additional reduction in shot noise is

negligible. In fact, since the next-to-leading correction is positive, shot noise increases if
the skewness is small.

We have shown that within the broad class of hybrid methods described by equation
(4.2.17), ¢ f-type methods of the form (4.2.25) minimize the amount of shot noise, subject
to the constraint that the error in the number density remains below a certain bound.
The §f method given by (4.2.21), recovered from (4.2.25) in the limit A — oo, is the
unique solution for which the expected error (¢) = 0. The optimal value of « is given by
(4.2.16), but will be close to 1 if f ~ f. This is the method we will use exclusively, with
the choice a = 1.

4.3. One-dimensional example

We now illustrate the method by applying it to a one-dimensional test problem with a
known solution. Readers that are satisfied with the mathematical derivation may skip
ahead to Section 4.4.

4.3.1. The elliptical sine wave

Consider the 1-dimensional collisionless Boltzmann equation

of of 0®0f

il L _ 2L 4.3.1

ot “Por awop (4.3.1)
where the particles move under a conservative force F(x) = —®'(x). Let us assume a

periodic potential given by

®(z) = sin®(z/2). (4.3.2)
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Figure 4.2: Density profiles for the 1-dimensional elliptical sine wave test problem. We counted
particles in 100 bins of width Af = 47/100 to create the empirical density profiles. On the left,
an ordinary N-body simulation with N = 10% particles was used. On the right, the N-body
simulation was extended with a § f step.

The steady-state solution can be found to be:

= 2
f(z,p) = \/;7@@ (2];2 + cc;i;r)) , (4.3.3)

in terms of the background density p and velocity dispersion ¢. The corresponding

density profile p(x) is given by

o0 ~ cos(z)
p(x) =/ f(w)dp:peXp< 52 ) (4.3.4)
oo o
To find the general time-dependent solution, we use the method of characteristics. The
characteristic equations are

dx dp 1 .
=P %= 3 sin(z). (4.3.5)

These equations of motion can be solved in terms of the energy E = %pQ + sin?(z/2),

which gives
sin(z/2) = sn (i«/E/Q(t - T)) , (4.3.6)

where 7 is an integration constant and sn(z) is the Jacobi elliptic sine function with
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elliptic modulus k = 1/v/E [183]'. Assuming a homogeneous Gaussian distribution with
mean p for the initial momenta p at time ¢t = 0,

p (p—p)°
f(z,p,0) = G exp <_W> , (4.3.7)
the general solution, f(z,p,t), at later times is a complicated expression involving elliptic
sines and arcsines. The details are given in Appendix 4.A. We replicate the problem
using N-body methods. A large number of particles are initialized on the interval
x € [0, 47] with momenta drawn from the initial distribution (4.3.7). The particles are
then integrated using

Az = pAt, Ap = —% sin(x)At. (4.3.8)

In addition to the ordinary IN-body method, we use a 6 f method, where the background
model is given by

= 22
f(z,p,t) = Qfm? exp (—(p2g2p)> , (4.3.9)
and the weights are updated during each step via w = §f/f. The corresponding density
profiles are shown in Fig. 4.2. The plots were created using N = 10° particles and
the model parameters are p = ¢ = 1 and p = 10. The results show that both the
ordinary N-body simulation and the simulation with a é f step can reproduce the exact
solution. However, the ordinary method is very noisy, whereas the § f method reproduces
the expected profiles with remarkable accuracy. The reason for this is that while the
distribution itself has a large dispersion, resulting in noisy results for the ordinary method,
the perturbations from the steady solution are small, which allows the § f method to
work. This is exactly analogous to the cosmic neutrino background.

4.4. Relativistic effects

Neutrinos are relativistic at early times, which introduces some subtleties when evolving
such a species with a Newtonian code. Including relativistic effects is not necessary for
the 0 f method, but we include them in our simulations to allow a consistent comparison
with several recent works [154, 166, 172]. Furthermore, the higher-order §f methods

For E — oo, we have snz — sinz, meaning that x o t. The particle ‘ignores’ the potential. For
E =k =1, snx = tanhx, meaning the particle asymptotically approaches a potential peak. For
FE < 1, the particle is bounded and oscillates between peaks.
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discussed in Section 4.7 provide a natural setting for including these effects without
neglecting the nonlinear evolution of the neutrinos.

There are broadly speaking two philosophies when it comes to the inclusion of relativistic
effects in Newtonian N-body codes, which one might call the “active” and “back-scaled”
approaches. In the former, relativistic effects are actively included, while in the latter, the
initial conditions are modified by rescaling the linear power spectrum in such a way that
the desired outcome is recovered at z = 0. In this chapter, we take an active approach.
In Chapter 5, we instead take the back-scaled approach. By construction, both methods
agree at the linear level at z = 0, but predictions at high redshift may differ. Generally,
however, these effects are quite small. In both cases, it is convenient to choose a gauge in
which relativistic corrections are small to begin with.

We will work in the Newtonian motion framework of [184] and make modifications to
the initial conditions, long-range force calculation, and particle equations of motion as
outlined below.

4.4.1. Initial Conditions

To generate initial conditions for massive neutrinos and to set up the higher-order
background models (Section 4.7), accurate calculation of the linear theory neutrino
distribution function is indispensable. This can be done with the Boltzmann codes
CAMB [127] and cLASs [128]. At their default settings, these codes produce accurate
total matter and radiation power spectra (their intended purpose), but the neutrino
related transfer functions (e.g. density and velocity) are not converged and can be very
inaccurate [165]. To obtain converged results, we post-process perturbation vectors from
CLASS by integrating source functions up to multipole #;,ax = 2000. This prevents the
artificial reflection that can happen for low £y,.¢. See Appendix 4.B for more details.

Initial conditions are then created using the post-processed transfer functions from CLASS
in N-body gauge at z = 100. We do not follow the usual approach of back-scaling the
present-day power spectrum, but use the so-called forward Newtonian motion approach
[184, 185]. To our knowledge, forward Newtonian motion initial conditions have always
been set up with the Zel’dovich approximation. However, this approximation is known to
be inadequate for precision simulations [88]. To go beyond Zel’dovich initial conditions, we
determine the Lagrangian displacement vectors @ = x — q by solving the Monge-Ampere
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equation

-1
p(x) = p(1+44d(x)) = det [1 + 8%()()] . (4.4.1)
qu
This equation is solved numerically with a fixed-point iterative algorithm that exploits
the fact that the density perturbation 0 is small. We note that this approach is not
equivalent to Lagrangian perturbation theory, but merely provides a more accurate map
from the Eulerian initial density field to a Lagrangian displacement field compared to the
Zel’dovich approximation. A detailed analysis of this method will be presented elsewhere.
Velocities were determined independently using the transfer function for the energy flux

0 =ik -wv.

We used two different methods to generate initial conditions for the neutrino particles.
In the first method, neutrino particles were displaced randomly in phase space according
to the perturbed phase-space density function, fpr(z,p,t), including terms up to £ = 5.
This method was used for our (256 Mpc)? simulations. However, we encountered some
problems with this method and later switched to the method presented in Chapter 6.
In this second method, which accounts also for higher multipoles, neutrino particles are
integrated in linear theory from z = 10° to the starting redshift z = 10% [150, 154, 186].
Both methods agree on small scales, but the latter method was found to be more accurate
on large scales, k < 1072 Mpc~!. For this reason, we used the second method for our
(1 Gpc)? simulations.

4.4.2. Long-range forces

In a relativistic setting, the gravitational evolution is governed by the Einstein-Boltzmann
equations. We will approximate this system using a hybrid approach [187], in which dark
matter and massive neutrinos are evolved using a Newtonian N-body code complemented
with relativistic corrections to the fluid equations that are pre-solved in linear theory.
We will work in N-body gauge, which allows the fluid equations for dark matter to be
written in a particularly convenient form resembling the Newtonian equations solved by
conventional N-body codes. The continuity and Euler equations can then be written as
[185, 188]:

O04+V-v=0, (4.4.2)
v+ aHv = -V + VAN,
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where overdots denote conformal time derivatives, § is the density contrast, v the peculiar
velocity, and H = a/a®. All relativistic corrections are captured by the N-body gauge
term, VANP, which arises from the anisotropic stress of relativistic species. In addition,
the scalar potential ¢ receives contributions from all fluid components:

V?¢ = 4nGa® Y dp;, (4.4.4)

where the sum runs over cold dark matter, baryons, neutrinos, and photons. Density
perturbations are actively calculated for all species. In the case of massive neutrinos and
the cold dark matter and baryon fluid, this is done with particles in the usual way. For
photons and massless neutrinos (and for some runs, the massive neutrinos?), this is done
by realizing the corresponding transfer functions from CLASS on a grid as part of the
long-range force calculation in our N-body code SWIFT.

In the absence of relativistic species, the N-body gauge term, VyNP, vanishes and the
continuity and Euler equations agree with the Newtonian equations solved in conventional
N-body codes. This makes N-body gauge useful as it allows one to set up initial conditions
in N-body gauge, evolve them in a Newtonian simulation, and give the results a relativistic
interpretation. The relativistic corrections become relevant at the 0.5% level on the
largest scales in our Gpc simulations. Ordinarily, these corrections are accounted for in
the initial conditions by back-scaling the present-day linear power spectrum, ensuring
that the linear power spectrum is recovered on large scales at z = 0. Here, instead, we
actively include these contributions with the aim of recovering the linear power spectrum
at earlier times as well.

4.4.3. Particle content

When simulating light neutrinos from high redshifts, we are evolving relativistic particles
in a Newtonian simulation. Such particles can reach superluminal speeds when evolved
using the ordinary equations of motion. Following [85], we initially addressed this issue
by replacing the equations of motion with special relativistic equations that are valid to

2Specifically, the linear theory runs and the runs with higher-order § f methods, as discussed in Sections
4.6 and 4.7, respectively.
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all orders in wu:

) 2u? + a? Nb
x= 1 (4.4.6)

VuZ + a2’

Here, a is the scale factor and u the comoving 3-velocity. However, we encountered two
problems with our original approach. The first is that a direct leapfrog implementation
of these equations is not symplectic due to the fact that the right-hand side of (4.4.5)
depends on u. As a consequence, phase-space density is not exactly conserved by the
discrete Hamiltonian, as assumed by the § f method. We investigate this issue further
in Appendix 4.D, where we offer an alternative solution and conclude that this is not
an issue in practice. The second problem is that using these equations, we did not
exactly reproduce linear theory on large scales. We ultimately traced this to the use of
a gauge-dependent definition of momentum in the derivation of Eq. (4.4.5), as will be
discussed in Chapter 6. For now, we simply note that a solution is to use the special
relativistic equation (4.4.6) together with the non-relativistic version of (4.4.5):

U= —aV (¢ - nyb) . (4.4.7)

This choice not only ensures that the neutrinos move the correct subluminal distance
and that the integrator is symplectic, but also avoids the problem on large scales. We
used this second approach for our Gigaparsec simulations. On small scales, the evolution
of the neutrinos at late times is insensitive to their early evolution, making the difference
between (4.4.5) and (4.4.7) immaterial. For this reason, we present the original results
for our 256 Mpc simulations, which used the first approach with (4.4.5) and (4.4.6).

A separate matter from the equations of motion is that the neutrinos have a relativistic
energy at early times. Using only the mass-energy, as is done for non-relativistic matter,
leads to underestimation of the matter power spectrum on large scales. To rectify this,
we replace the weighted mass of the particles with a weighted energy ¢ = m+va? + u?.
Here, again the issue of the symplectic integrator plays a role. To ensure that u does
not depend on current particle velocities, we used the alternative form € = m+/a? + u%
for our Gigaparsec simulations. Here, ug is the initial particle velocity at z = 100. This
approximation is extremely accurate, as substantial deviations from ug only occur for
slow particles at late times in which case the mass term dominates (see Appendix 4.D).
For the 256 Mpc simulations, we used the original form € = mva? + u2.
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Table 4.1: Description of the simulations. The listed particle mass, m,, refers to the combined
cold dark matter and baryon particles. The neutrino fraction is listed as f, = Q,/(Qcp + ).

Side Length N, my [M@ N, omy  fy

1024 Mpc 1024%  3.96 x 1010 0 0.0eV 0

1024 Mpc 10242  3.93 x 1019 1024® 0.1eV  0.0073

1024 Mpc 10243 3.81 x 1010 10243 0.5eV  0.0376

256 Mpc 5123 4.95x10° 0 0.0eV 0

256 Mpc 5123 4.92 x10° 1024 0.1eV 0.0073

256 Mpc 5123 4.77 x 10° 1024 0.5eV  0.0376
Linear theory Particle method df method

=0.1eV

S my

=0.5eV

> my

Figure 4.3: Neutrino density plots of (256 Mpc)? cubes at z = 0, simulated with two commonly-
used methods and with the §f method. The particle and §f simulations used N, = 10243
particles. Shot noise is clearly visible for the particle method, although noticeably less so for
> m, = 0.5eV. The linear theory model fails to reproduce the small-scale behaviour. The J f
method solves both problems. The inset zooms in on a neutrino halo and should also be compared
with the linear response prediction in Fig. 4.4, which uses the same colour scale. The neutrino

fraction f, = Q,/(Qep + Q,) = 0.0073 for the top row and f, = 0.0376 for the bottom row.
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4.5. Simulations

We now describe our neutrino simulations, which were run on the COSMA6 comput-
ing facility in Durham. We have implemented the 0f method in the cosmological
hydrodynamics code SWIFT [189, 190]. SWIFT uses a combination of the Fast Multi-
pole Method for short-range gravitational forces and the Particle Mesh method for

5t degree polynomial kernel for the force softening with

long-range forces. It uses a
a single time-dependent softening length. The code uses a task-based parallelization
paradigm to achieve strong scaling on large clusters and obtain significant speed-ups
over competing N-body codes. The main simulations presented in this paper use the
basic version of the J f method with a homogeneous Fermi-Dirac distribution as back-
ground model. Our choice of cosmological parameters, based on Planck 2018 [112], is
(hy Qe + 0, U, Ag,ns) = (0.6737,0.265,0.0492,2.097 x 107?,0.9652). We run two sets
of simulations at different resolution to test the large-scale and small-scale behaviour of

various methods. The cube sizes and particle numbers are listed in Table 8.1.

4.5.1. Choice of neutrino masses

Neutrino oscillations indicate that there are three neutrino mass eigenstates with unknown
masses m;. The mass splittings have been measured with good precision and are
complemented by cosmological constraints on the sum of neutrino masses, as discussed
in Section 3.1. Given the limits discussed in that section, we consider three values for
> my, keeping the present-day value Qo = Qcp o + 0 fixed. Scenario one contains
three massless neutrinos, scenario two corresponds to the inverted mass ordering with
> m, = 0.1eV3, and scenario three to a degenerate spectrum with > m, = 0.5eV. The
first two models bracket the most interesting range of values 0 < > m, < 0.1eV. The
last model has surely been ruled out, but is included for several reasons. First of all,
the 0 f method reduces to the ordinary particle method in the large mass limit at late
times. Hence, the Y m, = 0.5eV case provides a useful consistency check. Second,
when simulations are used to emulate statistics for parameter extraction, we should allow
for unlikely excursions in MCMC analyses without our simulation methods breaking
down [172]. Finally, in the extended parameter space around ACDM, for example
with a non-standard lensing amplitude, Ay, or curvature, or when varying the dark
energy equation of state, the possibility of larger neutrino masses remains very relevant
[113, 114, 116, 191].

The two massive scenarios considered in this paper have degenerate neutrino masses

3Specifically, two 0.0486 eV neutrinos and one massless neutrino.
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Figure 4.4: Density plots of (256 Mpc)? cubes at z = 0. The linear response method applies the
linear theory ratio 6% (k) /812 (k) to the simulated CDM + baryon phases [169]. Compared to
the linear theory prediction, it performs remarkably well, but the neutrino halos around clusters
are significantly more diffuse compared to the particle and 6 f simulations (compare the zoomed
in halo with the df prediction in Fig. 4.3). The resulting potential difference is shown in the last
column, with flowlines indicating the forces that are not present in the linear response model.

(2x0.05eV and 3 x0.167eV). However, the 0 f method can easily be extended to account
for mass splittings. In that case, particles would be labelled with a given mass state, 7,
and each state would have its own background model, f;. The reduction in shot noise is
largest for the smallest neutrino masses, placing different masses on a level footing. This
allows for better load balancing between different neutrino masses.

4.6. Results

We compare our neutrino ¢ f method with three commonly-used alternatives. The most
common alternative is the ordinary N-body particle method, which is the same in every
respect as our method, but with the weighting step disabled. Next, we consider a linear
theory method based on [166] that does not evolve neutrino particles but instead realizes
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> m, =0.1eV > m, =0.5eV
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Figure 4.5: Neutrino probability density functions (pdf) at z = 0, computed on a 10243 grid
from the 256 Mpc simulations, and smoothed with a Gaussian filter with radius R = 256 kpc. We
compare the § f method with three commonly-used alternatives. The particle and ¢ f methods
agree in the high density tail, because the largest overdensities have enough particles to achieve a
high signal-to-noise ratio. Shot noise plagues the particle method, particularly in underdense
regions. The linear methods fail in the high density tail.

the linear theory neutrino perturbation in N-body gauge on a grid. The neutrinos are
then fully accounted for in the long-range forces. Finally, we consider the linear response
method of [169] in which the neutrino perturbation is calculated by applying the linear
theory transfer function ratio, 61" (k)/Sk%(k), to the simulated CDM + baryon phases.

A visual inspection of the neutrino density plots shown in Figs. 4.3 and 4.4 reveals the
strengths and weaknesses of the four methods. Broadly, we see that the linear theory
method does not suffer from shot noise, but fails to reproduce the small-scale behaviour
resolved by the particle and § f methods. At the same time, shot noise is clearly visible
in the particle simulation with > m, = 0.1eV, despite using N, = 10243 particles in
a 256 Mpc cube. This is evidently cured in the 0 f plot. We also see that shot noise
is much less of a problem for > m, = 0.5eV, but the §f plot is still less grainy than
the corresponding particle plot. Finally, Fig. 4.4 shows that the linear response method
greatly improves on the pure linear theory prediction, but still produces neutrino halos
that are too diffuse compared to the particle and d f simulations.

4.6.1. Neutrino component

We start with an analysis of the probability density function of the neutrino density field,
computed on a 10243 grid from the 256 Mpc simulations. Refer to the plots in Fig. 4.5,
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Figure 4.6: Neutrino power spectra at z = 0. We compare the § f method with three commonly-
used alternatives. Shot noise enters the power spectrum at the constant level V/N = 1/64 for the
particle method. We also show a fit to the ¢ f power spectrum (red curves), given by eq. (4.6.1).
The bottom panels show the cross-spectral coefficient ry, o, = P, cb/v/ Py Peb.-

which bear out the basic picture sketched above. For the Y m, = 0.1eV neutrinos, the
particle method is plagued by shot noise, but agrees with the § f method in the high
density tail where the particle number is sufficient to obtain a good signal-to-noise ratio.
The linear prediction fails in the high and low density tails. Finally, the linear response
method, which applies the linear theory ratio d,(k)/dcp(k) to the CDM + baryon phases,
is an intermediate case between the linear theory and J f methods. For the more massive
scenario, the situation is much the same, except that shot noise is much less of a problem
for the particle method on these scales.

Next, we consider two-point statistics and show the neutrino power spectrum at z = 0 in
Fig. 4.6, combining the large and small simulations to show a wide range of scales. We use
the Gpc simulations for k < 0.1 Mpc™! and the 256 Mpc simulations for & > 0.1 Mpc ™.
As expected, all methods agree on linear scales, & < 0.1 Mpc™!, for both neutrino masses.
On smaller scales, linear theory significantly underpredicts the amount of neutrino
clustering. The linear response method also underpredicts the neutrino power spectrum,
but not by as much. The relative difference between the nonlinear power spectrum and
linear power spectrum is greater for neutrinos than for CDM and baryons. To account
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for this effect, we fit a nonlinear correction to the linear response power spectrum using
the measured d f power spectrum up to k = 1 Mpc~:

5hn(k) 2
Pt (k) = Py (k) | atpk 4.6.1
08 = Path) o | © (1.6.1)
and find o = 0.006 £ 0.004 and 8 = 0.90 + 0.01 (>_m, =0.1eV) and oo = —0.06 £+ 0.03
and = 0.34 £ 0.09 (>_m, = 0.5eV). These are shown as the red curves in Fig. 4.6.

The particle simulations are clearly affected by shot noise, at the level of V/N = 1/64,
obscuring the neutrino signal on scales smaller than & = 0.2Mpc~! for the lightest
scenario and on scales smaller than & = 1 Mpc ™! for the more massive scenario. Using the
0 f method, shot noise is significantly reduced in the former case (factor of 87) and slightly
reduced in the latter case (factor of 3.5), revealing a signal down to k = 1 — 2Mpc L.
Hence, § f simulations can achieve a similar resolution independently of mass without

adjusting the particle number.

We also show the cross-spectral coefficient

Py,cb(k)

veb ) (4.6.2)
Pu(k)Pcb(k)

ru,cb(k) = )
which captures phase differences between the dark matter and neutrinos. By definition,
Ty = 1 according to the linear response method. However, this does not hold on small
scales as can be seen in the bottom panels. Up to the point where shot noise becomes a
problem, the particle and  f methods agree, demonstrating that r, ., < 1 is a physical

effect. This is particularly clear for Y m, = 0.5eV.

Next, we consider how well the simulations can resolve the extended neutrino halos
surrounding galaxies and clusters [192, 193]. In Fig. 4.7, we show stacked neutrino
profiles for halos with virial CDM + baryon mass M., in the range (5,12) x 1014 M.
The particle and 0 f methods agree almost perfectly, once again because of the high
signal-to-noise ratio in the largest overdensities. In linear theory, the neutrino halos are
completely absent as is evident also from the cross-sections in Fig. 4.3. Finally, the linear
response method predicts neutrino halos that are too diffuse compared to the nonlinear
simulations, and with too little dispersion from the mean profile. The larger dispersion
found in the nonlinear simulations is not due to errors in individual profiles, but due to a
stronger correlation between Mg, and the local neutrino density.
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Figure 4.7: Stacked neutrino density profiles at z = 0 for halos with virial mass M}, in the range
(5,14) x 10 M, computed with four different methods from the 256 Mpc simulations. The
particle and §f curves overlap almost perfectly. The shaded area indicates the 1o dispersion

around the mean profile.
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Figure 4.8: Neutrino bias relative to dark matter halos with virial mass, Mg, > 10'2M), on
scales, R = 30h~! Mpec, computed with four different methods from the Gpc simulations at z = 0.
The 0, (dn) relationship is approximately linear with slope equal to the neutrino bias b.

4.6.2. Neutrino bias

On larger scales, the neutrino density field can be reconstructed from the density of halos
for a given neutrino mass spectrum [157]. We therefore construct the halo overdensity
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field,
Sp(z) = T/~ M (4.6.3)

by calculating the number density, ny(x), of halos and the mean density, iy, at z =0 in
our Gpc simulations identified using the halo finder VELOCIRAPTOR [194]. We restrict
attention to halos with virial mass, M, > 10'2M), and smooth d,, and 6, with a tophat
filter of comoving radius R = 30h~! Mpec. Following [175], we study the mean neutrino
density at constant halo density d,(dy), defined in terms of the joint probability density
function P(d,,0n) as

5,(6) = / 46,8, P(5,, ). (4.6.4)

This relationship is close to linear with slope equal to the neutrino bias, given by

<51/5h>
b= . (4.6.5)
(o%)
The degree of nonlinearity is captured by
52)(652
2 = o) (4.6.6)

nl — ( u5h>2 )

which satisfies e;; = 0 if and only if the slope of 6,(8y,) is independent of &,. The scatter
around the biasing relationship is characterized by the stochasticity,

(BB, — 8,0

2
= L 4.6.7
€stoch <51/6h>2 ( )
The nonlinearity and stochasticity are related to the correlation coefficient,
0,0
{9,9n) (4.6.8)

Tyh = —F—,
\/ (02)(07)

2 )~1/2. This model is analogous to the nonlinear stochastic

via 7 ~ (14 efﬂ + €och
galaxy biasing model of [195, 196]. We compute the four quantities (b, €2}, €2 ., mvn) for
each of the methods under consideration. The results are listed in Table 4.2 and the
biasing relationship is shown in Fig. 4.8. As expected on these large scales, we find good
agreement with differences of a few percent in the bias. The greater the level of neutrino
clustering resolved by a given method, the greater the bias b and correlation 7, 5. The
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Table 4.2: Neutrino bias relative to dark matter halos on scales R = 30h~! Mpc. Listed are the
bias, b; nonlinearity, €2,; stochasticity, efmch; and the correlation coefficient, 7, 1.

Method b 61211 egtoch Tuh
0 f method 0.1032 | 0.0022 | 0.4883 | 0.8195
= | Particle method | 0.1028 | 0.0021 | 0.4955 | 0.8176
= | Linear response | 0.1015 | 0.0022 | 0.5065 | 0.8146
Linear theory 0.0987 | 0.0206 | 0.5878 | 0.7889
0 f method 0.2556 | 0.0014 | 0.1969 | 0.9137
= | Particle method | 0.2546 | 0.0017 | 0.1927 | 0.9152
“O? Linear response | 0.2502 | 0.0019 | 0.2031 | 0.9112
Linear theory 0.2404 | 0.0257 | 0.2902 | 0.8719

stochasticity follows the opposite pattern. The nonlinearity follows no such pattern, but
is very small in each case except (amusingly) for the linear theory runs. This is because
linear theory does not resolve neutrino halos, causing the 6,(dy,) relation to level off in
the high density tail.

The bias b = 0.103 for the 0.1 eV scenario is in excellent agreement with the bias b = 0.071
found by [175], when the difference in mass ordering is factored in using the approximately
linear relationship between neutrino mass and bias in their results. [175] do not consider
neutrino masses beyond 0.4 eV, but our finding of b = 0.256 for 0.5eV is slightly lower
than expected when extrapolating from their results. We also find a larger stochasticity
and smaller correlation than might be expected, although the small nonlinearities agree.
Given the mutual agreement between the different runs in Table 4.2, these differences
are unlikely to be due to our choice of neutrino method. Differences in the N-body code
or the identification of halos could also affect this comparison.

4.6.3. Matter power spectrum

The suppression of the total matter power spectrum at z = 0, relative to a massless
neutrino cosmology, is shown in Fig. 4.9. We see that all methods are in excellent agree-
ment and reproduce the famous spoon-like feature, which has recently been explained in
terms of the halo model [197]. The differences between the methods are most pronounced
around k = 0.6 Mpc~!, where the suppression is largest. The inset graphs zoom in on
these scales. For both neutrino masses, the d f method predicts a smaller suppression
than the particle and linear methods. This is in line with expectation, as the additional
small-scale neutrino clustering, which is obscured by shot noise in the particle method
and absent in linear theory, slightly offsets the suppression. Accordingly, the pure linear
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Figure 4.9: Total matter power spectra at z = 0, relative to a massless neutrino cosmology.
The plots are based on (1024 Mpc)? simulations with N, = 1024% and (for the particle and J f
methods) N, = 10243 simulation particles. The horizontal line is the empirical fitting formula,
AP/P = -938f,.

theory method predicts the least neutrino clustering and the largest suppression. It is
interesting to see that the particle and §f methods do not agree for  m, = 0.5eV,
despite having similar neutrino power spectra at z = 0. This is most likely due to shot
noise at high redshift in the particle simulation. Compared to the cold dark matter
and baryon fluctuations, the shot noise itself is negligible at z = 0, but it has two
possible effects on structure formation at earlier times. It could seed non-physical density
fluctuations or the random motions of neutrinos could obscure their real contribution to
the growth of physical structure. Our results suggest that the latter effect dominates.
In either case, these effects highlight the importance of using a hybrid method that
eliminates shot noise at high redshift. The differences between the methods are at the
permille level, corresponding to a shift in neutrino mass of several meV. In absolute
terms, the differences are larger for Y m, = 0.5eV, but less important overall.

The horizontal line corresponds to the empirical fitting formula, AP/P = —9.8f, [148].
Compared to this formula, we find a slightly greater suppression in each case, regardless
of the method used to model the neutrinos. For the 0.1eV simulations, this can be
attributed to our use of the inverted mass ordering. The > m, = 0.5eV case is perhaps
more surprising, but seems to be in line with recent works. For example, [172] find
increasingly larger differences with the fitting formula for increasing masses, although
they do not consider models with Y m, > 0.3eV.
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Globally, the agreement between these very different methods is an encouraging sign and
suggests that we have a good handle on the effects of massive neutrinos on the matter
power spectrum. The differences, at most a few permille, may perhaps be relevant when
trying to distinguish the effects of individual neutrino masses [105].

4.7. Higher-order ) f methods

The performance of the § f method scales with the correlation between the nonlinear
solution f(z,p,t) and the background model f(z,p,t), so it is worth investigating other
background models. We can go beyond the 0 order Fermi-Dirac model by including the
linear theory prediction. In that case, the distribution function can be written as

f(SU,p,t) :fFD(CC,p,t) [1+W($7pat)]7 (471)

where the perturbation is decomposed into multipole moments [126],

o0

U(k,p,t) = (—1) 20+ 1)Ty(t, k, q) Po(k - 7). (4.7.2)
=0

Here, Py(-) are Legendre polynomials and the coefficients ¥, satisfy an infinite hierarchy
of moment equations. The Legendre representation yields simple expressions for the first
few fluid moments, but is cumbersome for evaluating the distribution function itself. For
our purposes, it is more convenient to use the following monomial representation

U(k,n,q,T Zz%@ (k,q,7)(k - 7)", (4.7.3)

where for a given f,x, the odd (even) ®y(x,q,t) can be expressed in terms of all the
odd (even) W,,(x,q,t) with m < ¢. See Appendix 4.C for details. With this choice of
background model, the density integral becomes

p(z) =p[l+6,(x —i—Z\/mz—i-psz Nz — ), (4.7.4)

with particles weights w; = 0 f/f and f given by (4.7.1). Here, §,(x) is the linear neutrino
overdensity, which is calculated using crLAss. The effect of the §,, perturbation should
now be included in the long-range force calculation.

As shown in Fig. 4.10, adding the multipoles ®y and ®; significantly improves the
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Figure 4.10: Evolution of the weights, or the effective reduction in shot noise, parametrized by
the )I -factor I = 3 (w?), when including higher-order perturbations: ®y (density), and ®; (energy
flux).

correlation and therefore reduces the shot noise by almost 50%. It is likely that higher-
order terms could contribute meaningfully too, as the multipole expansion converges only
slowly. However, most of the gain is due to the 0" order term, which on its own is much
easier to implement.

4.8. Discussion and conclusions

Shot noise in N-body simulations is a major obstacle to modelling the nonlinear evolution
of light relic neutrinos. In this paper, we demonstrate that the § f method, which de-
composes the neutrino distribution into an analytically tractable background component,
f, and a nonlinear perturbation, § f, carried by the simulation particles, is an effective
variance reduction technique. The reduction in shot noise scales with the dynamic particle
weights, parametrized by I = % <w2>. Because the weights are negligible until very late
times, the simulation is mostly immunized against the effects of shot noise. Furthermore,
shot noise is greatly reduced even at z = 0, which makes it possible to resolve neutrino
clustering down to much smaller scales than is possible with conventional methods. Using
higher-order versions of the J f method, which incorporate additional information from
perturbation theory, shot noise can be reduced by another factor of O(2), and possibly
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more if moments ¢ > 2 are included. Additional reduction in shot noise is possible by
carefully tuning the sampling distribution of the marker particles.

The reduction in shot noise is more significant for smaller neutrino masses, because faster
particles deviate less from their initial trajectory, resulting in smaller weights. This is
fortunate as shot noise is most problematic for the fastest neutrinos. More generally,
particles whose trajectories are not perturbed have negligible weights, whereas particles
that are captured by halos have appreciable weights. This is again fortunate, because
particles are needed in the vicinity of halos where grid methods tend to fail, while the
unperturbed particles contain no information and contribute only noise. In between these
extremes, particles will have intermediate weights. In this way, the § f method ensures
an optimal combination of particles and background.

The method can in principle be combined with any grid or fluid background model to
obtain an optimal hybrid method. Any simulation that evolves neutrino particles can be
extended with a weighting step to minimize the shot noise as outlined in Section 4.2.3.
It is not necessary, as was done here, to evolve the neutrino particles from the beginning.
The I-statistic from a reference simulation can be used to gauge when the neutrinos
become nonlinear and at what point they can safely be introduced (see Fig. 4.1).

We know from neutrino oscillations that at least one neutrino has a mass m, 2 0.05
eV. Our results indicate that even for masses close to that bound, neutrinos are not
particularly well modelled by linear approximations. For instance, the linear response
neutrino power spectrum is off by 10% (60%) at k = 0.1 Mpc™! (k = 1Mpc™!) at z =0,
and the pure linear theory prediction is off by 14% (96%). Because the neutrinos make
up only a small fraction of the total mass, the effect on the matter power spectrum is at
most a few permille. This is the level at which the mass splittings are important [105].
Other statistics may be affected at a greater level, particularly if they are more sensitive
to neutrino effects. For example, we have shown that the neutrino bias relative to dark
matter halos is affected at the percent level on 30h~! Mpc scales. In addition, some novel
probes may require accurate modelling of the neutrino dynamics around halos, such as
the neutrino-induced dynamical friction [198] and torque [199] on halos. By reducing shot
noise without neglecting nonlinear terms, the ¢ f method makes it feasible to calculate
these effects even for the lightest neutrinos.
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4.A. Elliptical sine wave solution
We define an integral of motion
E(z,p,t) = $p* +sin’(2/2), (4.A.1)

which is interpreted as the energy of the particle. Hence,

p= i\/QE — 2sin?(z/2). (4.A.2)

We have reduced the characteristic equations to

% = i\/ZE — 2sin(z/2). (4.A.3)

This equation is separable,

dx
/ V2E — 25sin’(z/2) - i/dt' (4.44)

Let 7 be the time when z(7) = 0. Putting in the integration limits, setting u = x/2, and

factoring out 2F, we obtain

B u du’ B t ;)
F(u) :/0 Ny _i\/E/Q/T at' = ¢. (4.A.5)

The elliptic sine function is defined such that sn(¢) = sin(u), where u = F~1(¢). Hence,

sn (:}:\/E/2(t - 'r)) = sinu. (4.A.6)
There exist the following trigonometric identities [183]:

sn(¢)? +cen(¢)®> =1  and Cﬁﬁsn(@ = cn(¢)dn(e), (4.A.7)

where cn(¢) = cos(u) and dn(¢) = /1 —sin?(u)/E are the elliptic cosine and delta

amplitude functions. Using these identities, one can confirm the solution (4.A.6). To find
the phase-space distribution at time t, we use the fact that f(z,p,t) is constant along its
characteristic curves. At t =0, let 29 = z(0) and pp = p(0). Using the initial Gaussian
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distribution (4.3.7), we find

f(l‘,p,t) = f('anvaO) (4A8)
- o2
= \/;? exp <(p0202p>> . (4.A.9)

We need to express pg in terms of x, p, and t. First, we use conservation of energy to
note that

pi = p? + 2sin®(2/2) — 2sin®(xo/2). (4.A.10)

What remains to show is how to express sin?(zo/2) in terms of z, p, and ¢. But this is
simply,

sin?(z9/2) = sn? <:F\/}lp2 + %sin2(:1:/2)7'> ) (4.A.11)
where the time, 7, is given by
T = F+/2/E arcsn (sin(x/2)) + t. (4.A.12)

Here, we used the inverse of the elliptic sine function, arcsn(z) = ¢, with z = sn(¢). It
follows that

sin?(zg/2) = sn? (arcsn (sin(z/2)) F \/%p2 + %sin%x/Q)t) . (4.A.13)

Therefore, the distribution function is

flz,p,t) = ;;02 exp (—2}‘2 [h(x,p, t) — 2p\/h(x,p,t) +p2D , (4.A.14)
h(z,p,t) = k(z,p,1) — m(z,p,1) (4.A.15)
k(x,p,t) = p* 4 2sin?(z/2)t (4.A.16)
m(x,p,t) = 2sn (arcsn (sin(z/2)) F ik(x,p,t)) : (4.A.17)

To find the density profile, p(z,t), we integrate

Maﬂz/ff@&ﬂw, (4.A.18)

which can be done numerically. This gives the solution curves in Fig. 4.2.
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4.B. Accurate calculation of neutrino moments

We reviewed the linear theory calculation of the neutrino distribution function in New-
tonian gauge in Section 3.3. In this paper, we calculated the neutrino perturbations in
synchronous gauge, with a calculation that proceeds along the same lines [126]. The
precision of this calculation is set by two parameters: the maximum multipole ¢« and
the number of momentum bins N,. By default, cLASS partly relies on a set of fluid
equations and partly on integrating the hierarchy, using ¢max = 50 and N, = 28 at the
pre-set high precision settings [124]. The differences in the CMB anisotropies are at the
permille level. However, the neutrino transfer functions have still not converged. To
obtain converged results, [165] ran calculations with N, = 2000 bins and £pax = 2000,
which each required hundreds of CPU hours. This is to be contrasted with a default
CLASS run, which completes in seconds. To circumvent this computational cost, we use a
different approach, which involves a post-processing step of CLASS tables.

To quickly integrate the Boltzmann hierarchy for high N, and /,.x, we note that the
source terms in the evolution equations depend on the matter content only through the
scalar potential derivatives h and 7], which can be calculated accurately with much lower
settings®. Therefore, we make the assumption that we can decouple the potential terms
from most of the neutrino moments W¥,. We first evolve all source functions in CLASS at
a reasonable precision setting. This gives the metric perturbations h(k, 7) and 7(k,7),
which we then take as given and use to integrate the multipole moments ¥, at high
precision where they are needed.

4.C. Monomial basis for the distribution function

Boltzmann codes can solve for the functions ¥y (k, g, 7). But evaluating the distribution
function, f(x, q, 7), requires substituting these back into the definitions (4.7.1) and (4.7.2).
This presents a challenge as the ¥, are large discretely sampled arrays of amplitudes that
need to be convolved with the random phases. It would be prohibitively expensive to do
this repeatedly for each term in the Legendre expansion. We therefore adopt the following
scheme. First, we use the following representation of the fth Legendre polynomial,

Py(z) = 257295" (fb) <n+§l> (4.C.1)

4In the reference model with Ny = 28 and lmax = 50, relative errors in h and (h/3 + 27) are of order
10~*. Although 7 still fluctuates at the several percent level, this term is much smaller than .
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where the last factor is a generalized binomial coefficient. This allows us to expand ¥
and collect monomial terms in k- n. We write

U(k,n,q,T Zze(l)g (k,q,7)(k- ﬁ)z, (4.C.2)
=0

where the functions ®, are defined by

(7)== Z ( ) <n+£_1> (2n + 1)U, (K, g, 7). (4.C.3)

Note that we factored out the magnitude of k = kk and write the expansion in terms
of (k-n)’ and not (k-7)¢. This is to facilitate taking derivatives, as shown below. The
Fourier transform of W is

. A3k . ix.
\Il(xvn7Q7T) :/W\I}(kvn7Q7T)e k7 (404)

and similarly for the ¥, and ®,. We write the directional derivative along the unit vector
i as Dy, = n'dy,. In other words,

‘F{Dﬁq)f(xuﬁ7(b7-)} — Z(k ’ ﬁ)@g(k, q7T)' (405)
Hence, we obtain
"Bk, q,7)(k - 7)! = F{Didi(x,q,7)} . (4.C.6)

And so, the overall perturbation, W, is
(x,7,q,T ZD Dy(x,q, 7 (4.C.7)

A convenient numerical scheme is to store the Fourier transformed grids ®,(x,q, 1),
in which case we can evaluate the distribution function efficiently by taking finite
differences.

4.D. Symplectic integrator

A point of concern is that the special relativistic equation of motion (4.4.5) may not be
suited for the usual leapfrog integration in cosmological N-body simulations [200]. A
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straightforward substitution for the non-relativistic equation (4.4.7) produces a leapfrog
integrator that is not symplectic and may therefore not explicitly conserve phase-space
volume. The problem is that the equation for 11 depends on u. Here, we assess the impact
of this error and provide a workaround. Fortunately, it is easy to construct a symplectic
integrator that closely approximates the relativistic form. We simply replace equation
(4.4.5) with:

. 2u2 + a®
TP A v (¢—7Nb>, (4.D.1)
Vui + a?

where ug is the magnitude of u at the starting redshift of the simulation. Moreover, we
use € = m\/ug + a? when computing the energy density. As confirmed below, this is a
good approximation due to the fact that ug < a whenever u deviates much from wuy, i.e.
for slow particles at late times. Equation (4.4.6) is unchanged. A leapfrog discretization
of these equations is

1 ug

Xk+1/2 = X + iAtTQ, (4D2)

AUy +a

2u2 + a® Nb
W =uy — AT g <¢(xk ) — /NP (x )) , (4.D.3)
+ u% > +1/2 +1/2

1 u

Xk+1 = Xpy1/2 + AL (4.D.4)

2 ,/ui+1+a2

To determine whether this is symplectic, one considers the Jacobian, .J, of the transfor-
mation ¢: zp — Zgyq, where z; = (X, ug). One can confirm that

0 Iy
JTOJ=0= 4.D.5
(_13 0) 405)

to show that 9 is a symplectomorphism. It follows that det(.JJ) = 1, which ensures that
the leapfrog integrator is volume-preserving.

Since the validity of the § f algorithm depends on conservation of phase-space density
along particle trajectories, we need to determine to what extent this is violated when
using a nonsymplectic discretization of (4.4.5). Deviations will be of order (’)(uQ), which
is small for any nontrivial neutrino orbit. Therefore, the difference should be negligible
when the weights are large. To test this assertion, we evolve 256 neutrino and dark
matter particles in a volume with sidelength 256 Mpc and assuming Y m, = 3 x 0.05eV,
using both the special relativistic equations (4.4.5) and the alternative equation (4.D.1).
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First, we confirm that (4.D.1) is a good approximation of (4.4.5), by checking that the

2.2 2, 2

ug +a 12ug+a
_ 4 s LMo ta” 4D.6
u? + a?’ at DY + a? ( )

are close to unity. We find that |r — 1| < 0.02% and |s — 1| < 0.03% for 99% of particles
at all times.

ratios

The evolution of the weights is shown in Fig. 4.11. At very high redshifts, when
1= %<w2> < 1079, the mean squared weight is about 60% larger for the nonsymplectic
integrator. We interpret this as being due to small perturbations to neutrino trajectories
that are absent in the symplectic case. The results converge after z = 20, when density
perturbations approach nonlinearity, driving up the weights. The difference in I is 7%
at z = 10, decreasing to 0.2% at z = 2, and 0.03% at z = 0. The difference in weights
|wns — ws| < 0.025 for 99% of particles at all times. The difference will be even smaller
for larger neutrino masses.

As a result, we find that the use of the nonsymplectic integrator has a negligible effect on
observables at late times. In particular, there is < 0.1% difference in the total matter and
neutrino power spectra at z = 0. The difference in P, (k) grows to 0.3% at z = 2, and 2%
at z = 10. For the total matter power spectrum, the difference is always below 0.1%. For
future simulations, we recommend using a leapfrog discretization based on the modified
expression (4.D.1) or using the non-relativistic version of (4.4.5) together with (4.4.6),
as discussed in Section 4.4.3. See Chapter 6 for further details and recommendations.

4.E. Practical implementation

We briefly outline how to implement the d f method in a typical N-body code. First,
a choice needs to be made for the background model. The simplest choice is the
homogeneous Fermi-Dirac distribution, which we repeat here without pre-factor:

-1
_ _ ap
f(z,p,t) = f(p,a) = |exp +1| (4.E.1)
kyT,,
where T}, = 1.95 K is the present-day neutrino temperature, a the scale factor, and p the
3-momentum. The method can be implemented as follows:

1. Implement a function f(x,p,t) that returns the phase-space density at a particle’s
location according to the background model.
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Figure 4.11: Evolution of particle weights for a > m, = 0.15eV cosmology, using special
relativistic equations of motion, evolved with symplectic and nonsymplectic leapfrog integrators.

2. Generate initial conditions with neutrino particles having a random initial momen-
tum sampled from the background model. Perturbations can be applied afterwards.

3. For each particle, record the value of f(z,p,t) = fo at the initial sampled position
in phase space®. The numerical value of fy does not change if perturbations are
applied to the initial conditions.

4. During subsequent time steps, for each particle:

a) Compute f(z,p,t) using the new position and momentum.

b) Compute the weight w = (fo — f)/ fo.
c¢) For the purposes of the gravity force calculation, use the weighted mass muw.

The weights should be used when calculating statistics of the neutrino ensemble, such as
the neutrino density, p, (), that enters into the gravity force calculation. We emphasize
that the weights should not be used in relationships such as p = mu.

For tree codes that perform a multipole expansion around the centre of mass, like SWIFT,
there is a final point of consideration. Since neutrino particles can have negative weights,
it is possible in rare circumstances that groups of particles have a nearly vanishing total
mass. In that case, the centre of mass can be far removed from the particles and the

5Because the background model was used for sampling the initial momenta, we initially have f = f = g.
Conservation of phase-space density then ensures that f = g = fo for all particles at all times.
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multipole expansion breaks down. There is a simple solution in such cases, which is to
expand around any other point such as the geometric centre of the particles or the centre
of absolute mass:

> ilmiwi|x;

== - 4.E.2

which has the advantage that it is very close to the ordinary centre of mass in most cases.
When the background model agrees with the nonlinear solution, the weights are exactly
zero. In that case, they can be set to a small value w < 1. This ensures that the centre
of absolute mass is always well-defined.



Cold initial conditions

This chapter deals with the influence of massive neutrinos on the initial
conditions of matter species that can be treated as cold on cosmological
distance scales: baryons and cold dark matter. We show that the effects
of neutrinos in Lagrangian perturbation theory are well described by
scale-independent coefficients. We also find a new analytic solution for
the first-order growth factor in ACDM with a non-clustering component.

Higher order initial conditions with massive neutrinos

ABSTRACT: The discovery that neutrinos have mass has important conse-
quences for cosmology. The main effect of massive neutrinos is to suppress
the growth of cosmic structure on small scales. Such growth can be accurately
modelled using cosmological N-body simulations, but doing so requires accu-
rate initial conditions (ICs). There is a trade-off, especially with first-order
ICs, between truncation errors for late starts and discreteness and relativistic
errors for early starts. Errors can be minimized by starting simulations at
late times using higher-order ICs. In this paper, we show that neutrino effects
can be absorbed into scale-independent coefficients in higher-order Lagrangian
perturbation theory (LPT). This clears the way for the use of higher-order ICs
for massive neutrino simulations. We demonstrate that going to higher order
substantially improves the accuracy of simulations. To match the sensitivity of
surveys like DESI and Euclid, errors in the matter power spectrum should be
well below 1%. However, we find that first-order Zel’dovich ICs lead to much
larger errors, even when starting as early as z = 127, exceeding 1% at z = 0 for
k> 0.5 Mpc~! for the power spectrum and k > 0.1 Mpc ™! for the equilateral
bispectrum in our simulations. Ratios of power spectra with different neutrino
masses are more robust than absolute statistics, but still depend on the choice
of ICs. For all statistics considered, we obtain 1% agreement between 2LPT
and 3LPT at z = 0.

69
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5.1. Introduction

The neutrino content of the Universe, €, = Y m, /(93 eV h?), becomes a powerful probe
for cosmology once the implied neutrino masses are confronted with data from neutrino
oscillations [29] and the kinematics of S-decay [14]. A non-zero detection of €, would
be consequential for fundamental physics. It would confirm that a background of relic
neutrinos survived until the epoch of structure formation, provide insight into the origin
of neutrino mass, and constrain the search for dark matter and dark sectors. Oscillation
experiments provide a lower bound of > m, > 0.058 eV, while cosmology provides
upper bounds of > m, < 0.15 eV or better assuming ACDM [108, 109, 113, 201], with
ongoing and future surveys promising significant further improvement. Planck and future
cosmic microwave background experiments, together with large-scale structure surveys
like DESI, Euclid, and Vera Rubin, could achieve sensitivities in the 0.01 - 0.02 eV range
[132, 202-204]. Such small shifts in neutrino mass correspond to tiny 0.5% - 1.5% effects

1

on the power spectrum of matter fluctuations on 0.1 Mpc™! to 1 Mpc™! scales, requiring

theoretical predictions that are at least as accurate.

With this goal in mind, many groups have studied the effects of massive neutrinos on
large-scale structure. At early times and on large enough scales, perturbation theory is
the method of choice for this purpose. Cosmological perturbation theory [56] is essential
for providing analytical insight and a necessary complement to more expensive numerical
simulations. The effects of neutrinos on the nonlinear matter power spectrum were
first calculated at one-loop by [205] and [206]. Subsequent work has dealt more realis-
tically with the neutrino phase-space distribution [125, 168, 207—-210], which parallels
similar efforts on the numerical simulations side. Other advances were made by including
neutrinos in the effective field theory of large-scale structure [145, 146] and using time
renormalisation group perturbation theory [114, 211}, which improved agreement with
N-body simulations. More closely related to this work, [212] extended the hybrid COLA
simulation method to cases with massive neutrinos using second-order Lagrangian per-
turbation theory (2LPT) and [213] incorporated nonlinear neutrino effects in Lagrangian
perturbation theory up to third order (3LPT). On the numerical simulations side, where
higher-order LPT has been used to great effect to produce accurate initial conditions
(ICs) for conventional simulations without massive neutrinos [88, 214, 215], neutrino
effects have not been included and higher-order LPT is therefore rarely used for neutrino
simulations (but see [148, 216]). In this work, we propose a novel scheme for generating
nLPT ICs for neutrino simulations based on all-order recursive solutions in the small-
scale limit. We also generate ICs based on a full calculation of scale-dependent neutrino
effects in 2LPT, dealing with frame-lagging terms following [213], and find near perfect
agreement with our scheme in the final simulation product. This demonstrates that
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neutrino effects can be implemented beyond first order by working in the small-scale
limit, paving the way for accurate neutrino simulation ICs.

N-body simulations are used to solve for the nonlinear gravitational dynamics of matter
on small scales, where perturbation theory fails. Cosmological simulations with ICs
based on LPT were pioneered by [50, 147] and [217]. Mixed dark matter simulations
with sub-electronvolt neutrinos were first carried out by [148, 149, 161]. We refer the
reader to [129] for a review of neutrino simulation methods. As with perturbation theory,
the accuracy of modern surveys places stringent demands on simulations, popularly
expressed as a requirement for 1% accurate calculations of the matter power spectrum
[218]. A major source of uncertainty concerns the interface between perturbation theory
and simulation, in the form of ICs, and associated transients [214]. We may distinguish
two major sources of uncertainty related to the choice of ICs [89, 217]. The first arise
from discrepancies between the ICs and the actual nonlinear solution at the initial
time. When the solution is calculated perturbatively at order n, this uncertainty can be
understood as the truncation error introduced by neglecting terms of order n 4+ 1 and
greater. The second source of uncertainty relates to discreteness effects that build up
over time as the continuous fluid equations are solved by means of a discrete particle
representation [219, 220]. There is a tension between these two, as early starts minimize
truncation errors but entail larger discreteness errors, while late starts do the opposite.
For example, the first-order solution of [62] has the largest possible truncation error,
driving practitioners to start simulations early when higher-order corrections are small.
However, such simulations manifest a greater dependence on particle resolution due to
discreteness errors. While such errors can be corrected [220], this reasoning provides
strong motivation for using higher-order ICs at late times [89].

Neutrinos complicate this picture in two ways. First, neutrinos introduce an additional
length scale into the problem. Due to their large thermal velocities, neutrinos free stream
out of potential wells, otherwise stated in terms of a suppression of clustering on scales
smaller than a typical free-streaming length [120]. This in turn causes a scale- and time-
dependent suppression of dark matter and baryon clustering that must be accounted for
in the initial conditions. [221] showed how to incorporate such scale-dependence in a first
order back-scaling procedure, but a consistent framework for higher-order ICs has thus far
been lacking®. The second complication is that late-time observables are more strongly
correlated with the initial conditions and less determined by the internal structure of
halos, when clustering is suppressed on small scales. This means that simulations with

We note that after we submitted our paper to the journal, [222] presented a recipe for second-order
neutrino ICs. Like us, they use a back-scaled transfer function for the cold dark matter and baryon
species.
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different neutrino masses are affected by errors to different degrees, contaminating ratios
such as the suppression of the matter power spectrum. We will show that such ratios are
more robust than absolute statistics, but still depend on the choice of initial conditions
on small scales.

The paper is organized as follows. We begin by summarizing our recipe for generating
higher-order ICs for neutrino simulations in Section 5.2. The second part of the paper
is concerned with a derivation of the higher-order solutions necessary for ICs, starting
with the set-up in Section 5.3, limiting solutions at all orders in Section 5.4.1, and
the full second-order solution in Section 5.4.2. The final third of the paper contains a
systematic analysis of higher-order ICs in Section 5.5. Finally, we conclude in Section
5.6. Throughout this paper, we use a default neutrino mass sum of »_m, = 0.3 eV to
showcase our results, except where indicated otherwise.

5.2. N-body Initial conditions

We begin by outlining our approach for setting up for 3-fluid ICs with cold dark matter
(c), baryons (b), and neutrinos (v). Initially, we deal with a single cold fluid, described
in terms of the the mass-weighted density contrast and velocity,

5Cb - fc(sc + fbéba (521)
VUch = fcvc + fbvbv (522)

where fo = Q¢/(Qe + Q) and f, = 1 — fe. In a final step, the cold fluid is separated
into two components with distinct transfer functions. Our approach is based on a
growing mode solution of the LPT equations in the small-scale limit, motivated by the
hierarchy between the neutrino free-streaming scale and the nonlinear scale, ks < ky,
at the redshifts relevant for ICs. In Section 5.5, we confirm that this is an excellent
approximation suited for precision simulations. The recipe boils down to the following
steps:

1. Compute a back-scaled transfer function d,(k)

2. Compute particle displacements via Egs. (5.2.3-5.2.11)

w

. Compute particle velocities via Eqgs. (5.2.12-5.2.14)

e

. Perturb particle masses and velocities via Egs. (5.2.15-5.2.19)
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These steps can be performed using a modified version of the MONOFONIC code [89],
which we have made publicly available?. We briefly discuss the steps in order and then
deal with possible extensions in Section 5.2.5 and 5.2.6.

5.2.1. Transfer functions and back-scaling

In this paper, we follow the commonly used back-scaling approach. This approach begins
by choosing a pivot redshift, typically z = 0, where the simulation should reproduce
linear theory on the largest scales. This is necessary because conventional N-body
codes solve Newtonian equations and therefore fail to capture the large-scale general
relativistic dynamics in which matter and radiation are coupled through the Einstein-
Boltzmann equations. We note that there exist alternative solutions to this problem
[166, 172, 187, 188, 223] as well as fully relativistic N-body codes [87, 154, 224], which can
avoid it altogether. In the back-scaling procedure, one uses a linear Einstein-Boltzmann
code such as CLASS [128] or CAMB [127] to calculate the density transfer functions for
each fluid species at zP™°!, which are then scaled back to the starting redshift of the
simulation using the exact linear dynamics of the Newtonian code. For ACDM without
neutrinos, this amounts to rescaling the dark matter transfer function by a constant
growth factor ratio D(z;)/D(zPVoY).

Adding massive neutrinos makes the linear solution scale-dependent, precluding a simple
rescaling factor. Nevertheless, the same philosophy can be applied by solving the
Newtonian dynamics of an N-body code with massive neutrinos at linear order. Following
[221], we do this using a first-order Newtonian fluid approximation [125, 208], but see also
[222] for a relativistic formulation. This back-scaling method for neutrino cosmologies
was first implemented in the REPS code. To streamline the procedure for the end-user
and to reduce the potential for human error, we built a lightweight back-scaling library
ZWINDSTROOM that interfaces directly with CLASS and the initial conditions generator
MONOFONIC. The final result of these steps is a rescaled density transfer function
Seb(k) = Dep(k, 2) / Dep (k, 2PV - 6o, (K, 2PVOY) for a cold dark matter-baryon fluid (cb),
where the growth factor ratio is computed with ZWINDSTROOM and the transfer function
with CLASS.

2Up-to-date links to the software referenced in this paper are maintained at
https://www.willemelbers.com/neutrino_ic_codes/.
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5.2.2. Displacements

The displacement field, ¥» = & — q, relates the particle position x to the corresponding
Lagrangian coordinate q. To determine 1), we first obtain the linear potential by solving

V2o (q) = den(q). (5.2.3)

Unless indicated otherwise, V. = V4. We observe that oM is not the gravitational
potential, which also includes a neutrino contribution, but a notation that reflects the
fact that we are solving for the displacements of cb fluid particles. Our fast approximate
3LPT [225-227] scheme for the displacement field in the presence of massive neutrinos
has the simple form

P =W + Cop® 4 Capp®) 4 CLC39p ) + Crep39), (5.2.4)

where C, are scale-independent factors that capture the absence of neutrino perturbations
in the small-scale limit, C? = C,,/C;, and ™ have the same form in terms of ¢1) as in
ACDM. In the notation of [89], these are given by

3

P = —vel) @ = —?Vgo(Q), (5.2.5)
1 10 1

pB) = 5%“”“2 B = —iw(?’bz B3 = -V x AB), (5.2.6)

with higher-order potentials given by

Lt a 1
V2l = 3 [‘P,(m’)%(j} - 90,(1']')90,(@)} ’ (5.2.7)
V2<,0(3a) — det (10,(1'1]')’ (528)
1
2 _(3b) _ @), 1) @) 1)
V2 — B [SOu P~ Pij So,ij} ; (5.2.9)
V2ZAP) = vl x vl (5.2.10)

where commas denote partial derivatives and we sum over repeated indices. In Section
5.4.1, we show that C), can be expressed in terms of the neutrino fraction, f, = Q,/Qy,.
The correction, as it turns out, is small and approximately linear in f,:

2nfy

C, =14 v
T 5@n+3)

(5.2.11)
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For a minimal neutrino mass sum of »_m, = 0.06 eV, one finds C, — 1 =5 X 10~%. For
our fiducial mass sum of > m, = 0.3 eV, it is 0.3%. At > m, =1 eV, the effect is about
one percent. The third-order correction Cs is larger, but since 1) is suppressed by
another power of the growth factor, the overall impact is smaller.

5.2.3. Velocities

The velocity field is ve, = dep/dt. Given a satisfactory scheme for computing the
displacement field, the time derivative can be evaluated numerically. This is our preferred
method, since it requires no additional approximations. However, a faster method that
avoids calculating higher order terms more than once is to use the asymptotic logarithmic
growth rate

dlog ch(ka CL)

S 212
/ Fyoo dloga (5 )
to convert displacements to velocities, setting

vy = aH fa [ + 2050 + 3 (03¢<3“> IeNe TICONE 02¢<3C>)] L (5.2.13)

By construction, this gives the correct particle velocities on small scales. To recover also

the correct behaviour on horizon scales, we add a large-scale correction vécb) given by

v = aH [V 2V (0, — 6up), (5.2.14)

where 0., is the dimensionless energy flux transfer function computed with CLASS.
We verified that the resulting simulated power spectrum agrees with linear theory
to better than 0.1% at the pivot redshift of z = 0 on large scales. However, this
approximation neglects possible nonlinear effects of scale-dependent growth on particle
velocities. Another alternative is to rescale the velocities by the scale-dependent growth
rate [221], which faces a similar problem beyond linear order.

5.2.4. Additional steps for 3-fluid ICs

The steps above are sufficient for simulations with neutrinos and a single cold fluid. To
separate this cold fluid into baryon and CDM components with distinct transfer functions,
we follow the approach of [228]. In short, the component densities are related to the
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mass-weighted average via®

dc = dcb — [bObes (5.2.15)
Op = Ocb + feObes (5.2.16)

where the difference variable, d,. = &, — 0, is constant at first order. The velocity
difference too is conserved and vanishes at all orders: wv,. = v, — v = 0. These
results, derived for ACDM without massive neutrinos [229], carry over to the neutrino
case, essentially due to the fact that the neutrino contribution cancels in the difference
equations (Appendix 5.A). The transfer function difference, dyc(k) = dy(k) — dc(k), is
computed with CLASS at the pivot redshift and, since it is conserved, is not scaled back.

After assigning displacements and velocities to both particle species using the mass-
weighted average fields, the density difference is implemented by setting the masses
to

ma(q) = ma[1 + 0r(q) — deb(q)], (5.2.17)

with m) the mean particle mass for type A € {c,b}. Perturbing the masses, rather than
the displacements, was found by [228] to limit discreteness errors.

By construction, Newtonian simulations with initial conditions set up using the above
procedure, reproduce the expected evolution of two cold fluids with a shared velocity
field and a relative density contrast that is approximately conserved. However, like the
large-scale velocity correction (5.2.14), a further modification is needed to bring the
dynamics back into agreement with CLASS at first order:

pivot 1/2

mx(q) = ma(q) + 2m. [(D;<Z(z_) )> — 1] Ox(a), (5.2.18)
pivot 1/2

va(q) — va(q) + aH fx <%> V2V0(q), (5.2.19)

where Dy (z;) is the small-scale growth factor at the starting redshift z; and ©, = — f,,0¢
and Oy = f.Oyc. The difference, Oy (k) = 0y(k) — 0.(k), of the dimensionless energy flux
transfer functions is computed with CLASS at the pivot redshift.

3We remind the reader that fx = Qx/Qcb for A € {c,b} even as f, = Q. /Qm = L /(b + Q) = 1 — feb.
Furthermore, dbe # dcb and Ve # Veb.
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5.2.5. Neutrino particles

Massive neutrinos can be included in N-body codes using a variety of methods. The most
common approach is to solve for the neutrino perturbations self-consistently by including
them as a separate N-body particle species [148, 149]. Initial conditions are then also
needed for these neutrino particles. Capturing the full neutrino phase-space distribution
is non-trivial even in linear theory and it is therefore not sufficient to compute only the
first two moments, as is done for baryons and CDM. Accurate neutrino particle initial
conditions can be generated by integrating geodesics from high redshift [150, 154], where
the perturbed phase-space distribution can be expressed analytically [126], but care
must be taken that the equations of motion remain valid in the ultra-relativistic régime
[186]. This procedure can be carried out efficiently using our FASTDF code, introduced in
Chapter 6. We stress that the focus of this paper is on dark matter and baryon ICs and
the results apply regardless of whether the neutrino implementation uses particles.

5.2.6. Scale-dependent effects

Finally, we verified the approximations above by performing a full calculation of scale-
dependent effects on the second-order displacement field. This is done by replacing (5.2.7)
with a convolution of two copies of the first-order potential ¢(1) (k), modulated by kernels
Df)(kl, ko) and Dg)(kzl, ks2), computed in Section 5.4.2. This numerical calculation is
expensive, but we will show in Section 5.5 that simulations with ICs based on the full
calculation agree extremely well with those based on the approximate scheme described
above. The reason for this is the hierarchy of scales, kg << ky1, which implies that higher-
order corrections are important only on scales where neutrinos do not cluster, at least at
redshifts that are relevant for ICs. Since the overall impact of the third-order correction
factor, Cs, is smaller than that of Cs and given the excellent agreement between the full
and approximate solutions at second order, we expect the difference to be even smaller
at third order. At the same time, the triple convolutions required for the third-order
solution would be prohibitively expensive and would require a different approach. For
this reason, we only consider 2LPT in Section 5.4.2.

5.3. Theoretical set-up

We now proceed with the set-up of a 3-fluid model, which is solved in Section 5.4.
We consider three fluids indexed by A € {c,b,v} for cold dark matter, baryons, and
neutrinos. Throughout, we will treat baryons like dark matter particles and denote the
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mass-weighted CDM-baryon fluid by subscript cb. Let py(x) be the density, uy(x) the
peculiar velocity flow, and o) (x) the stress tensor. We also write 0y = py/px — 1 for the
density contrast.

5.3.1. Euler equations

Taking moments of the Boltzmann equation yields the Euler fluid equations [56]

1
Oruy +uy - Veuy = —aHuy — Vi@ — ;Vm(pAUA), (5.3.1)
A

0:0x + Vg - [(1 4+ 0x)uy] =0, for e {c,b,v}, (5.3.2)

where 7 is conformal time, H = d,a/a? is the Hubble constant (given explicitly below)
and ® the Newtonian potential. While the neutrino distribution function and its higher-
order moments are complicated, the stress tensor can be neglected for the cold dark
matter and baryon fluids on the scales of interest, . = o}, = 0, because we are restricting
to scales much larger than the Jeans length and times before shell crossing. Taking the
mass-weighted average of the cold dark matter and baryon equations, we obtain at all
orders (see Appendix 5.A)

OrUch + Uch - Vale, = —aHug, — Vi@, (5.3.3)
O70ch + Va - [(1 4 bep)uen] = 0. (5.3.4)
The potential is given by Poisson’s equation,

_ 3Q,H
2

Vio(x) Om (), (5.3.5)
in terms of the total matter density, é = fepdeb + f10,, which includes a massive neutrino
contribution. To complete the system, we assume the linear response approximation for
the neutrino density:

5lin( k)

ou(k) = F—%0c1 (k) (5.3.6)

TR
where 637 (k) refers to the density transfer function of A € {v,cb} computed in relativistic
linear perturbation theory with cLASS. The total matter density contrast is then

5m(k) = [1 + a(k)] fcbécb(k)v (5.3.7)
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where we have introduced the convenient notation o = f,610/(fep,612) for the linear
theory ratio. The linear response approximation is accurate while neutrinos and dark
matter remain in phase, which is a reasonable assumption at the early times considered

here (see below). Inserting this in (5.3.5) yields
2 Bo
—k*®(k) = o 1+ a(k)] den(k), (5.3.8)

where By = %(1 — f,)QmHE is written in terms of present-day values. We look for a
growing solution of the form 6.y (k,7) = Dcp(k, 7)dcn(k, 70). Linearising (5.3.3-5.3.5), we
find

B
O Dep, + aHO; Dgpy = 70(1 + @) Dqp. (5.3.9)

In contrast to the ACDM case, this equation is scale-dependent due to the appearance
of a(k). To proceed, we will take the limit & — co. Since limy_, o, (k) = 0, we simply
obtain

B
2Doo + aHO:Doo = —2Dos (k — 00). (5.3.10)
a

We denote the solution of (5.3.10) by D, to indicate that this is the small-scale solution.
At this point, an equally valid description could be given in the large-scale limit or indeed
for an arbitrary pivot scale. We deliberately choose the small-scale limit for two reasons.
First, most simulations are not large enough to realize the large-scale limit. Second, we
are interested in nonlinear corrections to the initial conditions which are negligible on
large scales.

5.3.2. Asymptotic form

We can find an analytic? solution to (5.3.10) if the contribution of radiation to the Hubble
rate is neglected. We will return to this point further below. For now, let us assume
that

(5.3.11)

Qe +
H? = H} [QAJF‘*’?)].

4A function f is analytic at « if the Taylor series of f around x converges to f in a neighbourhood of z.
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In this case, the growing mode can be expressed in terms of the hypergeometric function
as (see Appendix 5.B)

2 2 +3 4
Doo(a):ap\/1+Aa32F1< p(;”, p;?’, p;7,—Aa3), (5.3.12)

with A = Qz/Qn and p = /1 +24(1 — f,)/4 — 1/4. This is normalized such that
limg—0 Doo/aP? = 1. Taking f, = 0, we recover the ACDM solution with p = 1 [59].
Taking instead A — 0, we recover the solution during matter domination (MD)

Doo(a) = aP = gVI1T20=fu)/4=1/4 (5.3.13)

which agrees with [23].

For ACDM without massive neutrinos, accurate nonlinear predictions can be made by
substituting the growth factor for the scale factor, a — D, in solutions obtained for the
Einstein-de Sitter model. This is facilitated by using the growth factor as time variable
(e.g. [59, 65, 229]). Here, we will pursue a similar strategy and make a change of time
variables to D,. Defining the quantity

2By [ Do \?
=22 5.3.14
9 =37 <8TDOO> (5:3.14)

and the new velocity variable vy, = dp_ x, the fluid equations can be rewritten as

3900
OD oo Veb + Vb - Vg Uep = *%(Uch + Vo), (5.3.15)
aDm6Cb + Vg - [(1 + 5cb)vcb] =0, (5'3'16)
1)
V2 = -2 4 (14 a), (5.3.17)

€ Doo

where the rescaled potential ¢ = a®/(ByDs) is given in terms of a convolution, denoted
by *, of dcp and the linear response (1 + «). Although written in terms of Dy, this is
completely general.

Given suitable boundary conditions, Egs. (5.3.15-5.3.17) are analytic at Dy, = 0. In
particular, we require that 61 = (52%1 = (0. This agrees with our use of growing mode
solutions for particle displacements, g — q + 1, where the unperturbed particle grid
represents a uniform density field. The scaling, H? < a~3, of the Hubble rate at early
times ensures that such mass transport problems are well-posed [59, 230]. This scaling
does not hold in the presence of radiation, a problem that already occurs in ACDM on
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Figure 5.1: Accuracy of the linear response approximation (5.3.6) evaluated at k£ = 0.60 Mpc ™1,
compared to a reference simulation (top), of the Hubble rate (5.3.11) when neglecting radiation
(middle), and of (5.3.18) for the constant matter-dominated value for g.,. The vertical dotted
line indicates the fiducial starting redshift of z; = 31. The neutrino mass sum is y  m, = 0.3 eV
and the shaded region is 10% (top) and 1% (middle & bottom).

account of the cosmic microwave background radiation, but is certainly made worse by
the inclusion of massive neutrinos, which scale like radiation in the relativistic régime.
Therefore, we need to start the integration at a time when the relativistic contribution of
neutrinos to the Hubble expansion can be neglected. Note that we make this assumption
to ensure a consistent mathematical framework for the higher-order LPT solutions.
However, it is not needed for the linear transfer functions, the back-scaling procedure or
in the N-body code itself. In each of those cases, we do take the relativistic neutrino
contribution into account.

Before proceeding, let us give the following convenient expression for g in the limit
A—0:

g — a*?H dlog Dos _ 1/1+24(1— f,) — 1 (5:3.18)
o 2B, dloga 4 NI ' e
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1/2  The numerator

Both numerator and denominator scale approximately as (1 — f,)
is simply the exponent of the growing mode in (5.3.13), while the dependence of the
denominator can be traced to the appearance of By on the right-hand side of (5.3.10).
The resulting smallness of go, — 1 explains why neutrino corrections at nth order are
small relative to D : the lack of neutrino clustering is largely compensated by slower
growth of the linear solution. In the next section, we will validate the assumptions made

up to this point.

5.3.3. Validity of assumptions

Central to the approach of Section 5.4 is the linear response approximation (5.3.6) for the
nonlinear neutrino density, 6, (k). This approximation is very accurate at early times, but
underestimates neutrino clustering on small scales and neglects the phase shift between
neutrinos and dark matter that builds up at late times (see Fig. 4.6 in Chapter 4). The
top panel of Fig. 5.1 shows the nonlinear neutrino density contrast, computed from a
simulation with neutrino particles, relative to the linear neutrino response evaluated
at k = 0.60 Mpc~!. The neutrino mass is >, m, = 0.3 eV. The figure suggests that
the approximation is valid at this scale up to z ~ 1.5, when perturbation theory has
presumably already broken down. Hence, approximation (5.3.6) is well-suited for our
application at much higher redshifts.

A second approximation is that we neglect the contribution of the relativistic tail of the
neutrino distribution to the Hubble rate in (5.3.11). We reiterate that this approximation
is only made for the calculation of the higher-order kernels and not in any of the
calculations at first order. The middle panel of Fig. 5.1 shows that this approximation is
accurate to better than 1% for a > 0.01, for our default neutrino mass of > m, = 0.3
eV. In particular, at the fiducial starting redshift of z; = 31, the error is 0.3%. We are
helped in this regard by our preference for late starts.

Finally, we assume that g, is constant in Section 5.4.1. The bottom panel of Fig. 5.1
shows that this is an excellent approximation, except at late times during A-domination.
The figure suggests that there is a window where all assumptions are valid, potentially
allowing us to push to even later starts, with the breakdown of LPT likely being the

limiting factor.
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5.4. Lagrangian approach

In the Lagrangian approach to gravitational instability [62, 226, 231-235], the objective
is to describe fluid particle trajectories

x(q) = q+vY(q), (5.4.1)

in terms of a displacement field 1. We use the Helmholtz decomposition, writing the
Laplacian of a smooth vector field as

V23 =V (V- 9) -V x (V). (5.4.2)

What remains is to solve for the longitudinal and transverse derivatives. The displacement

is related to the Eulerian density, d.p, through the mass conservation equation
! 1

J(q)

where J(q) is the determinant of the Jacobian of the coordinate transformation, J;; =

den(x) = (5.4.3)

0z;/0q;, given by

1
J=det Jij =1+v,; + 5 (V3055 — il + det 9y ;. (5.4.4)

Let (0/0Dx)1, = (Op., + Veb - V) be the Lagrangian derivative. The Lagrangian form
of the Euler Eq. (5.3.15) can be written as

390

where we used v, = (02/0Dy )1, and introduced the linear operator

o \° 3¢ [ O
Do — <apw)L + e (wm)L, (5.4.6)

Using (5.3.17) and taking the divergence and curl of (5.4.5), we find that the evolution
of the displacement is governed by

_ 390
2D2,
Va X Doo(q) = 0. (5.4.8)

Vg - Doom(q) =

[Och * (1 4+ )] (), (5.4.7)
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To facilitate a fully Lagrangian description, we define the frame-lagging terms [212, 236|

F(q) = [(1/7 1) * a] (q) - [0 * ol (). (5.4.9)

Frame-lagging terms arise from mapping the Eulerian neutrino response to Lagrangian
coordinates. We give explicit expressions up to second order in Appendix 5.C. Transform-
ing the derivatives on the left-hand side of (5.4.7) and (5.4.8) using 0, = (9q;/07:)0,; =
Jiglaqj and using the Monge-Ampere Eq. (5.4.3), we write these equations in Lagrangian
coordinates as

_ 39

1 . o]

T3 Dby = 5 [0 =1/7) # (1) + 1, (5.4.10)
EiijﬁlDooiﬁk,z =0. (5.4.11)

It will be the task in the following sections to find perturbative solutions for 1. We

perform an expansion in displacements, writing
o0
p=> ), (5.4.12)
n=1
where (™ is of order [¢(1)]n.

5.4.1. Limiting solutions

Having set up the Lagrangian equations for the neutrino-cb fluid model, we are now
in a position to look for approximate solutions. The aim is to find expressions for the
displacement on large and small scales. In the small-scale limit, neutrinos do not cluster
and only contribute to the background expansion as encoded by ¢g. Meanwhile, in
the large-scale limit, neutrinos cluster like cold dark matter and one recovers behaviour
analogous to ACDM. In both cases, we can find simple solutions in the form of LPT
recursion relations [59, 63-66]. These limiting solutions will be used as initial conditions
for the numerical integration of the general problem and provide the basis for the recipe
of Section 5.2.

In this section, we assume that g, = constant, which is exact during matter domination
(Eq. (5.3.18)), and a very good approximation in general (Fig. 5.1). On large scales, we
also have 1+ a(k) = 1+ f,/fa” and on small scales 1 + a(k) = 1. Hence, if all modes

5This is not strictly true, since 6, > dc» on the largest scales due to the relativistic tail of the neutrino
distribution. We ignore this small effect in the current section and in Fig. 5.2, but take it into account
in Section 5.4.2.
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Figure 5.2: Correction to the ACDM prediction of D) = (3/7)D? for the second-order growth
factor, according to the approximate model of Eq. (5.4.18), for >~ m, = 0.3 eV at z = 31 (dashed

line). The colours represent a histogram of the full numerical solution, Dg) (k1, k2), evaluated
on a 6D Fourier space lattice with physical dimension L = 800 Mpc (i.e. Ak = 7.85 x 1073
Mpc™!), projected onto the k = | ky 4 ko|-axis and normalized per k-bin. For the large majority
of configurations, the system attains the approximate value. The shaded region indicates the
range of scales for which the power spectrum of k - 1) is at least 0.01% of that of k - ).

involved in the problem are either large or small, we can approximate the convolution
with the neutrino response as multiplication by a constant § = 1 + a(k). In such cases,
the frame-lagging terms also vanish, as will be confirmed in Section 5.4.2. Given these
assumptions, (5.4.10) reduces to

3890
2D2

I Doothij = (1—1/J). (5.4.13)
Using the identities JJ;;' = (1/2)ejup€igrIrglpr and J = (1/6)eijrepgrdipjqir, we
rewrite (5.4.13) and (5.4.11) as

369

BYoo
- — — = 4.14

€1pgJqk Doo i1 = 0. (5.4.15)

€ijkEparJgiJip [Doo

Hence, using J;; = d;; + 15 ; and substituting the expansion (5.4.12), we obtain equations
for the longitudinal and transverse parts at order n in terms of perturbations of orders
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my +mg = n (for n > 2) and m; + mg + mg = n (for n > 3):

38900
Do — (™ =
{ 2Dzo]v v
- > Eijkﬁipqw§7p1) [Doo— D2 } ,(WZ) (5.4.16)

mi1+mo=n

- E Eijkepqr§¢§,pl)wj(',q2) [DOO YsY ] wl(c,r3)’
mi1+ma+ma=n o0
DoV x ™ = 3 vpl™) x D vy, (5.4.17)

mi1+mo=n

The first-order equations separate. The longitudinal Eq. (5.4.16) has the particular
time-dependent solution

DW =D& with ¢=1/4+43950(86+ 3000 — 4) — 2900 + 1,

while the transverse Eq. (5.4.17) has constant and decaying solutions. Identifying the
fastest growing solutions order by order, we find that ¥ o D2. In particular, we find
that the fastest growing solution at second order grows as

D® 39003

DX~ 4q(2q — 1) + 3g00(2¢ — B) (5.4.18)

Reinserting 8 = 1 + a(k), we obtain a useful approximation of the magnitude of neutrino
effects on the second-order coefficient, relative to the ACDM value of 3/7. This is shown
by the dashed line in Fig. 5.2 for a model with > m, = 0.3 eV at z = 31. We stress that
this approximation neglects the non-trivial coupling with the neutrino response in the
general case. As we will see in the next section, the second-order solution can be described
in full by two kernels, fo) (k1,k2) and Dg)(kl, k2). For most configurations on the 6D
Fourier space lattice that we use to generate N-body ICs, both k; and ko are large and
the result is close to the estimate of Eq. (5.4.18). However, for cases with one mode large
and one mode small or for squeezed configurations with k = | k1 + ko | < k1 & ko, the
value may depart from this estimate, as shown by the histogram in Fig. 5.2. Nevertheless,
the figure demonstrates that the large- and small-scale limits provide reasonable bounds
on the effect at intermediate scales. Overall, the magnitude of the effect is (’)(10*3), in
line with the estimate given in Section 5.2.2 for this mass. The figure also demonstrates
that the ACDM value of 3/7 is only reached for k < 1073 Mpc ™!, while the second-order

1

potential is important for k£ > 10~ Mpc™1!, reflecting the hierarchy between the neutrino

free-streaming scale and the nonlinear scale, kg < ky, that motivates the approach of
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Section 5.2.

Using 9 « D3, we derive recursion relations for the fastest growing solution at order
n > 2:

o if 4myimag?
V-t = Z 2 [1 2nq(nq—1)+3gm(”q_ﬂ>}

mi1+mo=n
X fijkfipqw]('zl)wl(!’zﬂ
B Z [1 B 4(mymg + mams + mam1)q
2ng(ng — 1) + 3goo(ng — B)

2} (5.4.19)

m1+me+ms=n

1 m m m,
X €ijk€pq7“6¢i(,pl)¢j('q2)wl(€,7'3)’
1 — m m
V x " = Z 5%v¢§ 1) Vwi( 2), (5.4.20)

mi1+mo=n

For the purposes of higher-order 1Cs, we are primarily interested in deriving corrections
to the ACDM coefficients in the small-scale limit with 8 = ¢ = 1. Reading off coefficients
from (5.4.19), we find that these can be conveniently expressed in terms of
C. = M (5.4.21)
" 2n + 3900 o
Proceeding as in Appendix 5.D, we obtain the SLPT form given in Section 5.2.2. Com-
bining Eqs. (5.4.21) and (5.3.18) yields an accurate approximation of C,, in terms of

fu:

81 =f)2n+3)
=it e@on T

2f,n
5(2n +3)’

(5.4.22)

with S = /14 24(1 — f,). For n = 2, the above expression agrees with that given by
[212]. The next section is dedicated to relaxing the assumptions on g and «(k), finding
the general solution at second order.

5.4.2. General solution

For the general solution, we need to deal with the frame-lagging terms F'(q). Here, we
will follow the approach of [213]. We are interested in solutions at second order. The
transverse Eq. (5.4.11) only has non-trivial solutions for n > 3. Therefore, we concentrate
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on the longitudinal part. We repeat (5.4.10) for convenience:

T Dt = 55 (1= 1)+ (14 )+ FI. (5.423)

Using (5.4.4) and Ji;1 =Y 2 ol(I —J)"i;, we can write this up to second order in the

displacement:

Doowiz %,J Oowjl 2D2 wH *( —I—Oé)

3900 1
2D 2

(5.4.24)

390
[77/)@ Zw],j + %g% 1] (1 + a) + 21932 F(Q)

where the second-order frame-lagging terms, F(2), are given in Appendix 5.C. At first
order, the displacement admits a growing solution ) oc D) with a growth factor that
satisfies

3900

Do DM =
> 2D2,

(1+ a)DW), (5.4.25)

This is simply a reformulation of the Eulerian equation for the first-order growth factor
(5.3.9). Using the expansion (5.4.12) in (5.4.24) and collecting second-order terms then
yields

390
Doctly) = s v ¢ (1) + 4] Dot}

3900 1
- 2Dgo 5 ¢§,1i)?/)j,j + ¢Z71J)¢](712) * (1 + Oé) +

5.4.26
300 ( )

T Jaln

In Fourier space, each of the quadratic terms in (5.4.26), including the second-order
frame-lagging term, is a convolution of derivatives of ¥ (k;) and ¥ (ky). Expressing
the displacements in terms of potentials as

PpM = —vp), P = —vp®), (5.4.27)

and identifying terms, we thus obtain

1 1
<2>k:/ oD (k) (e

X [Df)(kh@)k%k% — DR (ky, ka)k3, |,

(5.4.28)
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where [, = [ dkidky(2m) 96 (k1 + ky — k) and kip = k1 - ky and D; = DW(k;) for
i = 1,2. Notice the similarity of this equation with Eq. (5.2.7). The difference is that
the two terms now have distinct scale- and time-dependent coefficients satisfying

390

2) _ 390 )

DDy = 5pa (1 alk)) D7 + 55 (14 A)Di D2, (5.4.29)
(2) _ 39co 2) |, 39co

DOODB = 2Dgo (14 a(k)) DB + 2D<2>o (1+ B)D1Da, (5.4.30)

where the functions A and B are given by

a(k) — a(ks) N a(k) — a(k)

Ak, k1, ko) = a(k) + 5 5 k12, (5.4.31)
k1 ks
B(k‘,k‘l,kg) = Oé(kil) +a(k2) —Oé(ki), (5432)
for k = | k1 + k2|. The terms in square brackets correspond to the frame-lagging terms.

In the small-scale limit with k, k1, ko > kg, we have A = B = 0. Hence, fo) = Dg) and
(5.4.28) factorizes as in Eq. (5.2.7). Similarly, in the large-scale limit with k, k1, ko < ki,
we obtain again the approximate form described in Section 5.4.1 with A = B ~ f,/fcp. In
both limits, the frame-lagging terms drop out, as anticipated. Intermediate configurations
will deviate from the asymptotic solutions, as was already discussed in Section 5.4.1 and
shown in Fig. 5.2.

For the numerical solution, we begin the integration at a time when the non-relativistic
neutrino fraction is 50%. For the fiducial neutrino mass, Y m, = 0.3 eV, this corresponds
to z = 187. We integrate Eqgs. (5.4.25) for the first-order growth factor and (5.4.29-
5.4.30) for the second-order kernels, using the approximate model of Eq. (5.4.18) as
initial conditions. The results, projected onto the k-axis, are shown in Fig. 5.2. When
generating 2LPT particle initial conditions, we begin by generating a realisation of the
back-scaled first-order potential, <p(1). We then perform the convolution integral of
Eq. (5.4.28) explicitly, interpolating from tables of DX)B(k, k1, k2). To ensure completion
in a reasonable time frame, we impose cut-offs at k1 < kcy and ko < keyt. We performed
convergence tests to ensure that the results are independent of the cut-off scale, finding
that a cut-off at ke = 1 Mpc_1 was more than adequate for the resolutions considered

in this paper.
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5.5. Results

We will now discuss the power spectra, bispectra, and halo mass functions of massive
neutrino simulations with different ICs. We introduce our simulation suite in Section 8.2.
We then consider the impact of different approximation schemes for the second-order
kernels in Section 5.5.2 and follow it up with a comparison of Zel’dovich (ZA), 2LPT,
and 3LPT ICs at various starting redshifts in Section 5.5.3. Finally, we consider the
impact of ICs on the suppression of the power spectrum as a function of neutrino mass
in Section 5.5.4.

5.5.1. Simulations

We use the cosmological hydrodynamics code SWIFT [189, 190], which uses task-based
parallelism, asynchronous communication, fast neighbour finding, and vectorised op-
erations to achieve significant speed-ups. The code uses the Fast Multipole Method
(FMM) for short-range gravitational forces and the Particle Mesh method for long-
range forces. Neutrinos are modelled as a separate particle species. We employ the
df method to suppress the effects of shot noise [237] and generate neutrino particle
initial conditions by integrating geodesics from high redshift using our FASTDF code.
Additionally, we use fixed initial conditions to limit cosmic variance [238]. Apart from
the neutrino mass, we use cosmological parameters based primarily on Year 3 results
from the Dark Energy Survey [201] and Planck 2018 [112]. Our choice of parameters is
(hy Qm, O, Ag,ns) = (0.681,0.306, 0.0486,2.09937 x 1079,0.967), with different choices
for the neutrino density €2,,.

There is a subtle point regarding comparisons between simulations with and without
massive neutrinos. Codes like SWIFT employ a multipole acceptance criterion to determine
when the multipole approximation is sufficiently accurate to be used without further
refinement. The adaptive criterion used for the runs in this paper is based on error analysis
of forces on test particles. This means that the accuracy of the N-body calculation
depends on the number of particles contained in any given volume. When comparing
two runs with equal numbers of dark matter particles, one with neutrinos and the other
without, all other things being equal, forces will be calculated more accurately in the
run with neutrinos. To account for this difference, we included an equal number of
massless ‘spectator’ neutrino particles in the f, = 0 runs, with velocities corresponding to
my, = 0.05 eV neutrinos. These particles contribute no forces and only affect the N-body
simulation through the multipole acceptance criterion, ensuring that the accuracy of the
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Figure 5.3: Impact of approximation schemes for the second-order potential on the CDM & baryon
power spectrum. The reference run used initial conditions based on a numerical calculation of
the scale-dependent 2LPT kernels. In the asymptotic approximation (black), we use Egs. (5.2.4)
and (5.2.13), but truncate third-order terms. In the ACDM approximation (red), we additionally
set Cy = 1. The vertical dotted line is the Nyquist frequency.

massless runs is comparable to that of the massive neutrino runs. Such massless runs are
considered in Section 5.5.4.

5.5.2. Validation of approximate treatment

To validate our approach, we compare three different implementations of 2LPT, based
on the following models:

1. The asymptotic model of Section 5.2
2. A model with ACDM coefficients
3. A reference model with scale-dependent effects

The first order displacements and velocities are identical in each of the approaches,
obtained from the back-scaled linear power spectrum at z = 0. In the asymptotic
scheme, we use Egs. (5.2.4) and (5.2.13), but truncate the 3LPT terms. In the ACDM
approximation, we additionally set C'y = 1, which corresponds to neglecting neutrino
effects at second order. Finally, we compare these two approximate methods with a
reference run that relied on a numerical calculation of the scale-dependent 2LPT kernels,
fo)(kl, ko) and Dg)(kl, k2). With respect to Fig. 5.2, the asymptotic approximation
corresponds to using the small-scale limit, the ACDM approximation corresponds to the
large-scale limit, and the reference run corresponds to the underlying histogram. We use
simulations with side length L = 800 Mpc and N, = 1200 particles.
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Fig. 5.3 shows the impact of these approximations on the power spectrum of the evolved
CDM & baryon density field. The differences are most evident at z = 3 (right panel). On
the largest scales, k < 0.05 Mpc~!
agree to machine precision. For k > 0.05 Mpc~!, the ACDM simulation systematically

, nonlinear corrections are small and all simulations

underestimates clustering with a maximum error of 0.04% at k = 4 Mpc~!. For the
asymptotic run, the error is two orders of magnitude smaller over the same scales. Between
z = 31 and z = 3, the evolution is virtually identical in the asymptotic and reference runs,
but we begin to see some noise in the ratio on the smallest scales at z = 1 (middle panel).
These perturbations continue to grow until z = 0 (left panel), where we find a scatter
of 2 x 107* for k > 1 Mpc™! in both the asymptotic/reference and ACDM /reference
ratios. It is hard to attribute this noise to any particular run as the power spectrum on
these scales is increasingly determined by the internal structure of poorly resolved halos.
On larger scales, k < 1 Mpc™!, the asymptotic run performs extremely well with errors
below 1077, while the systematic deficit in the ACDM run persists.

These results demonstrate that, at second order, the effect of the suppressed neutrino
perturbations can be absorbed into a scale-independent factor C and that further scale-
dependent neutrino effects are negligible as far as initial conditions are concerned. We
expect that this continues to hold for third-order corrections, which are confined to even
smaller scales. Including the correction factor Cy is clearly superior to simply using
the ACDM coefficient. However, we also observe that this higher-order neutrino effect
is below 0.1%, and therefore beyond the sensitivity of current experiments. Hence, we
conclude that for most purposes both the ACDM approximation and the asymptotic
approximation are justified.

5.5.3. Choice of LPT order and starting time

We are now in a position to study the effects of LPT order and starting time on massive
neutrino simulations, using the asymptotic approximation. Fig. 5.4 shows the late-time
power spectrum for simulations with L = 800 Mpc and Ng, = 12002 particles, comparing
in the first instance Zel’dovich (solid red) and 2LPT (solid black) with 3LPT (dotted
gray) as a baseline. All three runs were started at z; = 31. The most striking observation
is that the differences are much larger than those shown in Fig. 5.3. This means that
using higher-order LPT in some fashion is more important than getting the details right.
Next, we find percent agreement between 2LPT and 3LPT over the entire range of scales
probed for z < 1 and approximately a 1% error at z = 3 for k > 2 Mpc~'. We also find
that the Zel’dovich approximation performs very poorly with errors of (4, 7, 15)% for
k>1Mpc!atz=(0,1,3). This well-known fact [88] has motivated practitioners to
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Figure 5.4: Impact of starting time and LPT order on the CDM & baryon power spectrum. The
reference simulation used 3LPT and both it and the 2LPT simulation were started at z; = 31.
The shaded area is 1%.

start Zel’dovich simulations at higher redshifts, when truncation errors are smaller. We
demonstrate this with Zel’dovich runs started at z; = 63 (dashed, red) and z; = 127
(dotted, red). While the agreement with the higher-order runs improves, we still find

percent agreement only up to k = 0.4 Mpc~ .

Moreover, starting earlier introduces
inaccuracies of a different sort. To see this, we repeat the exercise at a lower resolution
with Ng, = 6003 particles. The resulting power spectra at z = 0 are shown in Fig. 5.5,
with Zel’dovich runs compared against 3LPT in the left panel. We observe that for runs
started at z; = 31 (red), the error is almost independent of resolution. However, for
earlier starts at z = 63 (black) and z = 127 (blue), the lower resolution runs increasingly
underestimate the power spectrum on small scales. This shows that while truncation
errors decrease, resolution effects increase as simulations are started earlier. The pattern
reverses for 2LPT (right panel), with earlier starts performing worse than later starts.
This can easily be explained by the fact that truncation errors are much smaller for 2LPT,
such that the effect of increasing discreteness errors dominates. We confirm the finding of
[89] that the size of discreteness errors is independent of LPT order. This demonstrates
that, at fixed resolution and LPT order, starting earlier does not guarantee convergence
onto the higher-order solution. As was the case for truncation errors, discreteness errors
are much larger at z = 1, 3 (not shown).

We also consider three-point statistics, which are sensitive to transients from initial
conditions [88] and an interesting probe of neutrino physics [239-241]. For the equilateral
bispectrum, B(k) = B(ky, k2, k3) with k = k1 = ko = ks, shown in Fig. 5.6 at late times,
the same pattern is broadly repeated as for the power spectrum. However, errors are
approximately twice as large as for the power spectrum. In detail, we again find percent
agreement between 2LPT and 3LPT for z < 1 with larger errors on small scales at z = 3.
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Figure 5.5: Impact of starting time and resolution on the CDM & baryon power spectrum.
The simulations are compared against 3LPT runs with the same resolution (Ng, = 6002 or
Ng, = 1200%), started at z; = 31. The shaded area is 1%. Not all combinations were tested.
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Figure 5.6: Impact of starting time and LPT order on the equilateral bispectrum of CDM &
baryon density perturbations at late times. The reference simulation used 3LPT and both it and
the 2LPT simulation were started at z; = 31. All runs used Ny, = 12003 particles. The shaded
area is 1%.

For the Zel’dovich runs, we find significant errors compared to 3LPT, even when starting
at z = 127, with percent agreement only up to k = 0.1 Mpc™! at z = 0, and not even
there for z > 1.

Finally, we compare the halo mass function at z = 0. Halos are identified with VE-
LOCIRAPTOR [194] using a 6D friends-of-friends algorithm applied to the cb particles.
Spherical overdensity masses are computed within spheres for which the density equals
200 times the mean CDM & baryon density pe,. The reason for using pe}, instead of the
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Figure 5.7: Impact of starting time and LPT order on the halo mass function, f(M) = dn/dlog M,
at z = 0 for the N, = 12003 runs. The reference simulation used 3LPT and was started at
z; = 31. The shaded area is 1%.

total mass density ppy, is that it is this cold density field that produces universal and
unbiased results in halo model calculations [242-244]. The results are shown in Fig. 5.7.
We once again find percent agreement between 2LPT and 3LPT over the entire mass
range, but large errors for the Zel’dovich runs. There is an interesting pattern in the
Zel’dovich error as the starting time is varied. For late starts (solid red), the simulation
agrees well at the low-mass end but underestimates the number of very massive, 1015 M,
halos by more than 7%. This can be understood in terms of the deficit of power seen
also in Fig. 5.4, resulting in a suppressed growth of large structures. Meanwhile, for
early starts (dotted and dashed red), the agreement at the high-mass end improves like
the small-scale power spectrum. However, the number of low-mass halos decreases by a
similar factor, likely due to discreteness errors. This seems to be broadly consistent with
the ACDM results of [89], but not with [245] who find little dependence on starting time
at z = 0.

5.5.4. Dependence on neutrino mass

Thus far, we have focused on a single neutrino mass of Y m, = 0.3 eV. However, it is of
great interest to determine the effect of initial conditions on the suppression of the power
spectrum for different neutrino masses. We consider three cases:

1. massless neutrinos

2. degenerate Y m, = 0.15 eV neutrinos (f, = 0.011),
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3. degenerate > m, = 0.30 eV neutrinos (f, = 0.023).

In each case, we adjust Qcqm to keep the total matter density €2, fixed. To be able to
carry out many variations, we primarily use lower resolution simulations with N, = 6003
particles in an L = 800 Mpc cube. This still enables us to study the impact of LPT order
and starting time, as the following discussion reveals.

First, we consider the effect of LPT order. In Fig. 5.8, we show the suppression of the
CDM & baryon power spectrum relative to the massless case, comparing ZA /ZA (solid),
2LPT/2LPT (dashed), and 3LPT/3LPT (shaded). Evidently, it is crucial to compare like
with like simulation, keeping the LPT order and starting redshift the same. Not doing so
introduces large errors in the ratio, as might be expected from the fixed neutrino mass
results discussed above. We illustrate this by including a dotted line for the ZA /2LPT
ratio, which is clearly off the mark. However, even when comparing like with like, we
find a residual error that is proportional to the neutrino mass, rises with k£, and peaks
around the turn-over of the suppression. This feature is most clearly visible at z = 1
for ZA, with a maximum error of 0.05f,. The effect is already present in the initial
conditions and can be explained by a mass-dependent suppression of nonlinear terms. As
virialized structures grow, both the turn-over of the suppression and the peak of the error
move to larger scales. At z = 0, the error is 0.025f, around k = 0.3 Mpc~!. On smaller
scales, we see a scatter of order 0.5%, treading outside the scale-dependent error bars
that correspond to a £0.005 eV shift in > m,. For 2LPT, both the systematic effect
and the noise are greatly suppressed, resulting in 0.1%-level agreement with 3LPT even
at early times.

Next, we consider the effect of the starting time of the simulation. In Fig. 5.9, we show
the suppression for simulations with 2LPT ICs started at z = 127 (solid), z = 63 (dashed),
z = 31 (shaded). Once again, we compare like with like simulations. Even so, we find a
small residual effect with earlier starts overestimating the suppression. The differences
between z = 31 and z = 63 are minimal for both neutrino masses. However, starting
at z = 127 results in (0.1, 0.2)f, errors at z = (0, 1) for £ > 1 Mpc™!. These errors
once again exceed the threshold for a £0.005 eV shift in Y m,. Based on the discussion
above, and given that we are using 2LPT, we expect that truncation errors are small
at both redshifts. This suggests that the differences are caused by resolution effects,
which grow in importance with the starting redshift. To test this, we repeated some of
the simulations at a higher resolution with Ny, = 12003 particles, starting at z = 127
and z = 31. The ratio is shown as a dotted line in the bottom panels of Fig. 5.9. The

1

agreement between the early and late starts improves to 0.1% up to k = 10 Mpc™" at

z = 0, comparable to the low-resolution z = 63 start. However, the suppression is still



97 5.5. Results

Power spectrum suppression Power spectrum suppression
1 T T ‘ T T T ‘
2 z=0 z=1
=
o 09 |
X
T el N
Qe 0.8 -—— ZA/ZA SRR b
I -=-=- 2LPT/2LPT ——0.15e¢V | | e
© g SLPT/SLPT ——030eV - ZAJ2LPT | | ‘ ‘ i
PR — t T
= 05 0.15 eV 0.15 eV =
< | et
-l =aas P
= ," 0.30 eV =
w T T U c Ig_
q (=}
70'57\\\\\ Ll Ll Ll Cool Ll Ll IR Wi
1072 107! 10° 10t 1072 107! 10° 101

Scale k [Mpcil] Scale k [Mpcfl]

Figure 5.8: Impact of LPT order on the suppression of the CDM & baryon power spectrum for
different choices of A/B, where A is the LPT order of the massive neutrino run and B the LPT
order of the massless run. The neutrino masses are > m, = 0.15 eV (red) and Y m, = 0.30 eV
(black). The bottom panels show the suppression relative to 3LPT/3LPT, with shaded areas
representing a £0.005 eV shift (light) or a constant 0.1% error (dark) where this is smaller.

slightly overestimated at z = 1.

One possible alternative explanation is that errors could be introduced by the back-scaling
procedure (Section 5.2.1). To test this hypothesis, we repeated some of the simulations
with ICs that were not back-scaled, as in Chapter 4. We found nearly identical results
for these runs, ruling out this explanation. Another possibility is that the errors could
be the result of shot noise, since we use a particle-based implementation of neutrino
perturbations. However, this is unlikely as the differences already appear at high redshift
when shot noise is highly suppressed due to our use of the § f method. Finally, one might
expect differences due to relativistic effects that are increasingly important for earlier
starts. Once again, this is unlikely since relativistic effects would appear on the largest
scales, where the differences shown in Fig. 5.9 are minimal. Since the error decreases
for the higher resolution runs, discreteness effects likely account for the majority of the
difference, with massive neutrino simulations being more sensitive to such errors, due to
the suppressed growth of structure. Late starts can be utilized to minimize the effect of
particle resolution, as shown in Fig. 5.5.
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Figure 5.9: Impact of starting redshift and resolution on the suppression of the CDM & baryon
power spectrum. The neutrino masses are Y m, = 0.15 ¢V (red) and Y m, = 0.30 ¢V (black).
The bottom panels show the suppression relative to runs with the same resolution, but started at
z; = 31. The shaded areas represent a £0.005 eV shift (light) and a constant 0.1% error (dark)
where this is smaller. All simulations used 2LPT initial conditions.

5.6. Discussion

We have investigated the use of higher-order Lagrangian initial conditions (ICs) for
cosmological simulations with massive neutrinos. We solved the fluid equations for
a neutrino-CDM-baryon model with approximate time-dependence in the large- and
small-scale limits, finding that higher-order neutrino effects can be described by scale-
independent coeflicients that are easy to implement in existing IC codes. To validate
our approach, we constructed ICs based on a rigorous treatment of the scale-dependent
neutrino response in 2LPT, obtaining agreement with our scheme to better than one

1

part in 10% up to k = 1 Mpc™! in the power spectrum of the evolved CDM and baryon

perturbations at late times.

Compared to these small differences, we find that the truncation error associated with
using the first-order Zel’dovich approximation is much larger. For our fiducial model
with > m, = 0.3 eV and a starting redshift of z; = 31, the error is 4% in the power
spectrum and 7% in the equilateral bispectrum around k = 0.5 Mpc~! at z = 0. Ratios
of statistics from simulations with different neutrino masses can be calculated much more
robustly, provided that the LPT order and starting redshift are the same. Nevertheless,
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even such ratios have a residual dependence on the ICs. For instance, Zel’dovich 1Cs
introduce a mass-dependent error in the suppression of the power spectrum that grows
with wavenumber k and redshift z, peaking around the turn-over of the suppression.
We also find that the starting time of the simulation has an impact on the suppression
over a wide range of scales and redshifts. Simulations started at z; = 127 overestimate
the suppression of the power spectrum on small scales, compared to later starts. While
simulations can be started at higher redshifts to reduce truncation errors, this also
increases the importance of particle resolution and relativistic effects. To minimize errors
from initial conditions and particle resolution, simulations can be started at late times
using higher-order 1Cs.

A major target of cosmological surveys is to measure the sum of neutrino masses.
Assuming the minimum value allowed under the normal mass ordering, > m, = 0.06
eV, cosmology could provide a 30 detection and rule out the inverted mass ordering at
20 by reaching a sensitivity of 0.02 eV, which is in reach of future cosmic microwave
background and large-scale structure experiments [132, 202-204]. This corresponds to

L scales.

detecting 1% effects on the matter power spectrum on 0.1 Mpc™! < k < 1 Mpc™
We should therefore aim for neutrino simulations with errors that are well below 1% on
these scales. While Zel’dovich ICs fall short of this mark, our findings suggest that 2LPT
is sufficiently accurate for most applications. Higher-order statistics at high redshift seem

to be the notable exception, which could be relevant for Lyman-« forest simulations.

The accuracy of neutrino simulations depends on many factors: the accuracy of the linear
transfer functions and back-scaling procedure [124, 221], the implementation of neutrino
perturbations (e.g. [174], Chapter 4), neutrino initial conditions (Chapter 6), and dark
matter and baryon initial conditions (this chapter). It has now been demonstrated
that each of these factors can be controlled to within 1%. The remaining uncertainty
is likely dominated by the choice of gravity solver. Achieving 1% agreement between
different N-body codes is non-trivial even in the absence of neutrinos [218, 246, 247].
Fortunately, the accuracy of N-body codes should not in the first place be expected to
deteriorate in the presence of neutrinos. In fact, the accuracy could even improve for
particle-based implementations due to ‘spectator’ effects (Section 8.2). Indeed, since
publication of this paper, a systematic comparison of neutrino simulations with different
codes and identical initial conditions has shown that consistent results can be obtained
if shot noise is satisfactorily addressed [130]. These explorations confirm our ability to
simulate nonlinear clustering in Universes with massive neutrinos, allowing us to meet
the demands of the next generation of surveys.
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5.A. Difference and sum equations

As in (5.3.15-5.3.17), the component fluid Egs. (5.3.1-5.3.2) can be rewritten using D
as time variable and vy = u)/0: D as velocity:

3900
Op., U + vy - Vgvy = —219) (va + Vzp), (5.A.1)
Op..0x+ Vg - [(1+d))v\] =0, (5.A.2)

for A € {c,b} with ¢ = a®/(ByD) and g defined in (5.3.14). The initial conditions
at Do = 0 must be v, = v, = —Vgp for (5.A.1) not to diverge. Taking the difference of
(5.A.1) for A =D and A = c gives

3900

—m’vbc, (5A3)

OD o Vbe + U - VgUhe + Vhe - Vg =
where vy, = v, —v.. Notice that the neutrino contribution contained in V¢ has dropped
out. Consequently, we obtain results analogous to the ACDM case without massive
neutrinos [229]. Expand vy =Y~ | 'vf\m) for A € {c,b} and vpe =Y 0 vgcn). At first
order, we find

3
Op., vl(jlc) = —%v&). (5.A.4)

Since g is strictly positive (see Fig. 5.1), the only non-decaying solution is ”t(j:) =0. As
(m)

v = 0 initially, this is the only solution. Suppose that v, " =0 form =1,...,n — 1.
Then also
(n) _ _ 390, (n)
aDOO'UbC = —E'vbc y (5A5)

with the only solution being 'véz) = 0. It follows that v, = 0 at all orders. Using this

result and taking the mass-weighted average of the component equations yields at all
orders:

390
aDoo'vcb + Ve - VaUeh = _%(’Ucb + VI<P)7 (5A6)

Op..0cb + Vg - [(1 + dcb)vep) = 0. (5.A.7)
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Converting back to 7-time gives (5.3.3-5.3.4). Letting dp. = dp — 0. and taking the
difference of (5.A.2) for A =b and A\ = ¢ also gives

ID..0be + Va + [0bcUeb] = 0. (5.A.8)

Inserting dpe = > o4 5}(::), we find that 51()? = constant at first order, as in the case
without neutrinos.

5.B. Analytic solution

We seek a solution to

B
2D +aHO, D = FOD. (5.B.1)

To express the solution as a function of the scale factor, a(7), we switch time variables to
log a and define the new velocity variable, @, = ueh/(aH). Eq. (5.B.1) is then written
as

d>D [ dlog H} dD By

—_— = D. .B.2
d(loga)? dloga a3H? (5-B.2)

dloga

The hypergeometric function 2 Fi(c,d, e, z) is a solution of the differential equation
d’F dF
z(l—z)@—i- le—(c+d+1)z] s —cdF = 0. (5.B.3)

Given the Ansatz D(a) = aP/1 + Aa3F(z) with z = —Aa® and A = Q5 /Qu, we obtain
after some algebra

2
(1- z)d(igi)Q - [2(p+ Dl —2) =3z - ;] dfia -

- [<p2+§—2(1—fu)> - <p2+5p+il> Z} F.

To bring this in the form of (5.B.3), we require

(j:\/m - 1) : (5.B.5)

(5.B.4)

p:

=
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where the positive sign picks the growing solution. Using this in (5.B.4), we obtain

d’F 1 7 dF
z(l—z)@+§ {2}9—1-2 - (2p—|—8)z] T
) o1 (5.B.6)
2
— —| F.
9 [p + 5p + 1 ]
Identifying constants in (5.B.3) and (5.B.6), we derive the desired expression
2p4+7 2p+3 4dp+7
D(a) :ap\/l—l—Aa32F1< pg : pg : p; ,—Aa3>, (5.B.7)

with p = \/1+24(1 — f,)/4 —1/4.

5.C. Frame lagging

Let S(z) = (dcb * @) (). Since S is itself first order, we have up to second order that

oS

S(x) = S(g+)=5(q) + —

5| wila). (5.C.1)

q

Denoting the Fourier transform of S(x) as F {S(x)}, we find that

oS

F{S()} = F{5(q)) +f{a%

ber @) (5.2
q

To be more explicit, we will denote the Fourier transform of S(x) by S*(k) and the
Fourier transform of S(q) by S%(k). The above identity can then be written as

5% (k) :S%k)+/k . ik’ S (ky )i (ko), (5.C.3)

where [, = [ dkidky(27) 56 (k1 + ky — k). Similarly,

Tty (k) = 8500 = [ i o). (5.C.4)

Combining the last two equations, we obtain

o (k)og, (k) = a?(k)dg, (k) — F(k), (5.C.5)
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where we denote the so-called “frame-lagging” terms by
F(k) = / iki [ad(k) — al(ky)] 64 (k1) vi(ka). (5.C.6)
ki1,k2

Now, since 6% = 1/J — 1, we obtain the result used in Section 5.4.2:

[0ct * o] (z) = [(1/J — 1) x a](q) — F(q). (5.C.7)

We now rewrite the second-order frame-lagging terms using the Monge-Ampere equation,
obtaining

F®®wiLkM@wﬂwm%M@W@mP@u (5.C.8)

5.D. Terms up to third order

We give explicit expressions up to third order. For n = 2, both the cubic term on the right-
hand side of (5.4.19) and the quadratic term on the right-hand side of (5.4.20) vanish.
Hence, only the quadratic term in (5.4.19) contributes. Using €;jr€ipg = 6jpOrg — 05q0kps
we find

39 1

¢ R

(1),,(1) 1), (1)
[qp Pl — gLy (5.D.1)
The corresponding ACDM coefficient (3/7) is found by setting goo = 1. Dividing
these coefficients, one obtains the scale-independent factor Cy = 7gso/(4 + 390). For
n = 3, we obtain two pieces from (5.4.19) and one piece from (5.4.20), giving ) =
B 4 4hBY) 1 09 Using det A;; = (1/6)e;jkepgr AipAjq Ak, We can write these as

cahp(B0) — 9o 1)
V- 3y et (5.D.2)
4469017 (1) (2 1 (2
B0 — 2T PFo0 2 1 (M) (1), (2)
Ve 6 + 3000 2 [ww Vg ~ Vi Vi | (5.D.3)
V x 09 = vy x vyl (5.0.0

The corresponding ACDM terms are again found by setting g, = 1. Expressing these in
terms of potentials (5.2.7-5.2.10) and dividing the corresponding coefficients, we obtain
the form given in Section 5.2.2 in terms of C7, Cy, Cs.






Hot initial conditions

This chapter deals with the initial conditions of the hot matter species:
neutrinos. The thermal distribution implies that another angle of attack
is needed. Following Ma & Bertschinger (1994), we use the method
of geodesic integration. Combined with the § f method of Chapter 4,
we demonstrate that the phase-space distribution can be accurately
described with particles even in the relativistic régime.

Geodesic motion and phase-space evolution of massive neutrinos

ABSTRACT: The non-trivial phase-space distribution of relic neutrinos is re-
sponsible for the erasure of primordial density perturbations on small scales,
which is one of the main cosmological signatures of neutrino mass. In this
paper, we present a new code, FASTDF, for generating 1%-accurate particle
realisations of the neutrino phase-space distribution using relativistic pertur-
bation theory. We use the geodesic equation to derive equations of motion
for massive particles moving in a weakly perturbed spacetime and integrate
particles accordingly. We demonstrate how to combine geodesic-based initial
conditions with the J f method to minimise shot noise and clarify the defini-
tion of the neutrino momentum, finding that large errors result if the wrong
parametrisation is used. Compared to standard Lagrangian methods with
ad-hoc thermal motions, FASTDF achieves substantial improvements in accuracy.
We outline the approximation schemes used to speed up the code and to ensure
symplectic integration that preserves phase-space density. Finally, we discuss
implications for neutrino particles in cosmological N-body simulations. In
particular, we argue that particle methods can accurately describe the neutrino
distribution from z = 10°, when neutrinos are linear and ultra-relativistic,
down to z = 0, when they are nonlinear and non-relativistic. FASTDF can be
used to set up accurate initial conditions (ICs) for N-body simulations and

has been integrated into the higher-order IC code MONOFONIC.
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6.1. Introduction

It is expected that relic neutrinos of the early Universe outnumber the baryons by a
factor of n, /ny =~ 10°. The discovery of neutrino oscillations [11, 12] implies that at least
two-thirds of these particles carry a mass, which though small, through sheer abundance
should leave an imprint on the large-scale distribution of matter. Detecting this signature
would provide a means of measuring the sum of neutrino masses >, m, from cosmology
[23, 25, 50], complementing an extensive programme of neutrino experiments on Earth.
The imprint of massive neutrinos arises primarily from the fact that, during the era of
structure formation, neutrinos are non-relativistic particles with a relativistic phase-space
distribution. Neutrinos decouple from the primordial plasma at a temperature of 1 MeV
and subsequently stream along geodesics, essentially without scattering, but maintaining
a thermal phase-space distribution. After becoming non-relativistic, massive neutrinos
have a thermal velocity vy, o< 1/m,, and cannot be contained effectively in regions smaller
than vy, /H, where H is the Hubble rate. As a result, although neutrinos contribute like
dust to the geometric expansion of the Universe, they cluster less effectively on small
scales, slowing down the growth of matter perturbations. This effect has been used to put
tight constraints on the sum of neutrino masses, with current limits of > m, < 0.15eV
or better [108, 109, 113, 248]. These constraints are an order of magnitude below the
strongest laboratory constraint, m, < 0.8eV, from KATRIN [14], but come with the
important assumption of ACDM cosmology, which highlights their complementarity.

Cosmological N-body simulations are widely used to make predictions for nonlinear
structure formation in the presence of massive neutrinos and to study their effects on
cosmological observables, which is needed to unlock the full potential of surveys like
DESI and Euclid for neutrino science. Many approximate methods exist to incorporate
neutrino effects in simulations, of which [168, 172, 222, 249, 250] are some recent examples.
Methods that solve for the neutrino and dark matter perturbations self-consistently fall
roughly into three categories: grid-based methods actively solve evolution equations on
the grid [149, 161, 163, 164, 167, 175, 251, 252], linear methods use transfer functions
computed with an Einstein-Boltzmann code [166, 171, 253], and particle-based methods
sample the phase-space distribution with tracers [148-150, 155, 156, 159, 164, 237, 254~
256]. While particle methods are uniquely suited to follow nonlinear neutrino clustering
at late times, they typically disagree with linear theory in the neutrino component at
early times, in part due to the way that initial conditions are handled and in part due to
shot noise. The purpose of this paper is to address these shortcomings and to demonstrate
how particle methods can be used to obtain accurate results at all times.

Particle initial conditions for N-body simulations are commonly set up with Lagrangian
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perturbation theory (LPT). This works very well for baryons and cold dark matter, even in
the presence of neutrinos [212, 213, 257]. However, standard methods fail for the neutrino
fluid itself. The free-streaming behaviour is usually implemented in an ad-hoc manner by
drawing a random thermal velocity from the homogeneous Fermi-Dirac distribution and
assigning it to the neutrino particles [254, 255]. This is typically combined with first-
order Lagrangian perturbation theory (1LPT), more commonly known as the Zel’dovich
approximation [62], in which particle displacements and velocities are proportional to
one another: v = aH f1p, where f is the linear growth rate and a the scale factor. It is
easy to see that these steps are inconsistent. The result is illustrated in the top row of
Fig. 7.8. Even though the displacement field, 1), can be chosen to reproduce the density
field at the initial time, the imprinted density perturbations are wiped out by random
motions after only a few steps. A better approach, already proposed by [150] and used
recently by [154], is to integrate neutrinos along geodesics from high redshift, z = 107,
down to the starting redshift of the simulation using metric perturbations obtained from
an Einstein-Boltzmann code'. This, however, does nothing to address the issue of shot
noise, which is particularly problematic at early times. We recently proposed the § f
method as a way of minimising shot noise in neutrino simulations [237], inspired by
similar efforts in plasma physics [179-181] and stellar dynamics [176, 177]. Here, we will
show how these methods can be combined to produce accurate density fields from the
very beginning of the simulation, as shown in the bottom panels of Fig. 7.8. To facilitate
this approach for large simulations, we have made our FASTDF? code publicly available,
and integrated it into the higher-order initial conditions generator MONOFONIC, along
with other neutrino extensions [257, 260, 261].

The remainder of the paper is structured as follows. We will first describe our methods in
Section 6.2. We then derive the required equations of motion directly from the geodesic
equation in Section 6.3 and briefly remark on the Lagrangian derivation that was used
previously. In Section 6.4, we present numerical results, comparing the proposed method
with linear fluid calculations and standard methods, and evaluating the impact of the
equations of motions. Finally, we discuss the implications for simulations in Section 6.5.

6.2. Methods

Throughout this paper, we work in Newtonian gauge with a metric given by

ds? = a%(7) [—(1 +2¢(x, ))dr? + (1 — 26(x, T))(Sijd:r:idxj] , (6.2.1)

! Another solution could be to extend LPT to fluids with non-negligible velocity dispersion [258, 259].
2Fast Distribution Function; all codes available via https://willemelbers.com/neutrino_ic_codes/.
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Lagrangian ICs

Geodesic ICs

Figure 6.1: Neutrino density slices from a 3.2 Gpc cube for z € {31,15,3}. In the top row,
neutrino particles were set up at z = 31 using first-order Lagrangian perturbation theory (1LPT)
and then integrated forward. The initial perturbations are immediately washed out and structure
is only recovered over time. In the bottom row, the neutrino density field is faithfully reproduced
at all times using geodesic integration together with the §f method [237].

where 7 is conformal time and we consider only scalar metric perturbations: ¢ and .
Let U, = dz,/v—ds? be the 4-velocity and P, = mU, the 4-momentum of a massive
neutrino particle. The physical momentum measured by a cosmological observer is

We define the comoving momentum as ¢ = ap and let ¢ = ¢; = ¢n;, where the unit
vector fi; = P;/P with P? = §% P,P;. Finally, we define the energy as € = /¢ + m2a2.
Our aim is to sample particles from the neutrino phase-space distribution,

fx,a,7) = f(a) 1+ ¥(x,q,7)], (6.2.3)
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where f(q) = (1 + exp(q/T))! is the homogeneous Fermi-Dirac distribution and T =
1.95K the present-day neutrino temperature. In terms of f, the energy density is

p(x,7) = a_4/d3q e f(x,q,7) (6.2.4)

=p(7) 1+ (x,7)]. (6.2.5)

The evolution of f is governed by the collisionless Boltzmann equation (2.2.7). At linear
order in the metric perturbations, solutions can be found by decomposing ¥ into a
Legendre series in Fourier space [126]%:

U(k,n,q,m) = (=) (20 + 1)Wy(k, q,7) Pyl - 7). (6.2.6)
/=0

The Boltzmann equation (2.2.7) then becomes an infinite tower of equations in W,, which
is usually truncated at some high /.« using an algebraic Ansatz (see Section 3.3). We
solve this system with cLASS [124, 128]. To obtain very accurate results, we turn off the
default neutrino fluid approximation and use N = 100 momentum bins and an integration
tolerance of 10712, In terms of ¥,, the energy density and flux perturbations can then

be written as*

p(T)o(k,7) = a4/d3q ef(qQ)Vo(k,q,7), (6.2.7)

(p() + P(1)) 0(k,T) = a_4/d3q ak f(a)P1(k, g, 7), (6.2.8)

where p and P are the background density and pressure.

6.2.1. Initial conditions

To sample particles from the full perturbed phase-space distribution (6.2.3), taking
into account the non-trivial correlations between x and q, we integrate particles along
geodesics from high redshift. We begin shortly after decoupling at z = 10%, when all
modes of interest are outside the horizon and the neutrino phase-space distribution can
be described in closed form, although in practice a slightly lower redshift would suffice.
To recover the correct super-horizon evolution, we account for the initial monopole
and dipole temperature perturbations. At early times on super-horizon scales, the first

3Note that our definition of ¥, is slightly different.
*Recall that [ Py(cos 0) Py (cos 0) sin0df = 6¢m2/(2¢ + 1).
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two moments of the distribution function are § = —21 and § = k%) [126]. From
(6.2.7-6.2.8), we find

§dlog f wef dlog f
Yo =—— U =—— 6.2.9
0 vdlogq’ ! qgkv dlogq’ ( )
where v = dlogp/dlogT =4 and w=1+w = (p+ P)/p = 4/3. It follows that
_ 5 5
fxq,7)=f (q [1 - WTZ] vV (v—ze)D . (6.2.10)

Particle positions are sampled uniformly in the periodic simulation volume. We then
apply the initial perturbations by sampling momenta from the unperturbed Fermi-Dirac
distribution, f, and rescaling the ith component of q:

5
g — a; [1 + 24+ Ly, (V‘QQ)] . (6.2.11)
v g

After setting up these “pre-initial” conditions, neutrinos are integrated using relativistic
equations motion, derived in the next section. These depend on the scalar potentials,
o(x,7) and (%, 7), whose transfer functions are computed with cLASS. The integration
is done with the C-code FASTDF, which we make publicly available. Since the metric
is computed in linear theory beforehand, each neutrino is completely independent, in
principle allowing the code to be perfectly parallel. However, a large fraction of the
computational expense is due to the potential grids, which can be shared if the particles
are synchronised. To exploit this, FASTDF supports parallelisation through both OPENMP
and MPI. The latter is also used to facilitate parallel data output through HDF5. Further
gains in speed are made by realising that the metric perturbations are constant during pure
radiation and pure matter domination. We therefore compute the potential fields only
when the fractional change in the transfer functions exceeds 1% and linearly interpolate
between these super-steps. This significantly reduces the required number of Fourier
transforms and has a negligible impact on the accuracy.

6.2.2. The §f method

To handle particle shot noise, which is of particular concern at early times, we use the § f
method [237]. This is a variance reduction technique in which the phase-space distribution
is decomposed as f = f +df in terms of an analytical background f and perturbation 6 f
sampled by the particles. The density integral (6.2.4) is then decomposed into a smooth
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background, p(x,7), and a sum over simulation particles:

N

M
p(x,7) = (%, 7) + E wer W(x — x3), (6.2.12)

where M is a normalisation factor, W(x) a smoothing kernel, ¢, the energy and wy a
statistical weight for particle k given by wy = 0 3./ f. The weights are simple to compute
in practice. Conservation of phase-space density along geodesics implies that fy = f(px)
with py the initially sampled (unperturbed) value for particle k at z = 10%. At any later

point, we obtain 0 f;, = f(px) — f(qx). The method similarly extends to other phase-space
statistics, such as the momentum density.

6.3. Equations of motion
We will derive the relativistic equations of motion starting directly from the geodesic
equation and then comment on the differences with [150, 154].

6.3.1. Geodesic derivation

To derive equations of motion in terms of 2* and ¢;, we begin with the geodesic equation
VpP = 0. Its components read

,dP?
dx?

P =TI, P"P. (6.3.1)

To first order, the Christoffel symbols I’iw are

F%)U = alwa
Iy = 8 (al — 3), (6.3.2)
Sk = —20(;90k); + 0ipdji.

Furthermore, using ¢> = anijPin and m? = —gu PP PY, we express the momentum
components in terms of the energy € = \/¢2 + m2a? and the comoving 3-momentum g;:

1 — e,
; . (6.3.3)

PO =a %
=a(1+¢)q".

Pl =a"%(
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The left-hand side of (6.3.1) consists of two terms, the first being

4P ) . dq’
pog =a (1 —)e <—2quZ(1 +é)+oq +(1+ <Z5)qu> ) (6.3.4)

whereas the second is simply

_d Pt _ A ;
w¢w2a4u+@¢@@. (6.3.5)

The right-hand side of (6.3.1) consists of three terms that can be written as

Ii, PP =Thoa (1 —2¢)e + 2T 0~ (1 — v + ¢)¢e + Tipa (14 20)¢’d"  (6.3.6)
= Oppa™ (1 = 2)€® + 65(2aH — 2¢)a™ (1 — ¢ + §)¢e

. 6.3.7
+ (=20 ¢0k); + 0:0051) a~ (1 + 20) ¢’ ¢". ( )

Using (6.3.4),(6.3.5),(6.3.7) in the geodesic equation (6.3.1) and dividing by a~*e(1+¢—),
we finally obtain the acceleration

dg; 2 1 . .
L oy — Loip+ ~ai?0;6 + i (6.3.8)
dr € €
From (6.3.3), we also obtain
dmi—qi(lJrqurw) (6.3.9)
dr € ’ -

Egs. (6.3.8) and (6.3.9) are the desired equations of motion. These have a different
form from those used previously by [150, 154]. This is due to the choice of independent
variables, as will be discussed in the next section.

6.3.2. Lagrangian derivation

The Lagrangian derivation® of [150] uses the same metric (6.2.1), while [154] also include
vector and tensor perturbations. Rather than working directly with the geodesic equation
(6.3.1), they start with the action:

S:/&L:—m/vfm2 (6.3.10)

5This use of ‘Lagrangian’ should not be confused with references to Lagrangian perturbation theory or
Lagrangian methods elsewhere.
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Figure 6.2: Contributions to the particle acceleration over time. The Newtonian acceleration,
—e0;tp, dominates for z < 31 (shaded), but the relativistic terms are relevant at early times.

Expanding the Lagrangian L to first order in the metric perturbations yields

2
L::—maV1—nﬂ[1+“p+1‘¢], (6.3.11)

1 —u?

where v’ = dz?/dr and u? = §;;u'u’. Observe that the second term inside the square
brackets of (6.3.11) diverges in the relativistic limit © — 1, so attention must be paid
to the radius of convergence for fast particles. Proceeding from (6.3.11), the conjugate
momentum variable to #¢ is found by differentiating the Lagrangian with respect to u®:
OL ; 2
mau; <1_2¢_ Y+ u <Z>>‘

P':i.zi
out 1 — 2 1—u?

We note that [150] here use the symbol ¢; for P;, but stress that this conjugate momentum

(6.3.12)

variable is in fact related to the comoving 3-momentum ¢; by a factor of ¢;/P; = (1 + ¢).
The Euler-Lagrange equation gives

dP, 0L P2
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where P? = P,P;0% and we used that ¢ = ma/v/1 —u? to zeroth order. Meanwhile,
inserting u’ oc (1 + f1 + g¢) into (6.3.12) and solving for f and g gives

da’ _ o — P;6' [1 Yot (2 - P;) ¢] . (6.3.14)
€ €

The velocity corrections are small, so let us restrict attention to the acceleration equations

(6.3.8) in terms of ¢ and (6.3.13) in terms of P. Both equations contain the usual Newto-
nian acceleration —ed;1) and a post-Newtonian term —q?/ed;¢ or —P? /e0;¢. However,
the geodesic version (6.3.8) has two additional terms: another quadratic term g;¢’/ €0j
and a time-derivative or Sachs-Wolfe term qzqﬁ These differences can be traced to the
use of different momentum variables: the comoving 3-momentum ¢; in Section 6.3.1 and
the spatial part of the 4-momentum F; in Section 6.3.2. The two quantities differ by a
factor of (1 + ¢), which after insertion into (6.3.13) yields the time-derivative term g;¢.
The quadratic term, meanwhile, arises in the geodesic derivation from the PZP‘: term of
VpP = 0. This quantity vanishes in the Lagrangian derivation, where the position z’
and its conjugate momentum variable P; are independent. However, the term is generally
non-zero when ¢; and 2’ are taken as independent instead. The question remains which
choice of momentum variable is more suitable for neutrinos in N-body simulations. The
advantage of ¢; is that it is a physical quantity, eliminating the dependence on metric
perturbations when evaluating f(q). Since this is a necessary step for neutrino simulations,
particularly when using the § f method, we opt for the parametrisation in terms of q.

It is worth asking whether the relativistic corrections are needed in practice. In Fig. 6.2,
we show the root mean square of the four terms of (6.3.8) between z = 10 and z = 0,
for a 0.1eV neutrino. As expected, the acceleration is dominated by the Newtonian
term (black) at late times. However, the relativistic corrections are non-negligible for
z > 31. Notably, the quadratic terms (red and blue) are always of the same order of
magnitude and one should not be neglected if the other is included. Finally, the time-
derivative term (yellow) is negligible during pure radiation or pure matter domination,
but becomes relevant outside these régimes. While the relativistic terms are clearly
needed for generating initial conditions, they are less relevant for N-body simulations
that are started sufficiently late, as will be discussed in Section 6.5.



115 6.3. Equations of motion

6.3.3. Symplectic integration

Symplectic integrators explicitly conserve phase-space density® and reduce the build-up
of errors, which makes them suitable for N-body problems [200, 262]. For FASTDF,
we follow the simple strategy proposed in Appendix 4.D and use separable equations
of motion that closely approximate the relativistic form, yet admit a straightforward
symplectic discretization, but see also Appendix A of [154] for a scheme involving a
predictor-corrector step. Concretely, we approximate equations (6.3.8-6.3.9) with:

d7q — —coVY — B¢+ —qo [a0 - Vo] + a0, (6.3.15)
T €0 €0

o’ _ (6.3.16)
dr €

where qo = q(z = 10%) and ¢y = /g2 + m?a2. Eq. (6.3.15) is a good approximation
because gy < ma whenever ¢ deviates much from gg: for slow particles at late times,
while (6.3.16) neglects the first-order term |¢ + 1| < 1. A leapfrog discretization of these
equations is

k+3 5 1 -
Uyt = Ak + AT [ — eV — Z%v¢k + o [qo - Vi + q0¢k]a (6.3.17)

q]g+l
Xpr1 = X + A7hHl — —, (6.3.18)
\ /qk% + ma
E+1 % 1 j
Qk+1 = gyl + ATk:% [— €Vihry1 — gv¢k+1 t @ [90 - Vér1] + QO¢I<:+1}>
(6.3.19)

where ¥, = ¥ (xg, ar) and similarly for ¢. As is common in cosmological simulations, we
use a constant step size Aloga and find the corresponding conformal time steps to be

log ap dl
AT]f:/ o8a (6.3.20)
log ay, aH(a)

We observe that (0xp41/0%k)(0Qr+1/0qk) = Ig + (0xk+1/0qk)(0qk+1/0%k), which
ensures sympecticity. To verify the validity of (6.3.15-6.3.16), we also implemented
a non-symplectic leapfrog scheme based directly on (6.3.8-6.3.9) and found relative
differences in the resulting power spectra of order 107>, well below other sources of

%A linear map J: R** — R*@ is symplectic if J'QJ = Q for Q = ( °; §), with I = I, the d x d identity
matrix. A differential map f: U — R%¢, with U C R?¢ open, is symplectic if the Jacobian matrix J of
f is everywhere symplectic. Conservation of phase-space density follows from det(J) = det(2) = 1.
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error.

6.4. Results

We set up 8002 particles in a periodic volume with side length L = 3.2 Gpec, using (6.2.11)
to generate pre-initial conditions at z = 10°. For comparison, particles are also set up
with first-order Lagrangian ICs at z = 317. We consider two degenerate models with
> my, =0.15eV (f, = 0.11) and Y m, = 0.3eV (f, = 0.023). Fixed initial conditions
are used to facilitate comparison with linear theory on large scales [238] and the §f
method is used in each case to suppress shot noise. First, we show the neutrino density
power spectrum evaluated at various redshifts in Fig. 6.3. Power spectra are computed by
dividing the neutrino ensemble in half and taking the cross-spectrum, which eliminates
the constant shot noise plateau on small scales [157]. Note that we compute the power
spectrum of the energy density, as expressed in (6.2.12), as opposed to the mass density.
The results are compared with the linear fluid calculations from crLAss. We remind the
reader that particles were integrated using linear metric perturbations, which should
result in perfect agreement with CLASS. We see that this is indeed the case with the
geodesic approach, while the power is significantly underestimated for the runs with
Lagrangian ICs, recovering only over time. We also show the effect of using the alternative
equations (6.3.13-6.3.14), essentially substituting the canonical momentum P for the
comoving momentum ¢ without accounting for the relative factor (1 + ¢). In this case,
the power spectrum is overestimated. In both cases, the errors are largest at early times,
but persist on large scales down to z = 0. This can be seen more clearly in Fig. 6.4, where
we show the ratios relative to CLASS for Y m, = 0.3eV. Using the geodesic method, we
obtain 1%-agreement independent of redshift, while the other methods result in significant
errors on all scales. At z =0, a (—8%, +5%) error remains at k = 2 x 1073 Mpc ™! when
using Lagrangian ICs or when substituting the canonical momentum P for ¢, respectively.
In a full N-body simulation, this lack or excess of neutrino clustering would cause a
back-reaction, resulting in still larger errors and contaminating the dark matter and
baryon components.

In all cases, the power diminishes relative to cLASS beyond k = 0.1 Mpc~!. This is due
to the limited resolution of the runs. The precision and speed of FASTDF are mainly
determined by two parameters: the step size Aloga and the size M of the mesh on which
the potentials are calculated. A third parameter, the interpolation order used when
computing forces, chosen from 7 = 1 or r = 2, has a small effect on the accuracy. We

"This is the fiducial starting redshift for neutrino ICs in [257]. Usually, z = 31 is too late for accurate
first-order ICs, but this is not true for neutrinos. Moreover, all calculations are linear in this paper.
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Figure 6.3: The linear neutrino density power spectrum at various redshifts computed from 8003
particles in an L = 3.2 Gpc cube for > m, = 0.15¢V and ) m, = 0.3eV. Particles were set
up with Eq. (6.2.11) at z = 10° or with Lagrangian ICs at z = 31 and subsequently evolved
forward using linear metric perturbations. We also show the effect of substituting the canonical
momentum P for the comoving momentum ¢ in the Fermi-Dirac function. The spectra are
compared with the linear fluid prediction from CLASS. There is no line for the Lagrangian ICs at
z = 63.
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Figure 6.4: Ratios of the linear neutrino density power spectrum at various redshifts computed
from 8002 particles in an L = 3.2 Gpc cube for Y m, = 0.3 eV, relative to the linear fluid prediction
from cLASS. Particles were set up with Eq. (6.2.11) at z = 10° (left) or with Lagrangian ICs at
z = 31 (middle) and subsequently evolved forward using linear metric perturbations. We also
show the effect of substituting the canonical momentum P for the comoving momentum ¢ in the
Fermi-Dirac function (right). The shaded area is 1%.
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Figure 6.5: Impact of the step size (left) and the mesh size (right) on the neutrino density power
spectrum at z = 31, computed from 8003 particles in an L = 3.2 Gpc cube for . m, = 0.3 eV.
The spectra are compared with the linear fluid prediction from cLASS. The shaded areas are 1%
(dark) and 10% (light). The vertical dotted lines on the right represent half the Nyquist frequency
kn =mM/L.

show the impact of the first two parameters on the neutrino power spectrum at z = 31
for >~ m, = 0.3eV in Fig. 6.5. For the main results in this paper, we used Aloga = 0.01
together with M = 800, resulting in 1%-agreement with the fluid calculations up to
k = 0.07 Mpc~'. However, errors decrease quickly on small scales in an N-body simulation
once neutrinos become non-relativistic, so obtaining agreement on large scales is most
important. For many applications, the parameters could therefore be relaxed to enable
more rapid realisations of the neutrino distribution function.

To demonstrate that we can also reproduce higher-order moments of the distribution
function, we show the power spectrum of the momentum perturbation, (1 + §)0, in
Fig. 6.6. Despite the extreme precision settings, a small scatter can be seen at large k for
the CLASS results at z > 15, reflecting the difficulty of solving the Boltzmann hierarchy
numerically on small scales. We once again obtain excellent agreement between the
geodesic results and CLASS, but find large errors at z = 63 when using the canonical
momentum, especially for the lighter neutrinos. Large errors are also apparent for the
Lagrangian ICs at z = 15. In contrast to the density power spectrum, however, these
errors decrease quickly on large scales.
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Figure 6.6: The linear neutrino momentum power spectrum at various redshifts computed from
8003 particles in an L = 3.2 Gpc cube for Y m, = 0.15eV and Y m, = 0.3eV. Particles were
evolved in the linearly perturbed spacetime. The spectra are compared with the linear fluid
prediction from CLASS, which shows some scatter on small scales at early times. There is no line
for the Lagrangian ICs at z = 63.

6.5. Discussion

The accurate treatment of massive neutrinos in cosmological N-body simulations, consis-
tent with the demand of surveys like DESI and Euclid for percent-level accurate modelling
of large-scale structure observables, also calls for accurate neutrino initial conditions
(ICs). In this paper, we have shown that by integrating neutrino particles from high
redshift, it is possible to obtain 1%-agreement with linear fluid calculations, even at
early times. To achieve this level of agreement, suitable pre-initial conditions must be
generated at sufficiently early times, the equations of motion must remain valid in the
relativistic limit, and shot noise must be significantly suppressed. We addressed these
requirements by providing a closed form expression for the super-horizon perturbations
of the Fermi-Dirac distribution f(x,q,7), by expressing the geodesic equation in terms
of q, and by using the 0 f method to limit shot noise. We also used fixed ICs [238] to
limit cosmic variance, which allowed a detailed comparison between linear particle and

fluid methods.

When these conditions are not satisfied, significant errors in the neutrino component
occur on large scales. For neutrino particles used in N-body simulations, this error
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causes a back-reaction in the dark matter and baryon components. Simulations that use
Lagrangian or unperturbed ICs together with an ad-hoc momentum sampled from the
homogeneous Fermi-Dirac distribution underestimate the clustering of neutrinos, leading
to errors of a few percent on large scales at z = 0. These errors get progressively worse at
higher redshifts. Neutrino clustering recovers over time, beginning on small scales where
errors are less apparent. Some simulations use hybrid methods (e.g. [154, 173, 174]),
transitioning from a linear or grid-based method at early times to a particle method at
late times. This would mitigate the back-reaction arising from these errors. Nevertheless,
we have demonstrated that a transition of this sort is not necessary if suitable ICs are
used and shot noise is addressed.

These results have further implications for neutrino particles in N-body simulations.
Aside from the ICs, some codes also use relativistic equations of motion for the neutrino
particles in the simulation itself. For ordinary Newtonian simulations, [154] proposed
using special relativistic equations of motion with Newtonian gravity. These can be
obtained from (6.3.13-6.3.14) by assuming that |¢p| < 1 and ¢ = 1):

dzt Pl

R ——— 6.5.1
dr P2+ m2a?’ ( )
dP,; 2P? + m%a?
—r _ﬂaﬂp' (6.5.2)
ir ~ VP ima
Based on (6.3.8-6.3.9) and Fig. 6.2, we instead propose the simpler form
d % %
I — (6.5.3)

dr /q2 n m2a2’
dg;
T m2a2 0. (6.5.4)

dr

The velocities have the same form: including the Lorentz factor is crucial for sub-light
neutrino speeds and physical free-streaming lengths. However, the accelerations are
different due to the choice of momentum variable. By expressing the equations in
terms of the physical quantity g, the potential ¢ need not be evaluated when computing
the 0 f weights. Even so, the corrections to the acceleration matter less in the time
frame where Newtonian simulations are used to best effect (z < 10%). Simply using
the Newtonian acceleration, ¢; = —m0;, together with the special relativistic velocity
equation therefore seems to be a reasonable alternative with the benefit of having a
straightforward symplectic discretization. Let us remark finally on the choice of gauge.
While Newtonian gauge is convenient for the geodesic integration, recent years have seen
the introduction of gauges more naturally suited for cosmological N-body simulations.
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A popular choice is N-body gauge [185, 188], in which the spatial metric perturbation
is constant and traceless, such that the relativistic dark matter density coincides with
that of the Newtonian simulation. Using CLASS, it is possible to compute the shifts in
density, Ad(k), and energy flux, Af(k), from Newtonian to N-body gauge. Provided
that the perturbations are small, the gauge transformation can then be applied to the
neutrino ensemble in the same way as the pre-initial conditions, via (6.2.11), since the
higher-order moments ¥, are gauge-invariant. This feature is available in FASTDF.

The main application of the described method is to set up accurate and consistent
neutrino particle initial conditions for simulations. Another interesting application would
be to integrate particles back along the line of sight from Earth to analyse the angular
dependence of the local neutrino flux. Sampling the full phase-space distribution with
particles may be advantageous if, for instance, non-trivial selections are of interest (e.g.
neutrinos with momenta in a given interval that passed through halos in a particular
mass range). If the metric perturbations are treated in linear theory, as in this paper, the
method could provide a cross-check of linear calculations [263, 264], while transitioning
from an N-body simulation at late times would enable a fully nonlinear calculation.
Another interesting extension would be to consider other massive thermal relics [124,
265).
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Local neutrino background

This chapter presents a Bayesian forecast of the imprint of the observed
large-scale structure on the local neutrino background. It discusses
the expected overdensity and bulk velocity of relic neutrinos in the
Milky Way and deals with the distribution of angular anisotropies in
the neutrino background.

Where shadows lie: reconstruction of anisotropies in the neutrino sky

ABSTRACT: The Cosmic Neutrino Background (CNB) encodes a wealth of
information, but has not yet been observed directly. To determine the prospects
of detection and to study its information content, we reconstruct the phase-space
distribution of local relic neutrinos from the three-dimensional distribution of
matter within 200h~! Mpc of the Milky Way. Our analysis relies on constrained
realization simulations and forward modelling of the 2M++ galaxy catalogue.
We find that the angular distribution of neutrinos is anti-correlated with the
projected matter density, due to the capture and deflection of neutrinos by
massive structures along the line of sight. Of relevance to tritium capture
experiments, we find that the gravitational clustering effect of the large-scale
structure on the local number density of neutrinos is more important than
that of the Milky Way for neutrino masses less than 0.1eV. Nevertheless, we
predict that the density of relic neutrinos is close to the cosmic average, with a
suppression or enhancement over the mean of (—0.3%, +7%, +27%) for masses
of (0.01, 0.05, 0.1) eV. This implies no more than a marginal increase in the
event rate for tritium capture experiments like PTOLEMY. We also predict
that the CNB and CMB rest frames coincide for 0.01 eV neutrinos, but that
neutrino velocities are significantly perturbed for masses larger than 0.05eV.
Regardless of mass, we find that the angle between the neutrino dipole and
the ecliptic plane is small, implying a near-maximal annual modulation in the

bulk velocity.
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7.1. Introduction

Precise measurements of a near-perfect black-body energy spectrum and of a power-law
spectrum of temperature fluctuations in the Cosmic Microwave Background (CMB) reveal
detailed information about the state of the Universe at the time of decoupling around
t = 10 yrs [55, 266, 267]. There is strong but indirect evidence for another Big Bang
fossil in the form of N.g = 2.99f8:§§ species of fermionic particles that were relativistic
when the radiation decoupled [112]. This is consistent with the prediction of Neg = 3.045
for the Cosmic Neutrino Background (CNB), consisting of three species that decoupled
far earlier, at only ¢t = 1s [122, 123, 268]. That these particles are indeed neutrinos could
be confirmed if they were found to be non-relativistic today, given the standard prediction
for the present-day neutrino temperature, 7, = 1.68 x 10~% eV, and the minimum mass,
m, 2, 0.05eV, required by neutrino oscillations for the most massive species [11, 12, 29].
Although detecting the indirect cosmological effects of massive neutrinos is challenging,
this target could soon be in reach, as suggested by improved constraints on the cosmic
neutrino mass fraction [108, 109, 113, 248].

Direct detection of relic neutrinos will be more challenging still and is likely beyond
our immediate capabilities. The Karlsruhe Tritium Neutrino Experiment (KATRIN)
recently placed an upper bound of 9.7 x 10'° on the local neutrino overdensity relative
to the cosmic mean [269], far greater than the density predicted in this paper and
elsewhere. An experiment specifically designed for CNB detection has been proposed
by the PTOLEMY collaboration [270-272]. Like KATRIN, the PTOLEMY proposal
aims to capture neutrinos through the inverse S-decay of tritium [268, 273], but with
targets bound to a graphene substrate to enable a larger target mass, which has its own
challenges [272, 274]. Other detection proposals rely on the net momentum transfer
from the neutrino wind to macroscopic test masses [275-278|, absorption features in the
cosmic ray spectrum [279, 280], blocking of neutrino emission from de-exciting atoms
due to the Pauli exclusion principle [281] or the capture of neutrinos on high-energy ion
beams [282]. We refer to [283] for a detailed review of the subject.

Like the CMB, the neutrino background carries both primordial or primary perturbations
and secondary gravitational perturbations imprinted by the large-scale structure at late
times [263, 264, 284-286]. Since neutrinos are massive particles, secondary perturbations
are more significant and depend on the neutrino mass and momentum, giving the
background additional structure compared to the CMB. In some cases, gravitational
effects may lead to slight modifications of the expected signal and in others they open
up entirely new ways of testing neutrino physics. For tritium capture experiments like
PTOLEMY, the expected event rate is proportional to the local number density of



127 7.1. Introduction

neutrinos [271], given by the monopole moment of the phase-space distribution. If the
tritium targets are polarized, PTOLEMY could measure the angular power spectrum
by exploiting the dependence of the event rate on the angle between the polarization
and neutrino momentum axes [287]. Some proposals depend on the velocity of neutrinos
in the lab frame [275-278, 283], while the orientation of the dipole is important for
methods that rely on periodic or angular modulation of the capture rate [287-289]. Pauli
blocking could in principle probe the momentum distribution [281, 283]. Additionally,
gravitational perturbations may change the flavour [290] and helicity [291-294] makeup
of the neutrino background, affecting the ability of experiments like PTOLEMY to
distinguish between Dirac and Majorana neutrinos.

To determine the prospects of current and future CNB detection proposals, we therefore
need to model the phase-space distribution of relic neutrinos, including its higher-order
directional perturbations. Previous studies have looked at the gravitational enhancement
of the monopole moment due to the Milky Way [295-299] and nearby Andromeda and
Virgo [298]. A very recent study also considered the gravitational influence of dark
matter structures in a random (25 Mpc)? region on the neutrino phase-space distribution
[300]. Here, we expand on these works in several ways. First and foremost, we model
the full six-dimensional phase-space distribution of relic neutrinos, taking into account
perturbations imprinted on the neutrinos before they entered our galactic neighbourhood.
Second, we use self-consistent cosmological simulations to accurately model the time
evolution of the large-scale structure and the neutrino background. Third, we use an
accurate nonlinear treatment of massive neutrinos [237], which includes the gravitational
effects of the neutrinos themselves. Fourth, we model the large-scale distribution of
matter within 200h~! Mpc! over the full sky, using observations from the 2M++ galaxy
redshift catalogue [301]. Fifth, we use a more recent estimate of the Milky Way mass
from [302], which is significantly lower than the value used in previous studies, depressing
the effect of the Milky Way.

Using our constrained phase-space simulations, we compute the expected density, velocity,
and direction of relic neutrinos, as well as expected event rates for PTOLEMY. We
also study the distribution of angular anisotropies, finding that local neutrino density
perturbations are anti-correlated with the projected matter distribution, due to the
capture and deflection of neutrinos by massive objects along the line of sight. The paper
is organized as follows. We describe our simulation and calibration methods in Section
7.2. Our main results are presented in Section 7.3. We finally conclude in Section 7.4.

'n this expression, h is defined in terms of Hubble’s constant as h = Ho /(100 km/s/Mpc).
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7.2. Methods

We now describe our simulation and analysis methods, starting with the details of the
constrained simulations in Section 7.2.1, our calibration procedure for applying 2M++
constraints to different neutrino cosmologies in Section 7.2.2, and our treatment of
nonlinear neutrino perturbations in Section 7.2.3.

7.2.1. Constrained simulations

Our analysis is based on constrained ACDM simulations of the local Universe. Whereas
most cosmological simulations start from random initial conditions and only reproduce
observations in a statistical sense, constrained simulations employ specialized initial
conditions that give rise to an in silico facsimile of the observed large-scale structure.
Within the precision of the constraints, objects appear in the right relative positions and
with the right dimensions, enabling a one-to-one comparison with observations. The past
few years have seen constrained simulations being used for a wide range of applications and
employing a variety of methods to set up the initial conditions [303-308]. In this paper,
we use a Bayesian forward modelling approach known as ‘Bayesian Origin Reconstruction
from Galaxies’ (BORG) [309-311]. This approach uses a Hamiltonian Monte Carlo
algorithm to draw samples from the posterior distribution of initial conditions, given
a likelihood function that connects initial conditions with observations and a Gaussian
prior. The forward model consists of a Comoving Lagrangian Acceleration (COLA) code
[90] that approximates the process of structure formation in the ACDM paradigm and
a nonlinear bias model that connects the final dark matter density field to observed
galaxy positions. The Hamiltonian Monte Carlo algorithm is used to efficiently sample a
high-dimensional parameter space, consisting of a grid of 2563 initial phases, multiple
bias parameters, and the observer velocity in the CMB frame.

The constraints used in this paper are based on galaxies from the 2M++ catalogue [301].
This is a catalogue of galaxy positions and redshifts, compiled from the 2MASS, 6dF, and
SDSS redshift surveys, that covers the full sky out to a distance of 200h~! Mpc. Previous
simulations with initial conditions based on forward modelling of 2M++ galaxies include
the CSiBORG suite [312-315] and the SIBELIUS-DARK simulation [307]. We refer the reader
to [310, 311] for further details on the BORG analysis of the 2M++ catalogue. This analysis
provides not only an accurate reconstruction of the three-dimensional density field in
the local Universe, but also reproduces the masses of nearby clusters, with the notable
exception of the Perseus-Pisces cluster for which the mass is biased low [311]. This is
most likely due to a systematic error in the analysis, but could perhaps also indicate
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an observational issue [311]. Interestingly, the SIBELIUS-DARK simulation [307], which is
based on a similar but older BORG reconstruction, found its most massive dark matter
halo at the location of Perseus. However, SIBELIUS-DARK was less accurate in other
respects, such as the motion of the Local Group, which is important for our purposes here.
Our work is based on nine draws from an earlier version of the chain described in [311],
which used ten COLA steps instead of twenty, but was identical in every other respect.
We therefore expect the results to be broadly consistent. After discarding an initial
burn-in portion, we selected every 432nd draw from the chain to minimize the serial
correlation between consecutive draws. This sample of initial conditions allows us to
estimate both the expected signal and the uncertainty in our predictions. To demonstrate
the effectiveness of the constraints, we show slices of the dark matter and neutrino
densities in a portion of the sky in Fig. 7.1, overlaid with 2M++ galaxies (white dots).
All prominent structures present in the catalogue are reproduced by the simulations,
revealing the underlying dark matter filaments and surrounding neutrino clouds.

Our simulations assume periodic boundary conditions in a (1 Gpc)® cube, with the
observer located at the centre. The 2M++ constraints mostly cover a central sphere of
radius 200 Mpc and gradually taper off beyond that. This means that sufficiently far away
from the centre, the initial conditions revert to purely random fluctuations. Given that
the phases are provided in the form of 256 grids, the constraints only cover 4 Mpc scales
and larger. Fluctuations on smaller scales are unconstrained and purely random. Dark
matter initial conditions are generated with 3LPT at z = 31, using a modified version
of MONOFONIC that adds corrections from massive neutrinos [257, 260, 261], while the
neutrinos themselves are generated with FASTDF, using linear geodesic integration [186].
The transfer functions are computed with CLASS [124, 128].

The simulations were carried out with a version of GADGET-4 [77] that was modified to
be bitwise reversible (see Appendix 7.A) and to add support for massive neutrinos and
radiation. We use a 3'd-order Tree-PM algorithm for the gravity calculation. Neutrinos
are followed with the § f method to minimize shot noise, boosting the effective particle
number without neglecting their nonlinear evolution [237]. We use Ng, = 3843 dark
matter and baryon particles? and N, = 3843 massive neutrino particles. In order to
increase the sampling density of neutrinos locally, upon completion of a simulation, we
isotropically inject an additional N = 2243 ~ 107 ‘spectator’ neutrinos at the observer
location and run the simulations backwards, allowing us to trace the neutrinos back in
time through the evolving large-scale structure (see Section 7.2.3). To ensure that the

2We will treat cold dark matter and baryons as a single cold fluid and refer to it as dark matter on
occasion.
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accelerations are identical in the forwards and backwards directions, spectator neutrinos
contribute no forces.

A final consideration is that Milky Way-sized perturbations have a characteristic length
that is much smaller than 4 Mpc. Hence, our constraints are not sufficient to guarantee
the formation of a Milky Way at the centre. Since we expect the Milky Way (MW) to
have a considerable effect on the neutrino background, we run two backwards versions of
each simulation. Initially, neutrinos are only traced back through the large-scale structure
without accounting for MW effects. In the second version, we additionally apply forces
from the MW dark matter halo. Following [302], we model the MW halo as an NFW
profile [316] with a mass of Mgy = 0.82 x 1012M, and a concentration of capp = 13.31.3
For computational simplicity, we use the uncontracted version of the model, since both
versions fit the data nearly equally well. We place the centre of the NFW potential at a
distance of 8 kpc from the centre of the simulation in the direction of Sag-A*. We also
include the motion of the galactic centre in the CMB rest frame of the simulation, by
letting the centre of the NF'W potential move at a constant speed of 567 km/s in the
direction of galactic coordinates (I,b) = (267°,29°) [55, 317, 318]. In Section 7.3.1, we
additionally correct for the motion of the Sun relative to the CMB, v = 369.8km/s
towards (I,b) = (264°,48.3°) [55], which is otherwise unresolved by the simulations.
Crucially, we note that we use a more recent and considerably smaller estimate of the
MW mass than that used in previous related works [296, 298]. We therefore expect to
find a smaller effect from the MW. Since we are mainly interested in the imprint of the
large-scale structure, we do not include the various gaseous and stellar components of
the MW, which are altogether less important than the dark matter halo itself.

7.2.2. Model selection

To derive constrained initial conditions with BORG, we have to assume a particular
cosmological model. The constraints used in this paper were derived assuming a flat
ACDM model with parameters (Qcdm, b, b, As, ns, y_m,) = (0.2621, 0.04897, 0.6766,
2.105 x 1079, 0.9665, 0). Despite the fact that this model does not include massive
neutrinos, we wish to run constrained simulations for different neutrino masses, without
running an expensive MCMC analysis for each case. Doing this requires modifying the
cosmological model slightly without altering the clustering on small scales, since otherwise
the same phase information would give rise to structures that differ somewhat from the
observations. We therefore take the following approach. When increasing > m,, we

3Here, Maqp is the mass contained in a spherical region of radius R200 with a density equal to 200 times
the critical density and c200 = R200/Rs, with Rs the scale radius of the NFW profile.
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Figure 7.1: Slices of the expected neutrino (top) and dark matter (bottom) densities with right
ascension 100° < a < 260° within r» < 250 Mpc, assuming Y m, = 0.06 eV. The white dots are
galaxies from the 2M++ catalogue. From Earth, one would see a deficit in neutrino flux along lines
of sight that intersect massive structures, due to the trapping of neutrinos in the surrounding
neutrino clouds.

decrease Qcqm such that Q,, = Qcqm + Qp + Q. is fixed. In addition, we modify the
primordial scalar amplitude As, such that the nonlinear power spectrum at z = 0 is fixed
at the nonlinear scale k,; = 1 Mpc_l. Note that P, the power spectrum of cold dark
matter and baryons, is the relevant power spectrum, given that halos are primarily biased
with respect to the cold matter, as opposed to the total matter density [244, 319, 320].
To achieve this in practice, we perform a small number of calibration runs and iteratively
select values of A; that satisfy this condition.
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Table 7.1: Cosmological parameters for our six neutrino models, which have been calibrated such
that Q, + Qecam and Pep, (kn1) with ky = 1 Mpc ! are fixed.

>m, Massm, N, Q, Qedm A,

0.0leV 0.0leV 2.353 x 10~%  0.26189 2.107 x 107?
0.06eV  0.06eV 1.407 x 1073 0.26072 2.156 x 10~?
0.15eV  0.05eV 3.518 x 1072 0.25861 2.243 x 107
0.30eV  0.10eV 7.035 x 1072 0.25509 2.429 x 10~
0.45eV  0.15eV 1.055 x 1072 0.25157 2.641 x 107*
0.60eV  0.20eV 1.407 x 1072 0.24805 2.878 x 107*

W W W W = =

As noted before, the 2M++ data mostly constrain scales larger than 4 Mpc within 200 Mpc
of the observer. As shown in Fig. 7.2, this leaves enough flexibility on large scales to
accommodate neutrino masses up to Y. m, ~ 0.6eV.* To see this, note that the left-hand
panel shows total matter power spectra, Py, (k), for nine realizations assuming ACDM
without massive neutrinos. Although the power spectrum is well-constrained on small
scales, there is considerable variance on large scales (k < 0.03 Mpc™!). The right-hand
panel shows the power spectrum of dark matter and baryons, P, (k), for the calibrated
models with different neutrino masses, relative to the massless case. For the largest mass
considered, > m, = 0.6eV, the ratio is still within 1o of the average. We also checked
that the cross-correlation coefficients of the final density fields are within 1% for k& < ky
and Y m, < 0.3e¢V and within a few percent for > m, < 0.6eV, indicating that the
phase information is the same on large scales. Finally, we performed a visual inspection
to confirm that we recover the same large-scale structure for all neutrino masses. Hence,
the outcome of this procedure is a plausible cosmological model with massive neutrinos
that reproduces the 2M++ observations.

Although the resulting power spectra are compatible with the 2M++ constraints at the
lo-level, one may wonder whether the 20% — 30% differences seen for »  m, = 0.6eV
on the largest scales could still affect the results. We expect the impact of this offset
to be small, because the distance travelled by neutrinos is inversely proportional to the
mass, such that heavier neutrinos are less sensitive to large-scale density perturbations.
Therefore, matching only the small-scale power spectrum for Y m, = 0.6eV is likely
justified.

Using the above procedure, we calibrate six models with different neutrino masses: four

“We note that this breaks the agreement with CMB observations, which primarily constrain large scales.
This is simply another way of stating that the combination of CMB and LSS data can rule out large
neutrino masses in vACDM, although we make no attempt to do this here.
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Figure 7.2: (Left) The red lines are nine nonlinear matter matter power spectra, Py, (k), drawn
from the posterior distribution of the 2M++ reconstruction, assuming ACDM with massless
neutrinos at z = 0. The shaded areas represent the 1o and 20 deviations from the mean. The
spectra are well-constrained for 0.03 Mpc ™! <k<1 Mpc ™!, but the variance is considerable on
large scales. (Right) Ratios of the nonlinear cold matter power spectrum, Py (k), for different
neutrino masses relative to the massless ACDM case, calibrated to match the constraints in the
small-scale limit. The shaded areas represent the 1o and 20 constraints.

models with three degenerate neutrino species, > m,, € {0.15,0.3,0.45,0.6} eV®, and two
models with one species, > m, € {0.01,0.06} eV. The relevant model parameters are
given in Table 7.1. Although not strictly allowed by oscillation data, the first four models
assume a degenerate neutrino mass spectrum, neglecting the mass-squared differences
|Am2,| = 2.5 x 1072 eV? and Am3; = 7.4 x 107°eV? [29]. Of course, the last two models
are also not allowed. The penultimate case is included to examine the behaviour of very
light neutrinos. The last model is included as it approximates the cosmological effects of
the minimal neutrino mass case under the normal mass ordering. In each case, the intent
is only to recover the correct cosmological evolution for a given neutrino mass, m,, and
for this purpose, the mass splittings have a negligible effect [106].

7.2.3. Neutrino treatment

Let us now discuss our treatment of neutrino perturbations. The evolution of the phase-
space distribution, f(x,q,7), is governed by the collisionless Boltzmann equation (2.2.7).

®Hence, the individual neutrinos have masses m, € {0.05,0.1,0.15,0.2} eV.
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We solve this equation by generating particles from a sampling distribution g(x,q) and
tracing their evolution through the constrained volume using the relativistic equations of
motion (6.5.3) and (6.5.4) from Chapter 6.

The sampling distribution g need not be the same as the physical distribution f and
can be chosen arbitrarily, subject to being normalized and the set {g = 0 A f # 0}
having measure zero. One of the main advantages of a particle-based approach is that
we can follow particles into the nonlinear régime, which is particularly important for our
purposes here, since we wish to describe neutrinos perturbed by the Milky Way halo.
The main downside is the introduction of sampling noise, which we overcome with the
0 f method of Chapter 4. In this method, the phase-space distribution is decomposed
as f = f + &f into an analytical background part f and a perturbation 6 f sampled by
the particles. A noise-suppressed estimator of some phase-space quantity A(x,7) is then
given by (4.2.7). We can similarly define angular statistics. For example, the density of
neutrinos at x with momenta oriented along the unit vector n is

7’L,,(X, n, T) = /dgq [f(xa q, 7-) + 5f(xa q, T)] 5(2) (q/q - ﬁ) (721)
~ (1) 6 f (X Gk, T) ) s ® (x — x
==+ ; ) 6 (aw far — 7)o ( k) (7.2.2)

where 7,,(7) is the mean number density and where 6 (& — ) = 6(cos 6 — cos 8')5(¢ — ¢').
Throughout, we use a standard Fermi-Dirac distribution, f(q) = (1 + exp(q/kyT,)) "1,
for the background model and we set ¢ = f when generating the initial conditions.

This approach is sufficient for describing the neutrino distribution on large scales, as
illustrated in Fig. 7.1 for 0.06 eV neutrinos. However, given the (1 Gpc)? ambient volume
of our simulations, there is a more efficient way to estimate the properties of neutrinos
incident on Earth. For this, we inject ‘spectator’ neutrinos at the location of Earth and
run our simulations backwards. For these neutrinos, we adopt an isotropic Fermi-Dirac
sampling distribution g. We then apply our § f logic in reverse: given the known sampling
density g and the background density f(q) with the momentum ¢ from the final (z = 31)
snapshot of the backwards simulation, we obtain the statistical weight w = (f — g)/g.
We again estimate phase-space statistics using Eq. (4.2.7). Note that in this case, the
assumed sampling distribution g is not equal to the physical distribution f. In particular,
we do not expect the distribution of local relic neutrinos to be exactly isotropic. However,
the assumption of an isotropic and homogeneous Fermi-Dirac distribution at z = 31 still
allows us to use Eq. (4.2.7) to obtain physical phase-space estimates. Finally, we note
that running N-body simulations backwards is non-trivial and we refer the reader to
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Figure 7.3: (Left) The predicted enhancement of the local neutrino density, d,, as a result of the
observed large-scale structure in the local Universe (LSS, black) and the combined effect of the
large-scale structure and the Milky Way (LSS + MW, red). The mean and standard deviation
are estimated from nine draws from the posterior distribution of the 2M++ reconstruction. (Right)
The effect of the large-scale structure and Milky Way on the bulk neutrino velocity, v,, in the
CMB rest frame. The horizontal dotted line indicates the bulk velocity of CDM and baryons
within 10 Mpc of the observer.

Appendix 7.A for details on how this is accomplished.

7.3. Results

Having described our simulation methods, we are now in a position to discuss the results.
In Section 7.3.1, we present the expected number density, bulk velocity, and deflection
angles of relic neutrinos in the Milky Way. We also compute expected event rates for
PTOLEMY. In Section 7.3.2, we turn to the angular distribution of neutrino anisotropies.
In Section 7.3.3, we adopt a cosmographical perspective and look at maps of the large-scale
distribution of neutrinos in the local Universe.

7.3.1. Local abundance and bulk motion

A crucial input for relic neutrino detection efforts is the expected gravitational enhance-
ment of the local neutrino density. Using our constrained simulations, we are able for
the first time to compute the total effect of the observed large-scale structure. The result
is shown in the left-hand panel of Fig. 7.3. The black line (labelled LSS) shows the effect



7. Local neutrino background 136

from the large-scale structure, excluding the Milky Way, on the neutrino overdensity,
0, =n,/n, —1, as a function of neutrino mass m,,. The error bars indicate the dispersion
among the nine constrained realizations. We see that the enhancement is negligible
for m,, < 0.05eV. In fact, for the smallest mass of 0.01eV, we find a small deficit of
0, = —0.0038 £ 0.0006. From there, the density contrast increases approximately linearly
with mass up to d, = 0.25 + 0.08 for 0.2eV.

The red line shows the combined effect of the large-scale structure and the Milky Way
dark matter halo (LSS + MW). The importance of the MW increases with mass, relative
to the LSS. For m, = 0.1eV, they are approximately equally important. For m, = 0.2eV,
the MW is responsible for three-quarters of the effect. This is a result of the decrease
in free-streaming length with mass: at average speed, an unperturbed 0.01eV neutrino
has travelled 3.1 Gpc since z = 31, while the number is only 200 Mpc for 0.2eV. As a
result, lighter neutrinos are sensitive to more distant structures. We will confirm this
explicitly in Section 7.3.2. Taking the difference between the results with and without
the MW, we find that the galactic effect is well described by MW = 27.6(m,, /1eV)2%.
The near-quadratic scaling agrees with [297], who found 6V = 76.5(m,,/1eV)%2! but
our amplitude is three times smaller. Similarly, we find significantly smaller overdensities
compared to [296, 298, 299]. This may be partially due to the absence of gaseous and
stellar Milky Way components in our simulations. However, the primary reason is
most likely the more recent but lower estimate of the dark matter mass used in this
work (Magp = 0.82 x 10'2M, here compared to Magy = 3.34 x 10'2M, in [296] and
Mago = 1.79 x 1012M, in [298]).° To confirm this, we verified for one simulation that
doubling the MW mass approximately restores agreement with [298]. On the other hand,
both amplitude and scaling are in good agreement with the recent study [300], who
also point to a difference in halo properties, rather than methodology, to explain the
disagreement with [298].

Some detection proposals depend on the neutrino velocity in the lab frame [275-278, 283,
287]. From our simulations, we estimate the bulk neutrino velocity v,. Given that the
simulation is carried out in the rest frame of the CMB, a value of v, = 0 indicates that
the neutrino dipole aligns with that of the CMB. We show the expected magnitude of
the velocity perturbation in the right-hand panel of Fig. 7.3. As for J,, the gravitational
effect of the large-scale structure and Milky Way is negligible for m, = 0.01eV. The
velocity perturbation increases to 211 km/s at m, = 0.05eV and trends towards 415 km/s
for m, = 0.2eV. These neutrinos are approximately at rest with respect to the bulk flow

SIn this comparison, we converted their virial masses to masses within a spherical region containing 200
times the critical density. We also note that [296] used a generalized NFW profile with an additional
parameter, precluding an exact one-to-one comparison.
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Table 7.2: Predictions for the neutrino dipole induced by the large-scale structure, compared
with the measured CMB dipole from Planck [55]. The neutrino velocity, v,,, is the mean velocity
in the CMB rest frame. The difference, vg — v,, is the Sun’s motion in the neutrino frame. The
angles (I,b) correspond to the direction of the Sun’s motion in the neutrino frame in galactic
coordinates. The error is the standard deviation among nine realizations from the chain. The
final row shows the velocity of CDM and baryons within 10 Mpc of the observer.

Mass m,, vy, Ve — Uy l b
[km/s ] [km/s ] [deg] [deg]
CMB 0 369.8 264.0 48.3

0.01eV 485 £1.5 321.3£15 263.6£0.5 48.2+£0.1
0.05eV 211.0+4.3 193.8+55 2326+24 379+£1.7
0.06 eV 235.3+£5.0 187.3x£7.6 225.7+2.5 32.7+1.2
0.10eV 3106 £9.0 193 +£15 208.4+2.6 14.1 £ 3.7
0.15eV 371 £14 229 +£22 199.6£2.5 1.6 £5.6
0.20eV 415 £20 265 £27 195.0£2.7 —45 £6.7
Matter 484 +£83 406 +£67 206 £11 —-10 =£18

of matter in the inner 10 Mpc of the simulation (see Table 7.2). When we include the
effect of the Milky Way, the velocity appears to converge for the largest neutrino masses.
Combined with the increased density perturbation, this indicates that the simulated MW
and the surrounding structure are capable of trapping 0.2eV neutrinos in significant
numbers.

In addition to the magnitude of the velocity perturbation, we can also predict its
orientation. Table 7.2 shows the predicted direction of the neutrino dipole, for the runs
without MW, in galactic coordinates and compares it with the measured values for the
CMB dipole from Planck [55] and the direction of the simulated matter flow within
10 Mpc of the observer. For 0.01 eV, the predicted 1o range of the neutrino dipole contains
the measured CMB dipole. As m, increases to 0.2eV, the values appear to converge
towards the direction of the bulk flow of dark matter.” The results are broadly similar
for the runs with MW. In the case of 0.01eV, we find (I,b) = (258.0° £0.5°,47.7° £ 0.1°),
which is still very close to the CMB dipole. For 0.2eV, the direction changes somewhat
more to (I,b) = (203.2° £ 2.9°,7.2° £ 6.0°). It is interesting to note that the ecliptic
north pole is at I = 97°, b = 30°. This means that the neutrino dipole is close to
the plane of Earth’s orbit around the Sun, making an angle of ¢ ~ 10°. The Earth’s
orbital velocity is vg ~ 30km/s, producing a (2vg/v,) cos ¢ ~ 20% perturbation for a

1

typical neutrino velocity of v, = 300kms™" . Hence, for experiments that depend on

"Note that the uncertainties are larger for the bulk dark matter velocity, because it is computed from
the forward simulations, which have a much lower sampling density near the observer.
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Table 7.3: Predictions for the average deflection angle, cos = (v, - vi") /(v, ™), including the
effects of the of the large-scale structure (LSS) and the Milky Way (LSS + MW). Using (4.2.7),
we compute this from the backtraced particles with (cosf) = (1 + >, w; cos8;)/(1 + >, w;),

where w; is the phase-space weight of particle ¢ and cos; is its deflection angle.

(LSS) (LSS + MW)
Mass m,, (cos ) (cos b))
0.01eV 0.999995 £ 0.000002  0.999987 £ 0.000003
0.05eV 0.99806 =+ 0.00072  0.99482 =+ 0.00084
0.06eV 0.9965 £0.0013 0.9905 +£0.0015
0.10eV 0.9847 £ 0.0058 0.9542 £ 0.0058
0.15eV 0.958 +0.016 0.869 +0.013
0.20eV 0.923  £0.029 0.754  £0.018

the neutrino velocity, an annual modulation may be detectable [288]. Finally, we note
that the SIBELIUS-DARK simulation, which used similar techniques to set up the initial
conditions, did not accurately reproduce the observed direction of the local matter flow
[307]. We therefore caution that the theoretical uncertainty in the direction may be
greater than the dispersion among the nine realizations given in Table 7.2.

A related quantity to the velocity perturbation is the deflection angle between the
initial and final velocities, cos @ = (v, - vi™) /(v,v™). For non-relativistic neutrinos, the
gravitational effect on the spin is negligible, such that a deflection of the momentum
vector by an angle 6 implies a change in the helicity from 41 to 4 cos @, with a probability
P = 1/2 — cos0/2 of observing a reversed spin [291]. It has recently been argued
that the gravitational effect of the Virgo Supercluster might result in large deflection
angles, significantly altering the helicity makeup of the neutrino background [294]. These
authors compute deflection angles for neutrinos in halos of a similar mass to Virgo,
M = 1.48 x 10!° M, finding an average of (cos ) = 0.54 — 0.60 for m, = 0.05eV. Using
our constrained simulations, which include Virgo, we can estimate directly the effect that
the large-scale structure has on neutrinos that arrive on Earth. We give the average for
different neutrino masses and for the cases with and without Milky Way in Table. 7.3. For
0.05eV, we find (cos#) = 0.99482 + 0.00084, when including the Milky Way. Given that
the deflection is even smaller for lighter neutrinos, we expect the effect of gravitational
deflection to be negligible for the minimal neutrino mass case, > m, = 0.06eV.

Gravitational clustering also has the potential to alter the flavour composition of the local
neutrino background [290]. The mass eigenstates v; considered so far are superpositions
of flavour eigenstates v, with a = e, u, 7, for electron, muon, and tau neutrinos. The two
bases are related by the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U,
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Table 7.4: Predicted number of events per year for PTOLEMY, including the effects from the
large-scale structure (LSS) and the Milky Way (LSS + MW), for Dirac and Majorana neutrinos.
We give the results for the individual mass states, with (7.3.1) giving the total rate. The
uncertainty corresponds to the 1o dispersion among nine realizations from the chain.

(LSS) (LSS + MW)
Mass my,  Thong [vr7'] Dlows [yo7'] Thons [yr7'] Tt [vr7']
0.01eV 4.042 4+ 0.002 8.075 £+ 0.005 4.045 4+ 0.002 8.080 £ 0.005
0.05eV 4.20 +0.05 8.39 £0.09 4.33 +0.05 8.65 £0.09
0.06eV 4.27 £0.06 853 £0.12 4.46 =+ 0.06 892 +£0.13
0.10eV 4.54 £+0.13 9.08 £0.26 5.14 £0.14 10.27 +£0.29
0.15eV 4.85 +0.22 9.70 £0.44 6.25 +0.27 12.49 4+ 0.54
0.20eV 5.09 +0.32 10.17 £ 0.63 7.60 +0.44 15.19 £ 0.88

[9, 10]. The flavour composition could be altered, since the degree of clustering depends
on mass. For instance, assuming the mass ordering is normal, the contribution of v, to
the heaviest mass state v is only |Ugs|? = 2.3%. Therefore, if v3 is much more strongly
clustered than 1 and vo, most relic neutrinos on Earth would be v, or v,. For this effect
to be large, the masses must be hierarchical (m; < ms or ms < m;y), which requires
m, < 0.1eV. Fig. 7.3 shows that the differences in the density contrast d, are then small,
which implies that the fraction of v, is not significantly altered from its primordial value
of 1/3. We nevertheless incorporate this effect in the calculation below.

We now have the necessary ingredients to compute the expected event rate for an
experiment like PTOLEMY. The CNB capture rate,

Ny
Ceng = ZFZ‘,CNB\Uei\g, (7.3.1)
i=1

is summed over all mass eigenstates that exceed the energy threshold of the experiment,
weighted by the PMNS mixing elements, U.;. The event rate for mass state v; is given
by [321]

Tsong = No [nf Af +n7 A7), (7.3.2)

where N is the number of targets, ¢ is the average cross section, n;t are the number
densities for the two spin states, Ali = 1 F v;/c is a spin-dependent factor, and v; is
the velocity of the mass eigenstate. As discussed, gravitational deflection by an angle 0
reverses the spin with probability P = 1/2 — cos /2. The number densities for both spin
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states are then given by

nf=n; [ + ;(c089>i] . (7.3.3)

In the absence of clustering and deflection, {cosf); = 1, such that nj” = n; = n and

n; = 0 for Dirac neutrinos. For Majorana neutrinos, the densities are both equal to
+ _
F=
expected signal is twice as large in the Majorana case. If we allow for gravitational effects,

the mean: n n; = n. Consequently, for non-relativistic neutrinos with Aii =1, the

we instead obtain

Ny
B = No ei2 1 91& i 3.4
Sy = No 3 IU 1+ {cos )| m, (7.3.4)

Ny
Tihe = NG > |Ueil*2n;, (7.3.5)
=1

for the Dirac and Majorana cases, respectively. Plugging in the number N = 100g/msg
of tritium atoms for PTOLEMY [270] and the average cross section & = 3.834 x 1074% cm?
from [321], and a mean number density of 7 = 56 cm ™3 per degree of freedom, we obtain
the event rates in Table 7.4. We report the values for the individual mass eigenstates.
Comparing the most and least massive cases, we see that gravitational clustering only has
a marginal effect, boosting the capture rate by less than a factor of two. For each mass,
we predict a factor ~ 2 difference between the Dirac and Majorana cases. Let us now
compute the total event rate for the minimal neutrino mass case, using |Ue;|? = (0.678,
0.299, 0.023) [29]. We assume that only the heaviest neutrinos with m, = 0.05eV (v3
under the normal ordering or v, and v5 under the inverted ordering) would produce peaks
in the electron energy spectrum far enough beyond the S-decay endpoint to be detected
by PTOLEMY with a reasonable energy resolution [271]. For the normal ordering, we
then find T'cxg ~ 0.1yr~! (Dirac) or 0.2yr~! (Majorana), while Tcng &~ 4yr~! (Dirac)
or 8yr~! (Majorana) for the inverted ordering.

7.3.2. Angular anisotropies

Having presented our results for the monopole and dipole moments, we now turn to
higher-order moments of the neutrino distribution. Fig. 7.4 presents maps of the predicted
angular anisotropies in the number density, 0, (0, ¢) = n, (0, ¢)/(n,/47), for four different
masses, after subtracting the monopole and dipole perturbations. The maps show relative
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Figure 7.4: Angular anisotropies in the neutrino number density contrast, d,,, for m, = 0.01eV
(top left) and for m, € {0.05,0.1,0.2} eV (right). In all cases, we subtract the monopole and
dipole moments and smooth over 3° scales. We also show the projected dark matter and baryon
density, 65, within 200 Mpc of the observer, both separately (middle left) and overlaid on the
top of the neutrino density for m, = 0.01eV (bottom left). We observe that the projected dark
matter density and the local neutrino density are anti-correlated on the sky. Except for the
projected matter density, the maps are all based on backtraced particles.

variations in the neutrino density for individual mass eigenstates, computed via equation
(7.2.2) by adding the weights of backtraced particles along each direction. As discussed
in Section 7.2.3, these particles represent an ergodic ensemble of neutrino paths with
weights that correct for the isotropic sampling distribution. In [186], it is shown that the
statistical properties of such weighted particle ensembles are consistent with the transfer
functions obtained from an Eulerian fluid calculation at the linear level. One advantage
of the particle-based treatment, however, is its ability to describe the nonlinear growth
of neutrino perturbations, which becomes important when the neutrino mass is large, as
discussed below.



7. Local neutrino background 142

Each map is averaged over nine realizations from the 2M++ reconstruction. The top-left
panel of Fig. 7.4 shows the map for m, = 0.01 eV and the right-hand panels show maps for
m, € {0.05,0.1,0.2} eV. First of all, we observe that the magnitude of the perturbations
strongly depends on mass: they are O(10~2) for m, = 0.01eV and O(1) for m, = 0.2eV.
We also see that the largest neutrino mass maps have large-scale perturbations that are
suppressed, relative to small-scale perturbations, for the smaller neutrino masses. The
middle-left panel shows the projected density of dark matter and baryons,

1 + 55[:)(97 ¢7 Rmax) == —b, (736)

up to a distance of Ryax = 200 Mpc from the observer. Comparing this with the neutrino
maps, we find that distant matter fluctuations are anti-correlated with local neutrino
fluctuations. This can be seen more clearly in the bottom-left panel, in which the projected
matter perturbations are overlaid on the neutrino perturbations for m, = 0.01eV. The
anti-correlation is much more evident for smaller neutrino masses.

Next, we compute angular power spectra, Cy, from the neutrino overdensity maps.
To compare our results with other works [263, 264, 300], we convert the spectra to
temperature units by assuming that (5T,,/T,, ~ 5nl,/3ﬁ,,.8 In Fig. 7.5, we show the results
for five different masses, averaging over nine realizations from the chain. To uncover the
perturbations imprinted by the large-scale structure, we fit smooth spectra of the form

Clt = exp [c1 + calog £ + es(log €)?] (7.3.7)

to the simulation predictions, restricting to the multipoles with 1 < £ < 15, since higher-
order multipoles are noisy and poorly constrained. The thick curves in Fig. 7.5 correspond
to these fits, with the solid and dashed lines indicating the LSS-only and combined LSS
+ MW results, respectively. As expected from the previous section, the effect of the MW
is most pronounced for the largest neutrino masses and the lowest-order multipoles. The
difference between the dashed and solid curves is negligible for m, < 0.05eV, but clearly
visible for m, = 0.2eV. We compute our maps in the rest frame of the simulations,
without accounting for observer motion. Therefore, Fig. 7.5 shows the intrinsic dipole
moment (¢ = 1) arising from large-scale matter fluctuations. The value is orders of
magnitude larger than the intrinsic dipole expected for massless tracers like the CMB

8This follows from the idealized result, n, = 3¢(3)T5 /272, for the Fermi-Dirac distribution, even though
the actual momentum distribution of clustered neutrinos is heavily perturbed.
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Figure 7.5: Angular neutrino temperature power spectra, C}, for different masses. We fit a
smooth spectrum, Cit = exp(c; + calog £ + c3 log? £), up to lmax = 15 for the simulations with
and without a Milky Way (dashed and solid lines, respectively). To avoid clutter, we only show
the data for the simulations without MW. The inset graph zooms in on the first ten multipoles,
showing the data relative to the fit. The grey error bar represents £10%. The oscillatory
perturbations arise from the imprint of dark matter perturbations on the neutrino background
and can ultimately be traced to cosmic variance in the matter distribution.

[322-324]. This is consistent with the behaviour seen in Fig. 7.5, which shows that
low-multipole perturbations are strongly enhanced for heavier neutrinos.

Our results differ substantially from [300], who compute a range of temperature power
spectra for m, = 0.1eV using different (25 Mpc)? simulations. We find a slope that is
much steeper and an amplitude at low multipoles that is greater. This could be due to
the absence of large-scale structure in their simulations, explaining the lack of power at
low multipoles. Our results are in good agreement with the linear theory calculations of
[264] for m, < 0.1eV. For 0.1eV, the normalization at low multipoles agrees, but we
predict significantly more power beyond ¢ > 10, where the linear calculation likely breaks
down. Similarly, although our definition of the neutrino temperature power spectrum is
somewhat different from [263], given that we do not define a power spectrum for each
momentum bin separately but show the pointwise integrated result, we obtain at least
qualitative agreement with their linear calculations for masses m, < 0.1eV, the largest
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Figure 7.6: Dimensionless angular power spectrum of the projected CDM and baryon density
contrast, C’Eb, out to 200 Mpc for 0.01eV. By construction, the results are similar for different
neutrino masses. We fit a smooth spectrum, Ot = exp(c; + c2log £ + c3 log? €), up to loay = 15
to the simulation spectrum (thick solid curve). The inset graph zooms in on the lowest-order
multipoles, showing the data relative to the fit. The grey error bar represents 4=10%.

mass considered amenable to their analysis. These authors model the gravitational
deflection of neutrinos with a lensing potential, similar to what is done for the CMB
[325]. A key difference between our results and the linear theory calculations [263, 264]
is the presence of oscillatory perturbations around the smooth spectra in Fig. 7.5, which
are much larger than the predicted lensing effect in [263]. This can be seen more clearly
in the inset graph, which zooms in on the lowest-order multipoles (¢ < 10) and shows the
simulation predictions relative to the smooth fits. The perturbations depend sensitively
on mass, being most prominent for 0.01 eV and nearly absent for 0.2eV.

The origin of these perturbations becomes clear when we plot the angular power spectrum,
Cl?b, of the projected CDM and baryon density up to 200 Mpc, in Fig 7.6. In this case,
we compute a dimensionless power spectrum directly from the maps of the projected
density contrast, 61 (6,¢), defined in Eq. (7.3.6). Fitting a smooth power spectrum
(7.3.7) in the same way as for the neutrinos, reveals the same oscillatory perturbations.
This suggests that cosmic variance in the matter density field is imprinted on the local
neutrino background if the neutrino mass is sufficiently small. To confirm this explicitly,
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Figure 7.7: Cross-correlation coefficient, ey, (£) = OS2 /(CYC$P)'/2, between the local neutrino
density and the projected CDM and baryon density, as a function of the maximum projected
distance Rmax, for m, € {0.01,0.05} eV, split into ten equal-sized neutrino momentum bins.
The coefficients are averaged over the multipoles 1 < £ < 10 and the curves are smoothed with
a Savitzky-Golay filter. The dashed line indicates the locus of the barycentre of each curve,
indicating that the sensitivity shifts to larger distances for faster neutrinos. Note that the overall
momentum range is much wider for the 0.01eV case.

we compute the cross-correlation coefficient, 7.y, (£) = CSP /(CYC5P)/2| between the
local neutrino density and the projected dark matter and baryon density, as a function
of the maximum projected distance Ry.x. The results, averaged over the lowest-order
multipoles, 1 < £ < 10, and smoothed with a Savitzky-Golay filter, are shown in Fig. 7.7.
We additionally split the results into ten equal-sized neutrino momentum bins, with
redder curves indicating faster neutrinos. For both neutrino masses shown, m, = 0.01eV
(left) and 0.05eV (right), there is a strong anti-correlation that peaks around r¢,, = —0.8.
In both cases, faster neutrinos are sensitive to more distant matter fluctuations. To
emphasize this point, we indicate the locus of the barycentre of each curve by a black
dashed line.

Note that r¢p, trends upwards as Rpyax decreases, eventually becoming positive for the
fastest neutrinos. This might be explained by the gravitational attraction of neutrinos to
positive density perturbations close to the observer. In this case, a positive correlation
should be expected. In line with expectation, the distance at which the correlation becomes
positive increases with neutrino momentum. Interestingly, the anti-correlation becomes
weaker with neutrino momentum for 0.01eV and stronger with neutrino momentum



7. Local neutrino background 146

for 0.05eV. A simple explanation for this could be that the anti-correlation begins
trending upwards earlier for faster neutrinos, causing a reversal in the trend, as can be
seen for Ry.x < 100 Mpc in the case of m, = 0.05eV. For m, = 0.01eV, this reversal
may only happen at distances that are not constrained by the 2M++ data underlying our

simulations.

Just before this paper was submitted, a related study appeared in which neutrino
anisotropy maps are analysed for different random configurations of dark matter halos
in a (25Mpc)? volume [300]. For some configurations, they report positive or negative
correlations between the neutrino and projected dark matter densities. Overall, the
ensemble average of cross-power spectra is consistent with zero. Taking into account
the smaller volume of the simulations, this can probably be understood in terms of the
aforementioned transition from positive to negative correlations close to the observer.

7.3.3. Cosmography

In this section, we make a first attempt at neutrino cosmography. Given the limited
resolution of our simulations, we focus on one illustrative example and run a higher-
resolution constrained simulation with N, = N, = 10243 particles for > m, =0.06eV.
In Fig. 7.8, we present maps of the neutrino density (left) and dark matter and baryon
density (right), in a slice of 500 x 500 x 60 Mpc that includes the Local Group and
several well-known clusters. A few striking observations can be made. First of all, the
large-scale neutrino and dark matter densities are positively correlated. This explains
the anti-correlation seen in the previous section. Relic neutrinos that are captured by
massive objects form localized clouds. Hence, while they are visible from the hypothetical
viewpoint? depicted in Fig. 7.8, they would not be seen from Earth along lines of sight
that intersect those structures.

After plotting the locations of several famous galaxy clusters, we find massive dark matter
structures associated with each of them. Surrounding most of these structures, we also
identify neutrino clouds that stretch over 10 Mpc scales and reach central overdensities
of 30%. Two interesting exceptions are the Perseus and Pisces clusters, which lie close to
the Taurus void [326] and appear to inhabit a large region that is deficient in neutrinos
(a ‘glade’ in the neutrino cloudscape). Although we see some collapsed dark matter
structures at their locations, these are more dispersed compared to other clusters. This

9The viewpoint of a distant observer looking at the Milky Way in its cosmic environment. One might
call this the Archimedean viewpoint, based on Archimedes’ claim that he could lift the Earth given
only a fulcrum and a place to stand.
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Figure 7.8: Slice of the projected neutrino (left) and dark matter (right) mass density, with
thickness of 60 Mpc, containing the Local Group and nearby clusters, for a species with mass
m, = 0.06eV. The location of the Milky Way is indicated by a white triangle. The arrow
indicates the direction of the relative neutrino velocity. In terms of the comoving distance r, right
ascension «, and declination ¢, the coordinates are (x,y) = r cosd(cos a, sin «).

could be due to a failure of the constrained simulations to model the Perseus-Pisces wall

accurately [311].

The Milky Way is marked by a white triangle, located along a filament that stretches
towards the Virgo cluster. For this neutrino mass, m, = 0.06 eV, we appear to inhabit
a region with a large-scale neutrino overdensity that is not due to the Milky Way. It
was this large-scale modulation of the neutrino density that originally motivated our
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investigation. Its effect was shown in Fig. 7.3 as a function of mass. For 0.01eV, we
predicted a small neutrino deficit. We now see that this could be due to our proximity
to the Taurus/Perseus-Pisces glade. Hence, the local neutrino density depends on the
interplay between the overdensities associated with Virgo and the Local Group and
nearby underdensities. The direction of the neutrino dipole is indicated by a white
arrow. It points away from the overdense region around the Coma cluster, which is
consistent with our motion towards the Shapley Supercluster and the Great Attractor
[327]. Correspondingly, it points towards an underdense region known as the Dipole
Repeller, which causes an apparent repulsion [328]. In short, the behaviour of the CNB
dipole is similar to that of the CMB when the neutrino mass is small, consistent with
our findings in Section 7.3.1.

7.4. Conclusion

Direct detection of the Cosmic Neutrino Background (CNB) remains one of the great
challenges in cosmology. In this paper, we have analysed the gravitational effects of the
large-scale structure and the Milky Way on the local neutrino background. Through the
use of the ‘BORG’ framework for Bayesian forward modelling of large-scale structure
observations [309, 310], we have carried out constrained simulations of the local Universe
for different neutrino cosmologies with masses between > m, = 0.01eV and ) m, =
0.6eV. The constraints are based on the 2M++ catalogue [301], which maps the local
Universe out to a distance of 200h~! Mpc. We account for the Milky Way dark matter
halo, using an updated estimate of the mass from [302]. By tracing neutrinos back through
the galaxy and large-scale structure with a bitwise reversible version of the N-body code
GADGET-4 [77], keeping track of phase-space density perturbations, we compute statistics
of the expected neutrino flux. Our results suggest that the gravitational clustering of
neutrinos due to the large-scale structure is not negligible compared to the effect of the
Milky Way, with both contributing about half of the total effect for 0.1 eV neutrinos.

Despite the inclusion of the large-scale structure, we find smaller overdensities compared
to earlier studies [296-299]. We attribute this to a decrease in recent estimates of the
Milky Way halo mass. We therefore predict only marginal increases in the event rates
for tritium capture experiments like PTOLEMY [270-272]. Additionally, we also predict
a smaller impact of gravitational deflection on the helicity distribution of the neutrino
background compared to [294], due to our distance from the centre of the Virgo cluster.
As a result, the difference between the event rates for Dirac and Majorana neutrinos is
slightly smaller, though still close to 100% in most cases. Similarly, we also predict a
smaller impact on the flavour composition compared to [290], with an electron-neutrino
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fraction that is close to 1/3 even for hierarchical masses. We also make predictions for the
neutrino dipole. In the limit of very small neutrino masses, m, < 0.01eV, we recover the
CMB result with a dipole that corresponds to Solar motion towards (I,b) = (264°, 48°) at
a relative velocity of around 300 km/s. The velocities are significantly perturbed for larger
masses and the dipole direction shifts, but remains nearly parallel to the ecliptic plane.
This implies a near-maximal annual modulation in the neutrino velocity throughout
Earth’s orbit around the Sun.

Although perhaps unlikely, a future directional CNB detector might image the angular
distribution of relic neutrinos. We have produced maps and power spectra of the
nonlinear neutrino perturbations imprinted by the large-scale structure. Our findings are
in qualitative agreement with the linear theory results of [263] for masses m, < 0.1eV,
but with a much larger gravitational effect that produces an oscillatory feature in the
power spectrum. This feature is related to cosmic variance in the dark matter density
field. Indeed, we find that local neutrino density perturbations, in principle detectable
from Earth, are anti-correlated with the projected dark matter density up to at least
250 Mpc, the largest distance constrained by the 2M++ catalogue, although for very nearby
structures and fast neutrinos, we instead predict a positive correlation. The distance at
which neutrinos are most sensitive to the intervening cosmic structure increases with
momentum and decreases with mass, potentially enabling a kind of neutrino tomography
of the large-scale structure, which would be impervious to extinction by gas and dust.
Finally, we presented maps of the forecasted neutrino distribution in the local Universe,
identifying neutrino clouds associated with several well-known clusters, such as Coma
and Hercules. We release our simulation data to the public, which we hope will be useful
for future analyses of the neutrino background.

7.A. Reversible simulations

Running a cosmological N-body simulation backwards to recover the initial conditions
is non-trivial (see [329-331] for related ideas). In principle, leapfrog integration is time-
reversible [200]. However, in practice, small rounding errors inevitably accumulate in
the backwards direction. This is problematic if one aims to recover a low entropy
initial configuration (such as two merging galaxies that are initially well separated) from
a final high entropy configuration (the merged galaxy). The root of the problem is
the non-associativity of standard floating point arithmetic, causing different rounding
errors in backwards integrations. Furthermore, floating point errors are not necessarily
reproducible in parallel programs, because of the unpredictable execution order of threads.
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We here briefly discuss the modifications necessary to make a cosmological code reversible,
in anticipation that this may be useful for other applications.

To test the bitwise reversibility of GADGET-4, we periodically compute a hash of all
particle data. The state of the simulation should be identical in the forwards and
backwards directions at the beginning and end, respectively, of each corresponding step.
Unsurprisingly, the code is not reversible by default. A first step towards achieving this
is to store particle positions and velocities as integers. Implementing integer velocities is
a natural step, because GADGET-4 already uses integer positions by default to achieve
constant precision throughout the simulation domain [77]. However, this is by no means
enough to guarantee reversibility, if only because the gravitational Tree-PM algorithm
still relies on floating point operations.

To guarantee reversibility, we must therefore also ensure that different threads execute
their tree calculations in the same order in both directions. Furthermore, there can be no
time-asymmetric decision making. For instance, we use a basic geometric tree opening
criterion [332], because the more adaptive opening criterion available in GADGET-4
depends on the particle accelerations from the previous step, which are different in the
backwards direction. Similarly, the time step is usually chosen based on the maximum
distance that particles can move or on the acceleration of particles in the previous time
step, which again introduces an asymmetry. To address this problem without adopting a
constant time step, we store a list of step sizes used in the forwards direction and feed
this file back in the backwards direction. Special consideration is also needed for the
neutrinos to ensure that the § f weighting is time-reversible. Special relativistic velocities
(6.5.3) can be absorbed in the leapfrog integration scheme [186].

The domain decomposition is another point of concern. By default, GADGET-4 uses
floating point arithmetic for load balancing, which can lead to differences between the
forwards and backwards runs. These operations are therefore modified to use integers. As
a final example, recall that we inject additional ‘spectator’ neutrinos at the start of the
backwards runs. We take steps to ensure that their presence affects neither the domain
decomposition of the original particles nor alters the gravity calculation. With these
modifications, we exactly recover the initial conditions when running our constrained
neutrino simulations backwards.



Baryonic effects

This chapter deals with the combined effect of cosmology and baryonic
feedback on the large-scale structure. It shows that the effects are
not exactly separable, but that the baryonic suppression of the power
spectrum is stronger for models with massive neutrinos. This is explained
in terms of changes in the baryon fraction and binding energy of halos.
Using a halo concentration emulator, predictions are made for the non-
factorizable corrections as a function of €2, and os.

Cosmological dependence of baryonic feedback

ABSTRACT: The large-scale distribution of matter is influenced not only by
the choice of cosmology but also by astrophysical processes, such as feedback
from active galactic nuclei and stellar winds. This has important implications
for cosmological parameter estimation, particularly from weak-lensing surveys
such as Euclid and LSST. In this study, we use the new FLAMINGO suite
of large-volume hydrodynamical simulations to study the extent to which
variations in cosmology can be treated independently of astrophysical processes.
We find a weak dependence of baryonic effects on cosmology, leading to non-
factorizable corrections to the power spectrum and halo mass function. In
particular, we find that the baryonic suppression of the matter power spectrum
is stronger for models in which structure formation is already suppressed, such
as in models with massive neutrinos. To determine the physical origin of
these corrections, we study an array of halo properties, including the halo
concentration and environmental density, ranking each property along two
axes: its sensitivity to cosmology and its importance in regulating feedback.
Doing so, we determine that the baryon fraction and halo concentration are
most important in the halo mass range relevant for the suppression of the
power spectrum for k < 10 Mpc™t. Our model predicts that non-factorizable
corrections exceed 1% for cosmological parameter variations allowed by large-

scale structure surveys and should therefore be taken into account.
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8.1. Introduction

Two of the principal components invoked by the ACDM model of cosmology, dark energy
and cold dark matter, cannot be explained by the Standard Model of particle physics
and may only be effective descriptions of phenomena yet to be discovered. The success
of the model in reproducing a wide array of observations indicates that signatures of new
physics are likely to manifest either as small modifications to the ACDM prediction or
in the relatively unexplored high-redshift régime. As such, the model is under intense
scrutiny at both the high-precision and high-redshift frontiers. A 50 tension between
distance ladder measurements of the Hubble constant [333] and the ACDM prediction
extrapolated from cosmic microwave background (CMB) observations [112] could be
a first indication of new physics [e.g. 334, 335]. A similar discrepancy in the matter
density and amplitude of fluctuations on 8h~'Mpc scales, Sg = 0gv/Sm, comparing
the CMB-extrapolated prediction with measurements from galaxy clustering and weak
lensing observations [336-338], stands at 2 — 30. Further motivating the work at the
high-precision frontier is the possibility to measure the sum of neutrino masses. The
imprint of massive neutrinos could be detected by galaxy surveys such as DESI [339],
even for the minimum value allowed by oscillation data, Y m, = 0.06eV [29], but this
requires percent-level accuracy in large-scale structure measurements and predictions
[132, 204].

Complicating these efforts is the fact that astrophysical processes, such as feedback from
supernovae and active galactic nuclei (AGN), can change the distribution of matter even
on relatively large scales [340-342]. By heating and ejecting gas into the intergalactic
medium, AGN feedback can suppress the power spectrum of matter fluctuations by
(’)(10%) on nonlinear scales, 1 Mpc™! < k < 10 Mpc~!. On smaller scales, the power
spectrum is boosted, first by star formation and then by gas cooling, both processes
allowing matter to contract ([343]; but see [344]). A crucial question for the interpretation
of large-scale structure observations concerns the dependence of these baryonic effects
on cosmology. A number of previous studies [345-348] have shown that the effects of
cosmology and baryonic physics are separable to a first approximation, but with residual
effects of up to several percent. As these effects are approaching the statistical errors of
upcoming galaxy surveys, we are interested in modelling the non-factorizable corrections
that arise from variations in cosmology in the presence of baryonic physics. We will
consider their origin and characterize their overall importance.

One could imagine different mechanisms through which baryonic processes, such as star
formation and the growth of supermassive black holes, and hence baryonic feedback,
could depend on cosmology. Although dark matter halos share a universal density
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profile [316], their concentrations depend on cosmology [349-353]. Cosmological model
variations that slow the rate of structure formation (such as decreasing the matter
density, Qy,, or amplitude of clustering, og) lead to less concentrated halos, lowering the
gravitational binding energy and altering the balance between outflows and black hole
accretion [354, 355]. Another potential channel is the formation history of dark matter
halos. If halos assemble their mass more slowly, galaxy formation and feedback processes
may be delayed. A third possibility is that a change in the large-scale distribution of
matter affects the halo environment, which could affect halo properties indirectly through
assembly bias [356-358] or affect feedback by changing the density of the halo outskirts.
Finally, variations in the baryon density, €2}, alter the amount of gas that is available for
star formation and black hole accretion.

Massive neutrinos could plausibly affect feedback through any of these channels. Neutrinos
cluster less effectively on scales smaller than their free-streaming length [120], which
results in less concentrated halos, delayed structure formation, and smoother halo
environments. Moreover, neutrinos also affect the baryon fraction, €,/€Q., relative to
the cold dark matter density, ()., given that a change in neutrino mass at fixed matter
density, QO = Qp + Q¢ + ., and baryon density will alter the amount of gas that is
available for a halo of a given cold dark matter mass. These channels are not necessarily
mutually exclusive. To find out which, if any, play a role in regulating the amount of
feedback, we will use the FLAMINGO suite of hydrodynamical simulations [359], which
include several feedback and cosmology variations. We will use halo properties (such as
the concentration and formation epoch) as proxies for the ways in which feedback could
depend on cosmology. We will then formulate a model to predict the non-factorizable
correction to the matter power spectrum.

The organization of the paper is as follows. In Section 8.2, we introduce the FLAMINGO
suite of simulations. In Section 8.3, we present the main results, first studying the effects
of baryons and neutrinos on global large-scale structure statistics and then considering
the effect on individual halos. Finally, we discuss and conclude in Section 8.4.

8.2. Simulations

Our analysis is based on the new FLAMINGO suite of cosmological hydrodynamical
simulations [359]. The FLAMINGO simulations use an updated version of the subgrid
models used by the earlier Cosmo-OWLS [360] and BAHAMAS [361] projects. The
FLAMINGO simulations also implement a number of technical improvements, related
to the initial conditions and the treatment of massive neutrinos, aimed at improving
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Table 8.1: An overview of the FLAMINGO simulations used in this paper. The number of baryon particles, Ny, is equal to
the number of cold dark matter particles, N., for the simulations that have them. The number of neutrino particles is always
N, = N./1.8%. The bottom rows correspond to the gravity-only (DMO) counterparts of the top rows. The columns correspond to
the side length, L, the number and the mass of cold dark matter particles, V. and m., the initial mass of gas particles, m,, and the
cosmological parameters. All simulations assume a flat (€ = 0) ACDM Universe with massive neutrinos and with an amount of
radiation corresponding to Tovp = 2.7255 K and Neg = 3.045 effective relativistic neutrinos species at high redshift.

Identifier L N, me [Mo]  my [Mg] h [ Qe o} Som, os  107Ay  n

DES3_L2800 2.8Gpc  5040° 5.65x10° 1.07x 10° 0.681 0.306 0.256 0.0486 0.06eV  0.807 2.099 0.967
DES3_1.1000 1.0Gpe 1800 5.65x 10° 1.07x10° 0.681 0.306 0.256 0.0486 0.06eV  0.807 2.099 0.967
Planck 1.0Gpc 1800 5.72x10° 1.07x10° 0673 0.316 0.265 0.0494 0.06eV 0.812 2.101 0.966
PlanckM240Var 1.0Gpc 1800 5.67x10° 1.06x10° 0.662 0.328 0271 0.0510 0.24eV  0.772 2.109 0.968
PlanckM240Fix 1.0Gpc 1800 5.62x10° 1.07x10° 0.673 0.316 0.261 0.0494 0.24eV  0.769 2.101  0.966
LS8 1.0Gpec 1800 5.65x 10° 1.07x10° 0.682 0.305 0.256 0.0473 0.06eV  0.760 1.836 0.965
DES3_1.2800_DMO 2.8Gpc  5040° 6.72 x 10° — 0.681 0.306 0.256 0.0486 0.06eV  0.807 2.099 0.967
DES3_L1000_-DMO 1.0Gpe 1800% 6.72 x 10° - 0.681 0.306 0.256 0.0486 0.06eV  0.807 2.099 0.967
Planck_ DMO 1.0Gpc  1800° 6.78 x 10° — 0.673 0.316 0.265 0.0494 0.06eV  0.812 2.101  0.966
PlanckM240Var DMO 1.0Gpc 1800° 6.73 x 10° - 0.662 0.328 0.271 0.0510 0.24eV  0.772 2.109 0.968
PlanckM240Fix . DMO 1.0Gpc 1800% 6.68 x 10° - 0.673 0.316 0.261 0.0494 0.24eV  0.769 2.101 0.966
LS8_DMO 1.0Gpc  1800% 6.72 x 10° - 0.682 0.305 0.256 0.0473 0.06eV  0.760 1.836 0.965
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the accuracy of its large-scale structure predictions (Part II of this thesis). In another
departure from its predecessors, the subgrid physics parameters were systematically
calibrated by training emulators to predict key astrophysical quantities (the galaxy stellar
mass function and cluster gas fractions) and comparing directly with observations [362].
Combined with the unprecedented volume of the simulations, these improvements make
FLAMINGO ideal for precision cosmology applications.

The flagship simulation contains N, = Ny, = 50402 dark matter and baryon particles
and N,, = 28003 massive neutrino particles in a periodic (2.8 Gpc)? volume. In addition,
there are many simulations with the same mass resolution in a (1 Gpc)? volume. These
simulations span a range of subgrid physics and cosmological parameter variations. We
only use the cosmological variations in this paper and restrict to the fiducial subgrid
model. For each hydrodynamical simulation, there is a gravity-only counterpart that
treats dark matter and baryons as a single cold fluid, but still includes the effects
of massive neutrinos (also called “dark matter only” or DMO). The hydrodynamical
simulations use a new subgrid physics model, which includes improved prescriptions
for gas cooling, star formation, black holes, and AGN feedback [359, 363-365]. The
simulations were run with the SWIFT cosmological hydrodynamics code [76, 190] on the
cosMA-8 facility in Durham, using the SPHENIX flavour of SPH [366], which is optimized
for galaxy formation applications. The initial conditions were generated with third-order
Lagrangian perturbation theory (3LPT) at z = 31 with separate transfer functions for
dark matter, baryons, and neutrinos [228, 257|, using the MONOFONIC [89, 261] and
FASTDF [186] codes, with transfer functions computed with cLASS [128]. Neutrinos were
implemented with the §f method [237], which minimizes shot noise without neglecting
the nonlinear evolution of the neutrino phase-space distribution. The relevant parameters
for the simulations used in this paper are listed in Table 8.1.

8.3. Results

We begin by studying the effects of neutrinos and baryons on global large-scale structure
statistics in Section 8.3.1 and then study the origin of non-factorizable corrections through
the lens of individual halo properties in Section 8.3.2. Finally, we construct a simple model
for the non-factorizable correction to the power spectrum and consider its cosmological
implications in Section 8.3.3.
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8.3.1. Global statistics

We begin by looking at two fundamental global statistics relevant for large-scale struc-
ture studies: the matter power spectrum Py, (k) and the halo mass function f(M) =
dn(M)/dlog,o(M). To untangle the effects of neutrinos and baryons, we look at four
simulations: the hydrodynamical Planck and PlanckM240Fix simulations, which differ
only in their assumed massive neutrino contents of respectively > m, = 0.06eV and
0.24 eV, and their gravity-only counterparts. We show the corresponding power spectrum
and halo mass function ratios in Fig. 8.1. In each case, we compare to one of the
gravity-only Planck simulations. The left-hand panel shows the effects on the power
spectrum and the right-hand panel shows the effects on the halo mass function.

Let us begin with the power spectrum. The basic effects of neutrinos and baryons
have been studied before [e.g. 148, 152, 340]. The effect of increasing the neutrino mass,
F, (k) = P%24eV (k) /P%06eV (L) is shown in red. On large scales, the ratio F,, — 1. This is
because on scales larger than the free-streaming length, neutrinos and dark matter cluster
in the same way, barring relativistic effects. On scales 0.01 Mpc™! < k < 0.6 Mpc™!,
the ratio decreases to a minimum of AP/P ~ 10Af, ~ 14% before turning over and
increasing to around 10% on sub-Mpc scales. This happens because neutrinos suppress
structure formation, which affects the 1-halo and 2-halo terms differently [197, 244].

The effect of baryonic feedback, F,(k) = PR (k)/PPMO(k), obtained by dividing the
hydrodynamical result with > m, = 0.06 eV by the corresponding gravity-only result,
is shown in blue. This ratio equals unity on large scales up to about k& = 0.6 Mpc™!
and then decreases to a dramatic minimum at k = 6 Mpc !, before turning over. This
happens primarily because feedback from AGN expels gas from 10'4M; mass halos,
which lowers their contribution at these scales [340, 342, 367]. On scales smaller than
k = 20 Mpc !, the ratio is greater than 1 because gas cooling and star formation allows

halos to contract, increasing the density on small scales [340, 367].

Now, let us consider the combined effect of massive neutrinos and baryonic feedback,
F (k) = plydro0:24eV gy ) pDMO.0-06eV 1y " The true result is obtained by dividing the
hydrodynamical PlanckM240Fix result by the gravity-only Planck result. This curve is
shown in orange. The result is well approximated by the product of the individual effects:
Fy, = F,F;, shown in purple. However, we clearly see that the true effect is stronger than
would be expected from this approximation. The non-factorizable correction, F,/(F), F},)
is shown in the bottom panel. It vanishes on large scales, where only neutrinos have an
effect, but approaches —1% between 1 Mpc~! < k < 20 Mpc~! before increasing beyond
+1% at very small scales. In the following subsections, we will try to understand the
source of this effect. However, for now it is interesting to observe that the true suppression
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Figure 8.1: The effects of baryons (Fj,, blue) and neutrinos (F,, red) on the matter power
spectrum (left) and halo mass function (right). If the combined effect (F,;, orange) were
perfectly factorizable, it would equal the product F, F;, (purple). The bottom panels show the
non-factorizable correction, F,;/(F,Fp), to this approximation. It can be seen that baryonic
effects are enhanced by increasing the neutrino mass. The simulated data were interpolated to
a logarithmically spaced grid and smoothed with a 4*'-order Savitzky-Golay filter. We show
Poisson error bars for the halo mass function. Errors are much smaller for the power spectrum.

is stronger than would be expected from the factorizable approximation. This means

that the baryonic effect is stronger for the model with the larger neutrino mass'.

Next, let us consider the neutrino effect F,, on the halo mass function [173, 243], defined
in the same way as in the power spectrum case and shown in red in the right-hand panel
of Fig. 8.1. The effect is very small for low mass halos, but increases towards larger halo
masses. The number density of the most massive clusters is significantly suppressed by
~ 20%. This happens because, while the normalization of density fluctuations o (M)
decreases along with the power spectrum, the halo mass function remains approximately
universal [242-244]. As a result, the effect is most pronounced around the exponential
cut-off at high masses. Similar behaviour is seen when changing og. In terms of the
excursion set formalism [368, 369], the probability of rare peaks collapsing is very sensitive
to a change in the normalization, but the number of small peaks is a power law that
depends less sensitively on the normalization.

The baryonic effect, Fy,, is more complex [370, 371]. The effect is very small for the

LOr equivalently that the neutrino effect is stronger for the hydrodynamical simulations.
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most massive clusters, as these have a sufficiently deep gravitational potential well to
prevent feedback from expelling a significant fraction of the gas. The effect increases
as we move towards smaller halo masses, reaching a maximum suppression around a
few times 10'3M. For smaller halos than this, AGN feedback becomes less important
and therefore the baryonic effect becomes smaller. The effect reaches another extremum
at a few times 10'2M, where supernova feedback starts to be able to overcome the
gravitational potential well, driving the ratio back down for lighter halos [371].

When we consider the combined effect, F},, and its factorizable approximation, F, Fy,,
we reach a similar conclusion as for the power spectrum, although the statistics are worse
and the result is therefore not as clear cut. The non-factorizable correction appears to
be largest at the extrema of the combined effect and works in the direction of making
the feedback stronger for the model with the larger neutrino mass. The corrections to
the halo mass function are slightly smaller than the corrections to the power spectrum,
but still approach 1% at the maxima.

8.3.2. Halo properties

To gain insight into the origin of the non-factorizable corrections seen in the last section,
we turn our attention to a simpler problem: the baryonic effect on individual halo masses.
By matching the 10 most strongly bound particles of each field halo in the hydrodynamical
and gravity-only versions of the same simulation, we determine the properties of the
same halo with and without baryonic effects. The aim is to use halo properties as proxies
for the different ways in which feedback might depend on cosmology. We do this without
varying the cosmological model, instead relying on the inherent scatter in halo properties
in the large DES3_2800 simulations.

We are interested in the baryonic effect on the halo mass, for which we define the ratio

M hydro

M = ,
¥(Mpro) Mpnmo

(8.3.1)
using Mogom masses. These correspond to the total mass contained in a spherical region
with an average density equal to 200 times the mean matter density of the Universe.
We obtain qualitatively similar results for different mass definitions, but opt for Masgom
because of its relatively large aperture, producing smoother results. We exclusively
consider field halos, ignoring satellites.

The baryonic effect, 1/, depends sensitively on the gravity-only mass. We therefore split
the sample into bins of Mpyo. Within each bin, we rank the halos according to a
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secondary halo property and compute 9 for the five quintiles (i.e. equal-sized groups
with rank between [0,0.2] up to [0.8,1]). We considered a large array of possible halo
properties, but selected the following four to characterize each of the channels discussed
in the introduction:

1. Concentration c. We use a proxy for the halo concentration ¢ = V. /V, based
on the maximum circular velocity Vinax and virial velocity V = \/GM /R where M
and R are the mass and radius of the spherical overdensity [351].

2. Formation epoch a;. The scale factor time a at which the halo first accreted
2% of its present-day mass, computed by linearly interpolating between adjacent
snapshots.

3. Environmental density 6,. We characterize the environment by computing the
total mass M, enclosed by halos within a radius of » Mpc, excluding the halo itself.
The environmental density d, is then defined as 6, = M, /(M,) — 1, where (M,) is
the average value for all halos in the sample.

4. Baryon fraction fi,. 'This is the only property that is computed from the hydrody-
namical simulation, rather than the gravity-only version. It is the mass fraction of

baryons in the spherical overdensity.

The resulting ¥ (Mpno) curves, split into quintiles of the secondary halo property, are
shown in Fig. 8.2. First of all, we note that the general trend resembles that of the
baryonic effect on the halo mass function seen in the right-hand panel of Fig. 8.1. It
arises from the interplay between the depth of the gravitational potential well and the
strength of stellar and AGN feedback at those masses.

Let us first consider the effect of the halo concentration ¢, shown in the top left panel of
Fig. 8.2. There is a clear dependence of ¥ on concentration. For halos with dark matter
masses between 10'2M and 10'3M, the suppression is smaller for less concentrated
halos, but the trend reverses for M > 10 M. This can be interpreted as follows. Halos
with lower concentrations have smaller binding energies, which shifts the balance in favour
of supernova and AGN feedback compared to gravitational infall. As a result, the curves
shift to larger masses. Although concentration is anti-correlated with formation epoch,
older halos being more concentrated on average [e.g. 372], the effect seen is not due to a
dependence of feedback on formation history, at least for masses M > 1013 M.

To see this, consider the dependence on the formation epoch shown in the top right panel
for asg. In this case, we additionally fix the maximum circular velocity, Viax, to the
40%-60% interpercentile range to reduce the correlation between ¢ and asg. For halos
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Figure 8.2: A closer look at the baryonic effect on halo mass Msgon,, comparing the masses of
matched field halos in the corresponding gravity-only and hydrodynamic simulations. We show
the dependence of the mass ratio on four secondary halo properties: concentration (top left),
formation time (top right), environment (bottom left), and baryon fraction (bottom right). The
colours indicate quintiles of the secondary halo property, calculated within each mass bin, with
black (red) indicating a lower (higher) value of that property.

M < 10'3My), the suppression does depend on formation epoch. In this mass range,
the masses of older halos are more suppressed. However, there is no dependence on asg
for halos beyond 10 M. This shows that the dependence seen for the concentration
is due to the binding energy and not the formation epoch. To understand this, we
show the black hole mass relative to the gravity-only mass, Mpp/Mpwmo, in the inset
graph. We see that halos with masses between 10'2M and 10'3 M, fall into a critical
transition range where nonlinear black hole growth is on the cusp of being triggered [355],
depending on the mass and formation epoch. At the high mass end, all black holes are
self-regulating and attain a nearly fixed fraction of the dark matter mass. From this
point on, the dependence on formation epoch essentially disappears.

The third property is the environmental density, ds, defined in terms of the mass contained
by halos within 8 Mpc. The bottom left panel of Fig. 8.2 shows that this property is
barely correlated with the baryonic suppression of halo mass. The suppression is very
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slightly smaller for halos in denser regions, particularly towards the low mass end. As
halos in dense regions tend to be more concentrated, a phenomenon known as assembly
bias [356, 357], this could be due to the indirect effect of the concentration. Although we
do not consider satellites, the behaviour at the small mass end may also be an artefact
of overlapping spherical overdensities. In any case, the environment does not appear to
play a major role in regulating feedback.

Finally, we consider the dependence on the baryon fraction f;,, computed directly from
the hydrodynamical simulation. Over the entire mass range, halos with higher baryon
fractions have a smaller suppression. This is consistent with the assumption that the
suppression is primarily driven by baryonic outflows. Indeed, the suppression of the
power spectrum can be related directly to the reduction in the baryon fraction in groups
and clusters [347, 373]. The dependence is strongest at the low mass end, but even at the
high mass end, the effect of the baryon fraction is larger than that of the concentration.

To quantify the importance of a given halo property 6 for regulating the baryonic effect
on the mass 1, we compute the correlation coefficient

po = M, (8.3.2)

(00(9%)

where dx = X — (X)) are centred variables. A value of py = 0.1 implies that a 1o change
in 0 results in a 0.10 change in . To determine the overall importance of this property
when explaining the dependence on cosmology, we also require the change in that property
when we change cosmological parameters a to a + Aa:

(0(a+ Aar)) — (B(ev))

J@@)

normalized by the standard deviation of € at a. In this way, we rank each halo property

AO = (8.3.3)

along two dimensions: their importance for feedback and their sensitivity to cosmology,
with the overall impact being the product of the two. We did this for a large array of
halo properties, including the four properties studied above, for the shift from the Planck
cosmology with ) m, = 0.06 eV to the PlanckM240Fix model with »_m, = 0.24eV. In
all cases, the change in baryon fraction was found to be most important. At the low mass
end, the early formation epochs ass and asg followed the baryon fraction in relevance.
At the high mass end, the halo concentration ¢ was the second most important property.
Since the baryonic suppression of the matter power spectrum is mostly determined by
halos with masses 103 My < M < 10" M, on scales k < 10h Mpc ™! [343], we conclude
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Figure 8.3: We can predict the non-factorizable correction to the power spectrum from the changes
in baryon fraction and halo concentration. The points are based on the different L = 1 Gpc
simulations listed in Table 8.1, shown relative to the fiducial DES3_1.1000 model. We evaluate
the matter power spectra at k = 10h Mpc ™!, where the corrections first become important.

that a model of the non-factorizable corrections should first account for the change in
baryon fraction and halo concentration.

8.3.3. Predicting non-factorizable corrections

Based on the insights gathered from the DES3_2800 simulation, we now turn to the five
cosmological variations in the FLAMINGO suite, listed in Table 8.1. We wish to explain
the non-factorizable correction to the matter power spectrum in terms of the change in
the universal baryon fraction, A f;, and the shift in the mass-concentration relation Ac:

A A
A(Phydro s pDMOY _ abf—fb +ae=C. (8.3.4)
b c
We evaluate the present-day power spectrum at k& = 10hMpc™!, where the non-

factorizable corrections are prominently seen in Fig. 8.1. The mass-concentration rela-
tion is computed from the hydrodynamic simulations, using the velocity-based proxy
¢ = Vmax/Va00. We take the median of the fractional change in Ac/c(M) for all bins
with M > 10'2Mg. The change in the baryon fraction, Afy/ f,, is simply taken from the
cosmological parameters. The resulting fit is shown in Fig. 8.3. As expected, an increase



163 8.3. Results

0.85 |

€ 075}

0.7 | | mmm Corrections < 0.5% =
Corrections < 1% Y
mmm Planck TTTEEE+lowE !

0.-651| ___ KiDS+BOSS 3 x 2pt L W
| |
0.28 0.3 0.32 0.34
Om

Figure 8.4: As a first application of the model, we show the cosmological parameter range around
the nominal Planck-based cosmology (marked by a cross) for which non-factorizable corrections
are within 0.5% and 1% (red), along with the Planck TTTEEE + low/ + lowE + lensing + BAO
constraints (blue).

in the baryon fraction leads to a greater baryonic suppression (a, = —0.22 + 0.02), as a
larger gas reservoir is available for halos of a given mass. Also in line with expectation, an
increase in the concentration leads to a smaller baryonic suppression (a. = 0.40 + 0.06),
which we attribute to the increased binding energy. Although it could not be included
here, we have developed an analytical model in which the strength of AGN feedback is a
function of f,/c? (in prep.), consistent with the finding here that a. ~ —2a;. The two
models compared in Fig. 8.1, Planck and PlanckM240Fix, are indicated in Fig. 8.3. We
see that the non-factorizable correction between these two models is large for two reasons.
First of all, halos are less concentrated in the large neutrino mass cosmology because
the matter density is lower when halos collapse. Secondly, the baryon fraction is higher
relative to the cold dark matter density, because 2, and 2}, are fixed while §2, is larger.
Both changes increase the potency of baryonic feedback.

Although the model is statistically significant (p = 0.00466) and physically motivated, it
is based on a limited number of simulations. Hence, the model should be tested on a
wider sample before any definitive conclusions are drawn. This work is currently ongoing.
For now, let us briefly consider the implications, assuming that the model holds more
generally. As a proof of concept, we use (8.3.4) to predict the cosmological parameter
range within which the non-factorizable corrections are smaller than 1%. To do this, we
use an emulator for the mass-concentration relation [352, 374] and convert the output
to our velocity-based proxy with the relation from [351]. Doing so, we predict the shift



8. Baryonic effects 164

Ac/c in concentration as a function of 2, and og. Since €2}, is much better determined
than Qy,, we hold the former fixed at the fiducial Planck value [112], which gives Afy/ fp.
Applying (8.3.4), we then obtain the red contours shown in Fig. 8.4. They indicate
the parameter range where corrections are below 0.5% (dark) and 1% (light red). The
contours are mostly parallel to lines of constant 2y,, reflecting the importance of the
baryon fraction, while the tilt is due to the dependence on halo concentration.

Also shown in Fig. 8.4 are the constraints from Planck temperature and polarization data
(TTTEEE + lowE) in blue and the KiDS 4+ BOSS 3 x 2pt galaxy clustering and weak
lensing constraints are indicated by purple dashed lines. The model used by the Planck
simulation in this paper is marked by a cross. The figure shows that the non-factorizable
corrections are mostly below 1% if one restricts to the 68% Planck constraints. However,
to sample a parameter space that covers both the constraints from Planck and large-
scale structure surveys like KiDS and BOSS with 1% precision is not possible unless
non-factorizable corrections are taken into account.

8.4. Discussion

In this paper, we presented early results from the new FLAMINGO hydrodynamical
simulations project [359]. We studied the effects of massive neutrinos and baryons
on global large-scale structure statistics, with a particular focus on non-factorizable
corrections that arise from variations in cosmology in the presence of baryonic physics.
We confirmed prior findings [345] that non-factorizable corrections to the matter power
spectrum are at the percent level on nonlinear scales, 1 Mpc™! < k < 10 Mpc~!. Turning
to the baryonic effect on individual halo masses, we then studied the dependence of the
baryonic suppression on secondary halo properties, such as the formation epoch, and
determined that the baryon fraction and halo concentration or binding energy are most
important in the halo mass range that is most relevant for the suppression of the power
spectrum between 1 Mpc™! < k < 10 Mpc™.

Based on this insight, we constructed a simple bilinear model to explain the correction
to the power spectrum, APy, in terms of the cosmological change in halo concentration,
Ac/c, and baryon fraction, Af,/f,. As a first application of the model, we determined
the cosmological parameter range for which the results obtained assuming a nominal
Planck cosmology can be applied to within 1% accuracy on nonlinear scales. The results
indicate that non-factorizable corrections cannot be ignored, at this level of accuracy,
if one wishes to sample a parameter space that covers both the results from large-scale
structure surveys and CMB observations (Fig. 8.4). There are several promising ways
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forward. One possibility is to construct emulators that cover both changes in cosmology
and feedback. However, our findings suggest that the dependence on cosmology may
be modelled with a limited number of parameters. Non-factorizable corrections could
therefore also be included in alternative analytic and semi-analytic approaches.

Finally, it is interesting to note that we find baryonic suppression to be stronger in models
in which structure formation is already suppressed, such as in models with massive
neutrinos. Although the effect we see is limited to scales that are too small to affect the
Sg parameter, this finding lends some credence to the idea that a combination of feedback
and a mechanism to suppress structure formation could alleviate the Sg tension. It is
worth investigating whether alternative implementations of baryonic feedback combined
with non-factorizable corrections from neutrinos can lead to a nonlinear resolution of the
Sg tension [375].
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9.1. Towards a neutrino mass detection

The large-scale structure of the Universe provides an ideal testing ground for low-
energy neutrino physics. By detecting a gravitational signature of the cosmic neutrino
background, galaxy surveys like DESI and Euclid could enable the first measurement
of the sum of neutrino masses, » , m,, providing a unique window on the properties of
neutrinos beyond the Standard Model, such as their lifetime [376-380] and the mechanism
that generates their masses [30-32], as well as cosmology itself [26, 27].

Any cosmological constraint should be confronted with information from the laboratory.
Neutrino oscillation experiments have measured the mass squared differences at the
percent level [28, 29], while f-decay experiments have achieved constraints on the
absolute mass scale with sub-eV precision [14, 15]. Together, these experiments imply
that 0.058eV < > m, < 2.4eV. By comparison, some recent cosmological analyses
yield bounds of Y m, < 0.09eV [108, 109], approaching the lower bound from neutrino
oscillations. If the trend continues (see Fig. 9.1), aided by larger surveys and better
techniques, we will soon either measure the sum of neutrino masses or find evidence for

non-standard neutrino physics or cosmology.

This last possibility is worth further consideration. While terrestrial experiments are
model-independent, the same is not true for the cosmological approach. The ACDM
model has been successful in reproducing many observations, but a number of puzzling
anomalies and tensions between observations persist, despite wide-ranging efforts to
address them [334, 335, 381]. To obtain a robust measurement from cosmology, the need
to combine disparate datasets for additional constraining power must be balanced against
the increased dependence on cosmological modelling.

Cosmological simulations will play a key role in this balancing act. In Part II of this
thesis, we developed new techniques and demonstrated that neutrino simulations can
now be performed with the required level of precision. Building on these developments
by exploiting a new generation of accurate simulations, we are continuing on the road
towards a robust neutrino mass detection with work in several directions, from the
development of novel probes to the treatment of uncertainties. We will discuss these in
further detail below.

167
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Figure 9.1: An informal census of published neutrino mass results, with early experimental
findings based on [382] and extrapolated to three massive species. Upper bounds are indicated
by downward arrows. The first upward arrow indicates the 1979 Tremaine & Gunn bound that
m, > 24eV if one species of neutrinos forms the dark matter in halos [48]. The double downward
arrow indicates the finding that a neutrino-dominated Universe poses a challenge to the observed
large-scale structure [24, 50]. The lower dotted lines indicate the lower bounds from neutrino
oscillations [28, 29], assuming the inverted or normal mass ordering, respectively.

9.1.1. Novel neutrino probes

Simulations are ideal for developing novel neutrino probes. These are important not just
for providing additional constraining power in the non-linear régime, where two-point
statistics no longer capture all available information, but also to provide robustness. Two
strategies can be distinguished. The first is to develop novel summary statistics that
target large-scale structure in general, providing information about neutrinos primarily
by breaking parameter degeneracies within the vACDM model. Such statistics include
the bispectrum [239-241], the marked power spectrum [383], density-split clustering
[384, 385], the wavelet-scattering transform [386], and void statistics [387-389]. Analytical
treatments are often untractable, which means that simulations are indispensable.

An alternative strategy is to search for signatures that are somehow unique to massive
neutrinos. While more challenging, the pay-off would be immense if such signals were
large enough, enabling an unambiguous detection. Work in this direction is also of general
interest, as it improves our understanding of neutrino phenomenology. Some examples
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in this category include the possible effects of dynamical friction [198] and torque [199]
from neutrinos on dark matter halos or the relative velocity between neutrinos and
dark matter [390]. Analytical work that appears promising should be checked against
simulations. Studies in this category would benefit especially from high-fidelity particle

neutrino simulations.

Let us mention just a few more possibilities for future work. If neutrinos measurably
affect dark matter halos, such a signal might show up in the kinematics of galaxies around
clusters, given that effects like dynamical friction depend on the mass of the perturber.
The velocity distribution of galaxies can be probed with the redshift space galaxy-cluster
cross-correlation function [391], a statistic that should be simpler to model on small
scales than galaxy-galaxy clustering [114, 392-394]. This probe would also be sensitive
to neutrinos through the growth rate of structure and has already been used to constrain
modified gravity [395]. Large-volume neutrino simulations, containing sufficient numbers
of clusters, could be used to isolate the direct and indirect effects of massive neutrinos.

Another exciting possibility is to search for extended neutrino halos around clusters with
weak lensing. Previous work, which assumed idealized spherical halo profiles, suggested
that the effects may be detectable by Euclid at the 1%-level [193]. Now that Euclid has
launched, more than ten years on, it is timely to revisit the problem. Using the same
large-volume simulations as above, the signal could be studied for realistic stacked cluster
profiles. Although we briefly looked at simulated neutrino halos in Chapter 4, a more
detailed analysis of the weak lensing signal remains outstanding.

9.1.2. Uncertainty quantification

Simulations are also useful for the end-to-end modelling of large-scale structure observa-
tions in the form of mock catalogues that account for non-linear structure and galaxy
formation, survey geometry, and systematic errors. Mock catalogues are crucial to forecast
the performance of large-scale structure surveys, to analyse observational strategies, to
identify flaws in analysis pipelines, to quantify uncertainties, and to provide confidence
in any potential discovery. Realistic neutrino simulations are particularly important to
study the impact of systematics on cosmological neutrino mass constraints.

Due to non-trivial correlations among cosmological and nuisance parameters, systematics
can bias parameters in unexpected ways. One example is the CMB lensing anomaly,
an oscillatory residual in the temperature power spectrum, present in many CMB
analyses, that resembles the smoothing effect of gravitational lensing and has been
parametrized by the nuisance parameter Ay, [396-398]. Marginalising over Ar, to account
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for possible systematics has a profound effect on the inferred neutrino mass [113, 115
117]. Similar correlations may exist for systematics in large-scale structure observations.
Determining the impact on the inferred neutrino mass requires the end-to-end propagation
of systematics from observation space to cosmological parameter space.

This mapping from observation space to cosmological parameter space, known as cosmo-
logical parameter estimation, amounts to the reduction of complex astronomical datasets
to a number of point estimates that describe the cosmological model, together with
a quantitative description of the uncertainty. This is traditionally accomplished by
compressing observations to summary statistics and by assuming a Gaussian likelihood
function with errors given by the covariance matrix. Under certain conditions, covariances
can be estimated directly from the data using boostrap or jackknife methods [399-403].
Covariance matrices can also be computed analytically [404—408], but this is difficult
for novel statistics in the non-linear régime. Alternatively, covariance matrices can be
computed from ensembles of N-body simulations [409, 410].

Recently, simulation-based inference has emerged as an interesting alternative to the
traditional approach based on explicit likelihoods [411-416]. These methods combine the
power of simulations for the accurate forward modelling of observations with machine
learning techniques to train models for the posterior distribution of the cosmological
parameters. By relying on forward modelling, these methods are ideal for the propagation
of systematic effects to cosmological parameter space. As such, they are a promising way
forward to extract cosmological information from large-scale structure observations.

9.1.3. Next-generation simulations

To facilitate the applications described above, we have proposed an ambitious suite of
next-generation neutrino simulations, using the methods and techniques developed in this
thesis to ensure sub-percent accuracy in its large-scale structure predictions. In order to
resolve the dark matter halos hosting all main tracer galaxies of the DESI survey [16] in a
volume large enough to represent the DESI footprint and to capture large-scale neutrino
effects, the volume and resolution of the simulations will significantly exceed that of
existing neutrino simulation suites like Quijote [160] and DEMNUni [159]. A training
data set, including a ladder of simulations varying the neutrino masses in small steps
and a grid of cosmological parameter variations, will be used to develop and test novel
neutrino probes and for emulation and machine learning applications. Some simulations
will use modified initial conditions as part of a controlled experiment to identify effects
unique to neutrinos. A further set will assume a blinded neutrino cosmology as part of a
mock challenge to stress test analysis pipelines.
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These high-fidelity simulations will be complemented with a large number of low-fidelity
simulations for uncertainty quantification and to expand the effective volume of the
suite with the use of control variates [91]. Generating the large numbers of realizations
required for these applications implies the need for highly optimized codes [78, 79] or
approximate methods [90, 417, 418]. To handle the case with massive neutrino, we
developed a fast N-body code, called SEDULUS, that incorporates all techniques needed
for robust neutrino simulations, as well as other advances for speed-ups compared to
existing alternatives. Together, the high-fidelity and low-fidelity simulations will provide
the essential theoretical infrastructure needed to measure the sum of neutrino masses
with DESI and other Stage IV galaxy surveys.

9.2. Other directions

The work in Part III of this thesis also raises interesting questions for future work. In
Chapter 7, we made detailed predictions for the rate of direct relic neutrino detections,
assuming the specifications of the proposed PTOLEMY experiment [270-272]. We also
analysed angular anisotropies in the neutrino background, but without reference to
a specific detector. In principle, an experiment like PTOLEMY could measure CNB
anisotropies using polarized tritium [287]. Hence, it is worth following this work up with
a specific application to such an experiment. More generally, it is interesting to explore
what could be learnt from a measurement of the neutrino power spectrum, be it through
direct detection or indirect cosmological inference.

In Chapter 8, we studied the dependence of astrophysical feedback processes on cosmology,
finding that this coupling gives rise to non-factorizable corrections to the matter power
spectrum that are not negligible in the cosmological parameter space spanned by current
observations. Our results show that baryonic feedback is stronger when combined
with a mechanism that suppresses structure formation or removes dark matter from
group-sized halos at late times, both increasing the baryon fraction and decreasing the
halo concentration. This suggests that a combination of baryonic and non-baryonic
suppression effects might alleviate the present tension between large-scale structure and
CMB measurements of Sg [336-338]. Hence, it is interesting to study extensions of ACDM
that produce such effects. Besides replacing some fraction of cold dark matter with hot
dark matter like neutrinos, a model in which dark matter decays into dark radiation
[419-422] appears promising, but annihilating dark matter [423] or a Yukawa coupling
between dark matter and quintessence [424] might also produce such an outcome.
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9.3. Closing remarks

Confirming the existence of the cosmic neutrino background and measuring its funda-
mental properties has been a long-standing challenge for cosmology and particle physics.
While their effects are subtle, neutrinos leave a variety of cosmological traces, which
could be probed by observations of the Universe at different epochs and scales. The
major challenge in obtaining a robust neutrino mass measurement is the need to combine
and interpret observations consistently within a cosmological model. In this thesis, we
have developed methods and techniques that enable the accurate modelling of neutrino
effects on late-time cosmological observables. These will be used in the next generation
of neutrino simulations whose aim is to facilitate the optimal use of galaxy observations
in our quest to reveal these most elusive messengers from the early Universe.
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