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Abstract

A first determination of the mass scale set by the lightest neutrino remains a crucial outstanding

challenge for cosmology and particle physics, with profound implications for the history of the

Universe and physics beyond the Standard Model. In this thesis, we present the results from

three methodological papers and two applications that contribute to our understanding of the

cosmic neutrino background.

First, we introduce a new method for the noise-suppressed evaluation of neutrino phase-space

statistics. Its primary application is in cosmological N -body simulations, where it reduces the

computational cost of simulating neutrinos by orders of magnitude without neglecting their

nonlinear evolution. Second, using a recursive formulation of Lagrangian perturbation theory,

we derive higher-order neutrino corrections and show that these can be used for the accurate

and consistent initialisation of cosmological neutrino simulations. Third, we present a new code

for the initialisation of neutrino particles, accounting both for relativistic effects and the full

Boltzmann hierarchy. Taken together, these papers demonstrate that with the combination of the

methods described therein, we can accurately simulate the evolution of the neutrino background

over 13.8Gyr from the linear and ultra-relativistic régime at z = 109 down to the non-relativistic

yet nonlinear régime at z = 0. Moreover, they show that the accuracy of large-scale structure

predictions can be controlled at the sub-percent level needed for a neutrino mass determination.

In a first application of these methods, we present a forecast for direct detection of the neutrino

background, taking into account the gravitational enhancement (or indeed suppression) of the

local density due to the Milky Way and the observed large-scale structure within 200h−1 Mpc. We

determine that the large-scale structure is more important than the Milky Way for neutrino masses

below 0.1 eV, predict the orientation of the neutrino dipole, and study small-scale anisotropies.

We predict that the angular distribution of neutrinos is anti-correlated with the projected matter

density, due to the capture or deflection of neutrinos by massive objects along the line of sight.

Finally, we present the first results from a new suite of hydrodynamical simulations, which includes

the largest ever simulation with neutrinos and galaxies. We study the extent to which variations

in neutrino mass can be treated independently of astrophysical processes, such as feedback from

supernovae and black holes. Our findings show that baryonic feedback is weakly dependent on

neutrino mass, with feedback being stronger for models with larger neutrino masses. By studying

individual dark matter halos, we attribute this effect to the increased baryon density relative to

cold dark matter and a reduction in the binding energies of halos. We show that percent-level

accurate modelling of the matter power spectrum in a cosmologically interesting parameter range

is only possible if the cosmology-dependence of feedback is taken into account.
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Background





Introduction
1

The first cosmologists lived in Miletus, once a Greek metropolis on the Meander looking

out over the Icarian Sea. As early as the sixth century BC, they speculated about the

Universe and relied on observation and reason to devise naturalistic theories of the cosmos

[1–4]. They held that all of nature was made of one substance, taking celestial bodies out

of the realm of the mystical and placing people and stars on equal footing. In so doing,

they anticipated the existence of universal laws of nature. The first real demonstration of

this premise occurred in the 17th century, when Newton discovered his law of universal

gravitation. However, it was not until the 20th century, following the developments of

quantum mechanics and nuclear physics, that hydrogen was revealed as the primary

building block of stars and nuclear fusion as the energy source that fuels them [5, 6].

A Universe governed by laws becomes itself a laboratory. A modern example is the solar

neutrino problem. Neutrinos are subatomic particles produced in nuclear reactions. In

the 1960s, when the Homestake experiment first detected neutrinos produced in the

sun, physicists discovered a tension between the prevailing model of the sun and the

detected number of neutrinos, which was smaller than expected by a factor of three

[7, 8]. One possible explanation was that the solar model was flawed, but no modification

could accommodate all observations. An alternative solution was that neutrinos were not

the massless particles predicted by the Standard Model of particle physics, but rather

mixtures of particles with different masses [9, 10]. This allows the identity of neutrinos

to fluctuate over time, a phenomenon known as neutrino oscillations. The problem was

finally settled in the years between 1998 and 2002 when the Super-Kamiokande, Sudbury

Neutrino Observatory, and KamLAND experiments found evidence of neutrino oscillations

and reconciled the Homestake findings with the solar model prediction [11–13].

Neutrinos are the last Standard Model particles for which the masses have not been

measured. Our knowledge of neutrino oscillations indicates that at least two of the

three known neutrinos1 have masses greater than zero, but the absolute mass scale is

unknown. This problem is now under siege from two opposing directions. The first

approach involves KATRIN, a laboratory experiment the size of a small factory that

measures the energy spectrum of electrons produced in radioactive decay [14]. Since

neutrinos are massive, they carry away a small amount of mass energy, which shows up

1The electron neutrino, muon neutrino, and tau neutrino; see Chapter 3.

3
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100Mpc

fν = 0%

λfs

fν = 10%

Figure 1.1: The distribution of galaxies depends on the neutrino mass fraction fν . The plots
show the distribution of dark matter halos (where galaxies are born) in simulations without and
with neutrinos. The arrow on the right shows the free-streaming length λfs, corresponding to
the size of collapsing regions that neutrinos can escape. This was much larger in the past. The
radius of the circles is about 650 million light-years. The size of the dots indicates halo mass.

in the energy spectrum of electrons produced in the same interaction. While KATRIN is

ongoing, future experiments are planned with even greater sensitivity [15]. The second

approach involves a multitude of astronomical observatories [16–18] that search for the

gravitational effects of neutrinos. Although individual neutrinos must be very light, they

were created in large numbers in the Big Bang (hundreds per cm3 today), making them

the most abundant particles in the Universe, second only to photons. This means that

their collective mass has a gravitational effect of cosmological consequence [19–22].

One of the most promising sources of information on neutrinos is the large-scale distri-

bution of galaxies in the Universe [23–25]. Because their masses are small, neutrinos

move much faster than other particles given the same kinetic energy. This allows them

to escape regions that are collapsing under the influence of gravity, which inhibits the

growth and clustering of galaxies. Figure 1.1, which is based on computer simulations,

shows that galaxies become less clustered as the neutrino mass fraction fν increases from

0% to 10%. At this level, the effect of neutrinos can even be seen by eye, but the mass

fraction could be as small as 0.45%. To detect neutrino masses, we must therefore be

able to distinguish between 0% and 0.45% with statistical significance. This requires not

only large numbers of observations, but also theoretical calculations that are accurate at

the sub-percent level. In Part II of this thesis, we will develop new tools for accurate

neutrino calculations and show that this requirement can be met.
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Completing the laboratory and cosmological measurements of the neutrino mass is one

of the major challenges for physics in the coming years. If the two measurements agree,

it would demonstrate that the additional radiation seen in the early Universe2 is really

due to neutrinos, confirming a basic prediction of the Big Bang model: the existence of a

Cosmic Neutrino Background. It would also confirm that we understand the formation of

structure in the Universe at the sub-percent level and constrain the properties of the dark

sector [26, 27]. At the same time, as with the solar neutrino problem, any tension could

indicate a flaw in our models, suggesting non-standard neutrino properties or cosmology.

Even absent a laboratory measurement, cosmological data can be tested against neutrino

oscillations and establish the way neutrino masses are ordered [28, 29]. The measurement

is obviously important for particle physics, constraining the mechanism that generates

neutrino masses, which must involve physics beyond the Standard Model [30–32].

The thesis is divided into three parts:

• Part I. Background: The first part introduces some background material on

cosmology and neutrinos, but is intended to be brief.

• Part II. Technology: This part develops methods for doing highly accurate

computer simulations of the evolution of neutrinos and the formation of structure in

the Universe. We begin by introducing a new method for evaluating statistics of the

neutrino distribution, which can be used on-the-fly in simulations and significantly

reduces the amount of noise without making any approximations. We then develop

a perturbation theory for dark matter in the presence of neutrinos and use this to

accurately determine the initial conditions of the simulations. Finally, we consider

the initial conditions of the neutrinos themselves, taking into account the fact that

neutrinos move at nearly the speed of light throughout much of cosmic history.

• Part III. Prediction: In the third part, we present two applications of the

new methods. First, we perform a comprehensive analysis of the local neutrino

background. Among other things, we forecast event rates for direct detection

experiments and show that the largest structures in the Universe cast shadows on

the neutrino background. In the last chapter, we present the first results from a

new suite of galaxy formation simulations, called FLAMINGO. We demonstrate

that the outflows of black holes are more powerful in models with neutrinos and

discuss the implications for future observations.

However, we begin in the next section with an accessible introduction to one of the first

astronomical indicators of the neutrino mass, by way of analogy to moonlight.

2The detections of Neff ≈ 3 from the Cosmic Microwave Background and light elemental abundance.
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Figure 1.2: This painting by Claude-Joseph Vernet (1771) depicts a Mediterranean seaport at
night. I’d like to imagine that this is Miletus and that the philosophers by the fire are engaged in
a debate about moonlight, perhaps putting their theory to test.

1.1. A moonlight parable

Could you use a magnifying glass to set a piece of paper on fire with moonlight? The

answer is counter-intuitive to many, as reflected by online discussions of this topic [33–36].

The apparent magnitude of a full moon is m◦ = −12.74, compared with m⊙ = −26.74 for

the sun. This means that the moon is only 1/400 000 times as bright as the sun. Could

we compensate with a really big magnifying glass or a clever system of lenses? We will

use geometry to show that this is not possible. Bear with me; the same reasoning will

also tell us something about the neutrino mass and the nature of dark matter.

There is a limit to the extent to which light can be magnified. If light is concentrated

onto a smaller area, then its angular spread must increase. In the following box, we

motivate the law of conservation of étendue, which says that the quantity

U = A sin2 θ, (1.1.1)

is constant for a bundle of light rays. In this expression, A is the area covered by the

light and θ is the spread in directions.



7 1.1. A moonlight parable

S

d

r

θ
2θ

A = 4πd2

p

Figure 1.3: Geometric illustration of conservation of étendue, based on a similar figure in [37].

Consider the set-up depicted in Fig. 1.3. A spherical source S of radius r emits light

that propagates outward until it hits a larger surface A of radius d. At a point p

on A, the light from S is spread over an angle θ determined by the tangents to S

that intersect in p. The area of the surface is A = 4πd2. Trigonometry tells us that

A sin2 θ = 4πr2 = AS , where AS is the surface area of the source. As this holds

for an arbitrary surface at any distance d, we have in fact shown that the product

A sin2 θ is conserved as the light spreads out.

If the surface A were the interface between two media with refractive indices n1 and

n2, then the incoming angle θ1 and outgoing angle θ2 would be related by Snell’s law:

n1 sin θ1 = n2 sin θ2. Hence, in that case, the conserved quantity would be An2 sin2 θ.

This holds more generallya and is known as the law of conservation of étendue [37].

For simplicity, we set n = 1 above, but this does not affect our conclusion.

aTechnically, the conserved quantity is dU = n2dA cos θdΩ, where n is the refractive index of the
medium, dA is the area element, and dΩ is the solid angle.

What does this mean for our moonlit fire? The best we could hope to do is concentrate

the light from an incoming area Ain onto an area Aout, related by

Cmax =
Ain

Aout
=

sin(θout)
2

sin(θin)2
≈ 50 000, (1.1.2)

where we used the fact that the maximum angular spread for the output is θout = 90◦

and that the angular size of the moon is θin = 0.26◦. It follows that the maximum flux is

still only 1/8 that of the unmagnified sun. Since pieces of paper do not spontaneously
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ignite when left out in the sun, no magnifying glass will do the trick with moonlight.

The magnification makes it appear as if the moon fills the sky and, at some point, we

simply run out of sky.

Notice that the étendue of a bundle of light is the product of the spread in location (A)

and the spread in direction (sin2 θ) of the rays. The equivalent for a group of particles

would be the product of the spread in position (∆x) and spread in momentum (∆p). In

fact, the two are entirely equivalent: étendue can be seen as a volume in phase space.

Phase space is the 6-dimensional space in which particles are simultaneously assigned a

position (x, y, z) and momentum (px, py, pz). Both étendue and phase space volume are

related to entropy. They are all measures of spread and disorder. It is worth noting that

while étendue is conserved for idealized optics, it may increase in practice but can never

decrease. The equivalent statement for particles is that their volume in phase space can

only grow or stay the same. This may call to mind the second law of thermodynamics.

In the 1930s, astronomers found that stars and galaxies were moving faster than could

be explained with Newtonian mechanics, given the amount of matter that was visible

[38–40]. This eventually led to the notion that galaxies could be immersed in halos of

invisible dark matter [41–44]. A simple model for the distribution of mass in a galaxy is

the singular isothermal sphere. At radius r, the mass density in this model is given by

ρ(r) =
σ2

2πGr2
, (1.1.3)

where G is Newton’s constant and σ is the spread in velocities of the particles.

During the 1970s, neutrinos were thought to be perfect candidates for dark matter [45–47].

They could be produced in abundance during the Big Bang, do not emit any light, and

definitely exist. If neutrinos are responsible for the additional mass in galaxies, they must

clump together sufficiently strongly. However, just as we saw for moonlight, neutrinos

cannot be compressed beyond a certain limit. In a classic paper, Tremaine & Gunn [48]

used the conservation of phase space volume to make a statement about the neutrino

mass, under the assumption that neutrinos dominate the mass in galaxies.

In the early Universe, neutrinos were not clumped together but distributed nearly

homogeneously. If the initial spread in positions was (∆xin)
3 and if the maximum

concentration is Cmax, then the mass density of the neutrinos satisfies

ρ(r) ≤ Cmax
mν

(∆xin)3
, (1.1.4)

where mν is the neutrino mass.



9 1.1. A moonlight parable

Neutrinos belong to the class of fermion particles, which satisfy the Pauli exclusion

principle. This principle states that no two particles can occupy the same quantum

state. In phase space, quantum states can be thought of as discrete points separated by

multiples of Planck’s constant h. The Pauli exclusion principle then imparts the following

inequality on the phase space volume:

∆x3∆p3 ≥ h3. (1.1.5)

Demanding that the initial phase space volume (in the early Universe) is less than or

equal to the final phase space volume (when they are part of the halo), we find that the

neutrinos cannot be compressed by more than

Cmax =
(∆xin)

3

(∆xout)3
=

(∆pout)
3

(∆pin)3
=
m3
νσ

3

h3
(∆xin)

3, (1.1.6)

where we used (∆pin)
3 ≥ h3/(∆xin)

3 and ∆pout = mνσ. Note that it is the conservation

of phase space volume and not just the exclusion principle that gives rise to the limit.

The same argument would work for classical particles following a Maxwell-Botzmann

distribution3. Combining equations (1.1.3), (1.1.4), and (1.1.6), we conclude that

mν ≥
[

h3

2πGσr2

]1/4
. (1.1.7)

This says that the neutrino mass mν must be larger than some quantity that depends on

the radius r and velocity dispersion σ of galaxies, connecting the modest neutrino with

objects comprising billions of suns.

In the original paper [48], this argument led to a value of mν ≥ 24 eV. Not long after, a

laboratory measurement of mν ≈ 30 eV for the electron neutrino was reported [49]. This

was spectacular, because a mass of this magnitude would correspond to a flat Universe

dominated by neutrinos. However, some of the first cosmological simulations showed that

the distribution of galaxies and the properties of galaxy clusters in such a model would

be incompatible with observations [24, 50, 51], suggesting that the reported value was

wrong. Indeed, a recent laboratory constraint from KATRIN indicates that mν ≤ 0.8 eV

[14], which on its own shows that neutrinos cannot be responsible for more than ∼ 20%

of the dark matter. In this case, the bound (1.1.7) does not apply and we must resort to

alternative calculations. Nevertheless, this short history reveals that the simultaneous

pursuit of cosmological and laboratory strategies is of tremendous value.

3But not for particles with a Bose-Einstein distribution, which is unbounded at low energies.





Cosmology
2

This chapter introduces the ΛCDM model, the Eulerian and Lagrangian

approaches to the perturbation theory of structure formation, and the

role of N -body simulations. We establish conventions and point out

ways in which neutrinos are special.

2.1. The ΛCDM model

The ΛCDM model, fashionably called the standard model of cosmology, ties together a

range of observations of the Universe at different epochs with an economical theory and a

limited number of parameters [52–54]. Let us be equally parsimonious in our recitation of

its ingredients. In its simplest form, the ΛCDM model assumes a spatially homogeneous

and isotropic geometry given by the Friedmann-Lemâıtre-Robertson-Walker metric1

ds2 = −dt2 + a(t)2dx2, (2.1.1)

with a scale factor a(t), whose present value is normalized to 1. In an expanding Universe,

the wavelengths of photons emitted at time t are redshifted by a factor 1+z = a(t)−1. We

will frequently work with conformal time τ , defined such that ds2 = −a2(dτ2 − dx2).

According to the model, the main categories of matter are dark energy, cold dark matter,

baryons, neutrinos, and photons. The assumptions of homogeneity and isotropy imply

that matter behaves as a perfect fluid, described in terms of an energy density ρ(t) and

pressure P (t). In the rest frame of the fluid, we can write the conservation of energy as

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0, (2.1.2)

where overdots denote time derivatives. For a constant equation of state w = P/ρ, the

solution is

ρ(t) ∝ a(t)−3(1+w). (2.1.3)

1In this chapter and the next, we set c = 1.

11
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A gas of non-relativistic particles has negligible pressure (w = 0), whereas a photon gas

has radiation pressure (w = 1/3), and dark energy has negative pressure (in its simplest

form, w = −1). Neutrinos are rather special, having transitioned from relativistic to

non-relativistic velocities in recent cosmic history (0 < w(t) < 1/3). Given the total

energy density ρ of all these species, the Friedmann equation gives the Hubble rate as

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ. (2.1.4)

Energy densities are conveniently expressed as fractions of a critical value ρcrit =

3H2
0/(8πG), where H0 ≡ 100h km s−1Mpc−1 is the value of the Hubble constant:

Ωi =
ρi
ρcrit

, with i = c,b, ν, γ,Λ (2.1.5)

for cold dark matter (CDM), baryons, neutrinos, photons, and dark energy. The Hubble

rate can then be expressed as

H2 = H2
0

[
Ωc,0 +Ωb,0

a3
+Ων(a) +

Ωγ,0
a4

+ΩΛ

]
, (2.1.6)

where subscript 0 indicates present values. Approximately, Ωc,0 = 0.26, Ωb,0 = 0.05,

Ωγ,0 = 5 × 10−5, ΩΛ = 0.68. The evolution of the neutrino density Ων(a) depends

non-trivially on the neutrino temperature Tν and masses mν,i (Chapter 3). Its present

value is related to the sum of neutrino masses:

Ων,0 ∼=
∑
mν

93.14h2
, (2.1.7)

where the masses are in eV and the value is somewhere in the range Ων,0 ≲ 0.007. Closure

implies that
∑

iΩi = 1, eliminating one free parameter. To describe the geometry, we

therefore need the following parameters: h,Ωcb,Ωγ , Tν ,mν,i, where Ωcb = Ωc +Ωb.

2.2. Structure formation

At the time of CMB decoupling, z ≈ 1100, density perturbations in the Universe are of the

order 10−5 and nearly Gaussian, as shown in Fig. 2.1. Perhaps its greatest achievement

is that the ΛCDM model can explain how these perturbations grow into the observed

large-scale structure (depicted in simulated form in Fig. 1.1), through the processes of

gravitational collapse and hierarchical structure formation.
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Figure 2.1: Temperature anisotropies of the Cosmic Microwave Background as measured by
the Planck satellite [55]. Variations are O(10−5) after subtracting the dipole perturbation. In
Chapter 7, we will make predictions for the analogous map of the Cosmic Neutrino Background.

The density field can be decomposed as

ρ(x, τ) = ρ̄(τ) [1 + δ(x, τ)] , (2.2.1)

where ρ̄(τ) is the mean density and δ(x, τ) the density contrast. The statistical properties

of a Gaussian random field with mean zero are completely determined by its power

spectrum P (k), defined as

⟨δ(k)δ(k′)∗⟩ = (2π)3δ(3)(k+ k′)P (k), (2.2.2)

where δ(k) is the Fourier transform of the density contrast, δ(3) the Dirac delta function,

and we dropped the time dependence for a moment. In its simplest form, the model calls

for two additional parameters (As, ns) to describe the power spectrum:

P (k, τ) =
2π2

k3
As

(
k

kp

)ns−1

T (k, τ)2, (2.2.3)

where As is the scalar amplitude, ns the spectral index, kp = 0.05Mpc−1 a pivot scale,

and T (k, τ) a transfer function that relates the density perturbations at some later time

τ to the primordial perturbations encoded by As and ns. The normalization As can also

be expressed in terms of the amplitude of matter fluctuations on 8h−1Mpc scales σ8.

To set the stage, let us first consider the basics of structure formation without neutri-

nos, mostly following [56]. We will point out where common assumptions break down
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for neutrinos. Allowing for perturbations in the metric (2.1.1), assuming only scalar

perturbations are present and working in Newtonian gauge, we have

ds2 = a(τ)2
[
−(1 + 2ψ)dτ2 + (1− 2ϕ)dx2

]
, (2.2.4)

where ϕ and ψ are the perturbations, ϕ being equal to the Bardeen potential Φ. In the

non-relativistic limit, anisotropic stress vanishes and (ϕ− ψ) = 0. This is not the case in

the presence of neutrinos, so long as the relativistic tail of the distribution function is

important. Ignoring neutrinos, the Poisson equation reads

∇2Φ(x, τ) =
3

2
Ωm(τ)(aH)2δ(x, τ), (2.2.5)

where Ωm = Ωcb = Ωc +Ωb and δ(x, τ) is the mass-weighted density contrast of CDM

and baryons. For collisionless non-relativistic particles (i.e. generally not neutrinos) with

mass m, moving in a gravitational potential Φ, the equations of motion are

dx

dτ
=

p

ma
,

dp

dτ
= −ma∇Φ. (2.2.6)

Liouville’s theorem that phase-space density is conserved gives rise to the collisionless

Boltzmann equation, also known as the Vlasov equation,

df

dτ
≡ Lf ≡

[
∂

∂τ
+

dx

dτ
· ∇+

dp

dτ
· ∇p

]
f = 0, (2.2.7)

where L is the Liouvillian and f(x,p, τ) the phase-space distribution function.

2.2.1. Eulerian approach

In Eulerian perturbation theory, also known as standard perturbation theory or SPT, the

particle description is related to a fluid description by taking moments of the distribution

function. For non-relativistic particles, we define

ρ(x, τ) ≡ a−3

∫
d3p m f(x,p, τ), (2.2.8)

ρ(x, τ)u(x, τ) ≡ a−3

∫
d3p

p

a
f(x,p, τ), (2.2.9)

ρ(x, τ)ui(x, τ)uj(x, τ) + σij(x, τ) ≡ a−3

∫
d3p

pipj
ma2

f(x,p, τ), (2.2.10)
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where σ is the stress tensor. Taking moments of the Boltzmann equation (2.2.7) gives

∂δ

∂τ
+∇ · [(1 + δ)u] = 0, (2.2.11)

∂u

∂τ
+ aHu+ u · ∇u = −∇Φ− ∇σ

ρ
. (2.2.12)

Notice that the lowest moment of the Boltzmann equation gives the continuity equa-

tion (2.2.11), which depends on the first moment u. Meanwhile the first moment of

the Boltzmann equation gives the Euler equation (2.2.12), which depends on the second

moment σ. We can carry out this expansion to successively higher moments, which is a

common strategy used to compute the neutrino perturbations (see Section 3.3). Unlike

for neutrinos near or below the free-streaming scale kfs, the stress tensor can often be

neglected for CDM and baryons: σ ≈ 0. In this case, we obtain at first order:

∂δ

∂τ
+∇ · u = 0, (2.2.13)

∂u

∂τ
+ aHu = −∇Φ. (2.2.14)

Separating δ(x, τ) = D(τ)δ(x) into temporal and spatial factors, these two equations can

be combined with the Poisson equation (2.2.5) to give

d2D

dτ2
+ aH

dD

dτ
=

3

2
Ωm(τ)(aH)2D(τ). (2.2.15)

Picking out the fastest growing solution, one obtains the first-order growth factor D+(τ).

If Ωm = 1, one finds D+(τ) = a(τ). Analytic expressions can also be given in the cases

that Ωm < 1; ΩΛ = 0 [57], Ωm+ΩΛ = 1 [58, 59], and relevant in the presence of neutrinos:

Ωcb +ΩΛ < 1 (Chapter 5). The first-order solution can then be used in (2.2.11–2.2.12)

to obtain equations for the next higher order and so on. Indeed, the SPT equations can

be conveniently written and solved in recursive form [60, 61].

2.2.2. Lagrangian approach

An alternative philosophy is the Lagrangian approach. In Lagrangian perturbation theory

(LPT), one follows fluid trajectories

x(q, τ) = q+ψ(q, τ), (2.2.16)
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where ψ is a displacement vector that maps initial particle positions q to final positions x.

In the single-stream limit, the Eulerian density contrast can be related to the displacement

via the conservation of mass equation

δ(x, τ) =
1

J(q, τ)
− 1, (2.2.17)

where J(q, τ) is the determinant of the Jacobian of the coordinate transformation q → x.

The single-stream limit is not a good approximation for neutrinos near or below the

free-streaming scale kfs, precluding the use of this equation. The Lagrangian version of

the Euler equation (2.2.12) becomes

∂2x

∂τ2
+ aH

∂x

∂τ
= −∇xΦ. (2.2.18)

To first order, Eq. (2.2.17) is simply δ = −∇qψ. Using this in the equation of motion

above, one obtains the Zel’dovich solution [62]

∇ ·ψ(τ) = −D(τ)δ(q, τ), (2.2.19)

where D(τ) satisfies the same equation (2.2.15) as the first-order Eulerian solution. This

perturbation theory can similarly be carried out to higher orders. As in the case of SPT,

LPT can be formulated and solved recursively [59, 63–66].

2.3. Simulations

In addition to the basic Eulerian and Lagrangian schemes described above, many alterna-

tive perturbation theories have been developed over the years [e.g. 67–72]. Nevertheless,

all perturbation theories eventually break down and their range of applicability is limited

to linear and mildly nonlinear scales. This can be understood in many different ways.

The spherical collapse model shows that self-gravitating objects form when the linear

density contrast δ ≈ 1.68, at which point an expansion in δn cannot be expected to

converge. In practice, SPT breaks down long before this. Gravitational collapse also

generates virial motions, such that σij ≠ 0 inside collapsed regions. From the point

of view of effective field theory, integrating out short wavelength modes generates an

effective pressure term [73]. Either way, at this point the single stream limit is no longer

a good approximation. Although formally LPT remains consistent until after first shell

crossing [74], the use of (2.2.17) implies that it is no longer physical.

While perturbation theory eventually breaks down, the underlying phase-space description
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in terms of characteristic equations (2.2.6) and Boltzmann equation (2.2.7) remains valid.

These equations can be solved even in the deeply nonlinear régime with numerical

techniques. The essence of N -body simulations is to solve the Boltzmann equation by the

method of characteristics, i.e. by sampling the phase-space distribution f(x,p, τ) with

discrete particles and tracing their evolution along characteristic curves. Conceptually,

the simplest approach is to compute the gravitational forces by direct summation over

the N(N − 1)/2 particle pairs. In practice, far more efficient algorithms are used.

Many modern N -body codes solve at least part of the problem with a spectral method,

known as the particle mesh (PM) approach [75]. Pure PM codes are fast but have a

force resolution determined by the size of the mesh, which limits their usefulness to low

resolution applications. To resolve highly nonlinear structures, adaptive methods are

called for. Two of the most common methods are the Tree-PM and FMM-PM algorithms,

which use the PM method for periodic large-scale gravitational forces and octree- or

multipole-based methods for the efficient evaluation of small-scale forces with greatly

improved force resolutions. The two main codes used in this thesis, swift [76] and

gadget-4 [77] employ these two algorithms. Other popular codes include2 glam [78],

fastpm [79], abacus [80], pkdgrav3 [81], ramses [82], arepo [83], cubep3m [84],

gevolution [85], concept [86], and gramses [87].

Of particular interest are applications at the interface between cosmological perturbation

theory and simulations, a field that is now blossoming. The obvious example is the

set-up of initial conditions for cosmological simulations, a major theme in this thesis.

While in the single-stream limit (an assumption we cannot generally make for neutrinos;

Chapter 6), the initial displacements and velocities of particles are uniquely determined by

the LPT solutions ψ(n) and v(n) = dψ(n)/dτ . Going to higher n brings with it substantial

benefits in terms of accuracy and computational expense [88, 89] (see Chapter 5). But

there are many other exciting applications. LPT has been to great success to speed up

the convergence of PM simulations [90] and can also be used as a cheap control variate to

improve the statistical properties of ensembles of simulations [91–93]. In similar vein, the

basic method for neutrino simulations introduced in Chapter 4 can be extended to higher-

order versions with perturbation theory. Combining the power of N -body simulations

to model the collisionless dynamics of dark matter particles with a Lagrangian bias

expansion allows the clustering of biased tracers to be modelled accurately and efficiently

[94]. On the Eulerian side, the SPT recursion relations can be formulated on a grid,

enabling generative analyses that are directly analogous to simulations [95].

Finally, N -body simulations provide the ideal platform for studying galaxy formation

2We will soon be adding our own to the mix: a scalable PM code called sedulus.
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in the cosmological context. There exist two broad philosophies in this field [96–98].

The first is to develop semi-analytical galaxy formation models based on the merger

histories and properties of dark matter halos in collisionless N -body simulations [e.g. 96].

The second is to integrate self-consistent galaxy formation models with hydrodynamical

simulations [e.g. 98], with methods such as smoothed particle hydrodynamics [99]. Since

the resolution of cosmological simulations is typically insufficient to resolve all relevant

processes, such as the evolution of stellar populations or the physics of black hole accretion

disks, effective “subgrid” models are used with free parameters that can be matched

to observations or chosen based on theoretical considerations. We will consider a first

application of the new FLAMINGO suite of hydrodynamical simulations in Chapter 8.



Neutrinos
3

This chapter introduces some background material on neutrinos in the

standard model, neutrino oscillations, current mass bounds, the role

of neutrinos in cosmology, and cosmological perturbation theory for

massive neutrinos. The structure mirrors that of the previous chapter,

introducing basic concepts first before dealing with linear perturbations.

3.1. Neutrinos in a nutshell

In the Standard Model of particle physics, neutrinos are massless fermions that only

participate in weak interactions [100]. There are three left-handed particles accompanying

charged leptons with different flavours: the electron neutrino νe, the muon neutrino νµ,

and the tau neutrinos ντ , and three corresponding anti-neutrinos ν̄e, ν̄µ, ν̄τ . The part of

the Standard Model Lagrangian involving neutrinos is

L ⊃ −g
2 cos θW

∑

α=e,µ,τ

ν̄αLγ
µναLZ

0
µ −

g√
2

∑

α=e,µ,τ

ν̄αLγ
µℓ−αLW

+
µ + h.c., (3.1.1)

where g is the coupling constant, θW the Weinberg angle, γµ are Dirac matrices, ℓαL ∈
{eL, µL, τL} are the left-handed components of the charged leptons, and Wµ and Zµ
are the weak bosons. The first term gives rise to neutral current interactions amongst

neutrinos and the second term to charged current interactions between neutrinos and

charged leptons. Neutrinos can be produced through processes like β-decay:

3H → 3He+ + e− + ν̄e. (3.1.2)

Interactions such as these produce neutrinos of definite flavour. However, the observation

of neutrino oscillations implies that the flavour states να (with α = e, µ, τ) are superposi-

tions of mass eigenstates νi (with i = 1, 2, 3). The two are related by a unitary matrix,

known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [9, 10]:

να =

3∑

i=1

U∗
αiνi. (3.1.3)

19
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The mass states νi are eigenstates of the Hamiltonian with eigenvalue1 Ei = (p2+m2
i )

1/2.

We can derive the expression for the neutrino oscillation probability by making some

simplifying assumptions, which ultimately gives the same result as a more complete

treatment based on wave packets [101–103]. Since the time evolution is described by the

Hamiltonian, it is the mass eigenstates that propagate: |νi(t)⟩ = e−iEit|νi⟩. Now suppose

that a neutrino is produced with a definite flavour α and definite momentum p. After

propagating some distance, the flavour β is picked out with probability

P (α→ β) = |⟨νβ|να(t)⟩|2 =
∣∣∣∣∣

3∑

i

UβiU
∗
αie

−iEit

∣∣∣∣∣

2

, (3.1.4)

where it was used that the mass states form an orthonormal basis ⟨νi|νj⟩ = δij . For

relativistic neutrinos with equal momentum p, we can expand

Ei − Ej ∼=
∆m2

ij

2p
, (3.1.5)

where ∆m2
ij ≡ m2

i −m2
j . Pulling out a common factor e2iEjt for any j, we then obtain

P (α→ β) =

∣∣∣∣∣
3∑

i

UβiU
∗
αi exp

(
−i∆m2

ijt

2p

)∣∣∣∣∣

2

. (3.1.6)

This equation demonstrates two key properties of neutrino oscillations. First, it shows

that neutrino oscillations are only possible if the mixing matrix is non-trivial, U ̸= I,

and in the presence of non-zero neutrino masses, ∆m2
ij ̸= 0. It also shows that neutrino

oscillations are sensitive to the squared mass differences ∆m2
ij , but not to the absolute

mass scale. Cosmological observables are therefore complementary to neutrino oscillation

experiments by being sensitive to the sum of neutrino masses
∑
mν ≡∑imi.

The parameter space describing neutrino oscillations is quite large, consisting of the mass

squared differences ∆m2
ij and the matrix elements Uαi, which can be parametrized in

terms of 3 mixing angles θij and up to 3 phases. Our knowledge of these parameters

was accumulated over more than two decades by a large number of experiments using

neutrinos from various sources [103]. Solar neutrinos were first observed by the Homestake

experiment [7], while their oscillations were established by the Sudbury Neutrino Observa-

tory [12]. Solar neutrino oscillations provide information about ∆m2
21, which is therefore

known as the solar mass splitting. Atmospheric neutrinos are produced when cosmic

rays hit the atmosphere, producing pions and kaons which subsequently decay, leading to

1We set the scale factor a = 1 in this subsection for simplicity.
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predominantly muon and electron neutrinos. They were first detected at the Kolar Gold

Fields [104], while their oscillations were discovered by the Super-Kamiokande experiment

[11] and contribute information about |∆m2
31|, which is known as the atmospheric mass

splitting. In addition, particle accelerators and nuclear reactors provide controlled sources

of neutrinos used by many oscillation experiments starting with KamLAND [13]. The

current state of knowledge of the mass splittings, derived from global fits to the entire

experimental landscape, can be summarized as [29]

∆m2
21 = m2

2 −m2
1 = 7.42+0.21

−0.20 × 10−5 eV2, (3.1.7)

∆m2
3ℓ = m2

3 −m2
ℓ =

{
+2.514+0.028

−0.027 × 10−3 eV2 (NO),

−2.497+0.028
−0.028 × 10−3 eV2 (IO).

(3.1.8)

The sign of ∆m2
21 is known to be positive, but the sign of ∆m2

31 is unknown, which

leaves two possible mass orderings: m1 < m2 < m3 with ℓ = 1 (normal ordering; NO) or

m3 < m1 < m2 with ℓ = 2 (inverted ordering; IO). There is currently a slight preference

for the normal ordering from oscillation data [28, 29]. Two crucial numbers can be

derived from these mass splittings. If the lightest neutrino is massless, we find that the

minimum possible value for the sum of neutrino masses is

∑
mν ≥

{
0.06 eV (NO),

0.10 eV (IO).
(3.1.9)

This is illustrated by the red and black curves in Fig. 3.1. As mentioned above, cosmolog-

ical observables are sensitive to the mass sum, but much less so to the individual masses

[105, 106]. Even so, cosmology can rule out the inverted ordering by establishing that∑
mν < 0.1 eV. The strongest cosmological bounds are now hinting in this direction

[107–110], but the inverted ordering cannot yet be ruled out [111].

The best terrestrial constraint on the absolute mass scale comes from the KATRIN

detector, which places a bound of mβ < 0.8 eV at the 90% C.L. [14] on an effective mass

for neutrinos involved in the β-decay of tritium (3.1.2), given by

mβ =
√
c212c

2
13m

2
1 + s212c

2
13m

2
2 + s213m

2
3, (3.1.10)

where cij = cos θij and sij = sin θij . Assuming a degenerate mass spectrum, m1 ≈ m2 ≈
m3, this corresponds to a neutrino mass sum of

∑
mν < 2.4 eV. Recent cosmological

limits are much stronger, as shown in Fig. 3.1, and are quoted below at the 95% C.L.
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Figure 3.1: Constraints on the sum of neutrino masses,
∑
mν , from KATRIN [14] and Planck [112],

showing the sum as a function of the lightest mass for the two possible mass orderings (normal
and inverted). The dotted line indicates where the masses become degenerate: m1 ≈ m2 ≈ m2.

Assuming a degenerate mass spectrum, the Planck temperature, polarization, and lensing

likelihoods give a constraint of
∑
mν < 0.24 eV or

∑
mν < 0.26 eV, depending on the

details of the high-ℓ polarization analysis [112].

By complementing the CMB measurements from Planck with probes of the large-scale

structure, even stronger constraints are possible. Adding BAO data from BOSS DR12,

SDSS MGS, and 6dFGS leads to
∑
mν < 0.12 eV (degenerate),

∑
mν < 0.15 eV (normal),

and
∑
mν < 0.17 eV (inverted) [113]. A full-shape analysis of the BOSS DR11 redshift-

space power spectrum, combined with Planck temperature and polarization data and

JLA of Type Ia supernovae leads to
∑
mν < 0.18 eV [114]. Combining instead SDSS

DR14 BOSS and eBOSS Lyman-α forest data with Planck temperature, polarization,

and lensing data and 6dFGS, SDSS, BOSS-LOWZ, CMASS DR12 measurements of BAO

leads to the strongest constraint yet:
∑
mν < 0.09 eV [108]. A similarly strong bound

was set through a combination of Planck temperature, polarization, and lensing data,

Pantheon Type Ia supernovae, SDSS BAO and RSD measurements of the growth rate:∑
mν < 0.09 eV by [109].

It is noteworthy that a recent analysis of the final data release of Planck (PR4) [115]

found a significantly relaxed upper bound of
∑
mν < 0.4 eV. This is primarily attributed
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to the disappearance of an anomalous preference for additional gravitational lensing

(AL = 1.036 ± 0.051 is now consistent with no additional lensing-induced smoothing),

which is known to have a profound effect on the inferred neutrino mass [113, 115–117].

Based on this incomplete survey of results, all assuming the most basic ΛCDM +
∑
mν

model, we make the following observations:

1. The assumed mass ordering becomes important as we near the hierarchical régime.

2. Full-shape power spectrum analyses are not necessarily the most constraining.

3. Geometry (BAO, supernovae, etc.) contributes a lot of constraining power.

4. The most constraining mass bounds stack many different cosmological observables

from different epochs.

5. Addressing the lensing anomaly in the CMB is important for a reliable neutrino

mass constraint.

Neutrinos are exactly massless in the Standard Model [100]. Therefore, we know that

the model is incomplete and must be extended to account for neutrino masses. This

can be done in many different ways. One possibility is to add one or more right-handed

neutrinos, νR, which allows Dirac mass terms of the form

L = mν̄LνR + h.c., (3.1.11)

to be generated, similar to the way that mass terms are generated for the charged leptons

through the Higgs mechanism. If neutrinos are Majorana particles, masses can also be

generated without introducing additional particles. However, this comes at a price. The

neutrino would be its own anti-particle and conservation of lepton number would be

broken. Hence, determining the way that neutrino masses are realized in nature would

tell us about the symmetries and particles of the theory that lies beyond.

One way to determine whether neutrinos are Dirac or Majorana is to search for processes

that violate lepton number, such as neutrinoless double β-decay [118]. Neither neutrino

oscillations nor the usual cosmological probes can distinguish between Dirac and Majorana

neutrinos. However, the distinction does become relevant for direct detection of the

Cosmic Neutrino Background, as we will see in Chapter 7.
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3.2. Thermal history

In the early Universe, neutrinos are in thermal equilibrium with a hot plasma of electrons,

positrons, and photons through frequent weak interactions [53, 119–121]. As space

expands and the plasma cools down, the interaction rate Γ ∼ T 5 decreases faster than

the expansion rate H ∼ T 2, such that the interactions become rare when Γ ∼ H. This

happens around z ∼ 1010 when Tdec ∼ 1MeV. While the neutrinos are in thermal

equilibrium with the plasma, their energies follow a Fermi-Dirac distribution

f(x,p, τ) =
gs

(2π)3

[
1 + exp

(
p

kbTν

)]−1

, (3.2.1)

where gs is the number of degrees of freedom and Tν is the neutrino temperature.

Because the masses mν ≪ 1MeV, the neutrinos are relativistic at this stage and the

energy ϵ =
√
p2 + a2m2

ν ≈ p. Therefore, the energy distribution can be expressed in terms

of the neutrino momentum p. After the neutrinos decouple, the neutrino temperature

and momentum both scale with redshift ∝ (1 + z)−1. Therefore, by Liouville’s theorem,

the momentum distribution (3.2.1) is preserved at zeroth order even after the neutrinos

become non-relativistic.

The electron mass, me = 0.51MeV, is not much smaller than the temperature at which

neutrinos decouple. Hence, not long after neutrino decoupling, it becomes favourable

for electrons and positrons to annihilate. Assuming that the neutrinos have completely

decoupled at this point, the entropy from e− and e+ is entirely transferred to the photons,

heating their temperature relative to the neutrino temperature by a factor

Tγ
Tν

=

(
g+
g−

)1/3

=

(
11

4

)1/3

, (3.2.2)

where g+ = 11/2 and g− = 2 are the effective numbers of degrees of freedom before and

after electron-positron annihilation. Since the photon temperature is very well known

from the CMB, Tγ = 2.7255K, it is convenient to express neutrino-related quantities

relative to the corresponding photon quantities. The number and energy densities of a

relativistic particle species with phase-space distribution (3.2.1) are given by

n(x, τ) = a−3

∫
d3p f(x,p, τ) =

3

4

ζ(3)

π2
T 3, (3.2.3)

ρ(x, τ) = a−4

∫
d3p ϵ f(x,p, τ) =

7

8

π2

30
T 4. (3.2.4)

For bosons with a Bose-Einstein distribution, similar to (3.2.1) but with a minus sign,
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we obtain the same expression without the factors 3/4 and 7/8. In the relativistic limit,

we therefore obtain

nν =
3

11
Neff nγ , ρν =

7

8

(
4

11

)4/3

Neff ργ , (3.2.5)

where we have introduced the effective number of neutrino species Neff ≈ 3. In reality,

neutrino decoupling does not happen instantaneously and the process partially overlaps

with electron-positron annihilation. This introduces small perturbations in the energy

distribution (3.2.1) and also means that the temperatures are not exactly related by

(3.2.2). A full treatment of these processes, also accounting for flavour differences and

neutrino oscillations, yields a slightly greater value of Neff = 3.046 [122, 123]. We can

absorb the leading effect of the spectral distortions to (3.2.1) by slightly modifying the

neutrino temperature whilst keeping the Fermi-Dirac form [124], which is the strategy

followed in this thesis.

In the non-relativistic limit, ϵ = amν , we instead obtain ρν =
∑
mν,i nν,i, which gives

Eq. (2.1.7). In general, we need to evaluate the integral (3.2.4) numerically and sum over

the different neutrino species to obtain Ων(a) = ρν(a)/ρcrit.

3.3. Linear perturbations

Although more limited in the range of scales where it is accurate, an Eulerian fluid

approximation can also be given for massive neutrinos. This is sometimes useful for

speeding up calculations or to gain physical insight [124, 125]. If we treat the neutrinos as

a perfect fluid, the stress tensor becomes σij = −Pδij . We can then write the continuity

equation (2.2.11) and Euler equation (2.2.12) to first order as

∂δ

∂τ
+∇ · u = 0, (3.3.1)

∂u

∂τ
+ aHu = −∇Φ+ c2s∇2δ, (3.3.2)

where we introduced the sound speed c2s = δP/δρ. Although obviously incorrect, it

is useful to consider the case where neutrinos are the dominant matter species with

Ωm = Ων = 1. In that case, the combination of the Poisson equation (2.2.5) with the

continuity and Euler equations above yields

∂2δ

∂τ2
+ aH

∂δ

∂τ
=

[
3

2
(aH)2 − k2c2s

]
δ, (3.3.3)
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which is analogous to the Jeans equation. Defining the free-streaming scale as [120]

kfs =

√
3

2

aH

cs
, (3.3.4)

we see that on small scales, k ≫ kfs, the growth of density perturbations is suppressed

and δ oscillates with frequency kcs. By contrast, on very large scales, k ≪ kfs, neutrinos

cluster like cold dark matter. If we approximate the sound speed by the velocity dispersion

of the unperturbed Fermi-Dirac distribution (3.2.1), we find that

c2s ≈ σ2ν =
15ζ(5)

ζ(3)

T 2
ν

m2
ν

. (3.3.5)

This additionally shows that the free-streaming wavenumber scales as kfs ∝ mν .

A complete treatment of linear neutrino perturbations is also possible [126]. We briefly

review the derivation here. To start with, the neutrino phase-space distribution is

decomposed into a background part and a perturbation part via

f(x,p, τ) = f̄(p) [1 + Ψ(x, p, n̂, τ)] , (3.3.6)

where f̄(p) is the homogeneous Fermi-Dirac distribution (3.2.1) and the momentum

p = pn̂ has been decomposed into a magnitude p and a unit vector n̂. With the metric

in Newtonian gauge (2.2.4), the acceleration can be written to first order as

dp

dτ
= p

∂ϕ

∂τ
− ϵ

p
p · ∇ψ. (3.3.7)

Substituting this into the Boltzmann equation (2.2.7) and switching to Fourier space, we

find that the perturbation Ψ evolves as

∂Ψ

∂τ
+ i

p

ϵ
(k · n̂)Ψ +

d ln f̄

d ln p

[
∂ϕ

∂τ
− i

ϵ

p
(k · n̂)ψ

]
= 0.

To solve this equation, Ψ is decomposed into a Legendre series2

Ψ(k, n̂, p, τ) =
∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Ψℓ(k, p, τ)Pℓ(k̂ · n̂). (3.3.8)

2Note that we define the Ψℓ slightly differently than [126].
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Figure 3.2: Non-linear density perturbations for a neutrino species with mν = 0.1 eV, computed
with the δf method (Chapter 4), relative to the linear theory prediction at k = 0.6Mpc−1. The
grey bar represents a ±10% error.

The Boltzmann equation then becomes an infinite tower of equations:

∂Ψ0

∂τ
= −pk

ϵ
Ψ1 +

∂ϕ

∂τ

d ln f̄

d ln p
, (3.3.9)

∂Ψ1

∂τ
=
pk

3ϵ
(Ψ0 − 2Ψ2)−

ϵk

3p
ψ
d ln f̄

d ln p
, (3.3.10)

∂Ψℓ

∂τ
=

pk

(2ℓ+ 1)ϵ
[ℓΨℓ−1 − (ℓ+ 1)Ψℓ+1] , for ℓ ≥ 2. (3.3.11)

This system of equations can be solved numerically if we truncate the hierarchy at some

ℓ = ℓmax + 1. In Einstein-Boltzmann codes like camb [127] and class [128], this is often

done with an Ansatz such as

Ψℓmax+1 =
(2ℓmax + 1)ϵ

pkτ
Ψℓmax −Ψℓmax−1.

The momentum dependence sets these equations apart from the equivalent for photons.

The neutrino perturbations Ψ need to be integrated for pairs of (k, p) instead of being

functions of k alone. Without further approximations, this is often the slowest part of

Einstein-Boltzmann runs. Although the growth of neutrino perturbations is suppressed

below the free-streaming scale, they nevertheless become nonlinear at late times (Fig. 3.2),
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such that eventually the perturbation theory described above breaks down. Therefore,

it is natural to use cosmological simulations (Section 2.3) to self-consistently solve for

the gravitational evolution of cold dark matter, baryons, and massive neutrinos. Various

methods exist to treat neutrinos in N -body simulations (see [129, 130] for reviews). In

the next chapter, we will present a novel method and compare it with several alternatives

from the literature.
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Optimal nonlinear treatment
4

This chapter deals with the treatment of massive neutrinos in cosmo-

logical N -body simulations. It introduces a novel simulation method

that is unbiased and consistent, converging to the exact solution in the

large particle limit. We prove optimality, in terms of noise, within a

broad family of hybdrid methods that encompasses the commonly-used

particle and linear mesh methods as special cases.

An optimal nonlinear method for simulating relic neutrinos

Abstract: Cosmology places the strongest current limits on the sum of

neutrino masses. Future observations will further improve the sensitivity

and this will require accurate cosmological simulations to quantify possible

systematic uncertainties and to make predictions for nonlinear scales, where

much information resides. However, shot noise arising from neutrino thermal

motions limits the accuracy of simulations. In this paper, we introduce a

new method for simulating large-scale structure formation with neutrinos that

accurately resolves the neutrinos down to small scales and significantly reduces

the shot noise. The method works by tracking perturbations to the neutrino

phase-space distribution with particles and reduces shot noise in the power

spectrum by a factor of O
(
102
)
at z = 0 for minimal neutrino masses and

significantly more at higher redshifts, without neglecting the back-reaction

caused by neutrino clustering. We prove that the method is part of a family of

optimal methods that minimize shot noise subject to a maximum deviation

from the nonlinear solution. Compared to other methods we find permille

level agreement in the matter power spectrum and percent level agreement in

the large-scale neutrino bias, but large differences in the neutrino component

on small scales. A basic version of the method can easily be implemented

in existing N -body codes and allows neutrino simulations with significantly

reduced particle load. Further gains are possible by constructing background

models based on perturbation theory. A major advantage of this technique is

that it works well for all masses, enabling a consistent exploration of the full

neutrino parameter space.

31
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4.1. Introduction

The discovery of neutrino masses [11–13] calls for extensions of the Standard Model of

particle physics and provides the only known form of dark matter. Measuring the masses

is crucial for understanding their origin and for constraining cosmological parameters.

While the neutrino mass squared differences are known to a few percent, the absolute

masses are unknown and there remain two possible mass orderings: normal and inverted.

A rich experimental programme is aimed at determining the mass ordering, measuring

the mass scale set by the lightest neutrino and completing the overall picture of neutrino

properties. Cosmology plays a vital role in this programme due its ability to provide

an independent and complementary constraint on the sum of neutrino masses,
∑
mν

[23, 25] with a potential sensitivity below 0.02 eV [131–133].

Ongoing and planned neutrino experiments will establish the mass ordering with a

discovery expected by the end of the decade. Although oscillation data have shown

persistent hints of normal ordering, this preference has decreased to 1.6σ over the past year

[29]. The mass ordering can be established by exploiting matter effects in long baseline

neutrino oscillation experiments, as in dune [134], and in the Earth for atmospheric

neutrinos, as in orca [135] and Hyper-K [136], as well as vacuum oscillations in

medium baseline reactor neutrino experiments, specifically Juno [137]. Each approach

is challenging, so information from multiple sources is essential. Single β-decay is the

experimental strategy of choice for direct mass searches and provides a model-independent

determination of neutrino masses, in particular the effective electron-neutrino mass. The

katrin experiment is ongoing and has put a bound of mβ < 0.8 eV , assuming quasi-

degenerate neutrino masses, with the aim of reaching mβ < 0.2 eV in the near future [14].

Project 8 will have the potential to set a limit of mβ < 0.04 eV [15]. Neutrinoless double

β-decay can also provide information on neutrino masses [138–140], albeit entangled with

the value of the Majorana CP-violating phases and affected by uncertainty in the nuclear

matrix elements [141]. For a recent review see e.g. [142].

The complementarity between these different strategies is of great interest. A cosmological

measurement of
∑
mν would provide a target for direct mass searches [143, 144]. An

incompatibility between the two would indicate a non-standard cosmological evolution or

new neutrino properties. A cosmological bound of
∑
mν < 0.1 eV would suggest a normal

mass ordering, which should be confronted with evidence from neutrino experiments.

Finally, there is a strong synergy with neutrinoless double β-decay. Knowing the mass

ordering and the sum of neutrino masses would narrow down the range of values for the

effective Majorana mass parameter, providing a clear target for future experiments.

Measuring the mass scale, and potentially ruling out the inverted mass ordering, is
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therefore a major target of near-term cosmological surveys, including desi [16], euclid

[17], and lsst [18]. In order to analyse these surveys and to extract a mass measurement,

there has been a substantial effort to model precisely the effects of massive neutrinos

on structure formation. From the analytical side, a swathe of new techniques such as

time RG perturbation theory [114] and effective field theories [145, 146], promise to

push the validity of perturbation theory into the quasi-linear régime. In the nonlinear

régime, N -body simulations offer the most accurate picture of structure formation. Yet

incorporating neutrinos into N -body simulations has proved to be a challenge and some

doubts remain about the validity of neutrino simulations on small scales.

The main obstacle to simulating neutrinos is that, in contrast to cold dark matter and

baryons, neutrinos have a significant velocity dispersion. This effectively turns the

3-dimensional problem of structure formation, for which N -body simulations are well

suited, into a 6-dimensional phase-space problem. If no provisions are made, a far greater

number of simulation particles is needed to sample properly the phase-space manifold. A

further complication arises from the fact that neutrinos are relativistic at high redshifts,

such that simulations need to handle both the régime where neutrinos are best described

as radiation and the régime where neutrinos are better described as massive particles.

The first 3-dimensional cosmological neutrino simulations were carried out by [147] and

[50], when neutrinos were thought to be much more massive and the velocity dispersion

not as problematic. Modern simulations with sub-electronvolt neutrinos were pioneered

by [148, 149]. Neutrinos are most commonly included in simulations as particles whose

initial velocity is the sum of a peculiar gravitational component and a random component

sampled from a Fermi-Dirac distribution [148–160]. The main difficulty with particle

simulations is shot noise caused by the velocity dispersion. This problem is more severe

for the smallest neutrino masses, which are observationally most relevant. Because

neutrinos are a subdominant component, the error in the total matter distribution is

relatively small. However, shot noise obscures the small-scale behaviour of the neutrinos

and is clearly undesirable if one is interested in the neutrino component and its effect on

structure formation.

To overcome the problems with particle simulations, grid simulations evolve the neutrino

distribution using a system of fluid equations, which requires a scheme to close the

moment hierarchy at some low order [149, 161–168], or as a linear response to the non-

relativistic matter density [116, 169–171]. Even more efficiently, but in the same spirit

of treating neutrinos perturbatively, the total effect of neutrinos has been included as a

post-processing step in the form of a gauge transformation [172]. While these approaches

do not suffer from shot noise, they are not able to capture the full nonlinear evolution of
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the neutrinos at late times. This problem becomes more severe for more massive neutrinos,

but is present even for minimal neutrino masses. A number of hybrid simulations have

therefore combined grid and particle methods [164, 173, 174], typically transitioning from

a fluid method to a particle method at some redshift when the neutrinos become nonlinear.

Another interesting alternative is to integrate the Poisson-Boltzmann equations directly

on the grid [175].

The method proposed in this paper can be considered as a type of hybrid method that

integrates neutrino particles but only uses the information contained in the particles to

the extent that it is necessary. This is accomplished by dynamically transitioning from

a smooth background model to a nonlinear model at the individual particle level. It

relies on the noiseless (but approximate) background model as much as possible, thereby

producing the smallest amount of shot noise possible whilst solving the full nonlinear

system. The main idea is to decompose the phase-space distribution function f(x, p, t)

into a background model f̄(x, p, t) which can be solved without noise, and a perturbation

which is carried by the simulation particles:

f(x, p, t) = f̄(x, p, t) + δf(x, p, t). (4.1.1)

The choice of background model is arbitrary, but the method performs best whenever

f̄(x, p, t) is strongly correlated with f(x, p, t), in a way that will be made precise below. If

the choice of background model is poor, the method performs no worse than an ordinary

N -body simulation, except for the small amount of overhead associated with evaluating

f̄(x, p, t). Note that the background model is just an approximation of f and can itself

be a perturbed Fermi-Dirac distribution.

This type of method has a long history in other fields and is variably known as the method

of ‘perturbation particles’ or more commonly as the ‘δf method’, which is the name

we shall adopt. [176] and [177] discussed the method of perturbation particles in stellar

dynamics. Around the same time, the δf method arose in plasma physics [178–181].

While the method of perturbation particles is not widely known today in astronomy,

the δf method is standard fare in plasma physics. A major difficulty in astronomical

applications is the absence of a background model that captures enough of the dynamics

to be useful. In contrast, plasma physicists are often interested in turbulent phenomena

arising in an otherwise stable system, with a natural candidate for a background model

f̄ at hand. Our work is motivated by the fact that there is also a natural background

model for cosmic neutrinos, namely the phase-space density predicted by perturbation

theory. There is a major synergy between δf N -body simulations proposed here and

work on improved perturbation theory methods. A better background model means
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a smaller dependence on the particles and therefore further reduced shot noise. We

will show however that even the 0th order approximation, which is just a homogeneous

redshifted Fermi-Dirac distribution, provides a significant improvement over ordinary

N -body methods.

The remainder of the paper is structured as follows. In Section 4.2, we derive the δf

method and describe its use as a variance reduction method for N -body simulations. We

also show that the method is part of a family of optimal hybrid methods. In Section 4.3,

we illustrate the method with a one-dimensional test problem. In Section 4.4, we discuss

how the method can be embedded in relativistic simulations. Our suite of simulations is

then described in Section 4.5. The method is compared with commonly-used alternatives

in Section 4.6. We consider higher-order background models based on perturbation theory

in Section 4.7. Finally, we conclude in Section 4.8.

4.2. Derivation

The phase-space evolution of self-gravitating collisionless particles is described by the

Poisson-Boltzmann equations, which in the single-fluid case read

Lf ≡
[
∂

∂t
+ p · ∇ −∇Φ · ∇p

]
f = 0, (4.2.1)

∇2Φ = 4πGρ = 4πG

∫
d3p
√
m2 + p2f(x, p, t). (4.2.2)

Here, Φ is the gravitational potential, ρ the energy density, and f the phase-space density.

In general, the Liouville operator, L, acts on each fluid separately and the potential

should be summed over all fluid components. In relativistic perturbation theory, this

system can be written as a hierarchy of moment equations for the neutrinos, which

is solved to first order with Boltzmann codes such as class [128] or camb [127]. To

extend our predictions to the nonlinear régime, we can use N -body codes, which solve

the Poisson-Boltzmann system by the method of characteristics. Characteristic curves

satisfy

dx

dt
= p and

dp

dt
= −∇Φ. (4.2.3)

By construction, one finds that df/dt = Lf = 0 along these curves. To infer statistics of

the phase-space distribution, we simulate N of these trajectories using marker particles.

We can freely choose the phase-space distribution, g, of our simulation particles at the

initial time. For instance, assuming an initially homogeneous spatial distribution and
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momenta from the Fermi-Dirac distribution, we would have g ∝ (exp{p/Tν} + 1)−1.

Typically, one chooses g(x, p, t0) = f(x, p, t0). Since Lg = 0, this equality then holds for

all t ≥ t0. In general, a phase-space statistic is given by

A(x, t) = ⟨A⟩p =
∫

d3p f(x, p, t)A(x, p, t)

∼= 1

N

N∑

i=1

f(xi, pi, t)

g(xi, pi, t)
A(xi, pi, t). (4.2.4)

Following the usual choice of setting g(x, p, t0) = f(x, p, t0), the sum reduces to a simple

average over marker particles. The error in our estimate of A is then σA/
√
N . Hence,

if the distribution, f(x, p, t), has a large intrinsic scatter, we need a large N to beat

down the noise. Alternatively, we might construct an estimator with a smaller error. Let

us therefore write the phase-space distribution function, f , as a background model, f̄ ,

together with some perturbation, δf :

f(x, p, t) = f̄(x, p, t) + δf(x, p, t). (4.2.5)

We can reduce the error by only using the particles to estimate the perturbed distribution,

δf . We replace (4.2.4) with

A(x, t) =

∫
d3p

[
f̄(x, p, t) + δf(x, p, t)

]
A(x, p, t) (4.2.6)

∼= Ā(x, t) +
1

N

N∑

i=1

δf(xi, pi, t)

g(xi, pi, t)
A(xi, pi, t). (4.2.7)

This is useful if

Ā(x, t) =

∫
d3p f̄(x, p, t)A(x, p, t) (4.2.8)

can be computed efficiently and if f and f̄ are strongly correlated, so that the second

term is small. The simplest choice of background model is a homogeneous Fermi-Dirac

distribution

f̄(x, p, t) =
gs

(2π)3
1

eap/(kbTν) + 1
, (4.2.9)

with gs internal degrees of freedom. Here, a = a(t) is the scale factor, Tν = 1.95 K the

present-day neutrino temperature, and ap the present-day momentum. Since the noise

reduction scales with the correlation between f̄ and f , we can achieve further gains by
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adding more information to the background model. The obvious next step is to use

perturbation theory to improve on (4.2.9). This option is considered in Section 4.7.

4.2.1. Implementation

In Appendix 4.E, we outline the practical steps needed to implement the method in

cosmological N -body simulations. In essence, whenever we sum over neutrino particles,

such as when calculating the gravitational force on a test particle, we replace the particle

mass with a statistically weighted mass:

m→ mwi = m

[
δf(xi, pi, t)

g(xi, pi, t)

]
= m

[
f(xi, pi, t)− f̄(xi, pi, t)

g(xi, pi, t)

]
. (4.2.10)

The weights are computed by comparing the true phase-space density with the background

model. We know the background model density, because we can evaluate (4.2.9) at any

time. We also know the true density for each particle, because Lf = Lg = 0 along

characteristic curves. It is therefore sufficient to record the two numbers f and g at

the initial sampled location of each particle in phase space. We note that any sampling

distribution g is valid provided that g ̸= 0 almost everywhere f ̸= 0. We will continue

to use the common choice, g = f , where f is the Fermi-Dirac distribution. In general,

the optimal choice of g will depend on the phase-space statistic of interest. Choosing a

distribution g that oversamples slower particles can provide an additional reduction in

shot noise. Given the homogeneous Fermi-Dirac background model (4.2.9), the neutrino

density becomes

ρν(x, t) = ρ̄ν(t) +

N∑

i=1

mwi δ
(3)(x− xi). (4.2.11)

Cosmological N -body simulations only compute the perturbed potential, since the

background density ρ̄ is accounted for in the background equations. The only change

affecting the force calculation is therefore the weighting of the particles. The mean squared

weight, I = 1
2⟨w2⟩, is a convenient statistic to quantify the importance of including the

neutrino particles. We show the evolution of I for a
∑
mν = 0.1 eV simulation with the

homogeneous background model (4.2.9) in Fig. 4.1. At early times, particles deviate very

little from their initial trajectory and the weights are negligible. We find that I = 4×10−7

at z = 20, I = 3× 10−6 at z = 10, and I = 2× 10−5 at z = 5. This early reduction is

important as shot noise at high redshifts inhibits the growth of physical structure and

can seed additional fluctuations that grow by gravitational instability. At late times,

when nonlinear effects become important, the weights increase to I = 2× 10−4 at z = 2,
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Figure 4.1: Evolution of particle weights for a
∑
mν = 0.1 eV cosmology, starting at different

redshifts zi. The mean squared particle weight ⟨w2⟩ represents the effective reduction in shot
noise.

I = 1× 10−3 at z = 1, and I = 6.7× 10−3 at z = 0, independently of the starting redshift

of the simulation. This translates to a reduction in shot noise, σ = 2V I/N , or an effective

increase in particle number at z = 0 by a factor (2I)−1 = 75. Finally, we note that one

can save computational resources by integrating only a fraction of the neutrino particles

as long as I remains small. We do not consider this possibility here.

4.2.2. Variance reduction

The δf method is an application of the much more general control variates method

[181, 182]. This is a variance reduction technique commonly used in Monte Carlo

simulations. See [91] for another recent application in cosmology. We briefly review

the method here. Let A be a random variable with an unknown expectation E[A] = A.

Given independent random samples Ai, the standard estimator is given by

Â =
1

N

N∑

i=1

Ai. (4.2.12)

The error in Â is

σ2Â = E
[
(A− Â)2

]
=
σ2A
N
. (4.2.13)
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Let B be another random variable for which the expected value E[B] = B is known. By

adding and subtracting, we can construct a control variate estimator for A:

Âcv =
1

N

N∑

i=1

[Ai − αBi] + αB, (4.2.14)

for any constant α. Like Â, this is an unbiased and consistent estimator of E[A]. However,

the error in Âcv is given by

σ2Âcv
=

1

N

(
σ2A + α2σ2B − 2α cov(A,B)

)
. (4.2.15)

Therefore, the error can be reduced if A and B are correlated. Differentiating, we see

that the optimal value of α is given by

α∗ =
cov(A,B)

σ2B
. (4.2.16)

For the Fermi-Dirac model considered above, α∗ is very close to unity and we simply set

α = 1 at all times. In general, the value of α∗ could be estimated at runtime. This is

useful if we add more information about the unknown variable and extend the method

to a linear combination of multiple control variates (see Section 4.7). Furthermore,

the method can still be useful when a control variate is not exactly known but can be

estimated more efficiently than A.

4.2.3. Optimality

Let us consider how the δf method compares to other methods. To allow for the broadest

possible comparison, we will write down an arbitrary hybrid method that involves some

background model, f̄(x, p, t), such as a fluid description or linear response, and a discrete

sampling of the distribution with arbitrary particle weights, wi(t):

fhyb(x, p, t) = α(t)f̄(x, p, t) +
∑

i

wi(t)δ
(3)(x− xi)δ

(3)(p− pi), (4.2.17)

where α(t) is a weight function for the background. This parametrization captures

virtually all existing methods. The ordinary N -body particle method corresponds to

(α,wi) = (0, 1) at all times. Pure grid-based methods have (α,wi) = (1, 0). Existing

hybrid methods switch over from a grid method to a particle method after some time

ts, which corresponds to (α,wi) = (1 − q, q) with q(t) = I[t ≥ ts] a step function. For
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simplicity, we consider only the case where all particles are switched on at the same time,

but the argument extends readily to the more practical case where only some particles

are switched on. Given a choice of weight function, α(t), for the background, what choice

of particle weights is optimal?

Let f(x, p, t) be the nonlinear distribution and g(x, p, t) the sampling distribution of the

markers. In the continuous limit, the expected error in the number density is given by

⟨ϵ⟩ =
∫

d3p fhyb(x, p, t)−
∫

d3p f(x, p, t) (4.2.18)

=

∫
d3p
(
w(x, p, t)g(x, p, t) + α(t)f̄(x, p, t)− f(x, p, t)

)
. (4.2.19)

Meanwhile, the shot noise term in the power spectrum grows as the square of the particle

weights, so we want to minimize

1
2

〈
w2
〉
=

∫
d3p 1

2w(x, p, t)
2g(x, p, t), (4.2.20)

subject to the constraint ⟨ϵ⟩ ≤ η for some maximum error η. Assume that the bound is

saturated. First, let us look for solutions that extremize the integral constraint. We find

the unique solution

w =
δf

g
with δf = f − αf̄. (4.2.21)

This is the δf method introduced above, with optimal α given by (4.2.16). Any further

solution should extremize the Lagrangian,

L = 1
2w(x, p, t)

2g(x, p, t) + λ
(
w(x, p, t)g(x, p, t) + α(t)f̄(x, p, t)− f(x, p, t)

)
. (4.2.22)

Writing down the Euler-Lagrange equations

[w + λ] g∇pw + 1
2w

2∇pg + λw∇pg = λ∇pf − αλ∇pf̄ , (4.2.23)

one finds a family of quadratic solutions

w = −λ±
√
λ2 + 2λ

δf

g
with δf = f − αf̄. (4.2.24)

The case λ = 0 corresponds to the trivial solution w = 0. For λ ̸= 0, we obtain the
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minima

w =
δf

g
− 1

2λ

(
δf

g

)2

+O
(

1

λ2/3
δf

g

)3

. (4.2.25)

These solutions correspond to small perturbations around the δf method that trade some

accuracy for a possible reduction in shot noise. However, since the leading correction

is ∝ (δf)2, this is only possible if the background model is skewed with respect to the

nonlinear solution. Typically, the skewness and the additional reduction in shot noise is

negligible. In fact, since the next-to-leading correction is positive, shot noise increases if

the skewness is small.

We have shown that within the broad class of hybrid methods described by equation

(4.2.17), δf -type methods of the form (4.2.25) minimize the amount of shot noise, subject

to the constraint that the error in the number density remains below a certain bound.

The δf method given by (4.2.21), recovered from (4.2.25) in the limit λ → ∞, is the

unique solution for which the expected error ⟨ϵ⟩ = 0. The optimal value of α is given by

(4.2.16), but will be close to 1 if f̄ ≈ f . This is the method we will use exclusively, with

the choice α = 1.

4.3. One-dimensional example

We now illustrate the method by applying it to a one-dimensional test problem with a

known solution. Readers that are satisfied with the mathematical derivation may skip

ahead to Section 4.4.

4.3.1. The elliptical sine wave

Consider the 1-dimensional collisionless Boltzmann equation

∂f

∂t
+ p

∂f

∂x
− ∂Φ

∂x

∂f

∂p
= 0, (4.3.1)

where the particles move under a conservative force F (x) = −Φ′(x). Let us assume a

periodic potential given by

Φ(x) = sin2(x/2). (4.3.2)
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Figure 4.2: Density profiles for the 1-dimensional elliptical sine wave test problem. We counted
particles in 100 bins of width ∆θ = 4π/100 to create the empirical density profiles. On the left,
an ordinary N -body simulation with N = 106 particles was used. On the right, the N -body
simulation was extended with a δf step.

The steady-state solution can be found to be:

f(x, p) =
ρ̄√
2πσ2

exp

(
− p2

2σ2
+

cos(x)

2σ2

)
, (4.3.3)

in terms of the background density ρ̄ and velocity dispersion σ. The corresponding

density profile ρ(x) is given by

ρ(x) =

∫ ∞

−∞
f(x, p)dp = ρ̄ exp

(
cos(x)

2σ2

)
. (4.3.4)

To find the general time-dependent solution, we use the method of characteristics. The

characteristic equations are

dx

dt
= p,

dp

dt
= −1

2
sin(x). (4.3.5)

These equations of motion can be solved in terms of the energy E = 1
2p

2 + sin2(x/2),

which gives

sin(x/2) = sn
(
±
√
E/2(t− τ)

)
, (4.3.6)

where τ is an integration constant and sn(x) is the Jacobi elliptic sine function with
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elliptic modulus k = 1/
√
E [183]1. Assuming a homogeneous Gaussian distribution with

mean p̄ for the initial momenta p at time t = 0,

f(x, p, 0) =
ρ̄√
2πσ2

exp

(
−(p− p̄)2

2σ2

)
, (4.3.7)

the general solution, f(x, p, t), at later times is a complicated expression involving elliptic

sines and arcsines. The details are given in Appendix 4.A. We replicate the problem

using N -body methods. A large number of particles are initialized on the interval

x ∈ [0, 4π] with momenta drawn from the initial distribution (4.3.7). The particles are

then integrated using

∆x = p∆t, ∆p = −1

2
sin(x)∆t. (4.3.8)

In addition to the ordinary N -body method, we use a δf method, where the background

model is given by

f̄(x, p, t) =
ρ̄√
2πσ2

exp

(
−(p− p̄)2

2σ2

)
, (4.3.9)

and the weights are updated during each step via w = δf/f . The corresponding density

profiles are shown in Fig. 4.2. The plots were created using N = 106 particles and

the model parameters are ρ̄ = σ = 1 and p̄ = 10. The results show that both the

ordinary N -body simulation and the simulation with a δf step can reproduce the exact

solution. However, the ordinary method is very noisy, whereas the δf method reproduces

the expected profiles with remarkable accuracy. The reason for this is that while the

distribution itself has a large dispersion, resulting in noisy results for the ordinary method,

the perturbations from the steady solution are small, which allows the δf method to

work. This is exactly analogous to the cosmic neutrino background.

4.4. Relativistic effects

Neutrinos are relativistic at early times, which introduces some subtleties when evolving

such a species with a Newtonian code. Including relativistic effects is not necessary for

the δf method, but we include them in our simulations to allow a consistent comparison

with several recent works [154, 166, 172]. Furthermore, the higher-order δf methods

1For E → ∞, we have snx → sinx, meaning that x ∝ t. The particle ‘ignores’ the potential. For
E = k = 1, snx = tanhx, meaning the particle asymptotically approaches a potential peak. For
E < 1, the particle is bounded and oscillates between peaks.
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discussed in Section 4.7 provide a natural setting for including these effects without

neglecting the nonlinear evolution of the neutrinos.

There are broadly speaking two philosophies when it comes to the inclusion of relativistic

effects in Newtonian N -body codes, which one might call the “active” and “back-scaled”

approaches. In the former, relativistic effects are actively included, while in the latter, the

initial conditions are modified by rescaling the linear power spectrum in such a way that

the desired outcome is recovered at z = 0. In this chapter, we take an active approach.

In Chapter 5, we instead take the back-scaled approach. By construction, both methods

agree at the linear level at z = 0, but predictions at high redshift may differ. Generally,

however, these effects are quite small. In both cases, it is convenient to choose a gauge in

which relativistic corrections are small to begin with.

We will work in the Newtonian motion framework of [184] and make modifications to

the initial conditions, long-range force calculation, and particle equations of motion as

outlined below.

4.4.1. Initial Conditions

To generate initial conditions for massive neutrinos and to set up the higher-order

background models (Section 4.7), accurate calculation of the linear theory neutrino

distribution function is indispensable. This can be done with the Boltzmann codes

camb [127] and class [128]. At their default settings, these codes produce accurate

total matter and radiation power spectra (their intended purpose), but the neutrino

related transfer functions (e.g. density and velocity) are not converged and can be very

inaccurate [165]. To obtain converged results, we post-process perturbation vectors from

class by integrating source functions up to multipole ℓmax = 2000. This prevents the

artificial reflection that can happen for low ℓmax. See Appendix 4.B for more details.

Initial conditions are then created using the post-processed transfer functions from class

in N -body gauge at z = 100. We do not follow the usual approach of back-scaling the

present-day power spectrum, but use the so-called forward Newtonian motion approach

[184, 185]. To our knowledge, forward Newtonian motion initial conditions have always

been set up with the Zel’dovich approximation. However, this approximation is known to

be inadequate for precision simulations [88]. To go beyond Zel’dovich initial conditions, we

determine the Lagrangian displacement vectors ψ = x− q by solving the Monge-Ampère
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equation

ρ(x) = ρ̄(1 + δ(x)) = det

[
1 +

∂ψi(x)

∂qj

]−1

. (4.4.1)

This equation is solved numerically with a fixed-point iterative algorithm that exploits

the fact that the density perturbation δ is small. We note that this approach is not

equivalent to Lagrangian perturbation theory, but merely provides a more accurate map

from the Eulerian initial density field to a Lagrangian displacement field compared to the

Zel’dovich approximation. A detailed analysis of this method will be presented elsewhere.

Velocities were determined independently using the transfer function for the energy flux

θ = ik · v.

We used two different methods to generate initial conditions for the neutrino particles.

In the first method, neutrino particles were displaced randomly in phase space according

to the perturbed phase-space density function, fPT(x, p, t), including terms up to ℓ = 5.

This method was used for our (256 Mpc)3 simulations. However, we encountered some

problems with this method and later switched to the method presented in Chapter 6.

In this second method, which accounts also for higher multipoles, neutrino particles are

integrated in linear theory from z = 109 to the starting redshift z = 102 [150, 154, 186].

Both methods agree on small scales, but the latter method was found to be more accurate

on large scales, k < 10−2 Mpc−1. For this reason, we used the second method for our

(1Gpc)3 simulations.

4.4.2. Long-range forces

In a relativistic setting, the gravitational evolution is governed by the Einstein-Boltzmann

equations. We will approximate this system using a hybrid approach [187], in which dark

matter and massive neutrinos are evolved using a Newtonian N -body code complemented

with relativistic corrections to the fluid equations that are pre-solved in linear theory.

We will work in N -body gauge, which allows the fluid equations for dark matter to be

written in a particularly convenient form resembling the Newtonian equations solved by

conventional N -body codes. The continuity and Euler equations can then be written as

[185, 188]:

δ̇ +∇ · v = 0, (4.4.2)

v̇ + aHv = −∇ϕ+∇γNb, (4.4.3)
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where overdots denote conformal time derivatives, δ is the density contrast, v the peculiar

velocity, and H = ȧ/a2. All relativistic corrections are captured by the N -body gauge

term, ∇γNb, which arises from the anisotropic stress of relativistic species. In addition,

the scalar potential ϕ receives contributions from all fluid components:

∇2ϕ = 4πGa2
∑

i

δρi, (4.4.4)

where the sum runs over cold dark matter, baryons, neutrinos, and photons. Density

perturbations are actively calculated for all species. In the case of massive neutrinos and

the cold dark matter and baryon fluid, this is done with particles in the usual way. For

photons and massless neutrinos (and for some runs, the massive neutrinos2), this is done

by realizing the corresponding transfer functions from class on a grid as part of the

long-range force calculation in our N -body code swift.

In the absence of relativistic species, the N -body gauge term, ∇γNb, vanishes and the

continuity and Euler equations agree with the Newtonian equations solved in conventional

N -body codes. This makesN -body gauge useful as it allows one to set up initial conditions

in N -body gauge, evolve them in a Newtonian simulation, and give the results a relativistic

interpretation. The relativistic corrections become relevant at the 0.5% level on the

largest scales in our Gpc simulations. Ordinarily, these corrections are accounted for in

the initial conditions by back-scaling the present-day linear power spectrum, ensuring

that the linear power spectrum is recovered on large scales at z = 0. Here, instead, we

actively include these contributions with the aim of recovering the linear power spectrum

at earlier times as well.

4.4.3. Particle content

When simulating light neutrinos from high redshifts, we are evolving relativistic particles

in a Newtonian simulation. Such particles can reach superluminal speeds when evolved

using the ordinary equations of motion. Following [85], we initially addressed this issue

by replacing the equations of motion with special relativistic equations that are valid to

2Specifically, the linear theory runs and the runs with higher-order δf methods, as discussed in Sections
4.6 and 4.7, respectively.
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all orders in u:

u̇ = − 2u2 + a2√
u2 + a2

∇
(
ϕ− γNb

)
, (4.4.5)

ẋ =
u√

u2 + a2
. (4.4.6)

Here, a is the scale factor and u the comoving 3-velocity. However, we encountered two

problems with our original approach. The first is that a direct leapfrog implementation

of these equations is not symplectic due to the fact that the right-hand side of (4.4.5)

depends on u. As a consequence, phase-space density is not exactly conserved by the

discrete Hamiltonian, as assumed by the δf method. We investigate this issue further

in Appendix 4.D, where we offer an alternative solution and conclude that this is not

an issue in practice. The second problem is that using these equations, we did not

exactly reproduce linear theory on large scales. We ultimately traced this to the use of

a gauge-dependent definition of momentum in the derivation of Eq. (4.4.5), as will be

discussed in Chapter 6. For now, we simply note that a solution is to use the special

relativistic equation (4.4.6) together with the non-relativistic version of (4.4.5):

u̇ = −a∇
(
ϕ− γNb

)
. (4.4.7)

This choice not only ensures that the neutrinos move the correct subluminal distance

and that the integrator is symplectic, but also avoids the problem on large scales. We

used this second approach for our Gigaparsec simulations. On small scales, the evolution

of the neutrinos at late times is insensitive to their early evolution, making the difference

between (4.4.5) and (4.4.7) immaterial. For this reason, we present the original results

for our 256Mpc simulations, which used the first approach with (4.4.5) and (4.4.6).

A separate matter from the equations of motion is that the neutrinos have a relativistic

energy at early times. Using only the mass-energy, as is done for non-relativistic matter,

leads to underestimation of the matter power spectrum on large scales. To rectify this,

we replace the weighted mass of the particles with a weighted energy ϵ = m
√
a2 + u2.

Here, again the issue of the symplectic integrator plays a role. To ensure that u̇ does

not depend on current particle velocities, we used the alternative form ϵ = m
√
a2 + u20

for our Gigaparsec simulations. Here, u0 is the initial particle velocity at z = 100. This

approximation is extremely accurate, as substantial deviations from u0 only occur for

slow particles at late times in which case the mass term dominates (see Appendix 4.D).

For the 256Mpc simulations, we used the original form ϵ = m
√
a2 + u2.
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Table 4.1: Description of the simulations. The listed particle mass, mp, refers to the combined
cold dark matter and baryon particles. The neutrino fraction is listed as fν = Ων/(Ωcb +Ων).

Side Length Nc mp

[
M⊙

]
Nν

∑
mν fν

1024Mpc 10243 3.96× 1010 0 0.0 eV 0
1024Mpc 10243 3.93× 1010 10243 0.1 eV 0.0073
1024Mpc 10243 3.81× 1010 10243 0.5 eV 0.0376
256Mpc 5123 4.95× 109 0 0.0 eV 0
256Mpc 5123 4.92× 109 10243 0.1 eV 0.0073
256Mpc 5123 4.77× 109 10243 0.5 eV 0.0376

∑
m

ν
=

0
.1
eV

Linear theory Particle method δf method

∑
m

ν
=

0
.5
eV

Figure 4.3: Neutrino density plots of (256 Mpc)3 cubes at z = 0, simulated with two commonly-
used methods and with the δf method. The particle and δf simulations used Nν = 10243

particles. Shot noise is clearly visible for the particle method, although noticeably less so for∑
mν = 0.5 eV. The linear theory model fails to reproduce the small-scale behaviour. The δf

method solves both problems. The inset zooms in on a neutrino halo and should also be compared
with the linear response prediction in Fig. 4.4, which uses the same colour scale. The neutrino
fraction fν = Ων/(Ωcb +Ων) = 0.0073 for the top row and fν = 0.0376 for the bottom row.
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4.5. Simulations

We now describe our neutrino simulations, which were run on the cosma6 comput-

ing facility in Durham. We have implemented the δf method in the cosmological

hydrodynamics code swift [189, 190]. swift uses a combination of the Fast Multi-

pole Method for short-range gravitational forces and the Particle Mesh method for

long-range forces. It uses a 5th degree polynomial kernel for the force softening with

a single time-dependent softening length. The code uses a task-based parallelization

paradigm to achieve strong scaling on large clusters and obtain significant speed-ups

over competing N -body codes. The main simulations presented in this paper use the

basic version of the δf method with a homogeneous Fermi-Dirac distribution as back-

ground model. Our choice of cosmological parameters, based on Planck 2018 [112], is

(h,Ωc +Ων ,Ωb, As, ns) = (0.6737, 0.265, 0.0492, 2.097× 10−9, 0.9652). We run two sets

of simulations at different resolution to test the large-scale and small-scale behaviour of

various methods. The cube sizes and particle numbers are listed in Table 8.1.

4.5.1. Choice of neutrino masses

Neutrino oscillations indicate that there are three neutrino mass eigenstates with unknown

masses mi. The mass splittings have been measured with good precision and are

complemented by cosmological constraints on the sum of neutrino masses, as discussed

in Section 3.1. Given the limits discussed in that section, we consider three values for∑
mν , keeping the present-day value Ωm,0 = Ωcb,0 +Ων,0 fixed. Scenario one contains

three massless neutrinos, scenario two corresponds to the inverted mass ordering with∑
mν = 0.1 eV3, and scenario three to a degenerate spectrum with

∑
mν = 0.5 eV. The

first two models bracket the most interesting range of values 0 <
∑
mν < 0.1 eV. The

last model has surely been ruled out, but is included for several reasons. First of all,

the δf method reduces to the ordinary particle method in the large mass limit at late

times. Hence, the
∑
mν = 0.5 eV case provides a useful consistency check. Second,

when simulations are used to emulate statistics for parameter extraction, we should allow

for unlikely excursions in MCMC analyses without our simulation methods breaking

down [172]. Finally, in the extended parameter space around ΛCDM, for example

with a non-standard lensing amplitude, AL, or curvature, or when varying the dark

energy equation of state, the possibility of larger neutrino masses remains very relevant

[113, 114, 116, 191].

The two massive scenarios considered in this paper have degenerate neutrino masses

3Specifically, two 0.0486 eV neutrinos and one massless neutrino.
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Figure 4.4: Density plots of (256 Mpc)3 cubes at z = 0. The linear response method applies the
linear theory ratio δlinν (k)/δlincb (k) to the simulated CDM + baryon phases [169]. Compared to
the linear theory prediction, it performs remarkably well, but the neutrino halos around clusters
are significantly more diffuse compared to the particle and δf simulations (compare the zoomed
in halo with the δf prediction in Fig. 4.3). The resulting potential difference is shown in the last
column, with flowlines indicating the forces that are not present in the linear response model.

(2×0.05 eV and 3×0.167 eV). However, the δf method can easily be extended to account

for mass splittings. In that case, particles would be labelled with a given mass state, i,

and each state would have its own background model, f̄i. The reduction in shot noise is

largest for the smallest neutrino masses, placing different masses on a level footing. This

allows for better load balancing between different neutrino masses.

4.6. Results

We compare our neutrino δf method with three commonly-used alternatives. The most

common alternative is the ordinary N -body particle method, which is the same in every

respect as our method, but with the weighting step disabled. Next, we consider a linear

theory method based on [166] that does not evolve neutrino particles but instead realizes
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Figure 4.5: Neutrino probability density functions (pdf) at z = 0, computed on a 10243 grid
from the 256Mpc simulations, and smoothed with a Gaussian filter with radius R = 256 kpc. We
compare the δf method with three commonly-used alternatives. The particle and δf methods
agree in the high density tail, because the largest overdensities have enough particles to achieve a
high signal-to-noise ratio. Shot noise plagues the particle method, particularly in underdense
regions. The linear methods fail in the high density tail.

the linear theory neutrino perturbation in N -body gauge on a grid. The neutrinos are

then fully accounted for in the long-range forces. Finally, we consider the linear response

method of [169] in which the neutrino perturbation is calculated by applying the linear

theory transfer function ratio, δlinν (k)/δlincb (k), to the simulated CDM + baryon phases.

A visual inspection of the neutrino density plots shown in Figs. 4.3 and 4.4 reveals the

strengths and weaknesses of the four methods. Broadly, we see that the linear theory

method does not suffer from shot noise, but fails to reproduce the small-scale behaviour

resolved by the particle and δf methods. At the same time, shot noise is clearly visible

in the particle simulation with
∑
mν = 0.1 eV, despite using Nν = 10243 particles in

a 256 Mpc cube. This is evidently cured in the δf plot. We also see that shot noise

is much less of a problem for
∑
mν = 0.5 eV, but the δf plot is still less grainy than

the corresponding particle plot. Finally, Fig. 4.4 shows that the linear response method

greatly improves on the pure linear theory prediction, but still produces neutrino halos

that are too diffuse compared to the particle and δf simulations.

4.6.1. Neutrino component

We start with an analysis of the probability density function of the neutrino density field,

computed on a 10243 grid from the 256Mpc simulations. Refer to the plots in Fig. 4.5,
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Figure 4.6: Neutrino power spectra at z = 0. We compare the δf method with three commonly-
used alternatives. Shot noise enters the power spectrum at the constant level V/N = 1/64 for the
particle method. We also show a fit to the δf power spectrum (red curves), given by eq. (4.6.1).
The bottom panels show the cross-spectral coefficient rν,cb = Pν,cb/

√
PνPcb.

which bear out the basic picture sketched above. For the
∑
mν = 0.1 eV neutrinos, the

particle method is plagued by shot noise, but agrees with the δf method in the high

density tail where the particle number is sufficient to obtain a good signal-to-noise ratio.

The linear prediction fails in the high and low density tails. Finally, the linear response

method, which applies the linear theory ratio δν(k)/δcb(k) to the CDM + baryon phases,

is an intermediate case between the linear theory and δf methods. For the more massive

scenario, the situation is much the same, except that shot noise is much less of a problem

for the particle method on these scales.

Next, we consider two-point statistics and show the neutrino power spectrum at z = 0 in

Fig. 4.6, combining the large and small simulations to show a wide range of scales. We use

the Gpc simulations for k < 0.1Mpc−1 and the 256Mpc simulations for k ≥ 0.1Mpc−1.

As expected, all methods agree on linear scales, k ≲ 0.1Mpc−1, for both neutrino masses.

On smaller scales, linear theory significantly underpredicts the amount of neutrino

clustering. The linear response method also underpredicts the neutrino power spectrum,

but not by as much. The relative difference between the nonlinear power spectrum and

linear power spectrum is greater for neutrinos than for CDM and baryons. To account
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for this effect, we fit a nonlinear correction to the linear response power spectrum using

the measured δf power spectrum up to k = 1Mpc−1:

P fit
ν (k) = Pcb(k)

[
δlinν (k)

δlincb (k)

]2
eα+βk, (4.6.1)

and find α = 0.006± 0.004 and β = 0.90± 0.01 (
∑
mν = 0.1 eV) and α = −0.06± 0.03

and β = 0.34± 0.09 (
∑
mν = 0.5 eV). These are shown as the red curves in Fig. 4.6.

The particle simulations are clearly affected by shot noise, at the level of V/N = 1/64,

obscuring the neutrino signal on scales smaller than k = 0.2Mpc−1 for the lightest

scenario and on scales smaller than k = 1Mpc−1 for the more massive scenario. Using the

δf method, shot noise is significantly reduced in the former case (factor of 87) and slightly

reduced in the latter case (factor of 3.5), revealing a signal down to k = 1 − 2Mpc−1.

Hence, δf simulations can achieve a similar resolution independently of mass without

adjusting the particle number.

We also show the cross-spectral coefficient

rν,cb(k) =
Pν,cb(k)√
Pν(k)Pcb(k)

, (4.6.2)

which captures phase differences between the dark matter and neutrinos. By definition,

rν,cb = 1 according to the linear response method. However, this does not hold on small

scales as can be seen in the bottom panels. Up to the point where shot noise becomes a

problem, the particle and δf methods agree, demonstrating that rν,cb < 1 is a physical

effect. This is particularly clear for
∑
mν = 0.5 eV.

Next, we consider how well the simulations can resolve the extended neutrino halos

surrounding galaxies and clusters [192, 193]. In Fig. 4.7, we show stacked neutrino

profiles for halos with virial CDM + baryon mass Mcb in the range (5, 12) × 1014M⊙.
The particle and δf methods agree almost perfectly, once again because of the high

signal-to-noise ratio in the largest overdensities. In linear theory, the neutrino halos are

completely absent as is evident also from the cross-sections in Fig. 4.3. Finally, the linear

response method predicts neutrino halos that are too diffuse compared to the nonlinear

simulations, and with too little dispersion from the mean profile. The larger dispersion

found in the nonlinear simulations is not due to errors in individual profiles, but due to a

stronger correlation between Mcb and the local neutrino density.
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Figure 4.7: Stacked neutrino density profiles at z = 0 for halos with virial mass Mcb in the range
(5, 14) × 1014M⊙, computed with four different methods from the 256Mpc simulations. The
particle and δf curves overlap almost perfectly. The shaded area indicates the 1σ dispersion
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Figure 4.8: Neutrino bias relative to dark matter halos with virial mass, Mcb > 1012M⊙, on
scales, R = 30h−1 Mpc, computed with four different methods from the Gpc simulations at z = 0.
The δ̄ν(δh) relationship is approximately linear with slope equal to the neutrino bias b.

4.6.2. Neutrino bias

On larger scales, the neutrino density field can be reconstructed from the density of halos

for a given neutrino mass spectrum [157]. We therefore construct the halo overdensity
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field,

δh(x) =
nh(x)− n̄h

n̄h
, (4.6.3)

by calculating the number density, nh(x), of halos and the mean density, n̄h, at z = 0 in

our Gpc simulations identified using the halo finder velociraptor [194]. We restrict

attention to halos with virial mass, Mcb > 1012M⊙, and smooth δh and δν with a tophat

filter of comoving radius R = 30h−1 Mpc. Following [175], we study the mean neutrino

density at constant halo density δ̄ν(δh), defined in terms of the joint probability density

function P (δν , δh) as

δ̄ν(δh) =

∫
dδνδνP (δν , δh). (4.6.4)

This relationship is close to linear with slope equal to the neutrino bias, given by

b =
⟨δνδh⟩
⟨δ2h⟩

. (4.6.5)

The degree of nonlinearity is captured by

ϵ2nl =
⟨δ2h⟩⟨δ̄2ν⟩
⟨δ̄νδh⟩2

− 1, (4.6.6)

which satisfies ϵnl = 0 if and only if the slope of δ̄ν(δh) is independent of δh. The scatter

around the biasing relationship is characterized by the stochasticity,

ϵ2stoch =
⟨δ2h⟩⟨(δν − δ̄ν)

2⟩
⟨δ̄νδh⟩2

. (4.6.7)

The nonlinearity and stochasticity are related to the correlation coefficient,

rν,h =
⟨δνδh⟩√
⟨δ2ν⟩⟨δ2h⟩

, (4.6.8)

via rν,h ≃ (1 + ϵ2nl + ϵ2stoch)
−1/2. This model is analogous to the nonlinear stochastic

galaxy biasing model of [195, 196]. We compute the four quantities (b, ϵ2nl, ϵ
2
stoch, rν,h) for

each of the methods under consideration. The results are listed in Table 4.2 and the

biasing relationship is shown in Fig. 4.8. As expected on these large scales, we find good

agreement with differences of a few percent in the bias. The greater the level of neutrino

clustering resolved by a given method, the greater the bias b and correlation rν,h. The
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Table 4.2: Neutrino bias relative to dark matter halos on scales R = 30h−1 Mpc. Listed are the
bias, b; nonlinearity, ϵ2nl; stochasticity, ϵ

2
stoch; and the correlation coefficient, rν,h.

Method b ϵ2nl ϵ2stoch rν,h
0
.1
eV

δf method 0.1032 0.0022 0.4883 0.8195
Particle method 0.1028 0.0021 0.4955 0.8176
Linear response 0.1015 0.0022 0.5065 0.8146
Linear theory 0.0987 0.0206 0.5878 0.7889

0
.5
eV

δf method 0.2556 0.0014 0.1969 0.9137
Particle method 0.2546 0.0017 0.1927 0.9152
Linear response 0.2502 0.0019 0.2031 0.9112
Linear theory 0.2404 0.0257 0.2902 0.8719

stochasticity follows the opposite pattern. The nonlinearity follows no such pattern, but

is very small in each case except (amusingly) for the linear theory runs. This is because

linear theory does not resolve neutrino halos, causing the δ̄ν(δh) relation to level off in

the high density tail.

The bias b = 0.103 for the 0.1 eV scenario is in excellent agreement with the bias b = 0.071

found by [175], when the difference in mass ordering is factored in using the approximately

linear relationship between neutrino mass and bias in their results. [175] do not consider

neutrino masses beyond 0.4 eV, but our finding of b = 0.256 for 0.5 eV is slightly lower

than expected when extrapolating from their results. We also find a larger stochasticity

and smaller correlation than might be expected, although the small nonlinearities agree.

Given the mutual agreement between the different runs in Table 4.2, these differences

are unlikely to be due to our choice of neutrino method. Differences in the N -body code

or the identification of halos could also affect this comparison.

4.6.3. Matter power spectrum

The suppression of the total matter power spectrum at z = 0, relative to a massless

neutrino cosmology, is shown in Fig. 4.9. We see that all methods are in excellent agree-

ment and reproduce the famous spoon-like feature, which has recently been explained in

terms of the halo model [197]. The differences between the methods are most pronounced

around k = 0.6Mpc−1, where the suppression is largest. The inset graphs zoom in on

these scales. For both neutrino masses, the δf method predicts a smaller suppression

than the particle and linear methods. This is in line with expectation, as the additional

small-scale neutrino clustering, which is obscured by shot noise in the particle method

and absent in linear theory, slightly offsets the suppression. Accordingly, the pure linear



57 4.6. Results

10−2 10−1 100
0.92

0.94

0.96

0.98

·10−3

Wavenumber k
[
Mpc−1

]

P
m
(k
)/
P

m
a
ss
le
ss

m
(k
)

∑
mν = 0.1 eV

δf method
Particle method
Linear response
Linear theory

4
6
8

10−2 10−1 100
0.6

0.7

0.8

0.9

·10−2

Wavenumber k
[
Mpc−1

]

∑
mν = 0.5 eV

2
3

Figure 4.9: Total matter power spectra at z = 0, relative to a massless neutrino cosmology.
The plots are based on (1024 Mpc)3 simulations with Ncb = 10243 and (for the particle and δf
methods) Nν = 10243 simulation particles. The horizontal line is the empirical fitting formula,
∆P/P = −9.8fν .

theory method predicts the least neutrino clustering and the largest suppression. It is

interesting to see that the particle and δf methods do not agree for
∑
mν = 0.5 eV,

despite having similar neutrino power spectra at z = 0. This is most likely due to shot

noise at high redshift in the particle simulation. Compared to the cold dark matter

and baryon fluctuations, the shot noise itself is negligible at z = 0, but it has two

possible effects on structure formation at earlier times. It could seed non-physical density

fluctuations or the random motions of neutrinos could obscure their real contribution to

the growth of physical structure. Our results suggest that the latter effect dominates.

In either case, these effects highlight the importance of using a hybrid method that

eliminates shot noise at high redshift. The differences between the methods are at the

permille level, corresponding to a shift in neutrino mass of several meV. In absolute

terms, the differences are larger for
∑
mν = 0.5 eV, but less important overall.

The horizontal line corresponds to the empirical fitting formula, ∆P/P = −9.8fν [148].

Compared to this formula, we find a slightly greater suppression in each case, regardless

of the method used to model the neutrinos. For the 0.1 eV simulations, this can be

attributed to our use of the inverted mass ordering. The
∑
mν = 0.5 eV case is perhaps

more surprising, but seems to be in line with recent works. For example, [172] find

increasingly larger differences with the fitting formula for increasing masses, although

they do not consider models with
∑
mν > 0.3 eV.
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Globally, the agreement between these very different methods is an encouraging sign and

suggests that we have a good handle on the effects of massive neutrinos on the matter

power spectrum. The differences, at most a few permille, may perhaps be relevant when

trying to distinguish the effects of individual neutrino masses [105].

4.7. Higher-order δf methods

The performance of the δf method scales with the correlation between the nonlinear

solution f(x, p, t) and the background model f̄(x, p, t), so it is worth investigating other

background models. We can go beyond the 0th order Fermi-Dirac model by including the

linear theory prediction. In that case, the distribution function can be written as

f̄(x, p, t) = fFD(x, p, t) [1 + Ψ(x, p, t)] , (4.7.1)

where the perturbation is decomposed into multipole moments [126],

Ψ(k, p, t) =
∞∑

ℓ=0

(−1)ℓ(2ℓ+ 1)Ψℓ(t, k, q)Pℓ(k̂ · n̂). (4.7.2)

Here, Pℓ(·) are Legendre polynomials and the coefficients Ψℓ satisfy an infinite hierarchy

of moment equations. The Legendre representation yields simple expressions for the first

few fluid moments, but is cumbersome for evaluating the distribution function itself. For

our purposes, it is more convenient to use the following monomial representation

Ψ(k, n̂, q, τ) =

∞∑

ℓ=0

iℓΦℓ(k, q, τ)(k · n̂)ℓ, (4.7.3)

where for a given ℓmax, the odd (even) Φℓ(x, q, t) can be expressed in terms of all the

odd (even) Ψm(x, q, t) with m ≤ ℓ. See Appendix 4.C for details. With this choice of

background model, the density integral becomes

ρ(x) = ρ̄ [1 + δν(x)] +
N∑

i=1

√
m2 + p2i wi δ

(3)(x− xi), (4.7.4)

with particles weights wi = δf/f and f̄ given by (4.7.1). Here, δν(x) is the linear neutrino

overdensity, which is calculated using class. The effect of the δν perturbation should

now be included in the long-range force calculation.

As shown in Fig. 4.10, adding the multipoles Φ0 and Φ1 significantly improves the
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Figure 4.10: Evolution of the weights, or the effective reduction in shot noise, parametrized by
the I-factor I = 1

2 ⟨w2⟩, when including higher-order perturbations: Φ0 (density), and Φ1 (energy
flux).

correlation and therefore reduces the shot noise by almost 50%. It is likely that higher-

order terms could contribute meaningfully too, as the multipole expansion converges only

slowly. However, most of the gain is due to the 0th order term, which on its own is much

easier to implement.

4.8. Discussion and conclusions

Shot noise in N -body simulations is a major obstacle to modelling the nonlinear evolution

of light relic neutrinos. In this paper, we demonstrate that the δf method, which de-

composes the neutrino distribution into an analytically tractable background component,

f̄ , and a nonlinear perturbation, δf , carried by the simulation particles, is an effective

variance reduction technique. The reduction in shot noise scales with the dynamic particle

weights, parametrized by I = 1
2

〈
w2
〉
. Because the weights are negligible until very late

times, the simulation is mostly immunized against the effects of shot noise. Furthermore,

shot noise is greatly reduced even at z = 0, which makes it possible to resolve neutrino

clustering down to much smaller scales than is possible with conventional methods. Using

higher-order versions of the δf method, which incorporate additional information from

perturbation theory, shot noise can be reduced by another factor of O(2), and possibly
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more if moments ℓ > 2 are included. Additional reduction in shot noise is possible by

carefully tuning the sampling distribution of the marker particles.

The reduction in shot noise is more significant for smaller neutrino masses, because faster

particles deviate less from their initial trajectory, resulting in smaller weights. This is

fortunate as shot noise is most problematic for the fastest neutrinos. More generally,

particles whose trajectories are not perturbed have negligible weights, whereas particles

that are captured by halos have appreciable weights. This is again fortunate, because

particles are needed in the vicinity of halos where grid methods tend to fail, while the

unperturbed particles contain no information and contribute only noise. In between these

extremes, particles will have intermediate weights. In this way, the δf method ensures

an optimal combination of particles and background.

The method can in principle be combined with any grid or fluid background model to

obtain an optimal hybrid method. Any simulation that evolves neutrino particles can be

extended with a weighting step to minimize the shot noise as outlined in Section 4.2.3.

It is not necessary, as was done here, to evolve the neutrino particles from the beginning.

The I-statistic from a reference simulation can be used to gauge when the neutrinos

become nonlinear and at what point they can safely be introduced (see Fig. 4.1).

We know from neutrino oscillations that at least one neutrino has a mass mν ≳ 0.05

eV. Our results indicate that even for masses close to that bound, neutrinos are not

particularly well modelled by linear approximations. For instance, the linear response

neutrino power spectrum is off by 10% (60%) at k = 0.1Mpc−1 (k = 1Mpc−1) at z = 0,

and the pure linear theory prediction is off by 14% (96%). Because the neutrinos make

up only a small fraction of the total mass, the effect on the matter power spectrum is at

most a few permille. This is the level at which the mass splittings are important [105].

Other statistics may be affected at a greater level, particularly if they are more sensitive

to neutrino effects. For example, we have shown that the neutrino bias relative to dark

matter halos is affected at the percent level on 30h−1 Mpc scales. In addition, some novel

probes may require accurate modelling of the neutrino dynamics around halos, such as

the neutrino-induced dynamical friction [198] and torque [199] on halos. By reducing shot

noise without neglecting nonlinear terms, the δf method makes it feasible to calculate

these effects even for the lightest neutrinos.
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4.A. Elliptical sine wave solution

We define an integral of motion

E(x, p, t) = 1
2p

2 + sin2(x/2), (4.A.1)

which is interpreted as the energy of the particle. Hence,

p = ±
√
2E − 2 sin2(x/2). (4.A.2)

We have reduced the characteristic equations to

dx

dt
= ±

√
2E − 2 sin2(x/2). (4.A.3)

This equation is separable,

∫
dx√

2E − 2 sin2(x/2)
= ±

∫
dt. (4.A.4)

Let τ be the time when x(τ) = 0. Putting in the integration limits, setting u = x/2, and

factoring out 2E, we obtain

F (u) ≡
∫ u

0

du′√
1− sin2(u′)/E

= ±
√
E/2

∫ t

τ
dt′ ≡ ϕ. (4.A.5)

The elliptic sine function is defined such that sn(ϕ) = sin(u), where u = F−1(ϕ). Hence,

sn
(
±
√
E/2(t− τ)

)
= sinu. (4.A.6)

There exist the following trigonometric identities [183]:

sn(ϕ)2 + cn(ϕ)2 = 1 and
d

dϕ
sn(ϕ) = cn(ϕ)dn(ϕ), (4.A.7)

where cn(ϕ) = cos(u) and dn(ϕ) =
√
1− sin2(u)/E are the elliptic cosine and delta

amplitude functions. Using these identities, one can confirm the solution (4.A.6). To find

the phase-space distribution at time t, we use the fact that f(x, p, t) is constant along its

characteristic curves. At t = 0, let x0 = x(0) and p0 = p(0). Using the initial Gaussian
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distribution (4.3.7), we find

f(x, p, t) = f(x0, p0, 0) (4.A.8)

=
ρ̄√
2πσ2

exp

(
−(p0 − p̄)2

2σ2

)
. (4.A.9)

We need to express p0 in terms of x, p, and t. First, we use conservation of energy to

note that

p20 = p2 + 2 sin2(x/2)− 2 sin2(x0/2). (4.A.10)

What remains to show is how to express sin2(x0/2) in terms of x, p, and t. But this is

simply,

sin2(x0/2) = sn2
(
∓
√

1
4p

2 + 1
2 sin

2(x/2)τ

)
, (4.A.11)

where the time, τ , is given by

τ = ∓
√

2/E arcsn (sin(x/2)) + t. (4.A.12)

Here, we used the inverse of the elliptic sine function, arcsn(x) = ϕ, with x = sn(ϕ). It

follows that

sin2(x0/2) = sn2
(
arcsn (sin(x/2))∓

√
1
4p

2 + 1
2 sin

2(x/2)t

)
. (4.A.13)

Therefore, the distribution function is

f(x, p, t) =
ρ̄√
2πσ2

exp

(
− 1

2σ2

[
h(x, p, t)− 2p̄

√
h(x, p, t) + p̄2

])
, (4.A.14)

h(x, p, t) = k(x, p, 1)−m(x, p, t) (4.A.15)

k(x, p, t) = p2 + 2 sin2(x/2)t (4.A.16)

m(x, p, t) = 2sn2
(
arcsn (sin(x/2))∓

√
1
4k(x, p, t)

)
. (4.A.17)

To find the density profile, ρ(x, t), we integrate

ρ(x, t) =

∫ ∞

−∞
f(x, p, t)dp, (4.A.18)

which can be done numerically. This gives the solution curves in Fig. 4.2.
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4.B. Accurate calculation of neutrino moments

We reviewed the linear theory calculation of the neutrino distribution function in New-

tonian gauge in Section 3.3. In this paper, we calculated the neutrino perturbations in

synchronous gauge, with a calculation that proceeds along the same lines [126]. The

precision of this calculation is set by two parameters: the maximum multipole ℓmax and

the number of momentum bins Nq. By default, class partly relies on a set of fluid

equations and partly on integrating the hierarchy, using ℓmax = 50 and Nq = 28 at the

pre-set high precision settings [124]. The differences in the CMB anisotropies are at the

permille level. However, the neutrino transfer functions have still not converged. To

obtain converged results, [165] ran calculations with Nq = 2000 bins and ℓmax = 2000,

which each required hundreds of CPU hours. This is to be contrasted with a default

class run, which completes in seconds. To circumvent this computational cost, we use a

different approach, which involves a post-processing step of class tables.

To quickly integrate the Boltzmann hierarchy for high Nq and ℓmax, we note that the

source terms in the evolution equations depend on the matter content only through the

scalar potential derivatives ḣ and η̇, which can be calculated accurately with much lower

settings4. Therefore, we make the assumption that we can decouple the potential terms

from most of the neutrino moments Ψℓ. We first evolve all source functions in class at

a reasonable precision setting. This gives the metric perturbations ḣ(k, τ) and η̇(k, τ),

which we then take as given and use to integrate the multipole moments Ψℓ at high

precision where they are needed.

4.C. Monomial basis for the distribution function

Boltzmann codes can solve for the functions Ψℓ(k, q, τ). But evaluating the distribution

function, f(x,q, τ), requires substituting these back into the definitions (4.7.1) and (4.7.2).

This presents a challenge as the Ψℓ are large discretely sampled arrays of amplitudes that

need to be convolved with the random phases. It would be prohibitively expensive to do

this repeatedly for each term in the Legendre expansion. We therefore adopt the following

scheme. First, we use the following representation of the ℓth Legendre polynomial,

Pℓ(x) = 2ℓ
ℓ∑

n=0

xn
(
ℓ

n

)(n+ℓ−1
2

ℓ

)
, (4.C.1)

4In the reference model with Nq = 28 and ℓmax = 50, relative errors in ḣ and (ḣ/3 + 2η̇) are of order
10−4. Although η̇ still fluctuates at the several percent level, this term is much smaller than ḣ.
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where the last factor is a generalized binomial coefficient. This allows us to expand Ψ

and collect monomial terms in k̂ · n̂. We write

Ψ(k, n̂, q, τ) =

∞∑

ℓ=0

iℓΦℓ(k, q, τ)(k · n̂)ℓ, (4.C.2)

where the functions Φℓ are defined by

Φℓ(k, q, τ) =
1

kℓ

∞∑

n=0

(−2)n
(
n

ℓ

)(n+ℓ−1
2

n

)
(2n+ 1)Ψn(k, q, τ). (4.C.3)

Note that we factored out the magnitude of k = kk̂ and write the expansion in terms

of (k · n̂)ℓ and not (k̂ · n̂)ℓ. This is to facilitate taking derivatives, as shown below. The

Fourier transform of Ψ is

Ψ(x, n̂, q, τ) =

∫
d3k

(2π)3
Ψ(k, n̂, q, τ)eix·k, (4.C.4)

and similarly for the Ψℓ and Φℓ. We write the directional derivative along the unit vector

n̂ as Dn̂ = ni∂xi . In other words,

F {Dn̂Φℓ(x, n̂, q, τ)} ⇐⇒ i(k · n̂)Φℓ(k, q, τ). (4.C.5)

Hence, we obtain

iℓΦℓ(k, q, τ)(k · n̂)ℓ ⇐⇒ F
{
Dℓ
n̂Φℓ(x, q, τ)

}
. (4.C.6)

And so, the overall perturbation, Ψ, is

Ψ(x, n̂, q, τ) =
∞∑

ℓ=0

Dℓ
n̂Φℓ(x, q, τ). (4.C.7)

A convenient numerical scheme is to store the Fourier transformed grids Φℓ(x, q, τ),

in which case we can evaluate the distribution function efficiently by taking finite

differences.

4.D. Symplectic integrator

A point of concern is that the special relativistic equation of motion (4.4.5) may not be

suited for the usual leapfrog integration in cosmological N -body simulations [200]. A
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straightforward substitution for the non-relativistic equation (4.4.7) produces a leapfrog

integrator that is not symplectic and may therefore not explicitly conserve phase-space

volume. The problem is that the equation for u̇ depends on u. Here, we assess the impact

of this error and provide a workaround. Fortunately, it is easy to construct a symplectic

integrator that closely approximates the relativistic form. We simply replace equation

(4.4.5) with:

u̇ = − 2u20 + a2√
u20 + a2

∇
(
ϕ− γNb

)
, (4.D.1)

where u0 is the magnitude of u at the starting redshift of the simulation. Moreover, we

use ϵ = m
√
u20 + a2 when computing the energy density. As confirmed below, this is a

good approximation due to the fact that u0 ≪ a whenever u deviates much from u0, i.e.

for slow particles at late times. Equation (4.4.6) is unchanged. A leapfrog discretization

of these equations is

xk+1/2 = xk +
1

2
∆t

uk√
u2k + a2

, (4.D.2)

uk+1 = uk −∆t
2u20 + a2√
u20 + a2

∇
(
ϕ(xk+1/2)− γNb(xk+1/2)

)
, (4.D.3)

xk+1 = xk+1/2 +
1

2
∆t

uk+1√
u2k+1 + a2

. (4.D.4)

To determine whether this is symplectic, one considers the Jacobian, J , of the transfor-

mation ψ : zk 7→ zk+1, where zk = (xk,uk). One can confirm that

JTΩJ = Ω ≡
(

0 I3
−I3 0

)
(4.D.5)

to show that ψ is a symplectomorphism. It follows that det(J) = 1, which ensures that

the leapfrog integrator is volume-preserving.

Since the validity of the δf algorithm depends on conservation of phase-space density

along particle trajectories, we need to determine to what extent this is violated when

using a nonsymplectic discretization of (4.4.5). Deviations will be of order O
(
u2
)
, which

is small for any nontrivial neutrino orbit. Therefore, the difference should be negligible

when the weights are large. To test this assertion, we evolve 2563 neutrino and dark

matter particles in a volume with sidelength 256 Mpc and assuming
∑
mν = 3× 0.05 eV,

using both the special relativistic equations (4.4.5) and the alternative equation (4.D.1).
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First, we confirm that (4.D.1) is a good approximation of (4.4.5), by checking that the

ratios

r =

√
u20 + a2

u2 + a2
, and s =

1

r

2u20 + a2

2u2 + a2
(4.D.6)

are close to unity. We find that |r − 1| < 0.02% and |s− 1| < 0.03% for 99% of particles

at all times.

The evolution of the weights is shown in Fig. 4.11. At very high redshifts, when

I = 1
2

〈
w2
〉
< 10−6, the mean squared weight is about 60% larger for the nonsymplectic

integrator. We interpret this as being due to small perturbations to neutrino trajectories

that are absent in the symplectic case. The results converge after z = 20, when density

perturbations approach nonlinearity, driving up the weights. The difference in I is 7%

at z = 10, decreasing to 0.2% at z = 2, and 0.03% at z = 0. The difference in weights

|wns − ws| < 0.025 for 99% of particles at all times. The difference will be even smaller

for larger neutrino masses.

As a result, we find that the use of the nonsymplectic integrator has a negligible effect on

observables at late times. In particular, there is < 0.1% difference in the total matter and

neutrino power spectra at z = 0. The difference in Pν(k) grows to 0.3% at z = 2, and 2%

at z = 10. For the total matter power spectrum, the difference is always below 0.1%. For

future simulations, we recommend using a leapfrog discretization based on the modified

expression (4.D.1) or using the non-relativistic version of (4.4.5) together with (4.4.6),

as discussed in Section 4.4.3. See Chapter 6 for further details and recommendations.

4.E. Practical implementation

We briefly outline how to implement the δf method in a typical N -body code. First,

a choice needs to be made for the background model. The simplest choice is the

homogeneous Fermi-Dirac distribution, which we repeat here without pre-factor:

f̄(x, p, t) = f̄(p, a) =

[
exp

(
ap

kbTν

)
+ 1

]−1

, (4.E.1)

where Tν = 1.95 K is the present-day neutrino temperature, a the scale factor, and p the

3-momentum. The method can be implemented as follows:

1. Implement a function f̄(x, p, t) that returns the phase-space density at a particle’s

location according to the background model.
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Figure 4.11: Evolution of particle weights for a
∑
mν = 0.15 eV cosmology, using special

relativistic equations of motion, evolved with symplectic and nonsymplectic leapfrog integrators.

2. Generate initial conditions with neutrino particles having a random initial momen-

tum sampled from the background model. Perturbations can be applied afterwards.

3. For each particle, record the value of f̄(x, p, t) = f0 at the initial sampled position

in phase space5. The numerical value of f0 does not change if perturbations are

applied to the initial conditions.

4. During subsequent time steps, for each particle:

a) Compute f̄(x, p, t) using the new position and momentum.

b) Compute the weight w = (f0 − f̄)/f0.

c) For the purposes of the gravity force calculation, use the weighted mass mw.

The weights should be used when calculating statistics of the neutrino ensemble, such as

the neutrino density, ρν(x), that enters into the gravity force calculation. We emphasize

that the weights should not be used in relationships such as p = mu.

For tree codes that perform a multipole expansion around the centre of mass, like swift,

there is a final point of consideration. Since neutrino particles can have negative weights,

it is possible in rare circumstances that groups of particles have a nearly vanishing total

mass. In that case, the centre of mass can be far removed from the particles and the

5Because the background model was used for sampling the initial momenta, we initially have f̄ = f = g.
Conservation of phase-space density then ensures that f = g = f0 for all particles at all times.
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multipole expansion breaks down. There is a simple solution in such cases, which is to

expand around any other point such as the geometric centre of the particles or the centre

of absolute mass:

xCoAM =

∑
i|miwi|xi∑
i|miwi|

, (4.E.2)

which has the advantage that it is very close to the ordinary centre of mass in most cases.

When the background model agrees with the nonlinear solution, the weights are exactly

zero. In that case, they can be set to a small value w ≪ 1. This ensures that the centre

of absolute mass is always well-defined.



Cold initial conditions
5

This chapter deals with the influence of massive neutrinos on the initial

conditions of matter species that can be treated as cold on cosmological

distance scales: baryons and cold dark matter. We show that the effects

of neutrinos in Lagrangian perturbation theory are well described by

scale-independent coefficients. We also find a new analytic solution for

the first-order growth factor in ΛCDM with a non-clustering component.

Higher order initial conditions with massive neutrinos

Abstract: The discovery that neutrinos have mass has important conse-

quences for cosmology. The main effect of massive neutrinos is to suppress

the growth of cosmic structure on small scales. Such growth can be accurately

modelled using cosmological N -body simulations, but doing so requires accu-

rate initial conditions (ICs). There is a trade-off, especially with first-order

ICs, between truncation errors for late starts and discreteness and relativistic

errors for early starts. Errors can be minimized by starting simulations at

late times using higher-order ICs. In this paper, we show that neutrino effects

can be absorbed into scale-independent coefficients in higher-order Lagrangian

perturbation theory (LPT). This clears the way for the use of higher-order ICs

for massive neutrino simulations. We demonstrate that going to higher order

substantially improves the accuracy of simulations. To match the sensitivity of

surveys like DESI and Euclid, errors in the matter power spectrum should be

well below 1%. However, we find that first-order Zel’dovich ICs lead to much

larger errors, even when starting as early as z = 127, exceeding 1% at z = 0 for

k > 0.5 Mpc−1 for the power spectrum and k > 0.1 Mpc−1 for the equilateral

bispectrum in our simulations. Ratios of power spectra with different neutrino

masses are more robust than absolute statistics, but still depend on the choice

of ICs. For all statistics considered, we obtain 1% agreement between 2LPT

and 3LPT at z = 0.

69
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5.1. Introduction

The neutrino content of the Universe, Ων ∼=
∑
mν/(93 eVh2), becomes a powerful probe

for cosmology once the implied neutrino masses are confronted with data from neutrino

oscillations [29] and the kinematics of β-decay [14]. A non-zero detection of Ων would

be consequential for fundamental physics. It would confirm that a background of relic

neutrinos survived until the epoch of structure formation, provide insight into the origin

of neutrino mass, and constrain the search for dark matter and dark sectors. Oscillation

experiments provide a lower bound of
∑
mν > 0.058 eV, while cosmology provides

upper bounds of
∑
mν < 0.15 eV or better assuming ΛCDM [108, 109, 113, 201], with

ongoing and future surveys promising significant further improvement. Planck and future

cosmic microwave background experiments, together with large-scale structure surveys

like DESI, Euclid, and Vera Rubin, could achieve sensitivities in the 0.01 - 0.02 eV range

[132, 202–204]. Such small shifts in neutrino mass correspond to tiny 0.5% - 1.5% effects

on the power spectrum of matter fluctuations on 0.1 Mpc−1 to 1 Mpc−1 scales, requiring

theoretical predictions that are at least as accurate.

With this goal in mind, many groups have studied the effects of massive neutrinos on

large-scale structure. At early times and on large enough scales, perturbation theory is

the method of choice for this purpose. Cosmological perturbation theory [56] is essential

for providing analytical insight and a necessary complement to more expensive numerical

simulations. The effects of neutrinos on the nonlinear matter power spectrum were

first calculated at one-loop by [205] and [206]. Subsequent work has dealt more realis-

tically with the neutrino phase-space distribution [125, 168, 207–210], which parallels

similar efforts on the numerical simulations side. Other advances were made by including

neutrinos in the effective field theory of large-scale structure [145, 146] and using time

renormalisation group perturbation theory [114, 211], which improved agreement with

N -body simulations. More closely related to this work, [212] extended the hybrid COLA

simulation method to cases with massive neutrinos using second-order Lagrangian per-

turbation theory (2LPT) and [213] incorporated nonlinear neutrino effects in Lagrangian

perturbation theory up to third order (3LPT). On the numerical simulations side, where

higher-order LPT has been used to great effect to produce accurate initial conditions

(ICs) for conventional simulations without massive neutrinos [88, 214, 215], neutrino

effects have not been included and higher-order LPT is therefore rarely used for neutrino

simulations (but see [148, 216]). In this work, we propose a novel scheme for generating

nLPT ICs for neutrino simulations based on all-order recursive solutions in the small-

scale limit. We also generate ICs based on a full calculation of scale-dependent neutrino

effects in 2LPT, dealing with frame-lagging terms following [213], and find near perfect

agreement with our scheme in the final simulation product. This demonstrates that
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neutrino effects can be implemented beyond first order by working in the small-scale

limit, paving the way for accurate neutrino simulation ICs.

N -body simulations are used to solve for the nonlinear gravitational dynamics of matter

on small scales, where perturbation theory fails. Cosmological simulations with ICs

based on LPT were pioneered by [50, 147] and [217]. Mixed dark matter simulations

with sub-electronvolt neutrinos were first carried out by [148, 149, 161]. We refer the

reader to [129] for a review of neutrino simulation methods. As with perturbation theory,

the accuracy of modern surveys places stringent demands on simulations, popularly

expressed as a requirement for 1% accurate calculations of the matter power spectrum

[218]. A major source of uncertainty concerns the interface between perturbation theory

and simulation, in the form of ICs, and associated transients [214]. We may distinguish

two major sources of uncertainty related to the choice of ICs [89, 217]. The first arise

from discrepancies between the ICs and the actual nonlinear solution at the initial

time. When the solution is calculated perturbatively at order n, this uncertainty can be

understood as the truncation error introduced by neglecting terms of order n+ 1 and

greater. The second source of uncertainty relates to discreteness effects that build up

over time as the continuous fluid equations are solved by means of a discrete particle

representation [219, 220]. There is a tension between these two, as early starts minimize

truncation errors but entail larger discreteness errors, while late starts do the opposite.

For example, the first-order solution of [62] has the largest possible truncation error,

driving practitioners to start simulations early when higher-order corrections are small.

However, such simulations manifest a greater dependence on particle resolution due to

discreteness errors. While such errors can be corrected [220], this reasoning provides

strong motivation for using higher-order ICs at late times [89].

Neutrinos complicate this picture in two ways. First, neutrinos introduce an additional

length scale into the problem. Due to their large thermal velocities, neutrinos free stream

out of potential wells, otherwise stated in terms of a suppression of clustering on scales

smaller than a typical free-streaming length [120]. This in turn causes a scale- and time-

dependent suppression of dark matter and baryon clustering that must be accounted for

in the initial conditions. [221] showed how to incorporate such scale-dependence in a first

order back-scaling procedure, but a consistent framework for higher-order ICs has thus far

been lacking1. The second complication is that late-time observables are more strongly

correlated with the initial conditions and less determined by the internal structure of

halos, when clustering is suppressed on small scales. This means that simulations with

1We note that after we submitted our paper to the journal, [222] presented a recipe for second-order
neutrino ICs. Like us, they use a back-scaled transfer function for the cold dark matter and baryon
species.
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different neutrino masses are affected by errors to different degrees, contaminating ratios

such as the suppression of the matter power spectrum. We will show that such ratios are

more robust than absolute statistics, but still depend on the choice of initial conditions

on small scales.

The paper is organized as follows. We begin by summarizing our recipe for generating

higher-order ICs for neutrino simulations in Section 5.2. The second part of the paper

is concerned with a derivation of the higher-order solutions necessary for ICs, starting

with the set-up in Section 5.3, limiting solutions at all orders in Section 5.4.1, and

the full second-order solution in Section 5.4.2. The final third of the paper contains a

systematic analysis of higher-order ICs in Section 5.5. Finally, we conclude in Section

5.6. Throughout this paper, we use a default neutrino mass sum of
∑
mν = 0.3 eV to

showcase our results, except where indicated otherwise.

5.2. N -body Initial conditions

We begin by outlining our approach for setting up for 3-fluid ICs with cold dark matter

(c), baryons (b), and neutrinos (ν). Initially, we deal with a single cold fluid, described

in terms of the the mass-weighted density contrast and velocity,

δcb = fcδc + fbδb, (5.2.1)

vcb = fcvc + fbvb, (5.2.2)

where fc = Ωc/(Ωc + Ωb) and fb = 1 − fc. In a final step, the cold fluid is separated

into two components with distinct transfer functions. Our approach is based on a

growing mode solution of the LPT equations in the small-scale limit, motivated by the

hierarchy between the neutrino free-streaming scale and the nonlinear scale, kfs ≪ knl,

at the redshifts relevant for ICs. In Section 5.5, we confirm that this is an excellent

approximation suited for precision simulations. The recipe boils down to the following

steps:

1. Compute a back-scaled transfer function δcb(k)

2. Compute particle displacements via Eqs. (5.2.3–5.2.11)

3. Compute particle velocities via Eqs. (5.2.12–5.2.14)

4. Perturb particle masses and velocities via Eqs. (5.2.15–5.2.19)



73 5.2. N -body Initial conditions

These steps can be performed using a modified version of the monofonIC code [89],

which we have made publicly available2. We briefly discuss the steps in order and then

deal with possible extensions in Section 5.2.5 and 5.2.6.

5.2.1. Transfer functions and back-scaling

In this paper, we follow the commonly used back-scaling approach. This approach begins

by choosing a pivot redshift, typically z = 0, where the simulation should reproduce

linear theory on the largest scales. This is necessary because conventional N -body

codes solve Newtonian equations and therefore fail to capture the large-scale general

relativistic dynamics in which matter and radiation are coupled through the Einstein-

Boltzmann equations. We note that there exist alternative solutions to this problem

[166, 172, 187, 188, 223] as well as fully relativistic N -body codes [87, 154, 224], which can

avoid it altogether. In the back-scaling procedure, one uses a linear Einstein-Boltzmann

code such as class [128] or camb [127] to calculate the density transfer functions for

each fluid species at zpivot, which are then scaled back to the starting redshift of the

simulation using the exact linear dynamics of the Newtonian code. For ΛCDM without

neutrinos, this amounts to rescaling the dark matter transfer function by a constant

growth factor ratio D(zi)/D(zpivot).

Adding massive neutrinos makes the linear solution scale-dependent, precluding a simple

rescaling factor. Nevertheless, the same philosophy can be applied by solving the

Newtonian dynamics of an N -body code with massive neutrinos at linear order. Following

[221], we do this using a first-order Newtonian fluid approximation [125, 208], but see also

[222] for a relativistic formulation. This back-scaling method for neutrino cosmologies

was first implemented in the reps code. To streamline the procedure for the end-user

and to reduce the potential for human error, we built a lightweight back-scaling library

zwindstroom that interfaces directly with class and the initial conditions generator

monofonIC. The final result of these steps is a rescaled density transfer function

δcb(k) = Dcb(k, zi)/Dcb(k, z
pivot) · δcb(k, zpivot) for a cold dark matter-baryon fluid (cb),

where the growth factor ratio is computed with zwindstroom and the transfer function

with class.

2Up-to-date links to the software referenced in this paper are maintained at
https://www.willemelbers.com/neutrino_ic_codes/.

https://www.willemelbers.com/neutrino_ic_codes/
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5.2.2. Displacements

The displacement field, ψ = x− q, relates the particle position x to the corresponding

Lagrangian coordinate q. To determine ψ, we first obtain the linear potential by solving

∇2φ(1)(q) = δcb(q). (5.2.3)

Unless indicated otherwise, ∇ = ∇q. We observe that φ(1) is not the gravitational

potential, which also includes a neutrino contribution, but a notation that reflects the

fact that we are solving for the displacements of cb fluid particles. Our fast approximate

3LPT [225–227] scheme for the displacement field in the presence of massive neutrinos

has the simple form

ψ = ψ(1) + C2ψ
(2) + C3ψ

(3a) + C2C
1
3ψ

(3b) + C2ψ
(3c), (5.2.4)

where Cn are scale-independent factors that capture the absence of neutrino perturbations

in the small-scale limit, Cin = Cn/Ci, and ψ
(n) have the same form in terms of φ(1) as in

ΛCDM. In the notation of [89], these are given by

ψ(1) = −∇φ(1), ψ(2) = −3

7
∇φ(2), (5.2.5)

ψ(3a) =
1

3
∇φ(3a), ψ(3b) = −10

21
∇φ(3b), ψ(3c)=

1

7
∇×A(3), (5.2.6)

with higher-order potentials given by

∇2φ(2) =
1

2

[
φ
(1)
,ii φ

(1)
,jj − φ

(1)
,ij φ

(1)
,ij

]
, (5.2.7)

∇2φ(3a) = det φ
(1)
,ij , (5.2.8)

∇2φ(3b) =
1

2

[
φ
(2)
,ii φ

(1)
,jj − φ

(2)
,ij φ

(1)
,ij

]
, (5.2.9)

∇2A(3) = ∇φ(2)
,i ×∇φ(1)

,i , (5.2.10)

where commas denote partial derivatives and we sum over repeated indices. In Section

5.4.1, we show that Cn can be expressed in terms of the neutrino fraction, fν = Ων/Ωm.

The correction, as it turns out, is small and approximately linear in fν :

Cn ∼= 1 +
2nfν

5(2n+ 3)
. (5.2.11)
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For a minimal neutrino mass sum of
∑
mν = 0.06 eV, one finds C2 − 1 = 5× 10−4. For

our fiducial mass sum of
∑
mν = 0.3 eV, it is 0.3%. At

∑
mν = 1 eV, the effect is about

one percent. The third-order correction C3 is larger, but since ψ(3) is suppressed by

another power of the growth factor, the overall impact is smaller.

5.2.3. Velocities

The velocity field is vcb = dψ/dt. Given a satisfactory scheme for computing the

displacement field, the time derivative can be evaluated numerically. This is our preferred

method, since it requires no additional approximations. However, a faster method that

avoids calculating higher order terms more than once is to use the asymptotic logarithmic

growth rate

f∞ = lim
k→∞

d logDcb(k, a)

d log a
, (5.2.12)

to convert displacements to velocities, setting

vcb = aHf∞
[
ψ(1) + 2C2ψ

(2) + 3
(
C3ψ

(3a) + C2C
1
3ψ

(3b) + C2ψ
(3c)
)]
. (5.2.13)

By construction, this gives the correct particle velocities on small scales. To recover also

the correct behaviour on horizon scales, we add a large-scale correction v
(c)
cb given by

v
(c)
cb = aHf∞∇−2∇(θcb − δcb), (5.2.14)

where θcb is the dimensionless energy flux transfer function computed with class.

We verified that the resulting simulated power spectrum agrees with linear theory

to better than 0.1% at the pivot redshift of z = 0 on large scales. However, this

approximation neglects possible nonlinear effects of scale-dependent growth on particle

velocities. Another alternative is to rescale the velocities by the scale-dependent growth

rate [221], which faces a similar problem beyond linear order.

5.2.4. Additional steps for 3-fluid ICs

The steps above are sufficient for simulations with neutrinos and a single cold fluid. To

separate this cold fluid into baryon and CDM components with distinct transfer functions,

we follow the approach of [228]. In short, the component densities are related to the
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mass-weighted average via3

δc = δcb − fbδbc, (5.2.15)

δb = δcb + fcδbc, (5.2.16)

where the difference variable, δbc = δb − δc, is constant at first order. The velocity

difference too is conserved and vanishes at all orders: vbc = vb − vc = 0. These

results, derived for ΛCDM without massive neutrinos [229], carry over to the neutrino

case, essentially due to the fact that the neutrino contribution cancels in the difference

equations (Appendix 5.A). The transfer function difference, δbc(k) = δb(k) − δc(k), is

computed with class at the pivot redshift and, since it is conserved, is not scaled back.

After assigning displacements and velocities to both particle species using the mass-

weighted average fields, the density difference is implemented by setting the masses

to

mλ(q) = m̄λ

[
1 + δλ(q)− δcb(q)

]
, (5.2.17)

with m̄λ the mean particle mass for type λ ∈ {c, b}. Perturbing the masses, rather than

the displacements, was found by [228] to limit discreteness errors.

By construction, Newtonian simulations with initial conditions set up using the above

procedure, reproduce the expected evolution of two cold fluids with a shared velocity

field and a relative density contrast that is approximately conserved. However, like the

large-scale velocity correction (5.2.14), a further modification is needed to bring the

dynamics back into agreement with class at first order:

mλ(q) → mλ(q) + 2m̄λ

[(
D∞(zpivot)

D∞(zi)

)1/2

− 1

]
Θλ(q), (5.2.18)

vλ(q) → vλ(q) + aHf∞

(
D∞(zpivot)

D∞(zi)

)1/2

∇−2∇Θλ(q), (5.2.19)

where D∞(zi) is the small-scale growth factor at the starting redshift zi and Θc = −fbθbc
and Θb = fcθbc. The difference, θbc(k) = θb(k)− θc(k), of the dimensionless energy flux

transfer functions is computed with class at the pivot redshift.

3We remind the reader that fλ = Ωλ/Ωcb for λ ∈ {c,b} even as fν = Ων/Ωm = Ων/(Ωcb+Ων) = 1−fcb.
Furthermore, δbc ̸= δcb and vbc ̸= vcb.
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5.2.5. Neutrino particles

Massive neutrinos can be included in N -body codes using a variety of methods. The most

common approach is to solve for the neutrino perturbations self-consistently by including

them as a separate N -body particle species [148, 149]. Initial conditions are then also

needed for these neutrino particles. Capturing the full neutrino phase-space distribution

is non-trivial even in linear theory and it is therefore not sufficient to compute only the

first two moments, as is done for baryons and CDM. Accurate neutrino particle initial

conditions can be generated by integrating geodesics from high redshift [150, 154], where

the perturbed phase-space distribution can be expressed analytically [126], but care

must be taken that the equations of motion remain valid in the ultra-relativistic régime

[186]. This procedure can be carried out efficiently using our fastdf code, introduced in

Chapter 6. We stress that the focus of this paper is on dark matter and baryon ICs and

the results apply regardless of whether the neutrino implementation uses particles.

5.2.6. Scale-dependent effects

Finally, we verified the approximations above by performing a full calculation of scale-

dependent effects on the second-order displacement field. This is done by replacing (5.2.7)

with a convolution of two copies of the first-order potential φ(1)(k), modulated by kernels

D
(2)
A (k1,k2) and D

(2)
B (k1,k2), computed in Section 5.4.2. This numerical calculation is

expensive, but we will show in Section 5.5 that simulations with ICs based on the full

calculation agree extremely well with those based on the approximate scheme described

above. The reason for this is the hierarchy of scales, kfs ≪ knl, which implies that higher-

order corrections are important only on scales where neutrinos do not cluster, at least at

redshifts that are relevant for ICs. Since the overall impact of the third-order correction

factor, C3, is smaller than that of C2 and given the excellent agreement between the full

and approximate solutions at second order, we expect the difference to be even smaller

at third order. At the same time, the triple convolutions required for the third-order

solution would be prohibitively expensive and would require a different approach. For

this reason, we only consider 2LPT in Section 5.4.2.

5.3. Theoretical set-up

We now proceed with the set-up of a 3-fluid model, which is solved in Section 5.4.

We consider three fluids indexed by λ ∈ {c,b, ν} for cold dark matter, baryons, and

neutrinos. Throughout, we will treat baryons like dark matter particles and denote the
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mass-weighted CDM-baryon fluid by subscript cb. Let ρλ(x) be the density, uλ(x) the

peculiar velocity flow, and σλ(x) the stress tensor. We also write δλ = ρλ/ρ̄λ − 1 for the

density contrast.

5.3.1. Euler equations

Taking moments of the Boltzmann equation yields the Euler fluid equations [56]

∂τuλ + uλ · ∇xuλ = −aHuλ −∇xΦ− 1

ρλ
∇x(ρλσλ), (5.3.1)

∂τδλ +∇x · [(1 + δλ)uλ] = 0, for λ ∈ {c, b, ν}, (5.3.2)

where τ is conformal time, H = ∂τa/a
2 is the Hubble constant (given explicitly below)

and Φ the Newtonian potential. While the neutrino distribution function and its higher-

order moments are complicated, the stress tensor can be neglected for the cold dark

matter and baryon fluids on the scales of interest, σc = σb = 0, because we are restricting

to scales much larger than the Jeans length and times before shell crossing. Taking the

mass-weighted average of the cold dark matter and baryon equations, we obtain at all

orders (see Appendix 5.A)

∂τucb + ucb · ∇xucb = −aHucb −∇xΦ, (5.3.3)

∂τδcb +∇x · [(1 + δcb)ucb] = 0. (5.3.4)

The potential is given by Poisson’s equation,

∇2
xΦ(x) =

3

2

ΩmH
2
0

a
δm(x), (5.3.5)

in terms of the total matter density, δm = fcbδcb+fνδν , which includes a massive neutrino

contribution. To complete the system, we assume the linear response approximation for

the neutrino density:

δν(k) =
δlinν (k)

δlincb (k)
δcb(k), (5.3.6)

where δlinλ (k) refers to the density transfer function of λ ∈ {ν, cb} computed in relativistic

linear perturbation theory with class. The total matter density contrast is then

δm(k) = [1 + α(k)] fcbδcb(k), (5.3.7)
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where we have introduced the convenient notation α = fνδ
lin
ν /(fcbδ

lin
cb ) for the linear

theory ratio. The linear response approximation is accurate while neutrinos and dark

matter remain in phase, which is a reasonable assumption at the early times considered

here (see below). Inserting this in (5.3.5) yields

−k2Φ(k) = B0

a
[1 + α(k)] δcb(k), (5.3.8)

where B0 = 3
2(1 − fν)ΩmH

2
0 is written in terms of present-day values. We look for a

growing solution of the form δcb(k, τ) = Dcb(k, τ)δcb(k, τ0). Linearising (5.3.3-5.3.5), we

find

∂2τDcb + aH∂τDcb =
B0

a
(1 + α)Dcb. (5.3.9)

In contrast to the ΛCDM case, this equation is scale-dependent due to the appearance

of α(k). To proceed, we will take the limit k → ∞. Since limk→∞ α(k) = 0, we simply

obtain

∂2τD∞ + aH∂τD∞ =
B0

a
D∞ (k → ∞). (5.3.10)

We denote the solution of (5.3.10) by D∞ to indicate that this is the small-scale solution.

At this point, an equally valid description could be given in the large-scale limit or indeed

for an arbitrary pivot scale. We deliberately choose the small-scale limit for two reasons.

First, most simulations are not large enough to realize the large-scale limit. Second, we

are interested in nonlinear corrections to the initial conditions which are negligible on

large scales.

5.3.2. Asymptotic form

We can find an analytic4 solution to (5.3.10) if the contribution of radiation to the Hubble

rate is neglected. We will return to this point further below. For now, let us assume

that

H2 = H2
0

[
ΩΛ +

Ωcb +Ων
a3

]
. (5.3.11)

4A function f is analytic at x if the Taylor series of f around x converges to f in a neighbourhood of x.
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In this case, the growing mode can be expressed in terms of the hypergeometric function

as (see Appendix 5.B)

D∞(a) = ap
√

1 + Λa32F1

(
2p+ 7

6
,
2p+ 3

6
,
4p+ 7

6
,−Λa3

)
, (5.3.12)

with Λ = ΩΛ/Ωm and p =
√
1 + 24(1− fν)/4 − 1/4. This is normalized such that

lima→0D∞/ap = 1. Taking fν = 0, we recover the ΛCDM solution with p = 1 [59].

Taking instead Λ → 0, we recover the solution during matter domination (MD)

D∞(a) = ap = a
√

1+24(1−fν)/4−1/4, (5.3.13)

which agrees with [23].

For ΛCDM without massive neutrinos, accurate nonlinear predictions can be made by

substituting the growth factor for the scale factor, a→ D, in solutions obtained for the

Einstein-de Sitter model. This is facilitated by using the growth factor as time variable

(e.g. [59, 65, 229]). Here, we will pursue a similar strategy and make a change of time

variables to D∞. Defining the quantity

g∞ =
2

3

B0

a

(
D∞
∂τD∞

)2

(5.3.14)

and the new velocity variable vcb = ∂D∞x, the fluid equations can be rewritten as

∂D∞vcb + vcb · ∇xvcb = − 3g∞
2D∞

(vcb +∇xφ), (5.3.15)

∂D∞δcb +∇x · [(1 + δcb)vcb] = 0, (5.3.16)

∇2
xφ =

δcb
D∞

∗ (1 + α), (5.3.17)

where the rescaled potential φ = aΦ/(B0D∞) is given in terms of a convolution, denoted

by ∗, of δcb and the linear response (1 + α). Although written in terms of D∞, this is

completely general.

Given suitable boundary conditions, Eqs. (5.3.15-5.3.17) are analytic at D∞ = 0. In

particular, we require that δinim = δinicb = 0. This agrees with our use of growing mode

solutions for particle displacements, q 7→ q + ψ, where the unperturbed particle grid

represents a uniform density field. The scaling, H2 ∝ a−3, of the Hubble rate at early

times ensures that such mass transport problems are well-posed [59, 230]. This scaling

does not hold in the presence of radiation, a problem that already occurs in ΛCDM on
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Figure 5.1: Accuracy of the linear response approximation (5.3.6) evaluated at k = 0.60 Mpc−1,
compared to a reference simulation (top), of the Hubble rate (5.3.11) when neglecting radiation
(middle), and of (5.3.18) for the constant matter-dominated value for g∞. The vertical dotted
line indicates the fiducial starting redshift of zi = 31. The neutrino mass sum is

∑
mν = 0.3 eV

and the shaded region is 10% (top) and 1% (middle & bottom).

account of the cosmic microwave background radiation, but is certainly made worse by

the inclusion of massive neutrinos, which scale like radiation in the relativistic régime.

Therefore, we need to start the integration at a time when the relativistic contribution of

neutrinos to the Hubble expansion can be neglected. Note that we make this assumption

to ensure a consistent mathematical framework for the higher-order LPT solutions.

However, it is not needed for the linear transfer functions, the back-scaling procedure or

in the N -body code itself. In each of those cases, we do take the relativistic neutrino

contribution into account.

Before proceeding, let us give the following convenient expression for g∞ in the limit

Λ → 0:

g−1/2
∞ =

a3/2H√
2
3B0

d logD∞
d log a

=
1

4

√
1 + 24(1− fν)− 1√

1− fν
. (5.3.18)
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Both numerator and denominator scale approximately as (1 − fν)
1/2. The numerator

is simply the exponent of the growing mode in (5.3.13), while the dependence of the

denominator can be traced to the appearance of B0 on the right-hand side of (5.3.10).

The resulting smallness of g∞ − 1 explains why neutrino corrections at nth order are

small relative to Dn
∞: the lack of neutrino clustering is largely compensated by slower

growth of the linear solution. In the next section, we will validate the assumptions made

up to this point.

5.3.3. Validity of assumptions

Central to the approach of Section 5.4 is the linear response approximation (5.3.6) for the

nonlinear neutrino density, δν(k). This approximation is very accurate at early times, but

underestimates neutrino clustering on small scales and neglects the phase shift between

neutrinos and dark matter that builds up at late times (see Fig. 4.6 in Chapter 4). The

top panel of Fig. 5.1 shows the nonlinear neutrino density contrast, computed from a

simulation with neutrino particles, relative to the linear neutrino response evaluated

at k = 0.60 Mpc−1. The neutrino mass is
∑
mν = 0.3 eV. The figure suggests that

the approximation is valid at this scale up to z ≈ 1.5, when perturbation theory has

presumably already broken down. Hence, approximation (5.3.6) is well-suited for our

application at much higher redshifts.

A second approximation is that we neglect the contribution of the relativistic tail of the

neutrino distribution to the Hubble rate in (5.3.11). We reiterate that this approximation

is only made for the calculation of the higher-order kernels and not in any of the

calculations at first order. The middle panel of Fig. 5.1 shows that this approximation is

accurate to better than 1% for a > 0.01, for our default neutrino mass of
∑
mν = 0.3

eV. In particular, at the fiducial starting redshift of zi = 31, the error is 0.3%. We are

helped in this regard by our preference for late starts.

Finally, we assume that g∞ is constant in Section 5.4.1. The bottom panel of Fig. 5.1

shows that this is an excellent approximation, except at late times during Λ-domination.

The figure suggests that there is a window where all assumptions are valid, potentially

allowing us to push to even later starts, with the breakdown of LPT likely being the

limiting factor.
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5.4. Lagrangian approach

In the Lagrangian approach to gravitational instability [62, 226, 231–235], the objective

is to describe fluid particle trajectories

x(q) = q +ψ(q), (5.4.1)

in terms of a displacement field ψ. We use the Helmholtz decomposition, writing the

Laplacian of a smooth vector field as

∇2ψ = ∇ (∇ ·ψ)−∇× (∇×ψ) . (5.4.2)

What remains is to solve for the longitudinal and transverse derivatives. The displacement

is related to the Eulerian density, δcb, through the mass conservation equation

δcb(x) =
1

J(q)
− 1, (5.4.3)

where J(q) is the determinant of the Jacobian of the coordinate transformation, Jij =

∂xi/∂qj , given by

J = det Jij = 1 + ψi,i +
1

2
[ψi,iψj,j − ψi,jψj,i] + det ψi,j . (5.4.4)

Let (∂/∂D∞)L = (∂D∞ + vcb · ∇x) be the Lagrangian derivative. The Lagrangian form

of the Euler Eq. (5.3.15) can be written as

D∞x = − 3g∞
2D∞

∇xφ, (5.4.5)

where we used vcb = (∂x/∂D∞)L and introduced the linear operator

D∞ =

(
∂

∂D∞

)2

L

+
3g∞
2D∞

(
∂

∂D∞

)

L

. (5.4.6)

Using (5.3.17) and taking the divergence and curl of (5.4.5), we find that the evolution

of the displacement is governed by

∇x · D∞x(q) = − 3g∞
2D2∞

[δcb ∗ (1 + α)] (x), (5.4.7)

∇x ×D∞x(q) = 0. (5.4.8)
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To facilitate a fully Lagrangian description, we define the frame-lagging terms [212, 236]

F (q) ≡ [(1/J − 1) ∗ α] (q)− [δcb ∗ α](x). (5.4.9)

Frame-lagging terms arise from mapping the Eulerian neutrino response to Lagrangian

coordinates. We give explicit expressions up to second order in Appendix 5.C. Transform-

ing the derivatives on the left-hand side of (5.4.7) and (5.4.8) using ∂xi = (∂qj/∂xi)∂qj =

J−1
ij ∂qj and using the Monge-Ampère Eq. (5.4.3), we write these equations in Lagrangian

coordinates as

J−1
ij D∞ψi,j =

3g∞
2D2∞

[(1− 1/J) ∗ (1 + α) + F ] , (5.4.10)

ϵijkJ
−1
jl D∞ψk,l = 0. (5.4.11)

It will be the task in the following sections to find perturbative solutions for ψ. We

perform an expansion in displacements, writing

ψ =

∞∑

n=1

ψ(n), (5.4.12)

where ψ(n) is of order
[
ψ(1)

]n
.

5.4.1. Limiting solutions

Having set up the Lagrangian equations for the neutrino-cb fluid model, we are now

in a position to look for approximate solutions. The aim is to find expressions for the

displacement on large and small scales. In the small-scale limit, neutrinos do not cluster

and only contribute to the background expansion as encoded by g∞. Meanwhile, in

the large-scale limit, neutrinos cluster like cold dark matter and one recovers behaviour

analogous to ΛCDM. In both cases, we can find simple solutions in the form of LPT

recursion relations [59, 63–66]. These limiting solutions will be used as initial conditions

for the numerical integration of the general problem and provide the basis for the recipe

of Section 5.2.

In this section, we assume that g∞ = constant, which is exact during matter domination

(Eq. (5.3.18)), and a very good approximation in general (Fig. 5.1). On large scales, we

also have 1 + α(k) = 1 + fν/fcb
5 and on small scales 1 + α(k) = 1. Hence, if all modes

5This is not strictly true, since δν > δcb on the largest scales due to the relativistic tail of the neutrino
distribution. We ignore this small effect in the current section and in Fig. 5.2, but take it into account
in Section 5.4.2.



85 5.4. Lagrangian approach

·10−3

10−4 10−3 10−2 10−1 100 101

0

2

4

·10−3

ψ(2) relevant

Scale k
[

Mpc−1
]

∆
D

(2
)
/
D

(2
)

Equation (5.4.18)

10−7

10−5

10−3

10−1

Freq.

Figure 5.2: Correction to the ΛCDM prediction of D(2) = (3/7)D2 for the second-order growth
factor, according to the approximate model of Eq. (5.4.18), for

∑
mν = 0.3 eV at z = 31 (dashed

line). The colours represent a histogram of the full numerical solution, D
(2)
B (k1,k2), evaluated

on a 6D Fourier space lattice with physical dimension L = 800 Mpc (i.e. ∆k = 7.85 × 10−3

Mpc−1), projected onto the k = ||k1 + k2||-axis and normalized per k-bin. For the large majority
of configurations, the system attains the approximate value. The shaded region indicates the
range of scales for which the power spectrum of k ·ψ(2) is at least 0.01% of that of k ·ψ(1).

involved in the problem are either large or small, we can approximate the convolution

with the neutrino response as multiplication by a constant β = 1 + α(k). In such cases,

the frame-lagging terms also vanish, as will be confirmed in Section 5.4.2. Given these

assumptions, (5.4.10) reduces to

J−1
ij D∞ψi,j =

3βg∞
2D2∞

(1− 1/J). (5.4.13)

Using the identities JJ−1
ij = (1/2)ϵjkpϵiqrJkqJpr and J = (1/6)ϵijkϵpqrJipJjqJkr, we

rewrite (5.4.13) and (5.4.11) as

ϵijkϵpqrJqjJip

[
D∞ − βg∞

2D2∞

]
Jkr +

3βg∞
D2∞

= 0, (5.4.14)

ϵlpqJqkD∞ψk,l = 0. (5.4.15)

Hence, using Jij = δij +ψi,j and substituting the expansion (5.4.12), we obtain equations

for the longitudinal and transverse parts at order n in terms of perturbations of orders
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m1 +m2 = n (for n ≥ 2) and m1 +m2 +m3 = n (for n ≥ 3):

[
D∞ − 3βg∞

2D2∞

]
∇ ·ψ(n) =

−
∑

m1+m2=n

ϵijkϵipqψ
(m1)
j,p

[
D∞ − 3βg∞

4D2∞

]
ψ
(m2)
k,q (5.4.16)

−
∑

m1+m2+m3=n

ϵijkϵpqr
1

2
ψ
(m1)
i,p ψ

(m2)
j,q

[
D∞ − βg∞

2D2∞

]
ψ
(m3)
k,r ,

D∞∇×ψ(n) =
∑

m1+m2=n

∇ψ(m1)
i ×D∞∇ψ(m2)

i . (5.4.17)

The first-order equations separate. The longitudinal Eq. (5.4.16) has the particular

time-dependent solution

D(1) = Dq
∞ with q = 1

4

√
4 + 3g∞(8β + 3g∞ − 4)− 3

4g∞ + 1
2 ,

while the transverse Eq. (5.4.17) has constant and decaying solutions. Identifying the

fastest growing solutions order by order, we find that ψ(n) ∝ Dnq
∞ . In particular, we find

that the fastest growing solution at second order grows as

D(2)

D2q
∞

=
3g∞β

4q(2q − 1) + 3g∞(2q − β)
. (5.4.18)

Reinserting β = 1+α(k), we obtain a useful approximation of the magnitude of neutrino

effects on the second-order coefficient, relative to the ΛCDM value of 3/7. This is shown

by the dashed line in Fig. 5.2 for a model with
∑
mν = 0.3 eV at z = 31. We stress that

this approximation neglects the non-trivial coupling with the neutrino response in the

general case. As we will see in the next section, the second-order solution can be described

in full by two kernels, D
(2)
A (k1,k2) and D

(2)
B (k1,k2). For most configurations on the 6D

Fourier space lattice that we use to generate N -body ICs, both k1 and k2 are large and

the result is close to the estimate of Eq. (5.4.18). However, for cases with one mode large

and one mode small or for squeezed configurations with k = ||k1 + k2 || ≪ k1 ≈ k2, the

value may depart from this estimate, as shown by the histogram in Fig. 5.2. Nevertheless,

the figure demonstrates that the large- and small-scale limits provide reasonable bounds

on the effect at intermediate scales. Overall, the magnitude of the effect is O
(
10−3

)
, in

line with the estimate given in Section 5.2.2 for this mass. The figure also demonstrates

that the ΛCDM value of 3/7 is only reached for k < 10−3 Mpc−1, while the second-order

potential is important for k > 10−1 Mpc−1, reflecting the hierarchy between the neutrino

free-streaming scale and the nonlinear scale, kfs ≪ knl, that motivates the approach of
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Section 5.2.

Using ψ(n) ∝ Dnq
∞ , we derive recursion relations for the fastest growing solution at order

n ≥ 2:

∇ ·ψ(n) = −
∑

m1+m2=n

1

2

[
1− 4m1m2q

2

2nq(nq − 1) + 3g∞(nq − β)

]

× ϵijkϵipqψ
(m1)
j,p ψ

(m2)
k,q

−
∑

m1+m2+m3=n

[
1− 4(m1m2 +m2m3 +m3m1)q

2

2nq(nq − 1) + 3g∞(nq − β)

]

× ϵijkϵpqr
1

6
ψ
(m1)
i,p ψ

(m2)
j,q ψ

(m3)
k,r ,

(5.4.19)

∇×ψ(n) =
∑

m1+m2=n

1

2

m2 −m1

n
∇ψ(m1)

i ×∇ψ(m2)
i . (5.4.20)

For the purposes of higher-order ICs, we are primarily interested in deriving corrections

to the ΛCDM coefficients in the small-scale limit with β = q = 1. Reading off coefficients

from (5.4.19), we find that these can be conveniently expressed in terms of

Cn =
(2n+ 3)g∞
2n+ 3g∞

. (5.4.21)

Proceeding as in Appendix 5.D, we obtain the 3LPT form given in Section 5.2.2. Com-

bining Eqs. (5.4.21) and (5.3.18) yields an accurate approximation of Cn in terms of

fν :

Cn =
8(1− fν)(2n+ 3)

n(S − 1)2 + (S2 − 1)
∼= 1 +

2fνn

5(2n+ 3)
, (5.4.22)

with S =
√

1 + 24(1− fν). For n = 2, the above expression agrees with that given by

[212]. The next section is dedicated to relaxing the assumptions on g∞ and α(k), finding

the general solution at second order.

5.4.2. General solution

For the general solution, we need to deal with the frame-lagging terms F (q). Here, we

will follow the approach of [213]. We are interested in solutions at second order. The

transverse Eq. (5.4.11) only has non-trivial solutions for n ≥ 3. Therefore, we concentrate
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on the longitudinal part. We repeat (5.4.10) for convenience:

J−1
ij D∞ψi,j =

3g∞
2D2∞

[(1− 1/J) ∗ (1 + α) + F ] . (5.4.23)

Using (5.4.4) and J−1
ij =

∑∞
n=0[(I − J)n]ij , we can write this up to second order in the

displacement:

D∞ψi,i = ψi,jD∞ψj,i +
3g∞
2D2∞

ψi,i ∗ (1 + α)

− 3g∞
2D2∞

1

2
[ψi,iψj,j + ψi,jψj,i] ∗ (1 + α) +

3g∞
2D2∞

F (2),

(5.4.24)

where the second-order frame-lagging terms, F (2), are given in Appendix 5.C. At first

order, the displacement admits a growing solution ψ(1) ∝ D(1) with a growth factor that

satisfies

D∞D(1) =
3g∞
2D2∞

(1 + α)D(1). (5.4.25)

This is simply a reformulation of the Eulerian equation for the first-order growth factor

(5.3.9). Using the expansion (5.4.12) in (5.4.24) and collecting second-order terms then

yields

D∞ψ
(2)
i,i =

3g∞
2D2∞

ψ
(2)
i,i ∗ (1 + α) + ψ

(1)
i,j D∞ψ

(1)
j,i

− 3g∞
2D2∞

1

2

[
ψ
(1)
i,i ψ

(1)
j,j + ψ

(1)
i,j ψ

(1)
j,i

]
∗ (1 + α) +

3g∞
2D2∞

F (2).

(5.4.26)

In Fourier space, each of the quadratic terms in (5.4.26), including the second-order

frame-lagging term, is a convolution of derivatives of ψ(1)(k1) and ψ
(1)(k2). Expressing

the displacements in terms of potentials as

ψ(1) = −∇φ(1), ψ(2) = −∇φ(2), (5.4.27)

and identifying terms, we thus obtain

φ(2)(k) =
1

2

∫

k1,k2

1

(ik)2
1

D1D2
φ(1)(k1)φ

(1)(k2)

×
[
D

(2)
A (k1,k2)k

2
1k

2
2 −D

(2)
B (k1,k2)k

2
12

]
,

(5.4.28)
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where
∫
k1,k2

=
∫
dk1dk2(2π)

−6δ(3)(k1 + k2 − k) and k12 = k1 · k2 and Di = D(1)(ki) for

i = 1, 2. Notice the similarity of this equation with Eq. (5.2.7). The difference is that

the two terms now have distinct scale- and time-dependent coefficients satisfying

D∞D
(2)
A =

3g∞
2D2∞

(1 + α(k))D
(2)
A +

3g∞
2D2∞

(1 +A)D1D2, (5.4.29)

D∞D
(2)
B =

3g∞
2D2∞

(1 + α(k))D
(2)
B +

3g∞
2D2∞

(1 +B)D1D2, (5.4.30)

where the functions A and B are given by

A(k, k1, k2) = α(k) +

[
α(k)− α(k2)

k21
+
α(k)− α(k1)

k22

]
k12, (5.4.31)

B(k, k1, k2) = α(k1) + α(k2)− α(k), (5.4.32)

for k = ||k1 + k2||. The terms in square brackets correspond to the frame-lagging terms.

In the small-scale limit with k, k1, k2 ≫ kfs, we have A = B = 0. Hence, D
(2)
A = D

(2)
B and

(5.4.28) factorizes as in Eq. (5.2.7). Similarly, in the large-scale limit with k, k1, k2 ≪ kfs,

we obtain again the approximate form described in Section 5.4.1 with A = B ≈ fν/fcb. In

both limits, the frame-lagging terms drop out, as anticipated. Intermediate configurations

will deviate from the asymptotic solutions, as was already discussed in Section 5.4.1 and

shown in Fig. 5.2.

For the numerical solution, we begin the integration at a time when the non-relativistic

neutrino fraction is 50%. For the fiducial neutrino mass,
∑
mν = 0.3 eV, this corresponds

to z = 187. We integrate Eqs. (5.4.25) for the first-order growth factor and (5.4.29-

5.4.30) for the second-order kernels, using the approximate model of Eq. (5.4.18) as

initial conditions. The results, projected onto the k-axis, are shown in Fig. 5.2. When

generating 2LPT particle initial conditions, we begin by generating a realisation of the

back-scaled first-order potential, φ(1). We then perform the convolution integral of

Eq. (5.4.28) explicitly, interpolating from tables of D
(2)
A,B(k, k1, k2). To ensure completion

in a reasonable time frame, we impose cut-offs at k1 ≤ kcut and k2 ≤ kcut. We performed

convergence tests to ensure that the results are independent of the cut-off scale, finding

that a cut-off at kcut = 1 Mpc−1 was more than adequate for the resolutions considered

in this paper.
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5.5. Results

We will now discuss the power spectra, bispectra, and halo mass functions of massive

neutrino simulations with different ICs. We introduce our simulation suite in Section 8.2.

We then consider the impact of different approximation schemes for the second-order

kernels in Section 5.5.2 and follow it up with a comparison of Zel’dovich (ZA), 2LPT,

and 3LPT ICs at various starting redshifts in Section 5.5.3. Finally, we consider the

impact of ICs on the suppression of the power spectrum as a function of neutrino mass

in Section 5.5.4.

5.5.1. Simulations

We use the cosmological hydrodynamics code swift [189, 190], which uses task-based

parallelism, asynchronous communication, fast neighbour finding, and vectorised op-

erations to achieve significant speed-ups. The code uses the Fast Multipole Method

(FMM) for short-range gravitational forces and the Particle Mesh method for long-

range forces. Neutrinos are modelled as a separate particle species. We employ the

δf method to suppress the effects of shot noise [237] and generate neutrino particle

initial conditions by integrating geodesics from high redshift using our fastdf code.

Additionally, we use fixed initial conditions to limit cosmic variance [238]. Apart from

the neutrino mass, we use cosmological parameters based primarily on Year 3 results

from the Dark Energy Survey [201] and Planck 2018 [112]. Our choice of parameters is

(h,Ωm,Ωb, As, ns) = (0.681, 0.306, 0.0486, 2.09937× 10−9, 0.967), with different choices

for the neutrino density Ων .

There is a subtle point regarding comparisons between simulations with and without

massive neutrinos. Codes like swift employ a multipole acceptance criterion to determine

when the multipole approximation is sufficiently accurate to be used without further

refinement. The adaptive criterion used for the runs in this paper is based on error analysis

of forces on test particles. This means that the accuracy of the N -body calculation

depends on the number of particles contained in any given volume. When comparing

two runs with equal numbers of dark matter particles, one with neutrinos and the other

without, all other things being equal, forces will be calculated more accurately in the

run with neutrinos. To account for this difference, we included an equal number of

massless ‘spectator’ neutrino particles in the fν = 0 runs, with velocities corresponding to

mν = 0.05 eV neutrinos. These particles contribute no forces and only affect the N -body

simulation through the multipole acceptance criterion, ensuring that the accuracy of the
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Figure 5.3: Impact of approximation schemes for the second-order potential on the CDM & baryon
power spectrum. The reference run used initial conditions based on a numerical calculation of
the scale-dependent 2LPT kernels. In the asymptotic approximation (black), we use Eqs. (5.2.4)
and (5.2.13), but truncate third-order terms. In the ΛCDM approximation (red), we additionally
set C2 = 1. The vertical dotted line is the Nyquist frequency.

massless runs is comparable to that of the massive neutrino runs. Such massless runs are

considered in Section 5.5.4.

5.5.2. Validation of approximate treatment

To validate our approach, we compare three different implementations of 2LPT, based

on the following models:

1. The asymptotic model of Section 5.2

2. A model with ΛCDM coefficients

3. A reference model with scale-dependent effects

The first order displacements and velocities are identical in each of the approaches,

obtained from the back-scaled linear power spectrum at z = 0. In the asymptotic

scheme, we use Eqs. (5.2.4) and (5.2.13), but truncate the 3LPT terms. In the ΛCDM

approximation, we additionally set C2 = 1, which corresponds to neglecting neutrino

effects at second order. Finally, we compare these two approximate methods with a

reference run that relied on a numerical calculation of the scale-dependent 2LPT kernels,

D
(2)
A (k1,k2) and D

(2)
B (k1,k2). With respect to Fig. 5.2, the asymptotic approximation

corresponds to using the small-scale limit, the ΛCDM approximation corresponds to the

large-scale limit, and the reference run corresponds to the underlying histogram. We use

simulations with side length L = 800 Mpc and Ncb = 12003 particles.
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Fig. 5.3 shows the impact of these approximations on the power spectrum of the evolved

CDM & baryon density field. The differences are most evident at z = 3 (right panel). On

the largest scales, k < 0.05 Mpc−1, nonlinear corrections are small and all simulations

agree to machine precision. For k > 0.05 Mpc−1, the ΛCDM simulation systematically

underestimates clustering with a maximum error of 0.04% at k = 4 Mpc−1. For the

asymptotic run, the error is two orders of magnitude smaller over the same scales. Between

z = 31 and z = 3, the evolution is virtually identical in the asymptotic and reference runs,

but we begin to see some noise in the ratio on the smallest scales at z = 1 (middle panel).

These perturbations continue to grow until z = 0 (left panel), where we find a scatter

of 2 × 10−4 for k > 1 Mpc−1 in both the asymptotic/reference and ΛCDM/reference

ratios. It is hard to attribute this noise to any particular run as the power spectrum on

these scales is increasingly determined by the internal structure of poorly resolved halos.

On larger scales, k < 1 Mpc−1, the asymptotic run performs extremely well with errors

below 10−5, while the systematic deficit in the ΛCDM run persists.

These results demonstrate that, at second order, the effect of the suppressed neutrino

perturbations can be absorbed into a scale-independent factor C2 and that further scale-

dependent neutrino effects are negligible as far as initial conditions are concerned. We

expect that this continues to hold for third-order corrections, which are confined to even

smaller scales. Including the correction factor C2 is clearly superior to simply using

the ΛCDM coefficient. However, we also observe that this higher-order neutrino effect

is below 0.1%, and therefore beyond the sensitivity of current experiments. Hence, we

conclude that for most purposes both the ΛCDM approximation and the asymptotic

approximation are justified.

5.5.3. Choice of LPT order and starting time

We are now in a position to study the effects of LPT order and starting time on massive

neutrino simulations, using the asymptotic approximation. Fig. 5.4 shows the late-time

power spectrum for simulations with L = 800 Mpc and Ncb = 12003 particles, comparing

in the first instance Zel’dovich (solid red) and 2LPT (solid black) with 3LPT (dotted

gray) as a baseline. All three runs were started at zi = 31. The most striking observation

is that the differences are much larger than those shown in Fig. 5.3. This means that

using higher-order LPT in some fashion is more important than getting the details right.

Next, we find percent agreement between 2LPT and 3LPT over the entire range of scales

probed for z ≤ 1 and approximately a 1% error at z = 3 for k > 2 Mpc−1. We also find

that the Zel’dovich approximation performs very poorly with errors of (4, 7, 15)% for

k > 1 Mpc−1 at z = (0, 1, 3). This well-known fact [88] has motivated practitioners to
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Figure 5.4: Impact of starting time and LPT order on the CDM & baryon power spectrum. The
reference simulation used 3LPT and both it and the 2LPT simulation were started at zi = 31.
The shaded area is 1%.

start Zel’dovich simulations at higher redshifts, when truncation errors are smaller. We

demonstrate this with Zel’dovich runs started at zi = 63 (dashed, red) and zi = 127

(dotted, red). While the agreement with the higher-order runs improves, we still find

percent agreement only up to k = 0.4 Mpc−1. Moreover, starting earlier introduces

inaccuracies of a different sort. To see this, we repeat the exercise at a lower resolution

with Ncb = 6003 particles. The resulting power spectra at z = 0 are shown in Fig. 5.5,

with Zel’dovich runs compared against 3LPT in the left panel. We observe that for runs

started at zi = 31 (red), the error is almost independent of resolution. However, for

earlier starts at z = 63 (black) and z = 127 (blue), the lower resolution runs increasingly

underestimate the power spectrum on small scales. This shows that while truncation

errors decrease, resolution effects increase as simulations are started earlier. The pattern

reverses for 2LPT (right panel), with earlier starts performing worse than later starts.

This can easily be explained by the fact that truncation errors are much smaller for 2LPT,

such that the effect of increasing discreteness errors dominates. We confirm the finding of

[89] that the size of discreteness errors is independent of LPT order. This demonstrates

that, at fixed resolution and LPT order, starting earlier does not guarantee convergence

onto the higher-order solution. As was the case for truncation errors, discreteness errors

are much larger at z = 1, 3 (not shown).

We also consider three-point statistics, which are sensitive to transients from initial

conditions [88] and an interesting probe of neutrino physics [239–241]. For the equilateral

bispectrum, B(k) = B(k1, k2, k3) with k = k1 = k2 = k3, shown in Fig. 5.6 at late times,

the same pattern is broadly repeated as for the power spectrum. However, errors are

approximately twice as large as for the power spectrum. In detail, we again find percent

agreement between 2LPT and 3LPT for z ≤ 1 with larger errors on small scales at z = 3.
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Figure 5.6: Impact of starting time and LPT order on the equilateral bispectrum of CDM &
baryon density perturbations at late times. The reference simulation used 3LPT and both it and
the 2LPT simulation were started at zi = 31. All runs used Ncb = 12003 particles. The shaded
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For the Zel’dovich runs, we find significant errors compared to 3LPT, even when starting

at z = 127, with percent agreement only up to k = 0.1 Mpc−1 at z = 0, and not even

there for z ≥ 1.

Finally, we compare the halo mass function at z = 0. Halos are identified with VE-

LOCIraptor [194] using a 6D friends-of-friends algorithm applied to the cb particles.

Spherical overdensity masses are computed within spheres for which the density equals

200 times the mean CDM & baryon density ρ̄cb. The reason for using ρ̄cb instead of the
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total mass density ρ̄m is that it is this cold density field that produces universal and

unbiased results in halo model calculations [242–244]. The results are shown in Fig. 5.7.

We once again find percent agreement between 2LPT and 3LPT over the entire mass

range, but large errors for the Zel’dovich runs. There is an interesting pattern in the

Zel’dovich error as the starting time is varied. For late starts (solid red), the simulation

agrees well at the low-mass end but underestimates the number of very massive, 1015M⊙,
halos by more than 7%. This can be understood in terms of the deficit of power seen

also in Fig. 5.4, resulting in a suppressed growth of large structures. Meanwhile, for

early starts (dotted and dashed red), the agreement at the high-mass end improves like

the small-scale power spectrum. However, the number of low-mass halos decreases by a

similar factor, likely due to discreteness errors. This seems to be broadly consistent with

the ΛCDM results of [89], but not with [245] who find little dependence on starting time

at z = 0.

5.5.4. Dependence on neutrino mass

Thus far, we have focused on a single neutrino mass of
∑
mν = 0.3 eV. However, it is of

great interest to determine the effect of initial conditions on the suppression of the power

spectrum for different neutrino masses. We consider three cases:

1. massless neutrinos

2. degenerate
∑
mν = 0.15 eV neutrinos (fν = 0.011),
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3. degenerate
∑
mν = 0.30 eV neutrinos (fν = 0.023).

In each case, we adjust Ωcdm to keep the total matter density Ωm fixed. To be able to

carry out many variations, we primarily use lower resolution simulations with Ncb = 6003

particles in an L = 800 Mpc cube. This still enables us to study the impact of LPT order

and starting time, as the following discussion reveals.

First, we consider the effect of LPT order. In Fig. 5.8, we show the suppression of the

CDM & baryon power spectrum relative to the massless case, comparing ZA/ZA (solid),

2LPT/2LPT (dashed), and 3LPT/3LPT (shaded). Evidently, it is crucial to compare like

with like simulation, keeping the LPT order and starting redshift the same. Not doing so

introduces large errors in the ratio, as might be expected from the fixed neutrino mass

results discussed above. We illustrate this by including a dotted line for the ZA/2LPT

ratio, which is clearly off the mark. However, even when comparing like with like, we

find a residual error that is proportional to the neutrino mass, rises with k, and peaks

around the turn-over of the suppression. This feature is most clearly visible at z = 1

for ZA, with a maximum error of 0.05fν . The effect is already present in the initial

conditions and can be explained by a mass-dependent suppression of nonlinear terms. As

virialized structures grow, both the turn-over of the suppression and the peak of the error

move to larger scales. At z = 0, the error is 0.025fν around k = 0.3 Mpc−1. On smaller

scales, we see a scatter of order 0.5%, treading outside the scale-dependent error bars

that correspond to a ±0.005 eV shift in
∑
mν . For 2LPT, both the systematic effect

and the noise are greatly suppressed, resulting in 0.1%-level agreement with 3LPT even

at early times.

Next, we consider the effect of the starting time of the simulation. In Fig. 5.9, we show

the suppression for simulations with 2LPT ICs started at z = 127 (solid), z = 63 (dashed),

z = 31 (shaded). Once again, we compare like with like simulations. Even so, we find a

small residual effect with earlier starts overestimating the suppression. The differences

between z = 31 and z = 63 are minimal for both neutrino masses. However, starting

at z = 127 results in (0.1, 0.2)fν errors at z = (0, 1) for k > 1 Mpc−1. These errors

once again exceed the threshold for a ±0.005 eV shift in
∑
mν . Based on the discussion

above, and given that we are using 2LPT, we expect that truncation errors are small

at both redshifts. This suggests that the differences are caused by resolution effects,

which grow in importance with the starting redshift. To test this, we repeated some of

the simulations at a higher resolution with Ncb = 12003 particles, starting at z = 127

and z = 31. The ratio is shown as a dotted line in the bottom panels of Fig. 5.9. The

agreement between the early and late starts improves to 0.1% up to k = 10 Mpc−1 at

z = 0, comparable to the low-resolution z = 63 start. However, the suppression is still
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slightly overestimated at z = 1.

One possible alternative explanation is that errors could be introduced by the back-scaling

procedure (Section 5.2.1). To test this hypothesis, we repeated some of the simulations

with ICs that were not back-scaled, as in Chapter 4. We found nearly identical results

for these runs, ruling out this explanation. Another possibility is that the errors could

be the result of shot noise, since we use a particle-based implementation of neutrino

perturbations. However, this is unlikely as the differences already appear at high redshift

when shot noise is highly suppressed due to our use of the δf method. Finally, one might

expect differences due to relativistic effects that are increasingly important for earlier

starts. Once again, this is unlikely since relativistic effects would appear on the largest

scales, where the differences shown in Fig. 5.9 are minimal. Since the error decreases

for the higher resolution runs, discreteness effects likely account for the majority of the

difference, with massive neutrino simulations being more sensitive to such errors, due to

the suppressed growth of structure. Late starts can be utilized to minimize the effect of

particle resolution, as shown in Fig. 5.5.
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power spectrum. The neutrino masses are
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where this is smaller. All simulations used 2LPT initial conditions.

5.6. Discussion

We have investigated the use of higher-order Lagrangian initial conditions (ICs) for

cosmological simulations with massive neutrinos. We solved the fluid equations for

a neutrino-CDM-baryon model with approximate time-dependence in the large- and

small-scale limits, finding that higher-order neutrino effects can be described by scale-

independent coefficients that are easy to implement in existing IC codes. To validate

our approach, we constructed ICs based on a rigorous treatment of the scale-dependent

neutrino response in 2LPT, obtaining agreement with our scheme to better than one

part in 105 up to k = 1 Mpc−1 in the power spectrum of the evolved CDM and baryon

perturbations at late times.

Compared to these small differences, we find that the truncation error associated with

using the first-order Zel’dovich approximation is much larger. For our fiducial model

with
∑
mν = 0.3 eV and a starting redshift of zi = 31, the error is 4% in the power

spectrum and 7% in the equilateral bispectrum around k = 0.5 Mpc−1 at z = 0. Ratios

of statistics from simulations with different neutrino masses can be calculated much more

robustly, provided that the LPT order and starting redshift are the same. Nevertheless,
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even such ratios have a residual dependence on the ICs. For instance, Zel’dovich ICs

introduce a mass-dependent error in the suppression of the power spectrum that grows

with wavenumber k and redshift z, peaking around the turn-over of the suppression.

We also find that the starting time of the simulation has an impact on the suppression

over a wide range of scales and redshifts. Simulations started at zi = 127 overestimate

the suppression of the power spectrum on small scales, compared to later starts. While

simulations can be started at higher redshifts to reduce truncation errors, this also

increases the importance of particle resolution and relativistic effects. To minimize errors

from initial conditions and particle resolution, simulations can be started at late times

using higher-order ICs.

A major target of cosmological surveys is to measure the sum of neutrino masses.

Assuming the minimum value allowed under the normal mass ordering,
∑
mν = 0.06

eV, cosmology could provide a 3σ detection and rule out the inverted mass ordering at

2σ by reaching a sensitivity of 0.02 eV, which is in reach of future cosmic microwave

background and large-scale structure experiments [132, 202–204]. This corresponds to

detecting 1% effects on the matter power spectrum on 0.1 Mpc−1 < k < 1 Mpc−1 scales.

We should therefore aim for neutrino simulations with errors that are well below 1% on

these scales. While Zel’dovich ICs fall short of this mark, our findings suggest that 2LPT

is sufficiently accurate for most applications. Higher-order statistics at high redshift seem

to be the notable exception, which could be relevant for Lyman-α forest simulations.

The accuracy of neutrino simulations depends on many factors: the accuracy of the linear

transfer functions and back-scaling procedure [124, 221], the implementation of neutrino

perturbations (e.g. [174], Chapter 4), neutrino initial conditions (Chapter 6), and dark

matter and baryon initial conditions (this chapter). It has now been demonstrated

that each of these factors can be controlled to within 1%. The remaining uncertainty

is likely dominated by the choice of gravity solver. Achieving 1% agreement between

different N -body codes is non-trivial even in the absence of neutrinos [218, 246, 247].

Fortunately, the accuracy of N -body codes should not in the first place be expected to

deteriorate in the presence of neutrinos. In fact, the accuracy could even improve for

particle-based implementations due to ‘spectator’ effects (Section 8.2). Indeed, since

publication of this paper, a systematic comparison of neutrino simulations with different

codes and identical initial conditions has shown that consistent results can be obtained

if shot noise is satisfactorily addressed [130]. These explorations confirm our ability to

simulate nonlinear clustering in Universes with massive neutrinos, allowing us to meet

the demands of the next generation of surveys.
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5.A. Difference and sum equations

As in (5.3.15–5.3.17), the component fluid Eqs. (5.3.1–5.3.2) can be rewritten using D∞
as time variable and vλ = uλ/∂τD∞ as velocity:

∂D∞vλ + vλ · ∇xvλ = − 3g∞
2D∞

(vλ +∇xφ), (5.A.1)

∂D∞δλ +∇x · [(1 + δλ)vλ] = 0, (5.A.2)

for λ ∈ {c,b} with φ = aΦ/(B0D∞) and g∞ defined in (5.3.14). The initial conditions

at D∞ = 0 must be vc = vb = −∇xφ for (5.A.1) not to diverge. Taking the difference of

(5.A.1) for λ = b and λ = c gives

∂D∞vbc + vb · ∇xvbc + vbc · ∇xvc = − 3g∞
2D∞

vbc, (5.A.3)

where vbc = vb−vc. Notice that the neutrino contribution contained in ∇xφ has dropped

out. Consequently, we obtain results analogous to the ΛCDM case without massive

neutrinos [229]. Expand vλ =
∑∞

m=1 v
(m)
λ for λ ∈ {c,b} and vbc =

∑∞
m=1 v

(m)
bc . At first

order, we find

∂D∞v
(1)
bc = − 3g∞

2D∞
v
(1)
bc . (5.A.4)

Since g∞ is strictly positive (see Fig. 5.1), the only non-decaying solution is v
(1)
bc = 0. As

vbc = 0 initially, this is the only solution. Suppose that v
(m)
bc = 0 for m = 1, . . . , n− 1.

Then also

∂D∞v
(n)
bc = − 3g∞

2D∞
v
(n)
bc , (5.A.5)

with the only solution being v
(n)
bc = 0. It follows that vbc = 0 at all orders. Using this

result and taking the mass-weighted average of the component equations yields at all

orders:

∂D∞vcb + vcb · ∇xvcb = − 3g∞
2D∞

(vcb +∇xφ), (5.A.6)

∂D∞δcb +∇x · [(1 + δcb)vcb] = 0. (5.A.7)
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Converting back to τ -time gives (5.3.3–5.3.4). Letting δbc = δb − δc and taking the

difference of (5.A.2) for λ = b and λ = c also gives

∂D∞δbc +∇x · [δbcvcb] = 0. (5.A.8)

Inserting δbc =
∑∞

m=1 δ
(m)
bc , we find that δ

(1)
bc = constant at first order, as in the case

without neutrinos.

5.B. Analytic solution

We seek a solution to

∂2τD + aH∂τD =
B0

a
D. (5.B.1)

To express the solution as a function of the scale factor, a(τ), we switch time variables to

log a and define the new velocity variable, ũcb = ucb/(aH). Eq. (5.B.1) is then written

as

d2D

d(log a)2
+

[
2 +

d logH

d log a

]
dD

d log a
=

B0

a3H2
D. (5.B.2)

The hypergeometric function 2F1(c, d, e, z) is a solution of the differential equation

z(1− z)
d2F

dz2
+ [e− (c+ d+ 1)z]

dF

dz
− cdF = 0. (5.B.3)

Given the Ansatz D(a) = ap
√
1 + Λa3F (z) with z = −Λa3 and Λ = ΩΛ/Ωm, we obtain

after some algebra

(1− z)
d2F

d(log a)2
+

[
2(p+ 1)(1− z)− 3z − 3

2

]
dF

d log a
=

−
[(
p2 +

p

2
− 3

2
(1− fν)

)
−
(
p2 + 5p+

21

4

)
z

]
F.

(5.B.4)

To bring this in the form of (5.B.3), we require

p =
1

4

(
±
√
1 + 24(1− fν)− 1

)
, (5.B.5)
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where the positive sign picks the growing solution. Using this in (5.B.4), we obtain

z(1− z)
d2F

dz2
+

1

3

[
2p+

7

2
− (2p+ 8)z

]
dF

dz
=

1

9

[
p2 + 5p+

21

4

]
F.

(5.B.6)

Identifying constants in (5.B.3) and (5.B.6), we derive the desired expression

D(a) = ap
√
1 + Λa32F1

(
2p+ 7

6
,
2p+ 3

6
,
4p+ 7

6
,−Λa3

)
, (5.B.7)

with p =
√

1 + 24(1− fν)/4− 1/4.

5.C. Frame lagging

Let S(x) = (δcb ∗ α) (x). Since S is itself first order, we have up to second order that

S(x) = S(q +ψ) = S(q) +
∂S

∂qi

∣∣∣∣
q

ψi(q). (5.C.1)

Denoting the Fourier transform of S(x) as F {S(x)}, we find that

F {S(x)} = F {S(q)}+ F
{
∂S

∂qi

∣∣∣∣
q

}
∗ F {ψi(q)} . (5.C.2)

To be more explicit, we will denote the Fourier transform of S(x) by Sx(k) and the

Fourier transform of S(q) by Sq(k). The above identity can then be written as

Sx(k) = Sq(k) +

∫

k1,k2

iki1S
q(k1)ψi(k2), (5.C.3)

where
∫
k1,k2

=
∫
dk1dk2(2π)

−6δ(3)(k1 + k2 − k). Similarly,

δqcb(k) = δxcb(k)−
∫

k1,k2

iki1δ
q
cb(k1)ψi(k2). (5.C.4)

Combining the last two equations, we obtain

αx(k)δxcb(k) = αq(k)δxcb(k)− F (k), (5.C.5)
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where we denote the so-called “frame-lagging” terms by

F (k) =

∫

k1,k2

iki1 [α
q(k)− αq(k1)] δ

q
cb(k1)ψi(k2). (5.C.6)

Now, since δxcb = 1/J − 1, we obtain the result used in Section 5.4.2:

[δcb ∗ α](x) = [(1/J − 1) ∗ α](q)− F (q). (5.C.7)

We now rewrite the second-order frame-lagging terms using the Monge-Ampère equation,

obtaining

F (2)(k) =

∫

k1,k2

[α(k)− α(k1)]k
i
1k

j
1ψ

(1)
i (k2)ψ

(1)
j (k1). (5.C.8)

5.D. Terms up to third order

We give explicit expressions up to third order. For n = 2, both the cubic term on the right-

hand side of (5.4.19) and the quadratic term on the right-hand side of (5.4.20) vanish.

Hence, only the quadratic term in (5.4.19) contributes. Using ϵijkϵipq = δjpδkq − δjqδkp,

we find

∇ ·ψ(2) = − 3g∞
4 + 3g∞

1

2

[
ψ
(1)
i,i ψ

(1)
j,j − ψ

(1)
i,j ψ

(1)
i,j

]
. (5.D.1)

The corresponding ΛCDM coefficient (3/7) is found by setting g∞ = 1. Dividing

these coefficients, one obtains the scale-independent factor C2 = 7g∞/(4 + 3g∞). For

n = 3, we obtain two pieces from (5.4.19) and one piece from (5.4.20), giving ψ(3) =

ψ(3a) +ψ(3b) +ψ(3c). Using detAij = (1/6)ϵijkϵpqrAipAjqAkr, we can write these as

∇ ·ψ(3a) = − g∞
2 + g∞

detψ
(1)
i,j , (5.D.2)

∇ ·ψ(3b) = −4 + 6g∞
6 + 3g∞

1

2

[
ψ
(1)
i,i ψ

(2)
j,j − ψ

(1)
i,j ψ

(2)
i,j

]
, (5.D.3)

∇×ψ(3c) = −1

3
∇ψ(2)

i ×∇ψ(1)
i . (5.D.4)

The corresponding ΛCDM terms are again found by setting g∞ = 1. Expressing these in

terms of potentials (5.2.7-5.2.10) and dividing the corresponding coefficients, we obtain

the form given in Section 5.2.2 in terms of C1, C2, C3.





Hot initial conditions
6

This chapter deals with the initial conditions of the hot matter species:

neutrinos. The thermal distribution implies that another angle of attack

is needed. Following Ma & Bertschinger (1994), we use the method

of geodesic integration. Combined with the δf method of Chapter 4,

we demonstrate that the phase-space distribution can be accurately

described with particles even in the relativistic régime.

Geodesic motion and phase-space evolution of massive neutrinos

Abstract: The non-trivial phase-space distribution of relic neutrinos is re-

sponsible for the erasure of primordial density perturbations on small scales,

which is one of the main cosmological signatures of neutrino mass. In this

paper, we present a new code, fastdf, for generating 1%-accurate particle

realisations of the neutrino phase-space distribution using relativistic pertur-

bation theory. We use the geodesic equation to derive equations of motion

for massive particles moving in a weakly perturbed spacetime and integrate

particles accordingly. We demonstrate how to combine geodesic-based initial

conditions with the δf method to minimise shot noise and clarify the defini-

tion of the neutrino momentum, finding that large errors result if the wrong

parametrisation is used. Compared to standard Lagrangian methods with

ad-hoc thermal motions, fastdf achieves substantial improvements in accuracy.

We outline the approximation schemes used to speed up the code and to ensure

symplectic integration that preserves phase-space density. Finally, we discuss

implications for neutrino particles in cosmological N -body simulations. In

particular, we argue that particle methods can accurately describe the neutrino

distribution from z = 109, when neutrinos are linear and ultra-relativistic,

down to z = 0, when they are nonlinear and non-relativistic. fastdf can be

used to set up accurate initial conditions (ICs) for N -body simulations and

has been integrated into the higher-order IC code monofonic.

105
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6.1. Introduction

It is expected that relic neutrinos of the early Universe outnumber the baryons by a

factor of nν/nb ≈ 109. The discovery of neutrino oscillations [11, 12] implies that at least

two-thirds of these particles carry a mass, which though small, through sheer abundance

should leave an imprint on the large-scale distribution of matter. Detecting this signature

would provide a means of measuring the sum of neutrino masses
∑
mν from cosmology

[23, 25, 50], complementing an extensive programme of neutrino experiments on Earth.

The imprint of massive neutrinos arises primarily from the fact that, during the era of

structure formation, neutrinos are non-relativistic particles with a relativistic phase-space

distribution. Neutrinos decouple from the primordial plasma at a temperature of 1MeV

and subsequently stream along geodesics, essentially without scattering, but maintaining

a thermal phase-space distribution. After becoming non-relativistic, massive neutrinos

have a thermal velocity vth ∝ 1/mν and cannot be contained effectively in regions smaller

than vth/H, where H is the Hubble rate. As a result, although neutrinos contribute like

dust to the geometric expansion of the Universe, they cluster less effectively on small

scales, slowing down the growth of matter perturbations. This effect has been used to put

tight constraints on the sum of neutrino masses, with current limits of
∑
mν < 0.15 eV

or better [108, 109, 113, 248]. These constraints are an order of magnitude below the

strongest laboratory constraint, mν < 0.8 eV, from KATRIN [14], but come with the

important assumption of ΛCDM cosmology, which highlights their complementarity.

Cosmological N -body simulations are widely used to make predictions for nonlinear

structure formation in the presence of massive neutrinos and to study their effects on

cosmological observables, which is needed to unlock the full potential of surveys like

DESI and Euclid for neutrino science. Many approximate methods exist to incorporate

neutrino effects in simulations, of which [168, 172, 222, 249, 250] are some recent examples.

Methods that solve for the neutrino and dark matter perturbations self-consistently fall

roughly into three categories: grid-based methods actively solve evolution equations on

the grid [149, 161, 163, 164, 167, 175, 251, 252], linear methods use transfer functions

computed with an Einstein-Boltzmann code [166, 171, 253], and particle-based methods

sample the phase-space distribution with tracers [148–150, 155, 156, 159, 164, 237, 254–

256]. While particle methods are uniquely suited to follow nonlinear neutrino clustering

at late times, they typically disagree with linear theory in the neutrino component at

early times, in part due to the way that initial conditions are handled and in part due to

shot noise. The purpose of this paper is to address these shortcomings and to demonstrate

how particle methods can be used to obtain accurate results at all times.

Particle initial conditions for N -body simulations are commonly set up with Lagrangian
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perturbation theory (LPT). This works very well for baryons and cold dark matter, even in

the presence of neutrinos [212, 213, 257]. However, standard methods fail for the neutrino

fluid itself. The free-streaming behaviour is usually implemented in an ad-hoc manner by

drawing a random thermal velocity from the homogeneous Fermi-Dirac distribution and

assigning it to the neutrino particles [254, 255]. This is typically combined with first-

order Lagrangian perturbation theory (1LPT), more commonly known as the Zel’dovich

approximation [62], in which particle displacements and velocities are proportional to

one another: v = aHfψ, where f is the linear growth rate and a the scale factor. It is

easy to see that these steps are inconsistent. The result is illustrated in the top row of

Fig. 7.8. Even though the displacement field, ψ, can be chosen to reproduce the density

field at the initial time, the imprinted density perturbations are wiped out by random

motions after only a few steps. A better approach, already proposed by [150] and used

recently by [154], is to integrate neutrinos along geodesics from high redshift, z = 109,

down to the starting redshift of the simulation using metric perturbations obtained from

an Einstein-Boltzmann code1. This, however, does nothing to address the issue of shot

noise, which is particularly problematic at early times. We recently proposed the δf

method as a way of minimising shot noise in neutrino simulations [237], inspired by

similar efforts in plasma physics [179–181] and stellar dynamics [176, 177]. Here, we will

show how these methods can be combined to produce accurate density fields from the

very beginning of the simulation, as shown in the bottom panels of Fig. 7.8. To facilitate

this approach for large simulations, we have made our fastdf2 code publicly available,

and integrated it into the higher-order initial conditions generator monofonic, along

with other neutrino extensions [257, 260, 261].

The remainder of the paper is structured as follows. We will first describe our methods in

Section 6.2. We then derive the required equations of motion directly from the geodesic

equation in Section 6.3 and briefly remark on the Lagrangian derivation that was used

previously. In Section 6.4, we present numerical results, comparing the proposed method

with linear fluid calculations and standard methods, and evaluating the impact of the

equations of motions. Finally, we discuss the implications for simulations in Section 6.5.

6.2. Methods

Throughout this paper, we work in Newtonian gauge with a metric given by

ds2 = a2(τ)
[
−(1 + 2ψ(x, τ))dτ2 + (1− 2ϕ(x, τ))δijdx

idxj
]
, (6.2.1)

1Another solution could be to extend LPT to fluids with non-negligible velocity dispersion [258, 259].
2Fast Distribution Function; all codes available via https://willemelbers.com/neutrino_ic_codes/.

https://willemelbers.com/neutrino_ic_codes/
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Figure 6.1: Neutrino density slices from a 3.2 Gpc cube for z ∈ {31, 15, 3}. In the top row,
neutrino particles were set up at z = 31 using first-order Lagrangian perturbation theory (1LPT)
and then integrated forward. The initial perturbations are immediately washed out and structure
is only recovered over time. In the bottom row, the neutrino density field is faithfully reproduced
at all times using geodesic integration together with the δf method [237].

where τ is conformal time and we consider only scalar metric perturbations: ϕ and ψ.

Let Uµ = dxµ/
√
−ds2 be the 4-velocity and Pµ = mUµ the 4-momentum of a massive

neutrino particle. The physical momentum measured by a cosmological observer is

p =
√
gijP iP j . (6.2.2)

We define the comoving momentum as q = ap and let qi = qi = qn̂i, where the unit

vector n̂i = Pi/P with P 2 = δijPiPj . Finally, we define the energy as ϵ =
√
q2 +m2a2.

Our aim is to sample particles from the neutrino phase-space distribution,

f(x,q, τ) = f̄(q) [1 + Ψ(x,q, τ)] , (6.2.3)
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where f̄(q) = (1 + exp(q/T ))−1 is the homogeneous Fermi-Dirac distribution and T =

1.95K the present-day neutrino temperature. In terms of f , the energy density is

ρ(x, τ) = a−4

∫
d3q ϵ f(x,q, τ) (6.2.4)

= ρ̄(τ) [1 + δ(x, τ)] . (6.2.5)

The evolution of f is governed by the collisionless Boltzmann equation (2.2.7). At linear

order in the metric perturbations, solutions can be found by decomposing Ψ into a

Legendre series in Fourier space [126]3:

Ψ(k, n̂, q, τ) =
∞∑

ℓ=0

(−i)ℓ(2ℓ+ 1)Ψℓ(k, q, τ)Pℓ(k̂ · n̂). (6.2.6)

The Boltzmann equation (2.2.7) then becomes an infinite tower of equations in Ψℓ, which

is usually truncated at some high ℓmax using an algebraic Ansatz (see Section 3.3). We

solve this system with class [124, 128]. To obtain very accurate results, we turn off the

default neutrino fluid approximation and use N = 100 momentum bins and an integration

tolerance of 10−12. In terms of Ψℓ, the energy density and flux perturbations can then

be written as4

ρ̄(τ)δ(k, τ) = a−4

∫
d3q ϵ f̄(q)Ψ0(k, q, τ), (6.2.7)

(
ρ̄(τ) + P̄ (τ)

)
θ(k, τ) = a−4

∫
d3q qk f̄(q)Ψ1(k, q, τ), (6.2.8)

where ρ̄ and P̄ are the background density and pressure.

6.2.1. Initial conditions

To sample particles from the full perturbed phase-space distribution (6.2.3), taking

into account the non-trivial correlations between x and q, we integrate particles along

geodesics from high redshift. We begin shortly after decoupling at z = 109, when all

modes of interest are outside the horizon and the neutrino phase-space distribution can

be described in closed form, although in practice a slightly lower redshift would suffice.

To recover the correct super-horizon evolution, we account for the initial monopole

and dipole temperature perturbations. At early times on super-horizon scales, the first

3Note that our definition of Ψℓ is slightly different.
4Recall that

∫ π

0
Pℓ(cos θ)Pm(cos θ) sin θ dθ = δℓm2/(2ℓ+ 1).
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two moments of the distribution function are δ = −2ψ and θ = 1
2k

2τψ [126]. From

(6.2.7–6.2.8), we find

Ψ0 = − δ
ν

d log f̄

d log q
, Ψ1 = −ωϵθ

qkν

d log f̄

d log q
, (6.2.9)

where ν ≡ d log ρ̄/d log T = 4 and ω ≡ 1 + w = (ρ̄+ P̄ )/ρ̄ = 4/3. It follows that

f(x,q, τ) = f̄

(
q

[
1− δ

ν
− ωϵq̂

νq
· ∇
(
∇−2θ

)])
. (6.2.10)

Particle positions are sampled uniformly in the periodic simulation volume. We then

apply the initial perturbations by sampling momenta from the unperturbed Fermi-Dirac

distribution, f̄ , and rescaling the ith component of q:

qi → qi

[
1 +

δ

ν
+
ωϵ

νqi
∇i

(
∇−2θ

)]
. (6.2.11)

After setting up these “pre-initial” conditions, neutrinos are integrated using relativistic

equations motion, derived in the next section. These depend on the scalar potentials,

ϕ(x, τ) and ψ(x, τ), whose transfer functions are computed with class. The integration

is done with the C-code fastdf, which we make publicly available. Since the metric

is computed in linear theory beforehand, each neutrino is completely independent, in

principle allowing the code to be perfectly parallel. However, a large fraction of the

computational expense is due to the potential grids, which can be shared if the particles

are synchronised. To exploit this, fastdf supports parallelisation through both openmp

and mpi. The latter is also used to facilitate parallel data output through hdf5. Further

gains in speed are made by realising that the metric perturbations are constant during pure

radiation and pure matter domination. We therefore compute the potential fields only

when the fractional change in the transfer functions exceeds 1% and linearly interpolate

between these super-steps. This significantly reduces the required number of Fourier

transforms and has a negligible impact on the accuracy.

6.2.2. The δf method

To handle particle shot noise, which is of particular concern at early times, we use the δf

method [237]. This is a variance reduction technique in which the phase-space distribution

is decomposed as f = f̄ + δf in terms of an analytical background f̄ and perturbation δf

sampled by the particles. The density integral (6.2.4) is then decomposed into a smooth
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background, ρ̄(x, τ), and a sum over simulation particles:

ρ(x, τ) ∼= ρ̄(x, τ) +
M

N

N∑

k=1

wkϵkW (x− xk), (6.2.12)

where M is a normalisation factor, W (x) a smoothing kernel, ϵk the energy and wk a

statistical weight for particle k given by wk = δfk/fk. The weights are simple to compute

in practice. Conservation of phase-space density along geodesics implies that fk = f̄(pk)

with pk the initially sampled (unperturbed) value for particle k at z = 109. At any later

point, we obtain δfk = f̄(pk)− f̄(qk). The method similarly extends to other phase-space

statistics, such as the momentum density.

6.3. Equations of motion

We will derive the relativistic equations of motion starting directly from the geodesic

equation and then comment on the differences with [150, 154].

6.3.1. Geodesic derivation

To derive equations of motion in terms of xi and qi, we begin with the geodesic equation

∇PP = 0. Its components read

P ν
dP i

dxν
= −ΓiµνP

µP ν . (6.3.1)

To first order, the Christoffel symbols Γiµν are

Γi00 = ∂iψ,

Γij0 = δij(aH − ϕ̇),

Γijk = −2∂(jϕδk)i + ∂iϕδjk.

(6.3.2)

Furthermore, using q2 = a2gijP
iP j and m2 = −gµνPµP ν , we express the momentum

components in terms of the energy ϵ =
√
q2 +m2a2 and the comoving 3-momentum qi:

P 0 = a−2(1− ψ)ϵ,

P i = a−2(1 + ϕ)qi.
(6.3.3)
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The left-hand side of (6.3.1) consists of two terms, the first being

P 0dP
i

dτ
= a−4(1− ψ)ϵ

(
−2aHqi(1 + ϕ) + ϕ̇qi + (1 + ϕ)

dqi

dτ

)
, (6.3.4)

whereas the second is simply

P j
dP i

dxj
= a−4(1 + ϕ)qj∂jϕq

i. (6.3.5)

The right-hand side of (6.3.1) consists of three terms that can be written as

ΓiµνP
µP ν = Γi00a

−4(1− 2ψ)ϵ2 + 2Γi0ja
−4(1− ψ + ϕ)qjϵ+ Γijka

−4(1 + 2ϕ)qjqk (6.3.6)

= ∂iψa
−4(1− 2ψ)ϵ2 + δij(2aH − 2ϕ̇)a−4(1− ψ + ϕ)qjϵ

+
(
−2∂(jϕδk)i + ∂iϕδjk

)
a−4(1 + 2ϕ)qjqk.

(6.3.7)

Using (6.3.4),(6.3.5),(6.3.7) in the geodesic equation (6.3.1) and dividing by a−4ϵ(1+ϕ−ψ),
we finally obtain the acceleration

dqi
dτ

= −ϵ∂iψ − q2

ϵ
∂iϕ+

1

ϵ
qiq

j∂jϕ+ qiϕ̇. (6.3.8)

From (6.3.3), we also obtain

dxi

dτ
=
qi

ϵ
(1 + ϕ+ ψ). (6.3.9)

Eqs. (6.3.8) and (6.3.9) are the desired equations of motion. These have a different

form from those used previously by [150, 154]. This is due to the choice of independent

variables, as will be discussed in the next section.

6.3.2. Lagrangian derivation

The Lagrangian derivation5 of [150] uses the same metric (6.2.1), while [154] also include

vector and tensor perturbations. Rather than working directly with the geodesic equation

(6.3.1), they start with the action:

S =

∫
dτL = −m

∫ √
−ds2. (6.3.10)

5This use of ‘Lagrangian’ should not be confused with references to Lagrangian perturbation theory or
Lagrangian methods elsewhere.
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Figure 6.2: Contributions to the particle acceleration over time. The Newtonian acceleration,
−ϵ∂iψ, dominates for z ≤ 31 (shaded), but the relativistic terms are relevant at early times.

Expanding the Lagrangian L to first order in the metric perturbations yields

L = −ma
√
1− u2

[
1 +

ψ + u2ϕ

1− u2

]
, (6.3.11)

where ui = dxi/dτ and u2 = δiju
iuj . Observe that the second term inside the square

brackets of (6.3.11) diverges in the relativistic limit u → 1, so attention must be paid

to the radius of convergence for fast particles. Proceeding from (6.3.11), the conjugate

momentum variable to xi is found by differentiating the Lagrangian with respect to ui:

Pi =
∂L

∂ui
=

maui√
1− u2

(
1− 2ϕ− ψ + u2ϕ

1− u2

)
. (6.3.12)

We note that [150] here use the symbol qi for Pi, but stress that this conjugate momentum

variable is in fact related to the comoving 3-momentum qi by a factor of qi/Pi = (1 + ϕ).

The Euler-Lagrange equation gives

dPi
dτ

=
∂L

∂xi
= −ϵ∂iψ − P 2

ϵ
∂iϕ, (6.3.13)
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where P 2 = PiPjδ
ij and we used that ϵ = ma/

√
1− u2 to zeroth order. Meanwhile,

inserting ui ∝ (1 + fψ + gϕ) into (6.3.12) and solving for f and g gives

dxi

dτ
= ui =

Pjδ
ij

ϵ

[
1 + ψ +

(
2− P 2

ϵ2

)
ϕ

]
. (6.3.14)

The velocity corrections are small, so let us restrict attention to the acceleration equations

(6.3.8) in terms of q and (6.3.13) in terms of P . Both equations contain the usual Newto-

nian acceleration −ϵ∂iψ and a post-Newtonian term −q2/ϵ∂iϕ or −P 2/ϵ∂iϕ. However,

the geodesic version (6.3.8) has two additional terms: another quadratic term qiq
j/ϵ∂jϕ

and a time-derivative or Sachs-Wolfe term qiϕ̇. These differences can be traced to the

use of different momentum variables: the comoving 3-momentum qi in Section 6.3.1 and

the spatial part of the 4-momentum Pi in Section 6.3.2. The two quantities differ by a

factor of (1 + ϕ), which after insertion into (6.3.13) yields the time-derivative term qiϕ̇.

The quadratic term, meanwhile, arises in the geodesic derivation from the P iPµ,i term of

∇PP = 0. This quantity vanishes in the Lagrangian derivation, where the position xi

and its conjugate momentum variable Pi are independent. However, the term is generally

non-zero when qi and x
i are taken as independent instead. The question remains which

choice of momentum variable is more suitable for neutrinos in N -body simulations. The

advantage of qi is that it is a physical quantity, eliminating the dependence on metric

perturbations when evaluating f̄(q). Since this is a necessary step for neutrino simulations,

particularly when using the δf method, we opt for the parametrisation in terms of q.

It is worth asking whether the relativistic corrections are needed in practice. In Fig. 6.2,

we show the root mean square of the four terms of (6.3.8) between z = 109 and z = 0,

for a 0.1 eV neutrino. As expected, the acceleration is dominated by the Newtonian

term (black) at late times. However, the relativistic corrections are non-negligible for

z > 31. Notably, the quadratic terms (red and blue) are always of the same order of

magnitude and one should not be neglected if the other is included. Finally, the time-

derivative term (yellow) is negligible during pure radiation or pure matter domination,

but becomes relevant outside these régimes. While the relativistic terms are clearly

needed for generating initial conditions, they are less relevant for N -body simulations

that are started sufficiently late, as will be discussed in Section 6.5.
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6.3.3. Symplectic integration

Symplectic integrators explicitly conserve phase-space density6 and reduce the build-up

of errors, which makes them suitable for N -body problems [200, 262]. For fastdf,

we follow the simple strategy proposed in Appendix 4.D and use separable equations

of motion that closely approximate the relativistic form, yet admit a straightforward

symplectic discretization, but see also Appendix A of [154] for a scheme involving a

predictor-corrector step. Concretely, we approximate equations (6.3.8–6.3.9) with:

dq

dτ
= −ϵ0∇ψ − q20

ϵ0
∇ϕ+

1

ϵ0
q0 [q0 · ∇ϕ] + q0ϕ̇, (6.3.15)

dxi

dτ
=
qi

ϵ
, (6.3.16)

where q0 = q(z = 109) and ϵ0 =
√
q20 +m2a2. Eq. (6.3.15) is a good approximation

because q0 ≪ ma whenever q deviates much from q0: for slow particles at late times,

while (6.3.16) neglects the first-order term |ϕ+ψ| ≪ 1. A leapfrog discretization of these

equations is

qk+ 1
2
= qk +∆τ

k+ 1
2

k

[
− ϵ0∇ψk −

q20
ϵ0
∇ϕk +

1

ϵ0
q0 [q0 · ∇ϕk] + q0ϕ̇k

]
, (6.3.17)

xk+1 = xk +∆τk+1
k

qk+ 1
2√

q2
k+ 1

2

+m2a2
, (6.3.18)

qk+1 = qk+ 1
2
+∆τk+1

k+ 1
2

[
− ϵ0∇ψk+1 −

q20
ϵ0
∇ϕk+1 +

1

ϵ0
q0 [q0 · ∇ϕk+1] + q0ϕ̇k+1

]
,

(6.3.19)

where ψk = ψ(xk, ak) and similarly for ϕ. As is common in cosmological simulations, we

use a constant step size ∆ log a and find the corresponding conformal time steps to be

∆τ ℓk =

∫ log aℓ

log ak

d log a

aH(a)
. (6.3.20)

We observe that (∂xk+1/∂xk)(∂qk+1/∂qk) = Id + (∂xk+1/∂qk)(∂qk+1/∂xk), which

ensures sympecticity. To verify the validity of (6.3.15–6.3.16), we also implemented

a non-symplectic leapfrog scheme based directly on (6.3.8–6.3.9) and found relative

differences in the resulting power spectra of order 10−5, well below other sources of

6A linear map J : R2d → R2d is symplectic if JTΩJ = Ω for Ω =
(

0 I
−I 0

)
, with I = Id the d× d identity

matrix. A differential map f : U → R2d, with U ⊂ R2d open, is symplectic if the Jacobian matrix J of
f is everywhere symplectic. Conservation of phase-space density follows from det(J) = det(Ω) = 1.
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error.

6.4. Results

We set up 8003 particles in a periodic volume with side length L = 3.2Gpc, using (6.2.11)

to generate pre-initial conditions at z = 109. For comparison, particles are also set up

with first-order Lagrangian ICs at z = 317. We consider two degenerate models with∑
mν = 0.15 eV (fν = 0.11) and

∑
mν = 0.3 eV (fν = 0.023). Fixed initial conditions

are used to facilitate comparison with linear theory on large scales [238] and the δf

method is used in each case to suppress shot noise. First, we show the neutrino density

power spectrum evaluated at various redshifts in Fig. 6.3. Power spectra are computed by

dividing the neutrino ensemble in half and taking the cross-spectrum, which eliminates

the constant shot noise plateau on small scales [157]. Note that we compute the power

spectrum of the energy density, as expressed in (6.2.12), as opposed to the mass density.

The results are compared with the linear fluid calculations from class. We remind the

reader that particles were integrated using linear metric perturbations, which should

result in perfect agreement with class. We see that this is indeed the case with the

geodesic approach, while the power is significantly underestimated for the runs with

Lagrangian ICs, recovering only over time. We also show the effect of using the alternative

equations (6.3.13–6.3.14), essentially substituting the canonical momentum P for the

comoving momentum q without accounting for the relative factor (1 + ϕ). In this case,

the power spectrum is overestimated. In both cases, the errors are largest at early times,

but persist on large scales down to z = 0. This can be seen more clearly in Fig. 6.4, where

we show the ratios relative to class for
∑
mν = 0.3 eV. Using the geodesic method, we

obtain 1%-agreement independent of redshift, while the other methods result in significant

errors on all scales. At z = 0, a (−8%, +5%) error remains at k = 2× 10−3Mpc−1 when

using Lagrangian ICs or when substituting the canonical momentum P for q, respectively.

In a full N -body simulation, this lack or excess of neutrino clustering would cause a

back-reaction, resulting in still larger errors and contaminating the dark matter and

baryon components.

In all cases, the power diminishes relative to class beyond k = 0.1Mpc−1. This is due

to the limited resolution of the runs. The precision and speed of fastdf are mainly

determined by two parameters: the step size ∆ log a and the size M of the mesh on which

the potentials are calculated. A third parameter, the interpolation order used when

computing forces, chosen from r = 1 or r = 2, has a small effect on the accuracy. We

7This is the fiducial starting redshift for neutrino ICs in [257]. Usually, z = 31 is too late for accurate
first-order ICs, but this is not true for neutrinos. Moreover, all calculations are linear in this paper.
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Figure 6.3: The linear neutrino density power spectrum at various redshifts computed from 8003

particles in an L = 3.2 Gpc cube for
∑
mν = 0.15 eV and

∑
mν = 0.3 eV. Particles were set

up with Eq. (6.2.11) at z = 109 or with Lagrangian ICs at z = 31 and subsequently evolved
forward using linear metric perturbations. We also show the effect of substituting the canonical
momentum P for the comoving momentum q in the Fermi-Dirac function. The spectra are
compared with the linear fluid prediction from class. There is no line for the Lagrangian ICs at
z = 63.
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∑
mν = 0.3 eV, relative to the linear fluid prediction

from class. Particles were set up with Eq. (6.2.11) at z = 109 (left) or with Lagrangian ICs at
z = 31 (middle) and subsequently evolved forward using linear metric perturbations. We also
show the effect of substituting the canonical momentum P for the comoving momentum q in the
Fermi-Dirac function (right). The shaded area is 1%.
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Figure 6.5: Impact of the step size (left) and the mesh size (right) on the neutrino density power
spectrum at z = 31, computed from 8003 particles in an L = 3.2 Gpc cube for

∑
mν = 0.3 eV.

The spectra are compared with the linear fluid prediction from class. The shaded areas are 1%
(dark) and 10% (light). The vertical dotted lines on the right represent half the Nyquist frequency
kN = πM/L.

show the impact of the first two parameters on the neutrino power spectrum at z = 31

for
∑
mν = 0.3 eV in Fig. 6.5. For the main results in this paper, we used ∆ log a = 0.01

together with M = 800, resulting in 1%-agreement with the fluid calculations up to

k = 0.07Mpc−1. However, errors decrease quickly on small scales in anN -body simulation

once neutrinos become non-relativistic, so obtaining agreement on large scales is most

important. For many applications, the parameters could therefore be relaxed to enable

more rapid realisations of the neutrino distribution function.

To demonstrate that we can also reproduce higher-order moments of the distribution

function, we show the power spectrum of the momentum perturbation, (1 + δ)θ, in

Fig. 6.6. Despite the extreme precision settings, a small scatter can be seen at large k for

the class results at z ≥ 15, reflecting the difficulty of solving the Boltzmann hierarchy

numerically on small scales. We once again obtain excellent agreement between the

geodesic results and class, but find large errors at z = 63 when using the canonical

momentum, especially for the lighter neutrinos. Large errors are also apparent for the

Lagrangian ICs at z = 15. In contrast to the density power spectrum, however, these

errors decrease quickly on large scales.
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Figure 6.6: The linear neutrino momentum power spectrum at various redshifts computed from
8003 particles in an L = 3.2 Gpc cube for

∑
mν = 0.15 eV and

∑
mν = 0.3 eV. Particles were

evolved in the linearly perturbed spacetime. The spectra are compared with the linear fluid
prediction from class, which shows some scatter on small scales at early times. There is no line
for the Lagrangian ICs at z = 63.

6.5. Discussion

The accurate treatment of massive neutrinos in cosmological N -body simulations, consis-

tent with the demand of surveys like DESI and Euclid for percent-level accurate modelling

of large-scale structure observables, also calls for accurate neutrino initial conditions

(ICs). In this paper, we have shown that by integrating neutrino particles from high

redshift, it is possible to obtain 1%-agreement with linear fluid calculations, even at

early times. To achieve this level of agreement, suitable pre-initial conditions must be

generated at sufficiently early times, the equations of motion must remain valid in the

relativistic limit, and shot noise must be significantly suppressed. We addressed these

requirements by providing a closed form expression for the super-horizon perturbations

of the Fermi-Dirac distribution f(x,q, τ), by expressing the geodesic equation in terms

of q, and by using the δf method to limit shot noise. We also used fixed ICs [238] to

limit cosmic variance, which allowed a detailed comparison between linear particle and

fluid methods.

When these conditions are not satisfied, significant errors in the neutrino component

occur on large scales. For neutrino particles used in N -body simulations, this error
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causes a back-reaction in the dark matter and baryon components. Simulations that use

Lagrangian or unperturbed ICs together with an ad-hoc momentum sampled from the

homogeneous Fermi-Dirac distribution underestimate the clustering of neutrinos, leading

to errors of a few percent on large scales at z = 0. These errors get progressively worse at

higher redshifts. Neutrino clustering recovers over time, beginning on small scales where

errors are less apparent. Some simulations use hybrid methods (e.g. [154, 173, 174]),

transitioning from a linear or grid-based method at early times to a particle method at

late times. This would mitigate the back-reaction arising from these errors. Nevertheless,

we have demonstrated that a transition of this sort is not necessary if suitable ICs are

used and shot noise is addressed.

These results have further implications for neutrino particles in N -body simulations.

Aside from the ICs, some codes also use relativistic equations of motion for the neutrino

particles in the simulation itself. For ordinary Newtonian simulations, [154] proposed

using special relativistic equations of motion with Newtonian gravity. These can be

obtained from (6.3.13–6.3.14) by assuming that |ϕ| ≪ 1 and ϕ ≈ ψ:

dxi

dτ
=

P i√
P 2 +m2a2

, (6.5.1)

dPi
dτ

= − 2P 2 +m2a2√
P 2 +m2a2

∂iψ. (6.5.2)

Based on (6.3.8–6.3.9) and Fig. 6.2, we instead propose the simpler form

dxi

dτ
=

qi√
q2 +m2a2

, (6.5.3)

dqi
dτ

= −
√
q2 +m2a2 ∂iψ. (6.5.4)

The velocities have the same form: including the Lorentz factor is crucial for sub-light

neutrino speeds and physical free-streaming lengths. However, the accelerations are

different due to the choice of momentum variable. By expressing the equations in

terms of the physical quantity q, the potential ϕ need not be evaluated when computing

the δf weights. Even so, the corrections to the acceleration matter less in the time

frame where Newtonian simulations are used to best effect (z ≪ 102). Simply using

the Newtonian acceleration, q̇i = −m∂iψ, together with the special relativistic velocity

equation therefore seems to be a reasonable alternative with the benefit of having a

straightforward symplectic discretization. Let us remark finally on the choice of gauge.

While Newtonian gauge is convenient for the geodesic integration, recent years have seen

the introduction of gauges more naturally suited for cosmological N -body simulations.
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A popular choice is N -body gauge [185, 188], in which the spatial metric perturbation

is constant and traceless, such that the relativistic dark matter density coincides with

that of the Newtonian simulation. Using class, it is possible to compute the shifts in

density, ∆δ(k), and energy flux, ∆θ(k), from Newtonian to N -body gauge. Provided

that the perturbations are small, the gauge transformation can then be applied to the

neutrino ensemble in the same way as the pre-initial conditions, via (6.2.11), since the

higher-order moments Ψℓ are gauge-invariant. This feature is available in fastdf.

The main application of the described method is to set up accurate and consistent

neutrino particle initial conditions for simulations. Another interesting application would

be to integrate particles back along the line of sight from Earth to analyse the angular

dependence of the local neutrino flux. Sampling the full phase-space distribution with

particles may be advantageous if, for instance, non-trivial selections are of interest (e.g.

neutrinos with momenta in a given interval that passed through halos in a particular

mass range). If the metric perturbations are treated in linear theory, as in this paper, the

method could provide a cross-check of linear calculations [263, 264], while transitioning

from an N -body simulation at late times would enable a fully nonlinear calculation.

Another interesting extension would be to consider other massive thermal relics [124,

265].
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Prediction





Local neutrino background
7

This chapter presents a Bayesian forecast of the imprint of the observed

large-scale structure on the local neutrino background. It discusses

the expected overdensity and bulk velocity of relic neutrinos in the

Milky Way and deals with the distribution of angular anisotropies in

the neutrino background.

Where shadows lie: reconstruction of anisotropies in the neutrino sky

Abstract: The Cosmic Neutrino Background (CNB) encodes a wealth of

information, but has not yet been observed directly. To determine the prospects

of detection and to study its information content, we reconstruct the phase-space

distribution of local relic neutrinos from the three-dimensional distribution of

matter within 200h−1 Mpc of the Milky Way. Our analysis relies on constrained

realization simulations and forward modelling of the 2M++ galaxy catalogue.

We find that the angular distribution of neutrinos is anti-correlated with the

projected matter density, due to the capture and deflection of neutrinos by

massive structures along the line of sight. Of relevance to tritium capture

experiments, we find that the gravitational clustering effect of the large-scale

structure on the local number density of neutrinos is more important than

that of the Milky Way for neutrino masses less than 0.1 eV. Nevertheless, we

predict that the density of relic neutrinos is close to the cosmic average, with a

suppression or enhancement over the mean of (−0.3%, +7%, +27%) for masses

of (0.01, 0.05, 0.1) eV. This implies no more than a marginal increase in the

event rate for tritium capture experiments like PTOLEMY. We also predict

that the CNB and CMB rest frames coincide for 0.01 eV neutrinos, but that

neutrino velocities are significantly perturbed for masses larger than 0.05 eV.

Regardless of mass, we find that the angle between the neutrino dipole and

the ecliptic plane is small, implying a near-maximal annual modulation in the

bulk velocity.
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7.1. Introduction

Precise measurements of a near-perfect black-body energy spectrum and of a power-law

spectrum of temperature fluctuations in the Cosmic Microwave Background (CMB) reveal

detailed information about the state of the Universe at the time of decoupling around

t = 105 yrs [55, 266, 267]. There is strong but indirect evidence for another Big Bang

fossil in the form of Neff = 2.99+0.34
−0.33 species of fermionic particles that were relativistic

when the radiation decoupled [112]. This is consistent with the prediction of Neff = 3.045

for the Cosmic Neutrino Background (CNB), consisting of three species that decoupled

far earlier, at only t = 1 s [122, 123, 268]. That these particles are indeed neutrinos could

be confirmed if they were found to be non-relativistic today, given the standard prediction

for the present-day neutrino temperature, Tν = 1.68× 10−4 eV, and the minimum mass,

mν ≳ 0.05 eV, required by neutrino oscillations for the most massive species [11, 12, 29].

Although detecting the indirect cosmological effects of massive neutrinos is challenging,

this target could soon be in reach, as suggested by improved constraints on the cosmic

neutrino mass fraction [108, 109, 113, 248].

Direct detection of relic neutrinos will be more challenging still and is likely beyond

our immediate capabilities. The Karlsruhe Tritium Neutrino Experiment (KATRIN)

recently placed an upper bound of 9.7× 1010 on the local neutrino overdensity relative

to the cosmic mean [269], far greater than the density predicted in this paper and

elsewhere. An experiment specifically designed for CNB detection has been proposed

by the PTOLEMY collaboration [270–272]. Like KATRIN, the PTOLEMY proposal

aims to capture neutrinos through the inverse β-decay of tritium [268, 273], but with

targets bound to a graphene substrate to enable a larger target mass, which has its own

challenges [272, 274]. Other detection proposals rely on the net momentum transfer

from the neutrino wind to macroscopic test masses [275–278], absorption features in the

cosmic ray spectrum [279, 280], blocking of neutrino emission from de-exciting atoms

due to the Pauli exclusion principle [281] or the capture of neutrinos on high-energy ion

beams [282]. We refer to [283] for a detailed review of the subject.

Like the CMB, the neutrino background carries both primordial or primary perturbations

and secondary gravitational perturbations imprinted by the large-scale structure at late

times [263, 264, 284–286]. Since neutrinos are massive particles, secondary perturbations

are more significant and depend on the neutrino mass and momentum, giving the

background additional structure compared to the CMB. In some cases, gravitational

effects may lead to slight modifications of the expected signal and in others they open

up entirely new ways of testing neutrino physics. For tritium capture experiments like

PTOLEMY, the expected event rate is proportional to the local number density of
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neutrinos [271], given by the monopole moment of the phase-space distribution. If the

tritium targets are polarized, PTOLEMY could measure the angular power spectrum

by exploiting the dependence of the event rate on the angle between the polarization

and neutrino momentum axes [287]. Some proposals depend on the velocity of neutrinos

in the lab frame [275–278, 283], while the orientation of the dipole is important for

methods that rely on periodic or angular modulation of the capture rate [287–289]. Pauli

blocking could in principle probe the momentum distribution [281, 283]. Additionally,

gravitational perturbations may change the flavour [290] and helicity [291–294] makeup

of the neutrino background, affecting the ability of experiments like PTOLEMY to

distinguish between Dirac and Majorana neutrinos.

To determine the prospects of current and future CNB detection proposals, we therefore

need to model the phase-space distribution of relic neutrinos, including its higher-order

directional perturbations. Previous studies have looked at the gravitational enhancement

of the monopole moment due to the Milky Way [295–299] and nearby Andromeda and

Virgo [298]. A very recent study also considered the gravitational influence of dark

matter structures in a random (25Mpc)3 region on the neutrino phase-space distribution

[300]. Here, we expand on these works in several ways. First and foremost, we model

the full six-dimensional phase-space distribution of relic neutrinos, taking into account

perturbations imprinted on the neutrinos before they entered our galactic neighbourhood.

Second, we use self-consistent cosmological simulations to accurately model the time

evolution of the large-scale structure and the neutrino background. Third, we use an

accurate nonlinear treatment of massive neutrinos [237], which includes the gravitational

effects of the neutrinos themselves. Fourth, we model the large-scale distribution of

matter within 200h−1Mpc1 over the full sky, using observations from the 2M++ galaxy

redshift catalogue [301]. Fifth, we use a more recent estimate of the Milky Way mass

from [302], which is significantly lower than the value used in previous studies, depressing

the effect of the Milky Way.

Using our constrained phase-space simulations, we compute the expected density, velocity,

and direction of relic neutrinos, as well as expected event rates for PTOLEMY. We

also study the distribution of angular anisotropies, finding that local neutrino density

perturbations are anti-correlated with the projected matter distribution, due to the

capture and deflection of neutrinos by massive objects along the line of sight. The paper

is organized as follows. We describe our simulation and calibration methods in Section

7.2. Our main results are presented in Section 7.3. We finally conclude in Section 7.4.

1In this expression, h is defined in terms of Hubble’s constant as h ≡ H0/(100 km/s/Mpc).
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7.2. Methods

We now describe our simulation and analysis methods, starting with the details of the

constrained simulations in Section 7.2.1, our calibration procedure for applying 2M++

constraints to different neutrino cosmologies in Section 7.2.2, and our treatment of

nonlinear neutrino perturbations in Section 7.2.3.

7.2.1. Constrained simulations

Our analysis is based on constrained ΛCDM simulations of the local Universe. Whereas

most cosmological simulations start from random initial conditions and only reproduce

observations in a statistical sense, constrained simulations employ specialized initial

conditions that give rise to an in silico facsimile of the observed large-scale structure.

Within the precision of the constraints, objects appear in the right relative positions and

with the right dimensions, enabling a one-to-one comparison with observations. The past

few years have seen constrained simulations being used for a wide range of applications and

employing a variety of methods to set up the initial conditions [303–308]. In this paper,

we use a Bayesian forward modelling approach known as ‘Bayesian Origin Reconstruction

from Galaxies’ (BORG) [309–311]. This approach uses a Hamiltonian Monte Carlo

algorithm to draw samples from the posterior distribution of initial conditions, given

a likelihood function that connects initial conditions with observations and a Gaussian

prior. The forward model consists of a Comoving Lagrangian Acceleration (COLA) code

[90] that approximates the process of structure formation in the ΛCDM paradigm and

a nonlinear bias model that connects the final dark matter density field to observed

galaxy positions. The Hamiltonian Monte Carlo algorithm is used to efficiently sample a

high-dimensional parameter space, consisting of a grid of 2563 initial phases, multiple

bias parameters, and the observer velocity in the CMB frame.

The constraints used in this paper are based on galaxies from the 2M++ catalogue [301].

This is a catalogue of galaxy positions and redshifts, compiled from the 2MASS, 6dF, and

SDSS redshift surveys, that covers the full sky out to a distance of 200h−1Mpc. Previous

simulations with initial conditions based on forward modelling of 2M++ galaxies include

the CSiBORG suite [312–315] and the sibelius-dark simulation [307]. We refer the reader

to [310, 311] for further details on the BORG analysis of the 2M++ catalogue. This analysis

provides not only an accurate reconstruction of the three-dimensional density field in

the local Universe, but also reproduces the masses of nearby clusters, with the notable

exception of the Perseus-Pisces cluster for which the mass is biased low [311]. This is

most likely due to a systematic error in the analysis, but could perhaps also indicate
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an observational issue [311]. Interestingly, the sibelius-dark simulation [307], which is

based on a similar but older BORG reconstruction, found its most massive dark matter

halo at the location of Perseus. However, sibelius-dark was less accurate in other

respects, such as the motion of the Local Group, which is important for our purposes here.

Our work is based on nine draws from an earlier version of the chain described in [311],

which used ten COLA steps instead of twenty, but was identical in every other respect.

We therefore expect the results to be broadly consistent. After discarding an initial

burn-in portion, we selected every 432nd draw from the chain to minimize the serial

correlation between consecutive draws. This sample of initial conditions allows us to

estimate both the expected signal and the uncertainty in our predictions. To demonstrate

the effectiveness of the constraints, we show slices of the dark matter and neutrino

densities in a portion of the sky in Fig. 7.1, overlaid with 2M++ galaxies (white dots).

All prominent structures present in the catalogue are reproduced by the simulations,

revealing the underlying dark matter filaments and surrounding neutrino clouds.

Our simulations assume periodic boundary conditions in a (1Gpc)3 cube, with the

observer located at the centre. The 2M++ constraints mostly cover a central sphere of

radius 200Mpc and gradually taper off beyond that. This means that sufficiently far away

from the centre, the initial conditions revert to purely random fluctuations. Given that

the phases are provided in the form of 2563 grids, the constraints only cover 4Mpc scales

and larger. Fluctuations on smaller scales are unconstrained and purely random. Dark

matter initial conditions are generated with 3LPT at z = 31, using a modified version

of monofonIC that adds corrections from massive neutrinos [257, 260, 261], while the

neutrinos themselves are generated with fastdf, using linear geodesic integration [186].

The transfer functions are computed with class [124, 128].

The simulations were carried out with a version of Gadget-4 [77] that was modified to

be bitwise reversible (see Appendix 7.A) and to add support for massive neutrinos and

radiation. We use a 3rd-order Tree-PM algorithm for the gravity calculation. Neutrinos

are followed with the δf method to minimize shot noise, boosting the effective particle

number without neglecting their nonlinear evolution [237]. We use Ncb = 3843 dark

matter and baryon particles2 and Nν = 3843 massive neutrino particles. In order to

increase the sampling density of neutrinos locally, upon completion of a simulation, we

isotropically inject an additional N = 2243 ∼ 107 ‘spectator’ neutrinos at the observer

location and run the simulations backwards, allowing us to trace the neutrinos back in

time through the evolving large-scale structure (see Section 7.2.3). To ensure that the

2We will treat cold dark matter and baryons as a single cold fluid and refer to it as dark matter on
occasion.
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accelerations are identical in the forwards and backwards directions, spectator neutrinos

contribute no forces.

A final consideration is that Milky Way-sized perturbations have a characteristic length

that is much smaller than 4Mpc. Hence, our constraints are not sufficient to guarantee

the formation of a Milky Way at the centre. Since we expect the Milky Way (MW) to

have a considerable effect on the neutrino background, we run two backwards versions of

each simulation. Initially, neutrinos are only traced back through the large-scale structure

without accounting for MW effects. In the second version, we additionally apply forces

from the MW dark matter halo. Following [302], we model the MW halo as an NFW

profile [316] with a mass of M200 = 0.82× 1012M⊙ and a concentration of c200 = 13.31.3

For computational simplicity, we use the uncontracted version of the model, since both

versions fit the data nearly equally well. We place the centre of the NFW potential at a

distance of 8 kpc from the centre of the simulation in the direction of Sag-A∗. We also

include the motion of the galactic centre in the CMB rest frame of the simulation, by

letting the centre of the NFW potential move at a constant speed of 567 km/s in the

direction of galactic coordinates (l, b) = (267◦, 29◦) [55, 317, 318]. In Section 7.3.1, we

additionally correct for the motion of the Sun relative to the CMB, v⊙ = 369.8 km/s

towards (l, b) = (264◦, 48.3◦) [55], which is otherwise unresolved by the simulations.

Crucially, we note that we use a more recent and considerably smaller estimate of the

MW mass than that used in previous related works [296, 298]. We therefore expect to

find a smaller effect from the MW. Since we are mainly interested in the imprint of the

large-scale structure, we do not include the various gaseous and stellar components of

the MW, which are altogether less important than the dark matter halo itself.

7.2.2. Model selection

To derive constrained initial conditions with BORG, we have to assume a particular

cosmological model. The constraints used in this paper were derived assuming a flat

ΛCDM model with parameters (Ωcdm, Ωb, h, As, ns,
∑
mν) = (0.2621, 0.04897, 0.6766,

2.105 × 10−9, 0.9665, 0). Despite the fact that this model does not include massive

neutrinos, we wish to run constrained simulations for different neutrino masses, without

running an expensive MCMC analysis for each case. Doing this requires modifying the

cosmological model slightly without altering the clustering on small scales, since otherwise

the same phase information would give rise to structures that differ somewhat from the

observations. We therefore take the following approach. When increasing
∑
mν , we

3Here, M200 is the mass contained in a spherical region of radius R200 with a density equal to 200 times
the critical density and c200 = R200/Rs, with Rs the scale radius of the NFW profile.
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Figure 7.1: Slices of the expected neutrino (top) and dark matter (bottom) densities with right
ascension 100◦ ≤ α ≤ 260◦ within r ≤ 250Mpc, assuming

∑
mν = 0.06 eV. The white dots are

galaxies from the 2M++ catalogue. From Earth, one would see a deficit in neutrino flux along lines
of sight that intersect massive structures, due to the trapping of neutrinos in the surrounding
neutrino clouds.

decrease Ωcdm such that Ωm = Ωcdm + Ωb + Ων is fixed. In addition, we modify the

primordial scalar amplitude As, such that the nonlinear power spectrum at z = 0 is fixed

at the nonlinear scale knl = 1Mpc−1. Note that Pcb, the power spectrum of cold dark

matter and baryons, is the relevant power spectrum, given that halos are primarily biased

with respect to the cold matter, as opposed to the total matter density [244, 319, 320].

To achieve this in practice, we perform a small number of calibration runs and iteratively

select values of As that satisfy this condition.
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Table 7.1: Cosmological parameters for our six neutrino models, which have been calibrated such
that Ων +Ωcdm and Pcb(knl) with knl = 1Mpc−1 are fixed.

∑
mν Mass mν Nν Ων Ωcdm As

0.01 eV 0.01 eV 1 2.353× 10−4 0.26189 2.107× 10−9

0.06 eV 0.06 eV 1 1.407× 10−3 0.26072 2.156× 10−9

0.15 eV 0.05 eV 3 3.518× 10−3 0.25861 2.243× 10−9

0.30 eV 0.10 eV 3 7.035× 10−3 0.25509 2.429× 10−9

0.45 eV 0.15 eV 3 1.055× 10−2 0.25157 2.641× 10−9

0.60 eV 0.20 eV 3 1.407× 10−2 0.24805 2.878× 10−9

As noted before, the 2M++ data mostly constrain scales larger than 4Mpc within 200Mpc

of the observer. As shown in Fig. 7.2, this leaves enough flexibility on large scales to

accommodate neutrino masses up to
∑
mν ∼ 0.6 eV.4 To see this, note that the left-hand

panel shows total matter power spectra, Pm(k), for nine realizations assuming ΛCDM

without massive neutrinos. Although the power spectrum is well-constrained on small

scales, there is considerable variance on large scales (k ≲ 0.03Mpc−1). The right-hand

panel shows the power spectrum of dark matter and baryons, Pcb(k), for the calibrated

models with different neutrino masses, relative to the massless case. For the largest mass

considered,
∑
mν = 0.6 eV, the ratio is still within 1σ of the average. We also checked

that the cross-correlation coefficients of the final density fields are within 1% for k ≤ knl
and

∑
mν ≤ 0.3 eV and within a few percent for

∑
mν ≤ 0.6 eV, indicating that the

phase information is the same on large scales. Finally, we performed a visual inspection

to confirm that we recover the same large-scale structure for all neutrino masses. Hence,

the outcome of this procedure is a plausible cosmological model with massive neutrinos

that reproduces the 2M++ observations.

Although the resulting power spectra are compatible with the 2M++ constraints at the

1σ-level, one may wonder whether the 20% − 30% differences seen for
∑
mν = 0.6 eV

on the largest scales could still affect the results. We expect the impact of this offset

to be small, because the distance travelled by neutrinos is inversely proportional to the

mass, such that heavier neutrinos are less sensitive to large-scale density perturbations.

Therefore, matching only the small-scale power spectrum for
∑
mν = 0.6 eV is likely

justified.

Using the above procedure, we calibrate six models with different neutrino masses: four

4We note that this breaks the agreement with CMB observations, which primarily constrain large scales.
This is simply another way of stating that the combination of CMB and LSS data can rule out large
neutrino masses in νΛCDM, although we make no attempt to do this here.
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Figure 7.2: (Left) The red lines are nine nonlinear matter matter power spectra, Pm(k), drawn
from the posterior distribution of the 2M++ reconstruction, assuming ΛCDM with massless
neutrinos at z = 0. The shaded areas represent the 1σ and 2σ deviations from the mean. The
spectra are well-constrained for 0.03Mpc−1 ≲ k ≲ 1Mpc−1, but the variance is considerable on
large scales. (Right) Ratios of the nonlinear cold matter power spectrum, Pcb(k), for different
neutrino masses relative to the massless ΛCDM case, calibrated to match the constraints in the
small-scale limit. The shaded areas represent the 1σ and 2σ constraints.

models with three degenerate neutrino species,
∑
mν ∈ {0.15, 0.3, 0.45, 0.6} eV5, and two

models with one species,
∑
mν ∈ {0.01, 0.06} eV. The relevant model parameters are

given in Table 7.1. Although not strictly allowed by oscillation data, the first four models

assume a degenerate neutrino mass spectrum, neglecting the mass-squared differences

|∆m2
31| = 2.5× 10−3 eV2 and ∆m2

21 = 7.4× 10−5 eV2 [29]. Of course, the last two models

are also not allowed. The penultimate case is included to examine the behaviour of very

light neutrinos. The last model is included as it approximates the cosmological effects of

the minimal neutrino mass case under the normal mass ordering. In each case, the intent

is only to recover the correct cosmological evolution for a given neutrino mass, mν , and

for this purpose, the mass splittings have a negligible effect [106].

7.2.3. Neutrino treatment

Let us now discuss our treatment of neutrino perturbations. The evolution of the phase-

space distribution, f(x,q, τ), is governed by the collisionless Boltzmann equation (2.2.7).

5Hence, the individual neutrinos have masses mν ∈ {0.05, 0.1, 0.15, 0.2} eV.
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We solve this equation by generating particles from a sampling distribution g(x,q) and

tracing their evolution through the constrained volume using the relativistic equations of

motion (6.5.3) and (6.5.4) from Chapter 6.

The sampling distribution g need not be the same as the physical distribution f and

can be chosen arbitrarily, subject to being normalized and the set {g = 0 ∧ f ≠ 0}
having measure zero. One of the main advantages of a particle-based approach is that

we can follow particles into the nonlinear régime, which is particularly important for our

purposes here, since we wish to describe neutrinos perturbed by the Milky Way halo.

The main downside is the introduction of sampling noise, which we overcome with the

δf method of Chapter 4. In this method, the phase-space distribution is decomposed

as f = f̄ + δf into an analytical background part f̄ and a perturbation δf sampled by

the particles. A noise-suppressed estimator of some phase-space quantity A(x, τ) is then

given by (4.2.7). We can similarly define angular statistics. For example, the density of

neutrinos at x with momenta oriented along the unit vector n̂ is

nν(x, n̂, τ) =

∫
d3q

[
f̄(x,q, τ) + δf(x,q, τ)

]
δ(2)(q/q − n̂) (7.2.1)

∼= n̄ν(τ)

4π
+

N∑

k=1

δf(xk,qk, τ)

g(xk,qk)
δ(2)(qk/qk − n̂)δ(3)(x− xk), (7.2.2)

where n̄ν(τ) is the mean number density and where δ(2)(x̂− ŷ) = δ(cos θ−cos θ′)δ(ϕ−ϕ′).
Throughout, we use a standard Fermi-Dirac distribution, f̄(q) = (1 + exp(q/kbTν))

−1,

for the background model and we set g = f when generating the initial conditions.

This approach is sufficient for describing the neutrino distribution on large scales, as

illustrated in Fig. 7.1 for 0.06 eV neutrinos. However, given the (1Gpc)3 ambient volume

of our simulations, there is a more efficient way to estimate the properties of neutrinos

incident on Earth. For this, we inject ‘spectator’ neutrinos at the location of Earth and

run our simulations backwards. For these neutrinos, we adopt an isotropic Fermi-Dirac

sampling distribution g. We then apply our δf logic in reverse: given the known sampling

density g and the background density f̄(q) with the momentum q from the final (z = 31)

snapshot of the backwards simulation, we obtain the statistical weight w = (f̄ − g)/g.

We again estimate phase-space statistics using Eq. (4.2.7). Note that in this case, the

assumed sampling distribution g is not equal to the physical distribution f . In particular,

we do not expect the distribution of local relic neutrinos to be exactly isotropic. However,

the assumption of an isotropic and homogeneous Fermi-Dirac distribution at z = 31 still

allows us to use Eq. (4.2.7) to obtain physical phase-space estimates. Finally, we note

that running N -body simulations backwards is non-trivial and we refer the reader to
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Figure 7.3: (Left) The predicted enhancement of the local neutrino density, δν , as a result of the
observed large-scale structure in the local Universe (LSS, black) and the combined effect of the
large-scale structure and the Milky Way (LSS + MW, red). The mean and standard deviation
are estimated from nine draws from the posterior distribution of the 2M++ reconstruction. (Right)
The effect of the large-scale structure and Milky Way on the bulk neutrino velocity, vν , in the
CMB rest frame. The horizontal dotted line indicates the bulk velocity of CDM and baryons
within 10Mpc of the observer.

Appendix 7.A for details on how this is accomplished.

7.3. Results

Having described our simulation methods, we are now in a position to discuss the results.

In Section 7.3.1, we present the expected number density, bulk velocity, and deflection

angles of relic neutrinos in the Milky Way. We also compute expected event rates for

PTOLEMY. In Section 7.3.2, we turn to the angular distribution of neutrino anisotropies.

In Section 7.3.3, we adopt a cosmographical perspective and look at maps of the large-scale

distribution of neutrinos in the local Universe.

7.3.1. Local abundance and bulk motion

A crucial input for relic neutrino detection efforts is the expected gravitational enhance-

ment of the local neutrino density. Using our constrained simulations, we are able for

the first time to compute the total effect of the observed large-scale structure. The result

is shown in the left-hand panel of Fig. 7.3. The black line (labelled LSS) shows the effect
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from the large-scale structure, excluding the Milky Way, on the neutrino overdensity,

δν = nν/n̄ν−1, as a function of neutrino mass mν . The error bars indicate the dispersion

among the nine constrained realizations. We see that the enhancement is negligible

for mν ≤ 0.05 eV. In fact, for the smallest mass of 0.01 eV, we find a small deficit of

δν = −0.0038± 0.0006. From there, the density contrast increases approximately linearly

with mass up to δν = 0.25± 0.08 for 0.2 eV.

The red line shows the combined effect of the large-scale structure and the Milky Way

dark matter halo (LSS + MW). The importance of the MW increases with mass, relative

to the LSS. For mν = 0.1 eV, they are approximately equally important. For mν = 0.2 eV,

the MW is responsible for three-quarters of the effect. This is a result of the decrease

in free-streaming length with mass: at average speed, an unperturbed 0.01 eV neutrino

has travelled 3.1Gpc since z = 31, while the number is only 200Mpc for 0.2 eV. As a

result, lighter neutrinos are sensitive to more distant structures. We will confirm this

explicitly in Section 7.3.2. Taking the difference between the results with and without

the MW, we find that the galactic effect is well described by δMW
ν = 27.6(mν/1 eV)2.29.

The near-quadratic scaling agrees with [297], who found δMW
ν = 76.5(mν/1 eV)2.21, but

our amplitude is three times smaller. Similarly, we find significantly smaller overdensities

compared to [296, 298, 299]. This may be partially due to the absence of gaseous and

stellar Milky Way components in our simulations. However, the primary reason is

most likely the more recent but lower estimate of the dark matter mass used in this

work (M200 = 0.82 × 1012M⊙ here compared to M200 = 3.34 × 1012M⊙ in [296] and

M200 = 1.79 × 1012M⊙ in [298]).6 To confirm this, we verified for one simulation that

doubling the MW mass approximately restores agreement with [298]. On the other hand,

both amplitude and scaling are in good agreement with the recent study [300], who

also point to a difference in halo properties, rather than methodology, to explain the

disagreement with [298].

Some detection proposals depend on the neutrino velocity in the lab frame [275–278, 283,

287]. From our simulations, we estimate the bulk neutrino velocity vν . Given that the

simulation is carried out in the rest frame of the CMB, a value of vν = 0 indicates that

the neutrino dipole aligns with that of the CMB. We show the expected magnitude of

the velocity perturbation in the right-hand panel of Fig. 7.3. As for δν , the gravitational

effect of the large-scale structure and Milky Way is negligible for mν = 0.01 eV. The

velocity perturbation increases to 211 km/s at mν = 0.05 eV and trends towards 415 km/s

for mν = 0.2 eV. These neutrinos are approximately at rest with respect to the bulk flow

6In this comparison, we converted their virial masses to masses within a spherical region containing 200
times the critical density. We also note that [296] used a generalized NFW profile with an additional
parameter, precluding an exact one-to-one comparison.
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Table 7.2: Predictions for the neutrino dipole induced by the large-scale structure, compared
with the measured CMB dipole from Planck [55]. The neutrino velocity, vν , is the mean velocity
in the CMB rest frame. The difference, v⊙ − vν , is the Sun’s motion in the neutrino frame. The
angles (l, b) correspond to the direction of the Sun’s motion in the neutrino frame in galactic
coordinates. The error is the standard deviation among nine realizations from the chain. The
final row shows the velocity of CDM and baryons within 10Mpc of the observer.

Mass mν vν v⊙ − vν l b
[ km/s ] [ km/s ] [ deg ] [ deg ]

CMB 0 369.8 264.0 48.3

0.01 eV 48.5 ± 1.5 321.3± 1.5 263.6± 0.5 48.2± 0.1
0.05 eV 211.0± 4.3 193.8± 5.5 232.6± 2.4 37.9± 1.7
0.06 eV 235.3± 5.0 187.3± 7.6 225.7± 2.5 32.7± 1.2
0.10 eV 310.6± 9.0 193 ± 15 208.4± 2.6 14.1± 3.7
0.15 eV 371 ± 14 229 ± 22 199.6± 2.5 1.6 ± 5.6
0.20 eV 415 ± 20 265 ± 27 195.0± 2.7 −4.5 ± 6.7

Matter 484 ± 83 406 ± 67 206 ± 11 −10 ± 18

of matter in the inner 10Mpc of the simulation (see Table 7.2). When we include the

effect of the Milky Way, the velocity appears to converge for the largest neutrino masses.

Combined with the increased density perturbation, this indicates that the simulated MW

and the surrounding structure are capable of trapping 0.2 eV neutrinos in significant

numbers.

In addition to the magnitude of the velocity perturbation, we can also predict its

orientation. Table 7.2 shows the predicted direction of the neutrino dipole, for the runs

without MW, in galactic coordinates and compares it with the measured values for the

CMB dipole from Planck [55] and the direction of the simulated matter flow within

10Mpc of the observer. For 0.01 eV, the predicted 1σ range of the neutrino dipole contains

the measured CMB dipole. As mν increases to 0.2 eV, the values appear to converge

towards the direction of the bulk flow of dark matter.7 The results are broadly similar

for the runs with MW. In the case of 0.01 eV, we find (l, b) = (258.0◦± 0.5◦, 47.7◦± 0.1◦),
which is still very close to the CMB dipole. For 0.2 eV, the direction changes somewhat

more to (l, b) = (203.2◦ ± 2.9◦, 7.2◦ ± 6.0◦). It is interesting to note that the ecliptic

north pole is at l = 97◦, b = 30◦. This means that the neutrino dipole is close to

the plane of Earth’s orbit around the Sun, making an angle of ϕ ≈ 10◦. The Earth’s

orbital velocity is v⊕ ≈ 30 km/s, producing a (2v⊕/vν) cosϕ ∼ 20% perturbation for a

typical neutrino velocity of vν = 300 km s−1. Hence, for experiments that depend on

7Note that the uncertainties are larger for the bulk dark matter velocity, because it is computed from
the forward simulations, which have a much lower sampling density near the observer.
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Table 7.3: Predictions for the average deflection angle, cos θ = (vν · vini
ν )/(vνv

ini
ν ), including the

effects of the of the large-scale structure (LSS) and the Milky Way (LSS + MW). Using (4.2.7),
we compute this from the backtraced particles with ⟨cos θ⟩ = (1 +

∑
i wi cos θi)/(1 +

∑
i wi),

where wi is the phase-space weight of particle i and cos θi is its deflection angle.

(LSS) (LSS + MW)
Mass mν ⟨cos θ⟩ ⟨cos θ⟩
0.01 eV 0.999995± 0.000002 0.999987± 0.000003
0.05 eV 0.99806 ± 0.00072 0.99482 ± 0.00084
0.06 eV 0.9965 ± 0.0013 0.9905 ± 0.0015
0.10 eV 0.9847 ± 0.0058 0.9542 ± 0.0058
0.15 eV 0.958 ± 0.016 0.869 ± 0.013
0.20 eV 0.923 ± 0.029 0.754 ± 0.018

the neutrino velocity, an annual modulation may be detectable [288]. Finally, we note

that the sibelius-dark simulation, which used similar techniques to set up the initial

conditions, did not accurately reproduce the observed direction of the local matter flow

[307]. We therefore caution that the theoretical uncertainty in the direction may be

greater than the dispersion among the nine realizations given in Table 7.2.

A related quantity to the velocity perturbation is the deflection angle between the

initial and final velocities, cos θ = (vν · vini
ν )/(vνv

ini
ν ). For non-relativistic neutrinos, the

gravitational effect on the spin is negligible, such that a deflection of the momentum

vector by an angle θ implies a change in the helicity from ±1 to ± cos θ, with a probability

P = 1/2 − cos θ/2 of observing a reversed spin [291]. It has recently been argued

that the gravitational effect of the Virgo Supercluster might result in large deflection

angles, significantly altering the helicity makeup of the neutrino background [294]. These

authors compute deflection angles for neutrinos in halos of a similar mass to Virgo,

M = 1.48× 1015M⊙, finding an average of ⟨cos θ⟩ = 0.54− 0.60 for mν = 0.05 eV. Using

our constrained simulations, which include Virgo, we can estimate directly the effect that

the large-scale structure has on neutrinos that arrive on Earth. We give the average for

different neutrino masses and for the cases with and without Milky Way in Table. 7.3. For

0.05 eV, we find ⟨cos θ⟩ = 0.99482± 0.00084, when including the Milky Way. Given that

the deflection is even smaller for lighter neutrinos, we expect the effect of gravitational

deflection to be negligible for the minimal neutrino mass case,
∑
mν = 0.06 eV.

Gravitational clustering also has the potential to alter the flavour composition of the local

neutrino background [290]. The mass eigenstates νi considered so far are superpositions

of flavour eigenstates να, with α = e, µ, τ , for electron, muon, and tau neutrinos. The two

bases are related by the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix Uαi
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Table 7.4: Predicted number of events per year for PTOLEMY, including the effects from the
large-scale structure (LSS) and the Milky Way (LSS + MW), for Dirac and Majorana neutrinos.
We give the results for the individual mass states, with (7.3.1) giving the total rate. The
uncertainty corresponds to the 1σ dispersion among nine realizations from the chain.

(LSS) (LSS + MW)
Mass mν ΓDi,CNB

[
yr−1

]
ΓMi,CNB

[
yr−1

]
ΓDi,CNB

[
yr−1

]
ΓMi,CNB

[
yr−1

]

0.01 eV 4.042± 0.002 8.075± 0.005 4.045± 0.002 8.080± 0.005
0.05 eV 4.20 ± 0.05 8.39 ± 0.09 4.33 ± 0.05 8.65 ± 0.09
0.06 eV 4.27 ± 0.06 8.53 ± 0.12 4.46 ± 0.06 8.92 ± 0.13
0.10 eV 4.54 ± 0.13 9.08 ± 0.26 5.14 ± 0.14 10.27± 0.29
0.15 eV 4.85 ± 0.22 9.70 ± 0.44 6.25 ± 0.27 12.49± 0.54
0.20 eV 5.09 ± 0.32 10.17± 0.63 7.60 ± 0.44 15.19± 0.88

[9, 10]. The flavour composition could be altered, since the degree of clustering depends

on mass. For instance, assuming the mass ordering is normal, the contribution of νe to

the heaviest mass state ν3 is only |Ue3|2 = 2.3%. Therefore, if ν3 is much more strongly

clustered than ν1 and ν2, most relic neutrinos on Earth would be νµ or ντ . For this effect

to be large, the masses must be hierarchical (m1 ≪ m3 or m3 ≪ m1), which requires

mν ≲ 0.1 eV. Fig. 7.3 shows that the differences in the density contrast δν are then small,

which implies that the fraction of νe is not significantly altered from its primordial value

of 1/3. We nevertheless incorporate this effect in the calculation below.

We now have the necessary ingredients to compute the expected event rate for an

experiment like PTOLEMY. The CNB capture rate,

ΓCNB =

Nν∑

i=1

Γi,CNB|Uei|2, (7.3.1)

is summed over all mass eigenstates that exceed the energy threshold of the experiment,

weighted by the PMNS mixing elements, Uei. The event rate for mass state νi is given

by [321]

Γi,CNB = Nσ̄
[
n+i A

+
i + n−i A

−
i

]
, (7.3.2)

where N is the number of targets, σ̄ is the average cross section, n±i are the number

densities for the two spin states, A±
i = 1 ∓ vi/c is a spin-dependent factor, and vi is

the velocity of the mass eigenstate. As discussed, gravitational deflection by an angle θ

reverses the spin with probability P = 1/2− cos θ/2. The number densities for both spin
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states are then given by

n±i = ni

[
1

2
± 1

2
⟨cos θ⟩i

]
. (7.3.3)

In the absence of clustering and deflection, ⟨cos θ⟩i = 1, such that n+i = ni = n̄ and

n−i = 0 for Dirac neutrinos. For Majorana neutrinos, the densities are both equal to

the mean: n+i = n−i = n̄. Consequently, for non-relativistic neutrinos with A±
i = 1, the

expected signal is twice as large in the Majorana case. If we allow for gravitational effects,

we instead obtain

ΓDCNB = Nσ̄

Nν∑

i=1

|Uei|2
[
1 + ⟨cos θ⟩i

vi
c

]
ni, (7.3.4)

ΓMCNB = Nσ̄

Nν∑

i=1

|Uei|22ni, (7.3.5)

for the Dirac and Majorana cases, respectively. Plugging in the number N = 100 g/m3H

of tritium atoms for PTOLEMY [270] and the average cross section σ̄ = 3.834×10−45 cm2

from [321], and a mean number density of n̄ = 56 cm−3 per degree of freedom, we obtain

the event rates in Table 7.4. We report the values for the individual mass eigenstates.

Comparing the most and least massive cases, we see that gravitational clustering only has

a marginal effect, boosting the capture rate by less than a factor of two. For each mass,

we predict a factor ∼ 2 difference between the Dirac and Majorana cases. Let us now

compute the total event rate for the minimal neutrino mass case, using |Uei|2 = (0.678,

0.299, 0.023) [29]. We assume that only the heaviest neutrinos with mν = 0.05 eV (ν3
under the normal ordering or ν1 and ν2 under the inverted ordering) would produce peaks

in the electron energy spectrum far enough beyond the β-decay endpoint to be detected

by PTOLEMY with a reasonable energy resolution [271]. For the normal ordering, we

then find ΓCNB ≈ 0.1 yr−1 (Dirac) or 0.2 yr−1 (Majorana), while ΓCNB ≈ 4 yr−1 (Dirac)

or 8 yr−1 (Majorana) for the inverted ordering.

7.3.2. Angular anisotropies

Having presented our results for the monopole and dipole moments, we now turn to

higher-order moments of the neutrino distribution. Fig. 7.4 presents maps of the predicted

angular anisotropies in the number density, δν(θ, ϕ) = nν(θ, ϕ)/(n̄ν/4π), for four different

masses, after subtracting the monopole and dipole perturbations. The maps show relative
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Figure 7.4: Angular anisotropies in the neutrino number density contrast, δν , for mν = 0.01 eV
(top left) and for mν ∈ {0.05, 0.1, 0.2} eV (right). In all cases, we subtract the monopole and
dipole moments and smooth over 3◦ scales. We also show the projected dark matter and baryon
density, δΠcb, within 200Mpc of the observer, both separately (middle left) and overlaid on the
top of the neutrino density for mν = 0.01 eV (bottom left). We observe that the projected dark
matter density and the local neutrino density are anti-correlated on the sky. Except for the
projected matter density, the maps are all based on backtraced particles.

variations in the neutrino density for individual mass eigenstates, computed via equation

(7.2.2) by adding the weights of backtraced particles along each direction. As discussed

in Section 7.2.3, these particles represent an ergodic ensemble of neutrino paths with

weights that correct for the isotropic sampling distribution. In [186], it is shown that the

statistical properties of such weighted particle ensembles are consistent with the transfer

functions obtained from an Eulerian fluid calculation at the linear level. One advantage

of the particle-based treatment, however, is its ability to describe the nonlinear growth

of neutrino perturbations, which becomes important when the neutrino mass is large, as

discussed below.
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Each map is averaged over nine realizations from the 2M++ reconstruction. The top-left

panel of Fig. 7.4 shows the map formν = 0.01 eV and the right-hand panels show maps for

mν ∈ {0.05, 0.1, 0.2} eV. First of all, we observe that the magnitude of the perturbations

strongly depends on mass: they are O(10−2) for mν = 0.01 eV and O(1) for mν = 0.2 eV.

We also see that the largest neutrino mass maps have large-scale perturbations that are

suppressed, relative to small-scale perturbations, for the smaller neutrino masses. The

middle-left panel shows the projected density of dark matter and baryons,

1 + δΠcb(θ, ϕ,Rmax) =

∫ Rmax

0 ρcb(r) dr∫ Rmax

0 ρ̄cb(r) dr
, (7.3.6)

up to a distance of Rmax = 200Mpc from the observer. Comparing this with the neutrino

maps, we find that distant matter fluctuations are anti-correlated with local neutrino

fluctuations. This can be seen more clearly in the bottom-left panel, in which the projected

matter perturbations are overlaid on the neutrino perturbations for mν = 0.01 eV. The

anti-correlation is much more evident for smaller neutrino masses.

Next, we compute angular power spectra, Cνℓ , from the neutrino overdensity maps.

To compare our results with other works [263, 264, 300], we convert the spectra to

temperature units by assuming that δTν/T̄ν ∼ δnν/3n̄ν .
8 In Fig. 7.5, we show the results

for five different masses, averaging over nine realizations from the chain. To uncover the

perturbations imprinted by the large-scale structure, we fit smooth spectra of the form

Cfit
ℓ = exp

[
c1 + c2 log ℓ+ c3(log ℓ)

2
]
, (7.3.7)

to the simulation predictions, restricting to the multipoles with 1 ≤ ℓ ≤ 15, since higher-

order multipoles are noisy and poorly constrained. The thick curves in Fig. 7.5 correspond

to these fits, with the solid and dashed lines indicating the LSS-only and combined LSS

+ MW results, respectively. As expected from the previous section, the effect of the MW

is most pronounced for the largest neutrino masses and the lowest-order multipoles. The

difference between the dashed and solid curves is negligible for mν ≤ 0.05 eV, but clearly

visible for mν = 0.2 eV. We compute our maps in the rest frame of the simulations,

without accounting for observer motion. Therefore, Fig. 7.5 shows the intrinsic dipole

moment (ℓ = 1) arising from large-scale matter fluctuations. The value is orders of

magnitude larger than the intrinsic dipole expected for massless tracers like the CMB

8This follows from the idealized result, nν = 3ζ(3)T 3
ν /2π

2, for the Fermi-Dirac distribution, even though
the actual momentum distribution of clustered neutrinos is heavily perturbed.
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Figure 7.5: Angular neutrino temperature power spectra, Cν
ℓ , for different masses. We fit a

smooth spectrum, Cfit
ℓ = exp(c1 + c2 log ℓ+ c3 log

2 ℓ), up to ℓmax = 15 for the simulations with
and without a Milky Way (dashed and solid lines, respectively). To avoid clutter, we only show
the data for the simulations without MW. The inset graph zooms in on the first ten multipoles,
showing the data relative to the fit. The grey error bar represents ±10%. The oscillatory
perturbations arise from the imprint of dark matter perturbations on the neutrino background
and can ultimately be traced to cosmic variance in the matter distribution.

[322–324]. This is consistent with the behaviour seen in Fig. 7.5, which shows that

low-multipole perturbations are strongly enhanced for heavier neutrinos.

Our results differ substantially from [300], who compute a range of temperature power

spectra for mν = 0.1 eV using different (25Mpc)3 simulations. We find a slope that is

much steeper and an amplitude at low multipoles that is greater. This could be due to

the absence of large-scale structure in their simulations, explaining the lack of power at

low multipoles. Our results are in good agreement with the linear theory calculations of

[264] for mν < 0.1 eV. For 0.1 eV, the normalization at low multipoles agrees, but we

predict significantly more power beyond ℓ ≥ 10, where the linear calculation likely breaks

down. Similarly, although our definition of the neutrino temperature power spectrum is

somewhat different from [263], given that we do not define a power spectrum for each

momentum bin separately but show the pointwise integrated result, we obtain at least

qualitative agreement with their linear calculations for masses mν ≤ 0.1 eV, the largest
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Figure 7.6: Dimensionless angular power spectrum of the projected CDM and baryon density
contrast, Ccb

ℓ , out to 200Mpc for 0.01 eV. By construction, the results are similar for different
neutrino masses. We fit a smooth spectrum, Cfit

ℓ = exp(c1 + c2 log ℓ+ c3 log
2 ℓ), up to ℓmax = 15

to the simulation spectrum (thick solid curve). The inset graph zooms in on the lowest-order
multipoles, showing the data relative to the fit. The grey error bar represents ±10%.

mass considered amenable to their analysis. These authors model the gravitational

deflection of neutrinos with a lensing potential, similar to what is done for the CMB

[325]. A key difference between our results and the linear theory calculations [263, 264]

is the presence of oscillatory perturbations around the smooth spectra in Fig. 7.5, which

are much larger than the predicted lensing effect in [263]. This can be seen more clearly

in the inset graph, which zooms in on the lowest-order multipoles (ℓ ≤ 10) and shows the

simulation predictions relative to the smooth fits. The perturbations depend sensitively

on mass, being most prominent for 0.01 eV and nearly absent for 0.2 eV.

The origin of these perturbations becomes clear when we plot the angular power spectrum,

Ccb
ℓ , of the projected CDM and baryon density up to 200Mpc, in Fig 7.6. In this case,

we compute a dimensionless power spectrum directly from the maps of the projected

density contrast, δΠcb(θ, ϕ), defined in Eq. (7.3.6). Fitting a smooth power spectrum

(7.3.7) in the same way as for the neutrinos, reveals the same oscillatory perturbations.

This suggests that cosmic variance in the matter density field is imprinted on the local

neutrino background if the neutrino mass is sufficiently small. To confirm this explicitly,
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Figure 7.7: Cross-correlation coefficient, rcbν(ℓ) = Ccbν
ℓ /(Cν

ℓ C
cb
ℓ )1/2, between the local neutrino

density and the projected CDM and baryon density, as a function of the maximum projected
distance Rmax, for mν ∈ {0.01, 0.05} eV, split into ten equal-sized neutrino momentum bins.
The coefficients are averaged over the multipoles 1 ≤ ℓ ≤ 10 and the curves are smoothed with
a Savitzky-Golay filter. The dashed line indicates the locus of the barycentre of each curve,
indicating that the sensitivity shifts to larger distances for faster neutrinos. Note that the overall
momentum range is much wider for the 0.01 eV case.

we compute the cross-correlation coefficient, rcbν(ℓ) = Ccbν
ℓ /(Cνℓ C

cb
ℓ )1/2, between the

local neutrino density and the projected dark matter and baryon density, as a function

of the maximum projected distance Rmax. The results, averaged over the lowest-order

multipoles, 1 ≤ ℓ ≤ 10, and smoothed with a Savitzky-Golay filter, are shown in Fig. 7.7.

We additionally split the results into ten equal-sized neutrino momentum bins, with

redder curves indicating faster neutrinos. For both neutrino masses shown, mν = 0.01 eV

(left) and 0.05 eV (right), there is a strong anti-correlation that peaks around rcbν = −0.8.

In both cases, faster neutrinos are sensitive to more distant matter fluctuations. To

emphasize this point, we indicate the locus of the barycentre of each curve by a black

dashed line.

Note that rcbν trends upwards as Rmax decreases, eventually becoming positive for the

fastest neutrinos. This might be explained by the gravitational attraction of neutrinos to

positive density perturbations close to the observer. In this case, a positive correlation

should be expected. In line with expectation, the distance at which the correlation becomes

positive increases with neutrino momentum. Interestingly, the anti-correlation becomes

weaker with neutrino momentum for 0.01 eV and stronger with neutrino momentum
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for 0.05 eV. A simple explanation for this could be that the anti-correlation begins

trending upwards earlier for faster neutrinos, causing a reversal in the trend, as can be

seen for Rmax < 100Mpc in the case of mν = 0.05 eV. For mν = 0.01 eV, this reversal

may only happen at distances that are not constrained by the 2M++ data underlying our

simulations.

Just before this paper was submitted, a related study appeared in which neutrino

anisotropy maps are analysed for different random configurations of dark matter halos

in a (25Mpc)3 volume [300]. For some configurations, they report positive or negative

correlations between the neutrino and projected dark matter densities. Overall, the

ensemble average of cross-power spectra is consistent with zero. Taking into account

the smaller volume of the simulations, this can probably be understood in terms of the

aforementioned transition from positive to negative correlations close to the observer.

7.3.3. Cosmography

In this section, we make a first attempt at neutrino cosmography. Given the limited

resolution of our simulations, we focus on one illustrative example and run a higher-

resolution constrained simulation with Nν = Ncb = 10243 particles for
∑
mν = 0.06 eV.

In Fig. 7.8, we present maps of the neutrino density (left) and dark matter and baryon

density (right), in a slice of 500 × 500 × 60Mpc that includes the Local Group and

several well-known clusters. A few striking observations can be made. First of all, the

large-scale neutrino and dark matter densities are positively correlated. This explains

the anti-correlation seen in the previous section. Relic neutrinos that are captured by

massive objects form localized clouds. Hence, while they are visible from the hypothetical

viewpoint9 depicted in Fig. 7.8, they would not be seen from Earth along lines of sight

that intersect those structures.

After plotting the locations of several famous galaxy clusters, we find massive dark matter

structures associated with each of them. Surrounding most of these structures, we also

identify neutrino clouds that stretch over 10Mpc scales and reach central overdensities

of 30%. Two interesting exceptions are the Perseus and Pisces clusters, which lie close to

the Taurus void [326] and appear to inhabit a large region that is deficient in neutrinos

(a ‘glade’ in the neutrino cloudscape). Although we see some collapsed dark matter

structures at their locations, these are more dispersed compared to other clusters. This

9The viewpoint of a distant observer looking at the Milky Way in its cosmic environment. One might
call this the Archimedean viewpoint, based on Archimedes’ claim that he could lift the Earth given
only a fulcrum and a place to stand.
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Figure 7.8: Slice of the projected neutrino (left) and dark matter (right) mass density, with
thickness of 60Mpc, containing the Local Group and nearby clusters, for a species with mass
mν = 0.06 eV. The location of the Milky Way is indicated by a white triangle. The arrow
indicates the direction of the relative neutrino velocity. In terms of the comoving distance r, right
ascension α, and declination δ, the coordinates are (x, y) = r cos δ(cosα, sinα).

could be due to a failure of the constrained simulations to model the Perseus-Pisces wall

accurately [311].

The Milky Way is marked by a white triangle, located along a filament that stretches

towards the Virgo cluster. For this neutrino mass, mν = 0.06 eV, we appear to inhabit

a region with a large-scale neutrino overdensity that is not due to the Milky Way. It

was this large-scale modulation of the neutrino density that originally motivated our
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investigation. Its effect was shown in Fig. 7.3 as a function of mass. For 0.01 eV, we

predicted a small neutrino deficit. We now see that this could be due to our proximity

to the Taurus/Perseus-Pisces glade. Hence, the local neutrino density depends on the

interplay between the overdensities associated with Virgo and the Local Group and

nearby underdensities. The direction of the neutrino dipole is indicated by a white

arrow. It points away from the overdense region around the Coma cluster, which is

consistent with our motion towards the Shapley Supercluster and the Great Attractor

[327]. Correspondingly, it points towards an underdense region known as the Dipole

Repeller, which causes an apparent repulsion [328]. In short, the behaviour of the CNB

dipole is similar to that of the CMB when the neutrino mass is small, consistent with

our findings in Section 7.3.1.

7.4. Conclusion

Direct detection of the Cosmic Neutrino Background (CNB) remains one of the great

challenges in cosmology. In this paper, we have analysed the gravitational effects of the

large-scale structure and the Milky Way on the local neutrino background. Through the

use of the ‘BORG’ framework for Bayesian forward modelling of large-scale structure

observations [309, 310], we have carried out constrained simulations of the local Universe

for different neutrino cosmologies with masses between
∑
mν = 0.01 eV and

∑
mν =

0.6 eV. The constraints are based on the 2M++ catalogue [301], which maps the local

Universe out to a distance of 200h−1Mpc. We account for the Milky Way dark matter

halo, using an updated estimate of the mass from [302]. By tracing neutrinos back through

the galaxy and large-scale structure with a bitwise reversible version of the N -body code

Gadget-4 [77], keeping track of phase-space density perturbations, we compute statistics

of the expected neutrino flux. Our results suggest that the gravitational clustering of

neutrinos due to the large-scale structure is not negligible compared to the effect of the

Milky Way, with both contributing about half of the total effect for 0.1 eV neutrinos.

Despite the inclusion of the large-scale structure, we find smaller overdensities compared

to earlier studies [296–299]. We attribute this to a decrease in recent estimates of the

Milky Way halo mass. We therefore predict only marginal increases in the event rates

for tritium capture experiments like PTOLEMY [270–272]. Additionally, we also predict

a smaller impact of gravitational deflection on the helicity distribution of the neutrino

background compared to [294], due to our distance from the centre of the Virgo cluster.

As a result, the difference between the event rates for Dirac and Majorana neutrinos is

slightly smaller, though still close to 100% in most cases. Similarly, we also predict a

smaller impact on the flavour composition compared to [290], with an electron-neutrino
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fraction that is close to 1/3 even for hierarchical masses. We also make predictions for the

neutrino dipole. In the limit of very small neutrino masses, mν ≤ 0.01 eV, we recover the

CMB result with a dipole that corresponds to Solar motion towards (l, b) = (264◦, 48◦) at
a relative velocity of around 300 km/s. The velocities are significantly perturbed for larger

masses and the dipole direction shifts, but remains nearly parallel to the ecliptic plane.

This implies a near-maximal annual modulation in the neutrino velocity throughout

Earth’s orbit around the Sun.

Although perhaps unlikely, a future directional CNB detector might image the angular

distribution of relic neutrinos. We have produced maps and power spectra of the

nonlinear neutrino perturbations imprinted by the large-scale structure. Our findings are

in qualitative agreement with the linear theory results of [263] for masses mν ≤ 0.1 eV,

but with a much larger gravitational effect that produces an oscillatory feature in the

power spectrum. This feature is related to cosmic variance in the dark matter density

field. Indeed, we find that local neutrino density perturbations, in principle detectable

from Earth, are anti-correlated with the projected dark matter density up to at least

250Mpc, the largest distance constrained by the 2M++ catalogue, although for very nearby

structures and fast neutrinos, we instead predict a positive correlation. The distance at

which neutrinos are most sensitive to the intervening cosmic structure increases with

momentum and decreases with mass, potentially enabling a kind of neutrino tomography

of the large-scale structure, which would be impervious to extinction by gas and dust.

Finally, we presented maps of the forecasted neutrino distribution in the local Universe,

identifying neutrino clouds associated with several well-known clusters, such as Coma

and Hercules. We release our simulation data to the public, which we hope will be useful

for future analyses of the neutrino background.

7.A. Reversible simulations

Running a cosmological N -body simulation backwards to recover the initial conditions

is non-trivial (see [329–331] for related ideas). In principle, leapfrog integration is time-

reversible [200]. However, in practice, small rounding errors inevitably accumulate in

the backwards direction. This is problematic if one aims to recover a low entropy

initial configuration (such as two merging galaxies that are initially well separated) from

a final high entropy configuration (the merged galaxy). The root of the problem is

the non-associativity of standard floating point arithmetic, causing different rounding

errors in backwards integrations. Furthermore, floating point errors are not necessarily

reproducible in parallel programs, because of the unpredictable execution order of threads.
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We here briefly discuss the modifications necessary to make a cosmological code reversible,

in anticipation that this may be useful for other applications.

To test the bitwise reversibility of Gadget-4, we periodically compute a hash of all

particle data. The state of the simulation should be identical in the forwards and

backwards directions at the beginning and end, respectively, of each corresponding step.

Unsurprisingly, the code is not reversible by default. A first step towards achieving this

is to store particle positions and velocities as integers. Implementing integer velocities is

a natural step, because Gadget-4 already uses integer positions by default to achieve

constant precision throughout the simulation domain [77]. However, this is by no means

enough to guarantee reversibility, if only because the gravitational Tree-PM algorithm

still relies on floating point operations.

To guarantee reversibility, we must therefore also ensure that different threads execute

their tree calculations in the same order in both directions. Furthermore, there can be no

time-asymmetric decision making. For instance, we use a basic geometric tree opening

criterion [332], because the more adaptive opening criterion available in Gadget-4

depends on the particle accelerations from the previous step, which are different in the

backwards direction. Similarly, the time step is usually chosen based on the maximum

distance that particles can move or on the acceleration of particles in the previous time

step, which again introduces an asymmetry. To address this problem without adopting a

constant time step, we store a list of step sizes used in the forwards direction and feed

this file back in the backwards direction. Special consideration is also needed for the

neutrinos to ensure that the δf weighting is time-reversible. Special relativistic velocities

(6.5.3) can be absorbed in the leapfrog integration scheme [186].

The domain decomposition is another point of concern. By default, Gadget-4 uses

floating point arithmetic for load balancing, which can lead to differences between the

forwards and backwards runs. These operations are therefore modified to use integers. As

a final example, recall that we inject additional ‘spectator’ neutrinos at the start of the

backwards runs. We take steps to ensure that their presence affects neither the domain

decomposition of the original particles nor alters the gravity calculation. With these

modifications, we exactly recover the initial conditions when running our constrained

neutrino simulations backwards.



Baryonic effects
8

This chapter deals with the combined effect of cosmology and baryonic

feedback on the large-scale structure. It shows that the effects are

not exactly separable, but that the baryonic suppression of the power

spectrum is stronger for models with massive neutrinos. This is explained

in terms of changes in the baryon fraction and binding energy of halos.

Using a halo concentration emulator, predictions are made for the non-

factorizable corrections as a function of Ωm and σ8.

Cosmological dependence of baryonic feedback

Abstract: The large-scale distribution of matter is influenced not only by

the choice of cosmology but also by astrophysical processes, such as feedback

from active galactic nuclei and stellar winds. This has important implications

for cosmological parameter estimation, particularly from weak-lensing surveys

such as Euclid and LSST. In this study, we use the new FLAMINGO suite

of large-volume hydrodynamical simulations to study the extent to which

variations in cosmology can be treated independently of astrophysical processes.

We find a weak dependence of baryonic effects on cosmology, leading to non-

factorizable corrections to the power spectrum and halo mass function. In

particular, we find that the baryonic suppression of the matter power spectrum

is stronger for models in which structure formation is already suppressed, such

as in models with massive neutrinos. To determine the physical origin of

these corrections, we study an array of halo properties, including the halo

concentration and environmental density, ranking each property along two

axes: its sensitivity to cosmology and its importance in regulating feedback.

Doing so, we determine that the baryon fraction and halo concentration are

most important in the halo mass range relevant for the suppression of the

power spectrum for k ≤ 10Mpc−1. Our model predicts that non-factorizable

corrections exceed 1% for cosmological parameter variations allowed by large-

scale structure surveys and should therefore be taken into account.

151
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8.1. Introduction

Two of the principal components invoked by the ΛCDM model of cosmology, dark energy

and cold dark matter, cannot be explained by the Standard Model of particle physics

and may only be effective descriptions of phenomena yet to be discovered. The success

of the model in reproducing a wide array of observations indicates that signatures of new

physics are likely to manifest either as small modifications to the ΛCDM prediction or

in the relatively unexplored high-redshift régime. As such, the model is under intense

scrutiny at both the high-precision and high-redshift frontiers. A 5σ tension between

distance ladder measurements of the Hubble constant [333] and the ΛCDM prediction

extrapolated from cosmic microwave background (CMB) observations [112] could be

a first indication of new physics [e.g. 334, 335]. A similar discrepancy in the matter

density and amplitude of fluctuations on 8h−1Mpc scales, S8 = σ8
√
Ωm, comparing

the CMB-extrapolated prediction with measurements from galaxy clustering and weak

lensing observations [336–338], stands at 2 − 3σ. Further motivating the work at the

high-precision frontier is the possibility to measure the sum of neutrino masses. The

imprint of massive neutrinos could be detected by galaxy surveys such as DESI [339],

even for the minimum value allowed by oscillation data,
∑
mν = 0.06 eV [29], but this

requires percent-level accuracy in large-scale structure measurements and predictions

[132, 204].

Complicating these efforts is the fact that astrophysical processes, such as feedback from

supernovae and active galactic nuclei (AGN), can change the distribution of matter even

on relatively large scales [340–342]. By heating and ejecting gas into the intergalactic

medium, AGN feedback can suppress the power spectrum of matter fluctuations by

O
(
10%

)
on nonlinear scales, 1Mpc−1 < k < 10Mpc−1. On smaller scales, the power

spectrum is boosted, first by star formation and then by gas cooling, both processes

allowing matter to contract ([343]; but see [344]). A crucial question for the interpretation

of large-scale structure observations concerns the dependence of these baryonic effects

on cosmology. A number of previous studies [345–348] have shown that the effects of

cosmology and baryonic physics are separable to a first approximation, but with residual

effects of up to several percent. As these effects are approaching the statistical errors of

upcoming galaxy surveys, we are interested in modelling the non-factorizable corrections

that arise from variations in cosmology in the presence of baryonic physics. We will

consider their origin and characterize their overall importance.

One could imagine different mechanisms through which baryonic processes, such as star

formation and the growth of supermassive black holes, and hence baryonic feedback,

could depend on cosmology. Although dark matter halos share a universal density
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profile [316], their concentrations depend on cosmology [349–353]. Cosmological model

variations that slow the rate of structure formation (such as decreasing the matter

density, Ωm, or amplitude of clustering, σ8) lead to less concentrated halos, lowering the

gravitational binding energy and altering the balance between outflows and black hole

accretion [354, 355]. Another potential channel is the formation history of dark matter

halos. If halos assemble their mass more slowly, galaxy formation and feedback processes

may be delayed. A third possibility is that a change in the large-scale distribution of

matter affects the halo environment, which could affect halo properties indirectly through

assembly bias [356–358] or affect feedback by changing the density of the halo outskirts.

Finally, variations in the baryon density, Ωb, alter the amount of gas that is available for

star formation and black hole accretion.

Massive neutrinos could plausibly affect feedback through any of these channels. Neutrinos

cluster less effectively on scales smaller than their free-streaming length [120], which

results in less concentrated halos, delayed structure formation, and smoother halo

environments. Moreover, neutrinos also affect the baryon fraction, Ωb/Ωc, relative to

the cold dark matter density, Ωc, given that a change in neutrino mass at fixed matter

density, Ωm = Ωb + Ωc + Ων , and baryon density will alter the amount of gas that is

available for a halo of a given cold dark matter mass. These channels are not necessarily

mutually exclusive. To find out which, if any, play a role in regulating the amount of

feedback, we will use the FLAMINGO suite of hydrodynamical simulations [359], which

include several feedback and cosmology variations. We will use halo properties (such as

the concentration and formation epoch) as proxies for the ways in which feedback could

depend on cosmology. We will then formulate a model to predict the non-factorizable

correction to the matter power spectrum.

The organization of the paper is as follows. In Section 8.2, we introduce the FLAMINGO

suite of simulations. In Section 8.3, we present the main results, first studying the effects

of baryons and neutrinos on global large-scale structure statistics and then considering

the effect on individual halos. Finally, we discuss and conclude in Section 8.4.

8.2. Simulations

Our analysis is based on the new FLAMINGO suite of cosmological hydrodynamical

simulations [359]. The FLAMINGO simulations use an updated version of the subgrid

models used by the earlier Cosmo-OWLS [360] and BAHAMAS [361] projects. The

FLAMINGO simulations also implement a number of technical improvements, related

to the initial conditions and the treatment of massive neutrinos, aimed at improving
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the accuracy of its large-scale structure predictions (Part II of this thesis). In another

departure from its predecessors, the subgrid physics parameters were systematically

calibrated by training emulators to predict key astrophysical quantities (the galaxy stellar

mass function and cluster gas fractions) and comparing directly with observations [362].

Combined with the unprecedented volume of the simulations, these improvements make

FLAMINGO ideal for precision cosmology applications.

The flagship simulation contains Nc = Nb = 50403 dark matter and baryon particles

and Nν = 28003 massive neutrino particles in a periodic (2.8Gpc)3 volume. In addition,

there are many simulations with the same mass resolution in a (1Gpc)3 volume. These

simulations span a range of subgrid physics and cosmological parameter variations. We

only use the cosmological variations in this paper and restrict to the fiducial subgrid

model. For each hydrodynamical simulation, there is a gravity-only counterpart that

treats dark matter and baryons as a single cold fluid, but still includes the effects

of massive neutrinos (also called “dark matter only” or DMO). The hydrodynamical

simulations use a new subgrid physics model, which includes improved prescriptions

for gas cooling, star formation, black holes, and AGN feedback [359, 363–365]. The

simulations were run with the swift cosmological hydrodynamics code [76, 190] on the

cosma-8 facility in Durham, using the SPHENIX flavour of SPH [366], which is optimized

for galaxy formation applications. The initial conditions were generated with third-order

Lagrangian perturbation theory (3LPT) at z = 31 with separate transfer functions for

dark matter, baryons, and neutrinos [228, 257], using the monofonIC [89, 261] and

fastdf [186] codes, with transfer functions computed with class [128]. Neutrinos were

implemented with the δf method [237], which minimizes shot noise without neglecting

the nonlinear evolution of the neutrino phase-space distribution. The relevant parameters

for the simulations used in this paper are listed in Table 8.1.

8.3. Results

We begin by studying the effects of neutrinos and baryons on global large-scale structure

statistics in Section 8.3.1 and then study the origin of non-factorizable corrections through

the lens of individual halo properties in Section 8.3.2. Finally, we construct a simple model

for the non-factorizable correction to the power spectrum and consider its cosmological

implications in Section 8.3.3.
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8.3.1. Global statistics

We begin by looking at two fundamental global statistics relevant for large-scale struc-

ture studies: the matter power spectrum Pm(k) and the halo mass function f(M) =

dn(M)/d log10(M). To untangle the effects of neutrinos and baryons, we look at four

simulations: the hydrodynamical Planck and PlanckM240Fix simulations, which differ

only in their assumed massive neutrino contents of respectively
∑
mν = 0.06 eV and

0.24 eV, and their gravity-only counterparts. We show the corresponding power spectrum

and halo mass function ratios in Fig. 8.1. In each case, we compare to one of the

gravity-only Planck simulations. The left-hand panel shows the effects on the power

spectrum and the right-hand panel shows the effects on the halo mass function.

Let us begin with the power spectrum. The basic effects of neutrinos and baryons

have been studied before [e.g. 148, 152, 340]. The effect of increasing the neutrino mass,

Fν(k) = P 0.24 eV
m (k)/P 0.06 eV

m (k), is shown in red. On large scales, the ratio Fν → 1. This is

because on scales larger than the free-streaming length, neutrinos and dark matter cluster

in the same way, barring relativistic effects. On scales 0.01Mpc−1 ≤ k ≤ 0.6Mpc−1,

the ratio decreases to a minimum of ∆P/P ≈ 10∆fν ≈ 14% before turning over and

increasing to around 10% on sub-Mpc scales. This happens because neutrinos suppress

structure formation, which affects the 1-halo and 2-halo terms differently [197, 244].

The effect of baryonic feedback, Fb(k) = P hydro
m (k)/PDMO

m (k), obtained by dividing the

hydrodynamical result with
∑
mν = 0.06 eV by the corresponding gravity-only result,

is shown in blue. This ratio equals unity on large scales up to about k = 0.6Mpc−1

and then decreases to a dramatic minimum at k = 6Mpc−1, before turning over. This

happens primarily because feedback from AGN expels gas from 1014M⊙ mass halos,

which lowers their contribution at these scales [340, 342, 367]. On scales smaller than

k = 20Mpc−1, the ratio is greater than 1 because gas cooling and star formation allows

halos to contract, increasing the density on small scales [340, 367].

Now, let us consider the combined effect of massive neutrinos and baryonic feedback,

Fνb(k) = P hydro,0.24 eV
m (k)/PDMO,0.06 eV

m (k). The true result is obtained by dividing the

hydrodynamical PlanckM240Fix result by the gravity-only Planck result. This curve is

shown in orange. The result is well approximated by the product of the individual effects:

Fνb ≈ FνFb, shown in purple. However, we clearly see that the true effect is stronger than

would be expected from this approximation. The non-factorizable correction, Fνb/(FνFb)

is shown in the bottom panel. It vanishes on large scales, where only neutrinos have an

effect, but approaches −1% between 1Mpc−1 ≤ k ≤ 20Mpc−1 before increasing beyond

+1% at very small scales. In the following subsections, we will try to understand the

source of this effect. However, for now it is interesting to observe that the true suppression
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Figure 8.1: The effects of baryons (Fb, blue) and neutrinos (Fν , red) on the matter power
spectrum (left) and halo mass function (right). If the combined effect (Fνb, orange) were
perfectly factorizable, it would equal the product FνFb (purple). The bottom panels show the
non-factorizable correction, Fνb/(FνFb), to this approximation. It can be seen that baryonic
effects are enhanced by increasing the neutrino mass. The simulated data were interpolated to
a logarithmically spaced grid and smoothed with a 4th-order Savitzky-Golay filter. We show
Poisson error bars for the halo mass function. Errors are much smaller for the power spectrum.

is stronger than would be expected from the factorizable approximation. This means

that the baryonic effect is stronger for the model with the larger neutrino mass1.

Next, let us consider the neutrino effect Fν on the halo mass function [173, 243], defined

in the same way as in the power spectrum case and shown in red in the right-hand panel

of Fig. 8.1. The effect is very small for low mass halos, but increases towards larger halo

masses. The number density of the most massive clusters is significantly suppressed by

∼ 20%. This happens because, while the normalization of density fluctuations σ(M)

decreases along with the power spectrum, the halo mass function remains approximately

universal [242–244]. As a result, the effect is most pronounced around the exponential

cut-off at high masses. Similar behaviour is seen when changing σ8. In terms of the

excursion set formalism [368, 369], the probability of rare peaks collapsing is very sensitive

to a change in the normalization, but the number of small peaks is a power law that

depends less sensitively on the normalization.

The baryonic effect, Fb, is more complex [370, 371]. The effect is very small for the

1Or equivalently that the neutrino effect is stronger for the hydrodynamical simulations.
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most massive clusters, as these have a sufficiently deep gravitational potential well to

prevent feedback from expelling a significant fraction of the gas. The effect increases

as we move towards smaller halo masses, reaching a maximum suppression around a

few times 1013M⊙. For smaller halos than this, AGN feedback becomes less important

and therefore the baryonic effect becomes smaller. The effect reaches another extremum

at a few times 1012M⊙, where supernova feedback starts to be able to overcome the

gravitational potential well, driving the ratio back down for lighter halos [371].

When we consider the combined effect, Fνb, and its factorizable approximation, FνFb,

we reach a similar conclusion as for the power spectrum, although the statistics are worse

and the result is therefore not as clear cut. The non-factorizable correction appears to

be largest at the extrema of the combined effect and works in the direction of making

the feedback stronger for the model with the larger neutrino mass. The corrections to

the halo mass function are slightly smaller than the corrections to the power spectrum,

but still approach 1% at the maxima.

8.3.2. Halo properties

To gain insight into the origin of the non-factorizable corrections seen in the last section,

we turn our attention to a simpler problem: the baryonic effect on individual halo masses.

By matching the 10 most strongly bound particles of each field halo in the hydrodynamical

and gravity-only versions of the same simulation, we determine the properties of the

same halo with and without baryonic effects. The aim is to use halo properties as proxies

for the different ways in which feedback might depend on cosmology. We do this without

varying the cosmological model, instead relying on the inherent scatter in halo properties

in the large DES3 2800 simulations.

We are interested in the baryonic effect on the halo mass, for which we define the ratio

ψ(MDMO) =
Mhydro

MDMO
, (8.3.1)

using M200m masses. These correspond to the total mass contained in a spherical region

with an average density equal to 200 times the mean matter density of the Universe.

We obtain qualitatively similar results for different mass definitions, but opt for M200m

because of its relatively large aperture, producing smoother results. We exclusively

consider field halos, ignoring satellites.

The baryonic effect, ψ, depends sensitively on the gravity-only mass. We therefore split

the sample into bins of MDMO. Within each bin, we rank the halos according to a
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secondary halo property and compute ψ for the five quintiles (i.e. equal-sized groups

with rank between [0, 0.2] up to [0.8, 1]). We considered a large array of possible halo

properties, but selected the following four to characterize each of the channels discussed

in the introduction:

1. Concentration c. We use a proxy for the halo concentration c = Vmax/V , based

on the maximum circular velocity Vmax and virial velocity V =
√
GM/R where M

and R are the mass and radius of the spherical overdensity [351].

2. Formation epoch ax. The scale factor time a at which the halo first accreted

x% of its present-day mass, computed by linearly interpolating between adjacent

snapshots.

3. Environmental density δr. We characterize the environment by computing the

total mass Mr enclosed by halos within a radius of rMpc, excluding the halo itself.

The environmental density δr is then defined as δr =Mr/⟨Mr⟩ − 1, where ⟨Mr⟩ is
the average value for all halos in the sample.

4. Baryon fraction fb. This is the only property that is computed from the hydrody-

namical simulation, rather than the gravity-only version. It is the mass fraction of

baryons in the spherical overdensity.

The resulting ψ(MDMO) curves, split into quintiles of the secondary halo property, are

shown in Fig. 8.2. First of all, we note that the general trend resembles that of the

baryonic effect on the halo mass function seen in the right-hand panel of Fig. 8.1. It

arises from the interplay between the depth of the gravitational potential well and the

strength of stellar and AGN feedback at those masses.

Let us first consider the effect of the halo concentration c, shown in the top left panel of

Fig. 8.2. There is a clear dependence of ψ on concentration. For halos with dark matter

masses between 1012M⊙ and 1013M⊙, the suppression is smaller for less concentrated

halos, but the trend reverses for M > 1013M⊙. This can be interpreted as follows. Halos

with lower concentrations have smaller binding energies, which shifts the balance in favour

of supernova and AGN feedback compared to gravitational infall. As a result, the curves

shift to larger masses. Although concentration is anti-correlated with formation epoch,

older halos being more concentrated on average [e.g. 372], the effect seen is not due to a

dependence of feedback on formation history, at least for masses M > 1013M⊙.

To see this, consider the dependence on the formation epoch shown in the top right panel

for a50. In this case, we additionally fix the maximum circular velocity, Vmax, to the

40%-60% interpercentile range to reduce the correlation between c and a50. For halos
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Figure 8.2: A closer look at the baryonic effect on halo mass M200m, comparing the masses of
matched field halos in the corresponding gravity-only and hydrodynamic simulations. We show
the dependence of the mass ratio on four secondary halo properties: concentration (top left),
formation time (top right), environment (bottom left), and baryon fraction (bottom right). The
colours indicate quintiles of the secondary halo property, calculated within each mass bin, with
black (red) indicating a lower (higher) value of that property.

M < 1013M⊙, the suppression does depend on formation epoch. In this mass range,

the masses of older halos are more suppressed. However, there is no dependence on a50
for halos beyond 1013M⊙. This shows that the dependence seen for the concentration

is due to the binding energy and not the formation epoch. To understand this, we

show the black hole mass relative to the gravity-only mass, MBH/MDMO, in the inset

graph. We see that halos with masses between 1012M⊙ and 1013M⊙ fall into a critical

transition range where nonlinear black hole growth is on the cusp of being triggered [355],

depending on the mass and formation epoch. At the high mass end, all black holes are

self-regulating and attain a nearly fixed fraction of the dark matter mass. From this

point on, the dependence on formation epoch essentially disappears.

The third property is the environmental density, δ8, defined in terms of the mass contained

by halos within 8Mpc. The bottom left panel of Fig. 8.2 shows that this property is

barely correlated with the baryonic suppression of halo mass. The suppression is very
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slightly smaller for halos in denser regions, particularly towards the low mass end. As

halos in dense regions tend to be more concentrated, a phenomenon known as assembly

bias [356, 357], this could be due to the indirect effect of the concentration. Although we

do not consider satellites, the behaviour at the small mass end may also be an artefact

of overlapping spherical overdensities. In any case, the environment does not appear to

play a major role in regulating feedback.

Finally, we consider the dependence on the baryon fraction fb, computed directly from

the hydrodynamical simulation. Over the entire mass range, halos with higher baryon

fractions have a smaller suppression. This is consistent with the assumption that the

suppression is primarily driven by baryonic outflows. Indeed, the suppression of the

power spectrum can be related directly to the reduction in the baryon fraction in groups

and clusters [347, 373]. The dependence is strongest at the low mass end, but even at the

high mass end, the effect of the baryon fraction is larger than that of the concentration.

To quantify the importance of a given halo property θ for regulating the baryonic effect

on the mass ψ, we compute the correlation coefficient

ρθ =
⟨δψδθ⟩√〈
δ2ψ
〉〈
δ2θ
〉 , (8.3.2)

where δX = X − ⟨X⟩ are centred variables. A value of ρθ = 0.1 implies that a 1σ change

in θ results in a 0.1σ change in ψ. To determine the overall importance of this property

when explaining the dependence on cosmology, we also require the change in that property

when we change cosmological parameters α to α+∆α:

∆θ =

〈
θ(α+∆α)

〉
−
〈
θ(α)

〉
√〈

δ2θ(α)
〉 , (8.3.3)

normalized by the standard deviation of θ at α. In this way, we rank each halo property

along two dimensions: their importance for feedback and their sensitivity to cosmology,

with the overall impact being the product of the two. We did this for a large array of

halo properties, including the four properties studied above, for the shift from the Planck

cosmology with
∑
mν = 0.06 eV to the PlanckM240Fix model with

∑
mν = 0.24 eV. In

all cases, the change in baryon fraction was found to be most important. At the low mass

end, the early formation epochs a25 and a50 followed the baryon fraction in relevance.

At the high mass end, the halo concentration c was the second most important property.

Since the baryonic suppression of the matter power spectrum is mostly determined by

halos with masses 1013M⊙ < M < 1014M⊙ on scales k < 10hMpc−1 [343], we conclude
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Figure 8.3: We can predict the non-factorizable correction to the power spectrum from the changes
in baryon fraction and halo concentration. The points are based on the different L = 1Gpc
simulations listed in Table 8.1, shown relative to the fiducial DES3 L1000 model. We evaluate
the matter power spectra at k = 10hMpc−1, where the corrections first become important.

that a model of the non-factorizable corrections should first account for the change in

baryon fraction and halo concentration.

8.3.3. Predicting non-factorizable corrections

Based on the insights gathered from the DES3 2800 simulation, we now turn to the five

cosmological variations in the FLAMINGO suite, listed in Table 8.1. We wish to explain

the non-factorizable correction to the matter power spectrum in terms of the change in

the universal baryon fraction, ∆fb, and the shift in the mass-concentration relation ∆c:

∆
(
P hydro
m /PDMO

m

)
= ab

∆fb
fb

+ ac
∆c

c
. (8.3.4)

We evaluate the present-day power spectrum at k = 10hMpc−1, where the non-

factorizable corrections are prominently seen in Fig. 8.1. The mass-concentration rela-

tion is computed from the hydrodynamic simulations, using the velocity-based proxy

c = Vmax/V200. We take the median of the fractional change in ∆c/c(M) for all bins

with M > 1012M⊙. The change in the baryon fraction, ∆fb/fb, is simply taken from the

cosmological parameters. The resulting fit is shown in Fig. 8.3. As expected, an increase
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Figure 8.4: As a first application of the model, we show the cosmological parameter range around
the nominal Planck-based cosmology (marked by a cross) for which non-factorizable corrections
are within 0.5% and 1% (red), along with the Planck TTTEEE + lowℓ + lowE + lensing + BAO
constraints (blue).

in the baryon fraction leads to a greater baryonic suppression (ab = −0.22± 0.02), as a

larger gas reservoir is available for halos of a given mass. Also in line with expectation, an

increase in the concentration leads to a smaller baryonic suppression (ac = 0.40± 0.06),

which we attribute to the increased binding energy. Although it could not be included

here, we have developed an analytical model in which the strength of AGN feedback is a

function of fb/c
2
v (in prep.), consistent with the finding here that ac ≈ −2ab. The two

models compared in Fig. 8.1, Planck and PlanckM240Fix, are indicated in Fig. 8.3. We

see that the non-factorizable correction between these two models is large for two reasons.

First of all, halos are less concentrated in the large neutrino mass cosmology because

the matter density is lower when halos collapse. Secondly, the baryon fraction is higher

relative to the cold dark matter density, because Ωm and Ωb are fixed while Ων is larger.

Both changes increase the potency of baryonic feedback.

Although the model is statistically significant (p = 0.00466) and physically motivated, it

is based on a limited number of simulations. Hence, the model should be tested on a

wider sample before any definitive conclusions are drawn. This work is currently ongoing.

For now, let us briefly consider the implications, assuming that the model holds more

generally. As a proof of concept, we use (8.3.4) to predict the cosmological parameter

range within which the non-factorizable corrections are smaller than 1%. To do this, we

use an emulator for the mass-concentration relation [352, 374] and convert the output

to our velocity-based proxy with the relation from [351]. Doing so, we predict the shift
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∆c/c in concentration as a function of Ωm and σ8. Since Ωb is much better determined

than Ωm, we hold the former fixed at the fiducial Planck value [112], which gives ∆fb/fb.

Applying (8.3.4), we then obtain the red contours shown in Fig. 8.4. They indicate

the parameter range where corrections are below 0.5% (dark) and 1% (light red). The

contours are mostly parallel to lines of constant Ωm, reflecting the importance of the

baryon fraction, while the tilt is due to the dependence on halo concentration.

Also shown in Fig. 8.4 are the constraints from Planck temperature and polarization data

(TTTEEE + lowE) in blue and the KiDS + BOSS 3× 2pt galaxy clustering and weak

lensing constraints are indicated by purple dashed lines. The model used by the Planck

simulation in this paper is marked by a cross. The figure shows that the non-factorizable

corrections are mostly below 1% if one restricts to the 68% Planck constraints. However,

to sample a parameter space that covers both the constraints from Planck and large-

scale structure surveys like KiDS and BOSS with 1% precision is not possible unless

non-factorizable corrections are taken into account.

8.4. Discussion

In this paper, we presented early results from the new FLAMINGO hydrodynamical

simulations project [359]. We studied the effects of massive neutrinos and baryons

on global large-scale structure statistics, with a particular focus on non-factorizable

corrections that arise from variations in cosmology in the presence of baryonic physics.

We confirmed prior findings [345] that non-factorizable corrections to the matter power

spectrum are at the percent level on nonlinear scales, 1Mpc−1 ≤ k ≤ 10Mpc−1. Turning

to the baryonic effect on individual halo masses, we then studied the dependence of the

baryonic suppression on secondary halo properties, such as the formation epoch, and

determined that the baryon fraction and halo concentration or binding energy are most

important in the halo mass range that is most relevant for the suppression of the power

spectrum between 1Mpc−1 ≤ k ≤ 10Mpc−1.

Based on this insight, we constructed a simple bilinear model to explain the correction

to the power spectrum, ∆Pm, in terms of the cosmological change in halo concentration,

∆c/c, and baryon fraction, ∆fb/fb. As a first application of the model, we determined

the cosmological parameter range for which the results obtained assuming a nominal

Planck cosmology can be applied to within 1% accuracy on nonlinear scales. The results

indicate that non-factorizable corrections cannot be ignored, at this level of accuracy,

if one wishes to sample a parameter space that covers both the results from large-scale

structure surveys and CMB observations (Fig. 8.4). There are several promising ways
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forward. One possibility is to construct emulators that cover both changes in cosmology

and feedback. However, our findings suggest that the dependence on cosmology may

be modelled with a limited number of parameters. Non-factorizable corrections could

therefore also be included in alternative analytic and semi-analytic approaches.

Finally, it is interesting to note that we find baryonic suppression to be stronger in models

in which structure formation is already suppressed, such as in models with massive

neutrinos. Although the effect we see is limited to scales that are too small to affect the

S8 parameter, this finding lends some credence to the idea that a combination of feedback

and a mechanism to suppress structure formation could alleviate the S8 tension. It is

worth investigating whether alternative implementations of baryonic feedback combined

with non-factorizable corrections from neutrinos can lead to a nonlinear resolution of the

S8 tension [375].
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9.1. Towards a neutrino mass detection

The large-scale structure of the Universe provides an ideal testing ground for low-

energy neutrino physics. By detecting a gravitational signature of the cosmic neutrino

background, galaxy surveys like DESI and Euclid could enable the first measurement

of the sum of neutrino masses,
∑
mν , providing a unique window on the properties of

neutrinos beyond the Standard Model, such as their lifetime [376–380] and the mechanism

that generates their masses [30–32], as well as cosmology itself [26, 27].

Any cosmological constraint should be confronted with information from the laboratory.

Neutrino oscillation experiments have measured the mass squared differences at the

percent level [28, 29], while β-decay experiments have achieved constraints on the

absolute mass scale with sub-eV precision [14, 15]. Together, these experiments imply

that 0.058 eV <
∑
mν < 2.4 eV. By comparison, some recent cosmological analyses

yield bounds of
∑
mν < 0.09 eV [108, 109], approaching the lower bound from neutrino

oscillations. If the trend continues (see Fig. 9.1), aided by larger surveys and better

techniques, we will soon either measure the sum of neutrino masses or find evidence for

non-standard neutrino physics or cosmology.

This last possibility is worth further consideration. While terrestrial experiments are

model-independent, the same is not true for the cosmological approach. The ΛCDM

model has been successful in reproducing many observations, but a number of puzzling

anomalies and tensions between observations persist, despite wide-ranging efforts to

address them [334, 335, 381]. To obtain a robust measurement from cosmology, the need

to combine disparate datasets for additional constraining power must be balanced against

the increased dependence on cosmological modelling.

Cosmological simulations will play a key role in this balancing act. In Part II of this

thesis, we developed new techniques and demonstrated that neutrino simulations can

now be performed with the required level of precision. Building on these developments

by exploiting a new generation of accurate simulations, we are continuing on the road

towards a robust neutrino mass detection with work in several directions, from the

development of novel probes to the treatment of uncertainties. We will discuss these in

further detail below.
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Figure 9.1: An informal census of published neutrino mass results, with early experimental
findings based on [382] and extrapolated to three massive species. Upper bounds are indicated
by downward arrows. The first upward arrow indicates the 1979 Tremaine & Gunn bound that
mν ≥ 24 eV if one species of neutrinos forms the dark matter in halos [48]. The double downward
arrow indicates the finding that a neutrino-dominated Universe poses a challenge to the observed
large-scale structure [24, 50]. The lower dotted lines indicate the lower bounds from neutrino
oscillations [28, 29], assuming the inverted or normal mass ordering, respectively.

9.1.1. Novel neutrino probes

Simulations are ideal for developing novel neutrino probes. These are important not just

for providing additional constraining power in the non-linear régime, where two-point

statistics no longer capture all available information, but also to provide robustness. Two

strategies can be distinguished. The first is to develop novel summary statistics that

target large-scale structure in general, providing information about neutrinos primarily

by breaking parameter degeneracies within the νΛCDM model. Such statistics include

the bispectrum [239–241], the marked power spectrum [383], density-split clustering

[384, 385], the wavelet-scattering transform [386], and void statistics [387–389]. Analytical

treatments are often untractable, which means that simulations are indispensable.

An alternative strategy is to search for signatures that are somehow unique to massive

neutrinos. While more challenging, the pay-off would be immense if such signals were

large enough, enabling an unambiguous detection. Work in this direction is also of general

interest, as it improves our understanding of neutrino phenomenology. Some examples
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in this category include the possible effects of dynamical friction [198] and torque [199]

from neutrinos on dark matter halos or the relative velocity between neutrinos and

dark matter [390]. Analytical work that appears promising should be checked against

simulations. Studies in this category would benefit especially from high-fidelity particle

neutrino simulations.

Let us mention just a few more possibilities for future work. If neutrinos measurably

affect dark matter halos, such a signal might show up in the kinematics of galaxies around

clusters, given that effects like dynamical friction depend on the mass of the perturber.

The velocity distribution of galaxies can be probed with the redshift space galaxy-cluster

cross-correlation function [391], a statistic that should be simpler to model on small

scales than galaxy-galaxy clustering [114, 392–394]. This probe would also be sensitive

to neutrinos through the growth rate of structure and has already been used to constrain

modified gravity [395]. Large-volume neutrino simulations, containing sufficient numbers

of clusters, could be used to isolate the direct and indirect effects of massive neutrinos.

Another exciting possibility is to search for extended neutrino halos around clusters with

weak lensing. Previous work, which assumed idealized spherical halo profiles, suggested

that the effects may be detectable by Euclid at the 1%-level [193]. Now that Euclid has

launched, more than ten years on, it is timely to revisit the problem. Using the same

large-volume simulations as above, the signal could be studied for realistic stacked cluster

profiles. Although we briefly looked at simulated neutrino halos in Chapter 4, a more

detailed analysis of the weak lensing signal remains outstanding.

9.1.2. Uncertainty quantification

Simulations are also useful for the end-to-end modelling of large-scale structure observa-

tions in the form of mock catalogues that account for non-linear structure and galaxy

formation, survey geometry, and systematic errors. Mock catalogues are crucial to forecast

the performance of large-scale structure surveys, to analyse observational strategies, to

identify flaws in analysis pipelines, to quantify uncertainties, and to provide confidence

in any potential discovery. Realistic neutrino simulations are particularly important to

study the impact of systematics on cosmological neutrino mass constraints.

Due to non-trivial correlations among cosmological and nuisance parameters, systematics

can bias parameters in unexpected ways. One example is the CMB lensing anomaly,

an oscillatory residual in the temperature power spectrum, present in many CMB

analyses, that resembles the smoothing effect of gravitational lensing and has been

parametrized by the nuisance parameter AL [396–398]. Marginalising over AL to account
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for possible systematics has a profound effect on the inferred neutrino mass [113, 115–

117]. Similar correlations may exist for systematics in large-scale structure observations.

Determining the impact on the inferred neutrino mass requires the end-to-end propagation

of systematics from observation space to cosmological parameter space.

This mapping from observation space to cosmological parameter space, known as cosmo-

logical parameter estimation, amounts to the reduction of complex astronomical datasets

to a number of point estimates that describe the cosmological model, together with

a quantitative description of the uncertainty. This is traditionally accomplished by

compressing observations to summary statistics and by assuming a Gaussian likelihood

function with errors given by the covariance matrix. Under certain conditions, covariances

can be estimated directly from the data using boostrap or jackknife methods [399–403].

Covariance matrices can also be computed analytically [404–408], but this is difficult

for novel statistics in the non-linear régime. Alternatively, covariance matrices can be

computed from ensembles of N -body simulations [409, 410].

Recently, simulation-based inference has emerged as an interesting alternative to the

traditional approach based on explicit likelihoods [411–416]. These methods combine the

power of simulations for the accurate forward modelling of observations with machine

learning techniques to train models for the posterior distribution of the cosmological

parameters. By relying on forward modelling, these methods are ideal for the propagation

of systematic effects to cosmological parameter space. As such, they are a promising way

forward to extract cosmological information from large-scale structure observations.

9.1.3. Next-generation simulations

To facilitate the applications described above, we have proposed an ambitious suite of

next-generation neutrino simulations, using the methods and techniques developed in this

thesis to ensure sub-percent accuracy in its large-scale structure predictions. In order to

resolve the dark matter halos hosting all main tracer galaxies of the DESI survey [16] in a

volume large enough to represent the DESI footprint and to capture large-scale neutrino

effects, the volume and resolution of the simulations will significantly exceed that of

existing neutrino simulation suites like Quijote [160] and DEMNUni [159]. A training

data set, including a ladder of simulations varying the neutrino masses in small steps

and a grid of cosmological parameter variations, will be used to develop and test novel

neutrino probes and for emulation and machine learning applications. Some simulations

will use modified initial conditions as part of a controlled experiment to identify effects

unique to neutrinos. A further set will assume a blinded neutrino cosmology as part of a

mock challenge to stress test analysis pipelines.
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These high-fidelity simulations will be complemented with a large number of low-fidelity

simulations for uncertainty quantification and to expand the effective volume of the

suite with the use of control variates [91]. Generating the large numbers of realizations

required for these applications implies the need for highly optimized codes [78, 79] or

approximate methods [90, 417, 418]. To handle the case with massive neutrino, we

developed a fast N -body code, called sedulus, that incorporates all techniques needed

for robust neutrino simulations, as well as other advances for speed-ups compared to

existing alternatives. Together, the high-fidelity and low-fidelity simulations will provide

the essential theoretical infrastructure needed to measure the sum of neutrino masses

with DESI and other Stage IV galaxy surveys.

9.2. Other directions

The work in Part III of this thesis also raises interesting questions for future work. In

Chapter 7, we made detailed predictions for the rate of direct relic neutrino detections,

assuming the specifications of the proposed PTOLEMY experiment [270–272]. We also

analysed angular anisotropies in the neutrino background, but without reference to

a specific detector. In principle, an experiment like PTOLEMY could measure CNB

anisotropies using polarized tritium [287]. Hence, it is worth following this work up with

a specific application to such an experiment. More generally, it is interesting to explore

what could be learnt from a measurement of the neutrino power spectrum, be it through

direct detection or indirect cosmological inference.

In Chapter 8, we studied the dependence of astrophysical feedback processes on cosmology,

finding that this coupling gives rise to non-factorizable corrections to the matter power

spectrum that are not negligible in the cosmological parameter space spanned by current

observations. Our results show that baryonic feedback is stronger when combined

with a mechanism that suppresses structure formation or removes dark matter from

group-sized halos at late times, both increasing the baryon fraction and decreasing the

halo concentration. This suggests that a combination of baryonic and non-baryonic

suppression effects might alleviate the present tension between large-scale structure and

CMB measurements of S8 [336–338]. Hence, it is interesting to study extensions of ΛCDM

that produce such effects. Besides replacing some fraction of cold dark matter with hot

dark matter like neutrinos, a model in which dark matter decays into dark radiation

[419–422] appears promising, but annihilating dark matter [423] or a Yukawa coupling

between dark matter and quintessence [424] might also produce such an outcome.
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9.3. Closing remarks

Confirming the existence of the cosmic neutrino background and measuring its funda-

mental properties has been a long-standing challenge for cosmology and particle physics.

While their effects are subtle, neutrinos leave a variety of cosmological traces, which

could be probed by observations of the Universe at different epochs and scales. The

major challenge in obtaining a robust neutrino mass measurement is the need to combine

and interpret observations consistently within a cosmological model. In this thesis, we

have developed methods and techniques that enable the accurate modelling of neutrino

effects on late-time cosmological observables. These will be used in the next generation

of neutrino simulations whose aim is to facilitate the optimal use of galaxy observations

in our quest to reveal these most elusive messengers from the early Universe.
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[84] J. Harnois-Déraps, U.-L. Pen, I.T. Iliev, H. Merz, J.D. Emberson and V. Desjacques,

High-performance P3M N-body code: CUBEP3M, MNRAS 436 (2013) 540 [1208.5098].

[85] J. Adamek, D. Daverio, R. Durrer and M. Kunz, gevolution: a cosmological N-body code

based on General Relativity, JCAP 07 (2016) 053 [1604.06065].

https://doi.org/10.1103/PhysRevD.77.063530
https://arxiv.org/abs/0711.2521
https://doi.org/10.1088/1475-7516/2008/10/036
https://arxiv.org/abs/0806.0971
https://doi.org/10.1103/PhysRevD.80.043531
https://arxiv.org/abs/0905.0479
https://doi.org/10.1007/JHEP09(2012)082
https://arxiv.org/abs/1206.2926
https://doi.org/10.1088/1475-7516/2014/05/022
https://arxiv.org/abs/1311.2168
https://doi.org/10.1088/1475-7516/2012/07/051
https://arxiv.org/abs/1004.2488
https://doi.org/10.1093/mnrasl/slaa198
https://arxiv.org/abs/2010.12584
https://doi.org/10.48550/arXiv.2305.13380
https://arxiv.org/abs/2305.13380
https://doi.org/10.1093/mnras/stab1855
https://arxiv.org/abs/2010.03567
https://doi.org/10.1093/mnras/stab2482
https://arxiv.org/abs/2110.11392
https://doi.org/10.1186/s40668-017-0021-1
https://doi.org/10.1186/s40668-017-0021-1
https://arxiv.org/abs/1609.08621
https://doi.org/10.1051/0004-6361:20011817
https://arxiv.org/abs/astro-ph/0111367
https://doi.org/10.1111/j.1365-2966.2009.15715.x
https://arxiv.org/abs/0901.4107
https://doi.org/10.1093/mnras/stt1591
https://arxiv.org/abs/1208.5098
https://doi.org/10.1088/1475-7516/2016/07/053
https://arxiv.org/abs/1604.06065


Bibliography 178

[86] J. Dakin, S. Hannestad and T. Tram, The cosmological simulation code CONCEPT 1.0,

MNRAS 513 (2022) 991 [2112.01508].

[87] C. Barrera-Hinojosa and B. Li, GRAMSES: a new route to general relativistic N-body

simulations in cosmology. Part I. Methodology and code description, J. Cosmology

Astropart. Phys. 2020 (2020) 007 [1905.08890].

[88] M. Crocce, S. Pueblas and R. Scoccimarro, Transients from initial conditions in

cosmological simulations, MNRAS 373 (2006) 369 [astro-ph/0606505].

[89] M. Michaux, O. Hahn, C. Rampf and R.E. Angulo, Accurate initial conditions for

cosmological N-body simulations: minimizing truncation and discreteness errors, MNRAS

500 (2021) 663 [2008.09588].

[90] S. Tassev, M. Zaldarriaga and D. Eisenstein, Solving Large Scale Structure in Ten Easy

Steps with COLA, JCAP 06 (2013) 036 [1301.0322].

[91] N. Chartier, B. Wandelt, Y. Akrami and F. Villaescusa-Navarro, CARPool: fast, accurate

computation of large-scale structure statistics by pairing costly and cheap cosmological

simulations, MNRAS 503 (2021) 1897 [2009.08970].

[92] N. Kokron, S.-F. Chen, M. White, J. DeRose and M. Maus, Accurate predictions from

small boxes: variance suppression via the Zel’dovich approximation, J. Cosmology

Astropart. Phys. 2022 (2022) 059 [2205.15327].

[93] J. DeRose, S.-F. Chen, N. Kokron and M. White, Precision redshift-space galaxy power

spectra using Zel’dovich control variates, J. Cosmology Astropart. Phys. 2023 (2023) 008

[2210.14239].

[94] C. Modi, S.-F. Chen and M. White, Simulations and symmetries, MNRAS 492 (2020)

5754 [1910.07097].

[95] A. Taruya, T. Nishimichi and D. Jeong, Grid-based calculation for perturbation theory of

large-scale structure, Phys. Rev. D 98 (2018) 103532 [1807.04215].

[96] C.M. Baugh, A primer on hierarchical galaxy formation: the semi-analytical approach,

Reports on Progress in Physics 69 (2006) 3101 [astro-ph/0610031].
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[193] F. Villaescusa-Navarro, J. Miralda-Escudé, C. Peña-Garay and V. Quilis, Neutrino halos

https://doi.org/10.1063/1.860870
https://doi.org/10.1006/jcph.1993.1146
https://doi.org/10.1088/1475-7516/2017/06/043
https://arxiv.org/abs/1702.03221
https://doi.org/10.1103/PhysRevD.92.123517
https://doi.org/10.1103/PhysRevD.92.123517
https://arxiv.org/abs/1505.04756
https://doi.org/10.1088/1475-7516/2022/11/058
https://doi.org/10.1088/1475-7516/2022/11/058
https://arxiv.org/abs/2207.14256
https://doi.org/10.1093/mnrasl/slw235
https://arxiv.org/abs/1610.04236
https://doi.org/10.1088/1475-7516/2017/12/022
https://arxiv.org/abs/1708.07769
https://doi.org/10.1145/2929908.2929916
https://arxiv.org/abs/1606.02738
https://arxiv.org/abs/1805.020
https://doi.org/10.1088/1475-7516/2020/01/013
https://arxiv.org/abs/1908.01391
https://doi.org/10.1088/1475-7516/2010/09/014
https://doi.org/10.1088/1475-7516/2010/09/014
https://arxiv.org/abs/1004.4105


185 Bibliography

in clusters of galaxies and their weak lensing signature, J. Cosmology Astropart. Phys.

2011 (2011) 027 [1104.4770].
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Filamentary baryons and where to find them - A forecast of synchrotron radiation from

merger and accretion shocks in the local Cosmic Web, Astron. Astrophys. 662 (2022) A87

[2203.05365].

[309] J. Jasche and B.D. Wandelt, Bayesian physical reconstruction of initial conditions from

large scale structure surveys, Mon. Not. Roy. Astron. Soc. 432 (2013) 894 [1203.3639].

[310] J. Jasche and G. Lavaux, Physical Bayesian modelling of the non-linear matter

distribution: new insights into the Nearby Universe, Astron. Astrophys. 625 (2019) A64

[1806.11117].

[311] S. Stopyra, H.V. Peiris, A. Pontzen, J. Jasche and G. Lavaux, Towards Accurate

Field-Level Inference of Massive Cosmic Structures, arXiv e-prints (2023)

arXiv:2304.09193 [2304.09193].

[312] D.J. Bartlett, H. Desmond and P.G. Ferreira, Constraints on Galileons from the positions

of supermassive black holes, PRD 103 (2021) 023523 [2010.05811].
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[364] E. Chaikin, J. Schaye, M. Schaller, A. Beńıtez-Llambay, F.S.J. Nobels and S. Ploeckinger,

A thermal-kinetic subgrid model for supernova feedback in simulations of galaxy formation,

arXiv e-prints (2022) arXiv:2211.04619 [2211.04619].
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[399] P. Norberg, C.M. Baugh, E. Gaztañaga and D.J. Croton, Statistical analysis of galaxy

surveys - I. Robust error estimation for two-point clustering statistics, MNRAS 396 (2009)

19 [0810.1885].

[400] A. Taylor, B. Joachimi and T. Kitching, Putting the precision in precision cosmology: How

accurate should your data covariance matrix be?, MNRAS 432 (2013) 1928 [1212.4359].

[401] O. Friedrich, S. Seitz, T.F. Eifler and D. Gruen, Performance of internal covariance

estimators for cosmic shear correlation functions, MNRAS 456 (2016) 2662 [1508.00895].

[402] F.G. Mohammad and W.J. Percival, Creating jackknife and bootstrap estimates of the

covariance matrix for the two-point correlation function, MNRAS 514 (2022) 1289

[2109.07071].

[403] S. Trusov, P. Zarrouk, S. Cole, P. Norberg, C. Zhao, J.N. Aguilar et al., 2-point statistics

covariance with fewer mocks, arXiv e-prints (2023) arXiv:2306.16332 [2306.16332].

[404] H.A. Feldman, N. Kaiser and J.A. Peacock, Power-Spectrum Analysis of

Three-dimensional Redshift Surveys, ApJ 426 (1994) 23 [astro-ph/9304022].

[405] Z. Slepian and D.J. Eisenstein, Computing the three-point correlation function of galaxies

in O(N2̂) time, MNRAS 454 (2015) 4142 [1506.02040].

[406] C. Howlett and W.J. Percival, Galaxy two-point covariance matrix estimation for next

generation surveys, MNRAS 472 (2017) 4935 [1709.03057].

https://doi.org/10.3847/1538-4357/aac6bf
https://arxiv.org/abs/1708.01154
https://doi.org/10.1093/mnras/stz1850
https://arxiv.org/abs/1903.00154
https://doi.org/10.1088/1475-7516/2019/06/040
https://arxiv.org/abs/1902.10692
https://doi.org/10.1093/mnras/stu1739
https://arxiv.org/abs/1310.6768
https://doi.org/10.48550/arXiv.2310.03127
https://doi.org/10.48550/arXiv.2310.03127
https://arxiv.org/abs/2310.03127
https://doi.org/10.1111/j.1365-2966.2009.14389.x
https://doi.org/10.1111/j.1365-2966.2009.14389.x
https://arxiv.org/abs/0810.1885
https://doi.org/10.1093/mnras/stt270
https://arxiv.org/abs/1212.4359
https://doi.org/10.1093/mnras/stv2833
https://arxiv.org/abs/1508.00895
https://doi.org/10.1093/mnras/stac1458
https://arxiv.org/abs/2109.07071
https://doi.org/10.48550/arXiv.2306.16332
https://arxiv.org/abs/2306.16332
https://doi.org/10.1086/174036
https://arxiv.org/abs/astro-ph/9304022
https://doi.org/10.1093/mnras/stv2119
https://arxiv.org/abs/1506.02040
https://doi.org/10.1093/mnras/stx2342
https://arxiv.org/abs/1709.03057


199 Bibliography

[407] C. Blake, P. Carter and J. Koda, Power spectrum multipoles on the curved sky: an

application to the 6-degree Field Galaxy Survey, MNRAS 479 (2018) 5168 [1801.04969].

[408] D. Wadekar and R. Scoccimarro, Galaxy power spectrum multipoles covariance in

perturbation theory, Phys. Rev. D 102 (2020) 123517 [1910.02914].

[409] C. Zhao, C.-H. Chuang, J. Bautista, A. de Mattia, A. Raichoor, A.J. Ross et al., The

completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: 1000 multi-tracer

mock catalogues with redshift evolution and systematics for galaxies and quasars of the

final data release, MNRAS 503 (2021) 1149 [2007.08997].

[410] M. Rashkovetskyi, D.J. Eisenstein, J.N. Aguilar, D. Brooks, T. Claybaugh, S. Cole et al.,

Validation of semi-analytical, semi-empirical covariance matrices for two-point correlation

function for early DESI data, MNRAS 524 (2023) 3894 [2306.06320].

[411] J. Alsing, B. Wandelt and S. Feeney, Massive optimal data compression and density

estimation for scalable, likelihood-free inference in cosmology, MNRAS 477 (2018) 2874

[1801.01497].

[412] P.L. Taylor, T.D. Kitching, J. Alsing, B.D. Wandelt, S.M. Feeney and J.D. McEwen,

Cosmic shear: Inference from forward models, Phys. Rev. D 100 (2019) 023519

[1904.05364].

[413] N. Jeffrey, J. Alsing and F. Lanusse, Likelihood-free inference with neural compression of

DES SV weak lensing map statistics, MNRAS 501 (2021) 954 [2009.08459].

[414] C. Hahn, M. Eickenberg, S. Ho, J. Hou, P. Lemos, E. Massara et al., SIMBIG: A

Forward Modeling Approach To Analyzing Galaxy Clustering, arXiv e-prints (2022)

arXiv:2211.00723 [2211.00723].

[415] C. Modi, S. Pandey, M. Ho, C. Hahn, B. R’egaldo-Saint Blancard and B. Wandelt,

Sensitivity Analysis of Simulation-Based Inference for Galaxy Clustering, arXiv e-prints

(2023) arXiv:2309.15071 [2309.15071].
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