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[...] es el asombro ante el milagro
de que a despecho de infinitos azares,
de que a despecho de que somos

las gotas del rio de Heraclito,
perdure algo en nosotros:

inmovil.

Jorge Luis Borges, Final de ano, from Fervor de Buenos Aires, 1923






Scientific abstract

In this Thesis we discuss applications of homotopy algebras to several aspect of quantum
field theories. In an effort to be self-contained, we start introducing Ly-, Ayx-, and C-
algebras, and contextualising them in the framework of Batalin—Vilkovisky formalism, that
associates every perturbative Lagrangian field theory to an L,-algebra encoding the com-
plete classical theory. Several instances of field theories are reviewed, and their underlying
homotopy algebras are discussed in detail. The connection between homotopy algebras
and scattering amplitudes are explored, and explicit recursion relations (at tree- and loop-
level) are provided and applied to concrete examples. We then apply the homotopy algebra
framework to the study of BCJ colour—kinematic duality and double copy prescription for
Yang—Mills theory. Following a Lagrangian approach and with the help of an appropriate
notion of tensor product for homotopy algebras, we introduce a colour—kinematic factor-
isation at the level of the L, -algebra associated to the theory. We construct a double
copied Yang—Mills theory, and we show that it is perturbatively quantum equivalent to
N = 0 supergravity, proving the validity of the double copy prescription for Yang—Mills
theory at loop-level.

This Thesis is based on the papers [1-6] that | wrote in collaboration with Leron
Borsten, Branislav Jurto, Hyungrok Kim, Lorenzo Raspollini, Christian Saemann, and
Martin Wolf.

Keywords and AMS Classification Codes: ooc-operads and higher algebra (18N70), Geo-
metry and quantization, symplectic methods (81510), Yang-Mills and other gauge theories
in quantum field theory (81T13), Feynman diagrams (81T18), Correspondence, duality,
holography (AdS/CFT, gauge/gravity, etc.) (81T35), Methods of quantum field theory
in general relativity and gravitational theory (83C47), Supergravity (83E50).






Lay summary

The formulation of quantum field theory (QFT) was one of the greatest scientific achieve-
ments of the last century, realising a paradigm that conciliate quantum mechanics and spe-
cial relativity. Nowadays, QFT is our best tool to quantitatively describe Nature, and the
Standard Model gives us an incredible precise picture of the fundamental forces in terms of
gauge theories. In spite of that huge success, our understanding of fundamental physics is
far from being complete: we still miss a consistent quantum description of gravity. Many
efforts of present days fundamental physics research are devoted to the aim of grasping
a better understanding of gravity, and many unifying descriptions have been proposed,
although no one succeeded in obtaining universal consensus in the scientific community.
One of these proposals is string theory. Even without debating its ultimate validity as
a theory of everything, the sheer amount of advancements in physics and mathematics
prompted by string theory is immense. It is precisely in string theory that important math-

ematical structures, known as homotopy algebras, found a natural realisation. It was then

discovered that homotopy algebras were almost ubiquitous in theoretical physics: indeed,
homotopy structures underpin every classical and quantum field theory, and they encode
all the details of their perturbative properties.

This Thesis is devoted to the study of homotopy algebras applications in QFT, and
its aim is threefold. First, we want to give a comprehensive description of the Batalin—
Vilkovisky formalism, that is the bridge between homotopy algebras and quantum field
theories. Second, we want to show that this homotopy algebra framework can be suc-
cessfully applied to the study of scattering amplitudes, crucial objects in QFT, that link
the mathematical description of the theory to the experimental results. In particular, we
provide recursion relations for scattering amplitudes, that generalise previous results and
interpret them into the homotopy algebra language. Finally, we want to inquire into an
intriguing duality between gauge theories and gravity, namely the colour—kinematic duality
and the double copy prescription. Inspired by our homotopy algebra technology, we prove
a conjecture that links gauge theory scattering amplitudes with gravity scattering amp-

litudes, potentially opening the way for further conceptual and practical advancements.
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Introduction

In this first Chapter, homotopy algebras are heuristically introduced and motivated in the
framework of Batalin—Vilkovisky formalism. The main results of this Thesis are informally

presented and contextualised in the landscape of high energy theoretical physics.

1.1. Gauge theory, BV formalism, and homotopy algebras

The conciliation of Special Relativity and Quantum Mechanics into the framework of
quantum field theory was one of the major conceptual achievements of the last century.
To the present day, quantum field theory is still our best quantitative description of Nature,
and it is difficult to overemphasise the role of symmetries in our understanding of it.
Symmetry seems indeed inescapably tied with the explanation of the most fundamental
bricks of Nature: the identification of elementary particles as the irreducible representations
of the symmetries of space—time provided by Wigner's classification is a rigorous answer to
the question of what can exist in the universe, a conundrum as old as human speculative
thinking.

Every action-based, covariant description of the known fundamental interaction con-
tains an intrinsic redundancy, as it is formulated introducing non-dynamical degrees of
freedom. Gauge invariance is the symptom of such redundancy. The most familiar ex-
ample is provided by the electrodynamics, where the four components of the covariant
four-potential A, do not correspond to the two helicity states of the photon: the gauge
invariance of the theory rules out the non-dynamical components. The same is true for
gravity, where the ten degree of freedom of the symmetric metric tensor h,, are reduced

to the two helicity states of the graviton by the diffeomorphism invariance of the theory.



2 1.1. Gauge theory, BV formalism, and homotopy algebras

The advantages of a covariant formulation are not priceless, and the quantisation of a
gauge theory is the prime example of such difficulties. Heuristically speaking, to quantise
a gauge theory means to make sense of its path integral. For the sake of concreteness,

let us consider Yang—Mills theory, a fundamental ingredient of the Standard Model:
1 1%
S[A] = —Zfddx F2, . (1.1)

Perturbatively, the obvious problem is that the kinematic operator of Yang—Mills theory is
not invertible, and we need to introduce a gauge-fixing in order to define a propagator.
We have more serious problems at the non-perturbative level: given an observable O(A),

a naive expression for its expectation value would be

J w(A) O(A)ersA (1.2)

Unfortunately, this path integral is ill-defined, as we are integrating over gauge-equivalent
field configurations with the same weight O(A)e#°[l. We remark that both problems can
be seen as direct consequences of the local gauge symmetry.

The Faddev—Popov method and the standard Becchi—-Rouet-Stora—Tyutin (BRST)
formalism allow us to deal with the aforementioned gauge-fixing and quantisation issues
in a covariant way. The inconvenience of a covariant quantisation is the introduction of
unphysical states to parametrise gauge freedom, namely ghosts: in the Faddev—Popov
method they emerge through the Jacobian factor that arises when the (infinite) volume
of the local gauge transformation is factored out. The inner product associated to ghosts
states (and to unphysical gluon states) is not positively-defined: to obtain a physical Hilbert
space we then need additional conditions. This problem is present also in the Abelian case
(where ghosts decouple and are not needed for quantisation), where the Gupta—Bleuler
condition is imposed on the physical states. In Yang—Mills case, the action constructed
with the Faddev—Popov method is invariant under BRST symmetry, a global symmetry
associated with a nilpotent, anticommuting conserved charge Qgrst. The original gauge
symmetry of the theory is recovered by BRST symmetry, and the ghost field plays the
role of the gauge parameter. The physical space of physical states is then constructed
completing the pre-Hilbert space given by the cohomology of the differential complex
associated to QgrsT.

Despite the great success of this formalism in the quantisation of Yang—Mills gauge

theory and in the proof of their renormalisability, there are instances of theories where the
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1.1. Gauge theory, BV formalism, and homotopy algebras 3

Faddev—Popov method and the BRST quantisation fail. Open algebras gauge theories are
theories where the commutator of two gauge transformations is a gauge transformation
up to equations of motion: this is equivalent to say that the BRST differential complex
is a differential complex only up to equations of motion. Examples of these theories are
encountered in the context of (super)gravity. Generally speaking, higher gauge theories,
theories where the gauge parameters enjoy themselves gauge freedom (mediated by higher
ghosts), feature open symmetry algebras. To gauge-fix and quantise these theories, BRST
formalism is not enough. Even for standard gauge theories, exotic gauge-fixing choices
cannot be implemented with standard BRST formalism.

Batalin—Vilkovisky (BV) formalism [7—11] (also known as antibracket formalism) can be

seen as a generalization of BRST formalism, and was originally introduced to gauge-fix and
quantise theories that cannot be handled with the standard BRST approach. Analogously
to the BRST approach, the starting point of BV formalism is the introduction of ghosts
(and, eventually, higher ghosts) to parametrise gauge freedom. Then, the field content
of the theory is doubled: for every field, ghost, higher ghost, we introduce an antifield, a
ghost antifield, a higher ghost antifield. In this way we obtain a cotangent bundle, where
the original BRST fields ®* are the local coordinates on the BRST fields manifold, and
the antifields @} the fibre coordinates. This comes with a natural symplectic structure,
that allows us to define Poisson brackets {—, —}. The BRST action Sgrst is extended (in
an essentially unique way in the context of the minimal extension) to a BV action Sgy,

that satisfies the classical BV master equation

{Sev. Sev} = 0. (1.3)

The BRST operator QggrsT is extended to a vector field

Qsv = {Sev, —} (1.4)

that squares to 0. In this formalism, gauge-fixing is imposed evaluating the path integral
on a Lagrangian submanifold L of the BV field manifold. This is implemented eliminating
the antifields with the introduction of a gauge-fixing fermion W. The gauge independence

of the expectation value of an observable O,

Oy = L pey (P, d*)o (d:j — %) O[d, b+ ]ensev®®] (1.5)

Tommaso Macrelli



4 1.1. Gauge theory, BV formalism, and homotopy algebras

is expressed by the following statement, proved by Batalin and Vilkovisky: if Ly and Ly are
Lagrangian submanifolds connected by a continuous family L, of Lagrangian submanifolds,

and the integrand H satisfies AgyH = 0, where

52
Nev ~ =raris 1.
VY 5D (1.6)
then
J d\ H = f dXo H. (1.7)
Ll Lo
The condition
Agy <e%5§v[¢'¢+]> =0 (1.8)
translates to a condition on Sf,,,
{SBv. Sy} — 2ihAeySgy = 0, (1.9)

that generalise the classical master equation. Equation (1.9) is called quantum BV master
equation.

Let us make a step back to the classical BV formalism: the differential algebra associ-
ated to Qgy is dual to a codifferential coalgebra, equivalently described as an L -algebra,
a homotopy algebra that generalise the notion of a Lie algebra. In more precise terms,
the BV differential algebra is the Chevalley—Eilenberg algebra associated to an L, -algebra.
This L-algebra encodes the complete classical structure of the field theory (symmetries,
fields, equations of motion, Noether identities...). At the quantum level, this picture will
be extended with a quantum generalisation of the notion of L-algebra: in the same way
the classical BV master equation gives rise to an Ly-algebra, the quantum BV master
equations yields an underlying algebraic structure called quantum L -algebra.

Strong homotopy algebras are generalisations of ordinary algebras, such as associative,

Leibniz, and Lie algebras, where the structural identities (respectively, associativity, Leibniz
identity, and Jacobi identity) hold only up to a coherent homotopy. In general, we can
consider homotopy algebras as graded vector spaces, equipped with a differential and
multibrackets, called higher products, that obey a homotopy generalisation of the structural
identity of the correspondent classical algebra. Prominent examples of homotopy algebras
are the already mentioned L.-algebras and A,-algebras, which generalise the notion of
associativity. Starting from the seminal contribution of Masahiro Sugawara [12,13] in 1957
and the fundamental work of Jim Stasheff [14,15] in 1963, A-structures were introduced

Tommaso Macrelli



1.2. Homotopy algebras and scattering amplitudes 5

in Mathematics. A historical breakdown of the (intricate) story of the discovery and the
development of homotopy algebras in mathematical literature is beyond the purposes of this
Thesis: the interested reader can find a detailed account in Stasheff’s recent review [16].

Homotopy algebras are ubiquitous in theoretical physics: in the early 80's, their dual,
Chevalley—Eilenberg counterpart appeared in supergravity in the work of D'Auria—Fré [17],
with the slightly misleading name of free differential algebras or FDAs (in rigorous terms,
their FDAs where indeed semifree differential graded algebras). Around the same years,
the BV approach to gauge-fixing and quantisation was proposed. Stasheff successively
interpreted the BV complex in term of Chevalley—Eilenberg algebras associated to L-
algebras [18, 19], and various authors addressed the algebraic structures yielded by BV
formalism in gauge theories [20—31]. The identification of L-algebras as the algebraic
structures behind Zwiebach's closed string field theory is attributed to Stasheff’'s comment
on Zwiebach's contribution to the 10th and Final Workshop on Grand Unification [32,33] in
1989, and Gaberdiel and Zwiebach [34] recognized A-algebras as the algebraic structures
of classical open string field theory. Kajiura and Stasheff proposed an homotopy algebra
for classical open—closed string field theory [35], and recently Kunitomo and Sugitomo
realised an L, structure associated to heterotic string field theory [36]. Further discussions
on homotopy algebras and string field theory can be found in [37-40, 35,41-43].

The paper [44] renewed the attention on the homotopy algebra structures underlying
every Lagrangian field theory. In the last years, this higher homotopy framework was
applied to various aspects of quantum field theory: scattering amplitudes, gravity, double
field theory constitute a non exhaustive list of topics where homotopy algebras found

natural incarnations [45—72].

1.2. Homotopy algebras and scattering amplitudes

We opened this Introduction remarking how gauge invariance was a common trait of every
covariant formulation of the fundamental interactions of Nature. In the last decades,
it became evident that the point of view of scattering amplitude (usually opposed to a
covariant, action-based formulation) could often give clearer insight into the structure of
quantum field theories. The standard textbook approach prescribes: a) to write an action,
b) to gauge-fix, and finally c) to compute scattering amplitudes using Feynman rules. But

then, in spite of the lengthy diagrammatic calculation a priori required, the astonishing
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6 1.2. Homotopy algebras and scattering amplitudes

simplicity of MHV formulas for Yang—Mills theory is a clear evidence of how scattering
amplitudes could grasp certain aspects of quantum field theory in a more immediate way.
In almost every sector of modern theoretical physics, technologies borrowed from the
scattering amplitude world (e.g. on-shell methods and generalised unitarity) are common
and essential tools.

The homotopy algebra approach to quantum field theory could eventually encompass
both the action off-shell perspective and the scattering amplitudes on-shell perspectives: in
homotopy algebra terms, the bridge between these two formulation is provided by the no-

tion of minimal model. A minimal Ly-algebra is an L,,-algebra with trivial differential. Our

homotopy framework provides a clear notion of classical equivalence between field theories,
namely quasi-isomorphisms. Inside an equivalence class of quasi-isomorphic theories there
is a special representative, called minimal model (not to be confused with the homonym-
ous conformal field theory concept). This minimal model can be explicitly constructed
starting from the cohomology of the L,-algebra that the BV formalism associates to the
field theory: through homotopy algebra techniques, the cohomology inherits a minimal L,
structure. The minimal model grasps the on-shell, physical data of the theory: indeed,
the elements of the cohomology are fields that obey the free equations of motion of the
theory, identified up to gauge transformations.

The history of the mentioned Yang—Mills MHV amplitude are indirectly connected to
homotopy algebras. In 1987, in a very famous paper Berends and Giele [73] proposed a
method to compute in a recursive way gluon scattering amplitudes, proving a number of
open conjectures related to amplitudes with most of the gluon with the same helicity. The
objects recursively computed in Berends—Giele recursion relations are tree-level off-shell

currents, scattering processes involving i — 1 on-shell fields and an /th off-shell field.

(1.10)

In Yang—Mills theory, the recursive nature of these diagrammatic objects is a simple

combinatorial evidence. Complete on-shell scattering amplitude are then computed con-
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1.3. Homotopy algebras and gauge—gravity dualities 7

tracting the off-shell leg of the relevant current with the appropriate polarisation, and im-
posing momentum conservation. This diagrammatic construction is naturally interpreted
in the context of homotopy algebras: the key to the dictionary between these two formu-
lations is to realise that tree-level off-shell currents codify the quasi-isomorphism between
the minimal model and the original L-algebra. The minimal model construction hence
yield a homotopy algebra generalisation of Berend—Giele recursion relations, valid for every
Lagrangian field theory [2], see Section 5.2.. Using the BV approach to quantisation, this
recursive homotopy algebra construction can be further generalised to loop-level. This
approach to off-shell recursion relations in quantum field theory can be useful to prove in
a convenient way properties of tree- and loop-level amplitudes [3], see Section 5.3.. Our
homotopy algebra perspective was also followed by Lopez—Arcos and Quintero Vélez to

link the perturbiner expansion to the L,-algebra formalism [63].

1.3. Homotopy algebras and gauge—gravity dualities

The study of the dualities between gauge theory and gravity are among the most fruitful,
recent research lines in the context of quantum field theory. A paradigm that turned out
to be a very powerful insight is the possibility to realise a gravity theory as a squared gauge
theory. Heuristically speaking, an intuition that motivates this idea is that we can identify
the tensor product of two colour-stripped gauge potential A, A with the field content of

N = 0 supergravity, namely the NS—NS sector of the o’ — 0 limit of closed string theory:
‘AM®AU = gp,u@By,u@(p' ) (111)

where g, is the metric, B,,, the antisymmetric Kalb—Ramond Abelian gauge potential and
© the dilaton. It is not difficult to realise this identification at the level of on-shell states.
However, extending this construction to the full theory is far from being immediate.

The first concrete incarnation of this principle came from string theory, in the guise
of KLT relations [74]. Yang—Mills theory comes from the low energy limit of open string
theory, while gravity arises in the low energy limit of closed string theory: closed string
spectra are given by the tensor product of left- and right-moving open string spectra. KLT
relations express tree-level closed string amplitudes as sum of products of open string amp-
litudes, giving a quantitative formulation to the heuristic duality (1.11), albeit intrinsically

tied to the tree-level.

Tommaso Macrelli



8 1.3. Homotopy algebras and gauge—gravity dualities

Advancement in scattering amplitudes made possible a more recent, purely field theor-

etic approach to the ‘gravity = gauge x gauge’ paradigm, namely BCJ colour—kinematics

duality and double copy prescription, that suggested the possibility to extend this gauge—

gravity duality to the loop-level. For a pedagogical review of these topics and further
perspectives, see [75—80]. We start with a simple observation: we can blow-up Yang—Mills
four-gluon interaction vertex into trivalent components, that can be absorbed in the three

interaction channels s, t, u.

This means that we can organise a L-loop Yang—Mills amplitude as a sum of trivalent

contributions: , ]

oy = (_i)n3+3Lgn2+2LZJH %% _ (1.13)
Here / runs over all L-loops trivalent graphs, g is the coupling constant, S, is the symmetry
factor, and d; are the denominators that come from propagators. The numerators can be
split into two factor: a colour factor c;, composed of gauge group structure constants,
and a kinematic factor n;, obtained from Lorentz-invariant contractions of polarisations
and momenta. Importantly, kinematic factors are not univocally determined, and this is at

the heart of the BCJ colour—kinematic statement

Conjecture 1.1. (Bern—Carrasco—Johansson, [81,82]) There exists a choice of kinematic

numerators of the trivalent diagrams entering the scattering amplitude <7, ; such that

e f a triple of trivalent diagrams (i, j, k) has colour numerators obeying the Jacobi
identity
G+¢+c =0, (1.14a)
then the corresponding kinematic numerators obey the same identity

n,-—i—nj+nk = 0; (114b)

e in any individual diagram, if the colour numerator is mapped from c; to —c,; under
the permutation of two legs, then the corresponding kinematic numerator is mapped

from n; to —n;.
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1.3. Homotopy algebras and gauge—gravity dualities 9

We will call (1.14b) kinematic Jacobi identities. If this statement holds true, then the
double copy prescription allow us to compute gravity amplitude from Yang—Mills ones: if
we replace the colour factors of Equation (1.13) with kinematic numerators fi; (having
that f; or n; are BCJ-compliant) and Yang—Mills coupling constant g with ( ) (where
k is the gravitational coupling constant), we obtain a legitimate N/ = 0 supergravity
amplitude [81-83]

n 2+2L

My = (=) 3+3L< ZJH 2(;’3’5 “d”’ . (1.15)
This is an all-loop statement, the problem is that it relies on the validity of colour—kinematic
duality. While proven at tree-level [84,85], at loop-level colour—kinematic duality remains
a conjecture, despite being supported by many evidences [82,86—103].

The range of the applications of colour—kinematic duality and double copy is not lim-
ited to scattering amplitudes computation: we can mention for example the study of
(non-perturbative) classical solutions in gravity and bi-adjoint scalar theory [104-129],
classical black hole scattering [130—143], connections with string theory [84,85, 144—-148],
ambitwistor strings and scattering equations [149-159].

It is natural to suspect that colour—kinematic duality could be made manifest at the
level of the action. Indeed, the explicit formulation of a non-local reformulation of Yang—
Mills theory action that produces tree-level, BCJ-compliant numerators for on-shell gluons
scattering amplitudes, was presented by Tolotti and Weinzierl in [160]. Following the earlier
step in this direction presented in [83], where an effective Lagrangian producing BCJ-
compliant numerators for tree level scattering amplitude up to six point was introduced,

Tolotti and Weinzierl proposed the Lagrangian

I AL (1.16)
in which the n-th order term is

tr{[AU'a(l) ! A“’U(Z)] [ o [A“'a(3) ! A/J'J(4)] e A/J‘o'(n)]}
Djﬂ,l’,l T Djﬂ,l’.nfi‘}

YM W1
EALI Z ok

[eTrees

(1.17)

where Trees , is the set of trivalent tree diagrams with n external vertices. The per-
mutation o is determined by the diagram I and O} 7™ is a sum of polynomials in the

inverse Minkowski metric n** and n — 2 partial differential operators J,, acting on one of
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10 1.3. Homotopy algebras and gauge—gravity dualities

the n occurrences of the field A in the numerator. The operators [J; ., in the denominator
act on the kth internal edge of I'. This expression is algebraically equal to ordinary Yang—
Mills Lagrangian: Jacobi identity vanishes the higher-order vertices. Tolotti—Weinzierl
action expresses how these vertices are distributed into trivalent trees. This action is one
of the starting points of our work: at the price of introducing an infinite tower of auxiliary

fields, we can make this action local and at most cubic in the interactions.

Our claim is that homotopy algebras can help us to solve the all-loop conundrum, and
the route we chose to validate loop-level double copy does not involve a direct proof of
loop-level colour—kinematic duality. On-shell methods were fundamental in revealing this
structure, hidden in the standard action-based formulation of the theory. We propose an
off-shell, Lagrangian approach to the colour—kinematic duality and double copy paradigm,
with homotopy algebras being instrumental in manifesting this structure at the level of the
associate L -algebras, and eventually at the level of the actions. Following this approach,
the remarkable result is that we can directly prove the double copy prescription at arbitrary
high loop level, without relying on the validity of colour—kinematic duality for loops. The
key technical construction for this homotopy algebra interpretation is the introduction
of an adequate notion of tensor product, such that we can factorise Yang—Mills theory

L.-algebra into three components:

™ = g® Rin®, Geal , (1.18)

where g is the gauge Lie algebra, Kin a graded vector space whose basis corresponds to the
Poincaré representation of the field content of the theory, and Gceal the A -algebra of a
scalar theory. The tensor product we introduce in this construction is suitably twisted with
the introduction of a twist datum 7, that codifies how RKin acts on Gceal as a kinematic
operator algebra. The double copied theory is then realised replacing the g factor with a

copy of Rin:

£PC = Rin®, Rin®, Scal . (1.19)

The theory associated to this L,-algebra is perturbatively quantum equivalent to N/ = 0
supergravity [5, 6], see Section 9.5., and this implies the validity of double copy at loop

level. Alternatively, one can replace Kin with a copy of the gauge Lie algebra g (or a
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1.4. Outlook 11

different one): in this case, we obtain the L -algebra of a biadjoint scalar theory.

Biadjoint scalar field theory <«— Yang—Mills theory — N = 0 supergravity

g®gR Scal g® Rin®, Geal Kin®; Rin ®; Geal
(1.20)

1.4. Outlook

The recent progress of homotopy algebras applications to high energy theoretical phys-
ics shows how these sophisticated mathematical techniques could be helpful to provide
new insight into the structure of field theories and to suggest solutions to relevant open
problems. Restricting our attentions to the themes of the present Thesis, we can identify
some interesting research lines, where our homotopy algebra-based approach could provide
new results. Some of these research directions are natural generalisations of the results

discussed in this Thesis.

Scattering amplitudes recursion relations. Homotopy algebra minimal model construc-
tion encodes and generalise off-shell Berends—Giele recursion relations. Since tree-level
on-shell scattering amplitudes are completely grasped by the minimal model structure as-
sociated to the field theory, it is reasonable to expect that also on-shell recursion relations
(e.g., BCFW recursion relations) could be interpreted and eventually generalised in terms
of homotopy algebras. In this context, a recursive construction based on Hartogs extension

theorem was proposed in [161].

Colour—kinematic duality and double copy. The double copy paradigm opened new
perspectives on quantum gravity, providing both deep conceptual advancements and new,
crucial computational developments [162,90,91,93,99, 96,100, 101, 163, 164]. A growing
zoology of gravity theories could be constructed from double copy [162,82,83,165,91,166—
169,166,170-179,103,180-186], and under some assumptions our Lagrangian realisation
of this paradigm could be extended to them. This would imply the validity of double copy
prescription to all loop order for many relevant theories. A simpler example, the non-linear
sigma model (whose double copy is the special galileon), is discussed in [6]. A natural
follow-up of pure Yang—Mills theory double copy case would be the inclusion of supersym-

metry: we are free to extract the kinematic factor Kin and the twist datum 7 from theories
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12 1.5. Plan of the Thesis

different from pure Yang—Mills. For example, from the factors of pure Yang—Mills theory
and N = 1 Yang—Mills theory it should be possible to realise NV = 1 supergravity minimally
coupled to a single chiral multiplet, see also [126]. Almost all N' > 2 ungauged supergravity
theories [182], (super) Einstein—Yang—Mills—scalar theories [173], and gauged supergravity
(with Poincaré background) [184] could be realised from double copy. Other candidates
of double copy-constructible theories are Abelian Dirac—Born—Infeld theory [153,187,159],
massive gravity [188], and conformal gravity [180, 189]. Ambitiously, homotopy algebra
techniques could be used to directly prove loop-level and even off-shell colour—kinematic
duality [190].

String theory. From the perspective of string theory, this relation between gauge the-
ories and gravity is a reflection of a more fundamental ‘open ® open = closed’ duality,
as suggested by KLT relations. Inquiring into the stringy origin of colour—kinematic du-
ality and double copy could give us a better understanding of the structures involved in
our formulation, like the homotopy algebra factorisation that we introduce in Chapter 6.
Moreover, homotopy algebras are the natural language of string field theory: the homo-
topy algebra interpretation of double copy could be a valid framework to investigate and

generalise open/closed string dualities.

1.5. Plan of the Thesis

In this Section we present a short summary of the content of the following Chapters and
Appendices.

In Chapter 2 we give an overview of the homotopy algebras relevant for our physical
applications. Chapter 2 is based on [6].

In Chapter 3 we review BV formalism, and we show how homotopy algebras describe
every perturbative field theory. Chapter 3 is based on [6].

In Chapter 4 we show several concrete examples of applications of the homotopy algebra
framework to the formulation of field theories. We introduce here the field theories relevant
to Yang—Mills theory double copy. Chapter 4 is based on [2, 6].

In Chapter 5 we focus on minimal models and homotopy algebra applications to scat-

tering amplitudes. Chapter 5 is based on [2, 3, 6].
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1.5. Plan of the Thesis 13

In Chapter 6 we introduce a notion of factorisation for (strict) homotopy algebras,
that we will adopt to give an homotopy algebra description of colour—kinematic duality.
Chapter 6 is based on [6].

In Chapter 7 we expose the homotopy algebra factorisation underlying Yang—Mills the-
ory double copy at linear level. Chapter 7 is based on [6].

In Chapter 8 we collect several field theoretic observations, that will prepare the ground
for extending the linear result to the full, interacting picture. Chapter 8 is based on [5, 6].

In Chapter 9 we finally show the perturbative quantum equivalence between Yang—Mills
theory double copy and N = 0 supergravity. Chapter 9 is based on [5, 6].

In Appendix A we present a proof of minimal model recursive construction for L.,-
algebras. Appendix A is based on [2].

In Appendix B we discuss a further generalisation of Berends—Giele recursive relations.

Appendix B is based on [2].
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Homotopy algebras

The homotopy algebras that appear naturally in the context of field theories, namely A.-,
Cs-, and L -algebras are homotopy versions of associative, commutative and Lie algebras.
In particular, associativity and the Jacobi identity only hold up to coherent homotopies.*
In this first Chapter, we list the main definitions and several technical results that will be
relevant for our field theoretic applications, as well as the conventions that we adopted
in this Thesis. For more details on Ly -algebras and some of the calculations detailed in
this Chapter, see e.g. [52, 1]; our conventions match the ones in these references. Other
helpful references with original results listed in this Chapter are [191,40, 192]. A unifying
description of all the homotopy algebras and their cyclic structures listed below is given by

operads, but we refrain from introducing this additional layer of abstraction.

The material in this Chapter is borrowed from [6].

2.1. A -algebras

A -algebras. An A -algebra or strong homotopy associative algebra is a graded vector

space 2 = @, AU; together with higher products which are j-linear maps m; : 2x---x2 —

21 of degree 2 — / that satisfy the homotopy associativity relation

S (1) im0 (d® @ m, ©1d®F) = 0 (2.1)

n+h+iz=i

'But graded commutativity (in the case of Cy-algebras) and graded anti-symmetry (in the case of
Loo-algebras) are not relaxed.

15



16 2.1. A-algebras

for all i e N*. The lowest identities read as

mi(mi (1)) = 0,
m (Mo (£, ) = mo(mi(£r), &) + (—1)my(8y, mi(£))
my (m3(£y, £, £5)) + ma(my (&), &, 85) + (—1) 4= ms (6, my (), £5) +
+ (—)latERimy (0, 05, my (€s)) = ma(ma(y, £), £s) — mo(fy, ma(£s, £s))

(2.2)
for ¢y, ..., ¢; € 2 elements of homogenous degree |¢1]y, . . ., |¢i|a. We thus see that the
unary product my is a differential and a derivation for the binary product m,. Importantly,

the ternary product ms captures the failure of the binary product m, to be associative.

Cyclic A-algebras. A cyclic A,-algebra (A, {—, —)) is an A,,-algebra 2l equipped with

a non-degenerate graded-symmetric bilinear form {—, —)g : 2 x 2 — R such that
Wy, mils, ..., L Do = (—1)Fialatlbla)+lbla Sjer il gy, mi(ly, ..., )a (2.3)

for all £; € 2. When it is clear from the context, we shall suppress the subscript 2 on the

inner products.

Homotopy Maurer—Cartan theory. Each A -algebra comes with a homotopy Maurer—

Cartan theory, where the gauge potential is an element a € 1; whose curvature f € 2, is

defined as
f = my(a)+my(a,a)+ - = Z m;(a, ..., a) (2.4)

and satisfies the Bianchi identity

ZZ D' miyq(a, ..., af,a, ..., a) = 0. (2.5)

i=0/=0

If the homotopy Maurer—Cartan equation

f =0 (2.6)

holds, we say that a is a homotopy Maurer—Cartan element. Provided 2l is cyclic with

pairing of degree —3, homotopy Maurer—Cartan elements are the stationary points of the
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2.2. Cy-algebras 17

homotopy Maurer—Cartan action

SMCra] = 2/+11< mi(a, ..., a)u - (2.7)

i=1

Infinitesimal gauge transformations are mediated by elements ¢y € [y and are given by

0ga = ZZ D'™miq(a, ..., a, c,a ..., a) . (2.8)

i=0,j=0

One may check that the action (2.7) is invariant under the transformations (2.8), and the
curvature (2.4) transforms as
i
ZZZ m,+2 ..... af.a ..., a c,a, ..., a) . (2.9)

i=0,j=0 k=0

To verify these statements, one makes use of (2.1).

2.2. C-algebras

Permutations, shuffles, and unshuffles. Let S, be the permutation group of degree

n e N*t. We shall write for a permutation g € S,

1 2 n
o = . 2.10
(0(1) o(2) - 0('7)) (210

A (p, q)-shuffle for p, g € N* is a permutation ¢ € S, which satisfies the condition
thatif 1l < o(i) <o(j)<porp+1<o(i)<o(y) <p+ qthen i< . We denote the
set of all (p, g)-shuffles in S,,4 by Sh(p; p+ q). Consider, for instance, S;. We have the

permutations

s _ {(1 2 3>,<1 2 3)1(1 2 3>,<1 2 3>'(1 2 3>,<1 2 3)}
1 2 3 1 3 2 21 3 2 31 31 2 3 21
(2.11)
Then, the sets of (1,2)- and (2, 1)-shuffles are given by

sas - {12610 G1)
ses = {123 (1))

Tommaso Macrelli
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18 2.2. Cy-algebras

Likewise, a (p, q)-unshuffle for p, g € N* is a permutation o € S,,, which satisfies the

condition that (1) < --- < o(p) and o(p+ 1) < --- < o(p + qg). We denote the
set of all (p, g)-unshuffles in S, by Sh(p; p + q). For instance, the sets of (1,2)- and

Sh(1;3) = {(1 i)(l f i)(; 2)}
Sh(2;3) = {(1 2)(1 : Z’)(i : i>}

It follows from the above definitions, and it is evident from the explicit examples (2.12)

(2, 1)-unshuffles in Sz are given by

=N

(2.13)

N NN

and (2.13), that a permutation is a (p, q)-shuffle if and only if its inverse is a (p, q)-

unshuffle, and vice versa.

C-algebras. A C.-algebra or strong homotopy commutative algebra is an A,-algebra

¢ = @, € where the higher products m;, in addition to (2.1), also satisfy the homotopy

commutativity relations

Z X(O’; Zl, . ﬂ,) m,-((fg(l) ..... Kg(/l), ZU(,-1+1) ..... ﬂg(,')) =0 (2.14)

oeSh(iy;i)

21 VANVAN Z,' = x(a;(il ..... IZ,) 20(1) VASRVAN ZU(,-) . (2.15)
The lowest four homotopy commutativity relations are
my(£y, £2) — (—1)“leElemy (8, 4) = 0,
(gl £, 33) ( )\lz\¢|€3|¢m3<g1 43, 32) ( 1)(|e1|¢+‘l2‘¢)|e3|¢m3(£3,El,Zz) -0,
m4(£1 £2 £3 £4) ( )‘el‘“|e2|¢m4(£2 21 £3 24)
+ (_1)\51\¢(|52|¢+|133| (g2 03,4y, 84) ( )lel|k(‘22‘€+|e3|¢+|e4|¢ 4“2,&”@4,@1) -0,
m4(£1 Zz £3 24) ( )‘42‘¢|e3|¢m4(€1 23 EQ £4>
+ (_1)\42\¢(|ez|e‘+|e4|¢ m4(£1, 3,4y, 52) + (_1)(|21|¢+|€2|¢)\¢3\¢m4(£3, 01, 0o, 64) _
_(_]_)(|¢1\¢+|£2|¢)\e3|€+\42\¢|e4|¢m4<£3' 0,4, ZZ) +
+ (_1)(\@1\¢+\42\¢)|43|¢+(|el|¢+|ez|¢)\@4\¢m4(£3, 04,01, 62) =0,

(2.16)
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2.3. Ly-algebras 19

and we see that the product m, is indeed graded commutative. Note that, a priori, there
are two relations for ms given by the (2, 1)- and (1, 2)-shuffles. However, the (1, 2)-shuffles
for (£1,45,43) are the same as the (2, 1)-shuffles for (¢3,4,,41). Since £y, £>, and 43 are
arbitrary elements of €, the two relations thus reduce to one relation. Generally, the

number of independent relations for m; is |£].

Cyclic C-algebras. A cyclic C-algebra is a cyclic A,-algebra satisfying the homotopy

commutativity relations (2.14).

2.3. L-algebras

L,-algebras. An L, -algebra or strong homotopy Lie algebra is a graded vector space

£ = @,.4 £ together with higher products which are graded anti-symmetric i-linear maps

Wi L2 x - x £ — £ of degree 2 — j that satisfy the homotopy Jacobi identities

Z Z <_1)I2X(O-v ‘el ----- ei)/-"lé—‘,—l(#’ﬁ (‘60'(1) vvvv ga(il)): eo(iﬁ-l) 1111 ea(/)) = O .
+i2=1i geSh(iy;i)

(2.17)
for all 44, ..., £ e £ and / € N*; see Section 2.2. and Equation (2.15) for the definitions
of the unshuffles Sh(i;; /) and of the Koszul sign x(o; 41, ..., £;). The lowest homotopy

Jacobi identities, slightly rewritten, read as

p1(p1(41)) = 0,
1 (po(fy, ) = po(pi(£1), &) + (=) 4l s 0y, w1 ()
pa(Ha(ly, ), 4a) + (=1)12 1200y (0, o (8, 8)) — o (b, ia(l2, £3)) =
— wi(ps(fy, €, 45)) + wa(pr (£1), €o, £3) + (= 1)1 le g (8y, iy (£2), £5) +
(1)l 0 g (25) |

(2.18)
and we can interpret them as follows. The unary product w; is a differential and a derivation
with respect to the binary product w». In addition, the ternary product ws captures the
failure of the binary product w, to satisfy the standard Jacobi identity. Roughly speaking,

the ternary product us correspond to a homotopy that control the violation of standard
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20 2.3. Ly-algebras

Jacobi identity®.
We note that any A,-algebra yields an L,-algebra with higher products obtained from

total anti-symmetrisation,
,U,,'(Zl ..... Z,) = Z X(O‘;Zl ..... Z,) m,-(éa(l) ..... Zg(,')) . (2.19)

In particular, the Lie algebra arising from the commutator on any matrix algebra is an L-
algebra. Likewise, the anti-symmetrisation of a C-algebra is an L,-algebra with u; =0
for i = 2 due to the homotopy commutativity relations (2.14).

We call an L-algebra nilpotent, if all nested higher products vanish, i.e.

wilpi(—=...,—),...,—) = 0 foralli,j=>1. (2.20)

Cyclic L-algebras. A cyclic L-algebra (£,{—, —)¢) is an Ly-algebra £ equipped with

a non-degenerate graded-symmetric bilinear form (—, —)¢ : £ x £ — R such that
@il in)ye = (—1) Al lal S by, ey, ) (221)

for all £; € £. As before, when it is clear from the context, we shall suppress the subscript

£ on the inner products.

Homotopy Maurer—Cartan theory. Similar to A-algebras, any L,-algebra (£, ;) comes

with its homotopy Maurer—Cartan theory. In particular, a gauge potential is an element

ae £y, and its curvature is

1
fo= pi(a)+ipo(a,a)+- = Zﬁu,(a ..... a) € £5. (2.22)
i>1
The Bianchi identity reads here as
1
> Thi(a...af) = 0. (2.23)

1To be more precise, a cochain homotopy between two morphisms of cochain complexes ¢, % : (C,d) —
(C',d") is a family of morphisms of degree —1, hy : Ck*1 — C’* such that ¢y — i = hcodx+d'x_10hc. The
operator appearing on the right-hand-side of this expression can be interpreted as a coboundary operator,
and, in turn, if we compare this to the third identity of Equation (2.18), we see that the right-hand-side of
this identity can be written in terms of this coboundary operator.
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Homotopy Maurer—Cartan elements, i.e. gauge potentials with vanishing curvature f = 0,

are the stationary points of the homotopy Maurer—Cartan action

SMCa] = > ! (a,pi(a, ... a)e (2.24)

pet (I + 1!

provided £ comes with a cyclic pairing (—, —)¢ of degree —3*. Similarly to (2.8), infin-

itesimal gauge transformations are of the form
_ 1
0gpa = Z _—Iu,+1(a, ...,a,0) (2.25)
/!
=0
and are parametrised by elements ¢y € £9. The action is invariant under such transforma-

tions, and the curvature behaves as

1
o, f = ZI_—lu,+2(a,...,a, f, o) . (2.26)

=0

To verify these statements, one makes use of (2.17). Using Equation (2.17), one may
show that

1
[0co. 6cg]la = Ocpa+ Z I.—I,Lx,,+3(a, .,af ), (2.27a)
i=0 "
where
1
o = Z /—lu,+2(a, ...,8,0,C) - (2.27b)

i=0 "’
In general gauge transformations are not closed: a sufficient condition to ensure closure
is f =0.

Covariant derivative. Given an Ly-algebra (£, &), consider ¢ € £, for some k € Z and

require that under infinitesimal gauge transformations, ¢ transforms adjointly, that is,

1
Sap = D Hhisa(a,. .. 2,0, ) (2.28)

Vo = pi(p) +p(a, @)+ = n,u,-ﬂ(a ..... a, ) (2.29)

LA cyclic structure of degree —3 is needed in order to have an action of degree 0.
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22 2.3. Ly-algebras

for a € £;. Using (2.17), one can show that under infinitesimal gauge transforma-
tions (2.25) and (2.28), Ve transforms as

1 1
0, (V) = 2 I-—|M/+2(3 ----- a, Vo, ) + 2 I-—|M/+3(a ----- a,f o ), (2.30)

i=0 "’ i=0 °

where f is the curvature (2.22) of a. Thus, for homotopy Maurer—Cartan elements a,
the covariant derivative transforms adjointly as well.! Using (2.17) again, we obtain in
addition

V3 = Znu,-+2(a ..... a,f, ). (2.31)

Curved morphisms of L. -algebras. Morphisms between Lie algebras are maps pre-
serving the Lie bracket. In the context of L -algebras, this notion generalises and one

obtains what is known as a curved morphism (of L,-algebras). Specifically, a curved

morphism ¢ : (£, u;) — (fl, fi;) between two L,-algebras (£, ;) and (£, fi;) is a collection

of i-linear graded anti-symmetric maps ¢; : £ x --- x £ — £ of degree 1 — / such that

2 Z <_1)12X(O-1‘el 1111 ei)¢i2+1(/~1'i1(ea(l) 1111 ea(il))veo(ﬁ-&-l) 1111 ea(/)) =

i+i2= geSh(iy;i)

- Jll Z Z x(o; 4y, ..., 2)C(o;: 4y, ..., £;) x

JjZ17 kit k=i geSh(ky,....kji_1;i)
x By (B0 (o, oth). - Bk (ot o) o) )
(2.32a)
for i e N* u {0} with x(o; 4y, ..., £;) the Koszul sign (2.15) and ((o; 44, ..., £;) given by

Kyt etk

(01 ) = (—1)Tremens kot Sty a1k S ke (2.32)

Yt will always transform adjointly when w; = 0 for all / > 2, that is, for differential graded Lie algebras
also known as strict Lo-algebras, cf. Section 2.4..
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Note that ¢ : R — £; is the constant map, and we identify ¢g = ¢o(1). Explicitly, the

lowest expressions of (2.32) read as

0 = Z%ﬂi(ﬁbo ----- bo)
dr(n(£1)) = fal(dr(81)) +Z hia(do, . o, P1(£1))
O1(k2(£1,£2)) — P21 (€1), £2) + (— )lelmeﬂ ¢2(u1(€2), £1) = (2.33)
= [1(p2(£1, £2)) +ﬂ2(¢1(£1) ¢1(£2)) +
43S0, o, baltr, 1) +Z Shisa(do - G0 $1(41). $1(£2))

It is easily seen that this definition reduces to the standard definition of a Lie algebra
morphism in the context of Lie algebras. Note that a curved morphism is simply called an

(uncurved) morphism (of Ly-algebras) whenever ¢o = 0, and this notion of morphisms is

usually used in the literature when discussing L-algebras. As we will see below, we shall
need the more general notion of curved morphisms to reinterpret gauge transformations
as morphisms of L-algebras.

Evidently, the first equation of (2.33) implies that ¢y is necessarily a homotopy Maurer—

Cartan element of £. For such ¢, we now set

. - 1 - .
g%y, ..., 4) = Zﬁﬂi+j(¢0 ----- 0. L1, ..., ¢ (2.34)

for all 4y, ..., Z; € £ and i € NT. By virtue of (2.31), we immediately have that [L‘f" IS
a differential. In fact, one can show that (f),/lj”o) forms an Ly-algebra, that is, the [Lj”o
satisfy the homotopy Jacobi identities (2.17) thus defining another L,-structure on £
From (2.32) we may then conclude that any curved morphism between two L-algebras

(£, ;) and (£, fi;) can be viewed as an uncurved morphism between (£, u,) and (£, i%).

Maurer—Cartan elements and curved morphisms. Consider a € £; and let f € £, be

its curvature (2.22). We define the image of a gauge potential under a curved morphism
d) . (2, ,LL,) — (é, /jl,,) as

= ¢o+ di(a) + ia(a,a) + - = Eﬁd),(a ,,,,, a) e & . (2.35)
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24 2.3. Ly-algebras

The curvature of & is then
- 1. . B 1
f = Z l_—l,tx,/(a ..... a = Z Fqb,qu(a ..... af) e £, (2.36)

which one can verify using (2.17) and (2.32). Hence, homotopy Maurer—Cartan elements
in £ are mapped to homotopy Maurer—Cartan elements in £

Let us extend the above observation to gauge orbits. Consider gauge transforma-
tions (2.25) a > a+0dqa and a — d+ §z3a with the image of the gauge parameter ¢, € £o

given by

G = ¢i(co) +¢2(a, o) +--- = Z%@H(a ----- a,c) e L. (2.37)

=0

A short calculation involving (2.17) reveals that

This immediately yields

1 1 1
Zl_—|¢,(a+5coa ..... a+6c0a)=2/—|¢,-(a ..... a)+2i—l¢/+1(6coa,a ..... a)

i=0 ° i=0 i=0
- - 1
= a-+ 5508 + Z .—|d>,+2(a ..... a,f, CO)
|l
=0
at linear order. Consequently, gauge equivalence classes of homotopy Maurer—Cartan ele-
ments in £ are mapped to gauge equivalence classes of homotopy Maurer—Cartan elements

in £ under (curved) morphisms.

Morphisms of cyclic L -algebras. Consider an uncurved morphism between two L.-
algebras (£, ;) and (£, i;), that is, a curved morphism with ¢y = 0. If, in addition, we
have inner products (—, —)g on £ and (—, —)z on £, then a morphism of cyclic L.,-algebras

has to satisfy

U lo)e = (D1(l1), 1(£2))s (2.40a)
forall 41,€ £ and forall i >3 and 44, ..., e g
PIRCACI. £y), ¢ (lipy1, .- -, ) = 0. (2.40b)
i +ir=i
h,h=1
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2.3. Ly-algebras 25

We note that the morphisms of cyclic L-algebras defined here require ¢; to be injective.
More general notions of such morphisms can be defined using Lagrangian correspondences,
cf. [193].

Suppose now that the inner product (—, —)¢ on £ and (—, =)z on £ of degree —3 so
that the homotopy Maurer—Cartan equations, f = 0 and f = 0, are variational. Then,

under a morphism ¢ : (£, u;) — (£, i;), we obtain

Z;l)!@v i(a,...,ape = S™a]
= SN = Y a8

(r+ 1!

by virtue of (2.40) and (2.35).

Curved quasi-isomorphisms of L -algebras. Recall that the homotopy Jacobi identit-

ies (2.17) (see also (2.18)) imply that u? = 0. Hence, we may consider the cohomology

H (£) = @HE (L) with HE (L) = ker(uile,)/im(uile, ,) - (2.42)

keZ

A curved morphism of L.-algebras ¢ : (£, u;) — (£, fi,) is called a curved quasi-isomorph-

ism (of Lyy-algebras) whenever ¢, induces an isomorphism H}, (£) = H;L%(Q); the products
1

;17’0 were defined in Equation (2.34). There is a bijection between the moduli spaces of
gauge equivalence classes of homotopy Maurer—Cartan elements of £ and £: indeed, every
quasi-isomorphism admits an inverse, and by means of this one can show that the moduli
spaces are equivalent, see [191, 40, 194]. A curved quasi-isomorphism is called an @

curved) quasi-isomorphism whenever ¢q = 0. A (uncurved) quasi-isomorphism is called an

(uncurved) isomorphism if ¢ is invertible.

Gauge transformations as curved morphisms. Let us revisit the infinitesimal gauge
transformations (2.25) and first explain how they arise from partially flat homotopies. In

particular, set / := [0, 1] < R and consider the tensor product

Lo = QLNRL = P(La)k with (Lo)k = €N L O ® L1 (2.43)

keZ
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between the de Rham complex (€2°(/), d) on the interval | and an L-algebra (£, u;). £q

carries an L -structure, given by

fr(a; ®41) = dag @4y + (1) 0y @ wy(£y) (2.44a)
and
filon @4, ..., a®4) = (-1 iijl|O‘J‘Q'(/)+Z};§)|alfj|Q'(I)Zi(_:jl_1|£k|£x
(@b )= (2.44b)
X (Oll/\"'/\a,‘)®[1,,'(£1 ..... E,-),
where aq, ..., aj € Q°(/) of degree |o|ge(y, - .., latj|qery, and £y, ..., £; € £. A general

element a € (£q); is of the form a(t) = a(t) + dt ® co(t) with a(t) € €*°(/) ® £; and
co(t) e €°(1) ® Lo. Its curvature f € (£q), is then

f(t) = f(t) +dt®{5i;(tt) _Z%/J,,—H(a(t) ..... a(t),co(t))}, (2.45)

i=0 °

where f(t) € €* (/) ® £, is the curvature of a(t). The requirement of partial flatness of

f(t) amounts to saying that f(t) has no components along dt. Thus,

da(t 1
B S (el a(t), qlt) (2.46)
i=0 "’
and we recover the gauge transformations (2.25) from
oa(t)
6C03 = T . (247)

with a = a(0) and ¢ = ¢(0). Furthermore, upon solving the ordinary differential equa-
tion (2.46), we will obtain finite gauge transformations. Let us now explain how one can
understand this as a curved morphism that preserves the products ;.

Concretely, we consider (2.35) and (2.37) and make the ansatz

a(t) = Z%(l),—(t)(a ..... a) and c(t) = Zl_—l!¢,-+l<t)(a ..... a,c). (2.48)

i=0 i=0

Here, we again set a = a(0) and ¢y = ¢(0) which, in turn, translates to the conditions
¢i(0) = 0 for all / # 1 and ¢1(0) = 1. Upon substituting the ansatz (2.48) into (2.46)
and remembering (2.38), we obtain

da(t) 10¢(t)
% = 27 ai (a.....3)

(2.49)
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2.4. Structure theorems 27

where f is the curvature of a. Thus, solving the ordinary differential equation (2.46) for
gauge transformations is equivalent to solving the ordinary differential equation (2.49)
for a curved morphism ¢; on the L, -algebra that preserves the L. -algebra structure.
Put differently, finite gauge transformations are given by curved morphisms that arise as
solutions to (2.49).

Let us exemplify these discussions by considering a standard Lie algebra valued one-
form gauge potential on Minkowski space M. Here, a = A e QY(MY) ® g and ¢ =
Cc € CK“O(M") ® g for a Lie algebra g. Moreover, in this case it is enough to consider
¢o(t) and ¢1(t) and set ¢;(t) = 0 for all / > 1. Consequently, the ordinary differential
equation (2.49) reduces to

ag—(tt) - a¢§§t) + 6(]561751‘) (A) = ¢1(t)(dc +[A c]) (2.50)

and is solved by A(t) = ¢o(t) + ¢1(t)(A) and c(t) = ¢1(t)(c) with?

¢o(t) = tdc+ L[dc, c] + L[de,c].c] + -+ = e defc,
1 (t)(A) = A+ t[Acl+ E[[Acl.cl+E[[[Aclclc]l+--- = et Aefc, (251)
¢u(t)(c) = ¢

as a short calculation reveals; recall from Equation (2.33) that ¢o(t) must be a homotopy

Maurer—Cartan element.

2.4. Structure theorems

In the following, the term ‘homotopy algebra’ refers to either an A-, Co.-, or L,-algebra®.
Note that the unary higher product is a differential for any homotopy algebra. We call a
homotopy algebra minimal provided the unary product vanishes. A homotopy algebra is
called strict if only the unary and binary products are non-vanishing. Moreover, a homotopy

algebra is called linearly contractible if only the unary product is nonvanishing and it has

trivial cohomology.

1We can also consider the more general case ¢o(t) = g~ 1(t)dg(t), ¢1(t)(A) = g~ *(t) Ag(t), and
d1(t)(c) = g71(t) drg(t) for g e €« (I, G) with g(0) = 1, that is, g solves the ordinary differential equation
0:g(t) = g(t) c(t); note that 0;g(t)|t=0 = c.

°The notions of morphism, quasi-isomorphism and isomorphism for A.-algebras are analogous to their
Le-algebras counterparts.
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28 2.4. Structure theorems

Structure theorems. We now have the following structure theorems:

1. The decomposition theorem: any homotopy algebra is isomorphic to the direct sum

of a minimal and a linearly contractible one; see e.g. [192] for the case of A,,-algebras.

2. The minimal model theorem: any homotopy algebra is quasi-isomorphic to a minimal

one. This follows directly from the decomposition theorem, see also [195, 192] for

the case of L,-algebras.

3. The strictification theorem: any homotopy algebra is quasi-isomorphic to a strict
one [196, 197].

We note that strict A-, C-, and Ly-algebras are simply differential graded associative,
differential graded commutative, and differential graded Lie algebras, respectively. We also
note that mathematicians would probably use the term ‘rectify’ over ‘strictify’; we found

the latter term more descriptive.

Remark 2.1. We also would like to make a few remarks on the relations between the

homotopy algebras:

1. As we saw above in Equation (2.19), any Ay-algebra carries an L.,-structure by

(graded) anti-symmetrisation the higher products.

2. All higher products of a Cy,-algebra (which is also in particular an A.,-algebra) except

for the differential vanish after anti-symmetrisation.
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Batalin—Vilkovisky formalism

In the following, we summarise how perturbative quantum field theory is naturally for-
mulated in the language of homotopy algebras. The bridge between field theories and
homotopy algebras is provided by the Batalin—Vilkovisky (BV) formalism [8,198]. Our dis-
cussion follows the treatment in [52, 1]; see also [4] for a pedagogical summary and [199]
for a detailed discussion of Feynman diagrams. We start with the Becchi—Rouet—Stora—
Tyutin (BRST) formalism for the archetypal example of Yang—Mills theory. This will also
prepare our discussion in Chapter 4.

The material in this Chapter is borrowed from [6].

3.1. Motivation

Yang—Mills action. We consider d-dimensional Minkowski space M9 = RY9~! with
metric (n,,) = diag(—1,1,..., 1) with p,v,... =0,1,..., d — 1 and local coordinates
x*. Let g be a semi-simple compact matrix Lie algebra with basis e, with a, b, ... =
1,2,..., dim(g), [eas ep] = fap“ec with [—, —] the Lie bracket on g, and (e, ep) =
—tr(ezep) = 0,5 With ‘tr' the matrix trace.

The action for Yang—Mills theory in R¢-gauge for some real constant £ in the BRST

formalism reads as
SM_ Jddx{— LF o F — 8,04 (V)7 + §b,b7 + b0t A } (3.1a)
with
F2, = 0uA — QAL + fi’gALA; and (Vo) = 0uc® + gf’Alc® ., (3.1b)

29



30 3.1. Motivation

where g is the Yang—Mills coupling constant, A7 are the components of the g-valued
one-form gauge potential on MY, and c?, b?, and & are the components of g-valued
functions corresponding to the ghost, the Nakanishi—Lautrup field, and the anti-ghost

field, respectively.

Z-graded vector spaces. \We note that the fields in the action (3.1a) are graded by their
ghost number as detailed in Table 3.1. Therefore, we should view them as coordinate

functions on a Z-graded vector space U = @, ., V«. Elements of U, are said to be

homogeneous of degree k, and we shall use the notation |£|y to denote the degree of a

homogeneous element £ € 0.

field &' c? AL b7
ghost number |[®|go | 1 | O | 0 | —1

Table 3.1: Ghost numbers of the fields in Yang—Mills theory.

The tensor product of two Z-graded vector spaces U and 27 is defined as

VRW = P@BRW), with (VRW) = P VoW, (3.2)

keZ i+j=k
and the degree in U ® 2T is thus the sum of the degrees in U and 207.
We shall denote the dual of a Z-graded vector space U by U* ' and we have

T* = P(T*) with (T = (V_p)* . (3.3)

keZ

In particular, elements in U, have the opposite degree of elements in (U )*.

Given a Z-graded vector space *U, we can introduce the degree-shifted Z-graded vector
space Q[!] for | € Z by

%[/] = (—D(m[/])k with (‘II[/])k = sII/H_/. (34)

keZ

For an ordinary vector space U = U, for instance, 2U[1] consists of elements of degree —1
since only (U[1])_1 = Yy is non-trivial. Note that (U ® W)[/] = V[/] W = L Q@ W[/]

We will not discuss the analytical subtleties of this construction in the infinite-dimensional case, except
to note that the dual spaces will be degree-wise topological duals.
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3.1. Motivation 31

and (U[/])* = V*[—/] for all | € Z. For convenience, we introduce the notion of a shift

isomorphism
o: Y — Y[1] (3.5)

which lowers the degree of every element of ¥, that is, 0 : Uy — (V[1])k_1.
We note that the action (3.1a) is built of polynomial functions and their derivatives. By

the algebra of polynomial functions on a Z-graded vector space 0, we mean the Z-graded

symmetric tensor algebra € () := (-)* U*. Basis elements of U* can be regarded as the

coordinate functions on U. Explicitly, such a function looks like
f =+ +i%le+ - € €°(), (3.6)

where €% are basis elements of U* and f, f,, fag, ... are constants. We have £%6F =
(—1)1€% o €l gB¢ - Note that if 2 is a vector space of some suitably smooth functions
or, more generally, sections of some vector bundle, then the dual U*, being the space of
distributions, contains not only the ordinary dual coordinate functions but also all of their

derivatives.

BRST operator in Yang—Mills theory. The reason for introducing ghosts in the first
place is the gauge symmetry of Yang—Mills theory, which in the BRST and BV formalisms
Is captured in a dual formulation as a differential on a differential graded commutative

algebra that is called the Chevalley—Eilenberg algebra. More specifically, this is the algebra

of polynomial functions, and the differential is a nilquadratic vector field Q : €*(0) —

€*(50) of degree one, @ = 0, known as the homological vector field. A Z-graded vector

space with such a homological vector field is called a Q-vector space.

The prime example of a Q-vector space is that of an ordinary vector space g with
basis e, for a,b,... = 1,..., dim(g), regarded as the Z-graded vector space g[1]. On
g[1], we have coordinates &7 only in degree one and thus, the most general vector field
Q : €%°(g[1]) — €*(g[1]) of degree one is of the form

0
0&2

Q = 3£%°1fy = Q€ = 3€%f’ (3.7)

for some constants f,,° = —f,,°. The condition Q? = 0 is equivalent to the Jacobi identity
for the f,5° so that Q induces a Lie bracket [e,, ep] = fap"ec on g. The differential graded
algebra (¢*(g[1]), Q) is the Chevalley—Eilenberg algebra of the Lie algebra (g, [—, —]) to
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which we alluded above. In order to translate between Q and [—, —], it is useful to define

the contracted coordinate functions®

= Qe € (g[1])*®9 (3.8)
of degree one in (g[1])* ® g. Consequently,

Qa = (Q€7) e,
= 1% ®e,
= —2P° @ frce,
= —1%¢ ®[ep, ec]
= —1[P®ep E®@ec]

= —2[a,a].

(3.9)

More general vector fields arise in the Chevalley—Eilenberg algebras of L -algebras
and L-algebroids, cf. e.g. [52] for further details. In the case of Yang—Mills theory, the

homological vector field QE’Q{'ST describing the gauge symmetry acts according to

a Q\BHI\QAST a_.b c€ =a Q\BHI\QAST a
¢’ — —3 Lof?c c? —— b
QM QM (3 ]-O)
AZ BRST (V“C)a , b? BRST, ()

These transformations are known as the BRST transformations and QgNs+ as the BRST

operator. One readily verifies that (QgNs)? = 0, that is, QgrsT is a differential. In
addition, the action (3.1a) is QgNcr-closed, that is, QLNM-+Sgm+ = 0, which ensures
gauge choice independence.

We shall denote the minimal field space® for gauge-fixed Yang—Mills theory by £5Nc,

but the ghost number is the degree of coordinate functions on £5¥[1]. Explicitly,

SBRST = BRST 0 ® ’SBRST 1@ ’SBRST 2
2BRST 0 = %OOUM )9, ’Q’BRST 1= (Ql(Md) @ng(Md)) Xy, (3.11)
’QBRST > = Cgoc(Md) X9

IThese are often used in the string field theory literature, albeit shifted such that a is of degree zero.

2This graded vector space is, in fact, the space of sections of a graded vector bundle, and fields and their
derivatives are sections of the corresponding jet bundle; but these details would not enlighten our discussion
any further so we suppress them.
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3.2. Batalin—Vilkovisky formalism and L.,-algebras 33

and ¢, A, b, and € are coordinate functions on (£5¥+[1]) -1, (L5¥sT[1])0. (LaMsT[1])0, and
(LEM[1])1 and thus of degrees 1, 0, 0, and —1, respectively. Moreover, the action (3.1a)
is a polynomial function SEN+ € € (LEN[1]) on £E¥+[1] of total ghost number zero,
| SRS T o0 epe iy = 0. In the following, we shall write | — [y as a shorthand for both
= (exy 1)+ and |- |<£°0(LBRST[ 1))

The Q-vector space (L4Me[1], QuNst) describes the Lie algebra of gauge transforma-
tions as well as its action on the various fields, which together form an action Lie algebroid.
This becomes clear when comparing (3.10) to (3.9); the latter is the evident generalisation,
e.g. to the corresponding formulas for a differential graded Lie algebra.

We note that gauge-invariant objects are QEMs-closed and that gauge-trivial objects
are QBRST exact. Therefore, physical observables are in the cohomology of Qgrst. The
pair of fields (b, €) is known as a trivial pair, as QENs+ links the two fields by an identity
map. They vanish in the QgN.+-cohomology and thus are not observable.

As in Equation (3.8), it will turn out useful to define the contracted coordinates

a = JddX{Ca<X)®(ea®Sx) +AZ<X)®(ea®v“®sX)+ o
12a

D)@ (e, @) + E) ® (e @5} |

where e,, v#, and s, are basis vectors on g, T MY, and ¥*(MY), respectively (and
thus, we have an identification v# = dx*). It should be noted that a is an element of
(LEM[1])* @ LEM-+ of degree one, and it can be regarded as a superfield which contains
all the fields of different ghost numbers. The component fields can be recovered by

projecting onto the respective ghost numbers. In the following, we will write symbolically
a = e (3.12b)

for DeWitt indices /, J, ..., which contain Lorentz and gauge indices as well as space-
time position. A contraction of DeWitt indices involves sums over all discrete indices and

evident integrals over the continuous ones.

3.2. Batalin—Vilkovisky formalism and L_-algebras

The above example of Yang—Mills theory has demonstrated how Z-graded vector spaces

and homological vector fields enter into the description of a gauge field theory in the BRST
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34 3.2. Batalin—Vilkovisky formalism and L-algebras

formalism. In particular, gauge-invariant observables were contained in the cohomology
of Qgrst. To fully characterise classical observables, however, we also need to impose
the equations of motion. This is the purpose of the more general Batalin—Vilkovisky (BV)
formalism. As a byproduct, the BV formalism can cater for open gauge symmetries which
are gauge symmetries for which QggrsT is a differential only on-shell. The BV operator Qgy,
which generalises the BRST operator Qgrst, encodes the Chevalley—Eilenberg description
of a cyclic L-algebra (i.e. an Ly-algebra with a notion of inner product). The gauge-fixed
form of this cyclic L-algebra will be crucial for our formulation of the double copy of

amplitudes.

BV operator. Let £grst[1] be a Z-graded vector space of fields of a general field theory.
Then we have also a correspondence between the fields and the coordinate functions on
this space. In order to encode the field equations for all the fields in the action of an

operator Qgy, we ‘double’ this vector space such that we have for each field ®' of ghost

number |®'|g, an anti-field ®; of ghost number |® |, := —1 — |®'|g so that
_ /| 0SBRST
Qev® = (-1 lW T (3.13)

Here, the ellipsis denotes terms at least linear in the anti-fields. Formally, this doubling

amounts to considering the cotangent space
Lev[l] = T*[-1](Lerst[l]) <= Lav = T*[-3]LersT . (3.14)
which yields a canonical symplectic form
w = 60 A 5D (3.15)

of ghost number —1. This symplectic form w, in turn, induces a Poisson bracket, also
known as the anti-bracket. It reads explicitly as*

gn(Flen) OF 0G
50! 50T

) 3F 86

— (-1 (|9 |gnh+1)(|Flgn+1 el
(=1) 507 50 !

{F.G} = (1)

(3.16)

and it is of ghost number one so that {F, G} = —(—1)(Fla+(Clan+ (G F}.

1The signs arise as follows. Hamiltonian vector fields VF are given by Ve _ w = 6F for some function
F. The Poisson bracket is then given by {F, G} := Vr _ Vs _ w = VE(G) from which the signs follow using
the explicit form (3.15) of w. The signs are often absorbed using left- and right-derivatives; however, for
clarity we shall keep them explicitly.
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The classical Batalin—Vilkovisky action is now a function Sgy € €*(L£gy[1]) of ghost

number zero, which obeys the classical master equation

{Sgv,Sev} = 0, (3.17a)
which extends the original action Sy of the field theory (without ghosts or trivial pairs)?
Sevler—o = So. (3.17b)
and whose Hamiltonian vector field extends the BRST differential,
(QBV¢/)|¢j:o = QgrsT®’ (3.17¢)

with
QBV = {SB\/,—}. (318)

We note that Q3,, = 0 and (3.17a) are equivalent.
The last two conditions fix the terms of Sgy which are constant and linear in the

anti-fields to read as
Sev = So+ (_1>|®/|gh¢rQBRST¢I +-e (3.19)

General theorems now state that for each action and compatible BRST operator, there is
a corresponding BV action and a BV operator, cf. [200].

In a general theory, we will usually have a physical field a of ghost number zero as
well as ghosts ¢; together with higher ghosts c_, of each ghost number —k + 1 as co-
ordinate functions on £gy[1]. Higher ghosts are non-trivial only in theories with higher
gauge invariance. All fields come with the corresponding anti-fields a*, ¢, and ¢*,. To
accommodate gauge fixing, we will have to expand the field space further by trivial pairs
and corresponding anti-fields, as already encountered in the previous section.

The equations of motion generate an ideal .# in €*(Lgrst[1]), and the functions on
the solutions space are the quotient € (Lgrst[1])/-#. Because of (3.18),

|¢I| 5SBV

Qev® = (1) 5ol

(3.20)

and the gauge-invariant functions on the solutions space are described by the Qgy-cohomology.

THere, |o+_g Is the restriction to the subspace of BV field space where all anti-fields are zero.
=
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L,-algebras. Following (3.12), we define again a superfield
a = aQ®e = PRe+P @ (3.21)

of degree one in (£gv[1])*® Ly, where I runs over all fields, ghosts, ghosts for ghosts and
the corresponding anti-fields, as well as space-time and Lie algebra indices. As in (3.9),

we may extend the action of Qgy to elements in (£gy[1])* ® £gv by left action and write
Qeva = {Sev.a} = —f(a) with f(a) = > —pi(a,....a). (3.22a)

The u’ now encode j-ary graded anti-symmetric linear maps u; : £gy X -+ x Lgy — Lav,

which can be extracted by the formulas

wi(a) = (=1)kra’ @ s (er) |
Wia, ... a) = (—1) D=1 Rt Rl Xl lenleey . ali @ ey, . .. o)

i 1

(3.22b)

see [52] for a much more detailed exposition.> The condition Q3,, = 0 then amounts to

the homotopy Jacobi identities (2.17), and the pair (£gv, i;) with products u; subject

to (2.17) is called an Ly -algebra, cf. Section 2.3.. In our present setting, £gy is, in fact,

a cyclic Ly-algebra because of the presence of the symplectic form w. Specifically, if we

consider the shift isomorphism (3.5), then w induces the (indefinite) inner product?
Uy, 8 = (=1)alsevw(o(ty), 0(L)) (3.23a)
of degree —3 in £gy and of ghost number zero. It is cyclic in the sense that

o pi(lo, . hign)y = (—1) T UEleay Hlialeg ) Hinleoy Dimt Bleav (g, 1 (e, ... 00)
(3.23b)
which is a consequence of the vanishing of the Lie derivative of w along Qgy. This is
equivalent to saying that the higher products w;, with the first / — 1 arguments fixed, act

as graded derivations on {(—, —).

Correspondence between actions and L.-algebras. Every cyclic L,,-algebra (£gy, /)

comes with a homotopy Maurer—Cartan action, cf. Chapter 2. In particular, the functional

ghMe . ;ﬁ@ wi(a, ..., a)) (3.24)

!Note that the u/ define, in fact, an Ly-structure on € (£gv[1]) ® Layv.
2We will, in the bulk of the Thesis, deviate from this sign convention in order to simplify the signs arising
in our double copy formalism.
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for a € £gyv1 reproduces the action for the physical fields. Using the superfield a defined

in (3.21), we can write down a more general homotopy Maurer—Cartan action

gMC . Z(I,:D!@,u;(a ..... )Y (3.25a)

i=1

where we define
<f1’ Rey, f2J ® eJ>’ — (_1)\ﬂl|gh+\fzj|gh+\el\sgv\f21|gh f1’f2J <eI’ eJ> (3.25b)

for f}, € €*(Lgv[1]). This superfield version of the homotopy Maurer—Cartan action
is, in fact, the full BV action Sgy. Put differently, (3.25a) satisfies the quantum master
equation (3.34) if and only if the w; in @/ via (3.22b) satisfy the homotopy Jacobi identit-
ies (2.17). We shall refer to the action (3.25a) as the superfield homotopy Maurer—Cartan

action of the Ly-algebra (Lgv, 1)).

In summary, the BV formalism provides an equivalence between classical field theories
and cyclic L-algebras, where the BV operator plays the role of the Chevalley—Eilenberg
differential of the Ly -algebra. Clearly, the BV action corresponding to an L-algebra £gy
Is physically only interesting if its degree-one part is non-trivial. To read off the L,-algebra

from a particular action functional, we note that using (3.25b) we have

(a, ui(a, ..., a)) = <a”'+1 ® ey, p,j(a’l ®en, ..., ' ® er))

L I (3.26a)
= C(Il ..... I,-)a’“a1~~-a’<e,,+1,u,-(e,1 ..... e,,)>
with the sign (14, ..., I;) given by
C(hy oo ) = (—1)Zho P lan (kDo an) (3.26b)
More explicitly,
aI
a,pi(@) = (=1l akalier,, piler)) (3.27)

(aps(aa) = (—1)FM DR abalal ey, uo(e, er))

and we shall make use of these formulas later.

Remark 3.1. The exchange of the coordinate functions on field space with the actual
fields can easily lead to confusion. Let us therefore summarise the situation once more.

Actual fields (usually sections of a bundle or connections and their generalisations) are
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38 3.2. Batalin—Vilkovisky formalism and L-algebras

elements of a graded vector space £gy. The Ly-algebra structure is defined on the vector
space L£gy. The symbols appearing in an action S are, technically speaking, not fields
but coordinate functions on the grade-shifted field space £gy[1], the same way that in
differential geometry one writes the metric in terms of the symbols x*, which are not
points in space-time but rather real-valued coordinate functions defined on space-time.
Once we evaluate the action for particular fields, the coordinate functions are replaced
by their values. Similarly, the BV operator, the anti-bracket etc. all act on or take as
arguments polynomial functions on £gy[1], which are given by polynomial expressions in
the coordinate functions as well as their derivatives, which are also contained in (£gyv[1])*.
To simplify notation, the coordinate function for a field (e.g. in an action) will be denoted
by the same symbol as the field (element of the Ly-algebra), as commonly done in quantum
field theory.

Remark 3.2. The integral defining the action S of a classical field theory is mathematically
usually not well defined. At a classical level, this does not matter because we are never
interested in the value of S itself, and we can treat all integrals as formal expressions. For
definiteness, mathematicians often drop the action and work with the Lagrangian instead.
This can easily be done in the Ly-algebra picture, working with graded modules over the
ring of functions instead of graded vector spaces.

At quantum level, however, the value of S for particular field configurations does play a
role, and one needs to carefully restrict the field space such that all integrals are indeed well-
defined, cf. [2]. One suitable restriction offers itself for the perturbative treatment. We
split the field space into interacting fields, §n:, which can simply be identified with Schwartz
functions on Minkowski space . (M?), and free fields Fsee, Which can be identified with
solutions to the free equations of motion (i.e. fields in the kernel of w, ), which are Schwartz

type for any fixed time-slice of Minkowski space,

S = Sint@gfree with Sint = y(Md) and Sfree = kerf(,u’l)- (328)

The elements of ker»(uy1) are, of course, the states that label the asymptotic on-shell
states in perturbation theory. On the other hand, the fields in .7 (M) are the propagating
degrees of freedom found on internal lines in Feynman diagrams. The decomposition (3.28)
Is very much in the spirit of the homological perturbation lemma, which can be used to

construct the scattering amplitudes, as we shall discuss below.
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3.2. Batalin—Vilkovisky formalism and L.,-algebras 39

We note that the wave operator is invertible on .#(M?) and the inverse is indeed
the propagator h, as we shall discuss in more detail below. This allows us to define the
operators /] and % on . (M?), which we continue to all of § by mapping elements of

kero(uy) to zero. This fact will play an important role later.

Gauge fixing. The next step in the BV formalism is the implementation of gauge fixing.

This is achieved by a canonical transformation

. ov
Sgu[@ ] = Sev [@’,cbf + W] (3.29)

which is mediated by a choice of gauge-fixing fermion, the generating functional for the

canonical transformation, which is a function W € €*(£gy[1]) of ghost number —1. The
action (3.29) is then gauge-fixed if its Hessian is invertible. This requires a careful choice
of W: the trivial choice W = 0 leads back to the original action. When the classical
BV action is only linear in the anti-fields, as is e.g. the case for Yang—Mills theory and
all the field theories we are dealing with, we may set the anti-fields in S, to zero after
gauge-fixing, without loss of generality since the BV operator reduces to a BRST operator.

Note that to construct the gauge-fixing fermion W of ghost number —1, we will have
to introduce additional fields of negative ghost number together with their anti-fields,
arranged as trivial pairs, such as e.g. the anti-ghost ¢ and the Nakanishi—Lautrup field b
in the case of Yang—Mills theory. If we do not change the Qgy-cohomology, these new
fields do not affect the observables. This can trivially be achieved if Qgy maps one field

to another,
Y, b, b, 0, gt 2, 0, bt Y, et (3.30)

cf. Equation (3.10). We shall encounter a number of more involved examples in Chapter 4.

Quantum master equation and quantum L -algebras. Besides the canonical sym-
plectic form (3.15), we also have a canonical second-order differential operator on € (Lgy[1]),

called the Batalin—Vilkovisky Laplacian, and defined as

52F

AF — (_1)|¢’Igh+\F\gh
for F e €*(Lav[1]).
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40 3.2. Batalin—Vilkovisky formalism and L-algebras

The BV Laplacian plays a key role in the path integral quantisation of a theory. In
particular, the gauge fixing (3.29) is implemented at the path-integral level as

ov |
Zu = [ oa (o7 - gy ) eisieren, (3:32)
BV

where 1 is a measure that is compatible with the symplectic form w, ¢ is a functional
delta distribution, fi is a formal parameter, and Slg,, € ¥*(£gv[1]) is a functional of ghost
number zero with

Slavln—o = Sev . (3.33)

For Zy to be independent of the choice of gauge-fixing fermion W, S qgv Must satisfy the

quantum master equation [8]*

Aer¥ev = 0 — {Slev. Slev} — 2inASle, = 0. (3.34)
Consequently, we obtain as generalisation of (3.18) the quantum BRST-BV operator
Qv = {Slay. —} —2inA (3.35)

and the quantum master equation (3.34) is equivalent to QﬁBV = 0. Note that contrary to
the classical version, the quantum version (3.35) is no longer a derivation. Solutions SQBV

to (3.34) are called quantum Batalin—Vilkovisky actions. \We may now solve (3.34) order

by order in fi generalising the products u; in (3.25a) to products u}, for L =0,1,2,...
to reflect the fi-dependence with ), _, = uj and u},__, = 0. Consequently, we consider

the ansatz

hL
SeMME = N — G, pl(a ..., a) (3.36)
120
for the superfield (3.21). The action (3.36) satisfies the quantum master equation (3.34)

if and only if the w;, satisfy the quantum homotopy Jacobi identities [33, 38, 49]

2 2 O- ‘ell e vei)/"'i2+l,L2<N'i1,L1 (Ea(l)r e v‘ea(il))r‘ea(f1+l)v s v‘eo'(/)) -
L11+£2 IL aeSh(iy;i)
1+

— i,u,-+2,L_1(e’,e,,£1 ..... Z,) =0
(3.37)

1Specifically, one requires Zy 5w = Zy for an infinitesimal deformation §W of W; the space of gauge-
fixing fermions W (whose Hessians may not be invertible) is contractible, so Zy is globally independent of
v,
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3.2. Batalin—Vilkovisky formalism and L.,-algebras 41

for 41,...,4; € £gyv, where the u;, are as in (3.22b) via the u},. Here &' = eyw’,

where w'” is the inverse of the symplectic form (3.15) when written as w = 38a’ A w; da”.

Furthermore, (3.22a) generalises to

Qqeva = — HM;,L(a ..... a) . (3.38)

The tuple (£gv, i1, w) with the products w;, subject to (3.37) is called a quantum or

loop Ly,-algebra. In the classical limit i — O, the higher products w;; for L > 0 become

trivial, and we recover a cyclic Ly-algebra. Note that for scalar field theory, Yang—Mills
theory, and also Chern—Simons theory, the classical BV action also satisfies the quantum
master equation and hence, in those cases, we may set SgBV = Sgy, in which case u;; =0
for L > 0. Even though the classical BV action satisties the quantum master equation, one
still requires knowledge of the quantum deformation of L,-algebras in order to undertake

the computation in Section 5.3. of the recursion relations for loop-level amplitudes.
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Field theories, BV complexes, and homotopy algebras

In this Chapter we will discuss in detail how the mathematical framework that we have
introduced so far (homotopy algebras, BV formalism) applies to concrete examples of
field theories. In the following, we review the actions, the BV complexes and the dual L-
algebra structures of different field theories, in particular the ones relevant to our homotopy
algebraic treatment of the double copy. We note that many of the theories we discuss
in this Chapter does not require the BV formalism for quantisation. As explained before,
however, it does make the link to homotopy algebras evident and clarifies the freedom we
have in choosing gauges, an important aspect in our later discussion.

The material in this Chapter is borrowed from [2, 6].

4.1. Scalar field theory

As an introductory example illustrating the construction of an L,,-algebra for a classical field
theory, we consider scalar field theory on d-dimensional Minkowski space M? := (R}971, n)
with m the Minkowski metric. In the following, u,v,... =0, ..., d — 1, and we shall write
Xy = Nuwxty” = x,y* and [J := 0*0,.

Instead of plain ¢*-theory, we start from the action
sl = fd"x {Zo[@O—-m*)p — £¢°> - J¢*}. (4.1)

Scalar L-algebra. The associated L -algebra of this field theory is obtained as usual

from the BV formalism.! Here, we merely note that in a field theory without (gauge) sym-

1See also [29] for pure @*-theory and [52] for a discussion closer to ours.
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44 4.2. Biadjoint scalar field theory

metry to be factored out, the BV action agrees with the classical action. The homological

vector field Qgy therefore acts only non-trivially on the anti-field ¢ ™, and we have

&)

50 = 2.1/11/(90 ----- ®) . (4.2)

Qevp™ = {Spv,. 0"} =

P (M) T e ——— (4.3a)
~—— —_—— —_—— ~——
=1%o =:£ =:£ =:L3
with products
pi(p1) = (O—m)e1, w91, 92) == —KE1gs , (4.3b)
u3(01, 2, 03) = —AP1P2003

for ¢103 € ‘500(]1\/["). The homotopy Maurer—Cartan action for this L-algebra becomes
S.

4.2. Biadjoint scalar field theory

The simplest field theory relevant for the double copy discussion is that of a biadjoint scalar
field theory with cubic interaction. This theory appeared in the scattering amplitudes and
double copy literature in various incarnations [201, 202, 149,203, 153, 104, 173, 204, 105,
205,174,107, 108,206, 183, 207].

In particular, let g and g be two semi-simple compact matrix Lie algebras. For (g® g)-
valued functions on Minkowski space MY, we define a symmetric bracket and an inner
product by linearly extending

[e1®e1,e2® 82405 = [e1,e2]y® (81, 82]5 . (4.4)

<e1 ®Re;,en® ég>g®§ = trg(elez) tl’ﬁ(5152>
foralle;oegand e, eq.

BV action and BV operator. The BV action for biadjoint scalar field theory then reads

as
shedl = Jddx {%@. CO0)ees — 50 [¢. (P]g®ﬁ>g®§} , (4.5)
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4.3. Yang—Mills theory 45

where X is a coupling constant, [J := n*¥0,0,, and @ is a scalar field taking values in g®g.
We write ¢ € (g®g) ®F where § is a suitable function space discussed shortly. Introducing

basis vectors e, and e; on g and g, respectively, we can rewrite this action in component

form
Sbiadj = fddX {%‘PaéD(Paé - %f:abcﬁ‘aEE(pa_(pr(pCE} ! (4.68)
where
trg(eaeb) = —6313, trﬁ(égég) = —655, (4 6b)
fabc = _trg(ea[ebvec]g) ’ féi_)E = _trﬁ(éé[éEvéf]ﬁ) :

Besides the field ¢, we also have the anti-field ¢t and the BV operator (3.18) acts

according to

(paé Qsv and (p+a§ Qsv D(paé B %fbcafEfé(pbB(pCE . (4.7)

L.-algebra. The BV operator (4.7) is the Chevalley—Eilenberg differential of an L.-

algebra ng,dj which has the underlying cochain complex

Lpaé (p+a§
¢ (19F)®F — (19§ OF — (4.8)
| — | —
gbiad] gbiad]
BV, 1 BV, 2
with cyclic inner product
{p, ") = fd"x ey (4.9)

and the only non-trivial higher product is
(97, 9™) 5 Ao fi 0" 0T (4.10)

At this point it is important to recall Remark 3.1 and that we always use the same symbol

for a coordinate function on field space and the corresponding elements of field space.
The field space § can roughly be thought of as the smooth functions of Minkowski

space €*(M?). More precisely, however, the field space is the direct sum of interacting

fields and solutions to the (colour-stripped) equations of motion, cf. Remark 3.2.

4.3. Yang—Mills theory

A key player in the double copy is Yang—Mills theory on d-dimensional Minkowski space IM?

with a semi-simple compact matrix Lie algebra g as gauge algebra. The gauge potential
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46 4.3. Yang—Mills theory

A’ is a one-form on M taking values in g. Let V be the connection with respect to A.

Infinitesimal gauge transformations act according to
A AL = AL+ (Vye)? forall ¢ e ¥°(M)®g . (4.11)
BV action and BV operator. The list of all the fields required in the BV formulation of

Yang—Mills theory together with their properties is found in Table 4.1, and the BV action
is [8]

Spul = Jddx {— TP P + AL (V*C)? + Sf,7ctcPct - baéj} : (4.12)

As in Section 3.1., all the fields are rescaled such that the Yang—Mills coupling constant

g appears in all interaction vertices. Consequently, the BV operator (3.18) acts as

@ Qsv _%fbcacbcc .t Qsv —(V“A:)a _ gfbcacbc+c ,
AZ, Qev (V) A:a Qev (VYF,.)° — gfbcaA;bCC ' 13)
b2 Qv 0 pta Qv _gta ’
z2 Qev p? Ete Qev 0.
fields anti-fields
role | —gh | | —]e | dim | —gh | | —]e | dim
c? | ghost field 1 0 |g-2|ct?| -2 3 [¢4+2
Az | physical field 0 1 | §-1|AF7| -1 2 | 4+1
b* | Nakanishi-Lautrup field | 0 1 g bt -1 2 g
¢? | anti-ghost field —1 2 g cte 0 1 g

Table 4.1: The full set of BV fields for Yang—Mills theory on M9 with gauge Lie algebra
g, including their ghost numbers, their L,,-degrees, and their mass dimensions. The mass

dimension of the coupling constant g is 2 — g.
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4.3. Yang—Mills theory 47

L.-algebra. The BV operator (4.13) is the Chevalley—Eilenberg differential of an L.-
algebra which we shall denote by £5¥. This L,-algebra has the underlying complex*

A+a

® — (2,840 ng Md

_au b? b+a oM
M) ®g (M) ®g
=<
—id \

c@ cta ! ze cta
Tr(M) @ T ®g T ®g Tr(M) @
— — | | —

= £V = £V = L5V = L5V s
(4.14a)

We shall label the subspaces £LV ; to which the various fields belong by the corresponding

subscripts, that is,

‘QBVO_’SBVOCV SBV1: C‘B £BV1¢'
peitben (4.14b)
Sszz @ SEsv2<1> SBV3_£3C+’
pe(A*, b+, )
and the non-trivial actions of the differential u; in £5 ; are

C '—> —5 C € ’SBV 1,A
AL — (0,0 =6, 0)A;
b | _gta e @ V., (4.14¢)
eta b pe(A+, b+, )

+a M1 w A+a
A“, > _a A/-L 'SBV 3 ct -

I This complex has been rediscovered several times in the literature. For early references, see [26, 28];
more detailed historical references are found in [52].
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The non-vanishing higher products are

(%, c?) 5 ghi?cPct e 24, .
(A7, cP) 5 —gf, Al e g4 4,
(Af?. c”) 5 —ghitAfPc e SV, Ar
(A2, AD) L2, 2gfbca<a“(Af3Aﬁ)+2Ab”8[,,Aﬁ]> e &M . (4.14d)
(c? c™) £ gf,2cPctc e Sg\’\//llgv(fr :
(A2, ALP) H2 —gf PALATHE e el
(A2 ADAS) -2 BIPACATA fed foc® € LV o A

and the general expressions follow from graded antisymmetry of higher products and Equa-

tion (2.17). We have that (L5, ;) forms an Ly-algebra, and with the inner products

(A AT = fddxA;A;“ . (b,b") = Jddx b’b7
(4.15)
{c,ct) = fddxcacj, (¢, ety = —Jddean,

it becomes a cyclic L-algebra. Note that the superfield homotopy Maurer—Cartan ac-
tion (3.25a) reduces to the BV action (4.12) when using these higher products and inner
products together with (3.26).

Gauge fixing. We have discussed the general gauge-fixing procedure in the BV formalism
in Section 3.1.. Here, to implement R¢-gauge for some real parameter £, we choose the
gauge-fixing fermion

Vo= —fddx G (0*AL + 5b7) . (4.16)

Following (3.29) and (3.32), the Lagrangian of the resulting gauge-fixed BV action is

Spv e = Jddx {— L P — 6,0 (V,,0)° + §b,b% + b,0" A% +

(4.17)
+ AL (VL0 + $h7cr et — bE } ,
and after putting to zero the anti-fields, we obtain
SeRsT = fddx {— LF o O™ — C,0M(V,0)? + $b,b7 + baa“Aj} . (4.18)

This is precisely the action appearing in (3.1a).
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4 4. Free Kalb—Ramond 2-form 49

4.4. Free Kalb—Ramond 2-form

The next theory which we would like to discuss is that of a free two-form gauge potential

B e Q2(MY). It has a three-form curvature given by
and transforms under the infinitesimal gauge transformations as

B, — By, = Bu, + 0\ — N, (4.20)

where A € QY(MY) is the one-form gauge parameter. Note that the gauge parameters

themselves transform under a higher gauge symmetry,

Ny — Ny o= Ny + 00, (4.21)

where X € (M) is the (scalar) higher gauge parameter.

fields anti-fields
role |~ lgn | [~ e | dim [~ lgn | [— e | dim

X\ | ghost—for—ghost field 2 -1 | ¢£-3| x| -3 4 | 4+3
A | ghost field 1 0 |2-2| A | -2 3 |4+2
v | trivial pair partner of € 1 0 g -1~ —2 3 % +1
Bu, | physical field 0 1 | 4-1\Bf,| -1 2 | 4+1
a, | Nakanishi-Lautrup field | 0 1 g laf | -1 2 g

€ | trivial pair partner of = 0 1 | 2-1|¢e" | -1 2 | 4+1
A, | anti-ghost field —1 2 g A 0 1 g
A | trivial pair partner of X | —1 2 | Z2+1| 4" 0 1 | 4-1
X | trivial pair partner of ¥ | —2 3 | 2+1| A* 1 0 |2-1

Table 4.2: The full set of BV fields for the free Kalb—Ramond field, including their ghost
numbers, their L-degrees, and their mass dimension. Besides the physical field, the ghost
field, and ghost—for—ghost field, we also introduced trivial pairs (a,A), (v,€), and (F, )
together with their anti-fields.
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BV action and BV operator. The full set of fields required for gauge fixing in the BV

formalism is given by what is known as the Batalin—Vilkovisky triangle [9], see also [52] for

a recent review in the notation used here. In Batalin—Vilkovisky triangle, the lowest level
trivial pair is used to gauge-fix gauge potentials and ghosts, the next-to-lowest level trivial
pairs are needed to gauge-fix the lowest higher ghost, and so on. In Kalb—Ramond theory
we have a higher antighost, and for this reason we precisely need three trivial pairs and
their associated antifields. The complete list of BV fields is given in Table 4.2. Following

the discussion of [9], the BV action reads as

Sty = Jddx {— SHup HHS + 2B1,0M N — NEoMX — Ao + AT + e+'y} . (4.22)

where the factor of two has been introduced for later convenience. Consequently, the BV

operator acts (3.18) as

PYREC At SR gept
Ay 2B AN NP SRS 0B
v = 0, vt et
Bu 2 0N, — 0N, Bf, L LoRH,,
a, B 0, af e Ar (4.23)
g ey, v, et 2B,
A, 2B a =
5 Qev 0 —+ Qpv >\+,
Xy, PREC
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L.-algebra. The BV operator (4.23) is the Chevalley—Eilenberg differential of an L.-

algebra £5%, which has the underlying complex

A _ N o, Buv Zh , N . At
T (M) —2 QM) — QM) — (M) —2 QM) —T (M)

QMY QYY)
\Id
K
a —id a+
Q' (M) QL (M)
v d e e id i
€0 (M) —— € (M) € (M) —= €*(M)
At yt ol iy X
€M) —4 (M) (MY —— 2 (M)
—— —— — — —— ——
= £KR = EKR = EKR = SKR = EKR = SKR
—1 BV, 0 BV, 1 BV, 2 BV, 3 BV, 4
(4.24a)
with
QE\R/,—l = EE\F?_M-
2?5,0 = @ Qg\?o,d; ’
pe (A At)
2?5,1 = @ £g5,1,¢:
B,/_\‘*', e, 7t
. pe(E AT @ ) N (4.24b)
QBV,2 = @ SBV,2,¢>'
¢e (BT, A at, et ¥)
2?5,3 = @ £§5,3,¢:
pe (AT, v, X)
2%\3,4 = 2%\5,4,% ,
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and the non-vanishing action of the differential w; given by

A =0 € S5 o

Au —201\)
A y € (‘D £§5,1,¢ ,
;\J’_ ;\_;’_ ¢€(B,8,’7+)
B, %6’*HKW
A = ay € (—D L85 54 (4.24¢)
a, _/—\: be(B+ A, at)
B:[U 26”8:[,/
et | &S —e*t € P L0
_ _ At vyt X
5 _5 de (AT, vt X)

+ K1 Aua+ KR
/\u La— a /\/J' € 28\/,4,)\"”

There are no higher products because the theory is free. The L.-algebra £5% becomes

cyclic upon introducing

AT = —JddxM\* . WA = —fddxﬂ* :

(NN = Jddx/\“/\:, (N = —Jddx/_\“/_\:,

(B,B) = JddeWB:[U, (4.25)
(a,a™) = Jddxa“a:, (g,e") = fddxa:;‘*,

ot = Jd"m“ﬁ, FAT) = —Jd"X“‘r‘y*-

Again, the superfield homotopy Maurer—Cartan action (3.25a) of £55 with higher products (3.26)
is the BV action (4.22).

Gauge fixing. Recall the general gauge-fixing procedure in the BV formalism from Sec-
tion 3.1.. The most general Lorentz covariant linear gauge choices are implemented by

the gauge-fixing fermion
Vo= fddx (R (0B + Ga) = XN + G7) + (A + 5T} (426)
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for some real parameters (1,3. The resulting gauge-fixed action (after putting to zero
the anti-fields) is

SERsT = fddx {%BWD B* + (0" Bu)(0.B") — A, ON —

— ("N (O N) = XD + S ot + o “By, + (4.27)

+ edot — (G + CG3)yy + wau/‘\“ — A‘ya#/\“} .

4.5. Einstein—Hilbert gravity

The fourth relevant theory is Einstein—Hilbert gravity on a d-dimensional Lorentzian man-
ifold M9 with metric g € T(M9,&?’T*MY). Let V be the Levi—Civita connection for g.
Recall that infinitesimal gauge transformations of the metric are parametrised by a vector

field x and act as

G = Guw = Guv + (Lx9)pw . (4.28)

where L, denotes the Lie derivative along x.

BV action and BV operator. The list of all the fields required in the BV formulation
of Einstein—Hilbert gravity together with their properties is found in Table 4.3 and the BV
action (cf. e.g. [208] or [209] for the gauge-fixed version) is

SEH = fddx {—é«/—g R+ g™ (Ly9)uw + 35X (Lox)* — Q“)Z:[} , (4.29)

where R denotes the Ricci scalar and 2k? = 167rG,(\,d) Einstein’s gravitational constant.

Consequently, the BV operator (3.18) acts as

Q Q
X = =3 (L))" X o 2V g+ (LX)
Q Q
Guv = (Lx@uw g = _é _g(Rw_%gwR) + (Lyg™ )™,
W Qu . L Qev 3 (4.30)
Q [ , Qu — _X#« ,
— Qv —+ Qv
X'u — Q‘u’ ) X“ — O )

where R, is the Ricci tensor.
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fields anti-fields
role | —lgn | [—lc | dim | —lgn | [—le | dim
x* | ghost field 1 0 -1 ] x4 —2 3 d+1
9w | Physical field 1 0 |[g™ | -1 2 d
o* | Nakanishi-Lautrup field 1 g o —1 2 g
X* | anti-ghost field —1 2 S %t 0 1 g

Table 4.3: The full set of BV fields for Einstein—Hilbert gravity, including their ghost
numbers, their L,-degrees, and their mass dimensions. The mass dimension of the coupling

constant Kk is 1 — %. Note that all fields are tensors and all anti-fields are tensor densities.

Perturbation theory. Let us now restrict to a Lorentzian manifold M? for which the

metric can be seen as a fluctuation h,, about the Minkowski metric 7, on M9, that is,
G =" M + Khyy (4.31a)
For future reference, we note that
g* = n* — k™ 4 K2R hY — K3H*Ph, h, + O(K?) | (4.31b)

where h,” = 1" h, and h* = n*on“*hey. Likewise,

. . (4.31c)

k(M — ghh bt + ThthPht) + O(K®)

where h := n*h,,.
We also introduce the following rescaled anti-fields and unphysical fields:
thy Kk gtHy
h V=39
Xto= ot Xp o= s X =)L OXE = R (4.32)
. 1
whi= et W e

In addition to these, we introduce two trivial pairs (3,6) and (m,3), together with the
corresponding anti-fields. These do not modify the physical observables; as we shall see
later, however, they do arise rather naturally in the double copy and are crucial once the

dilaton enters. We also note that precisely these trivial pairs were also introduced in [210]
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fields anti-fields
role | —lgn | | =]e | dim | —lgn | | =]e | dim

X* | ghost field 1 0 |4-2| Xf | -2 3 [4+2
B | trivial pair partner of ¢ 1 0 g —-1] B* -2 3 % +1
huy | physical field 0 1 | ¢—1|hpw | —1 2 | 4+1
w* | Nakanishi—Lautrup field 0 1 g w) | -1 2 g
7 | trivial pair partner of B 0 1 d41| 7t —1 2 | 4-1
§ | trivial pair partner of 8 0 1 g—11] 6" —1 2 | 4+1
X* | anti-ghost field —-1 2 g X 0 1 g
B | trivial pair partner of m | —1 2 |¢4+1| Bt 0 1 | £-1

Table 4.4: The full set of BV fields for perturbative Einstein—Hilbert gravity, including their
ghost numbers, their L-degrees, and their mass dimension. All the fields are regarded as

tensors on Minkowski space.
in order to explain a unimodular gauge fixing in the BV formalism. The full list of fields

and their properties is given in Table 4 .4.

The action itself can now be expanded in orders of k,

SEH = Jddx«ﬁ—g{—él?+\/i—gg+“”vuxu+

+ 55X (L) — @K, + B0 + wﬁ’*}

- | 4% /=g {—%R + 20TV, X, + EXCH (LX) — %t + BT + 7r5+}

=: fddx Z K".LEH
n=0
(4.33)

with indices now raised and lowered with the Minkowski metric. The lowest-order Lag-

rangian %, is given by the Fierz—Pauli Lagrangian plus the terms containing ghosts and

other unphysical fields,

L = _LoMNPO, R, + L0MNP0, hyy — 20M RO By + 20MROLP +

. _ (4.34)
+ 20X, — Wt X + BOT + BT
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cf. e.g. [211]. To first order in K, we have

R —h“”{%é‘uh”(’&”hpg 00"+ 8,F (0,h,° — L0,B) +
+ OuhyP0ph — 0,00 hyy — 1nu,0”h (05h," — 0,R) + P hudshy” —
20,y — Ophyod® haf + dghyedThuP + %nw&phmﬁ"h”’} + (4.35)
+ 2/7+W{/mau><A + 1By + Oxhuy — 6uhM)X*} +

+ IXT(Lx X + Lh(—w* X + 86T + nBT) .
L,-algebra. The full L,-algebra £&5 of Einstein—Hilbert gravity has the underlying com-

plex

Xy 5 Py i , X
QLMY) — s Q2(M9) —H s Q2(M9) —27 5 QI(MH)

X Xy
QUMY QM)
>
L
@, - @)
QM) QM)

(4.36a)
Bt B
T, (M)
<
Y
x id _—
€*(M?) €* (M)

B y 6 &t u B*
€ (M) — € (M) € (M) —" € (M)
——— — — —
=2 = 25 =2 =2

Tommaso Macrelli



4.5. Einstein—Hilbert gravity 57

with

EH EH EH
ger,o = Ser,o,x@Ser,oﬁ'
EH EH
2er,1 = @ ’QeBV,l,dJ'
¢e(h X+, @, B+, m06)
. | (4.36b)
£Bv,2 = @ SBV,2,¢>'
¢e(ht, X, wt,B, 7+, 6+)
EH EH EH
£Ev,3 = 2er,0,><+ @Qesv,o,w :

The Ly-algebra £& comes with non-trivial higher products of arbitrarily high order, with
i encoding the Lagrangian Z55"_;. Below, we merely list u; and u» to prepare our

discussion of the double copy later on. The differentials are

Xu w1 <_a(uxt/)> EH
— € @ LeVito
( 6] ) 6] be(h,6)

P 126209 — 1) O — (65 M — 8N )P0% ] hoo
)?; fwl»ll
ot ML )‘(I
G* T (4.36¢)
™ _B+
€ @ E%E/Hz,cp '

pe(ht, X, wt,B,mt)

ht —0“h
uv (758 vk eEH
> € (C) £ ,
(5+> ( —0" > pecirpny
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and the cubic interactions are encoded in the binary products

(X1, Xov) 2, (Lx, X2)u € SeBE/'_,'O,X'
(X XJ) 5 (0uX)X) + 0 (XX ) € L5015 x+
(@, X)) 5 3w X N € L5005
(huw, @) e _%Ewu € SE;%/%,X'
(M, X3) 2 3hXE € S8 v
(B,67) A %55+7luu € £eBE/Ffz,/ﬁ ,
(huw.B) *2 $hB e 2557,
(huw, 67) *5 —1h6" e e85, 50
(m,B6%) + %wBJ“’hw € 268%/5'2,/# o (huw, m) = _%Fm € 2eB%/ﬁZB'
(hu,BF) 5 3HB* € L5015 v
(X hup) 2 —2h,00, X5 — (Ouhwy + Oxhuw — Ouhue) X® € Lot )

(A hoo) = =204 (W hyy) + W (Ochuy + Ouhey — Ouhiy) € L&' x+ »
(i Xo) = =2hE, 05X, + 0"(h},X,) + 0 (KT X®) — 0%(hi X,) € L8U15 v
(s hopo) +2> {%aﬂhf;aauthg O i@ 3P + Oyhy (phoy® — Luhn) +
+ Oy h1Ppho — 0ph10° Moy — 3,0 hy (Oohop” — 20,00) +

P hy @ ho® — 20, B hou? — Ophnyd® ha® +
O hiypd hog? + %nwaphma“hgp}+

+(1<2) e SeBE/ﬂz,m :

(4.36d)
The cyclic structure is given by the following integrals:
(X, Xy = JddxX“X:[ , (X, Xy = —Jddx)_(“)_(:[ ,
@60 = [exoet. @B = - | xpE
(4.37)
(h, ™y = Jddxh“"h:[u, (w,w") = Jddxw”w:{.
(m, ) = Jddxmr*, 6,67) = JddX(55+.
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Gauge fixing. Gauge fixing proceeds as usual in the BV formalism, but due to our two
additional trivial pairs, we can now write down a much more general gauge fixing fermion.

We restrict ourselves to

Y, = — fddx {X“(gauhw — S, + (0,h — (70,6 + s O”DW) +
o BV B (4.38)
+5(C9h—C105+C11 & )} :

and this is the freedom required for the discussion of the double copy. The resulting

Lagrangian, to lowest order in K, reads as

LSS = G O+ 30 + 300 0 By — RO+

Ou

+ Caw M hy, — %w“wu + Cmv“&ul; — (w00 + (gwt

. o*0” hy,
— MCoh + C1omd — (11 4

_ _ _ _ o*ovB
+@wwwwww@m+@@xwﬁfwwa—arff@m+

— (B0, XY — 1080 |
(4.39)

after putting to zero the anti-fields.

4.6. N = 0 supergravity

The actions for the free Kalb—Ramond field and Einstein—Hilbert gravity are combined
and coupled to an additional scalar field ¢, the dilaton, in N’ = 0 supergravity. This is
the common, or universal, Neveu—Schwarz-Neveu—Schwarz sector of the a’ — 0 limit of

closed string theories, and the action reads as
SN=0 = Jddx \/—g{—éR — 0.t — %e_%“’HuwHW“} . (4.40)

The solutions of the associated equations of motions give backgrounds (with vanishing
cosmological constant) around which strings can be quantised to lowest order in o’ and
string coupling. They also ensure conformal invariance of the string is non-anomalous in
critical dimensions.

We note that the free part of N/ = 0 supergravity is a sum of the free Kalb—Ramond

two form, Einstein—Hilbert gravity and a free scalar field. Therefore, the free parts of the
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60 4.6. N = 0 supergravity

BV formalism as well as the L.-algebra description just add in a straightforward manner.
The interaction terms then consist of the interaction terms of Einstein—Hilbert gravity as
presented in the previous Section, as well as additional terms of arbitrary order involving
the dilaton and the Kalb—Ramond two-form. These are readily read off (4.40), but their

explicit form will not be of relevance to us.
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Minimal model and scattering amplitudes

In the previous Chapters, we saw that actions of field theories are encoded in cyclic L-
algebras. The same holds for tree-level scattering amplitudes, and loop-level scattering
amplitudes are encoded in quantum L. -algebras, as we shall explain in this Chapter.

The material in this Chapter is borrowed from [2, 3, 6].

5.1. Equivalence of field theories

Classically, two physical theories are equivalent, if they have an isomorphic space of ob-
servables.! Translated to the BV formalism, this implies that classically equivalent physical
theories have isomorphic Qgy-cohomology. Dually, this implies that two physical theories

are classically equivalent, if they have quasi-isomorphic L.,-algebras, which is also mathem-

atically the natural notion of equivalence for L, -algebras; see Chapter 2 for more details.

Given two L..-algebras (£av, i;) and (£av, ;) constructed from a BV action, a morph-

ism@: Lgy — £av of L-algebras is a collection of i-linear totally graded anti-symmetric
maps ¢; © £av X --- x Lgy — Ly of degree 1 — i subject to the conditions (2.32).
We note that the homotopy Jacobi identities (2.17) imply that w; and fi; are differen-
tials. Therefore, we may consider their cohomologies H, (Lgv) == @,y Hj (Lav) and
Hz, (EBV) = Py Hgl(ﬁgv). We also note that the identity (2.32) implies that ¢; is a
cochain map, that is, fi; 0¢; = ¢1 0wy and thus descends to a map H;, (£gv) — Hﬁl(QBV)

IThis is weaker than the statement that tree-level scattering amplitudes coincide. To define asymptotic
in- and out-states in the same Hilbert space, one needs the additional data of the symplectic form w. Two
classical theories have the same tree-level scattering amplitudes if they are related by a quasi-isomorphisms
compatible with the cyclic structures. Again, see [52] for some more details.
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62 5.2. Tree-level scattering amplitudes

on the cohomologies. Quasi-isomorphisms are those morphisms for which ¢; induces an
isomorphism on cohomology.

Under quasi-isomorphisms, the physical theory remains unchanged as is explained in
Chapter 2, see also [40,192,52,1,4]. In particular, the BV actions Sgy and Sgy for gy
and £gy are related as Sgy = ¢*Sgy, where we used the pullback ¢* : %w(ﬁgv[l]) —
€*(Lgv[1]) dual to the morphism ¢. Consequently, quasi-isomorphisms constitute the
correct notion of equivalence®.

Because the Qgy-cohomologies in ghost numbers different from zero (i.e. dual to L.-
degree one) are not measurable, one may wonder if the notion of a full quasi-isomorphism is
not too restrictive. For perturbation theory, agreement in Hil (Lgyv) is certainly sufficient,
and this can often be extended to an agreement in further cohomologies, cf. e.g. [54,
Appendix C]. Moreover, some fields in L,-degree zero, such as e.g. anti-fields of anti-
ghosts and Nakanishi—Lautrup fields, are often unphysical, and arise only as internal fields
in loop diagrams. Therefore their contributions to /—I}LI(SBV) can also be disregarded when
identifying physical observables. At a technical level, one can restrict these fields such
that the kernel of the differential operator describing their linearised equations of motion

vanishes, cf. Remark 3.2.

5.2. Tree-level scattering amplitudes

There is an Ly-structure wu; with vanishing differential g on the cohomology £3, =
H; (£gv) of an Ly-algebra (£gv, u;) such that £3,, and £gy are quasi-isomorphic. This

L-algebra £g,, is called the minimal model of £gy, cf. Chapter 2. The minimal model cor-

responds to a field theory equivalent to the original field theory, but without any propagat-
ing degrees of freedom. Its higher products therefore have to be the tree-level scattering
amplitudes [33,52, 161, 2].

The relation between £gy and £z, can be understood as follows. We start from the

underlying cochain complexes and the following diagram:

hC (Lev. 1) = (8. 0) . (5.1a)

Here, we are a bit cavalier about the inclusion of the cyclic structure; again, see [52] for some more
details.
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Here, p is the obvious projection onto the cohomology, and e is a choice of embedding
(involving choices, e.g. a choice of gauge for gauge theories). The quasi-isomorphism also
gives rise to a contracting homotopy h, which is a linear map of degree —1. The maps e

and h can be chosen such that

id = uloh+hop,1+eop,

poe = id

(5.1b)

poh = hoe = hoh =0

popr = proe =0
Moreover, we now have a decomposition®
Loy = Qgi;m@)gesxv@ggﬁx- (5.2)
gm = im(eop), L8 = im(uioh), £ := im(how)

with €M ~ g2, It is rather straightforward to verify that

im(e) = @™, im(uy) = £8,, im(h) = £8%, (5.3)

er(p) = S5, @Y, ker(w) = SRTOLE, . ker(h) = SR @ LR

Mathematically, this is an abstract Hodge—Kodaira decomposition. The map h in Ly-

degree two turns out to be the (Feynman—'t Hooft) propagator of the physical theory in
question [212-214], see also [215] and references therein.
We directly extend the diagram (5.1a) to the Chevalley—Eilenberg picture, where we

have
Eo

Ho C(Cfoo(ﬂsv[l]),QBv,o) — (€%(Lay[1]).0)

Po
id = PooEg+ QpvooHo+HooQsvo .
EooPy = id,
EooHy = HpoPy = HpoHy = 0,
EooQpvo = QsvooPo = 0,
where Qpyv o Is the linear part of Qgy, which encodes the differential ;. The maps Eg,

Po, and Hy are defined by the ‘tensor trick’ [216] as

1 .
Fo = Z/—'(FO)' for Fo € {Eq,Po, Ho} (5.4b)

i=1

(5.4a)

The superscripts are borrowed from the Hodge decomposition of a differential form into harmonic,
exact, and co-exact parts, see [52, Section 5.2] for the corresponding formulas.
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with

€)= (€)%, (Po) = (01, (Ho) =Y 1%0Oh 0@ ce)® . (540

k+1=i—-1

We can now regard the non-linear part

0 = Qsv—Qsvo (5.5)

of Qv as a perturbation and use the homological perturbation lemma [216,217], which

asserts that there is a contracting homotopy

o (1], Qo) T (F7(25, (1D, Qi)

id = PoE+QgyoH+HoQgy ,

EoP = id (5.6a)
EoH = HoP = HoH = 0,
EoQey = QgyoE, QgvoP = PoQpg,
in the deformed setting. In particular,
E = Ego(id+d0Hy)™, H = Hpo(id+doHy)™,
0° 0) 0° 0) (5.6b)

PZPO—H060P0, %VZE050P0,

and Qg is the Chevalley—Eilenberg differential encoding the higher products of the minimal
model and thus its tree-level scattering amplitudes. Note that here, the inverse operators
are to be seen as geometric series.! We regard ¢ as a small parameter, and this is consistent
with the standard perturbative approach in Quantum Field Theory, since § is at least linear
in the coupling constants. The formula for Qg is then recursive, which has interesting

consequences [2, 3].

Translated to the dual picture, the homological perturbation lemma yields the following

!Because we are interested in perturbation theory, we do not have to concern ourselves with convergence
issues.
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formulas for the quasi-isomorphism ¢ : (£gv, i) — (£gy, 17) [192]:

¢1(€7) = e(&y)
$2(£1.45) = —(hopu)(d1(£1), $1(£3))

L1
di(0S, ... 0) = —Zﬁ M > x(0: 05, V(o 8, L) %
j=27"

kit+ki=i 0eSh(ky,...,kj_1:i)

x (ho NJ)(C% (Ef,(l) ----- Kg(kl)) ----- or (33(k1+.--+kj,1+1) ----- 33(/))) :

and the products u} : £y x --- x £gy — L£gy are constructed recursively as

pilgy) = 0,
po(£y,£5) = (pou2)(d1(£), $1(£3))

1
po(es, ... L) = Zﬁ > > X(0: 85, . (o4, L) %
j=2""

kit +ki=i ceSh(ky,....kj_1:i)

x (p o) ((pkl (zg(l) ----- ﬂg(kl)) """ ¢kj (eg'(k1+"'+kj'—1+1) """ 3(/))) '

where £7, ..., ¢ e £3,. Here, x and ( are again the Koszul sign (??) and the sign

factor (2.32b), respectively.

Using the higher products of the minimal model, n-point tree-level scattering amplitudes
of the free fields ag, . . ., a, € H} (£gv) are then computed using formula [2] (see also [40,

192] for the case of string field theory)

po(al, ..., ay) = iaj, u,_4(as, ..., ay) . (5.8)

Furthermore, in [2] it was shown that the recursion relations (5.7a) encode the famous
Berends—Giele recursion relations [73] for gluon scattering in Yang—Mills theory. For a
related discussion of the S-matrix in the language of L. -algebras, see also [60] as well
as [161, 218] for an interpretation of tree-level on-shell recursion relations in terms of

L-algebras.
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5.3. Loop-level scattering amplitudes

In order to extend the above discussion to recursion relations for loop-level amplitudes, we
follow [49, 3,4]. Recall that in the transition from the classical to the quantum master

equation, the classical BV operator is deformed in powers of fi according to
Qev = {Sev.—} — Qv = {Slgy, —}—2iAA with Slg, = Sgv+O(h). (5.9)
Consequently, the perturbation
0 = Qv — Quavo = Qv — Qv (5.10)

between the full and linearised part of Qqgv is now also deformed in powers of fi. Starting
again from the diagram (5.20b), we use the homological perturbation lemma to obtain a

contracting homotopy

(e (Sou1]). Quev) ot ((S3 1), Qi)

|d = POE+QqBVOH+HOQqBVv

EoP — id. (5.11a)
EoH = HoP = HoH = 0,
EoQepv = QprvoE, QpvoP = PoQgy .,
where . )
E = Epo(id+doHo) ™, H = Hoo(id+doHo) ", (5.11b)

P =Pyo—HodoPy, Quey = EodoPq.
Note that because § contains the second order differential operator A, none of the maps
will be algebra morphisms in general; this is just a consequence of the fact that Qg
defines a loop homotopy algebra.

Importantly, the differential Q° can be written as [219, 49]
v = Wiy, =} —2inA° (5.12)

where {—, —}° and A° are the anti-bracket and the BV Laplacian on €*(£g[1]), re-
spectively, and W/, is of the form (3.36) but with ug,_o = 0. Altogether, we obtain
(£gv[1], Qgey) which corresponds to a quantum L-structure on H;, | (£gv) with a dif-

ferential that vanishes to zeroth order in f.
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The quantum BV action WqﬁBV is the action that encodes all scattering amplitudes
to arbitrary loop order in perturbation theory.® In particular, for theories for which the
classical BV action also satisfies the quantum master equation, which includes scalar field
theory, Yang—Mills theory, and Chern—Simons theory, L coincides with the loop expansion
order and hence, the products u;_, , are the L-loop integrands for the n-point scattering

amplitude. Consequently, (5.8) generalises to
(@5 @) = 1M (B ) (5.13)
To construct the w;;, we note that (5.11) immediately implies
E = Eo—EodoHg (5.14)

which is a recursion relation for E. Hence, we can iterate this equation to obtain E
recursively and substitute the result into Qgg, = E 0§ o Py from (5.11) with Py given
in (5.4c). We conclude, in analogy with (3.38), that

[0 [¢] hL (@] [} [0}
Qgva’ = — ), TRLVICHTRR a%) (5.15)
=

from which the w5, and thus the uf, can be read off. We refer to [3, 4] for full details.
It is not difficult to see that for i — 0, the recursion relation (5.14) coincides with the
recursion relation (5.7a) and (5.15) with that for the products (5.7b) for the minimal
model at the tree level.

The homological perturbation lemma correctly takes into account the symmetry factor
of each Feynman diagram contributing to the scattering amplitude, see [199] for a detailed

discussion of the scalar field theory case.

5.4. Coalgebra picture

Let us discuss in some detail the dual, coalgebra picture, mostly useful when discussing
scattering amplitudes applications of homotopy algebra. For the sake of convenience,
we will consider the (quantum) minimal model associated to a (quantum) A-algebra:

these can be directly related to BV formalism, as they give rise to L,-algebras from total

1One should not confuse the quantum BV action with the one-particle-irreducible effective action or
the Wilsonian effective action, even though it has the form of fi-corrections to the classical action.
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antisymmetrisation, just as the commutator on a matrix algebra induces a Lie algebra
structure, see Equation (2.19). In particular, we can interpret every Lagrangian field theory
as the homotopy Maurer-Cartan theory associated to a cyclic A,-algebra (2, (—, —)) with

action (2.7). We consider the tensor algebra

T () = éOBT"(QO = ROAD ARV D, (5.16)

k=0

and extend the higher products m; as coderivations M; from 2( to T*(2l). For instance, for

Y14 €2 we set

M3(p1 ® - ®@a) = mz(Q1, P2, 03) ® Qs + 1 @ M3(Q2, P3, Ya) (5.17)

and M;(R) = 0, My(p1) = 0, etc. These coderivations combine into a linear map D :
@) - T (),
D = > M, (5.18)

which is a codifferential. An A, -algebra can indeed be defined to be a Z-graded vector

space with a codifferential on its tensor algebra.

Tree-level. The minimal model construction is analogous to the case of L, algebras.
To induce an A,-structure on the cohomology 2A° := H; (1), we start with an abstract
Hodge—Kodaira decomposition

hC (2, my) T (2A°,0) . (5.19)

e

where p is the obvious projection, e is a choice of embedding, and h is the contracting

homotopy, such that
1 = moh+hom;+eop,

(5.19b)
poh = hoe = hoh = 0,
pom; = mpoe = 0.
We can extend both p and e trivially to corresponding maps Pg and Eq between T*(2() and
T*(A°),

PQ|Tk(Q[) = p®k and E()’Tk(g[o) = e®k. (5208)
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The contracting homotopy h is extended to a map Hg : T*() — T°*(2() via the tensor
trick,
Holrey == 2, 19 @h®@(eop) . (5.20b)

i+j=k—1
Splitting D into the ‘free’ part Dy := M; and the ‘interaction’ part Dj,; = Z,.>1 M;, we
recover (5.19) with the maps my, p, e, and h replaced by My, Pq, Eq, and Ho.

The homological perturbation lemma allows us to deform M; to the codifferential D,

regarding Di as a perturbation, which induces a codifferential D° on T*(2(°),

P = POO(1+DintOHO)_1: H = H00(1+Dint0|‘|o)_1,

(5.21)
E = (1+HpoDjnt) *oEy, D° = PoDjoEy.

We have a picture analogous to (5.19), with the maps my, p, e, and h replaced by D, P,

E, and H. Moreover, E and P satisfy the evident relations
PoD = D°oP and DoE = EoD°. (5.22)
The equations for E and H in (5.21) imply

D° = PyoDiyoE, (5.23a)
E EO — HO ©) Dint oE . (523b)

Substituting (5.23b) back into itself yields a recursion relation in the powers of the coupling
constants since Dj,; adds one power of either k or A. Equation (5.23a) then allows us
to construct D° = >}7, M? and hence, the products m? entering the amplitude (5.24).
By construction, M] = 0 and so m; = 0. If we restrict the action of E to T"(2(°) and
project the result onto 2 = T(2A) < T*(A), we recover the aforementioned generalisation

of tree-level n-point Berends—Giele currents. The tree-level scattering amplitude reads as

Hpo(ai, ..., a,) =i Z ap my_y (a5, Ag(n-1)))
S
e (5.24)
=1 Z <a§(1),m2_1(a§(2) ----- 33(n)>
0€Sn/Zn

Loop-level. The BV formalism gives a clear indication as how to generalise the above
to the quantum case: the codifferential D is the dual of the classical BV differential. In

the quantum case, the term —ifA is added to this differential, where A is the usual BV
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Laplacian featuring in the quantum master equation. In the coalgebra picture, this amounts
to adding —ihA* which inserts a complete set of fields and antifields in any possible way into
the tensor product, preserving the order of the original factors. Considering the example

of a scalar theory in Section 4.1., for ¢, € 2, for instance,

A*(p1 @ o) = f%{ww RUT(KRP1 Yo+ Y(k) @1 @Y (k) Qs+ -+ +

F PR UK @1 @2 + ¥ ()@@ @YK @2+ |
(5.25)

where (k) is a (momentum space) basis of the field space 2; and ¥ * (k) of the antifield
space 2.
To compute the loop-level scattering amplitudes, we replace the perturbation,
Dint — Dine — ihA™ (5.26)
in the homological perturbation lemma (see also [219,49]). This generalises (5.23) to
D° = Ppo(Djy —i1hA*)oE , (5.27a)
E = Eo—Hpo(Din —ihA*) o E . (5.27b)
Contrary to the tree-level case, P and E are no longer coalgebra morphisms but only
morphisms of graded vector spaces. Importantly, the substitution (5.26) is justified for
any theory whose classical BV action also satisfies the quantum master equation. This
includes scalar field theory, Chern—=Simons theory, and also Yang—Mills theory.
As before, (5.27) yields a recursion relation, now in the powers of both the coupling
constants and fi. The former counts the number of interaction vertices while the latter

counts the number of loops.! The map E encodes all currents, and we introduce the

restrictions to j factors in the input and / factors in the output tensor product,

EY = (prT,(m)oE)‘Tj(Qlo) and Dl'njt = (PrTf(m)ODint)‘TJ(gl)- (5.28)

If we further restrict to currents with £ loops and v vertices, (5.27) becomes the recursion

relation
PR .. I+2 . . . .
Eéj‘/ = 52585’JE0|T:‘(Q‘0) — HO’Tf(Q[) 0] 2 Dllnﬁ ) EZi—l +ih H0|Tf(21) @) A*|Tf*2(2() @) E2:21JV
k=2

(5.29)

"When a classical BV action does not satisfy the quantum master equation, one first has to construct
the quantum BV action which is given as a series expansion in powers of #i. In this case, the parameter £ in
(5.29) is no longer the loop expansion parameter.
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for the scalar field theory in Section 4.1.. Here, we put E;JV =0forZd <0orv<0and
this implies that the recursion relation terminates for each finite number of £ and v.
Just as the currents E, we can also decompose the higher products according to their

loop order, m? = >,” o Ai*m?, with m] ; = 0. The ¢-loop scattering amplitude reads as

neay, ..., a,) = i 2 (@ mp_1 (@), - A5(n-1)))
Sy
e (5.30)
= | Z <33(1)vm2—1,e(ag(2)v---vag(n)»-
0€Sn/Zn

2A° = (Hy, (A), m?) constitutes (the minimal model of) a quantum A.-algebra.

mi

5.5. Berends—Giele recursion relations

In this Section we interpret the original Berends—Giele recursion relations for Yang—Mills
theory with gauge group su(/N) in the context of homotopy algebra minimal models. For
convenience, we will adopt the differential form language over space—time indices conven-
tions. The cohomology of the cochain complex (4.14a) reads as £, = su(N) ® £ well
with

; = (R —— ker(d'd)/im(d) —— ker(d'd)/im(d) — R). (5.31)

Maxwell

We choose the projectors py to be the evident L?-projectors onto the subspaces Lovk €
Lym.k and we have the trivial embeddings e,. To compute the L,-structure on £5,,, we
need also a contracting homotopy h = (hx) with hy : £ — £4_1 which satisfies (5.1b).

Some algebra shows that!
hy .= G"dl, h, := GFR,, and h;z := G"d (5.32a)
is a possible choice. Here, G’ is the Green operator, that formally obeys
G opi|lyauey = pioGh = idyae - (5.32b)

see e.g. [220, Chapter 14] for more details. P., is the projector onto the exact part under

the abstract Hodge—Kodaira decomposition as discussed in Section 5.2. i.e. onto the

1See [52] for details on the compact case.
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image of d'd. Explicitly, in momentum space and suppressing the gauge algebra for the

moment, we have

N 1 Ouv : O v kHkY
h5" (k) = g igPé; (k) , with PY(k) = n* — P2 (5.32¢)
Recall that our formulas (5.7a) were derived under the assumption that h;(A) = 0,

cf. (A.4). Here, this implies that we work in Lorenz gauge dTA = 0, and the propag-
ator GF P., is indeed the corresponding gluon propagator.
It remains to insert the projectors and contracting homotopies into (5.7a) to write

down the quasi-isomorphism as well as the higher products for the minimal model.

Yang—Miills Berends—Giele gluon recursion relation. Let us denote the generators in

the fundamental representation of su(/N) by 7, and set the conventions (for this Section

only):
[Ta.T6] = fapTc and  gap = tr(7imp) = —tr(1a7p) = 30ap . (5.33)

Using g.5, We may rewrite the structure constants f,p. 1= abdgdC as fape = —tr([Ta, Tp|Tc).

Furthermore, with the help of the completeness relation

9P (1) (o) = =607 + L6035y (5.34)
we immediately obtain
P (XT)tr(TpY) = —tr(XY) + £tr(X)tr(Y) , (5.35)
g2 ghP2tr (X T, ) tr (Y7o, ) faspoe = —tr([X, Y]Te)

for any two matrices X and Y. Consequently, all commutators appearing below can be
expressed in terms of such traces.

Consider now a plane wave A = A, dx* with A, = €, (k) e** X, where k, is the four-
momentum and g, the polarisation vector with k? = 0 and k- & = 0, and X € su(N). We
shall also write

A= Andx* with A, = eu(k) e X, (5.36)
——
=t Ju(7)
to denote the ‘/-th gluon’.

Then, the action of ¢; in (5.7a) on A; is simply given by
Di(A) = e(Ar) = Ju(1) X dx, (5.37)
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with e acting as the identity map. Moreover, the action of ¢, is

$2(A1, Az) = —(haouo)(h1(A1), h1(A2)) (5.38a)
and with (5.37) and (4.14), we find
pa(A1, Ay) = dT[AL As] + *[Ar, xdAs] + *[Ag, xdA]
= {2(J(1) - k2)Ju(2) = 2(J(2) - ka)Ju(1) +
+ (J(1) - J(2)) (ki — ko) fe XX, Xo] dxt
= [J(1), J(2)] PR DX [ Xy, Xp] dxt

(5.38b)

where
[J(1). ST = 20J(1) - k) u(2) — 2J(2) - k) (1) + (J(1) - J(2)) (s — ko) - (5.380)
Consequently, using the contracting homotopy (5.32), we obtain

02(A1, As) = —Poy <Mel (ki+ka)-x X[ X1, Xz] dX“)

(ki + k2)?
J
_ W IO s, X, et
(1.2)
_ _ = Z J ( o(1) Tho(2))-X [Xo.(l),Xa(z)] dx# )
O’ESQ

where in the second step, we used that P, acts trivially and the sum is over all permuta-
tions. Equation (5.38d) yields indeed the 2-gluon current that can be found in Berends—
Giele [73]. It is also instructive to give the next level expression before turning to the

general case. In particular, the action of ¢3 is

¢3(A1.A2.A3) = _(hQO.UQ)(d)l(Al) ¢2(A2 A3))

— (h2 o o) (P1(A2), P2(A1, A3)) — (5.392)
- (hz OM2)(¢1(A3) 2(A1 Az))
— (h2 o u3)(¢1(A1), d1(A2), P1(As)) -
From (4.14), we have
ps(Ar, Az, As) =
= ) A *As2), Asia)]]
= = > [J(a(1)), J(0(2)), Ho(3)]|u e R k@)X [X, 1), [Xg(2), Xoz]] dx*
o (5.39b)
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where the sum Is over cyclic permutations only and
[J(1), J(2), J3)p = (J(1)-J(3))du(2) = (J(1) - J(2))Ju(3) . (5.39¢)

Combining this with the expression (5.38d) and using the contracting homotopy (5.32),
we immediately find that ¢s is given by

$3(A1, A, Ag) =
= Pe ), Ju(0(1),0(2),0(3)) elet Ho@ @)X [X, 1), [Xo (2, Xoa]] dx*

J€Z3

(5.39d)

where

1.(,2,3) — [[J(l),J(2.?2];:;2[[1(2-):(2),J(3)]]u_ (5.39)

The expression for the 3-gluon current as given by Berends—Giele [73] is simply

J4,(1,2,3) = J,(1,2,3) - J,(3,1,2) (5.39f)

and, upon using the antisymmetry and the Jacobi identity for the Lie bracket [—, —], a

short calculation reveals that (5.39d) becomes

¢3(A1, Ax, A3) =
1 .
=3 Z Ju(o(1),0(2), O'(3)>e'(ka(1)+ka(2)+ka(3))'x [Xa(l), [Xg(z),Xg(3)]] dxt

0653

(5.399)

where the sum here is over all permutations and P, acts again trivially.
Let us now turn to the general case. The above discussion for 2- and 3-points motivates

us to define

J(1, ..., N = gapJ®(1,. .., i) o= —tr(¢i(AL ..., ANT,) (5.40)

di(A1, ..., A) = J(1,..., NTa . (5.41)

Furthermore, we also define

2, ..., i) =t g% > tr(Xow) - Xo(yTe) ulo(1), ..., (7)) eke (k) x gk
UES/ (5.42)
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similar to Berends—Giele [73]. Then, the first term in the quasi-isomorphism

- X >

: ki+ko=i UESh(kl;f)

x (hy 0 t2) (dr (As(r), - - - As(i)) O (Asia1)s - - - Asi))) — (5.43)

BT Y Y

: kit+ko+ks=i O’GSh(kl,kz;i)
X (h2 o /J‘3) (¢k1 (Ao(l) 1111 AO’(kl)) vvvv ¢k3 (AO'(k1+k2+l) 1111 AO’(I)))

IS given by

(1) = — 2 > x

k1+k2 i oeSh k]_ I)

X o ((bkl( ----- a(lq ) (bkz( (ki+1)r e e oo AU(i)))
X /,Lz(dbj(A ..... a(J) d)/—J( o(+1)r - AU(/)))
-5 Z ). o). (ol + 1), o) eg T
oeSJ 1
= > Z[[J(U(l) ----- o(), JeG+1),....0())] x
oeS; j=1

el (ko (1) +ko(i))x gabtr(XU(l) - Xo(i)Tb)Ta
(5.44)

where we have substituted (5.42) and used (5.35). In addition, [—, —] is the bracket
defined in (5.38c).
Likewise, the second term in (5.43) is given by

(1) = —% > dox

" ki+ko+ks=i geSh(ky, ko;i)

x 3 (b, (As()s - - Aa(kl)) ----- Grs (Aot k1) - -+ Asiy))

-2 i—1

_ Z D Z e (8 (Asy. - . As(j).

’ O'ES,J 1 k—J+1

¢k_j( GU+1)r - - As) Gik (As(ks1y, - - Asiy))
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-2 -1

- .ZZZ T

x [J(a(1),..., a(j)), S(a(j+1),..., o(k)), JS(o(k+1),..., a(i)] x

de f
X fbcdfaefg g ng

HM\
M‘
Q
=
=
Q
(-
+
=
2
=
=
2
=
_I_
=
2
=
X

X € (ka( )+~--+kc,(,))~x gabtr(xa(l) o 'Xa(i)Tb)Ta ,
(5.45)
where we have again substituted (5.42), used twice the relations (5.35), and defined

[J(1).J(2), JB)" = [J(1),J(2). J3)] - [U(3). J(1). J(2)] (5.46)

with [[—, —, —] the bracket introduced in (5.39¢). Hence, upon adding (1) and (ll) and
applying the contracting homotopy h, from (5.32), we find

J(, ..., M =
B 1
(kl + -+ k,‘)2 %
x Pa {i[[m ..... NJG+ 1. )]+ (5.47)

530 ) VI IRS R N (R ,->]]’}.

j=1k=j+1

This is precisely the Berends—Giele recursion [73] modulo the appearance of the projector
P... As before, it acts trivially, as follows from the current conservation property of the
expression inside the curly bracket, that'is, (ky +---+ k;) - {---} = 0.

Altogether, we conclude that the quasi-isomorphism between the L,-algebra govern-
ing Yang—Mills theory in the second-order formulation and its minimal model encodes
the Berends—Giele gluon current recursion relations. The actual scattering amplitudes
(1, ..., i) now follow directly from the homotopy Maurer—Cartan action for the minimal

model brackets (5.7a) for this quasi-isomorphism. For i = 2, we have

W(Al ..... A/+1) = i<A1,/,l,?(A2 ..... Af+1)>2YM (5488)
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with

(5.48b)

where J,(1,..., i) as given in (5.47). Note that the expression u?(Ag, ..., A;) is already
co-closed and hence, the projection p in (5.7a) acts by requiring that (ky + -+ + k;)> =0
in the case at hand. Note also that the symmetry of the amplitude (5.48a) under the

exchange of any two gluons is due to the cyclic property (2.21).

5.6. Colour structure of scattering amplitudes

To further demonstrate the power of our formalism, we examine the colour structure of
scattering amplitudes in YM theory. This is facilitated by our generalisation from the
L.-algebras from the BV formalism to A,-algebras.

Consider plane waves A; = a;X; = a;, dx*X; € H}nl(a) with a;, = €,(k;) e, where
ki is the on-shell momentum, €(k;) is the polarisation in Lorenz gauge k; - €(k;) = 0, and

Xi € u(N) is the colour part. The scattering amplitude then is

Ap(Ar Az A = 0D (A1 (Ao As(nen))
R (5.49a)
= 1 Z <Ag(1),m2_1<AU(2) ..... Ag(n)>,
0€Sn/Zn
where
[ee}
m? = (prTl(mo)OPOODintOE)|T/(mo) = Zﬁem(j)j (549b)
£=0

as follows from Equation (5.23), and with E satisfying again the recursion relation (5.27b).
The interaction vertices m; in Diy, as given by (4.14), lead to products of the colour parts
and kinematic functions. Given (composite) fields ®; = ¢, X; € 21, we can define colour-

stripped interactions m; by

m,-(Cbl ..... CD,) = m,-(d)l ..... ¢/)X1X/ (550)
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and D;,; acts on tensor products as in (5.17), e.g.

Dint(P1 @ Po @ P3) = mo(d1, $2) X1 Xo @ $3X3 + 91.X1 @ ma(do, P3) X2 X3 +
+ mz(¢1, $2, P3) X1 X2 X5 .

(5.51)

Moreover, A* acts similarly as in (5.25) on the components ¢; of ®; by inserting in all
possible places of the tensor product of the ®;s a complete pair of field and antifield

components,

VE = 9 (ke)la)(b] and W© = ¢°(k€)b)(al , (5.52)

where |a)(b| is the (N x N)-matrix with the only non-vanishing entry 1 at position (a, b)
and © are multi-indices including particle species (labelled by 8), momenta (labelled by k),
polarisations (labelled by €), and colours (labelled by a and b). Contractions of © thus

imply sums and integrals.

If A* is applied once in the recursion, the colour factor of the amplitude contains terms

of the form

N
DX ®@X®a)(b@b)(al X1 ® - ®X; (5.53a)

a,b=1

and

N
Z X1®--®X;®|a)(b|®@Xj+1® - @ Xk ®|b)(a| @ X1 ®---®@Xi . (5.53b)

a,b=1

Contributing to the amplitude (5.49a) are exactly those expressions in which all the
tensor products in the colour factors have been turned into matrix products by the Dj..
The terms (5.53a), with neighbouring insertion points, enter into planar Feynman diagrams
and they come with an additional factor of N. The terms (5.53b) enter into non-planar

Feynman diagrams.

More generally, it is clear that the £-loop n-point amplitude has maximally t = max{¥, n}
traces in its colour factor and that contributions with t traces come with a factor N¢t+1,

Thus, as well-known, planar Feynman diagrams dominate in the large-N limit.
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5.7. One-loop structure

Let us look at the structure of one-loop scattering amplitudes in more detail. Upon
iterating (5.27b), we find

miy = (Prrie) © Plowe) © (-1A%) o Elogm)) e -
Plogw) = Poo (1 +DineoHo) ™", (5.54)
E|O(h0) = (1+Hpo Dint)_l oEp ;

see also (5.21). The form of the interaction vertices and our above considerations directly

yield

m; (A .., A) = Ki_l[NJ/,1(1 ..... iyekix Xy X +

-1 o (5.55)
+ZK{,1(1 ..... l) elkl"XX1"'thr(Xj+1"'Xi)]

2 _
ki;=0

with kj; == kj +--- + k; for i < j. The currents J; 1, K{,l e Q! contain all the kinematical
information and eventually form the one-loop generalisation of the tree-level Berends—Giele
current [73] after symmetrisation.

The general form of the one-loop amplitude thus is

Ay (A A) =N D> ad(o(1), ..., o () tr(Xeq) - Xogm) +
0€Sn/%n

n—1
+ 2 apy(o(1),..., a(n)) x (5.56)
m=10€Sp/(Zmx Tn—m)

X tr(Xo) « - Xom)tr(Xo(ma) - Xom)

where o ; is a linear combination of (the components of) J,_1: and the a7, of K,’,”__fl.
The result (5.56) was first derived in [221] using different methods.
In [222] it was shown that the o, are linear combinations of the o ; so that the full

scattering amplitude can be constructed from its planar part. Explicitly,

a (1, ..., n) = (=17 > adi(e()...., a(n)) (5.57)
0eCOPm,p
where COP,, , are all permutations of (1,..., n) which preserve the position of n as well
as the cyclic orders of (1,..., m)and (m+1,..., n).
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The relation (5.57) can be derived from our recursion relation, but the derivation
simplifies significantly if we use the strictification theorem for homotopy algebras (see
e.g. [197]): any A, -algebra is quasi-isomorphic (read: equivalent for all physical purposes,
cf. [2,52]) to a strict Ay-algebra, which is an A,-algebra with m; = 0 for i > 3. YM theory
admits a first-order formulation which constitutes a strictification, see [223-225,31,2,52]
(see also [226, 227]) for the Ly-algebra description and the quasi-isomorphism, and we
readily apply our formalism. Specifically, we compute again scattering amplitudes using
formulas (5.49), but now ms = 0, which simplifies the discussion, and the plane waves have
to be replaced by their pre-image under the (strict!) isomorphism that links the minimal
models of the original A-algebra and of its minimal model.

As in the ordinary case, m, is anti-symmetric also in the strict case. Moreover, m3

cannot change the order of the colour parts X;, and so, a;; arises from the terms

nz_: Z <e(A,,), M(Dtree(AmH R QAR h(\I!Z)) ®

k=moeCpn,

Q@A) @ ® As(m) OVE ® A1 ® - @ Ap_1)) + (5.58)
+ M(Dtree(Aerl ® tot ® Ak ® \Ue ® Ao’(l) ®
® @ As(m) ®(VE) @ A1 ® - ®An_1))> |

where Dyee i= Dinto (HoDjne)"~ ! produces a formal sum of full binary trees with n+1 leaves
corresponding to the n+ 1 arguments and nodes corresponding to the map m, applied to
their children. We call these trees non-planar trees and the leaves corresponding to the
AL, ... Anm inner leaves, while all other leaves are outer leaves. For any tree, the sequence
of arguments corresponding to the leaves of the tree will be called its leaf sequence.

Similarly, the planar trees relevant in the planar contributions arise from expressions

n—1

2 Z <6(An), M(Dtree(Aa(l) K ® Ao-(k) ®

k=0 geCOP, ,

® (h(WE) @V + VW @h(WE)) ® A1) ® -~ ® As(n-1)))) -
(5.59)

For both the non-planar and planar trees, the linear function M assigns a combinatorial
factor to each tree, arising from the various sequences of the operations HoD;,,; and Ho A*
in the recursion relation (5.27b).

Upon stripping off the colour factor in each tree, tr(Xy- - X,)tr(Xme1---X,), we
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obtain two formal sums of binary trees with nodes corresponding to m, and leaf sequences
consisting of a;, ¥°(k, &) and h(y, (k, €)).

There is now a one-to-one correspondence between the two sets of full binary trees
with leaf sequence A;, ..., A and with leaf sequence Ay, ..., Ay, by inverting the order of
children in each of the k — 1 nodes (‘flipping the nodes’), which gives rise to a factor of
(_1)/(71.

In each non-planar binary tree with inner leaves, we can now flip common ancestor of
a 1, turning inner leaves into outer leaves. We start from common ancestors closest to
the leaves. In each flip, k inner leaves are turned into outer leaves, and together with the
initial flip, fully reversing their ordering leads to a relative factor of (—1)“. We stop this
process when all m inner leaves have become outer leaves, with a relative factor of (—1)™.

This map from non-planar to planar trees is clearly injective. It is, however, not surject-
Ive since its image does not contain planar trees which have vertices who have a 9 and a
root of a subtree containing both inner and outer leaves as descendants. These, however,
cancel pairwise: pick any outer leaf, and flip the first common ancestor with an inner leaf.
This leads to a negative contribution from another tree, which is included in (5.59) due
to the sum over the COP permutations.

It remains to compare the multiplicities M for non-planar and planar trees. Flipping
a node does not change the combinatorial factor for applying H o D;y; in different ways.
It can, however, affect the multiplicity arising from applying H o A* at different positions
since in the planar trees, inner and outer leaves can be joined to subtrees before applying
H o A*, which was not possible in the non-planar case. These subtrees are of the type

discussed in the previous paragraph and they cancel again pairwise.
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Factorisation of homotopy algebras and colour ordering

The tensor product between arbitrary homotopy structures is not defined in general. An
adequate notion of factorisation of homotopy algebras is instrumental to our interpretation
of the colour—kinematic duality and double copy: in this Chapter we consider a notion of
tensor product between (strict) homotopy algebras, and we generalise it with the intro-
duction of a twist. In Chapter 7 and Chapter 9 this construction will be applied to the
factorisation of the L.-algebras of biadjoint scalar theory, Yang—Mills theory and N = 0
supergravity, providing a Lagrangian, homotopy algebra realisation of double copy.

The material in this Chapter is borrowed from [6].

6.1. Tensor products of homotopy algebras

Tensor products of strict homotopy algebras. Let Ass, Com, and Lie denote (the
categories of ) associative, commutative, and Lie algebras, respectively. Schematically, we

have tensor products of the form

® : Assx Ass — Ass, & : Com x Ass — Ass, ® : Ass x Com — Ass, (6.1)

® : Com x Com — Com, ® : Com x Lie — Lie, ® : Liex Com — Lie.

In particular, let 2l and B be two algebras from this list for which there is a tensor product.

The vector space underlying the tensor product algebra 2l&®*5 is simply the ordinary tensor

product of vector spaces and the product m3®® is given by

mg@%(al ® bl, do ) bg) = mgl(al, 82) ® m?(bl, bg) (62)
for a;, a, € A and by, by € $B.
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On the other hand, the tensor product of two cochain complexes (A, m%) and (8, m?)

is defined as the tensor product of the underlying (graded) vector spaces 2 and B,

ARV = PERA®B) with (ARB), = P A ®B;, (6.3a)

keZ i+j=k

cf. (3.2). The differential m¥®® is defined as
mi®®*(a@b) = mMa)®@b+ (—-1)P*a@mE(b) (6.3b)

for ae 2 and b e ‘8.
Strict A,-, Co-, and Ly-algebras are nothing but differential graded associative, com-
mutative, and Lie algebras, respectively. For such algebras 21 and B, the above formulas

combine to

mi®® (a1 @ by) = mi(a) ® by + (—1)*ay @m(by)

(6.4)
mg@%(al ® bl, a» ® bQ) = (—1)‘b1‘%‘a2b‘mg(al, 32) ® m;B(bl, bg)

for a;,a> € A and by, b, € °B. If, in addition, the two differential graded algebras carry
cyclic inner products (—, —)y and {(—, —)m, then the tensor product carries the cyclic inner

product

<31 ® by, a» ® b2>m®% — (_1)|b1|%|32|Ql+5(|31|91+|32|2()<al' 32>m <b1, b2>% (6.5)

for a;,a, € A and by, b, € B. Here, s := |[(—, —)x|s is the degree of the inner product
on ‘B.

Tensor products of general homotopy algebras. There is a simple argument that ex-
tends the above tensor product of strict homotopy algebras to general homotopy algebras,
using not much more than the homological perturbation lemma. Let us therefore also
briefly consider this case, even though we will only make use of it in passing when discuss-
ing colour-stripping of Yang—Mills amplitudes.

An extension from the strict case to the general case can be performed as follows. Re-
call that the strictification theorem asserts that every homotopy algebra is quasi-isomorphic
to a strict homotopy algebra, see Section 2.4. for details. Using this theorem, we first
strictify each of the factors 2l and ‘B in the tensor product A ® B we wish to define. We
then compute the tensor product At ® Bt of the strictified factors. This is a homotopy
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algebra whose underlying cochain complex Ch(2(5*® B5") is quasi-isomorphic to the tensor
product Ch(2() ® Ch(®8) of the two differential complexes underlying the factors 21 and
. We can then use the homological perturbation lemma, most readily in the form used
e.g. in [3] for the coalgebra formulation of homotopy algebras, to transfer the full homotopy
structure from Ch(2°*® B°") to Ch(2() ® Ch(®B) along the quasi-isomorphism between the
cochain complexes. This yields a homotopy algebra structure on Ch(2() ® Ch(B) together
with a quasi-isomorphism to the tensor product of the strictified factors. We stress that
this transfer is not unique and depends on the choice of contracting homotopy (essentially,
a choice of gauge).

We stress that the fact that the tensor products (6.1) lift to corresponding tensor
products of homotopy algebras is found in the literature for special cases, see e.g. [228,229]
for the case of A,-algebras, as well as [230, Appendix B] for the case of tensor products

of Cy-algebras with Lie algebras.

Tensor products of matrix and Lie algebras with homotopy algebras. To capture
the colour decomposition of amplitudes in Yang—Mills theory, it suffices to consider the
tensor product between homotopy algebras and matrix (Lie) algebras. In particular, given
a matrix algebra (or, more generally, an associative algebra) a and an A -algebra (2(, m;),

then the tensor product a ® 2 is equipped with the higher products

mf@m(el@al, .. .,e,-®a,-) = e ~-e,-®m,—(a1, .. .,a,—) (66)

for all eq, ..., e;€aand ay,..., a; € A and / € NT. Evidently, these formulas can also
be applied to the tensor product between a matrix algebra and a C,-algebra, however,
the result will, in general, be an A-algebra rather than a C,-algebra as, for instance, the
binary product on the tensor product will not necessarily be graded commutative.

Next, we may consider the tensor product g® < between a Lie algebra (g, [—, —]) and a
Cy-algebra (€, m;). We obtain an L-algebra (£, u;) with £ := g® €, however, the higher
products u; are less straightforward than the ones in (6.6) for A,-algebras. Nevertheless,

they can be computed iteratively, and we obtain for the lowest products®

piler®ci) = et®@my(c), (6.72)

pa(e1®cr,ea® ) = [er, e2] ®ma(cy, &)

LAs detailed in (2.19), the graded anti-symmetrisation of any A-algebra yields an Le-algebra, and so
the form of the higher products can be gleaned from the graded anti-symmetrisation of (6.6).
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and
ps(e1®cr,e0® 2, e3®c3) = [en, [e, e3]] ®ms(cy, &, C3) —
— (~1)lalelelele; [es, €3]] ® ma(co, 1, C3) +
+ (=1)lalelelel[ey, e5], e3] ® ms(c, €1, G3) |
Ha(e1® Cle2® 2, e3@ 3,04 @ Ca) = [e1, [e2, [e3, es]]] @ mu(cr, 2, G5, ca) —
— (—1)lelelslefey [es, [e2, e4]]] @ ma(cy, G5, G, C4) —
— (—=1)leldelee, [eq, [e3, e4]]] ® Ma(Ca, c1, C3, C1) +
+ (—1)laleleletlelo[[o;, e4], es], e2]®m4(c2,c3,cl,c4)—
— (—1)laletlellsle o), [e,, e4]], €3] @ ma(cs, c1, G, C4) —
— (—1)laleleletlalotleld sl [T, e4], es], €3] ® malcs, 6, €1, Ca)
(6.7b)
for all eq, ..., es € gandcy,..., cs € €. We list these formulas here as they are useful

in colour-stripping in Yang—Mills theory and we have not been able to find them in the

literature.

6.2. Colour-stripping in Yang—Miills theory

As an example of the above factorisations, let us discuss colour-stripping in Yang—Mills
theory and show that this is nothing but a factorisation of homotopy algebras. For con-
creteness, let us consider the gauge-fixed action (4.17) and the corresponding L.-algebra
Cav

If the gauge Lie algebra g is a matrix Lie algebra, then the L -algebra 2;\“;"9f Is the
total anti-symmetrisation via (2.19) of a family of A-algebras. One of these is special in
that it is totally graded anti-symmetric [3] and thus is also a C..-algebra.

YM, gf
Lay

More generally, we can factorise into a gauge Lie algebra g and a colour C.-

algebras (’:YM 9" using formula (6.6),

Lot = g el (6.8)
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Explicitly, the C.-algebra QE\“;"gf has the underlying cochain complex

Ql Md —(avo* ; Ql Md

aﬂ'
d d .
OO
r M (6.9a)

c
oo
—>
¢ (M ¢
—_—— —_—— —_—— —_——
C@YM.of _ gYM.of — gYM.of — gYM.of
TSBY,2 "BV, 3

= %BV,0 “SBV, 1

where we label subspaces again by the fields parametrising them

YM, gf YM, of YM, gf YM, gf
€BvéJ :Q:BV(?C' €Bv1g = @ €Bv1g<1>
de (A b, ct)
eYM.of _ (‘D oYM, of eYM.of oYM, of (6'9b)
BV,2 BV,2,¢ ° BV,.3 T “BV,3,ct -
e (AT, b+, ?)
The non-trivial actions of the differential m; are
=ne
e o e @ e,
O pe (A b, Et)
A, —(0,0" — 5Z (A, — dub
b | O*A, + Eb e P ey, (6.9¢)
- 0 $e (At bt,)
Al

_ YM, of
bt | > —0M(AL +0,C) € Ty
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the binary product m, acts as

(c1.) = gac € €.,
AL —CcA,
clo||==9| o | @ e
e+ —or(cAy))  PeAmED
Al c(Af +0u0)
c.| ¢ 2 g 0 € D s,
bt 0 pe (At b+, E)
(c.c*) ¥ gect e Qs L, (6.9d)
A, Atb
b ¢ || ™ —gA (AL +0,8) e €L
E+ b+
Alu Aoy 5”(/41[”/42“]) + Afa[,,Azu] — 5[1,/41“]/45
b, b, 2> 2g 0
fong Cy 0
YM, gf
€ &, Cav'd g o
¢pe(At, b+, Q)
and the ternary product ms acts as
Alu, A2U A?m AI{A2[/J.A3U] - Al[p,AZU]Ag
by || b || bs s —2g? 0
&) \a) \& 0 (6.9€)
YM, gf
€ @ (U 9
¢e(At,bt,T)

It is a straightforward exercise to check that these higher products do indeed satisfy the
C-algebra relations (2.1) and (2.14).

The factorisation (6.8) descends to the minimal model £5 9",

Lavare = g e, (6.10)

and the higher products in the C,-algebra €M 97° describes the colour-ordered tree-level

scattering amplitudes. We set

> tr(eay, Ca)Ano(a(D). a(n))

0€Sn/%n

dyo(l,... n) = (6.11)
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and we have the formula
Ano(l,...,n) = <{nm;_4(1,...,n—=1)), (6.12)

where the numbers 1, ..., n represent the external free fields. The symmetry of the colour-
stripped amplitude is reflected in the graded anti-symmetry of the higher products m? in

the C.-algebra €"™™-97° because all fields are of degree one.

6.3. Twisted tensor products of strict homotopy algebras

The factorisation of the L,-algebras corresponding to the field theories involved in the
double copy is a twisted factorisation and we define our notion of twisted tensor products

in the following.

Cochain complexes. A graded vector space is a particular example of a cochain complex
with trivial differential. In our situation, we would like the vector space to act as an Abelian
Lie algebra on the cochain complex. We therefore generalise the usual tensor product as
follows. Given a graded vector space U together with a cochain complex (2(, m), we define

a twist datum 71 to be a linear map

710 — TYREndA) ,
v ) = DT e,

us

(6.13)

where the index 7 labels the summands in the twist element 7;(v).! Given a twist datum

T1, the twisted differential is defined by

mi(v®a) = (=1 () @ my (172 (v)(a) (6.15)

™
for v®ae UW®A. This rather cumbersome formula describes a rather simple procedure
and it will become fully transparent in concrete examples. Evidently, there are constraints

on admissible twist data. Firstly, mT* has to be differential and satisfy

mom? = 0, (6.16)

'In Sweedler notation, popular e.g. in the context of Hopf algebras, we would simply write

T1(Vv) = Tl(l)(v)®71(2)(v) . (6.14)
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and secondly, mT* has to be cyclic with respect to the inner product (6.5) on the tensor
product U ® 2A. We note that as it stands, the twisted tensor product is not necessarily
compatible with quasi-isomorphisms as its cohomology is, in general, independent of those
of the underlying factors. This is not an issue for our constructions, but explains why the
above twist is not readily found in the mathematical literature.

As we shall see momentarily, one of the key roles of the twist is the construction of
a complex of differential forms from a complex of functions. The following toy example

exemplifies what we have in mind.

Example 6.1. Consider the graded vector space 0 and the cochain complex (2L, my)

defined by
Y= MY@R and A = (€M) L g2 (M) . (6.17)
DU
=o =9 =

For a basis (v*,n) of M? @ R, a choice of twist datum is given by

0
Ti(v*) = 0®0 and Ti(n) = v“@axﬂ. (6.18)
The complex U ®; A with the twisted differential m] is then
QY (M) = MY® ¢ (M) QY MY = MY® ¢ (M)
€*(MY) =~ RRE*(MY) ¢ (MY = RRE*(MY)
(6.19)

Hence, we obtain a description of the cochain complex (¢*(M?)®Q(M?), d), albeit with

some amount of redundancy.

Differential graded algebras. Twisted tensor products for unital algebras were discussed
in various places in the literature, e.g., in [231]. We would like to twist the ordinary tensor
product of differential graded algebras introduced in Section 6.1., by extending the notion
of twist datum from cochain complexes as follows. Given a graded vector space U and a
differential graded algebra (2, my, m,), a twist datum is a pair of maps, one linear and the

other one bilinear,
710 — TVREnA) ,
v e mi(v) = ) @1 (v)

us

(6.20a)
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and

T VRV — VE End(Ql)@End(Q()

6.20b
Vi® Vo > To(vy, Vo) Z vl,v2 XT3 (vl,v2)®7'27r'3(v1,v2), ( )

where we again label summands in the tensor product by . The twisted tensor product
has then higher maps

Tv®a) = (-1 W) @ mi(172(v)(a)) |

™

m32(vi®a;, b ® ap) =
= (=Ml Il Y T T (v v) @ ma (TSR (v, ) (a), TE R (v, v2) (22)) -
' (6.21)

Note that in general, one may want to insert an additional sign (—1)I7"(v2lulalx jnto
this equation; all our twist, however, satisfy |T§'3(v1, vy = 0.

Clearly, not every twist datum leads to a valid homotopy algebra, and just as in the
case of cochain complexes, one has to check that this works for a given twist by hand.
We also note that the twist datum relevant for the double copy will be able to mix types
of homotopy algebras, that is, for 2 an L,-algebra, we obtain a Cy-algebra and for 2 a
Cy-algebra, we obtain again an L -algebra.

Altogether, our twisted tensor products are a way of factorising strict homotopy algeb-
ras in a unique fashion as necessary for the double copy. However, it remains to be seen

If our construction in its present form is mathematically interesting in a wider context.
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Factorisation of free field theories and free double copy

The first step toward the realisation of A/ = 0 supergravity as the double copy of Yang-
Mills theory is at the level of the free theories. In this Chapter, we expose the factorisation
of the cochain complexes associated to the L,-algebras of the theories relevant to our
interpretation of the double copy prescription, namely biadjoint scalar field theory, Yang—
Mills theory, and N = 0 supergravity. We obtain explicit field redefinitions that link
Yang—Muills theory double copy and A = 0 supergravity at linear level.

The double copy of supersymmetric gauge theories will be discussed in the upcoming

paper [190]. The material in this Chapter is borrowed from [6].

Summary. Recall that the unary product w; in any Ly-algebra is a differential. Con-

sequently, any L,-algebra (£, u;) naturally comes with an underlying cochain complex

Ch(g) = (- 2o g g o o P ) (T)

In an L-algebra corresponding to a field theory, the cochain complex Ch(£) is the L,-
algebra of the free theory with all coupling constants put to zero. In each factorisation,
we thus expose the field content as well as the free fields that parametrise the theory's

scattering amplitudes.

We will obtain the following factorisations of cochain complexes isomorphic to the

cochain complexes underlying the L.-algebras of biadjoint scalar field theory, Yang—Mills

93



94 7.1. Factorisation of the cochain complex of biadjoint scalar field theory

theory in R¢-gauge, and gauge-fixed A = 0 supergravity:

Ch(gg?zdsz) = Ch(ggaRdsz) = g® (3 ® Ch(&cal)) ,
Ch(LgNst) = Ch(Efisr) = 9@ (Rin®y, Ch(Scal)) (7.2)
Ch(Led) = Ch(&M) = Rin®,, (Kin®,, Ch(Scal))

where g and g are semi-simple compact matrix Lie algebras corresponding to the colour
factors, Rin is a graded vector space and Gecal is the L,-algebra of a scalar field theory.
LYM . £l and £A5% are L.-algebras associated to field redefinitions of biadjoint
scalar theory, Yang—Mills theory, and N/ = 0 supergravity. We see that the cochain
complex Ch(£8=2) is fully determined by the factorisation of Ch(£%¥.—), which is nothing
but the double copy at the linearised level.

There are two points to note concerning the factorisations of all those field theories
but that of biadjoint scalar field theory. Firstly, these factorisations are most conveniently
performed in particular field bases. We explain the required changes of basis, which are
canonical transformations on the relevant BV field spaces. Secondly, these factorisations
are twisted factorisation of cochain complexes of the type introduced in Section 6.3., with
common twist datum 7y, as indicated in (7.2). We remark that the twist we will consider is
dictated only by Yang—Mills theory L.-algebra E\é’,\{'ST. In general, applying different twists

one obtains inequivalent theories.

7.1. Factorisation of the cochain complex of biadjoint scalar field the-

ory

Let us start with the case of biadjoint scalar field theory as introduced in Section 4.2..

This case Is particularly simple as its cochain complex Ch(Sgg‘gT) factorises as an ordinary

tensor product.

Factorisation of the cochain complex. \We can factor out the colour Lie algebras g and

g leaving us with the L,-algebra Geal of a plain scalar theory,

Ch(£23¢r) = 9® (G® Ch(Scal)) (7.3)

Tommaso Macrelli



7.1. Factorisation of the cochain complex of biadjoint scalar field theory 95

where Geal is a homotopy algebra of cubic scalar field theory which we will fully identify

later in (9.4). The natural cochain complex is*

+
Sx s

Ch(Geal) = | §[-1] 2 §[-2] |. (7.4)
Sealy Gealo

concentrated in degrees one and two, cf. [52,2]. Here, s, and s} are basis vectors for the

function spaces §[—1] and §[—2] with § given in (3.28). Their inner product is given by

(sx.85) = 80 —x) . (7.5)
fields anti-fields
| =lgn | [—le | dim | = fgn | | =]e | dim
sx| O 1 | ¢4-1sf| -1 2 | 4+1

Table 7.1: The basis vectors of Geal with their L-degrees, their ghost numbers, and their

mass dimensions.

fields anti-fields

factorisation | —lgn | | =] | dim factorisation | —lgn | | —]c | dim

© = e,858,p?(x) 0 1 g1 " =es@ssfer®(x)| -1 2 441

Table 7.2: Factorisation of the BV fields in the theory of biadjoint scalars. Note that we

suppressed the integrals over x and the tensor products for simplicity.

The Ly-degrees correspond to the evident ghost numbers and the differential induces
mass dimensions, and both are summarised in Table 7.1. The factorisation of the BV
fields is listed in Table 7.2. The differential p; : £33r 1 — Landr » is given by (6.3b) for

the untwisted tensor product,
pi(e) = pa (ea®é§®fddx sxw"’é(x))

= e,®8;Qud™ (jddxsxwaﬁ(x)) = O,

1See (3.4) for the notation F[k].
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where ,qu[ is the product appearing in (7.4). Furthermore, the inner product is

.07 = tryleae)trf@sdy) | 4% [ ¥ (o8 700" P00

(7.7)
— [ ax e

In conclusion, we have thus verified the factorisation of the cochain complex (7.3).

7.2. Factorisation of the cochain complex of Yang—Miills theory

The case of Yang—Mills theory is more involved than the previous one. We start with
the gauge fixed BV action (4.18) and perform a canonical transformation on BV field
space, which then allows for a convenient factorisation of the resulting cochain complex
Ch(SBRST) For the following discussion, recall the gauge-fixing procedure and the gauge-

fixed action from Section 4.3..

Canonical transformation. \We note that the term J*A7 will vanish for physical states
due to the polarisation condition p - € = 0 where p, is the momentum and ¢, is the
polarisation vector for Aj. Off-shell, and at the level of the action, our gauge fixing terms
allow us to absorb quadratic terms in 6“Aj in a field redefinition® of the Nakanishi—Lautrup
field b?. We further rescale the field b? in order to homogenise its mass dimension with
that of A7, which will prove useful in our later discussion. Explicitly, we perform the field

redefinitions

Ea _ Ca , E+a _ C+a ,
Aa a A+a a 1—+1- E a
Az = A Are = At .
: ) ¢ = ¢ (7.8)
Ba — S (p+ [ e oFA B+a — —pte ,
S(o e ea) 5=
Ea = @ g-&-a _ E+a

Under these field redefinitions, the action (4.18)

syM - J déx {%AMDA‘Q“ + (A2 — &, O+ §b,b7 + ba&“AZ} + M.t (7.9)

The redefinition of the anti-fields preserves the cyclic structure of the L-algebra; it is mostly irrelevant
for our discussion.
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where SEN:I™ represents the interaction terms, turns into
s Jddx {34,004 - &,0& + 1h,05 + £B, VT4 + Sy (7.10)

where we rewrote the gauge-fixing parameter as
£ = ] —. (7.11)

Note that at the level of the BV field space, the redefinitions (7.8) constitute a canonical
transformation. For a more detailed discussion, including the precise meaning of the

inverses of the [] operator, see Remark 3.2.

L.-algebra. The action (7.10) is now the superfield homotopy Maurer—Cartan action (3.25b)

for an L-algebra £5¥ . The complex underlying £4M+ is given as

Az Ate
QM) @y ———— QM) ®g

Agvﬁau\\\\
E\Eéu \

b hta

(M) ®g ——= €M) ®@g
¢l cta o C+a
(M) @g —> €F (M) ®g (M) @y —L w7 (M) @
R — — —
- E\é’}\QAST 0 - S\éRST 1 - LE,I\?AST 2 - L’\BMRAS'I' 3
(7.12a)
with _
2BRST 0 2BRST 0,& SBRST 1= @ S\B('I\?AST,l,d) ,
¢e(Ab.E%) (7.12b)
SBRST 2 = @ SBRST 1,¢ 2BRST 3 = E\B(glsra et -
pe(A+, bt &)
The differential w; acts on the various fields as follows
(€?) = —0E € S\B('I;iASTl g+ o
A2 A2 — &/0ao,b
b Ob7 + &VOoA; be(Av.Bh)

= H1 = aYM
(¢?) ¥ —0c” € LeRsT, 3, 2+
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with all other actions trivial. The non-vanishing images of the higher products u, and us

are
(A5, &%) 25 —gh 20" (ARE) € BXNer 1=t .
(€%,8%) # —gfp 80,8 € N, A
(A2, AD) 2 3Blghut0”(ADAL) € BN, 4v (7.12d)
(A3, E%) #5 —gfyPALOHES € SNt 5 e
(As, A AD) 5 —3lgPh Ty "ACATAS € BTN, 4

and the general expressions follow from anti-symmetrisation and polarisation. \We note
that the formulas (3.26) are useful in the derivation of the explicit form of these higher
products.

By construction, (EE“R"ST, w;) forms an L-algebra, and with the inner products

A A+ = f dox A A, (BB = f dx BB
(7.13)
(& & — f dxEet | (BED — - f dix EOEF

it is cyclic.
We stress that the Chevalley—Eilenberg differential of the Ly-algebra £5M . is not the

usual gauge-fixed BV operator!
XYM, gf EYM, gf
Qpv o= {SBV ’ '_}‘$f=o ' (7.14)

where §\B(\'\,/"9f is the gauge-fixed BV action that is obtained from (3.29) by the canonical
transformation determined by the gauge fixing fermion (4.16). Instead, we are merely
using the general correspondence between Lagrangians and L-algebras as pointed out in
Section 3.2.. This is reflected in the images of all higher products of (7.12a) lying in

spaces parametrised by anti-fields.

Factorisation of the cochain complex. As explained in Section 6.2., we may factor out
the gauge Lie algebra g, and we are left with a C,-algebra. This C,-algebra can be further

factorised into a twisted tensor product, extending Example 6.1, and we obtain

Ch(£5Mr) = g® (Rin®,, Ch(Scal)) . (7.15)

THere, |+_g IS again the restriction to the subspace of the BV field space where all anti-fields are zero.
!
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Here, g is the colour Lie algebra, Ch(Gcal) is the cochain complex (7.4), and Kin is the

graded vector space?

g vk n a
Rfin = R[] ® (M’@R) ® R[-1], (7.16)
~—— — ~——
=:Rin_4 =: Ring =: Ring

where the typewriter letters label basis elements of the corresponding vector spaces. The

natural degree-zero inner product on RKin is given by

(gay = -1, *v) =", {(@n =1. (7.17)

The elements of Kin also carry mass dimensions, which are listed in Table 7.3.

We summarise the factorisation of individual Yang—Mills fields in Table 7.4. A few
remarks about the structure of the factorisation are in order. Whilst fields always have a
factor of s, anti-fields always have a factor of s}. This guarantees that the inner product
is indeed that of the factorisation: (7.13) is reproduced correctly using the factorisations
given in Table 7.4 and Equation (7.17) complemented by the inner product (e, ep) =

—tr(e,ep) = 0, ON @t

& &

<ea®g®fddx1 §x, C7(x1), eb®a®fddx2 s;;E*b(x2)>
= —(e,, eb><g,a>fddx1 JddXQ 5(d)(xl — %) &(x1) €T (x2)
= Jddx ¢(x) & (x)

(7.18a)
(A AYY = <ea ® v* ®Jddxl SXlAZ(Xl), ep®Vv' ® Jddxg S;;A:_b(Xg)>

(e ep) (v*, v f d¥x fddx2 5 (x4 — x)A%(x1) AFP (o)

= f dx A2 (x) AT#(x)

1See (3.4) for the notation R[k], etc.
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(b, b")

<ea ®n® Jddxl s, b?(x1), ep ®n ®Jddx2 s;;lN)*b(xg)>

(s ep)(n,n) J d?x J 4% 6@ (x1 — 32)&(x) €2 ()
_ J 49 B(x) B (x) |

ETY = <ea®a®fddx1 sxlfa(xl),eb(@g@fddxg s;5+b(xz)>
= —(e, ep){a, g>fddx1 Jddxg 6D (x — x2)E7(x1)EP (x2)

= —Jddx C(x) e (x) .

Note that the kinematic factor Kin essentially arranges the fields in a quartet: the physical

(7.18b)

Py
an
Ol

field has a ghost, a Nakanishi—Lautrup field, and an anti-ghost. These patterns reoccur in

the double copy.

| = 1lgn | | —le | dim
el 1 | -1 ] -1
VU'
n
a —1

Table 7.3: The elements of Kin with their L, -degrees, their ghost numbers, and their

mass dimensions.

To extend this factorisation of graded vector spaces to a factorisation of cochain

complexes, we introduce the twist datum 771 given by

Ti(v*) = v ®id +én® \/Liﬁ“ ,
Ti(g) = g®id, 3 1 Ti(a) = a®id, (7.19)
'7'1(1’1) = 1’l®ld —£v“®\/—iau ,

and we shall use the convenient shorthand notation

Ix g, A% (x i £ Ix s, A%(x
() (Sd A )) B (V“,n)@( d @au> (Xd A ))_ (7.20)

{d¥x s,b7(x) \%&“ id {d¥x s,b%(x)
The twisted differentials on g ® (Rin ®,, Gceal) are now indeed those of (7.12c¢):

(@) = 1 (0,088 [a'xsci0)
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fields anti-fields
factorisation | —lgh | | —|e | dim factorisation | —lgh | |—|e| dim
C = e,85,C%(X) 0 42| &" =ezasfit?(x) —2 3 442
A= eav“sxﬂz(x) 1 d_1] A+ = eav“s;’ﬂza(x) -1 2 g+1
b = e,ns, b?(x) 0 1 41| b* =e,nstbt(x) -1 2 g+1
C = e,as,C7(x) -1 2 g Ch = e,gsfCT(x) 0 1 g

Table 7.4: Factorisation of the redefined BV fields for Yang—Mills theory from Table 4.1
after the field redefinitions (7.8). Here, e, denote the basis vectors of g. Likewise, g, n,
v#, and a denote the basis vectors of Rin defined in (7.16). Furthermore, s, and s} are
the basis vectors of Geal from Table 7.1. Note that we suppressed the integrals over x

and the tensor products for simplicity.

= —,g@ud™ (J d9x sXEa(X))

= ea®g®fddxs;{ —Oe&x)} . (7.21a)
A B s §dx sxﬂj(x)
() oo (252)

= e,® (v* n) @ ud™ ~id _\/Li&“ Jdix SX%Z (9
J50¢ id {d9x s,b?(x)

i dexs;{mzu)—é@maw})
= a®( ' >®(gddxsi{DBa(X)+§\/ia#’z\lat(x>}

- oo (fsggdddfsif{{gm i &0 fg(ix;}}) | (7.21)
(&) = i (22220 [x0200)

= —e,®a@uf™ (Jd"xsxfa(X))

= ea®a®fddxs;{ —O&(x)} . (7.21c)

Altogether, we saw that the factorisation (7.15) is valid for twist datum 7;.
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7.3. Canonical transformation for the free Kalb—Ramond two-form

To keep our discussion manageable, we shall discuss the canonical transformations for
the free Kalb—Ramond two-form and Einstein—Hilbert gravity separately. For the following

discussion, recall the gauge-fixing procedure and the gauge-fixed action from Section 4.4..

Canonical transformation. Analogously to the case of Yang—Mills theory, we can now
perform a field redefinition in order to eliminate the quadratic terms that would vanish
on-shell in Lorenz gauge due to contractions between momenta and polarisation tensors.
We also insert inverses of the wave operator to match the mass dimensions of fields of

L-degree one. The field redefinitions are

X o= A Xt o= At

~ ~ 1—4/1—

A= Ny A= N ¢ gau'y+

. 3 < 1—v1-¢ ) N O

- = OPA + =t

i 0 £ g a
5 . 1—y1I—
B = B Bl = L+ S o
a, = é <au Ou€ — a; = % (a; + 2;;6M5+) ,

1-¢&. .,
— ﬁ&lﬁ oy, + (7223)
1\/ﬁauBuu)
3

€ = e+ 2_Dga“a# EF = #e*—&“a:

~ — ~ _ 1 — 1 —

Ao = A, R B

- £ ( 1—41-€_ - ) - 1_

— S oHN, ) + ot
%= 5=
with
E =& = &-6. (7.22b)
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These redefinitions constitute canonical transformations on the BV field space. Upon

applying these transformations to the action (4.27), we obtain
SKR L = fddx {%éwm B — N, OA + L&, 06" — £(0"a,)° + 2606 - AOA -

O]
- 307 + é&vO By, + VDN - EvE M,
where we have again used the shorthand £ = , /17_5, cf. (7.11).

L.-algebra. The action (7.23) is the superfield homotopy Maurer—Cartan action (3.25b)
of an Ly-algebra, denoted by SBRST that is given by

gt

(M%) —2 5= (o)

A As Au Ag
Ql(Md -0, QMY QM4 —5, o1 (M)
~&/8 au\/sf o0 —é«ia*\/é@aﬂ

. y Nt
At y -0 o
% (M —H, @=(M) F*(MY) — €* (M)

5\ \:\ i+ é;w é;,ru i D 5\+
%OOGMd) \ cgoo(Md) Q2 Md \ Q2 Md) cgoo(Md) \ %OOGMd)
&fﬁ”\/éfﬁ[u
5Qauau
S —— S —— S —— S ——— N —— S ——
=: §KR =: §KR | KR =: §KR . gK = gK
BRST, —1 BRST, 0 BRST, 1 BRST, 2 BRST, 3 BRST, 4

(7.24a)
with
’Q’ESST,fl = QEEST 1,8 ’SEEST,O = @ ’SEEST,O,q) '
oe (R A3, 2F)
’QEEST,l = (‘D SBRST 1,¢ SEESTQ = (‘D SESST,Z(p ,
pe (EAT. 5+, B, &) pe(E+ AF, BT, at)
’SEEST 3 (‘B SEEST 3, ¢ £BRST 4 SEI\RASTA S+
de (At 4+, X)
(7.24b)
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and the non-vanishing differential

(A) &5 OX e KR

BRST,0, 3+ '
A ) OA, —&vOo.5
( NIJ’ }M—> —_ ( NIJ’ ~ ’3[_},,1 € @ SBRST 1, d)
i D’Y‘*’&\/Eo /\“ /=\ A1)

B, B,, — 2&y/O6,.6.
< we ( 3 = > ff/ﬁ([’i2 ] e @ ERsrh,. (7240
D&, + V0B, + 20,0, pe(Br.at)

A OA, — EvOaA
( H '/J'_) — ( :N’ ~ [,L,i € @ SBRST 3 d)
D'7+£\/ia /\M ¢,€(7\+ﬁ+)

A £ OX e SEESMM :

There are no additional higher products because the theory is free. The expressions

(AT = —fddxﬁfﬁ, AT = Jdd A

A ATY = Jddx/\“/\:[ , (A AT = Jdd NENE

(BB = 1 f d9x BB, | (7.25)
@ a*y = [dixa*a) (E,EY) = fd X EE

define a cyclic inner product on (£5Mc+, p1).

7.4. Canonical transformation for Einstein—Hilbert gravity with dilaton

The case of Einstein—Hilbert gravity with dilaton is now more involved that of the free
Kalb—Ramond field. For the following discussion, recall the gauge-fixing procedure and

the gauge-fixed action from Section 4.5..

Canonical transformations. \We start from the Lagrangian (4.39) but add a scalar kin-

etic term for the dilaton ¢,

gerHD,gf = gOeEvaf + %(p‘:‘(p i (726)
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We perform a field redefinition analogous to the case of Yang—Mills theory and the Kalb—
Ramond field, absorbing various terms that vanish on-shell, as well as the trace of h,, in ¢
and ensuring that all fields come with the right propagators. For the fields of non-vanishing

ghost number, the transformation read as

13

X, = X, L= X
2 . i 2+ . +
g = @5, Gt = VOB
- _ = _ 1—+/1— _ (7.27a)
Xu = Xy, I = X; - TgauﬁJr v
’ 1 (2 1-VI—£€_,. ) y _
= — - 0*X, |, Bt = o
where we worked in the special gauge
) _1-VIZE L, AE+ 2T E-VI-E-1)
G=1, GG=—F—, G6=—5, G=— :

VE
(s = ;@0(1 +4/1—€) —€(5(34 +294/1 — &)+

45— 40
4 8E(—23 —154/1 — €+ 2(4 + /1 g)g))) ,

Cll = 0.

VE(4€ - 3)

1
264+41—-€6-1"

o =0, Co =

(7.27b)
From the expressions for (7 and (g, it is already apparent that the field redefinitions we
would like to perform here are much more involved than in the case of the Kalb—Ramond
field.! Because the resulting expressions for the fields of ghost number zero are too
involved and not very illuminating, we restrict ourselves to the case & = 1 corresponding

to Feynman gauge in Yang—Mills theory. Here, we have the inverse field transformations

o a0 L0l hey 48, + B

h v = v+ -

s g O B VO
w, = —0,0 — ®hu — V@, |

T o= =206+ 0% — *“hy, (7.27¢)

o & 04"hy,
0 =5t 3t am
N S T
M A T M

We suspect that there is a simpler field redefinition in a simpler gauge which we have not been able to
identify yet.
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with readily computed antifield transformations. We note that the field redefinition for
© agrees precisely with the expectation of how the dilaton should be extracted from the

double copied metric perturbation h.

For general &, the total Lagrangian to lowest order in k, reads as

FEED = 1RO + e, O + 38204 @,)? + Eat VO P, —
— 1506 + 1xOF + ERVOoE* + LERO0P — (7.28)
LOX

~B0B + EBvEo.X* — E5vTaK* .

NI

><|z

This is the quadratic part of the Lagrangian of the superfield homotopy Maurer—Cartan

action (3.25b) for an Ly-algebra £&20  The latter has underlying complex

2 Gt

¢ (M?) —— F* (M)

Rn . R Rn . Ku
Ql(Md) y Ql( d) Ql( d) y Ql(ﬂ\/[d)

. /\k' . . /\' }

B 0 Bt G . Bt
¢P (M) —= ¢ (M) ¢* (MY —= € (M) (7.292)
N — |
= SR8, = 5., ~ SR8 . = SR8 .
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with
SRTo = D LRSRos. LSRG = Sy (G
fieEHD e fieEHD fieEHD R e fieEHD (7.29b)
SeBRST,3 = @ ’geBRST,&d)' ’QeBRST,2 = @ SeBRST,ZdJ'
pe (B, XT) de B+, X, B+, wt, 7T
and the lowest non-vanishing products
(%) = - (0550 e @ mm.,
s 06 + &vOdux* pe(X+,6+) B
P [ hy — 2600, @, + £20,0,7
@, | | 0@+ EVO R, - EVO0T - E0u0v0, | € D LSt
# Diru(x)+2£~\/iéﬂz“nu(x)+§2a“a”ﬁw pe(ht, &+, 7+)
(2) = -0 @ wama.
,8 D.B"‘E\/iaux'u ¢€()2+,5+) o
(7.29¢)
The £5540 algebra is endowed with the following cyclic structure:
(RRHy = f xR (RRT = f dox RERE
BB = [exBE . BB = - B
Gy = 1 J d9x TR, (7.30)
(G, @t = fddva%; ,
G 7ty = %Jddxfm"r*, (5,6%) = —Jddx55+.

7.5. Factorisation of the cochain complex of N = 0 supergravity

The factorisation of the cochain complex of the L, -algebra for Yang—Mills theory now
fixes completely the factorisation of the cochain complex of the L, -algebra of N/ = 0

supergravity. In view of (7.15), it thus merely remains to verify that
Ch(£hz2) = Rin®,, (Rin®,, Ch(Scal)) (7.31)

at the level of cochain complexes, where RKin is given in (7.16) and Ch(Scal) in (7.4).

Furthermore, the twist in the outer tensor product of (7.31) will only affect Ch(Scal) and
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commute with the other factor of Kin. Let us stress that we could have allowed for two
different twist parameters for each of the tensor products. This, however, would make our

discussion unnecessarily involved.

Factorisation of fields. It is not surprising that the identification works at the level of
graded vector spaces for the physical fields. This is merely the statement that a rank-two
(covariant) tensor decomposes into its symmetric part and its anti-symmetric part. The
symmetric part splits further into the trace, which can be identified with the dilaton, and
the remaining components, which describe gravitational modes. More interesting is the

sector of unphysical fields, and the complete factorisation of all fields is given in Table 7.5.

The elements of Kin form a quartet, which is reflected in the well-known quartet of

fields in the gauge-fixed Yang—Mills action:

n b?
T T
vH — Al (7.32)
VAN SN
g a Ca Ea

In the last diagram, and in the following ones, a field is connected to the associated
Nakanishi—Lautrup field, ghost and BRST antighost by an upward arrow, a left downward
arrow and a right downward arrow, respectively. The relationships between the terms in
the diagram correspond to the entries in Table 7.4. Each field in Ch(£45%) thus lives in
the tensor product of two such quartets. This tensor product further splits into (graded)
symmetric, anti-symmetric, and trace parts, which belong to the two-form B,,,, the grav-
iton modes h,,, and the dilaton ¢. Because the product of two ghosts gg is automatically
anti-symmetric, only the B-field has a ghost for ghost A. On the graviton/dilaton side,
we do not have the higher gauge transformations, but contrary to Yang—Mills theory, the

ghost is a vector. We can summarise the relations between the fields in the following two
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fields anti-fields
factorisation | —lgn [ | —]c | dim factorisation | —|e | dim
X = —[g glsiA(x) 2 ~1 | 4-3] X =—[aalsfix (x) 4 | 4+3
AN=|g v”]sX%NM(X) 1 0 |¢-2 At =[a V“]SI%]\; 3 |¢+2
¥=lg n]sX%N(X) 1 0 g4-2 Nt = [a,n]sj\%”’(x) 3 442
B = [v“,v”]sxﬁéw(x) 0 1 g—1|Bt=[v v”]sjﬁé:,j(x) 2 g+1
&=n,v ]sxx%du(x) 0 1 |[¢-1| a*=n V“]Si%h"t(X) 2 | 4+1
~§= —[g a]sx%%&’(x) 0 1 g-1 82* = —|[g, a]sj{%ff*(x) 2 | ¢+1
A= [a, v“]sX%/_\M(X) -1 2 g At =g v“]sj%/_\:(x) 1 g
Folanlsli) -1 | 2 | ¢ | A clgalsiite) | 1| ¢
A= —[a, alsiA(X) -2 3 1¢+1 At =—[g glsfiAT(X) 0 | ¢4-1
X = (g,v“)sX\% X, (x) |1 0 |¢4-2] Xt=(a vH)st =5 N;’(X) 3 |¢+2
B = (g,n)sX%B(X) 1 0 g-2 3t = (a n)sj% 53+ (x) 3 g+2
h = (v*, v”)sXT\l@NW(X) 0 1 d-11] ht= (V“,V”)sjﬁﬁju(x) 2 | 4+1
w = —(n, V”)SX\%’?NHM(X) 0 1 g—1| @ =—(n V“)Sj%fvj(x) 2 g+1
7:r= (n,n)sxﬁi(x) 0 1 | 4-1 7:r+ _ (n,n)sjﬁ”f(x) 2 | 4+1
0=—(g a)sc750(x) |0 1 | §-1] 0" =—(ga)si50"(x) 2 | 4+1
foaweiil |1 | 2 | | R oewarhX) | 1| 4
f=(amsif |-1 | 2 | 2 | F-@usifig | 1 | ¢

Table 7.5: Factorisation of the redefined BV fields for A/ = 0 supergravity. Just as in
the case of Yang—Mlills theory, all fields have a factor of s,, while all anti-fields have a
factor of sf. Here, we again suppressed the integrals over x and we used the notation
[x,y] =x®@y — (-DFVly®x and (x,7) =x®7y + (=1)¥ Wy @x for x, y € Kin.
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diagrams:
7{
T W
/ \,-Y TN
T / N T B hw B (7.33)
A, T/ N1

/ \ X, X,
\/ S N o

where upper, lower left, and lower right arrows point to fields where a vector factor v* has
been replaced by a factor n, g, and a, respectively. The L,-degrees of the fields are the

same in each column, increasing from left to right by one.

Factorisation as cyclic complex. From Table 7.5, it is clear that the tensor product (7.31)
is indeed correct at the level of graded vector spaces. The inner product structure on the

anti-symmetric part is given by

<5\5\+> = < g®g®Jd Xlsxlk(xl) —a®a®JddX s+)\+( )>
= —<g, a><g, a>fddX1 JddX26 (d) (Xl — X2))\(X1)>\+<X2) (7343)
= —Jddx X)X (%),
Similarly,
(R ATY = Jddx/N\“(x)/N\:[(x), A AYY = —Jddx/:\“(x)/:\:(x),
GAY = [ dxq0r 0 GAY = - [ a7 ()
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On the symmetric part, we have analogously

B.BY) = | dxB(x)B*(x) 8,67 = — [ d%8(x)8 (%)

o v 3 3 (7.34¢)
(hyh™y = fdd P (), (x) X, Xy = — | dxX*(x) X[ (x)
(&, @) = J dx G (x) & (x) | BB = —;ddxé(x>5+(x)

Next, we compute the action of the differential w1, which is completely fixed by the
tensor product Kin®., (Rin®,, Scal), cf. definition (6.15). Following the notation described

in Table 7.5, we have, for example,

i) = i (e ®3 [@xei00) = ~ls.go ks  [¢xei) = X
" (A> _— (([g,v“],[g,nD@ (S el ))>
g §d¥x s 59(x)

e o] (o id  —€0720,) (§dix s 5Aux)

fdix sy 2{OA(x) - gmwx)})
§dix s HOA () + EVOaA ()} )

o T o) e [ S92 B (x)))
m(([ ] =y ])®(§ddxsxj )

= —(lg.v"].[gn])® (

.

Qv e
N—
[

= ([v".,v"],[n V“])®< §d?x st J5{53 0B (x) — VA, ()} )
o §dix st {08, (x) + EvO0 Buu(x) + 20,076, (x)} )

h §dx 8555 huw (%)
| @ | = | (0*9) (m9), (0,0) ® | [dixs, (—La(x)
T

§d9x x50 (x)
= ((v*.v), (0, v*), (n,n)) @ M
(7.35a)
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7% 8 {55 O () — SEVEIE, () + 558200, 7(x))
M= | St -5 08,00 - HEVE#hu(x) + HEVERR) + 5E0,08,()

§dx i {535 O (x) + HEVOH@L(x) + 55562040 B} ( |
7.35b

Furthermore, we have

A ot e (S8 O — EVTAC)
u() - ~([a.v].[a ])@(dexswmXH@EM(X)}) ,

>

]

[]

X\ B s §dix s} {DX() Ev0,B8(x)} (7.35¢)

) (g v"). (& >>®<dexs % (0 M@N(X»).

fdx st L{OXu(x) - s@aﬂx)})
)

F
H (5 - (vifehe <dexs; LH{OB(x) + EvTaXx(

=

,le(g) = 6.

The resulting superfield homotopy Maurer—Cartan action (3.25a) for the superfield a =
Xt+A+---+B+his

>N

SPC = Jddx {%éu,ﬂ B — A, O + &, 06" — £ (*a,)” + 26006 — A0 A —
3 vfausw + E3vO0uN — VT +

— X, 0% + La, 0" + £ (04e,)? —

ﬁl:lﬁ- - EDB + éﬁu\/iau};u,u + é’ﬁ'\/ﬁ&“ﬁu +

Wy EGV0 XM — gémam}.

| + |
Nl NIR N Qn

S

D T

<

o []
Q) + 3
\\)z N

+

(7.36)
This action is precisely the sum of the transformed Kalb—Ramond action (7.23) and of
the transformed zeroth-order gravity action augmented by a dilaton kinetic term (7.28).
Consequently, we see that our double copy prescription, arising from the factorisation of
the Ly-algebras of Yang—Mills theory and A/ = O supergravity into three factors, works at

the level of cochain complexes.
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Quantum field theoretic preliminaries

After completing the discussion of double copy for the free theories, the objective is to

extend our picture to the full, interacting level.

As discussed in Section 1.3., to double copy Yang—Mills amplitudes we need to refor-
mulate them in terms of diagrams with trivalent vertices only. Interpreted in the context of
homotopy algebras, this corresponds to a strictification of the original theory, associated
to a physically equivalent action with only cubic interaction terms. We will give explicit

formulas for the lowest orders in coupling constants.

The strictification of the underlying Lo-algebra of the theory allows us to factorise
it accordingly with our twisted tensor product notion, introduced in Chapter 6, and to
construct the Lagrangian double copy theory associated with Yang—Mills theory. We will

refrain from giving fully explicit expressions for this action.

In this Chapter we introduce a set of quantum field theoretic observations, that prepare
the ground for the proof of the quantum equivalence between Yang—Mills theory double

copy theory and N = 0 supergravity given in the final Chapter.

In the following, we shall always clearly distinguish between scattering amplitudes
o/ (--+) and correlation functions {---). Correlation functions, contain operators that
create and annihilate arbitrary fields without any constraints. Scattering amplitudes, on
the other hand, are labelled by external fields, which usually are physical fields with on-shell
momenta and physical polarisations. For our arguments, it is convenient to lift the restric-
tion to physical polarisations and work with the BRST-extended Hilbert space of external
fields which, in the case of Yang—Mills theory, includes gluons of arbitrary polarisations as

well as the ghosts and anti-ghosts, as we will explain in the following.
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114 8.1. BRST-extended Hilbert space and Ward identities

The material in this Chapter is borrowed from [5, 6].

8.1. BRST-extended Hilbert space and Ward identities

The tree-level scattering amplitudes of Yang—Mills theory are parametrised by degree one
elements of the minimal model of the L,-algebra (7.12). These are the physical, on-shell
states. A convenient set of coordinates for these are the gluon’s momentum p, as well
as a discrete label indicating the gluon’s helicity. More conveniently, we can replace the

discrete labels by a linearly independent set of polarisation vectors €,, that satisfy
0 Lo o
(eu) = ()., P-€=0, and [&] = 1. (8.1)
€

BRST-extended Hilbert space. \We can extend this conventional Hilbert space of ex-
ternal fields to the full BRST field space HgNs as done, e.g., in [232]. We thus have two

additional, unphysical polarisations of the gluon, called forward and backward and denoted

by AL"” and Afj’, respectively. We can be a bit more explicit for general gluons with light-

like momenta. Here, the polarisation vector sl is proportional to the momentum p,, and

the backwards polarisation vector Et is obtained by reversing the spatial part,

1 Po 1 Po
(el) = — and (g}) = — , (8.2a)
V2RI Ve \-p
so that
e el =0, -t =0, and -t = —1. (8.2b)

We also have ghost and anti-ghost states. All scattering amplitudes we shall consider will
be built from the Hilbert space HgN.. We note that the S-matrix of the physical Hilbert

space 56;!\35 is then the restriction of the S-matrix for the BRST extended Hilbert space

HEM . Although there are scattering amplitudes producing unphysical particles in $gNc+

YM
phys’

This is a consequence of the full S-matrix on $HE¥e+ being unitary and BRST symmetry,
cf. [233, Section 16.4].

Evidently, HENM+ carries an action of the linearisation of the BRST operator, denoted
by QEkst. cf. again [232] or the discussion in [233, Section 16.4]. Note that after gauge-

from physical gluons in $ this is consistent, because the restricted S-matrix is unitary.
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fixing, the full BRST transformations are given by the restriction of the BV transforma-
tions (4.13) since the gauge-fixing fermion is assumed to be independent of the anti-fields.
We have

a QEEAST 1 a_b_.c —=a Q\B(’I\?AST a

c —ngbc cc, c? —— b ,
Qtis+ Qtisy (83)

Al (Vuc)” b* —=5 0,

and (QgN-+)? = 0 off-shell. In momentum space, it is then easy to see that the trans-

versely-polarised or physical gluon states Aia are singlets under the action of the linearised

BRST operator, QErei"AL? = 0, since d,c is parallel to k,. The remaining four states

arrange into two doublets,

ATa Q\Egg/lélli'n 0 a d —=a \B(:;As'lli'n ba _ 18;1,Ala 8.4
u'—)NC an c—- _g I~L+"" ()

where the ellipsis indicates terms that would arise from the shift of the gauge-fixing fermion
in (8.20).

Connected correlation functions. In our later analysis of the double copy, we shall com-
pare correlation functions at the tree level. Recall that the partition function Z and the
free energy W := log(Z) are the generating functionals for the correlation functions and
the connected correlation functions, respectively. Evidently, this implies that the connec-
ted correlation functions can be written as linear combinations of products of correlation
functions. This simplifies our analysis as we can restrict ourselves to the contributions of

connected Feynman diagrams to correlation functions.

Observation 8.1. The set of connected correlation functions is BRS T-invariant because
the connected correlation functions can be written as linear combinations of products of

correlation functions.

Ward identities for scattering amplitudes. In order to translate colour—kinematics du-
ality for scattering amplitudes from gluons to ghosts, we shall use supersymmetric on-shell
Ward identities, cf. [76,77], and we focus on the supersymmetry generated by the linear-
ised BRST operator QiNe" acting on the BRST-extended Hilbert space $5Nst, whose

elements label our scattering amplitudes.
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The free vacuum is certainly invariant under the action of QgNel, cf. again [232]

or [233, Section 16.4]. We therefore have the on-shell Ward identity
0 = (Ol[Qgrer 01+ 0n][0) . (8.5)

In order to use this Ward identity to link scattering amplitudes with k ghost—anti-ghost

pairs to amplitudes with k + 1 such pairs, we consider the special case
Oy 0, = ATC(cO)AT - A, (8.6)

where the gluon ALa is forward polarised while all other gluons have physical polarisation.

In this special case, the on-shell Ward identity (8.5) directly implies

par{0(cE) AT - Aoy 5|0) + (OJATH(cE) A - Arp5]0) +

k-1 | | (8.7)
+ Y (OJATE(cEY eh(c) I AL - Ak, 5|00 = 0.

Jj=0

Observation 8.2. Any amplitude with k + 1 ghost—anti-ghost pairs and all gluons trans-

versely polarised is given by a sum of amplitudes with k ghost pairs.

The simplest non-trivial concrete example to illustrate Observation 8.2 is the case
n =4, k = 0 in Yang—Mills theory (the three-point scattering amplitudes vanish). We
may then identify

COIAT?(p1)b®(p2) A7 “(p3) Az “(p2)|0) =

(8.8a)
= p3panal€’(p1), pr, ai€'(p2), p2. bi €y (ps), ps. Ci€5(pa), pa, d)

and
(018°(p1)E°(p2) Ay “(p3) A3 (pa)|0) =

) ) (8.8b)
= piezan(pi. a; o, biev(p3), 3, ¢ €5(pa), pa, d)

where @apan and Z.zaa denote the four-gluon and two-ghost—two-gluon scattering amp-
litudes, respectively, with external particles labelled by polarisation vectors, momenta, and

colour indices. The hat indicates the Fourier transform. A standard Feynman diagram
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computation then shows that

Py Apana = faie/;ebc {(62 c€4)[(P1-€3) + 2(p2-€3)] — (€3 - €4)[(P1 - €2) + 2(ps - €2)] —
B P3(p2 - €3)(p1 - €4) B . )
V2((p1 - pa) + (01 p3)) (€2-€3)(p1 - €4)
— 2(82 : 63)(/32 : 84) - \/5,0(2)(83 : 84)} +
fabefecd PS
NG { - —\E(Pl ) [2(p1 - €4) (P2 - €3) — 2(p1 - €3) (P2 - €4)] —
- m[(m - p2) —2(p1 - P3)](53 " E4) —
—(&2- 53)[(01 €4) +2(p2 - 54)] +
+ (&2 - 54)[(01 -€3) + 2(p2 53)] -
— (e3-€4)[(p1 - €2) + 2(ps 52)]} +
> ( )

facefbd {p (p1-€3)(p2- €4
V2 \@(Pl “ P3)

— (&2 84)[(01 -€3) +2(p2 - 53)] +
+ (e3-€4)((p1 - €2) + 2(p3 - €2) ]

+v/2p3(e3 - 54)}

+

(8.9a)

and

p1-€3)(p2 - €4)

2(p1 - p3)
+ faber,c (plp_2p2) {(Pl ~€3)(P2 - €4) — (P1-€4)(P2 - €3) +

Pa(
PYezan = LT 2

(8.9b)
+ [%(Pl “p2) + (ps - P3)](€3 . 54)} -

_ fadef be pP3(p1 - €4) (P2 - €3)
¢ 2[(131 “p2) + (p1- P3)] .

The sum of both terms vanishes,
PsAppan + Pl Aezan = 0, (8.10)

upon using momentum conservation, transversality of the physically polarised gluons, the

explicit form of the on-shell polarisation vectors (8.2), and the Jacobi identity. That is,
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the s-, t-, and u-channels are not related separately. This is not very surprising: the four-
point gluon vertex can be distributed in different ways to the various channels and each
distribution would imply a different relation between the channels of the two amplitudes. If
we ensured colour—kinematics duality for the four-point vertex, however, then the relation
between the two amplitudes would hold for each individual channel.

When we come to discussing the double copy theory, we will be able to ensure BRST
invariance of the action only on-shell. However, from the construction of correlators from
Feynman diagrams it is clear that the action of QgNei" on the on-shell BRST-extended
Hilbert space will still be preserved, and we again have (8.5) with the corresponding link

between scattering amplitudes with different number of ghost—anti-ghost pairs:

Observation 8.3. Suppose that QiNstSaner = 0 and (QE¥st)? = 0 only on-shell. Then,
we still have an identification of scattering amplitudes with k + 1 ghost—anti-ghost pairs
and all gluons transversely polarised and a sum of amplitudes with k ghost—anti-ghost

pairs.

Off-shell Ward identities. BRST invariance of the action, being a global symmetry,

induces an off-shell Ward identity for correlation functions,

<(8”Jp(x))ﬁ1(xl) cet ﬁn(Xn)> = Z $5(d)(X — X,') <(QBRSTﬁi(Xi)) 1_[ @(XJ)> , (811)

i=1 J#i
where j, is the BRST current and the sign is the Koszul sign arising from permuting
operators of non-vanishing ghost number. Note that in general, QENc+ is the renormalised
BRST operator of the full quantum theory, cf. [234, Chapter 17.2]. As we will always
discuss tree-level correlators, however, we can restrict ourselves to the classical BRST
operator with action (8.3). We note that the left-hand side of (8.11) vanishes after

integration over x and the Ward identity simplifies to

n
YM
0 = Zi ( BRST@(X/))H@'(XJ)>- (8.12)
i=1 i

When applying Ward identities to correlation functions, we can use Observation 8.1
to restrict the correlation functions to purely connected correlators, i.e. the contribution
arising from connected Feynman diagrams. Moreover, we can restrict the correlation

functions to a particular order in the coupling constant g. This implies that for operators
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linear in the fields we can truncate the action of the BRST operator Qi¥e+ to the Abelian
action.

As a short explicit example, let us consider (8.12) for the special case n = 3 with
O = Alp), G = E(p), 05 = A(ps), (8.13)

and we switched to momentum space for simplicity. We obtain the identity

PLE (p1)PLY (p3) (CAZ(p1) B2 (p2) AST (p3)) + (p1w € (p1) EP(p2) AS) (p3)) — 510
_<AZT(Pl)éb(Pz)Dawfc(%») =0,
where PL”'(p) is the projector onto (off-shell) forward polarised gluons. Explicitly,
tooy (p-P) ., (PP,
Pulo) "o 57— (p- PP [p (p-P) ] (6.15)
SR S P
g “(p- B2 —(p-p)? (-5 |

where p, is p, with spatial components reverted.
The relevant vertices are clearly the cubic gluon vertex to which Eb(pz) is linked by a

propagator, as well as the ghost—anti-ghost—gluon vertex. At tree-level, we thus obtain

PL¥ (p1)PLY (ps) (A2 (p1) B0 (p2) AS) (ps)) =

= P ()P (ps) [ Pow Prvr — PawPav + M (ps — p1) - (PY(p2) - p2)]
(8.16a)

PL¥ (p1)P]Y (p3) (prw € (p1)E%(p2) A (p3)y = F™PL¥ (p1)P]Y (p3)piwpar ,  (8.16b)
and

PL¥ (p1)PLY (ps) (AR (p1)E%(p2) p3w€(ps)y = F*2PL¥ (p1)PLY (p3)paupaw . (8.16¢)

Summing these three terms according to the signs set in (8.14) we obtain

FPPLE (p1)PLY (pa) N [(p3 — p1) - (PH(p2) - p2)] (8.17)

which vanishes after inserting the explicit expressions (8.15).

We conclude with the following observation.

Observation 8.4. We have Ward identities between tree-level correlation functions for the

linearised BRST operator.
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8.2. Quantum equivalence, correlation functions, and field redefini-

tions

Let us now leave the special case of Yang—Mills theory for a moment and reconsider
notions of equivalence between field theories in general. As discussed in Chapter 5, two
field theories are classically equivalent if they are quasi-isomorphic and thus have a common
minimal model. In the same Chapter, it was explained how the minimal model of a field

theory is constructed using the homological perturbation lemma.

Perturbative quantum equivalence. For the full quantum equivalence at the perturb-

ative level, we have the following evident statement.

Observation 8.5. Two field theories are perturbatively quantum equivalent if all correlators
built from polynomials of fields and their derivatives agree to any finite order in coupling
constant and loop level. Since correlators can be glued together from tree-level correlators

(up to regularisation issues), it suffices if the tree level correlators agree.

We stress that we are only interested in the integrands of scattering amplitudes, which
allows us to ignore all issues related to regularisation.

To provide a link between the double-copied action and the action of A/ = 0 super-
gravity, we will need to perform a sequence of field redefinitions. The field content of the
theories will be the same from the outset, and we choose to work with the same path
integral measure in both cases. We are therefore interested in field redefinitions that leave
the path integral measure invariant.

There are large classes of such field redefinitions. The most evident such class of field

redefinitions is

¢ — b= ¢+ (P, ..., ) . (8.18)
where f is a polynomial function of a set of fields {¢], ..., @} and their derivatives with
o ¢ {¢), ..., ¢.}. Under such a field redefinition, the path integral measure remains

unchanged; this becomes evident when imagining the finite-dimensional analogue of volume
forms and a coordinate shifted by a function of different coordinates.

More subtle is the fact that field redefinitions of the form

¢ — b= d+0(?), (8.19)

Tommaso Macrelli



8.2. Quantum equivalence, correlation functions, and field redefinitions 121

where O(¢?) denotes local polynomial functions in arbitrary fields and their derivatives
which are at least of quadratic order in ¢ can also be considered as leaving the path
integral measure invariant.

Invariance of the S-matrix under (8.19) without derivatives is captured by the Chisholm—
Kamefuchi—O'Raifeartaigh—Salam equivalence theorem [235, 236]. A proof using the
BV formalism of perturbative quantum equivalence for local field redefinitions of the
form (8.19) allowing for derivatives was given in [237]. This is sufficient for our purposes
as we are only concerned with the integrands of scattering amplitudes. Note, however,
the well-known need to choose the counter-terms consistently, as emphasised in [237].
With this in mind, the simplest approach is to use dimensional regularisation, since (8.19)
produces a Jacobian which is then regulated to unity, see [238,239] as well as [240, Sec-
tions 18.2.3—4.

We sum up the above discussion as follows.

Observation 8.6. A shift of a field by products of fields and their derivatives which do not
involve the field itself does not change the path integral measure. Local field redefinitions
that are trivial at linear order are quantum mechanically safe as they produce a Jacobian

that can be regulated to unity in dimensional regularisation.

Nakanishi—Lautrup field shifts and changes of gauge. Besides field redefinitions, we
also adjust our choice of gauge to link equivalent field theories. In particular, we can shift

the usual choice (4.16) for R¢-gauge to
Vo> W4+ with = = Jddx &, . (8.20)

Here, Y9 is of ghost number zero, and we limit ourselves to terms Y@ that are independ-
ent of the Nakanishi—Lautrup field. The shift (8.20) leads to a shift of the gauge-fixed
Lagrangian (4.18) given by

E g, 0= E

Lorst = LorsT T 745 (VuC)? + S’ =P — b . (8.21)
0A: 2 oc 0C

Evidently, this new Lagrangian is quantum-equivalent to the one with Y'? = 0, as we merely
chose to work in a different gauge.

Subsequently, we may perform the shift
b? — b+ Z° (8.22)
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in the Nakanishi—Lautrup field with Z¢ polynomials in the fields and their derivatives. The
combination of this shift and (8.20) results in

0= 0=
Zerst = ZersT + 50 (Vue)T + gfbcaﬁcbcc +
: i . (8.23)
FSZZ74 2,607+ A — (B + Z) 5=

We shall assume that Z7 is independent of the Nakanishi—Lautrup field as this will yield
a quantum-equivalent Lagrangian by Observation 8.6. We shall also assume that Z°
depends at least quadratically on the other fields and their derivatives to preserve the
linearised BRST action on the BRST-extended Hilbert space introduced in Section 8.1..

Interaction terms linear in the Nakanishi—Lautrup fields. Let us now consider the
following special case: suppose that we are in R¢-gauge and that our Lagrangian contains
a term Z,0*A; with Z7 independent of the Nakanishi—Lautrup field and at least quad-
ratic in the fields and their derivatives. On the physical Hilbert space with transversely
polarised gluons, such expressions vanish. Off-shell, we can still remove such terms by the
shifts (8.22). Given the need to shift by Z?, we can then iteratively construct a Y@ which

cancels any new terms linear in b?, as is clear from (8.23). Explicitly, we solve the equation

= oYp
_ = _ =b
0 = 6Zy— 5= = £Z,- Yot O

+oe, (8.24)

where the ellipsis denotes terms containing partial derivatives with respect to derivatives
of the anti-ghost field &”. Clearly, for consistency, Y@ needs to be at least quadratic in the

fields and their derivatives because Z°9 is. We are left with the terms

g a 65 a g 865 b ~.c
— 2ZaZ + 6AZ(VMC) + 2be 5caC c<, (8.25)

which are either at least quartic in the fields or at least cubic in the fields, containing ghost
fields. The ability to remove any terms of the form Z,(0*#A,)? through local shifts of the
Nakanishi—Lautrup field, absorbing them into b?, and a compensating gauge choice is the
‘off-shell’ Lagrangian analogue of being able to impose that the on-shell external gluons

in an amplitude are transverse. We summarise as follows.

Observation 8.7. Interaction terms in the Lagrangian of degree n > 3 of the form

Z,(0*A,)? with Z2 independent of the Nakanishi—Lautrup field can be removed in R¢-gauge
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by shifting the Nakanishi—Lautrup field according to (8.22). This creates the additional
terms (8.25) which do no modify the scattering amplitudes by Observation 8.6 and, in
addition, contribute only to interaction vertices of degree n with more ghost—anti-ghost

pairs or to interaction vertices of degree greater than n.

We also note that a shift of the gauge-fixing fermion by itself (8.20) allows us to absorb
physical terms proportional to the Nakanishi—Lautrup field without further affecting the

physical sector.

Observation 8.8. Terms in the action that are proportional to the Nakanishi—Lautrup
field can be absorbed by choosing a suitable term Y?. This leaves the physical sector
invariant but it may modify the ghost sector. Because Nakanishi—Lautrup fields appear
via trivial pairs in the BV action, this extends to general gauge theories, e.g. with several

Nakanishi—Lautrup fields and ghosts—for—ghosts.

Actions related by field redefinitions. Let us return to a general setting. Suppose that
we are given two classical field theories which are specified by local actions S and S, as
power series in the fields and their derivatives, whose corresponding L.-algebras have the
same minimal model, the same field content and the same kinetic parts.

Consider the cubic interaction terms % and % in S and S. Since the three-point
amplitudes agree, these interaction terms can differ at most in terms that vanish on ex-
ternal fields. Therefore, these terms have to be proportional to either the on-shell equation
for an external field or to a field with unphysical polarisation which is not contained in the
external fields. Both types of terms can be cancelled by a local field redefinition which
shifts the discrepancy into the quartic and higher interaction terms. Such field redefin-
itions constitute a quasi-isomorphism of L-algebras and leaves the tree-level scattering
amplitudes unmodified. We are left with two theories with the same tree-level scattering
amplitudes and which agree to cubic order in the interaction terms.

The discrepancy between the total quartic terms of both field theories after the above
field redefinition is again invisible at the level of external fields, because the tree-level
scattering amplitudes still agree. We then compensate again by further field redefinitions,
shifting the discrepancy into quintic and higher interaction terms. In this way, we can
remove the differences between the Lagrangians order by order in the interaction vertices,

field-redefining the difference away to higher order interaction vertices. Since we are merely
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interested in perturbation theory, agreements to arbitrary finite orders are completely suf-
ficient.

Altogether, we can conclude that for the purpose of perturbative quantum field theory,
we can regard the actions S and S to be related by local field redefinitions. In certain cases
it is even possible to give closed all order expression for (part of) the field redefinitions,

providing a formal non-perturbative equivalence.

Observation 8.9. If two field theories have the same tree-level scattering amplitudes,
then the minimal models of the corresponding L..-algebras coincide, cf. [52,2]. If also the
associated actions are local and given by power series of the fields and their derivatives,
and have the same field content and kinetic parts, then they are related by local (invertible)

field redefinitions.

The explicit example of Yang—Mills theory may be instructive. Consider the action (7.10)
of Yang—Mills theory in R¢-gauge with the field redefinitions (7.8) implemented as in Sec-
tion 7.2. and consider an action S with the same fields, the same kinematic parts and
identical tree-level scattering amplitudes. The discrepancies in the interaction vertices at
each order are proportional to (at least) one of the terms

A2 yOb*+&o*Ar, OAL, Qe , O&, and Ob°. (8.26)
Given the BRST invariance, we can always exclude terms proportional to Al2 as these can
be absorbed by residual gauge transformations. Terms proportional to \/EB"’ + fé’“/z\z can
be absorbed by a field redefinition of the Nakanishi—Lautrup field due to Observation 8.7.
All remaining differences are sums of terms proportional to DAQ, []&2, []c2, or DE"’,
and they can be absorbed by iterative field redefinitions, starting with the three-point
amplitudes. There is an evident field redefinition of the relevant field, quadratic in the fields
and their derivatives, such that the kinetic term of redefined Yang—Mills theory produces
the difference in kinetic terms. Since such a field redefinition is a quasi-isomorphism of
the corresponding L,-algebras, it preserves the minimal model and thus the tree-level

amplitudes. Moreover, such a field redefinition is clearly local.

8.3. Strictification of Yang—Mills theory

Generalities. An important structure theorem for homotopy algebras is the strictification

theorem, cf. Section 2.4.. In particular, it implies that any L -algebra is quasi-isomorphic
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to a strict Ly-algebra, i.e. an Ly -algebra with u;, = 0 for / > 3, better known as a
differential graded Lie algebra.

From a field theory perspective, this implies that any classical field theory is equivalent
to a classical field theory with interaction terms which are all cubic in the fields. Gener-
ically, a strictifying quasi-isomorphism may produce non-local terms, but there is always
a systematic choice of strictification that is entirely local. This is quite evident for the
interactions of scalar fields, since we can ‘blow up’ n-ary vertices to cubic graphs with
edges corresponding to propagating auxiliary fields, cf. e.g. the discussions in [52, 2].

As a simple example of a strictification, consider the first-order formalism of Yang—Mills
theory on four-dimensional Euclidean space R* [226], in which an additional self-dual two
form B, € Q2 (R*) ® g in the adjoint representation of the gauge Lie algebra is added to

the field content,
S f 05 {3647 Fop BLr + 164 B0 Bl | (8.27)

The Ly-algebra corresponding to the full BV complex of this theory is indeed strict; see [31,
52] for a quasi-isomorphism between this L.,-algebra and that of the ordinary, second-order
formulation of Yang—Mills theory.

Note, however, that the full strictification of gauge theories including ghosts is a bit
more involved: the equations of motion of the introduced auxiliary fields would be at
least quadratic in other fields, and if these transform in the adjoint representation or as
connections, the gauge transformations of auxiliary fields are at least cubic in fields and
ghosts, leading to quartic or higher terms in the BV action. The strictification theorem
still guarantees the existence of an equivalent formulation as a field theory with cubic
interaction vertices, but we may have to extend our field space not merely by adding
fields, but by switching e.g. to its loop space. This is due to the fact that cubic gauge
transformations in an L.-algebra are encoded in a w3, which in turn corresponds to a
particular three-cocycle. The latter can be transgressed to a two-cocycle over loop space,
which merely corresponds to a Lie algebra extension and thus, is turned into a higher
product w,. For fully gauge-fixed actions, however, this problem never arises.

We also note that the factorisation in the double copy is most easily performed in a
specific strictification®, which is not the first order formulation (8.27). Its precise form is

discussed in the following.

Nt is actually a family of strictifications.
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Colour—kinematics-dual form and cubic diagrams. Recall from 1.3. that the tree-level
Yang—Mills amplitudes can be rearranged in colour—kinematics-dual form, which is by now
a well-established fact [85, 84,241, 144,242-246].

Observation 8.10. The tree amplitudes of Yang—Mills theory can be written in colour—

kinematics-dual form.

Explicitly, one can construct a Lagrangian whose Feynman diagrams generate colour—
kinematics-dual tree-level amplitudes of physical (transverse) gluons in Yang—Mills theory,
making colour—kinematics duality manifest at the Lagrangian level. This is achieved by
adding non-local interaction terms O(A"), for all n > 5, to the action that vanish identically
due to the colour Jacobi identity. The necessary terms were first constructed in [83] up
to six points. The algorithm of Tolotti-Weinzierl [160] is a prescription of how to find the
necessary terms to arbitrary order.

Since the new terms are identically zero they obviously leave the theory and amplitudes
invariant, but nonetheless change the individual kinematic numerators to realise colour—
kinematics duality. Moreover, the new terms can be rendered cubic and local through
the introduction of auxiliary fields [5], as demonstrated explicitly at five points in [83].
Roughly speaking, one starts from Yang—Mills theory and strictifies the already present
quartic interaction vertex by inserting an auxiliary field, redistributing the contributions to
ensure colour—kinematics duality for four-point amplitudes. The colour—kinematics duality
of the five-point amplitudes then requires a new interaction term O(A°®) which vanishes due
to the Jacobi identity. This vertex is then strictified by inserting further auxiliary fields,
etc. The overall action is thus trivially equivalent to Yang—Mills theory. We note that
the form of the strictification is encoded in the action produced by the Tolotti-Weinzierl

algorithm. We shall be completely explicit below, but let us first summarise the situation.

Observation 8.11. Given tree-level physical gluon amplitudes in colour—kinematics-dual
form, there is a corresponding purely cubic Lagrangian whose Feynman diagrams (summed
over identical topologies) produce kinematic numerators satisfying the kinematic Jacobi
identities (1.14b).

To illustrate the strictification, let us consider the four- and five-point contributions,
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which were already computed in [83]:

L9~ t{[A AN AT} = e g TA A A)
i ! v (i )
20 ~ tr{[A”,Ap]é (l[auAu,Ap],%A“] + (8.28)

T {[Ap, A, %aﬂAu] 4 l[A“, A, %A,,D} |

We immediately note that .Z® vanishes by the colour Jacobi identity. Its presence,
however, is required for the kinematic Jacobi identity to hold after factorisation.
As explained in 1.3., these terms reflect a ‘blow up’ of n-point interaction vertices into

trees with trivalent vertices and all symmetries taken into account:

SRS
)

Here, an internal wavy line comes with a propagator in Feynman gauge %, while a dashed
o

0

The general Lagrangian at n-th order is then of the form

8.29)

line corresponds to the identity operator

L = o EV'D(EY Do (EYDs - ) (8.30)
where D; stands for either é or % and the M;s are Lorentz multi-indices. Note that all

the E;s are polynomials of degree one or two in the fields. In the tree picture, the wave

operators in the denominator correspond precisely to the edges in the trees.

Strictification. To strictify the non-local action, we now iteratively insert auxiliary fields

G,’j‘f’r', and G,'\}’,r" for each operator D;. If we are dealing with an operator of the form %,
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we first use partial integration

[ L ' '

where E,-M is an arbitrary expression in the fields, derivatives, and auxiliary fields. We then

use the fact that the Lagrangians

1
EV=E; 8.32a
vLEs (8323
and
- GMF,/DG/,\}H + Grl7\,/ll',iEI2\/l + E{V’Gﬁ/}r'i (8.32b)

are physically equivalent after integrating out the auxiliary fields G,’}”’” and G,’{;,r". We
iterate this process until all the inverse wave operators have been replaced in this manner.

We note that in each iteration, E{V’ and EZ, are both polynomials of degree at least
two in the fields. Introducing the auxiliary fields reduces the polynomial degree at least
by one, and in the end, the action has indeed only cubic interaction terms and thus is a
strictification of the original action. We also note that two auxiliary fields can be combined

into one if they have identical equations of motion.

Homotopy algebraic perspective. The strictification £5¥:S' of the Ly-algebra £fNM
or, equivalently, of the colour—kinematics-dual action is nothing but a quasi-isomorphism

(see Section 2.3.)

¢ LiRsT — LEReT (8.33)
and the map ¢ is given by
A+ Z Gori = ¢1(A) + 502(AA) +--- = Z (AL A) (8.34)
n,T,i k=1

where At is the gauge potential in £ st,
AT = 0ulA) (8.35)

and the higher maps are such that G, ; are given by their equations of motion, fully
reduced to expressions in the original gauge potential A.
Let us work out the details for the example of the fourth- and fifth-order terms (8.28).

The explicit form of the corresponding strictified Lagrangian is already found in [83],
LM = Str{AOA + Mt M (8.36a)
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with

LMt = gy

UVK Kuy

{— 368 DG — 9(@uA, + HoGlLh A% A}
M = Gy OGE + GErS G2 + G DG A +

+ G 1[Au Al + 9OLGETS[ AL, Acl — £0,GET [0 Ar), AN] +
+ g6l L ([0°GE,2 A + [0°GE, A |

KA VI
(8.36b)
Consequently, the resulting quasi-isomorphism reads as
¢1(A) + %Clbz(Av A) + %d’a(Av AA) =
A AL
Gﬁ}/rkl %aﬁ [Av, Al
Gt —35 (A AL PA] — [[0p A, Aul, AY)
e —2[Au Al (8.37)
GL —504[0 A AT, A] |
GZbrkz % OulAv, Ax]
G —GorA, HAN Av]]
Govia —550u0p A, AN

Note that the decomposition into the images of the maps ¢; corresponds to the decom-

position of the image into monomials of power / in the fields.

Tree-level double copy. As reviewed in Section 1.3., the double copy of the kinematic
numerators in the scattering amplitudes of the strictified Yang—Mills theory produces the

tree-level scattering amplitudes of A/ = 0 supergravity [81-83].

Observation 8.12. Double copying the Yang—Mills tree-level scattering amplitudes of phys-
ical gluons in colour—kinematics-dual form yields the physical tree-level scattering amp-

litudes of N' = 0 supergravity.

Compatibility with quantisation. [t is clear that quantisation does not commute with
quasi-isomorphisms: classically equivalent field theories can have very different quantum
field theories. A simple example making this evident is the L,,-algebra of Yang—Mills theory

£IM - and one of its quasi-isomorphic minimal models £5%2-. The vector space of LN is
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simply the free fields labelling external states in Yang—Mlills scattering amplitudes, together
with some irrelevant cohomological remnants in the ghosts, Nakanishi—Lautrup fields, and
anti-ghosts. The tree-level scattering amplitudes of £5N¥ are given by the higher products
of £i¥o-. They are also the tree-level scattering amplitudes of £E¥2- since there are no
propagating degrees of freedom left. Clearly, however, there are loop-level scattering
amplitudes in Yang—Mills theory which £¥.+ can describe but which are absent in L%
Thus, the quantum theories described by the quasi-isomorphic L.-algebras £f¥+ and
LiMe differ.

Certainly, there are quasi-isomorphisms which are compatible with quantisation. In
particular, any quasi-isomorphism that corresponds to integrating out fields which appears
at most quadratically in the action are of this type: we can simply complete the square
in the path integral and perform the GauBian integral. This amounts to replacing each
auxiliary field by the equation of motion.

This is precisely the case in the above strictification of Yang—Mills theory, and the
original formulation is quantum equivalent to its strictification. This is also clear at the
level of Feynman diagrams: as the kinematic terms are all of the form —GM- . (J G, each
auxiliary field propagates into precisely one other auxiliary field. Moreover, each auxiliary
field G appears in precisely one type of vertex and then only as one leg. That is, once a
propagator ends in one of the auxiliary fields, the continuation of the diagram at this end is
unique until all the remaining open legs are non-auxiliaries. There are no loops consisting
of purely auxiliary fields. All loops containing at least one gluon propagator are simply
contracted to gluon loops. It is thus clear that the degrees of freedom running around
loops in the strictified theory are the same as those running around in ordinary Yang—Mills

theory.

8.4. Colour—kinematics duality for unphysical states

The action and factorisation we have presented so far are the complete data to double
copy tree-level gauge theory amplitudes to gravity amplitudes. For the full double copy
at the loop level, however, we need to work a bit harder, as explained in our previous
paper [5].

So far, colour—kinematics duality is only ensured for all on-shell gluon states with

physical polarisation. Our goal will be to double copy arbitrary tree-level correlators, which
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can have unphysical polarisations of gluons as well as ghost states on external legs. We
therefore need to ensure that colour—kinematics duality holds more generally. In order to
establish the off-shell double copy it is sufficient to guarantee colour—kinematics duality

for on-shell states in the BRST-extended Hilbert space from Section 8.1..

Unphysical states. Colour—kinematics duality is not affected by forward-polarised gluons,
as these can be absorbed by residual gauge transformations. Furthermore, colour—kinematics
duality for backward-polarised gluons can be achieved by adding new terms to the action,
which are physically irrelevant since they are introduced only through the gauge-fixing
fermion. Colour—kinematics duality for ghosts is then achieved by transferring colour—
kinematics duality for longitudinal gluons to the ghost sector by Observation 8.2 via the
BRST Ward identities. We now explain the procedure in detail.

We perform the corrections order by order in the degree n of the vertices and for
each degree order by order in the number k of ghost—anti-ghost pairs. The first vertex
to consider is n = 4, and we start at k = 0. Colour—kinematics duality for four on-shell
gluons in the BRST-extended Hilbert space can only be violated by terms proportional to
§b?+ 0" Aj and we can introduce a vertex compensating these violations in the Lagrangian.
We do this directly in a BRST-invariant fashion, and a short calculation shows that the

appropriate addition to the Lagrangian is

m C, 1 1% e = C, 1 14 e a
2y = —e{pard (A A] - o Quesr (AW L@ ADA] ) | s
(8.38)
Here, the first term compensates the colour—kinematics duality violating term for four

gluons and the second term renders the compensation BRST-invariant, thus ensuring
QersTZ, 04 1205 = 0. (8.39)

To show that these terms are indeed unphysical and that they do not modify the tree-
level correlation functions, we use Observation 8.7 and Observation 8.8: these terms are
produced by a shift (8.22) of the form

1 1
77 = —AC“E[(a"Ag)Ai)]ﬁedbfbca and Y7 = 227 (8.40)

We note that the terms in zni“ﬂ;f;”gp come with a canonical strictification given by the
colour structure. This strictification then yields colour—kinematics-dual four-point gluon

amplitudes.
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The next case to consider is n = 4, k = 1. We now use Observation 8.4 to relate
the four-gluon correlation function to this correlation function, and, correspondingly, the
four-gluon tree-level correlator to the two gluon, one ghost-anti-ghost pair correlator. We
obtain colour—kinematics duality for amplitudes consisting of a ghost—anti-ghost pair as
well as two physically polarised gluons. Generalising the latter to two arbitrary gluons in
the BRST-extended Hilbert space, we expect colour—kinematics duality violating terms
proportional to £b? + 8“AZ. It turns out that these terms happen to vanish and there is
nothing left to do. Note that if these terms had not vanished, we would have compensated
for them again by inserting physically irrelevant terms to the action in a BRST-invariant
fashion.

Observation 8.3 now immediately implies that the amplitudes for n = 4, k = 2 are
colour—kinematics-dual, because those for n =4, kK =1 are.

So far, we constructed a strict Lagrangian for Yang—Mills theory with the same tree-
level scattering amplitudes for the BRST-extended Hilbert space as ordinary Yang—Mills
theory, but with a manifestly colour—kinematics-dual factorisation of the four-point amp-
litudes.

We now turn to n =5, k = 0 and iterate our procedure in the evident fashion:

Step 1) Identify the colour—kinematics duality violating terms. They are necessarily pro-
portional to £b7 + HA;.

Step 2) Compensate by inserting a corresponding non-local vertex. Complete the com-
pensating term to a BRST-invariant one, which may be deduced directly via the
gauge-fixing fermion.

Step 3) The colour structure of the vertices induces a canonical strictification, implement

this strictification.

Step 4) Use Observation 8.3 to transfer colour—kinematics duality to tree level correlators

with one more ghost—anti-ghost pair, but all other gluons physically polarised.

Step 5) Continue with Step 1), if there is room for backward-polarised gluons. Otherwise

turn to the next higher n-point scattering amplitudes.

The outcome of this construction is a strictified BRST action for Yang—Mills the-
ory which is perturbatively quantum equivalent to ordinary Yang—Mills theory and whose

scattering amplitudes come canonically factorised in colour—kinematics-dual form.
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We note that this action comes with a BRST operator which is cubic in the fields of
the BRST-extended Hilbert space, but of higher order in its action on the auxiliary fields

introduced in strictification.
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Double copy from factorisation of homotopy algebras

In this final Chapter we use the notion of twisted tensor products of differential graded
algebras to factorise the (strictified) L., algebra associated to the full, interacting Yang—
Mills theory

Mt — 5@ (Rin™ @, Scal). (9.1)

Relying on the results exposed in the previous Chapters, we finally show that the double
copied theory
L8 = Rin™ @, (Rin* ®, Scal) (9.2)

is perturbatively equivalent to N = 0 supergravity.

The material in this Chapter is borrowed from [5, 6].

9.1. Biadjoint scalar field theory

Before discussing the factorisation of full Yang—Mills theory, let us examine the simpler
case of interacting biadjoint scalar field theory, cf. Section 4.2.. The factorisation of the
free theory cochain complexes (7.3) does not require any twist, and can be lifted to the
full (strict) Lo-algebra

L = g® (5® Seal). (9.3)
A technicality: in Equation (9.3) we have § ® Gcal, the tensor product between g and
Gcal.  While the tensor product between a Lie algebra and an L. -algebra (in general
not defined) does not appear in the list (6.1) of possible tensor product between strict
homotopy algebras, in this special case the product is well defined. Indeed, for nilpotent

L,-algebras, i.e. Ly-algebras with ;o uj = 0, the product exists and yields a Cy-algebra.
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136 9.1. Biadjoint scalar field theory

The full Lo-algebra is then obtained tensoring the latter by a Lie algebra, as exposed in
Section 6.1..

L,-algebra Scal. Explicitly, the Ly -algebra Geal is built from the cochain complex (7.4),

Sx sy
Scal = <g[—1] 5, 31-2] ) , (9.4a)
and the only non-vanishing higher product beyond the differential u$" is

use! <Jddxl Sx01(x1), JddXQ sX2<p2(X2)) = Afddx s;1(X)pa(x) . (9.4b)

Evidently, Gcal is nilpotent.

Factorisation. Following the prescription for the untwisted tensor product of strict ho-

motopy algebras from Section 6.1., we obtain the binary product
Ur(es®eE;® 8y, epRE;®sy,) = [ea ep] ®[E5 85 ® Aé(d)(xl — Xg)sj{l , (9.5)
which, together with the differential
Hi1(ea®8:®sy) = e,®8:Q0s; | (9.6)
and the cyclic structure

(o0 = f 4% 9% ()95 (x) (9.7)

forms the cyclic Ly-algebra €320 The homotopy Maurer—Cartan action of this L.-

algebra is then the action (4.5) of biadjoint scalar field theory,

b — L, () + 30, ma(0, )

d 1 a A 3 bb, cc (9.8)
= fd X{gwasmwaa—gf;bcézewa @ w“} :

which verifies (9.3).
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9.2. Strictified Yang—Miills theory

General considerations. The strictification of Yang—Mills theory formulated in Sec-
tion 8.3. is now readily extended to a BV action, which can then be gauge fixed and

converted into a strict L,-algebra £5M:<F.

The full strictification of Yang—Mills theory involves an infinite number of additional
auxiliary fields and corresponding interaction terms in the Lagrangian. Thus, our discussion
cannot be fully explicit and has to remain somewhat conceptual, but as before, we shall
give explicit lowest order terms to exemplify our discussion. Recall, however, that for
computing n-point correlation function at the tree-level, only a finite number of auxiliary
fields and interaction terms are necessary. Moreover, for computing n-point scattering
amplitudes up to £ loops, only a finite number of correlators is necessary. Therefore, we
can always truncate the Yang—Mills action to finitely many auxiliary fields to perform our

computations.

We note that gauge fixing of Yang—Mills theory is fully equivalent to gauge fixing of
the strictified theory. Moreover, the additional interaction vertices that arise from the BV
formalism are all cubic, except for the terms involving anti-fields of the auxiliary fields; the

latter, however, will not contribute.

The last point implies that the Ly-algebra £5MSt for the strictified and gauge-fixed

form of Yang—-Mills theory contains the cochain complex of the L.-algebra £M.+ which
we have computed in Section 4.3.. This cochain complex is enlarged by the kinematic
terms for all the auxiliary fields. We then have additional binary products encoding the

cubic interactions.

L-algebra of Yang—Mills theory. \We consider the strictification up to quartic terms,
as explained in Section 8.3.. By the arguments given there, however, it is clear that our
discussion trivially generalises to strictifications up to an arbitrary order. The Lagrangian,

including the strictification of the colour—kinematics duality producing terms (8.38), reads
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as
Lot = 1A, 0AF — &0 + b, 0b° + £ b, VI 0,A% — gfapc 820 (ALEC) —
—LGERIG, + g (0 + 3G, ) AR
— R OKE - REOK? -
— e K@ ADAS + [ (= b7 + 2 on Ay ) Aoe — oo | Rich +
+ ghac{ R3[ (20,80 A0 + (" AB) ¢ | + A Rze)

(9.9)
where K™ and K2' are auxiliary g-valued one-forms, strictifying .Zggar"n®, , _o, and we
used the shorthand G2, = G, The field content is summarised in Table 9.1. Note
that K7* and Kjl are of ghost number zero, while K3* and Kff carry ghost numbers

—1 and +1, respectively. The Ly-algebra f}\é'g/'s's% to quartic order has underlying cochain
complex

(R, K2 (R Ki*™?)

R2@O' (M) ®g —— R2@ QMY Qg

=, =4a
Guws Guw{

®391(Md) ®g L) ®391(Md) ®g

i i+
Al Ay’

QM) ®g ——— QM) g

&vOow \
—&v0ou \

ba bta

T*(M)®@g —F= €°(M)®g
Ree Ry k2 Rzt
QM) ®g —— QM) ®g QM) ®g —— QM) ®g
& g+a g g+a
(M) @g —=— €°(M) ®g (M) ®g —=— €°(M) ®g
—_— —_— —_— —_—
— EYM,st — EYM, st — EYM, st — EYM, st
BRST, 0 BRST, 1 BRST, 2 BRST, 3
(9.10a)
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Besides the differentials in (9.10a), we also have the following higher products

Ko

K| . i i

@: K2 PR (0vAb)o, & — Abov o, Ec
pos [T~ > Glbe b = Sb ~ Kb 52
- c? —0H(ALCE) — Kp,(0HE°) + APRKES

Al (9.10b)
b

aYM, st
€ (‘B LeReT 1.0 +
pe (K, &)

13

ARGy e
e )\ & —K2PEC + (0,0,E°)KS” + 0¥(0,E"Ks,) — €0, &°

AYM, st
€ @ LBRST 1.0 +

pe (K AT)
(9.10c)
R\ [ Raw 2(0"Ap)AS
ki | | ks DIV (o A Ak + 2, [ (AL )
i |+ | Giiw | | > 9o’ V20u(ALAY)
Aa Az Ricy
b b 2, /F(RipAw)
(9.10d)
€ C"B E\é:\?ﬂs"srt,z,(p ,
b (Rf Ri+ G+ A+ b+)
Ry, = —310Y(ALAS) — VBAO<GE,, — 4K 0,AC —
1 _— ]_ —_— 6 K ~ = = DN
A ”g(a ALYKIE + 2K, /Ebc ,

Tommaso Macrelli



140 9.2. Strictified Yang—Mills theory

and
R
cla
A - O e
Ga//K, , - L gfbca ~ - ~ MN ~ o~
o ga —Aborge — an(KIES) + 0va, (AbKSH)
a H H® BT T2
AS (9.10e)
Ba

aYM, st
€ (‘B LeReT 1.6 -

e (K>+, &t)
and the cyclic structure is given by
A Ay = f d9x ALATH BB = f d9x BB
(¢, & = Jddxﬁ"fj, (E, &7 = —fddxéac::j,
K Ky = — Pddxkf“f(fau, (KL KM = — f dix K2KMH  (9.10f)
J
(R RES — —fddx RoRs, . (RRP = f dix R22R2m
(G.G% = — | dix G2, G
J
Factorisation and twist datum. We factorise this L-algebra as
LMt — g® (Rin™ ®, Geal) (9.11)

where g is the usual colour Lie algebra, £in** the graded vector space

ty B
M9 @ M?
B &)
s v
e M Md ® (Md A Md) M
RKin® = ® D ® @® &) : (9.12)
g v a
R[1] NG R[-1]
—— @ —_——
=: Rin, =: Rinf'
R
=:,;;Ln3t
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and Gcal the L-algebra defined in (9.4). This Ly-algebra is cyclic with the inner products
given by (7.17) together with

1 v . v v 41 . v 2 v . v v 2 . v
.ty = =b,, (it = —0,, (t,.t5) =10,, (5.t =0, (0.13)
A : '
<t6u/f<' t0p0> — _%np)\(nupnmf o ,nl/a,nK,p) )
fields anti-fields
factorisation | —1lgn | | = e | dim factorisation | —1lgn | | —le | dim
C = e 88,C%(x) 0 [£-2 ¢t =ejasfct(x) -2 3 442
A= eav“sXAZ(X) 1 41 At = eav“sjA;a(x) -1 2 g+1
b = e ns,b(x) 1 41 b* = emsfbt?(x) -1 2 g+1
C = e,as,C?(x) -1 2 g Ct =e,gsfcti(x) 0 1 g
f<1 - eattsx}:q‘(x) 1 | ¢-1 ;:q = e.tls) Rja“(x) —1 2 |2-1
K= eaf‘fsx#_(ia(x) 1 41| K = ea‘E‘fszi“(x) -1 2 g1
5(2 = eatisxP:(g(x) -1 2 | 4-1 {(;’ = eatisjfi;a“(x) 0 1 g-1
K? = e,ths, K2%(x) 0 |9-1]K* =ethsfK2M(x) | -2 3 |¢-1
G = e th s,G,(x) | 0 1 [ 2-1]G"=ethsfGla(x) | -1 2 |41

Table 9.1: Factorisation of the fields in the L,-algebra corresponding to the Lagrangian
Lome,. Note that we suppressed the integrals over x and the tensor products for sim-
plicity.
The twist datum 7, see (6.20) for the general definition, in the factorisation (9.11) is
then given by the maps
Tl(tL) = tL@Id , Tl(‘EtL) = E?@Id ,
T1(ty"") = " ®id,

Ti(g) = g®id, ) — P @id+ EaeD o 7i(a) = a®id (9.14a)
T(n) = n®id—&F @20, ,
and
(g, v") = g®([d®* +*®id) +th® (0" ®d, — 04, ®id) ,
(" g) = gR(dQ* + *®id) —t¢ ® (¢* ® 0, —id® *d,) |
(g t,) = —g®®id,
(. 8) = g®id®d,
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T (v¥, n)
To(n, v*) -
T (vH, t55)

7’2(t5"x,v“) .
TQ(tlj_L,VV) .

To(v”, t})

(v, ef)

n"g®id®id ,

—-NM"gRid®id ,

VRIAdRI +t®I®id,
—v*®0,®id-t'®id®d,

v Rid®id ,

—v*®id®id ,

V' ®0,0"®id - v @O®Id-v"®0d,®0",
vV ®id® 0,04+ v ®idO+v" ®d, ®d”,
. ®idid+a®id®

2 Rideid-a®*®id ,

a® (" ®id+id® ),

—a® (*®id +id® ) ,

—a® (40 ®id+ M ® 3 + & @ +id ® ") |

a® (M0 ®id+ *®73” + 0" QM +id® ") ,
tf ®0"®id —t] ®id® * +

Llovi-g

NG /@ d-tfid®d) -

(9.14b)

—3[v”®((7“®id+id®(7“)—v“®(6”®id+id®&”)]+

V218" ® 0, ®@id + t§* ®id ® dy) |

_ ] ]
PR = /=
! 13 13

(1) )
T % @«/% ,
V2

—7( A RId® Y — M id® )
V2
2

20"V ®id® 0",

(nuf{vk®a//® id — ?']LL)\VK'®a’/®id) ,

2yt ® 0" ®id

(1) )
1—y1-—
_2—£V“®8”®id+n“un®4/% ®q/% ,

Ve
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L 1-vi—¢, .. . @® m?®
T (B, vY) = 2TV“®|d®§ —n*n® € ® €

To(t5,n) = v“@id@ﬂ%,
To(n, TY) = —v“@“%@id,

where we defined » o
] L] . g
(Mz @ME )(f@g) = 4/5(7‘9). (9.14c)

We note that the twisted tensor product Kin®* ®, Gcal is a (strict) C,-algebra, which

becomes an L-algebra after the tensor product with the colour Lie algebra g; see Sec-

tion 6.1. for details.

9.3. BRST Lagrangian double copy

A key feature of our double copy prescription based on factorisations of the L,-algebras
of gauge-fixed BRST Lagrangians is that not only the action but also the BRST operator
double copies. This fact guarantees that the double copy creates the appropriate gauge-
fixing sectors which is crucial in considering the double copy at the loop level. In the

following, we give a general discussion of what we called the BRST Lagrangian double

copy in [5].

Strictification of BRST-invariant actions. As discussed in Section 8.3., any field theory
can be strictified to a classically equivalent field theory with purely cubic interaction terms,

and this equivalence extends to the quantum level. Consider a general strictified field theory

1 1
S = §¢Ig/J¢J + aq)lquq)JCDK , (9.15)

where g, and f; « are some structure constants. As in Section 3.1., /, J,... are DeWitt
indices that include labels for the field species, the gauge and Lorentz representations, as
well as the space-time position.

Let us now consider a theory which is invariant under a gauge symmetry. We extend the
action of this theory to its BV form by including ghosts, anti-ghosts, and the Nakanishi—
Lautrup field, as done in Chapter 4. We then strictify the full BV action to an action with
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cubic interaction vertices. Restricting to gauge-fixing fermions which are quadratic in the
fields' guarantees that the action remains cubic after gauge fixing. The resulting BRST
operator QgrsT, given by (3.17¢c), is then automatically at most quadratic in the fields,

and we can write

1
cD/ QBRST QZCDJ + EQZKqDJCDK (916)

for some structure constants Q/, and Q.

Y | U
Biadjoint scalar field theory g
Yang—Mills theory g | Rin
N = 0 supergravity fKin | Kin

Table 9.2: Factors appearing in the field space factorisation (9.17) with Kin given in (7.16)

and g and g the colour Lie algebras.

Factorisation of structure constants. As indicated previously, the key to the double

copy is the factorisation of the field space £ into
£ = VRIVRE°(M), (9.17)

where 90 and U are two (graded) vector spaces. In our preceeding discussion, we have
encountered the three examples in Table 9.2. Consequently, in our formulas, we shall split

the multi indices into triples, that is, | = (o, &, x), and write (see e.g. (3.12b))
(L] ®RL 2 a = dRe = Jddxcbaé‘(x)@(ea@éd@sx) : (9.18)

We also demand that the structure constants g;, and f, « that appear in the action (9.15)
as well as the structure constants Q) and Q' that appear in the BRST operator (9.16)
are local in the sense that they vanish unless all the space-time points in the multi-indices
agree.

We write

81y = 8ap8apl], (9.19)

I This is the case for all explicit gauge-fixing fermions used in this paper.
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where go5 and g are differential operators, mapping €*(MY) to itself. In more detail,

we have

g7 = f %Y §aaiin PP = f ddyfddz 8os (X, ¥)Baly, 2) PP, (9.20a)

where the integral kernels are of the fom

gas(X,y) = 0D (x — y)gap(x) and Esz(y.2) = 6y — 2)gsa(y) (9.20b)

due to our assumption about locality, and we assume that gog(x) and g55(y) are invertible.

Analogously, we write

fik = faax@hy:rrz = Plasy Eiﬁ_"y ' (9.20c)

where fog, and f555 are bi-differential operators € (M?)@%* (M?) — ¢*(M?)@%* (M)
and
p: €°(M)RE* (M) — €*(MY) (9.20d)

is the natural diagonal product of functions. For the integral kernels of f,g, and ?&Bﬁ-y we
have again the locality condition

fopy (X1, X2 V1, ¥2) = 6D — y1)8D (%2 — yo)fupy (V1. ¥2)
(9.20e)

_'5'7(X1,X2;y11y2) = 5(d)(X1 —)/1)5(d)(X2 —y2)fs, q(YLJ/z) .

We note that there is some ambiguity in the definition (9.20c) due to the projection onto
the diagonal involved in p, but this redundancy never arises in any formula. To give a
clearer picture of what the above construction is doing, we can expand the f,g, and the

f5~ further in a basis of differential operators 0" for M a Lorentz multiindex, and we have

(pfapy Fapy) (P ® P) = fapunymnfagnign, (610N OF)(M20M077) (9.21)
For convenience, we also introduce the operators fg, and Fgﬁ by
Pfagy = Eas Pfgy and p?aﬁ_ﬁ = 8a5 P?gf—y , (9-22)

which is possible due to the invertibility of gos and g5 as well as the form of the integral
kernels (9.20e) . Evidently, fg, and fg‘ﬁ are again bi-differential operators, just as f,z, and
f-

apy-
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With the factorisation restriction, the action (9.15) becomes

s = f d’x {%Wgaﬁg@mﬁﬁ' + %q)aa(PfaﬁdeBﬁ)(q)BB ®<D“’“">} - (923)

For the BRST operator QggrsT, the factorisation of indices and the linearity of Qgrst imply
the decomposition

(BRST =! QBRST t GBRST , (9.24)

where ggrst and Ggrst are BRST operators acting in a non-trivial way on the factors

VR ¢*(MY) and T @ €“(MY) in the factorisation (9.18), respectively. By this, we

mean that the structure constants Q) and Q/, decompose as Q/, — (q',g)) and Q') —

(a)x.T'x). More explicitly,

(@a@x) _ o(d)(y & (a.a,x) — Sy _ (d)(y _ fa
Y66y) = 0 (x y)qg(x)ég ' Yo py)ivaz ~ 07 (x = y)0 (x — 2)q5,(x) gxy(X) '
—(a,ax) d —a —(a,@,x) o d d —Q
gy = 0 =YI0BAFX) . Ags) an = 00 =)0 (x = 2)f5, ()85 (x) .

where qg and c_]g are differential operators and qg,, and qgﬁ are again bi-differential oper-
ators, just as fg, and fgﬁ, with locality again restricting their integral kernels. Note that in
this splitting, the association of terms of the form 6(*)(x — y)dgd5 and 6(¥)(x — y)6'¥ (x —
Z)fgw(y,z)fg‘&(y,z) is not unique; we assign half of each of these terms to (q,,q',) and

half to (@}, @)

Example. To make our rather abstract discussion more concrete, let us briefly consider
the case of Yang—Mills theory (4.12). We refrain from discussing the details of the stricti-
fication of the BV action, but it is clear that 0 = g and U = &in’ with Kin’ some extension
of Rin allowing for auxiliary fields, similar to &in®" defined in (9.13). It is then also clear
that gap and fg, are the Killing form and the structure constants of the gauge Lie algebra
g.

On Rin', the integral kernel for the differential operator g,, is given by

_ 1
uv = Muv — iaﬂ(% . (9.26)

We note that qz = 0 and qg is only non-trivial for & labelling ghost and Nakanishi—Lautrup
fields, and B labelling the gauge potential and the anti-ghost field, all colour-stripped.
Working out all other structure constants is a straightforward but tedious process; since
no more insights would be obtained from it, we refrain from listing them here. We only

note that for Yang—Mills theory, the ambiguity in assigning terms to g and @ is absent.
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9.3. BRST Lagrangian double copy 147

Double copy. \We now note that the decomposition of the Lagrangian matches precisely
the decomposition of scattering amplitudes in the discussion of colour—kinematics duality,
cf. Section 1.3., which is the starting point for the double copy. We merely extended the
factorisation of the interaction vertices to a factorisation of the whole BRST structure.
In the usual double copy, we start from the factorisation for Yang—Mills theory and
replace the colour factor by a kinematic factor. More generally, however, we can certainly
replace any one of the (graded) vector spaces %0 and U and the corresponding struc-
ture constants with (graded) vector spaces and structure constants from other theories.
This gives us a new action, which we shall denote by S5%-. The corresponding BRST
operator Q5SS is obtained by replacing one set of kinematic structure constants in the

decomposition of the BRST operator (9.23) with those from the new factor.

BRST Lagrangian double copy. In order to obtain a consistent and quantisable theory,

we demand the new BRST structure to be consistent. Specifically,

QBRST BRST = 0 and (QBRST) = 0. (9.27)

By construction, we have again a decomposition @S5St =: dosst + dasst. The condition
2rst = O implies g3rst = 0, and we decompose the latter into linear, quadratic, and

cubic terms in the fields,

(2,0) (2,0)

qéRSTCD‘“ = q + gy ~|—q§2'0), (9.28)

and analogously for g3gst, (GorsT)?, and (G5kst)?, respectively. Schematically, the sum-

mands read as

quo) _ __.ngg... '
2,0
B I (9.29a)
% = - (q5,a%TE TS + q5,as e T) -
and
~(2,0
q§ ) _ ...ngg... ,
C7&20) _ _..(qg‘qngrngM q'yqu)?@ ' (9.290)
~(2,0
L R SR E AR

where fg,y and ?g denote the kinematic constants in S5%. It is now clear that (790) and

qf 9 vanish if Jarst = 0 and thus, q§20 and q2 % vanish on arbitrary fields.
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So far, our discussion was fairly general and nothing singled out colour—kinematics-dual

theories from other theories. This changes with the condition that q(2 9 — 0 must imply
q§2 0 — . Vanishing of q320 relies on a transfer of the symmetry properties of the open

indices of fg,_yf;_" and fE f_ via the contracting fields (in which the expression is totally
symmetric) to A59cs and d5,dse- It follows that if the symmetry properties of the open
indices in the terms quadratic in ?gﬁ are the same as for the terms quadratic in ?g‘,_y then
C~]§2’O) = 0. The colour—kinematics duality provides such a condition.

The same argument shows that (ggsst)? = 0, and we can directly turn to the cross

terms and split them again into linear, quadratic, and cubic pieces,

(GersTderRsT + GersTdersT)® = ai"Y + 8"V + oY, (9.30a)
and
(GBSsTBrsT + GBrsTBNsT) @™ = @Y + @t + gty (9.30b)

We note that the conditions q(1 Y — 0 and q(1 Y= 0 are implied directly when g; and
gi and §; and §; anti-commute, respectively, which is always the case in the theories we

study. Moreover, we have, again schematically, the conditions

(1.1) 70 P e & 1 o
@ = qm(q?fm + G5FE + G5F%) - Q5 (a2f5, + afe, + a5fgy) - (0.31)
1,1 '
qé ) = (Qeéfa fﬁwqm + de [35 76 f—y' tf 6%6%7%1 o f qﬁeqwéfs ) o

We see that qél’l) = 0 splits into two separate conditions on the indices in ¥ and U and
(1.1) (1,1)

thus it implies g5 = 0. The condition g’ = 0 can, In principle, be non-trivial, but
again colour—kinematics duality as well as the special form of the BRST operator in the
theories in which we are interested renders c”;él‘l) = 0 equivalent to qgl’l) = 0.
Finally, we have to check that Q55+ S5+ = 0, and we consider
qBRSTS = (1 0 + 53(,1 0) + Sil 0) , (932)
where s(1 0), sél 0), and sil’o) are quadratic, cubic, and quartic in the fields. Analogously,
we have G0SS0¢ = &M% 1 519 4 519 and the discussion for Gerst and §S% is
similar. Schematically, we compute
(
1,0 _
9 = | dx - (AlErpBap) -
J
-
1,0 e
S = [ dhx - (8as a5y + fasyah + fapsd))Fagy (9.33)
J
O _ [ (FasqFaesor + FapettsTasels
Sy = X ( aedyTassTy T TapelysTage r—y(s) T
J
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where we have assumed that ggrsT commutes with the differential and bi-differential
operators in the action, which is the case in all our theories. We see that 52(1'0) =0
and 53(1’0) = 0 imply 52(1‘ )~ 0and 3 (10 = 0, respectively. The relation §i1'0) =0 can, In
principle, lead to additional conditions. In a theory with colour—kinematics duality, however,
the contraction of the kinematic structure constants an_y appears as in the Jacobi identity,

(1.0) z(1.0)

and s, " as well as 5,7 vanish automatically.

In general, if we have a theory where QéRST = 0, QgrstS = 0 are satisfied only because
of the algebraic properties of the structure constants, and if we replace a set of structure
constants with a new set of structure constants that obey the same algebraic properties
of the old ones, we obtain an action S and a BRST operator C:)BRST such that C:)éRST =0,

QprstS = 0. Colour—kinematic duality provides precisely this condition.

Partial BRST Lagrangian double copy. There are few theories where we expect the
BRST Lagrangian double copy to work perfectly. The reason is that in most formulations,
colour—kinematics duality will not hold. In Yang—Mills theory, for example, it is not known
if colour—kinematics duality can be made manifest for off-shell fields.*

Now if colour—kinematics duality fails to hold up to certain terms, say the ideal of
functions of the fields vanishing on-shell as in the case of Yang—Mills theory, then the
equation QBRST So%+ = 0 will also fail to hold up to the same ideal. Consequently,
QBS+S5% is a product of factors whose vanishing amounts to the equations of motion

possibly multiplied by other fields and their derivatives.

9.4. BRST Lagrangian double copy of Yang—Mills theory

After the above general discussion, we now focus our attention on the instance of BRST

Lagrangian double copy that constitute the main object of our interest:
L5t = Rin™ ®, (Rin" ®, Gcal) , (9.34)

where £in® is given in Equation (9.12) and Gcal in Equation (9.4), respectively.

'Recall that we only extended colour—kinematics to the BRST-extended Hilbert space in Section 8.4.,
but with all fields still on-shell.
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150 9.4. BRST Lagrangian double copy of Yang—Mills theory

Field content. From the analysis at the level of cochain complexes in Section 7.5., we
already know that the field content of double-copied BRST-extended Hilbert space of
Yang—Mills theory agrees with the field content of the BRST-extended Hilbert space of
N = 0 supergravity. We shall continue to label fields as in Table 7.5.

However, when we consider the homotopy algebra associated to the full, interactive
picture, we have an additional infinite tower of auxiliary fields, coming from the infinitely
many additional auxiliary fields of colour—kinematics duality preserving, strictified Yang—
Mills theory. In Chapter 8, we wrote explicitly five of the auxiliary fields in Yang—Mills
theory,

R, K™, Gi,.. K?, K2, (9.35)
which correspond to the additional basis elements

1 T 2 b
t,, ., ", ot © (9.36)

in Kin**. From them, the tensor product (9.34) produces 40 auxiliary fields involving one
auxiliary kinetic factor and another 25 auxiliary fields involving two auxiliary kinetic factors.
Instead of giving these auxiliary fields individual labels, we collectively denote them by , T,,

where k; and k, denote the first and second kinematic factors, respectively. For example,

oy = g®g®(JddxsX<pgg(X)> = A,

V’T‘V

e, V"RV’ ® <Jddx sX(pVVW(X)) = h+ B, (9.37)

ttho = tli ®tgl{>\ ®© (Jddx SX(ptltOl:KA<X)> '

Higher products. The twist (9.14a) and (9.14b) determines the products i and o
between the elements of £8%. The formulas from Section 6.3. with all the appropriate

signs included read as

(@71 @01) = (1) O ) @ 7i7(2) @ (1 () (157 (1) (02)))
Po(x1 @Y1 QP1, 22 ® Y2 @ 2) =
= (_1)(IY1I+\W1I)IX2|+I<01I\yz\X
(1)

x T3 (31, %2) @ T3V (71, 72) ® (157 (31, %2) 01 (%)) (757 (31, y2) 02 (%)) -
(9.38)
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Note that there are no additional signs because our 72 are always even. While the com-

!

putation is readily performed, listing the higher products for all 81 fields is not particularly

enlightening.

Action. The factorisation (9.34) induces the following cyclic structure:

(1071 ® 01, % QY2 ® ) =

(9.39)
— (_1)|X2|mn(|Y1|mu+\<P1|eca[)+|><2|ﬁm|<ﬂ1\6m[<X1' X2> <Y1, Y2> <(P1, (p2> _

Together with the formulas for the super homotopy Maurer—Cartan action (3.27), we can
compute the (gauge-fixed) BRST action corresponding to the L.-algebra £85%. Again,
listing all the terms would not provide much insight, but we stress that we obtain all the
expected terms, in particular the lowest terms of the Fierz—Pauli version of the A/ = 0

supergravity action as well as the evident terms involving ghosts.

Double copy of the BRST operator. \We now consider the double copy of the BRST
operator to a BRST operator QEFEST. For our purposes, the double copy of the linearised
part without considering the auxiliary fields will be sufficient. We start from Yang—Mills
theory with the factors 8 := g and U = Kin in (9.17) and the usual BRST relations in

terms of coordinate functions on £5¥+,

QYM, lin

- - YM, lin 1 _ /1 _
AZ BRST 628M5b , ba =QBRST 62 g\/ﬁ&b ,
YM, li VM, li \/g / (940)
za QEReT 0. ga QereT 52 ( ng . 1—+v1- Eé‘“[\ﬁ) .
V€ 3
We thus have qg = g, and the non-vanishing components of ag‘ are given by
Oy for @ =g, B = v
_ vt 0 for a =g*, B = n*
g = 4 f 3 . (9.41)
T for @ = n*, B = a*
—i= 61750““ for & = v}, B = a*

\

After the double copy, we have U := Rin = U and, correspondingly, qz = qg- The

linearisation of the double-copied BRST operator is then non-trivial on a field containing
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a factor of v# or a and we have in the anti-symmetrised sector

QDC, lin

A —==1, 0,
&DC.lin

R, BT o5
~ fjgg'sﬁlp 17@@5\

(’;’)DC, lin

B, —5 0,A, —ad,A,
L QBT 1—x/ﬁf/~\ B

Yu VE DA =0 (9.42a)
RGN \/:7_—1_@&“7\#,
3 3
R, T aug+\ﬁdu——l_*éﬁa“éw,
,_:Y=(§BI%S‘"|P 1_F@§+1_\2ﬁ8#~#
R \/;__1—\21;—55;‘7\“'

and in the symmetrised sector

QDC, lin

Y BRST
Xt — 0,

BPC,lin
BRST
> O

@DC, lin

Puw —20 0, X, +0.X,

- QBrer 1—41-¢ ~ ~
, _ XH — oM
NG v/ B,
I Y iy S (9.42b)
: 2 VOB |
VE 0B
QgrsT Oz 1-4V1-¢

5 Eﬁ Ta,j“,

Su B s \E@M_%ﬁ@gw,

= Qe 1-V1-¢ . 1-V1-¢ ., O,
g E \/55+—£ Ot + EW.
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Importantly, this BRST operator is related to the usual linearised BRST operator for N’ = 0
supergravity, (4.23) and (4.30),

Q/\/’ZO, lin QNZO, lin
A BRST 0 © BRST 0
QNZO,lin Q/\/ZO, lin
/\u BRST aﬂ A X BRST 0,
Qersr” Qs
’y ——— O ) ﬁ [m— O s
Qgrsr” Qerst”
B, ———— 0N\, — N\, , hy ———— X, + 0, X,
o Q™" 0 " Qier ™" 0 (9.42¢)
" — _ )
Qzrst” Qg™
€ v, 0 6.
_ QN:O,HH _ QNZO. lin
Ay 5T, o Xt ERST
QJ\/’ZO, lin _ QNZO, lin
ol BRST 0, BRST T
_ QNZO,lin Q/\/ZO, lin
X BRST ,7 , T BRST 0

by the field redefinitions (7.22) and (7.27), respectively.

9.5. Equivalence of the double copied action and N = 0 supergravity

We now conclude this final Chapter by showing that the double copied action S5S+ we
constructed in Section 9.4. is fully perturbatively quantum equivalent to the suitably gauge
fixed version of the BV action of N = 0 supergravity, SQ/R:SOT, defined in Section 4.6.. For
this, we have to show that up to a field redefinition, both theories have the same tree-level
correlation functions. A crucial point in our discussion will be the BRST Lagrangian double

copy formalism developed in the previous section.

Before exposing with our argument, let us introduce some terminology: we shall speak
of ‘auxiliary fields connected to a field ¢’ by which we mean all auxiliary fields which appear
together with ¢ in Feynman diagrams containing only propagators of auxiliary fields. In
other terms, an auxiliary field 1 connected to a field ¢ can have an interaction vertex with

¢ or interact with an auxiliary field that propagates to an auxiliary field that non-trivially
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interacts with ¢, etc.:

Y ¢ Y ¢ Y ¢

(9.43)
where a dashed line denotes an auxiliary field. We also use the adjectives physical and
unphysical when referring to fields, interaction terms and scattering amplitudes. The
unphysical fields are all ghosts, anti-ghosts, and Nakanishi—Lautrup fields as well as auxiliary
fields connected to these. Physical fields are the remaining fields, consisting of the metric,
the Kalb—Ramond field and the dilaton as well as a number of auxiliary fields. Physical
interaction vertices are those consisting exclusively of physical fields. Physical scattering

amplitudes are those with physical fields as external labels.

Physical tree-level scattering amplitudes. \We first note that the auxiliary fields in the
double copied action 58S+ can be integrated out, after which the field content and the
kinematic terms in both actions fully agree, up to the field redefinitions we discussed in
Chapter 7. Implementing these field redefinitions on Sirss, we obtain the action SER% .

Moreover, the physical tree-level scattering amplitudes computed from the interaction
vertices of the action §§F§ST are by design precisely those arising in the usual double copy
prescription for the construction of A" = 0 supergravity tree amplitudes from a factorisation
of Yang—Mills amplitudes. The tree-level double copy has been demonstrated to hold, cf.
Observation 8.12, and therefore the physical tree-level scattering amplitudes of SBS and
S3RS o agree.

If we put all unphysical fields to zero, the resulting theories 5,2&3? ohys and SQ/R:SOT'phyS

are classically equivalent by Observation 8.9. In the homotopy algebraic picture, this

DC

ohys tO two quasi-isomorphic Ly-subalgebras.

corresponds to a restriction ngF?SOT’phys and £
In order to improve this restricted classical equivalence to a full perturbative quantum
equivalence, we need to adjust and modify the actions or, equivalently, the corresponding

L.-algebras. We shall do this now in a sequence of steps, expanding the discussion in [5].

Auxiliary fields of ghost number zero. The reformulation of the tree-level scattering

amplitudes of N' = 0 supergravity used in the double copy defines a local strictification
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of the physical part of the action S5z to the action SQfR:Sf’T1 by promoting all cubic
interaction vertices to cubic interaction terms. This is fully analogous to the strictification
implied by the manifestly colour—kinematics-dual form of the Yang—Mills action explained
in Section 8.3..

By construction, the actions SA3% ; and §§F§ST’ ohys Nave the same field content, the
same kinematical terms for the physical and auxiliary fields and identical tree-level scat-
tering amplitudes for the physical fields.

Let us now consider the tree-level scattering amplitudes which have auxiliary fields of
ghost number zero on their external legs. Such amplitudes are fully determined by the
(iterated) collinear limits of physical tree-level scattering amplitudes. Because, again, the
physical tree-level scattering amplitudes of SBRST , and §§§ST'phys agree, the tree-level
scattering amplitudes with physical and auxiliary fields of ghost number zero on external
legs agree.

By Observation 8.9, we then have a local field redefinition of SAR% | to SEReT » such
that both actions agree after all fields except for physical ones and auxiliary fields of ghost
number zero are put to zero. If we integrated out all auxiliary fields in both actions, the

resulting actions would agree in their purely physical parts.

Nakanishi—Lautrup fields. In the next step, we deal with the difference between S0S
and SBRST > proportional to any of the Nakanishi—Lautrup fields (,B,wu,w,’y, au,'y); we
shall come to the ghost field 3 later. After integrating out all auxiliary fields, this difference
can be compensated by Observation 8.8. That is, we can modify the gauge-fixing fermion
and perform a field redefinition of the Nakanishi—Lautrup fields such that this difference is
removed. We note that neither of these two processes modifies the physical parts of the
action and both preserve quantum equivalence. We can thus replace all terms in S35 5
containing Nakanishi—Lautrup fields by the terms in S0S containing Nakanishi—Lautrup
fields as well as auxiliary fields connected to Nakanishi—Lautrup fields. We call the resulting
action S35 5.

Recall that there is a ghost number —2 field A which is paired with the Nakanishi—
Lautrup-type field <y in the gauge fixing fermion (4.26), allowing us to absorb any term
proportional to -y in a different gauge choice. This is not the case for the corresponding

Nakanishi—Lautrup-type field in the gravity sector, 3. Any discrepancy proportional to G
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between SARY 5 and SDS+ (again, after integrating out all the auxiliary fields) should
instead be absorbed by shifting the gauge fixing fermion W from (4.38) by a term 0P,
where BP is the discrepancy. This will generate the desired corrections. This will also lead

to new ghost terms, which we will treat separately in the next step.

Ghost sector. Let us now examine the ghost interactions. We know that the action

SBRST 5 comes with a BRST operators QBRST 5 Which satisfies

(QBRST 3)2 = 0 and QBRST3 Q{?sOTﬁ = 0. (9-44)

From our discussion in the previous section, we know that the double-copied BRST oper-

ator QBSs satisfies

(QBRST) € 4 and QBRST BRST e J, (9.45)

where .# is the ideal of polynomials in the fields and their derivatives which vanishes for
on-shell fields. We also know from the discussion around (9.42) that the linearisations of
the BRST operators satisfy

QBRsT = Qarer's - (9.46)
After integrating out all auxiliary fields, these BRST operators link the physical tree-level
scattering amplitudes to tree-level scattering amplitudes containing ghosts by the on-shell
Ward identities, cf. Observation 8.2.

At the level of the BRST operators Q5ger and Q'S the situation is more involved,
but we still end up with similar on-shell Ward identities. The BRST doublets in the BRST-
extended Hilbert space of Yang—Mills theory double copy to BRST doublets of auxiliary
and non-auxiliary fields.

Therefore, the tree-level scattering amplitudes for the BRST-extended Hilbert spaces
of SARY 5 and S5&sr are fully determined via on-shell Ward identities by the tree-level
scattering amplitudes of the physical and auxiliary fields of ghost number zero. We con-

clude that all these tree-level scattering amplitudes agree between both theories.

Full quantum equivalence. For full quantum equivalence, it remains to show that there
is a local field redefinition that links the action SBRST , to SRS . Both actions fully agree

in their kinematic terms and their interaction vertices that contain exclusively fields of
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ghost number zero. Moreover, they have identical tree-level scattering amplitudes on their
BRST-extended (i.e. full) Hilbert spaces. We can therefore invoke Observation 8.9 one
final time in order to provide us with a local field redefinition that shifts the discrepancies
between both actions to interaction vertices of arbitrarily high degree. This renders the

actions fully quantum equivalent from the perspective of perturbative quantum field theory.
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Minimal model recursive construction

To derive the recursion relations (5.7a), we need to construct a quasi-isomorphism ¢ :
£° — £ that allows us to pull back the higher products on £ to £° via formula (2.32)
(with ¢9 = 0). Our construction of ¢ follows the idea of [247], where essentially the
same construction was given in the case of Ay -algebras. In particular, we assume that
we have a Maurer—Cartan element a° in £° and map it to an element a in £. The
fact that Maurer—Cartan elements are mapped to Maurer—Cartan elements under quasi-
isomorphisms, cf. (2.36), together with the assumption that a° (and therefore a) is
small, will give us enough constraints to determine the quasi-isomorphisms and the higher
products on £°.

The material in this Appendix is borrowed from [2].

A.1l. Minimal model recursive construction

We start from the contracting homotopy
p
hC (£.11) = (£°,0) . (A1)

where we can assume that h> = 0 and eop, u; oh and h o u; are projectors onto £ham,
L%, and £°°%, respectively. Moreover, let a° € £9 be a Maurer—Cartan element. Under a
quasi-isomorphism ¢, a° is mapped to
a = ZI.—I!(b,-(aO,...,aO) . (A.2)
=1
A convenient choice is ¢; = e, and it remains to identify ¢; for i > 1. We will do this by

fixing a as a function of a°.
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Recall that (5.2) yields the unique decomposition
d = dharm + Adex + Adcoex W|th aharm,ex, coex € Sharm,ex, coex - (A3)

There is some freedom in the choice of ¢ and without of loss of generality, we may impose
the gauge fixing condition
h(a) = 0. (A.4)

This is, in fact, a generalisation of the Lorenz gauge fixing condition from ordinary gauge
theory. Consequently, aex = (i1 o h)(a) = 0. Moreover, the fact that u; is a chain map
implies that @1(anam) = (41 oceop)(a) = 0 so that the homotopy Maurer—Cartan equation

for a becomes
1
Ml(acoex> + Z i_lui(aharm + Acoexs - - - dharm + acoex) = 0. (AS)
i=2
Upon acting with h on both sides of this equation, we obtain
1
dcoex = — Z I_|<h © “i)(aharm + Acoexs - - - dharm + acoex) . (A6)
i=2
If we now assume that a° is small, say of order O(g) with g « 1 for g a formal

parameter, we may rewrite (A.2) as

g’ o o o g o o}
a = EI—I(b,(a ..... a) =ge(a)+5¢2(a,a)+---
i1 ~—— —
— 2V e (A.72a)

2
1 g 2
= g(al(m)rm + ag))ex) + 2 (at(wa)rm + agzex) +e

We can then compute the solution a of the homotopy Maurer—Cartan equation order by
order in g using (A.6). In this process, we can choose to put af]ia)rm =0 for i > 1 so that

(1) g (i)
a = gam+ ), -ra = Aharm + Acoex -
L ,.;/! (A.7b)
= dharm W_J

= dcoex
Observe that agééx = 0 follows from the condition ul(ag)ex) = 0 obtained at linear or-
der from Equation (A.5). Substituting the expansion (A.7) into (A.6), we arrive at the

recursion relation

i
agczex = = Z _| Z (h © H’J)(ak(\aizn + a<(:lc<>ie)><' T af\ajr)m + aéojgx) (AS)
j:2J' kit ki=i
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for acoex. Comparison with (A.2) then yields the quasi-isomorphism (5.7a) when evaluated
at degree 1 elements.

To recover also the brackets uf on £° listed in (5.7a) by pullback, we note that upon
applying the projector p to (A.5) and using the fact that p is a chain map, we immediately
find that

Z l—1|(p o i) (@harm + Acoexs - - - Aharm + Acoex) = O . (A.9)
i=2

Hence, after substituting the expansion (A.7), we recover the brackets (5.7a) for degree 1

elements.

Our derivation above is strictly speaking only applicable to Maurer—Cartan elements,
which are elements of the L, -algebra of degree 1. As noted in [52], however, we may
enlarge every Ly-algebra £ to the Lo-algebra £4 := €*(£[1]) ® £ where €% (£[1]) are
the smooth functions on the grade-shifted vector space £[1]. Then, every element in £
gives rise to a degree 1 element in £4, and, applying the above construction to £¢ yields

the full L-quasi-isomorphism and brackets listed in (5.7a).

Cyclic L-algebras. Finally, we note that the above construction also extends to the

cyclic case. For this, we need h chosen such that
(L £ = 0. (A.10)
This is always possible since cyclicity (2.21) for u; implies in general that
(L, £, = (ghm ge, = 0. (A.11)

The remaining freedom in the choice of h can therefore be used to ensure that the only

non-vanishing entries of the underlying metric are
(gharm gharmy - (gex geoesy s and  (£9°%, £ (A.12)
If we now pull-back the cyclic structure from £ to £° and define
& e = ($1(47), $1(65))e (A.13)

we have satisfied the first condition in (2.40) on a morphism of cyclic L-algebras. The
second condition in (2.40) is implied by (A.10) together with im(¢) < £
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A generalisation of Berends—Giele recursion relations

Let us present a derivation of the Berends—Giele recursion from the quasi-isomor-
phism (5.43) in the case of a general gauge group not necessarily simple and compact,
which relies on the Dynkin—Specht—\Wever lemma.

The material in this Appendix is borrowed from [2].

B.1. Dynkin—Specht—Wever lemma

Statement. For simplicity, let a be a matrix algebra and [ be the Lie subalgebra generated
by the elements that generate a, that is, the free Lie algebra over a. Consider the Dynkin

map D : a — [ defined by

a3 Y A Xow Koty = X, Ao [Xo) [Xo@), - - [Xo(i—1), Xo] ---1] € L, (B.1)

oeS; €S,
where X1, ..., Xi € a and the coefficients )\, are some numbers, and by the identity if / = 1.
The Dynkin—Specht—Wever lemma then asserts that if p(X) := Zaes,p )x((,p)XU(l) - Xo(iy) €
[ then
D(p(X)) = ipp(X) . (B.2)

Hence, for any homogeneous polynomial p(X) € a of degree i,, we obtain (Do D)(p(X)) =
iD(p(X)).

Proof. To prove (B.2), we follow [248]. Firstly, we set ad(X)(Y) := [X,Y]. Then, one
can show by induction on the degree of the polynomial p(X) that if p(X) € [ then

ad(p(X)) = p(ad(X)) (B.3a)

165



166 B.1. Dynkin—Specht—\Wever lemma

with
p(ad(X)) == > AP ad(Xew) 0+ 0ad(Xe()) - (B.3b)

O'ES,‘p
Secondly, (B.2) is certainly true for i, = 1 so let us assume it is true for i, > 1 and prove
the statement by induction. To this end, let p(X) € [ and g(X) € [ be homogeneous

polynomials of degrees i, and i4, respectively. Then,

D(p(X)a(X)) = > MP[Xon), [Xow@), - - - [Xo(-1), [Xo), D(aX))]] -+ 1]

UES,',J
_ p(ad(X))(D(a(X)
= ad(p(X))(D(q(X)) o

= [p(X), D(q(X))]
= Ig[p(X), a(X)] ,

where in the third step we have used (B.3a) since g(X) € [ and in the fifth step the
induction hypothesis. Thus,

D([p(X), a(X)]) = (ip + ig)[P(X), a(X)] - (B.5)

This concludes the proof of (B.2).

Applications. Consider now
D(X1---Xj) = [X1, [Xo, ... [Xiz1, Xi] -+ ]]

- (D)™ KXoy - Xo) XiXo(im1) - Xogir)

Y 2 (FDIEDXoq) - Ko XiXoo1) -+ Xogan)

Jj=00€eSh(j;i—1)

where in the third step we have used (B.2).
Then, again using (B.2), we obtain

1
[D(X1---Xi), D(Xig1--- Xisj)] = —=D([D(X1---Xi), D(Xiy1--- Xigj)])
(. / / +J
=:(i+J)) ZUES[+] >\<(yf;f+j)xa(1)"'xo(rﬂ) (87)
= 2 AID(Xo) - Xogiep) |
O'GS,‘+]
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where the A" are given in terms of the coefficients in (B.6).

Likewise, again using (B.2), we have

[D(X1 -+ Xi), [D(Xigr -+ Xisj), D(Xigjin -+ Xigjri)]] =
1

ol k)(. e k)D([D<X1 2+ Xi), D([D(Xig1 -+ Xij), D(Xigjn -+ Xisjei) 1))

= Z AIFID([D(Xy -+ Xi), D(Xiton1) -+ Xitonei)])])

(i+j+k) msﬁk
= D ALTONIIID(Xo, 1) Koy Xor(iroa(n) * Xor(ironti k)
O1€5i4j+k
Uzesj+k
=: Z AP D(Xo1y - Xo(iajen)
OES|yjtk

(B.8a)

where the coefficients Ag'j) are defined as follows: letting

_ 2 for £e{l,..., it
03 = 010T,, , with 75,(f) =
I+ 028 —1) for Lef{i+1,..., I+J+k},
(B.8b)
we obtain
Z Z ATHFRINIITI D (X, 1)+ Xoy (i Xow(i+oa(1)) ** * Xor(i+oa(iik)) =
01€Si1j+k 02€S;
R II+_j+k k (B8C)
- Z Z 03075, >\(JJ+ )D(XU3(1) o XU3(f+f+k)) '
U3€S,+J+k 02651+k
since when oy runs over all of S;;;x so does o3. Consequently, we may set
>\(/,j;i+j+k — Z >\ i I+J+k)>\(JJ+k . (B.Sd)
oESs 0'07',
B.2. Gluon recursion for general Lie groups
We again consider plane waves of the form (5.36) and make the ansatz
—1) _
oi(A(L), ..., A(N)) = —( , ) Z Ju(o(1), ..., o (i) ek F ko)
! oeS
X [Xo@) [Xo@) [+ [Xoi-2), [Xo(i-1), Xon]] - - T1dx* .
(B.9)
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Upon substituting this into (5.43) and using the contracting homotopy (5.32), a straight-

forward calculation shows that

Ju(1, ..., N =
B 1
EE
X Py {i[[J(l ----- ), JU+1,..., i ;ﬁ‘ (B.10a)
+§: i NJs(1,..., N, JG+1, ..., k),J(k+1,..., /)]]Z}
J=1k=j+1
with

[4(1), J(2), JB), = [J(1), J(2), JB), — [4(3). J(1), J2)I,
(B.10b)

where [—, —]|, and [—, —, —]|. were introduced in (5.38c) and (5.39c) and the A-coefficients
are defined in (B.7) and (B.8), respectively. This is the Berends—Giele recursion for any

matrix gauge algebra.
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