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[. . . ] es el asombro ante el milagro

de que a despecho de infinitos azares,

de que a despecho de que somos

las gotas del ŕıo de Heráclito,

perdure algo en nosotros:

inmóvil.

Jorge Luis Borges, Final de año, from Fervor de Buenos Aires, 1923





Scientific abstract

In this Thesis we discuss applications of homotopy algebras to several aspect of quantum

field theories. In an effort to be self-contained, we start introducing L8-, A8-, and C8-

algebras, and contextualising them in the framework of Batalin–Vilkovisky formalism, that

associates every perturbative Lagrangian field theory to an L8-algebra encoding the com-

plete classical theory. Several instances of field theories are reviewed, and their underlying

homotopy algebras are discussed in detail. The connection between homotopy algebras

and scattering amplitudes are explored, and explicit recursion relations (at tree- and loop-

level) are provided and applied to concrete examples. We then apply the homotopy algebra

framework to the study of BCJ colour–kinematic duality and double copy prescription for

Yang–Mills theory. Following a Lagrangian approach and with the help of an appropriate

notion of tensor product for homotopy algebras, we introduce a colour–kinematic factor-

isation at the level of the L8-algebra associated to the theory. We construct a double

copied Yang–Mills theory, and we show that it is perturbatively quantum equivalent to

N “ 0 supergravity, proving the validity of the double copy prescription for Yang–Mills

theory at loop-level.

This Thesis is based on the papers [1–6] that I wrote in collaboration with Leron

Borsten, Branislav Jurčo, Hyungrok Kim, Lorenzo Raspollini, Christian Saemann, and

Martin Wolf.

Keywords and AMS Classification Codes: 8-operads and higher algebra (18N70), Geo-

metry and quantization, symplectic methods (81S10), Yang-Mills and other gauge theories

in quantum field theory (81T13), Feynman diagrams (81T18), Correspondence, duality,

holography (AdS/CFT, gauge/gravity, etc.) (81T35), Methods of quantum field theory

in general relativity and gravitational theory (83C47), Supergravity (83E50).
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Lay summary

The formulation of quantum field theory (QFT) was one of the greatest scientific achieve-

ments of the last century, realising a paradigm that conciliate quantum mechanics and spe-

cial relativity. Nowadays, QFT is our best tool to quantitatively describe Nature, and the

Standard Model gives us an incredible precise picture of the fundamental forces in terms of

gauge theories. In spite of that huge success, our understanding of fundamental physics is

far from being complete: we still miss a consistent quantum description of gravity. Many

efforts of present days fundamental physics research are devoted to the aim of grasping

a better understanding of gravity, and many unifying descriptions have been proposed,

although no one succeeded in obtaining universal consensus in the scientific community.

One of these proposals is string theory. Even without debating its ultimate validity as

a theory of everything, the sheer amount of advancements in physics and mathematics

prompted by string theory is immense. It is precisely in string theory that important math-

ematical structures, known as homotopy algebras, found a natural realisation. It was then

discovered that homotopy algebras were almost ubiquitous in theoretical physics: indeed,

homotopy structures underpin every classical and quantum field theory, and they encode

all the details of their perturbative properties.

This Thesis is devoted to the study of homotopy algebras applications in QFT, and

its aim is threefold. First, we want to give a comprehensive description of the Batalin–

Vilkovisky formalism, that is the bridge between homotopy algebras and quantum field

theories. Second, we want to show that this homotopy algebra framework can be suc-

cessfully applied to the study of scattering amplitudes, crucial objects in QFT, that link

the mathematical description of the theory to the experimental results. In particular, we

provide recursion relations for scattering amplitudes, that generalise previous results and

interpret them into the homotopy algebra language. Finally, we want to inquire into an

intriguing duality between gauge theories and gravity, namely the colour–kinematic duality

and the double copy prescription. Inspired by our homotopy algebra technology, we prove

a conjecture that links gauge theory scattering amplitudes with gravity scattering amp-

litudes, potentially opening the way for further conceptual and practical advancements.
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6. L. Borsten, H. Kim, B. Jurčo, T. Macrelli, C. Saemann, and M. Wolf, Double Copy

from Homotopy Algebras, 2102.11390 [hep-th].

Any ideas, data, images or text resulting from the work of others are clearly identified

as such within the work and attributed to the authors in the text or bibliography. This

thesis has not been submitted for any other academic degree or professional qualification.

The University of Surrey reserves the right to require an electronic version of the final

document as submitted for assessment as above.

Tommaso Macrelli, 4th August 2021

xi

http://www.maths.dur.ac.uk/lms/109/index.html
http://www.arxiv.org/abs/1903.02887
http://dx.doi.org/10.1103/PhysRevD.100.045017
http://www.arxiv.org/abs/1903.05713
http://dx.doi.org/10.1007/JHEP07(2020)003
http://www.arxiv.org/abs/1912.06695
http://dx.doi.org/10.22323/1.376.0199
http://www.arxiv.org/abs/2002.11168
http://www.arxiv.org/abs/2002.11168
http://dx.doi.org/10.1103/PhysRevLett.126.191601
http://dx.doi.org/10.1103/PhysRevLett.126.191601
http://www.arxiv.org/abs/2007.13803
http://www.arxiv.org/abs/2102.11390




Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Gauge theory, BV formalism, and homotopy algebras . . . . . . . . . . . . 1

1.2. Homotopy algebras and scattering amplitudes . . . . . . . . . . . . . . . . 5

1.3. Homotopy algebras and gauge–gravity dualities . . . . . . . . . . . . . . . 7

1.4. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5. Plan of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Homotopy algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1. A8-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. C8-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. L8-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4. Structure theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Batalin–Vilkovisky formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2. Batalin–Vilkovisky formalism and L8-algebras . . . . . . . . . . . . . . . . 33

4. Field theories, BV complexes, and homotopy algebras . . . . . . . . . . . . . . 43

4.1. Scalar field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2. Biadjoint scalar field theory . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3. Yang–Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4. Free Kalb–Ramond 2-form . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5. Einstein–Hilbert gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6. N “ 0 supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5. Minimal model and scattering amplitudes . . . . . . . . . . . . . . . . . . . . . 61

5.1. Equivalence of field theories . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2. Tree-level scattering amplitudes . . . . . . . . . . . . . . . . . . . . . . . 62

5.3. Loop-level scattering amplitudes . . . . . . . . . . . . . . . . . . . . . . . 66

5.4. Coalgebra picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5. Berends–Giele recursion relations . . . . . . . . . . . . . . . . . . . . . . 71

5.6. Colour structure of scattering amplitudes . . . . . . . . . . . . . . . . . . 77

5.7. One-loop structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6. Factorisation of homotopy algebras and colour ordering . . . . . . . . . . . . . 83

6.1. Tensor products of homotopy algebras . . . . . . . . . . . . . . . . . . . . 83

6.2. Colour-stripping in Yang–Mills theory . . . . . . . . . . . . . . . . . . . . 86

6.3. Twisted tensor products of strict homotopy algebras . . . . . . . . . . . . 89

xiii



7. Factorisation of free field theories and free double copy . . . . . . . . . . . . . 93

7.1. Factorisation of the cochain complex of biadjoint scalar field theory . . . . 94

7.2. Factorisation of the cochain complex of Yang–Mills theory . . . . . . . . . 96

7.3. Canonical transformation for the free Kalb–Ramond two-form . . . . . . . 102

7.4. Canonical transformation for Einstein–Hilbert gravity with dilaton . . . . . 105

7.5. Factorisation of the cochain complex of N “ 0 supergravity . . . . . . . . 108

8. Quantum field theoretic preliminaries . . . . . . . . . . . . . . . . . . . . . . . 115

8.1. BRST-extended Hilbert space and Ward identities . . . . . . . . . . . . . 116

8.2. Quantum equivalence, correlation functions, and field redefinitions . . . . . 122

8.3. Strictification of Yang–Mills theory . . . . . . . . . . . . . . . . . . . . . 126

8.4. Colour–kinematics duality for unphysical states . . . . . . . . . . . . . . . 132

9. Double copy from factorisation of homotopy algebras . . . . . . . . . . . . . . 137

9.1. Biadjoint scalar field theory . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2. Strictified Yang–Mills theory . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.3. BRST Lagrangian double copy . . . . . . . . . . . . . . . . . . . . . . . . 145

9.4. BRST Lagrangian double copy of Yang–Mills theory . . . . . . . . . . . . 151

9.5. Equivalence of the double copied action and N “ 0 supergravity . . . . . . 155

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A. Minimal model recursive construction . . . . . . . . . . . . . . . . . . . . . . . 163

A.1. Minimal model recursive construction . . . . . . . . . . . . . . . . . . . . 163

B. A generalisation of Berends–Giele recursion relations . . . . . . . . . . . . . . . 167

B.1. Dynkin–Specht–Wever lemma . . . . . . . . . . . . . . . . . . . . . . . . 167

B.2. Gluon recursion for general Lie groups . . . . . . . . . . . . . . . . . . . . 169

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

xiv



1
Introduction

In this first Chapter, homotopy algebras are heuristically introduced and motivated in the

framework of Batalin–Vilkovisky formalism. The main results of this Thesis are informally

presented and contextualised in the landscape of high energy theoretical physics.

1.1. Gauge theory, BV formalism, and homotopy algebras

The conciliation of Special Relativity and Quantum Mechanics into the framework of

quantum field theory was one of the major conceptual achievements of the last century.

To the present day, quantum field theory is still our best quantitative description of Nature,

and it is difficult to overemphasise the role of symmetries in our understanding of it.

Symmetry seems indeed inescapably tied with the explanation of the most fundamental

bricks of Nature: the identification of elementary particles as the irreducible representations

of the symmetries of space–time provided by Wigner’s classification is a rigorous answer to

the question of what can exist in the universe, a conundrum as old as human speculative

thinking.

Every action-based, covariant description of the known fundamental interaction con-

tains an intrinsic redundancy, as it is formulated introducing non-dynamical degrees of

freedom. Gauge invariance is the symptom of such redundancy. The most familiar ex-

ample is provided by the electrodynamics, where the four components of the covariant

four-potential Aµ do not correspond to the two helicity states of the photon: the gauge

invariance of the theory rules out the non-dynamical components. The same is true for

gravity, where the ten degree of freedom of the symmetric metric tensor hµν are reduced

to the two helicity states of the graviton by the diffeomorphism invariance of the theory.
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2 1.1. Gauge theory, BV formalism, and homotopy algebras

The advantages of a covariant formulation are not priceless, and the quantisation of a

gauge theory is the prime example of such difficulties. Heuristically speaking, to quantise

a gauge theory means to make sense of its path integral. For the sake of concreteness,

let us consider Yang–Mills theory, a fundamental ingredient of the Standard Model:

SrAs “ ´
1

4

ż

ddx F aµνF
aµν . (1.1)

Perturbatively, the obvious problem is that the kinematic operator of Yang–Mills theory is

not invertible, and we need to introduce a gauge-fixing in order to define a propagator.

We have more serious problems at the non-perturbative level: given an observable OpAq,

a naive expression for its expectation value would be
ż

µpAqOpAqe
i
~SrAs . (1.2)

Unfortunately, this path integral is ill-defined, as we are integrating over gauge-equivalent

field configurations with the same weight OpAqe
i
~SrAs. We remark that both problems can

be seen as direct consequences of the local gauge symmetry.

The Faddev–Popov method and the standard Becchi–Rouet–Stora–Tyutin (BRST)

formalism allow us to deal with the aforementioned gauge-fixing and quantisation issues

in a covariant way. The inconvenience of a covariant quantisation is the introduction of

unphysical states to parametrise gauge freedom, namely ghosts: in the Faddev–Popov

method they emerge through the Jacobian factor that arises when the (infinite) volume

of the local gauge transformation is factored out. The inner product associated to ghosts

states (and to unphysical gluon states) is not positively-defined: to obtain a physical Hilbert

space we then need additional conditions. This problem is present also in the Abelian case

(where ghosts decouple and are not needed for quantisation), where the Gupta–Bleuler

condition is imposed on the physical states. In Yang–Mills case, the action constructed

with the Faddev–Popov method is invariant under BRST symmetry, a global symmetry

associated with a nilpotent, anticommuting conserved charge QBRST. The original gauge

symmetry of the theory is recovered by BRST symmetry, and the ghost field plays the

role of the gauge parameter. The physical space of physical states is then constructed

completing the pre-Hilbert space given by the cohomology of the differential complex

associated to QBRST.

Despite the great success of this formalism in the quantisation of Yang–Mills gauge

theory and in the proof of their renormalisability, there are instances of theories where the

Tommaso Macrelli



1.1. Gauge theory, BV formalism, and homotopy algebras 3

Faddev–Popov method and the BRST quantisation fail. Open algebras gauge theories are

theories where the commutator of two gauge transformations is a gauge transformation

up to equations of motion: this is equivalent to say that the BRST differential complex

is a differential complex only up to equations of motion. Examples of these theories are

encountered in the context of (super)gravity. Generally speaking, higher gauge theories,

theories where the gauge parameters enjoy themselves gauge freedom (mediated by higher

ghosts), feature open symmetry algebras. To gauge-fix and quantise these theories, BRST

formalism is not enough. Even for standard gauge theories, exotic gauge-fixing choices

cannot be implemented with standard BRST formalism.

Batalin–Vilkovisky (BV) formalism [7–11] (also known as antibracket formalism) can be

seen as a generalization of BRST formalism, and was originally introduced to gauge-fix and

quantise theories that cannot be handled with the standard BRST approach. Analogously

to the BRST approach, the starting point of BV formalism is the introduction of ghosts

(and, eventually, higher ghosts) to parametrise gauge freedom. Then, the field content

of the theory is doubled: for every field, ghost, higher ghost, we introduce an antifield, a

ghost antifield, a higher ghost antifield. In this way we obtain a cotangent bundle, where

the original BRST fields ΦA are the local coordinates on the BRST fields manifold, and

the antifields Φ`
A the fibre coordinates. This comes with a natural symplectic structure,

that allows us to define Poisson brackets t´,´u. The BRST action SBRST is extended (in

an essentially unique way in the context of the minimal extension) to a BV action SBV,

that satisfies the classical BV master equation

tSBV, SBVu “ 0. (1.3)

The BRST operator QBRST is extended to a vector field

QBV “ tSBV,´u (1.4)

that squares to 0. In this formalism, gauge-fixing is imposed evaluating the path integral

on a Lagrangian submanifold L of the BV field manifold. This is implemented eliminating

the antifields with the introduction of a gauge-fixing fermion Ψ. The gauge independence

of the expectation value of an observable O,

xOyΨ “

ż

FBV

µBVpΦ,Φ`
q δ

ˆ

Φ`
A ´

δΨ

δΦA

˙

OrΦ,Φ`
se

i
~S
~
BVrΦ,Φ

`s, (1.5)

Tommaso Macrelli



4 1.1. Gauge theory, BV formalism, and homotopy algebras

is expressed by the following statement, proved by Batalin and Vilkovisky: if L0 and L1 are

Lagrangian submanifolds connected by a continuous family Lt of Lagrangian submanifolds,

and the integrand H satisfies ∆BVH “ 0, where

∆BV „
δ2

δΦAδΦ`
A

, (1.6)

then
ż

L1

dλ1H “

ż

L0

dλ0H. (1.7)

The condition

∆BV

´

e
i
~S
~
BVrΦ,Φ

`s

¯

“ 0 (1.8)

translates to a condition on S~BV,

tS~BV, S
~
BVu ´ 2i~∆BVS

~
BV “ 0, (1.9)

that generalise the classical master equation. Equation (1.9) is called quantum BV master

equation.

Let us make a step back to the classical BV formalism: the differential algebra associ-

ated to QBV is dual to a codifferential coalgebra, equivalently described as an L8-algebra,

a homotopy algebra that generalise the notion of a Lie algebra. In more precise terms,

the BV differential algebra is the Chevalley–Eilenberg algebra associated to an L8-algebra.

This L8-algebra encodes the complete classical structure of the field theory (symmetries,

fields, equations of motion, Noether identities...). At the quantum level, this picture will

be extended with a quantum generalisation of the notion of L8-algebra: in the same way

the classical BV master equation gives rise to an L8-algebra, the quantum BV master

equations yields an underlying algebraic structure called quantum L8-algebra.

Strong homotopy algebras are generalisations of ordinary algebras, such as associative,

Leibniz, and Lie algebras, where the structural identities (respectively, associativity, Leibniz

identity, and Jacobi identity) hold only up to a coherent homotopy. In general, we can

consider homotopy algebras as graded vector spaces, equipped with a differential and

multibrackets, called higher products, that obey a homotopy generalisation of the structural

identity of the correspondent classical algebra. Prominent examples of homotopy algebras

are the already mentioned L8-algebras and A8-algebras, which generalise the notion of

associativity. Starting from the seminal contribution of Masahiro Sugawara [12,13] in 1957

and the fundamental work of Jim Stasheff [14,15] in 1963, A8-structures were introduced

Tommaso Macrelli



1.2. Homotopy algebras and scattering amplitudes 5

in Mathematics. A historical breakdown of the (intricate) story of the discovery and the

development of homotopy algebras in mathematical literature is beyond the purposes of this

Thesis: the interested reader can find a detailed account in Stasheff’s recent review [16].

Homotopy algebras are ubiquitous in theoretical physics: in the early 80’s, their dual,

Chevalley–Eilenberg counterpart appeared in supergravity in the work of D’Auria–Fré [17],

with the slightly misleading name of free differential algebras or FDAs (in rigorous terms,

their FDAs where indeed semifree differential graded algebras). Around the same years,

the BV approach to gauge-fixing and quantisation was proposed. Stasheff successively

interpreted the BV complex in term of Chevalley–Eilenberg algebras associated to L8-

algebras [18, 19], and various authors addressed the algebraic structures yielded by BV

formalism in gauge theories [20–31]. The identification of L8-algebras as the algebraic

structures behind Zwiebach’s closed string field theory is attributed to Stasheff’s comment

on Zwiebach’s contribution to the 10th and Final Workshop on Grand Unification [32,33] in

1989, and Gaberdiel and Zwiebach [34] recognized A8-algebras as the algebraic structures

of classical open string field theory. Kajiura and Stasheff proposed an homotopy algebra

for classical open–closed string field theory [35], and recently Kunitomo and Sugitomo

realised an L8 structure associated to heterotic string field theory [36]. Further discussions

on homotopy algebras and string field theory can be found in [37–40, 35, 41–43].

The paper [44] renewed the attention on the homotopy algebra structures underlying

every Lagrangian field theory. In the last years, this higher homotopy framework was

applied to various aspects of quantum field theory: scattering amplitudes, gravity, double

field theory constitute a non exhaustive list of topics where homotopy algebras found

natural incarnations [45–72].

1.2. Homotopy algebras and scattering amplitudes

We opened this Introduction remarking how gauge invariance was a common trait of every

covariant formulation of the fundamental interactions of Nature. In the last decades,

it became evident that the point of view of scattering amplitude (usually opposed to a

covariant, action-based formulation) could often give clearer insight into the structure of

quantum field theories. The standard textbook approach prescribes: a) to write an action,

b) to gauge-fix, and finally c) to compute scattering amplitudes using Feynman rules. But

then, in spite of the lengthy diagrammatic calculation a priori required, the astonishing
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6 1.2. Homotopy algebras and scattering amplitudes

simplicity of MHV formulas for Yang–Mills theory is a clear evidence of how scattering

amplitudes could grasp certain aspects of quantum field theory in a more immediate way.

In almost every sector of modern theoretical physics, technologies borrowed from the

scattering amplitude world (e.g. on-shell methods and generalised unitarity) are common

and essential tools.

The homotopy algebra approach to quantum field theory could eventually encompass

both the action off-shell perspective and the scattering amplitudes on-shell perspectives: in

homotopy algebra terms, the bridge between these two formulation is provided by the no-

tion of minimal model. A minimal L8-algebra is an L8-algebra with trivial differential. Our

homotopy framework provides a clear notion of classical equivalence between field theories,

namely quasi-isomorphisms. Inside an equivalence class of quasi-isomorphic theories there

is a special representative, called minimal model (not to be confused with the homonym-

ous conformal field theory concept). This minimal model can be explicitly constructed

starting from the cohomology of the L8-algebra that the BV formalism associates to the

field theory: through homotopy algebra techniques, the cohomology inherits a minimal L8

structure. The minimal model grasps the on-shell, physical data of the theory: indeed,

the elements of the cohomology are fields that obey the free equations of motion of the

theory, identified up to gauge transformations.

The history of the mentioned Yang–Mills MHV amplitude are indirectly connected to

homotopy algebras. In 1987, in a very famous paper Berends and Giele [73] proposed a

method to compute in a recursive way gluon scattering amplitudes, proving a number of

open conjectures related to amplitudes with most of the gluon with the same helicity. The

objects recursively computed in Berends–Giele recursion relations are tree-level off-shell

currents, scattering processes involving i ´ 1 on-shell fields and an ith off-shell field.

i

i ´ 11
. . .

“
ÿ

i

. . .. . .

`
ÿ

i

. . .. . .

. . .

(1.10)

In Yang–Mills theory, the recursive nature of these diagrammatic objects is a simple

combinatorial evidence. Complete on-shell scattering amplitude are then computed con-
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1.3. Homotopy algebras and gauge–gravity dualities 7

tracting the off-shell leg of the relevant current with the appropriate polarisation, and im-

posing momentum conservation. This diagrammatic construction is naturally interpreted

in the context of homotopy algebras: the key to the dictionary between these two formu-

lations is to realise that tree-level off-shell currents codify the quasi-isomorphism between

the minimal model and the original L8-algebra. The minimal model construction hence

yield a homotopy algebra generalisation of Berend–Giele recursion relations, valid for every

Lagrangian field theory [2], see Section 5.2.. Using the BV approach to quantisation, this

recursive homotopy algebra construction can be further generalised to loop-level. This

approach to off-shell recursion relations in quantum field theory can be useful to prove in

a convenient way properties of tree- and loop-level amplitudes [3], see Section 5.3.. Our

homotopy algebra perspective was also followed by Lopez–Arcos and Quintero Vélez to

link the perturbiner expansion to the L8-algebra formalism [63].

1.3. Homotopy algebras and gauge–gravity dualities

The study of the dualities between gauge theory and gravity are among the most fruitful,

recent research lines in the context of quantum field theory. A paradigm that turned out

to be a very powerful insight is the possibility to realise a gravity theory as a squared gauge

theory. Heuristically speaking, an intuition that motivates this idea is that we can identify

the tensor product of two colour-stripped gauge potential A, Ā with the field content of

N “ 0 supergravity, namely the NS–NS sector of the α1 Ñ 0 limit of closed string theory:

‘Aµ b Āν “ gµν ‘ Bµν ‘ ϕ’ , (1.11)

where gµν is the metric, Bµν the antisymmetric Kalb–Ramond Abelian gauge potential and

ϕ the dilaton. It is not difficult to realise this identification at the level of on-shell states.

However, extending this construction to the full theory is far from being immediate.

The first concrete incarnation of this principle came from string theory, in the guise

of KLT relations [74]. Yang–Mills theory comes from the low energy limit of open string

theory, while gravity arises in the low energy limit of closed string theory: closed string

spectra are given by the tensor product of left- and right-moving open string spectra. KLT

relations express tree-level closed string amplitudes as sum of products of open string amp-

litudes, giving a quantitative formulation to the heuristic duality (1.11), albeit intrinsically

tied to the tree-level.
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8 1.3. Homotopy algebras and gauge–gravity dualities

Advancement in scattering amplitudes made possible a more recent, purely field theor-

etic approach to the ‘gravity “ gaugeˆ gauge’ paradigm, namely BCJ colour–kinematics

duality and double copy prescription, that suggested the possibility to extend this gauge–

gravity duality to the loop-level. For a pedagogical review of these topics and further

perspectives, see [75–80]. We start with a simple observation: we can blow-up Yang–Mills

four-gluon interaction vertex into trivalent components, that can be absorbed in the three

interaction channels s, t, u.

ÝÑ
s

` t `
u

(1.12)

This means that we can organise a L-loop Yang–Mills amplitude as a sum of trivalent

contributions:

An,L “ p´iqn´3`3Lgn´2`2L
ÿ

i

ż L
ź

l“1

ddpl
p2πqdSi

cini
di

. (1.13)

Here i runs over all L-loops trivalent graphs, g is the coupling constant, Si is the symmetry

factor, and di are the denominators that come from propagators. The numerators can be

split into two factor: a colour factor ci , composed of gauge group structure constants,

and a kinematic factor ni , obtained from Lorentz-invariant contractions of polarisations

and momenta. Importantly, kinematic factors are not univocally determined, and this is at

the heart of the BCJ colour–kinematic statement

Conjecture 1.1. (Bern–Carrasco–Johansson, [81, 82]) There exists a choice of kinematic

numerators of the trivalent diagrams entering the scattering amplitude An,L such that

• if a triple of trivalent diagrams pi , j, kq has colour numerators obeying the Jacobi

identity

ci ` cj ` ck “ 0 , (1.14a)

then the corresponding kinematic numerators obey the same identity

ni ` nj ` nk “ 0 ; (1.14b)

• in any individual diagram, if the colour numerator is mapped from ci to ´ci under

the permutation of two legs, then the corresponding kinematic numerator is mapped

from ni to ´ni .
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1.3. Homotopy algebras and gauge–gravity dualities 9

We will call (1.14b) kinematic Jacobi identities. If this statement holds true, then the

double copy prescription allow us to compute gravity amplitude from Yang–Mills ones: if

we replace the colour factors of Equation (1.13) with kinematic numerators ñi (having

that ñi or ni are BCJ-compliant) and Yang–Mills coupling constant g with
`

κ
2

˘

(where

κ is the gravitational coupling constant), we obtain a legitimate N “ 0 supergravity

amplitude [81–83]

Mn,L “ p´iqn´3`3L
´κ

2

¯n´2`2Lÿ

i

ż L
ź

l“1

ddpl
p2πqdSi

ni ñi
di

. (1.15)

This is an all-loop statement, the problem is that it relies on the validity of colour–kinematic

duality. While proven at tree-level [84, 85], at loop-level colour–kinematic duality remains

a conjecture, despite being supported by many evidences [82, 86–103].

The range of the applications of colour–kinematic duality and double copy is not lim-

ited to scattering amplitudes computation: we can mention for example the study of

(non-perturbative) classical solutions in gravity and bi-adjoint scalar theory [104–129],

classical black hole scattering [130–143], connections with string theory [84,85,144–148],

ambitwistor strings and scattering equations [149–159].

It is natural to suspect that colour–kinematic duality could be made manifest at the

level of the action. Indeed, the explicit formulation of a non-local reformulation of Yang–

Mills theory action that produces tree-level, BCJ-compliant numerators for on-shell gluons

scattering amplitudes, was presented by Tolotti and Weinzierl in [160]. Following the earlier

step in this direction presented in [83], where an effective Lagrangian producing BCJ-

compliant numerators for tree level scattering amplitude up to six point was introduced,

Tolotti and Weinzierl proposed the Lagrangian

L YM
“

ÿ

n

L YM
n , (1.16)

in which the n-th order term is

L YM
n “

ÿ

ΓPTree3,n

Oµ1¨¨¨µn
n,Γ

tr
!

rAµσp1q, Aµσp2qs r. . . rAµσp3q, Aµσp4qs . . . , Aµσpnqs
)

ljn,Γ,1 ¨ ¨ ¨ljn,Γ,n´3

, (1.17)

where Tree3,n is the set of trivalent tree diagrams with n external vertices. The per-

mutation σ is determined by the diagram Γ and Oµ1¨¨¨µn
n,Γ is a sum of polynomials in the

inverse Minkowski metric ηµν and n ´ 2 partial differential operators Bµ acting on one of
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10 1.3. Homotopy algebras and gauge–gravity dualities

the n occurrences of the field A in the numerator. The operators ljn,Γ,k in the denominator

act on the kth internal edge of Γ. This expression is algebraically equal to ordinary Yang–

Mills Lagrangian: Jacobi identity vanishes the higher-order vertices. Tolotti–Weinzierl

action expresses how these vertices are distributed into trivalent trees. This action is one

of the starting points of our work: at the price of introducing an infinite tower of auxiliary

fields, we can make this action local and at most cubic in the interactions.

Our claim is that homotopy algebras can help us to solve the all-loop conundrum, and

the route we chose to validate loop-level double copy does not involve a direct proof of

loop-level colour–kinematic duality. On-shell methods were fundamental in revealing this

structure, hidden in the standard action-based formulation of the theory. We propose an

off-shell, Lagrangian approach to the colour–kinematic duality and double copy paradigm,

with homotopy algebras being instrumental in manifesting this structure at the level of the

associate L8-algebras, and eventually at the level of the actions. Following this approach,

the remarkable result is that we can directly prove the double copy prescription at arbitrary

high loop level, without relying on the validity of colour–kinematic duality for loops. The

key technical construction for this homotopy algebra interpretation is the introduction

of an adequate notion of tensor product, such that we can factorise Yang–Mills theory

L8-algebra into three components:

LYM
“ gb Kinbτ Scal , (1.18)

where g is the gauge Lie algebra, Kin a graded vector space whose basis corresponds to the

Poincaré representation of the field content of the theory, and Scal the A8-algebra of a

scalar theory. The tensor product we introduce in this construction is suitably twisted with

the introduction of a twist datum τ , that codifies how Kin acts on Scal as a kinematic

operator algebra. The double copied theory is then realised replacing the g factor with a

copy of Kin:

LDC
“ Kinbτ Kinbτ Scal . (1.19)

The theory associated to this L8-algebra is perturbatively quantum equivalent to N “ 0

supergravity [5, 6], see Section 9.5., and this implies the validity of double copy at loop

level. Alternatively, one can replace Kin with a copy of the gauge Lie algebra g (or a
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1.4. Outlook 11

different one): in this case, we obtain the L8-algebra of a biadjoint scalar theory.

Biadjoint scalar field theory ÐÝ Yang–Mills theory ÝÑ N “ 0 supergravity

gb gbScal gb Kinbτ Scal Kinbτ Kinbτ Scal

(1.20)

1.4. Outlook

The recent progress of homotopy algebras applications to high energy theoretical phys-

ics shows how these sophisticated mathematical techniques could be helpful to provide

new insight into the structure of field theories and to suggest solutions to relevant open

problems. Restricting our attentions to the themes of the present Thesis, we can identify

some interesting research lines, where our homotopy algebra-based approach could provide

new results. Some of these research directions are natural generalisations of the results

discussed in this Thesis.

Scattering amplitudes recursion relations. Homotopy algebra minimal model construc-

tion encodes and generalise off-shell Berends–Giele recursion relations. Since tree-level

on-shell scattering amplitudes are completely grasped by the minimal model structure as-

sociated to the field theory, it is reasonable to expect that also on-shell recursion relations

(e.g., BCFW recursion relations) could be interpreted and eventually generalised in terms

of homotopy algebras. In this context, a recursive construction based on Hartogs extension

theorem was proposed in [161].

Colour–kinematic duality and double copy. The double copy paradigm opened new

perspectives on quantum gravity, providing both deep conceptual advancements and new,

crucial computational developments [162, 90, 91, 93, 99, 96, 100, 101, 163, 164]. A growing

zoology of gravity theories could be constructed from double copy [162,82,83,165,91,166–

169,166,170–179,103,180–186], and under some assumptions our Lagrangian realisation

of this paradigm could be extended to them. This would imply the validity of double copy

prescription to all loop order for many relevant theories. A simpler example, the non-linear

sigma model (whose double copy is the special galileon), is discussed in [6]. A natural

follow-up of pure Yang–Mills theory double copy case would be the inclusion of supersym-

metry: we are free to extract the kinematic factor Kin and the twist datum τ from theories
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12 1.5. Plan of the Thesis

different from pure Yang–Mills. For example, from the factors of pure Yang–Mills theory

and N “ 1 Yang–Mills theory it should be possible to realise N “ 1 supergravity minimally

coupled to a single chiral multiplet, see also [126]. Almost allN ě 2 ungauged supergravity

theories [182], (super) Einstein–Yang–Mills–scalar theories [173], and gauged supergravity

(with Poincaré background) [184] could be realised from double copy. Other candidates

of double copy-constructible theories are Abelian Dirac–Born–Infeld theory [153,187,159],

massive gravity [188], and conformal gravity [180, 189]. Ambitiously, homotopy algebra

techniques could be used to directly prove loop-level and even off-shell colour–kinematic

duality [190].

String theory. From the perspective of string theory, this relation between gauge the-

ories and gravity is a reflection of a more fundamental ‘open b open “ closed’ duality,

as suggested by KLT relations. Inquiring into the stringy origin of colour–kinematic du-

ality and double copy could give us a better understanding of the structures involved in

our formulation, like the homotopy algebra factorisation that we introduce in Chapter 6.

Moreover, homotopy algebras are the natural language of string field theory: the homo-

topy algebra interpretation of double copy could be a valid framework to investigate and

generalise open/closed string dualities.

1.5. Plan of the Thesis

In this Section we present a short summary of the content of the following Chapters and

Appendices.

In Chapter 2 we give an overview of the homotopy algebras relevant for our physical

applications. Chapter 2 is based on [6].

In Chapter 3 we review BV formalism, and we show how homotopy algebras describe

every perturbative field theory. Chapter 3 is based on [6].

In Chapter 4 we show several concrete examples of applications of the homotopy algebra

framework to the formulation of field theories. We introduce here the field theories relevant

to Yang–Mills theory double copy. Chapter 4 is based on [2, 6].

In Chapter 5 we focus on minimal models and homotopy algebra applications to scat-

tering amplitudes. Chapter 5 is based on [2, 3, 6].
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In Chapter 6 we introduce a notion of factorisation for (strict) homotopy algebras,

that we will adopt to give an homotopy algebra description of colour–kinematic duality.

Chapter 6 is based on [6].

In Chapter 7 we expose the homotopy algebra factorisation underlying Yang–Mills the-

ory double copy at linear level. Chapter 7 is based on [6].

In Chapter 8 we collect several field theoretic observations, that will prepare the ground

for extending the linear result to the full, interacting picture. Chapter 8 is based on [5, 6].

In Chapter 9 we finally show the perturbative quantum equivalence between Yang–Mills

theory double copy and N “ 0 supergravity. Chapter 9 is based on [5, 6].

In Appendix A we present a proof of minimal model recursive construction for L8-

algebras. Appendix A is based on [2].

In Appendix B we discuss a further generalisation of Berends–Giele recursive relations.

Appendix B is based on [2].
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2
Homotopy algebras

The homotopy algebras that appear naturally in the context of field theories, namely A8-,

C8-, and L8-algebras are homotopy versions of associative, commutative and Lie algebras.

In particular, associativity and the Jacobi identity only hold up to coherent homotopies.1

In this first Chapter, we list the main definitions and several technical results that will be

relevant for our field theoretic applications, as well as the conventions that we adopted

in this Thesis. For more details on L8-algebras and some of the calculations detailed in

this Chapter, see e.g. [52, 1]; our conventions match the ones in these references. Other

helpful references with original results listed in this Chapter are [191, 40, 192]. A unifying

description of all the homotopy algebras and their cyclic structures listed below is given by

operads, but we refrain from introducing this additional layer of abstraction.

The material in this Chapter is borrowed from [6].

2.1. A8-algebras

A8-algebras. An A8-algebra or strong homotopy associative algebra is a graded vector

space A “
À

iPZAi together with higher products which are i-linear maps mi : Aˆ¨ ¨ ¨ˆAÑ

A of degree 2´ i that satisfy the homotopy associativity relation

ÿ

i1`i2`i3“i

p´1qi1i2`i3mi1`i3`1pid
bi1 bmi2 b idbi3q “ 0 (2.1)

1But graded commutativity (in the case of C8-algebras) and graded anti-symmetry (in the case of

L8-algebras) are not relaxed.

15



16 2.1. A8-algebras

for all i P N`. The lowest identities read as

m1pm1p`1qq “ 0 ,

m1pm2p`1, `2qq “ m2pm1p`1q, `2q ` p´1q|`1|Am2p`1,m1p`2qq ,

m1pm3p`1, `2, `3qq `m3pm1p`1q, `2, `3q ` p´1q|`1|Am3p`1,m1p`2q, `3q`

` p´1q|`1|A`|`2|Am3p`1, `2,m1p`3qq “ m2pm2p`1, `2q, `3q ´ m2p`1,m2p`2, `3qq ,

...

(2.2)

for `1, . . . , `i P A elements of homogenous degree |`1|A, . . . , |`i |A. We thus see that the

unary product m1 is a differential and a derivation for the binary product m2. Importantly,

the ternary product m3 captures the failure of the binary product m2 to be associative.

Cyclic A8-algebras. A cyclic A8-algebra pA, x´,´yAq is an A8-algebra A equipped with

a non-degenerate graded-symmetric bilinear form x´,´yA : Aˆ AÑ R such that

x`1,mip`2, . . . , `i`1qyA “ p´1qi`ip|`1|A`|`i`1|Aq`|`i`1|A
ři
j“1 |`j |Ax`i`1,mip`1, . . . , `iqyA (2.3)

for all `i P A. When it is clear from the context, we shall suppress the subscript A on the

inner products.

Homotopy Maurer–Cartan theory. Each A8-algebra comes with a homotopy Maurer–

Cartan theory, where the gauge potential is an element a P A1 whose curvature f P A2 is

defined as

f :“ m1paq `m2pa, aq ` ¨ ¨ ¨ “
ÿ

iě1

mipa, . . . , aq (2.4)

and satisfies the Bianchi identity

ÿ

iě0

i
ÿ

j“0

p´1qi`jmi`1pa, . . . , a
looomooon

j

, f , a, . . . , a
looomooon

i´j

q “ 0 . (2.5)

If the homotopy Maurer–Cartan equation

f “ 0 (2.6)

holds, we say that a is a homotopy Maurer–Cartan element. Provided A is cyclic with

pairing of degree ´3, homotopy Maurer–Cartan elements are the stationary points of the
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homotopy Maurer–Cartan action

ShMC
ras :“

ÿ

iě1

1

i ` 1
xa,mipa, . . . , aqyA . (2.7)

Infinitesimal gauge transformations are mediated by elements c0 P A0 and are given by

δc0
a :“

ÿ

iě0

i
ÿ

j“0

p´1qi`jmi`1pa, . . . , a
looomooon

j

, c0, a, . . . , a
looomooon

i´j

q . (2.8)

One may check that the action (2.7) is invariant under the transformations (2.8), and the

curvature (2.4) transforms as

δc0
f “

ÿ

iě0

i
ÿ

j“0

i´j
ÿ

k“0

p´1qkmi`2pa, . . . , a
looomooon

j

, f , a, . . . , a
looomooon

i´j

, c0, a, . . . , a
looomooon

i´j´k

q . (2.9)

To verify these statements, one makes use of (2.1).

2.2. C8-algebras

Permutations, shuffles, and unshuffles. Let Sn be the permutation group of degree

n P N`. We shall write for a permutation σ P Sn

σ :“

˜

1 2 ¨ ¨ ¨ n

σp1q σp2q ¨ ¨ ¨ σpnq

¸

. (2.10)

A pp, qq-shuffle for p, q P N` is a permutation σ P Sp`q which satisfies the condition

that if 1 ď σpiq ă σpjq ď p or p ` 1 ď σpiq ă σpjq ď p ` q then i ă j . We denote the

set of all pp, qq-shuffles in Sp`q by Shpp; p ` qq. Consider, for instance, S3. We have the

permutations

S3 “

#˜

1 2 3

1 2 3

¸

,

˜

1 2 3

1 3 2

¸

,

˜

1 2 3

2 1 3

¸

,

˜

1 2 3

2 3 1

¸

,

˜

1 2 3

3 1 2

¸

,

˜

1 2 3

3 2 1

¸+

.

(2.11)

Then, the sets of p1, 2q- and p2, 1q-shuffles are given by

Shp1; 3q “

#˜

1 2 3

1 2 3

¸

,

˜

1 2 3

2 1 3

¸

,

˜

1 2 3

2 3 1

¸+

,

Shp2; 3q “

#˜

1 2 3

1 2 3

¸

,

˜

1 2 3

1 3 2

¸

,

˜

1 2 3

3 1 2

¸+

.

(2.12)
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Likewise, a pp, qq-unshuffle for p, q P N` is a permutation σ P Sp`q which satisfies the

condition that σp1q ă ¨ ¨ ¨ ă σppq and σpp ` 1q ă ¨ ¨ ¨ ă σpp ` qq. We denote the

set of all pp, qq-unshuffles in Sp`q by Shpp; p ` qq. For instance, the sets of p1, 2q- and

p2, 1q-unshuffles in S3 are given by

Shp1; 3q “

#˜

1 2 3

1 2 3

¸

,

˜

1 2 3

2 1 3

¸

,

˜

1 2 3

3 1 2

¸+

,

Shp2; 3q “

#˜

1 2 3

1 2 3

¸

,

˜

1 2 3

1 3 2

¸

,

˜

1 2 3

2 3 1

¸+

.

(2.13)

It follows from the above definitions, and it is evident from the explicit examples (2.12)

and (2.13), that a permutation is a pp, qq-shuffle if and only if its inverse is a pp, qq-

unshuffle, and vice versa.

C8-algebras. A C8-algebra or strong homotopy commutative algebra is an A8-algebra

C “
À

iPZ Ci where the higher products mi , in addition to (2.1), also satisfy the homotopy

commutativity relations

ÿ

σPShpi1;iq

χpσ; `1, . . . `iqmip`σp1q, . . . , `σpi1q, `σpi1`1q, . . . , `σpiqq “ 0 (2.14)

for all 0 ă i1 ă i and for all `1, . . . , `i P C. Here, χpσ; `1, . . . , `iq is the Koszul sign for

total graded anti-symmetrisation defined by

`1 ^ . . .^ `i “ χpσ; `1, . . . , `iq `σp1q ^ . . .^ `σpiq . (2.15)

The lowest four homotopy commutativity relations are

m2p`1, `2q ´ p´1q|`1|C |`2|Cm2p`2, `1q “ 0 ,

m3p`1, `2, `3q ´ p´1q|`2|C |`3|Cm3p`1, `3, `2q ` p´1qp|`1|C`|`2|Cq|`3|Cm3p`3, `1, `2q “ 0 ,

m4p`1, `2, `3, `4q ´ p´1q|`1|C |`2|Cm4p`2, `1, `3, `4q`

` p´1q|`1|Cp|`2|C`|`3|Cqm4p`2, `3, `1, `4q ´ p´1q|`1|Cp|`2|C`|`3|C`|`4|Cqm4p`2, `3, `4, `1q “ 0 ,

m4p`1, `2, `3, `4q ´ p´1q|`2|C |`3|Cm4p`1, `3, `2, `4q`

` p´1q|`2|Cp|`3|C`|`4|Cqm4p`1, `3, `4, `2q ` p´1qp|`1|C`|`2|Cq|`3|Cm4p`3, `1, `2, `4q´

´p´1qp|`1|C`|`2|Cq|`3|C`|`2|C |`4|Cm4p`3, `1, `4, `2q`

` p´1qp|`1|C`|`2|Cq|`3|C`p|`1|C`|`2|Cq|`4|Cm4p`3, `4, `1, `2q “ 0 ,

(2.16)
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and we see that the product m2 is indeed graded commutative. Note that, a priori, there

are two relations for m3 given by the p2, 1q- and p1, 2q-shuffles. However, the p1, 2q-shuffles

for p`1, `2, `3q are the same as the p2, 1q-shuffles for p`3, `2, `1q. Since `1, `2, and `3 are

arbitrary elements of C, the two relations thus reduce to one relation. Generally, the

number of independent relations for mi is t i
2
u.

Cyclic C8-algebras. A cyclic C8-algebra is a cyclic A8-algebra satisfying the homotopy

commutativity relations (2.14).

2.3. L8-algebras

L8-algebras. An L8-algebra or strong homotopy Lie algebra is a graded vector space

L “
À

iPZ Li together with higher products which are graded anti-symmetric i-linear maps

µi : Lˆ ¨ ¨ ¨ ˆ LÑ L of degree 2´ i that satisfy the homotopy Jacobi identities

ÿ

i1`i2“i

ÿ

σPShpi1;iq

p´1qi2χpσ; `1, . . . , `iqµi2`1pµi1p`σp1q, . . . , `σpi1qq, `σpi1`1q, . . . , `σpiqq “ 0 .

(2.17)

for all `1, . . . , `i P L and i P N`; see Section 2.2. and Equation (2.15) for the definitions

of the unshuffles Shpi1; iq and of the Koszul sign χpσ; `1, . . . , `iq. The lowest homotopy

Jacobi identities, slightly rewritten, read as

µ1pµ1p`1qq “ 0 ,

µ1pµ2p`1, `2qq “ µ2pµ1p`1q, `2q ` p´1q|`1|Lµ2p`1, µ1p`2qq ,

µ2pµ2p`1, `2q, `3q ` p´1q|`1|L |`2|Lµ2p`2, µ2p`1, `3qq ´ µ2p`1, µ2p`2, `3qq “

“ µ1pµ3p`1, `2, `3qq ` µ3pµ1p`1q, `2, `3q ` p´1q|`1|Lµ3p`1, µ1p`2q, `3q`

` p´1q|`1|L`|`2|Lµ3p`1, `2, µ1p`3qq ,

...

(2.18)

and we can interpret them as follows. The unary product µ1 is a differential and a derivation

with respect to the binary product µ2. In addition, the ternary product µ3 captures the

failure of the binary product µ2 to satisfy the standard Jacobi identity. Roughly speaking,

the ternary product µ3 correspond to a homotopy that control the violation of standard
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20 2.3. L8-algebras

Jacobi identity1.

We note that any A8-algebra yields an L8-algebra with higher products obtained from

total anti-symmetrisation,

µip`1, . . . , `iq “
ÿ

σPSi

χpσ; `1, . . . , `iqmip`σp1q, . . . , `σpiqq . (2.19)

In particular, the Lie algebra arising from the commutator on any matrix algebra is an L8-

algebra. Likewise, the anti-symmetrisation of a C8-algebra is an L8-algebra with µi “ 0

for i ě 2 due to the homotopy commutativity relations (2.14).

We call an L8-algebra nilpotent, if all nested higher products vanish, i.e.

µipµjp´, . . . ,´q, . . . ,´q “ 0 for all i , j ě 1 . (2.20)

Cyclic L8-algebras. A cyclic L8-algebra pL, x´,´yLq is an L8-algebra L equipped with

a non-degenerate graded-symmetric bilinear form x´,´yL : Lˆ LÑ R such that

x`1, µip`2, . . . , `i`1qyL “ p´1qi`ip|`1|L`|`i`1|Lq`|`i`1|L
ři
j“1 |`j |Lx`i`1, µip`1, . . . , `iqyL (2.21)

for all `i P L. As before, when it is clear from the context, we shall suppress the subscript

L on the inner products.

Homotopy Maurer–Cartan theory. Similar to A8-algebras, any L8-algebra pL, µiq comes

with its homotopy Maurer–Cartan theory. In particular, a gauge potential is an element

a P L1, and its curvature is

f :“ µ1paq `
1
2
µ2pa, aq ` ¨ ¨ ¨ “

ÿ

iě1

1

i !
µipa, . . . , aq P L2 . (2.22)

The Bianchi identity reads here as

ÿ

iě0

1

i !
µi`1pa, . . . , a, f q “ 0 . (2.23)

1To be more precise, a cochain homotopy between two morphisms of cochain complexes φ,ψ : pC, dq Ñ

pC1, d1q is a family of morphisms of degree ´1, hk : Ck`1 Ñ C1k , such that φk´ψk “ hk ˝dk`d1k´1˝hk . The

operator appearing on the right-hand-side of this expression can be interpreted as a coboundary operator,

and, in turn, if we compare this to the third identity of Equation (2.18), we see that the right-hand-side of

this identity can be written in terms of this coboundary operator.
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Homotopy Maurer–Cartan elements, i.e. gauge potentials with vanishing curvature f “ 0,

are the stationary points of the homotopy Maurer–Cartan action

ShMC
ras :“

ÿ

iě1

1

pi ` 1q!
xa, µipa, . . . , aqyL (2.24)

provided L comes with a cyclic pairing x´,´yL of degree ´31. Similarly to (2.8), infin-

itesimal gauge transformations are of the form

δc0
a :“

ÿ

iě0

1

i !
µi`1pa, . . . , a, c0q (2.25)

and are parametrised by elements c0 P L0. The action is invariant under such transforma-

tions, and the curvature behaves as

δc0
f “

ÿ

iě0

1

i !
µi`2pa, . . . , a, f , c0q . (2.26)

To verify these statements, one makes use of (2.17). Using Equation (2.17), one may

show that

rδc0
, δc 10sa “ δc20 a `

ÿ

iě0

1

i !
µi`3pa, . . . , a, f , c0, c

1
0q , (2.27a)

where

c20 :“
ÿ

iě0

1

i !
µi`2pa, . . . , a, c0, c

1
0q . (2.27b)

In general gauge transformations are not closed: a sufficient condition to ensure closure

is f “ 0.

Covariant derivative. Given an L8-algebra pL, µiq, consider ϕ P Lk for some k P Z and

require that under infinitesimal gauge transformations, ϕ transforms adjointly, that is,

δc0
ϕ :“

ÿ

iě0

1

i !
µi`2pa, . . . , a, ϕ, c0q (2.28)

for c0 P L0. We then define the covariant derivative ∇ : Lk Ñ Lk`1 by

∇ϕ :“ µ1pϕq ` µ2pa, ϕq ` ¨ ¨ ¨ “
ÿ

iě0

1

i !
µi`1pa, . . . , a, ϕq (2.29)

1A cyclic structure of degree ´3 is needed in order to have an action of degree 0.
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for a P L1. Using (2.17), one can show that under infinitesimal gauge transforma-

tions (2.25) and (2.28), ∇ϕ transforms as

δc0
p∇ϕq “

ÿ

iě0

1

i !
µi`2pa, . . . , a,∇ϕ, c0q `

ÿ

iě0

1

i !
µi`3pa, . . . , a, f , ϕ, c0q , (2.30)

where f is the curvature (2.22) of a. Thus, for homotopy Maurer–Cartan elements a,

the covariant derivative transforms adjointly as well.1 Using (2.17) again, we obtain in

addition

∇2ϕ “
ÿ

iě0

1

i !
µi`2pa, . . . , a, f , ϕq . (2.31)

Curved morphisms of L8-algebras. Morphisms between Lie algebras are maps pre-

serving the Lie bracket. In the context of L8-algebras, this notion generalises and one

obtains what is known as a curved morphism (of L8-algebras). Specifically, a curved

morphism φ : pL, µiq Ñ pL̃, µ̃iq between two L8-algebras pL, µiq and pL̃, µ̃iq is a collection

of i-linear graded anti-symmetric maps φi : Lˆ ¨ ¨ ¨ ˆ LÑ L̃ of degree 1´ i such that

ÿ

i1`i2“i

ÿ

σPShpi1;iq

p´1qi2χpσ; `1, . . . , `iqφi2`1pµi1p`σp1q, . . . , `σpi1qq, `σpi1`1q, . . . , `σpiqq “

“
ÿ

jě1

1

j!

ÿ

k1`¨¨¨`kj“i

ÿ

σPShpk1,...,kj´1;iq

χpσ; `1, . . . , `iqζpσ; `1, . . . , `iqˆ

ˆ µ̃j

´

φk1

`

`σp1q, . . . , `σpk1q

˘

, . . . , φkj
`

`σpk1`¨¨¨`kj´1`1q, . . . , `σpiq
˘

¯

(2.32a)

for i P N` Y t0u with χpσ; `1, . . . , `iq the Koszul sign (2.15) and ζpσ; `1, . . . , `iq given by

ζpσ; `1, . . . , `iq :“ p´1q
ř

1ďmănďj kmkn`
řj´1
m“1 kmpj´mq`

řj
m“2p1´kmq

řk1`¨¨¨`km´1
k“1 |`σpkq|L . (2.32b)

1It will always transform adjointly when µi “ 0 for all i ą 2, that is, for differential graded Lie algebras

also known as strict L8-algebras, cf. Section 2.4..
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Note that φ0 : R Ñ L̃1 is the constant map, and we identify φ0 “ φ0p1q. Explicitly, the

lowest expressions of (2.32) read as

0 “
ÿ

iě1

1

i !
µ̃ipφ0, . . . , φ0q ,

φ1pµ1p`1qq “ µ̃1pφ1p`1qq `
ÿ

iě1

1

i !
µ̃i`1pφ0, . . . , φ0, φ1p`1qq ,

φ1pµ2p`1, `2qq ´ φ2pµ1p`1q, `2q ` p´1q|`1|L|`2|Lφ2pµ1p`2q, `1q “

“ µ̃1pφ2p`1, `2qq ` µ̃2pφ1p`1q, φ1p`2qq`

`
ÿ

iě1

1

i !
µ̃i`1pφ0, . . . , φ0, φ2p`1, `2qq `

ÿ

iě1

1

i !
µ̃i`2pφ0, . . . , φ0, φ1p`1q, φ1p`2qq ,

...

(2.33)

It is easily seen that this definition reduces to the standard definition of a Lie algebra

morphism in the context of Lie algebras. Note that a curved morphism is simply called an

(uncurved) morphism (of L8-algebras) whenever φ0 “ 0, and this notion of morphisms is

usually used in the literature when discussing L8-algebras. As we will see below, we shall

need the more general notion of curved morphisms to reinterpret gauge transformations

as morphisms of L8-algebras.

Evidently, the first equation of (2.33) implies that φ0 is necessarily a homotopy Maurer–

Cartan element of L̃. For such φ0, we now set

µ̃φ0

i p
˜̀

1, . . . , ˜̀
iq :“

ÿ

jě0

1

j!
µ̃i`jpφ0, . . . , φ0, ˜̀

1, . . . , ˜̀
iq (2.34)

for all ˜̀
1, . . . , ˜̀

i P L̃ and i P N`. By virtue of (2.31), we immediately have that µ̃φ0

1 is

a differential. In fact, one can show that pL̃, µ̃φ0

i q forms an L8-algebra, that is, the µ̃φ0

i

satisfy the homotopy Jacobi identities (2.17) thus defining another L8-structure on L̃.

From (2.32) we may then conclude that any curved morphism between two L8-algebras

pL, µiq and pL̃, µ̃iq can be viewed as an uncurved morphism between pL, µiq and pL̃, µ̃φ0

i q.

Maurer–Cartan elements and curved morphisms. Consider a P L1 and let f P L2 be

its curvature (2.22). We define the image of a gauge potential under a curved morphism

φ : pL, µiq Ñ pL̃, µ̃iq as

ã :“ φ0 ` φ1paq `
1
2
φ2pa, aq ` ¨ ¨ ¨ “

ÿ

iě0

1

i !
φipa, . . . , aq P L̃1 . (2.35)
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The curvature of ã is then

f̃ “
ÿ

iě1

1

i !
µ̃ipã, . . . , ãq “

ÿ

iě0

1

i !
φi`1pa, . . . , a, f q P L̃2 , (2.36)

which one can verify using (2.17) and (2.32). Hence, homotopy Maurer–Cartan elements

in L are mapped to homotopy Maurer–Cartan elements in L̃.

Let us extend the above observation to gauge orbits. Consider gauge transforma-

tions (2.25) a ÞÑ a` δc0
a and ã ÞÑ ã` δc̃0

ã with the image of the gauge parameter c0 P L0

given by

c̃0 :“ φ1pc0q ` φ2pa, c0q ` ¨ ¨ ¨ “
ÿ

iě0

1

i !
φi`1pa, . . . , a, c0q P L̃0 . (2.37)

A short calculation involving (2.17) reveals that

δc̃0
ã “ ´

ÿ

iě0

1

i !
φi`2pa, . . . , a, f , c0q `

ÿ

iě0

1

i !
φi`1pδc0

a, a, . . . , aq . (2.38)

This immediately yields

ÿ

iě0

1

i !
φipa ` δc0

a, . . . , a ` δc0
aq “

ÿ

iě0

1

i !
φipa, . . . , aq `

ÿ

iě0

1

i !
φi`1pδc0

a, a, . . . , aq

“ ã ` δc̃0
ã `

ÿ

iě0

1

i !
φi`2pa, . . . , a, f , c0q

(2.39)

at linear order. Consequently, gauge equivalence classes of homotopy Maurer–Cartan ele-

ments in L are mapped to gauge equivalence classes of homotopy Maurer–Cartan elements

in L̃ under (curved) morphisms.

Morphisms of cyclic L8-algebras. Consider an uncurved morphism between two L8-

algebras pL, µiq and pL̃, µ̃iq, that is, a curved morphism with φ0 “ 0. If, in addition, we

have inner products x´,´yL on L and x´,´yL̃ on L̃, then a morphism of cyclic L8-algebras

has to satisfy

x`1, `2yL “ xφ1p`1q, φ1p`2qyL̃ (2.40a)

for all `1,2 P L and for all i ě 3 and `1, . . . , `i P L

ÿ

i1`i2“i
i1,i2ě1

xφi1p`1, . . . , `i1q, φi2p`i1`1, . . . , `iqyL̃ “ 0 . (2.40b)
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We note that the morphisms of cyclic L8-algebras defined here require φ1 to be injective.

More general notions of such morphisms can be defined using Lagrangian correspondences,

cf. [193].

Suppose now that the inner product x´,´yL on L and x´,´yL̃ on L̃ of degree ´3 so

that the homotopy Maurer–Cartan equations, f “ 0 and f̃ “ 0, are variational. Then,

under a morphism φ : pL, µiq Ñ pL̃, µ̃iq, we obtain

ÿ

iě1

1

pi ` 1q!
xa, µipa, . . . , aqyL “ ShMC

ras

“ S̃hMC
rãs “

ÿ

iě1

1

pi ` 1q!
xã, µ̃ipã, . . . , ãqyL̃

(2.41)

by virtue of (2.40) and (2.35).

Curved quasi-isomorphisms of L8-algebras. Recall that the homotopy Jacobi identit-

ies (2.17) (see also (2.18)) imply that µ2
1 “ 0. Hence, we may consider the cohomology

H‚µ1
pLq “

à

kPZ

Hkµ1
pLq with Hkµ1

pLq :“ kerpµ1|Lk q{impµ1|Lk´1
q . (2.42)

A curved morphism of L8-algebras φ : pL, µiq Ñ pL̃, µ̃iq is called a curved quasi-isomorph-

ism (of L8-algebras) whenever φ1 induces an isomorphism H‚µ1
pLq – H‚

µ̃
φ0
1

pL̃q; the products

µ̃φ0

i were defined in Equation (2.34). There is a bijection between the moduli spaces of

gauge equivalence classes of homotopy Maurer–Cartan elements of L and L̃: indeed, every

quasi-isomorphism admits an inverse, and by means of this one can show that the moduli

spaces are equivalent, see [191, 40, 194]. A curved quasi-isomorphism is called an (un-

curved) quasi-isomorphism whenever φ0 “ 0. A (uncurved) quasi-isomorphism is called an

(uncurved) isomorphism if φ1 is invertible.

Gauge transformations as curved morphisms. Let us revisit the infinitesimal gauge

transformations (2.25) and first explain how they arise from partially flat homotopies. In

particular, set I :“ r0, 1s Ď R and consider the tensor product

LΩ :“ Ω‚
pIq b L “

à

kPZ

pLΩqk with pLΩqk “ C8
pIq b Lk ‘Ω1

pIq b Lk´1 (2.43)
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between the de Rham complex pΩ‚pIq, dq on the interval I and an L8-algebra pL, µiq. LΩ

carries an L8-structure, given by

µ̂1pα1 b `1q :“ dα1 b `1 ` p´1q|α1|Ω‚pIqα1 b µ1p`1q (2.44a)

and

µ̂ipα1 b `1, . . . , αi b `iq :“ p´1qi
ři
j“1 |αj |Ω‚pIq`

ři´2
j“0 |αi´j |Ω‚pIq

ři´j´1
k“1 |`k |Lˆ

ˆ pα1 ^ ¨ ¨ ¨ ^ αiq b µip`1, . . . , `iq ,
(2.44b)

where α1, . . . , αi P Ω‚pIq of degree |α1|Ω‚pIq, . . . , |αi |Ω‚pIq, and `1, . . . , `i P L. A general

element a P pLΩq1 is of the form aptq “ aptq ` dt b c0ptq with aptq P C8pIq b L1 and

c0ptq P C8pIq b L0. Its curvature f P pLΩq2 is then

fptq “ f ptq ` dt b

#

Baptq

Bt
´
ÿ

iě0

1

i !
µi`1paptq, . . . , aptq, c0ptqq

+

, (2.45)

where f ptq P C8pIq b L2 is the curvature of aptq. The requirement of partial flatness of

fptq amounts to saying that fptq has no components along dt. Thus,

Baptq

Bt
“

ÿ

iě0

1

i !
µi`1paptq, . . . , aptq, c0ptqq (2.46)

and we recover the gauge transformations (2.25) from

δc0
a “

Baptq

Bt

ˇ

ˇ

ˇ

ˇ

t“0

(2.47)

with a “ ap0q and c0 “ c0p0q. Furthermore, upon solving the ordinary differential equa-

tion (2.46), we will obtain finite gauge transformations. Let us now explain how one can

understand this as a curved morphism that preserves the products µi .

Concretely, we consider (2.35) and (2.37) and make the ansatz

aptq :“
ÿ

iě0

1

i !
φiptqpa, . . . , aq and c0ptq :“

ÿ

iě0

1

i !
φi`1ptqpa, . . . , a, c0q . (2.48)

Here, we again set a “ ap0q and c0 “ c0p0q which, in turn, translates to the conditions

φip0q “ 0 for all i ‰ 1 and φ1p0q “ 1. Upon substituting the ansatz (2.48) into (2.46)

and remembering (2.38), we obtain

Baptq

Bt
“

ÿ

iě0

1

i !

Bφiptq

Bt
pa, . . . , aq

“ ´
ÿ

iě0

1

i !
φi`2ptqpa, . . . , a, f , c0q `

ÿ

iě0

1

i !
φi`1ptqpδc0

a, a, . . . , aq ,

(2.49)
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where f is the curvature of a. Thus, solving the ordinary differential equation (2.46) for

gauge transformations is equivalent to solving the ordinary differential equation (2.49)

for a curved morphism φi on the L8-algebra that preserves the L8-algebra structure.

Put differently, finite gauge transformations are given by curved morphisms that arise as

solutions to (2.49).

Let us exemplify these discussions by considering a standard Lie algebra valued one-

form gauge potential on Minkowski space Md . Here, a “ A P Ω1pMdq b g and c0 “

c P C8pMdq b g for a Lie algebra g. Moreover, in this case it is enough to consider

φ0ptq and φ1ptq and set φiptq “ 0 for all i ą 1. Consequently, the ordinary differential

equation (2.49) reduces to

BAptq

Bt
“
Bφ0ptq

Bt
`
Bφ1ptq

Bt
pAq “ φ1ptqpdc ` rA, csq (2.50)

and is solved by Aptq “ φ0ptq ` φ1ptqpAq and cptq “ φ1ptqpcq with1

φ0ptq “ tdc ` t2

2!
rdc, cs ` t3

3!
rrdc, cs, cs ` ¨ ¨ ¨ “ e´tc detc ,

φ1ptqpAq “ A` trA, cs ` t2

2!
rrA, cs, cs ` t3

3!
rrrA, cs, cs, cs ` ¨ ¨ ¨ “ e´tc A etc ,

φ1ptqpcq “ c

(2.51)

as a short calculation reveals; recall from Equation (2.33) that φ0ptq must be a homotopy

Maurer–Cartan element.

2.4. Structure theorems

In the following, the term ‘homotopy algebra’ refers to either an A8-, C8-, or L8-algebra2.

Note that the unary higher product is a differential for any homotopy algebra. We call a

homotopy algebra minimal provided the unary product vanishes. A homotopy algebra is

called strict if only the unary and binary products are non-vanishing. Moreover, a homotopy

algebra is called linearly contractible if only the unary product is nonvanishing and it has

trivial cohomology.

1We can also consider the more general case φ0ptq “ g´1ptq dgptq, φ1ptqpAq “ g´1ptqAgptq, and

φ1ptqpcq “ g
´1ptq Btgptq for g P C8pI,Gq with gp0q “ 1, that is, g solves the ordinary differential equation

Btgptq “ gptq cptq; note that Btgptq|t“0 “ c .
2The notions of morphism, quasi-isomorphism and isomorphism for A8-algebras are analogous to their

L8-algebras counterparts.
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Structure theorems. We now have the following structure theorems:

1. The decomposition theorem: any homotopy algebra is isomorphic to the direct sum

of a minimal and a linearly contractible one; see e.g. [192] for the case of A8-algebras.

2. The minimal model theorem: any homotopy algebra is quasi-isomorphic to a minimal

one. This follows directly from the decomposition theorem, see also [195, 192] for

the case of L8-algebras.

3. The strictification theorem: any homotopy algebra is quasi-isomorphic to a strict

one [196, 197].

We note that strict A8-, C8-, and L8-algebras are simply differential graded associative,

differential graded commutative, and differential graded Lie algebras, respectively. We also

note that mathematicians would probably use the term ‘rectify’ over ‘strictify’; we found

the latter term more descriptive.

Remark 2.1. We also would like to make a few remarks on the relations between the

homotopy algebras:

1. As we saw above in Equation (2.19), any A8-algebra carries an L8-structure by

(graded) anti-symmetrisation the higher products.

2. All higher products of a C8-algebra (which is also in particular an A8-algebra) except

for the differential vanish after anti-symmetrisation.
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3
Batalin–Vilkovisky formalism

In the following, we summarise how perturbative quantum field theory is naturally for-

mulated in the language of homotopy algebras. The bridge between field theories and

homotopy algebras is provided by the Batalin–Vilkovisky (BV) formalism [8,198]. Our dis-

cussion follows the treatment in [52, 1]; see also [4] for a pedagogical summary and [199]

for a detailed discussion of Feynman diagrams. We start with the Becchi–Rouet–Stora–

Tyutin (BRST) formalism for the archetypal example of Yang–Mills theory. This will also

prepare our discussion in Chapter 4.

The material in this Chapter is borrowed from [6].

3.1. Motivation

Yang–Mills action. We consider d-dimensional Minkowski space Md :“ R
1,d´1 with

metric pηµνq “ diagp´1, 1, . . . , 1q with µ, ν, . . . “ 0, 1, . . . , d ´ 1 and local coordinates

xµ. Let g be a semi-simple compact matrix Lie algebra with basis ea with a, b, . . . “

1, 2, . . . , dimpgq, rea, ebs “ fab
cec with r´,´s the Lie bracket on g, and xea, eby :“

´trpeaebq “ δab with ‘tr’ the matrix trace.

The action for Yang–Mills theory in Rξ-gauge for some real constant ξ in the BRST

formalism reads as

SYM
BRST :“

ż

ddx
!

´ 1
4
FaµνF

aµν
´ c̄aB

µ
p∇µcqa ` ξ

2
bab

a
` baB

µAaµ

)

(3.1a)

with

F aµν :“ BµA
a
ν ´ BνA

a
µ ` fbc

agAbµA
c
ν and p∇µcqa :“ Bµc

a
` gfbc

aAbµc
c , (3.1b)
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where g is the Yang–Mills coupling constant, Aaµ are the components of the g-valued

one-form gauge potential on Md , and ca, ba, and c̄a are the components of g-valued

functions corresponding to the ghost, the Nakanishi–Lautrup field, and the anti-ghost

field, respectively.

Z-graded vector spaces. We note that the fields in the action (3.1a) are graded by their

ghost number as detailed in Table 3.1. Therefore, we should view them as coordinate

functions on a Z-graded vector space V “
À

kPZVk . Elements of Vk are said to be

homogeneous of degree k , and we shall use the notation |`|V to denote the degree of a

homogeneous element ` P V.

field ΦI ca Aaµ ba c̄a

ghost number |ΦI |gh 1 0 0 ´1

Table 3.1: Ghost numbers of the fields in Yang–Mills theory.

The tensor product of two Z-graded vector spaces V and W is defined as

VbW “
à

kPZ

pVbWqk with pVbWqk :“
à

i`j“k

Vi bWj , (3.2)

and the degree in VbW is thus the sum of the degrees in V and W.

We shall denote the dual of a Z-graded vector space V by V˚,1 and we have

V˚
“

à

kPZ

pV˚
qk with pV˚

qk :“ pV´kq
˚ . (3.3)

In particular, elements in Vk have the opposite degree of elements in pVkq
˚.

Given a Z-graded vector space V, we can introduce the degree-shifted Z-graded vector

space Vrls for l P Z by

Vrls “
à

kPZ

pVrlsqk with pVrlsqk :“ Vk`l . (3.4)

For an ordinary vector space V ” V0, for instance, Vr1s consists of elements of degree ´1

since only pVr1sq´1 “ V0 is non-trivial. Note that pV bWqrls “ Vrls bW “ V bWrls

1We will not discuss the analytical subtleties of this construction in the infinite-dimensional case, except

to note that the dual spaces will be degree-wise topological duals.
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and pVrlsq˚ “ V˚r´ls for all l P Z. For convenience, we introduce the notion of a shift

isomorphism

σ : V Ñ Vr1s (3.5)

which lowers the degree of every element of V, that is, σ : Vk Ñ pVr1sqk´1.

We note that the action (3.1a) is built of polynomial functions and their derivatives. By

the algebra of polynomial functions on a Z-graded vector space V, we mean the Z-graded

symmetric tensor algebra C8pVq :“
Ä‚

V˚. Basis elements of V˚ can be regarded as the

coordinate functions on V. Explicitly, such a function looks like

f “ f ` ξαfα `
1
2
ξαξβfαβ ` ¨ ¨ ¨ P C8

pVq , (3.6)

where ξα are basis elements of V˚ and f , fα, fαβ, . . . are constants. We have ξαξβ “

p´1q|ξ
α|V˚ |ξ

β |V˚ξβξα. Note that if V is a vector space of some suitably smooth functions

or, more generally, sections of some vector bundle, then the dual V˚, being the space of

distributions, contains not only the ordinary dual coordinate functions but also all of their

derivatives.

BRST operator in Yang–Mills theory. The reason for introducing ghosts in the first

place is the gauge symmetry of Yang–Mills theory, which in the BRST and BV formalisms

is captured in a dual formulation as a differential on a differential graded commutative

algebra that is called the Chevalley–Eilenberg algebra. More specifically, this is the algebra

of polynomial functions, and the differential is a nilquadratic vector field Q : C8pVq Ñ

C8pVq of degree one, Q2 “ 0, known as the homological vector field. A Z-graded vector

space with such a homological vector field is called a Q-vector space.

The prime example of a Q-vector space is that of an ordinary vector space g with

basis ea for a, b, . . . “ 1, . . . , dimpgq, regarded as the Z-graded vector space gr1s. On

gr1s, we have coordinates ξa only in degree one and thus, the most general vector field

Q : C8pgr1sq Ñ C8pgr1sq of degree one is of the form

Q :“ 1
2
ξbξc fcb

a B

Bξa
ñ Qξa “ 1

2
ξbξc fcb

a (3.7)

for some constants fab
c
“ ´fba

c . The condition Q2 “ 0 is equivalent to the Jacobi identity

for the fab
c so that Q induces a Lie bracket rea, ebs “ fab

cec on g. The differential graded

algebra pC8pgr1sq, Qq is the Chevalley–Eilenberg algebra of the Lie algebra pg, r´,´sq to
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which we alluded above. In order to translate between Q and r´,´s, it is useful to define

the contracted coordinate functions1

a :“ ξa b ea P pgr1sq
˚
b g (3.8)

of degree one in pgr1sq˚ b g. Consequently,

Qa :“ pQξaq b ea

“ 1
2
ξbξc fcb

a
b ea

“ ´1
2
ξbξc b fbc

aea

“ ´1
2
ξbξc b reb, ecs

“: ´1
2
rξb b eb, ξ

c
b ecs

“ ´1
2
ra, as .

(3.9)

More general vector fields arise in the Chevalley–Eilenberg algebras of L8-algebras

and L8-algebroids, cf. e.g. [52] for further details. In the case of Yang–Mills theory, the

homological vector field QYM
BRST describing the gauge symmetry acts according to

ca
QYM

BRST
ÞÝÝÝÝÑ ´1

2
gfbc

acbcc , c̄a
QYM

BRST
ÞÝÝÝÝÑ ba ,

Aaµ
QYM

BRST
ÞÝÝÝÝÑ p∇µcqa , ba

QYM
BRST

ÞÝÝÝÝÑ 0 .

(3.10)

These transformations are known as the BRST transformations and QYM
BRST as the BRST

operator. One readily verifies that pQYM
BRSTq

2 “ 0, that is, QBRST is a differential. In

addition, the action (3.1a) is QYM
BRST-closed, that is, QYM

BRSTS
YM
BRST “ 0, which ensures

gauge choice independence.

We shall denote the minimal field space2 for gauge-fixed Yang–Mills theory by LYM
BRST,

but the ghost number is the degree of coordinate functions on LYM
BRSTr1s. Explicitly,

LYM
BRST “ LYM

BRST, 0 ‘ LYM
BRST, 1 ‘ LYM

BRST, 2 ,

LYM
BRST, 0 :“ C8

pM
d
q b g , LYM

BRST, 1 :“ pΩ1
pM

d
q ‘ C8

pM
d
qq b g ,

LYM
BRST, 2 :“ C8

pM
d
q b g

(3.11)

1These are often used in the string field theory literature, albeit shifted such that a is of degree zero.
2This graded vector space is, in fact, the space of sections of a graded vector bundle, and fields and their

derivatives are sections of the corresponding jet bundle; but these details would not enlighten our discussion

any further so we suppress them.
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and c , A, b, and c̄ are coordinate functions on pLYM
BRSTr1sq´1, pLYM

BRSTr1sq0, pLYM
BRSTr1sq0, and

pLYM
BRSTr1sq1 and thus of degrees 1, 0, 0, and ´1, respectively. Moreover, the action (3.1a)

is a polynomial function SYM
BRST P C8pLYM

BRSTr1sq on LYM
BRSTr1s of total ghost number zero,

|SYM
BRST|C8pLYM

BRSTr1sq
“ 0. In the following, we shall write | ´ |gh as a shorthand for both

| ´ |pLYM
BRSTr1sq

˚ and | ´ |C8pLYM
BRSTr1sq

.

The Q-vector space pLYM
BRSTr1s, Q

YM
BRSTq describes the Lie algebra of gauge transforma-

tions as well as its action on the various fields, which together form an action Lie algebroid.

This becomes clear when comparing (3.10) to (3.9); the latter is the evident generalisation,

e.g. to the corresponding formulas for a differential graded Lie algebra.

We note that gauge-invariant objects are QYM
BRST-closed and that gauge-trivial objects

are QYM
BRST-exact. Therefore, physical observables are in the cohomology of QBRST. The

pair of fields pb, c̄q is known as a trivial pair, as QYM
BRST links the two fields by an identity

map. They vanish in the QYM
BRST-cohomology and thus are not observable.

As in Equation (3.8), it will turn out useful to define the contracted coordinates

a :“

ż

ddx
!

capxq b pea b sxq ` A
a
µpxq b pea b v

µ
b sxq`

` bapxq b pea b sxq ` c̄
a
pxq b pea b sxq

)

,

(3.12a)

where ea, v
µ, and sx are basis vectors on g, T ˚xM

d , and C8pMdq, respectively (and

thus, we have an identification vµ “̂ dxµ). It should be noted that a is an element of

pLYM
BRSTr1sq

˚ b LYM
BRST of degree one, and it can be regarded as a superfield which contains

all the fields of different ghost numbers. The component fields can be recovered by

projecting onto the respective ghost numbers. In the following, we will write symbolically

a “ ΦI
b eI (3.12b)

for DeWitt indices I, J, . . ., which contain Lorentz and gauge indices as well as space-

time position. A contraction of DeWitt indices involves sums over all discrete indices and

evident integrals over the continuous ones.

3.2. Batalin–Vilkovisky formalism and L8-algebras

The above example of Yang–Mills theory has demonstrated how Z-graded vector spaces

and homological vector fields enter into the description of a gauge field theory in the BRST
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formalism. In particular, gauge-invariant observables were contained in the cohomology

of QBRST. To fully characterise classical observables, however, we also need to impose

the equations of motion. This is the purpose of the more general Batalin–Vilkovisky (BV)

formalism. As a byproduct, the BV formalism can cater for open gauge symmetries which

are gauge symmetries for which QBRST is a differential only on-shell. The BV operator QBV,

which generalises the BRST operator QBRST, encodes the Chevalley–Eilenberg description

of a cyclic L8-algebra (i.e. an L8-algebra with a notion of inner product). The gauge-fixed

form of this cyclic L8-algebra will be crucial for our formulation of the double copy of

amplitudes.

BV operator. Let LBRSTr1s be a Z-graded vector space of fields of a general field theory.

Then we have also a correspondence between the fields and the coordinate functions on

this space. In order to encode the field equations for all the fields in the action of an

operator QBV, we ‘double’ this vector space such that we have for each field ΦI of ghost

number |ΦI |gh an anti-field Φ`
I of ghost number |Φ`

I |gh :“ ´1´ |ΦI |gh so that

QBVΦ`
I :“ p´1q|Φ

I | δSBRST

δΦI
` ¨ ¨ ¨ . (3.13)

Here, the ellipsis denotes terms at least linear in the anti-fields. Formally, this doubling

amounts to considering the cotangent space

LBVr1s :“ T ˚r´1spLBRSTr1sq ô LBV :“ T ˚r´3sLBRST , (3.14)

which yields a canonical symplectic form

ω :“ δΦ`
I ^ δΦI (3.15)

of ghost number ´1. This symplectic form ω, in turn, induces a Poisson bracket, also

known as the anti-bracket. It reads explicitly as1

tF,Gu “ p´1q|Φ
I |ghp|F |gh`1q δF

δΦI

δG

δΦ`
I

´ p´1qp|Φ
I |gh`1qp|F |gh`1q δF

δΦ`
I

δG

δΦI
, (3.16)

and it is of ghost number one so that tF,Gu “ ´p´1qp|F |gh`1qp|G|gh`1qtG, F u.

1The signs arise as follows. Hamiltonian vector fields VF are given by VF
 ω “ δF for some function

F . The Poisson bracket is then given by tF,Gu :“ VF
 VG

 ω “ VF pGq from which the signs follow using

the explicit form (3.15) of ω. The signs are often absorbed using left- and right-derivatives; however, for

clarity we shall keep them explicitly.
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The classical Batalin–Vilkovisky action is now a function SBV P C8pLBVr1sq of ghost

number zero, which obeys the classical master equation

tSBV, SBVu “ 0 , (3.17a)

which extends the original action S0 of the field theory (without ghosts or trivial pairs)1

SBV|Φ`I “0 “ S0 , (3.17b)

and whose Hamiltonian vector field extends the BRST differential,

pQBVΦI
q|Φ`J “0 “ QBRSTΦI (3.17c)

with

QBV :“ tSBV,´u . (3.18)

We note that Q2
BV “ 0 and (3.17a) are equivalent.

The last two conditions fix the terms of SBV which are constant and linear in the

anti-fields to read as

SBV “ S0 ` p´1q|Φ
I |ghΦ`

I QBRSTΦI
` ¨ ¨ ¨ . (3.19)

General theorems now state that for each action and compatible BRST operator, there is

a corresponding BV action and a BV operator, cf. [200].

In a general theory, we will usually have a physical field a of ghost number zero as

well as ghosts c0 together with higher ghosts c´k of each ghost number ´k ` 1 as co-

ordinate functions on LBVr1s. Higher ghosts are non-trivial only in theories with higher

gauge invariance. All fields come with the corresponding anti-fields a`, c`0 , and c`´k . To

accommodate gauge fixing, we will have to expand the field space further by trivial pairs

and corresponding anti-fields, as already encountered in the previous section.

The equations of motion generate an ideal I in C8pLBRSTr1sq, and the functions on

the solutions space are the quotient C8pLBRSTr1sq{I . Because of (3.18),

QBVΦ`
I “ p´1q|Φ

I | δSBV

δΦI
, (3.20)

and the gauge-invariant functions on the solutions space are described by theQBV-cohomology.

1Here, |Φ`
I “0 is the restriction to the subspace of BV field space where all anti-fields are zero.
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L8-algebras. Following (3.12), we define again a superfield

a :“ aI b eI “ ΦI
b eI `Φ`

I b e
I (3.21)

of degree one in pLBVr1sq
˚bLBV, where I runs over all fields, ghosts, ghosts for ghosts and

the corresponding anti-fields, as well as space-time and Lie algebra indices. As in (3.9),

we may extend the action of QBV to elements in pLBVr1sq
˚bLBV by left action and write

QBVa “ tSBV, au “ ´fpaq with fpaq “:
ÿ

iě1

1

i !
µ1ipa, . . . , aq . (3.22a)

The µ1i now encode i-ary graded anti-symmetric linear maps µi : LBV ˆ ¨ ¨ ¨ ˆ LBV Ñ LBV,

which can be extracted by the formulas

µ11paq “ p´1q|a
I |ghaI b µ1peIq ,

µ1ipa, . . . , aq “ p´1qi
ři
j“1 |a

Ij |gh`
ři
j“2 |a

Ij |gh

řj´1
k“1 |eIk |LBVaI1 ¨ ¨ ¨ aIi b µipeI1, . . . , eIi q ,

(3.22b)

see [52] for a much more detailed exposition.1 The condition Q2
BV “ 0 then amounts to

the homotopy Jacobi identities (2.17), and the pair pLBV, µiq with products µi subject

to (2.17) is called an L8-algebra, cf. Section 2.3.. In our present setting, LBV is, in fact,

a cyclic L8-algebra because of the presence of the symplectic form ω. Specifically, if we

consider the shift isomorphism (3.5), then ω induces the (indefinite) inner product2

x`1, `2y :“ p´1q|`1|LBVωpσp`1q, σp`2qq (3.23a)

of degree ´3 in LBV and of ghost number zero. It is cyclic in the sense that

x`1, µip`2, . . . , `i`1qy “ p´1qi`ip|`1|LBV
`|`i`1|LBV

q`|`i`1|LBV

ři
j“1 |`j |LBV x`i`1, µip`1, . . . , `iqy ,

(3.23b)

which is a consequence of the vanishing of the Lie derivative of ω along QBV. This is

equivalent to saying that the higher products µi , with the first i ´ 1 arguments fixed, act

as graded derivations on x´,´y.

Correspondence between actions and L8-algebras. Every cyclic L8-algebra pLBV, µiq

comes with a homotopy Maurer–Cartan action, cf. Chapter 2. In particular, the functional

ShMC :“
ÿ

iě1

1

pi ` 1q!
xa, µipa, . . . , aqy (3.24)

1Note that the µ1i define, in fact, an L8-structure on C8pLBVr1sq b LBV.
2We will, in the bulk of the Thesis, deviate from this sign convention in order to simplify the signs arising

in our double copy formalism.
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for a P LBV,1 reproduces the action for the physical fields. Using the superfield a defined

in (3.21), we can write down a more general homotopy Maurer–Cartan action

SshMC :“
ÿ

iě1

1

pi ` 1q!
xa, µ1ipa, . . . , aqy

1 , (3.25a)

where we define

xf I1 b eI, f
J

2 b eJy
1 :“ p´1q|f

I
1 |gh`|f

J
2 |gh`|eI |LBV

|f J2 |gh f I1 f
J

2 xeI, eJy (3.25b)

for f I1,2 P C8pLBVr1sq. This superfield version of the homotopy Maurer–Cartan action

is, in fact, the full BV action SBV. Put differently, (3.25a) satisfies the quantum master

equation (3.34) if and only if the µi in µ1i via (3.22b) satisfy the homotopy Jacobi identit-

ies (2.17). We shall refer to the action (3.25a) as the superfield homotopy Maurer–Cartan

action of the L8-algebra pLBV, µiq.

In summary, the BV formalism provides an equivalence between classical field theories

and cyclic L8-algebras, where the BV operator plays the role of the Chevalley–Eilenberg

differential of the L8-algebra. Clearly, the BV action corresponding to an L8-algebra LBV

is physically only interesting if its degree-one part is non-trivial. To read off the L8-algebra

from a particular action functional, we note that using (3.25b) we have

xa, µ1ipa, . . . , aqy
1
“ xaIi`1 b eIi`1

, µ1ipa
I1 b eI1, . . . , a

Ii b eIi qy
1

“ ζpI1, . . . , Iiq a
Ii`1aI1 ¨ ¨ ¨ aIi xeIi`1

, µipeI1, . . . , eIi qy
(3.26a)

with the sign ζpI1, . . . , Iiq given by

ζpI1, . . . , Iiq :“ p´1q
ři
k“1 |a

Ik |ghpi`k`
ři
j“k |a

Ij |ghq . (3.26b)

More explicitly,

xa, µ11paqy
1
“ p´1q|a

I1 |gh aI2aI1xeI2, µ1peI1qy ,

xa, µ12pa, aqy
1
“ p´1qp|a

I1 |gh`1q|aI2 |gh aI3aI1aI2xeI3, µ2peI1, eI2qy ,
(3.27)

and we shall make use of these formulas later.

Remark 3.1. The exchange of the coordinate functions on field space with the actual

fields can easily lead to confusion. Let us therefore summarise the situation once more.

Actual fields (usually sections of a bundle or connections and their generalisations) are
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elements of a graded vector space LBV. The L8-algebra structure is defined on the vector

space LBV. The symbols appearing in an action S are, technically speaking, not fields

but coordinate functions on the grade-shifted field space LBVr1s, the same way that in

differential geometry one writes the metric in terms of the symbols xµ, which are not

points in space-time but rather real-valued coordinate functions defined on space-time.

Once we evaluate the action for particular fields, the coordinate functions are replaced

by their values. Similarly, the BV operator, the anti-bracket etc. all act on or take as

arguments polynomial functions on LBVr1s, which are given by polynomial expressions in

the coordinate functions as well as their derivatives, which are also contained in pLBVr1sq
˚.

To simplify notation, the coordinate function for a field (e.g. in an action) will be denoted

by the same symbol as the field (element of the L8-algebra), as commonly done in quantum

field theory.

Remark 3.2. The integral defining the action S of a classical field theory is mathematically

usually not well defined. At a classical level, this does not matter because we are never

interested in the value of S itself, and we can treat all integrals as formal expressions. For

definiteness, mathematicians often drop the action and work with the Lagrangian instead.

This can easily be done in the L8-algebra picture, working with graded modules over the

ring of functions instead of graded vector spaces.

At quantum level, however, the value of S for particular field configurations does play a

role, and one needs to carefully restrict the field space such that all integrals are indeed well-

defined, cf. [2]. One suitable restriction offers itself for the perturbative treatment. We

split the field space into interacting fields, Fint, which can simply be identified with Schwartz

functions on Minkowski space S pMdq, and free fields Ffree, which can be identified with

solutions to the free equations of motion (i.e. fields in the kernel of µ1), which are Schwartz

type for any fixed time-slice of Minkowski space,

F :“ Fint ‘ Ffree with Fint :“ S pM
d
q and Ffree :“ kerS pµ1q . (3.28)

The elements of kerS pµ1q are, of course, the states that label the asymptotic on-shell

states in perturbation theory. On the other hand, the fields in S pMdq are the propagating

degrees of freedom found on internal lines in Feynman diagrams. The decomposition (3.28)

is very much in the spirit of the homological perturbation lemma, which can be used to

construct the scattering amplitudes, as we shall discuss below.
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We note that the wave operator is invertible on S pMdq and the inverse is indeed

the propagator h, as we shall discuss in more detail below. This allows us to define the

operators
?

l and 1?
l

on S pMdq, which we continue to all of F by mapping elements of

kerS pµ1q to zero. This fact will play an important role later.

Gauge fixing. The next step in the BV formalism is the implementation of gauge fixing.

This is achieved by a canonical transformation

Sgf
BV

“

ΦI, Φ̃`
I

‰

:“ SBV

„

ΦI,Φ`
I `

δΨ

δΦI



(3.29)

which is mediated by a choice of gauge-fixing fermion, the generating functional for the

canonical transformation, which is a function Ψ P C8pLBVr1sq of ghost number ´1. The

action (3.29) is then gauge-fixed if its Hessian is invertible. This requires a careful choice

of Ψ: the trivial choice Ψ “ 0 leads back to the original action. When the classical

BV action is only linear in the anti-fields, as is e.g. the case for Yang–Mills theory and

all the field theories we are dealing with, we may set the anti-fields in Sgf
BV to zero after

gauge-fixing, without loss of generality since the BV operator reduces to a BRST operator.

Note that to construct the gauge-fixing fermion Ψ of ghost number ´1, we will have

to introduce additional fields of negative ghost number together with their anti-fields,

arranged as trivial pairs, such as e.g. the anti-ghost c̄ and the Nakanishi–Lautrup field b

in the case of Yang–Mills theory. If we do not change the QBV-cohomology, these new

fields do not affect the observables. This can trivially be achieved if QBV maps one field

to another,

c̄
QBV
ÞÝÝÝÑ b , b

QBV
ÞÝÝÝÑ 0 , c̄`

QBV
ÞÝÝÝÑ 0 , b`

QBV
ÞÝÝÝÑ ´c̄` , (3.30)

cf. Equation (3.10). We shall encounter a number of more involved examples in Chapter 4.

Quantum master equation and quantum L8-algebras. Besides the canonical sym-

plectic form (3.15), we also have a canonical second-order differential operator on C8pLBVr1sq,

called the Batalin–Vilkovisky Laplacian, and defined as

∆F :“ p´1q|Φ
I |gh`|F |gh

δ2F

δΦ`
I δΦI

(3.31)

for F P C8pLBVr1sq.
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The BV Laplacian plays a key role in the path integral quantisation of a theory. In

particular, the gauge fixing (3.29) is implemented at the path-integral level as

ZΨ :“

ż

LBV

µpΦI,Φ`
I q δ

ˆ

Φ`
I ´

δΨ

δΦI

˙

e
i
~S
~
qBVrΦ

I ,Φ`I s , (3.32)

where µ is a measure that is compatible with the symplectic form ω, δ is a functional

delta distribution, ~ is a formal parameter, and S~qBV P C8pLBVr1sq is a functional of ghost

number zero with

S~qBV|~“0 “ SBV . (3.33)

For ZΨ to be independent of the choice of gauge-fixing fermion Ψ, S~qBV must satisfy the

quantum master equation [8]1

∆e
i
~S
~
qBV “ 0 ðñ tS~qBV, S

~
qBVu ´ 2i~∆S~qBV “ 0 . (3.34)

Consequently, we obtain as generalisation of (3.18) the quantum BRST-BV operator

QqBV :“ tS~qBV,´u ´ 2i~∆ , (3.35)

and the quantum master equation (3.34) is equivalent to Q2
qBV “ 0. Note that contrary to

the classical version, the quantum version (3.35) is no longer a derivation. Solutions S~qBV

to (3.34) are called quantum Batalin–Vilkovisky actions. We may now solve (3.34) order

by order in ~ generalising the products µ1i in (3.25a) to products µ1i ,L for L “ 0, 1, 2, . . .

to reflect the ~-dependence with µ1i ,L“0 “ µ
1
i and µ1i ,L“´1 :“ 0. Consequently, we consider

the ansatz

SqshMC :“
ÿ

iě1
Lě0

~L

pi ` 1q!
xa, µ1i ,Lpa, . . . , aqy

1 (3.36)

for the superfield (3.21). The action (3.36) satisfies the quantum master equation (3.34)

if and only if the µi ,L satisfy the quantum homotopy Jacobi identities [33, 38, 49]

ÿ

i1`i2“i
L1`L2“L

ÿ

σPShpi1;iq

p´1qi2χpσ; `1, . . . , `iqµi2`1,L2
pµi1,L1

p`σp1q, . . . , `σpi1qq, `σpi1`1q, . . . , `σpiqq´

´ iµi`2,L´1pe
I, eI, `1, . . . , `iq “ 0

(3.37)

1Specifically, one requires ZΨ`δΨ “ ZΨ for an infinitesimal deformation δΨ of Ψ; the space of gauge-

fixing fermions Ψ (whose Hessians may not be invertible) is contractible, so ZΨ is globally independent of

Ψ.
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for `1, . . . , `i P LBV, where the µi ,L are as in (3.22b) via the µ1i ,L. Here eI :“ eJω
JI,

where ωIJ is the inverse of the symplectic form (3.15) when written as ω “ 1
2
δaI ^ωIJδa

J .

Furthermore, (3.22a) generalises to

QqBVa “ ´
ÿ

iě1
Lě0

1

i !
µ1i ,Lpa, . . . , aq . (3.38)

The tuple pLBV, µi ,L, ωq with the products µi ,L subject to (3.37) is called a quantum or

loop L8-algebra. In the classical limit ~ Ñ 0, the higher products µi ,L for L ą 0 become

trivial, and we recover a cyclic L8-algebra. Note that for scalar field theory, Yang–Mills

theory, and also Chern–Simons theory, the classical BV action also satisfies the quantum

master equation and hence, in those cases, we may set S~qBV “ SBV, in which case µi ,L “ 0

for L ą 0. Even though the classical BV action satisties the quantum master equation, one

still requires knowledge of the quantum deformation of L8-algebras in order to undertake

the computation in Section 5.3. of the recursion relations for loop-level amplitudes.
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4
Field theories, BV complexes, and homotopy algebras

In this Chapter we will discuss in detail how the mathematical framework that we have

introduced so far (homotopy algebras, BV formalism) applies to concrete examples of

field theories. In the following, we review the actions, the BV complexes and the dual L8-

algebra structures of different field theories, in particular the ones relevant to our homotopy

algebraic treatment of the double copy. We note that many of the theories we discuss

in this Chapter does not require the BV formalism for quantisation. As explained before,

however, it does make the link to homotopy algebras evident and clarifies the freedom we

have in choosing gauges, an important aspect in our later discussion.

The material in this Chapter is borrowed from [2, 6].

4.1. Scalar field theory

As an introductory example illustrating the construction of an L8-algebra for a classical field

theory, we consider scalar field theory on d-dimensional Minkowski spaceMd :“ pR1,d´1, ηq

with η the Minkowski metric. In the following, µ, ν, . . . “ 0, . . . , d ´ 1, and we shall write

x ¨ y :“ ηµνx
µy ν “ xµy

µ and l :“ BµBµ.

Instead of plain ϕ4-theory, we start from the action

Sscal :“

ż

ddx
 

1
2
ϕpl´m2

qϕ´ κ
3!
ϕ3
´ λ

4!
ϕ4

(

. (4.1)

Scalar L8-algebra. The associated L8-algebra of this field theory is obtained as usual

from the BV formalism.1 Here, we merely note that in a field theory without (gauge) sym-

1See also [29] for pure ϕ4-theory and [52] for a discussion closer to ours.
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44 4.2. Biadjoint scalar field theory

metry to be factored out, the BV action agrees with the classical action. The homological

vector field QBV therefore acts only non-trivially on the anti-field ϕ`, and we have

QBVϕ
`
“ tSBV, ϕ

`
u “

δS

δϕ
“

ÿ

iě1

1

i !
µipϕ, . . . , ϕq , (4.2)

where ˚ denotes the trivial vector space 0. The resulting L8-algebra is therefore

˚
loomoon

“:L0

ÝÝÝÝÑ C8
pM

d
q

looomooon

“:L1

l´m2

ÝÝÝÝÝÑ C8
pM

d
q

looomooon

“:L2

ÝÝÝÝÑ ˚
loomoon

“:L3

(4.3a)

with products

µ1pϕ1q :“ pl´m2
qϕ1 , µ2pϕ1, ϕ2q :“ ´κϕ1ϕ2 ,

µ3pϕ1, ϕ2, ϕ3q :“ ´λϕ1ϕ2ϕ3

(4.3b)

for ϕ1,2,3 P C8pMdq. The homotopy Maurer–Cartan action for this L8-algebra becomes

S.

4.2. Biadjoint scalar field theory

The simplest field theory relevant for the double copy discussion is that of a biadjoint scalar

field theory with cubic interaction. This theory appeared in the scattering amplitudes and

double copy literature in various incarnations [201, 202, 149, 203, 153, 104, 173, 204, 105,

205, 174, 107, 108, 206, 183, 207].

In particular, let g and ḡ be two semi-simple compact matrix Lie algebras. For pgb ḡq-

valued functions on Minkowski space Md , we define a symmetric bracket and an inner

product by linearly extending

re1 b ē1, e2 b ē2sgbḡ :“ re1, e2sg b rē1, ē2sḡ ,

xe1 b ē1, e2 b ē2ygbḡ :“ trgpe1e2q trḡpē1ē2q
(4.4)

for all e1,2 P g and ē1,2 P ḡ.

BV action and BV operator. The BV action for biadjoint scalar field theory then reads

as

Sbiadj :“

ż

ddx
!

1
2
xϕ,lϕygbḡ ´

λ
3!
xϕ, rϕ,ϕsgbḡygbḡ

)

, (4.5)

Tommaso Macrelli



4.3. Yang–Mills theory 45

where λ is a coupling constant, l :“ ηµνBµBν, and ϕ is a scalar field taking values in gb ḡ.

We write ϕ P pgb ḡqbF where F is a suitable function space discussed shortly. Introducing

basis vectors ea and ēā on g and ḡ, respectively, we can rewrite this action in component

form

Sbiadj
“

ż

ddx
!

1
2
ϕaā lϕaā ´ λ

3!
fabc fāb̄c̄ϕ

aāϕbb̄ϕcc̄
)

, (4.6a)

where

trgpeaebq “ ´δab , trḡpēāēb̄q “ ´δāb̄ ,

fabc :“ ´trgpeareb, ecsgq , fāb̄c̄ :“ ´trḡpēārēb̄, ēc̄sḡq .
(4.6b)

Besides the field ϕ, we also have the anti-field ϕ` and the BV operator (3.18) acts

according to

ϕaā
QBV
ÞÝÝÝÑ 0 and ϕ`aā

QBV
ÞÝÝÝÑ lϕaā ´ λ

2
fbc

afb̄c̄
āϕbb̄ϕcc̄ . (4.7)

L8-algebra. The BV operator (4.7) is the Chevalley–Eilenberg differential of an L8-

algebra Lbiadj
BV which has the underlying cochain complex

˚
ϕaā

pgb ḡq b F
looooomooooon

Lbiadj
BV, 1

ϕ`aā

pgb ḡq b F
looooomooooon

Lbiadj
BV, 2

˚
l

(4.8)

with cyclic inner product

xϕ,ϕ`y :“

ż

ddx ϕaāϕ`aā , (4.9)

and the only non-trivial higher product is

pϕaā, ϕbb̄q
µ2
ÞÝÝÑ ´λfbc

afb̄c̄
āϕbb̄ϕcc̄ . (4.10)

At this point it is important to recall Remark 3.1 and that we always use the same symbol

for a coordinate function on field space and the corresponding elements of field space.

The field space F can roughly be thought of as the smooth functions of Minkowski

space C8pMdq. More precisely, however, the field space is the direct sum of interacting

fields and solutions to the (colour-stripped) equations of motion, cf. Remark 3.2.

4.3. Yang–Mills theory

A key player in the double copy is Yang–Mills theory on d-dimensional Minkowski spaceMd

with a semi-simple compact matrix Lie algebra g as gauge algebra. The gauge potential
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Aaµ is a one-form on Md taking values in g. Let ∇ be the connection with respect to A.

Infinitesimal gauge transformations act according to

Aaµ ÞÑ Ãaµ :“ Aaµ ` p∇µcqa for all c P C8
pM

d
q b g . (4.11)

BV action and BV operator. The list of all the fields required in the BV formulation of

Yang–Mills theory together with their properties is found in Table 4.1, and the BV action

is [8]

SYM
BV :“

ż

ddx
!

´ 1
4
FaµνF

aµν
` A`aµp∇µcqa ` g

2
fbc

ac`a c
bcc ´ bac̄`a

)

. (4.12)

As in Section 3.1., all the fields are rescaled such that the Yang–Mills coupling constant

g appears in all interaction vertices. Consequently, the BV operator (3.18) acts as

ca
QBV
ÞÝÝÝÑ ´

g
2
fbc

acbcc , c`a
QBV
ÞÝÝÝÑ ´p∇µA`µ qa ´ gfbcacbc`c ,

Aaµ
QBV
ÞÝÝÝÑ p∇µcqa , A`aµ

QBV
ÞÝÝÝÑ p∇νFνµqa ´ gfbcaA`bµ cc ,

ba
QBV
ÞÝÝÝÑ 0 , b`a

QBV
ÞÝÝÝÑ ´c̄`a ,

c̄a
QBV
ÞÝÝÝÑ ba , c̄`a

QBV
ÞÝÝÝÑ 0 .

(4.13)

fields anti-fields

role | ´ |gh | ´ |L dim | ´ |gh | ´ |L dim

ca ghost field 1 0 d
2
´ 2 c`a ´2 3 d

2
` 2

Aaµ physical field 0 1 d
2
´ 1 A`aµ ´1 2 d

2
` 1

ba Nakanishi–Lautrup field 0 1 d
2

b`a ´1 2 d
2

c̄a anti-ghost field ´1 2 d
2

c̄`a 0 1 d
2

Table 4.1: The full set of BV fields for Yang–Mills theory on Md with gauge Lie algebra

g, including their ghost numbers, their L8-degrees, and their mass dimensions. The mass

dimension of the coupling constant g is 2´ d
2

.
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L8-algebra. The BV operator (4.13) is the Chevalley–Eilenberg differential of an L8-

algebra which we shall denote by LYM
BV . This L8-algebra has the underlying complex1

Aaµ

Ω1pMdq b g
A`aµ

Ω1pMdq b g

ba

C8pMdq b g
b`a

C8pMdq b g

ca

C8
pM

d
q b g

loooooomoooooon

“:LYM
BV, 0

c̄`a

C8
pM

d
q b g

loooooomoooooon

“:LYM
BV, 1

c̄a

C8
pM

d
q b g

loooooomoooooon

“:LYM
BV, 2

c`a

C8
pM

d
q b g

loooooomoooooon

“:LYM
BV, 3

´pBνB
µ´δµν lq

´Bµ

id

´Bµ

´id

(4.14a)

We shall label the subspaces LYM
BV, i to which the various fields belong by the corresponding

subscripts, that is,

LYM
BV, 0 “ LYM

BV, 0, c , LYM
BV, 1 “

à

φ P pA, b, c̄`q

LYM
BV, 1, φ ,

LYM
BV, 2 “

à

φ P pA`, b`, c̄q

LYM
BV, 2, φ , LYM

BV, 3 “ LYM
3, c` ,

(4.14b)

and the non-trivial actions of the differential µ1 in LYM
BV, i are

ca
µ1
ÞÝÝÑ ´Bµc

a
P LYM

BV, 1, A ,
¨

˚

˚

˝

Aaµ

ba

c̄`a

˛

‹

‹

‚

µ1
ÞÝÝÑ

¨

˚

˚

˝

´pBµB
ν ´ δνµ lqAaν

´c̄`a

ba

˛

‹

‹

‚

P
à

φ P pA`, b`, c̄q

LYM
BV, 2, φ ,

A`aµ
µ1
ÞÝÝÑ ´B

µA`aµ P LYM
BV, 3, c` .

(4.14c)

1This complex has been rediscovered several times in the literature. For early references, see [26, 28];

more detailed historical references are found in [52].
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The non-vanishing higher products are

pca, cbq
µ2
ÞÝÝÑ gfbc

acbcc P LYM
BV, 0, c ,

pAaµ, c
b
q

µ2
ÞÝÝÑ ´gfbc

aAbµc
c
P LYM

BV, 1, A ,

pA`aµ , c
b
q

µ2
ÞÝÝÑ ´gfbc

aA`bµ c
c
P LYM

BV, 2, A` ,

pAaµ, A
b
νq

µ2
ÞÝÝÑ 2gfbc

a
´

B
ν
pAbνA

c
µq ` 2AbνBrνA

c
µs

¯

P LYM
BV, 2, A` ,

pca, c`bq
µ2
ÞÝÝÑ gfbc

acbc`c P LYM
BV, 3, c` ,

pAaµ, A
`b
ν q

µ2
ÞÝÝÑ ´gfbc

aAbµA
`cµ

P LYM
BV, 3, c` ,

pAaµ, A
b
ν, A

c
κq

µ3
ÞÝÝÑ 3!g2AνcAdνA

e
µfed

bfbc
a
P LYM

BV, 2, A` ,

(4.14d)

and the general expressions follow from graded antisymmetry of higher products and Equa-

tion (2.17). We have that pLYM
BV , µiq forms an L8-algebra, and with the inner products

xA,A`y :“

ż

ddx AaµA
`µ
a , xb, b`y :“

ż

ddx bab`a ,

xc, c`y :“

ż

ddx cac`a , xc̄ , c̄`y :“ ´

ż

ddx c̄ac̄`a ,

(4.15)

it becomes a cyclic L8-algebra. Note that the superfield homotopy Maurer–Cartan ac-

tion (3.25a) reduces to the BV action (4.12) when using these higher products and inner

products together with (3.26).

Gauge fixing. We have discussed the general gauge-fixing procedure in the BV formalism

in Section 3.1.. Here, to implement Rξ-gauge for some real parameter ξ, we choose the

gauge-fixing fermion

Ψ :“ ´

ż

ddx c̄a
`

B
µAaµ `

ξ
2
ba
˘

. (4.16)

Following (3.29) and (3.32), the Lagrangian of the resulting gauge-fixed BV action is

SYM, gf
BV “

ż

ddx
!

´ 1
4
FaµνF

aµν
´ c̄aB

µ
p∇µcqa ` ξ

2
bab

a
` baB

µAaµ`

` A`aµp∇µcqa ` g
2
fbc

ac`a c
bcc ´ bac̄`a

)

,

(4.17)

and after putting to zero the anti-fields, we obtain

SYM
BRST “

ż

ddx
!

´ 1
4
FaµνF

aµν
´ c̄aB

µ
p∇µcqa ` ξ

2
bab

a
` baB

µAaµ

)

. (4.18)

This is precisely the action appearing in (3.1a).
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4.4. Free Kalb–Ramond 2-form

The next theory which we would like to discuss is that of a free two-form gauge potential

B P Ω2pMdq. It has a three-form curvature given by

Hµνκ :“ BµBνκ ` BνBκµ ` BκBµν P Ω3
pM

d
q (4.19)

and transforms under the infinitesimal gauge transformations as

Bµν ÞÑ B̃µν :“ Bµν ` BµΛν ´ BνΛµ , (4.20)

where Λ P Ω1pMdq is the one-form gauge parameter. Note that the gauge parameters

themselves transform under a higher gauge symmetry,

Λµ ÞÑ Λ̃µ :“ Λµ ` Bµλ , (4.21)

where λ P C8pMdq is the (scalar) higher gauge parameter.

fields anti-fields

role | ´ |gh | ´ |L dim | ´ |gh | ´ |L dim

λ ghost–for–ghost field 2 ´1 d
2
´ 3 λ` ´3 4 d

2
` 3

Λµ ghost field 1 0 d
2
´ 2 Λ`µ ´2 3 d

2
` 2

γ trivial pair partner of ε 1 0 d
2
´ 1 γ` ´2 3 d

2
` 1

Bµν physical field 0 1 d
2
´ 1 B`µν ´1 2 d

2
` 1

αµ Nakanishi–Lautrup field 0 1 d
2

α`µ ´1 2 d
2

ε trivial pair partner of γ 0 1 d
2
´ 1 ε` ´1 2 d

2
` 1

Λ̄µ anti-ghost field ´1 2 d
2

Λ̄`µ 0 1 d
2

γ̄ trivial pair partner of λ̄ ´1 2 d
2
` 1 γ̄` 0 1 d

2
´ 1

λ̄ trivial pair partner of γ̄ ´2 3 d
2
` 1 λ̄` 1 0 d

2
´ 1

Table 4.2: The full set of BV fields for the free Kalb–Ramond field, including their ghost

numbers, their L8-degrees, and their mass dimension. Besides the physical field, the ghost

field, and ghost–for–ghost field, we also introduced trivial pairs pα, Λ̄q, pγ, εq, and pγ̄, λ̄q

together with their anti-fields.
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BV action and BV operator. The full set of fields required for gauge fixing in the BV

formalism is given by what is known as the Batalin–Vilkovisky triangle [9], see also [52] for

a recent review in the notation used here. In Batalin–Vilkovisky triangle, the lowest level

trivial pair is used to gauge-fix gauge potentials and ghosts, the next-to-lowest level trivial

pairs are needed to gauge-fix the lowest higher ghost, and so on. In Kalb–Ramond theory

we have a higher antighost, and for this reason we precisely need three trivial pairs and

their associated antifields. The complete list of BV fields is given in Table 4.2. Following

the discussion of [9], the BV action reads as

SKR
BV :“

ż

ddx
!

´ 1
12
HµνκH

µνκ
` 2B`µνB

µΛν ´ Λ`µ B
µλ´ Λ̄`µα

µ
` λ̄`γ̄ ` ε`γ

)

, (4.22)

where the factor of two has been introduced for later convenience. Consequently, the BV

operator acts (3.18) as

λ
QBV
ÞÝÝÝÑ 0 , λ`

QBV
ÞÝÝÝÑ B

µΛ`µ ,

Λµ
QBV
ÞÝÝÝÑ Bµλ , Λ`µ

QBV
ÞÝÝÝÑ ´2BνB`νµ ,

γ
QBV
ÞÝÝÝÑ 0 , γ`

QBV
ÞÝÝÝÑ ε` ,

Bµν
QBV
ÞÝÝÝÑ BµΛν ´ BνΛµ , B`µν

QBV
ÞÝÝÝÑ 1

2
B
κHκµν ,

αµ
QBV
ÞÝÝÝÑ 0 , α`µ

QBV
ÞÝÝÝÑ Λ̄`µ ,

ε
QBV
ÞÝÝÝÑ γ , ε`

QBV
ÞÝÝÝÑ 0 ,

Λ̄µ
QBV
ÞÝÝÝÑ αµ , Λ̄`µ

QBV
ÞÝÝÝÑ 0 ,

γ̄
QBV
ÞÝÝÝÑ 0 , γ̄`

QBV
ÞÝÝÝÑ λ̄` ,

λ̄
QBV
ÞÝÝÝÑ γ̄ , λ̄`

QBV
ÞÝÝÝÑ 0 .

(4.23)
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L8-algebra. The BV operator (4.23) is the Chevalley–Eilenberg differential of an L8-

algebra LKR
BV, which has the underlying complex

λ

C8pMdq

Λµ

Ω1pMdq

Bµν

Ω2pMdq

B`µν

Ω2pMdq

Λ`µ

Ω1pMdq

λ`

C8pMdq

Λ̄`µ

Ω1pMdq

Λ̄µ

Ω1pMdq

αµ

Ω1pMdq

α`µ

Ω1pMdq

γ

C8pMdq

ε

C8pMdq

ε`

C8pMdq

γ`

C8pMdq

looomooon

“:LKR
´1

λ̄`

C8
pM

d
q

looomooon

“:LKR
BV, 0

γ̄`

C8
pM

d
q

looomooon

“:LKR
BV, 1

γ̄

C8
pM

d
q

looomooon

“:LKR
BV, 2

λ̄

C8
pM

d
q

looomooon

“:LKR
BV, 3

looomooon

“:LKR
BV, 4

´Bµ 2Brν µ1 2Bν ´Bµ

id

´id

id ´id

id ´id

(4.24a)

with

LKR
BV,´1 “ LKR

BV,´1, λ ,

LKR
BV, 0 “

à

φ P pΛ ,γ ,λ̄`q

LKR
BV, 0, φ ,

LKR
BV, 1 “

à

φ P pB, Λ̄`, α, ε, γ̄`q

LKR
BV, 1, φ ,

LKR
BV, 2 “

à

φ P pB`, Λ̄, α`, ε`, γ̄q

LKR
BV, 2, φ ,

LKR
BV, 3 “

à

φ P pΛ`, γ`, λ̄q

LKR
BV, 3, φ ,

LKR
BV, 4 “ LKR

BV, 4, λ` ,

(4.24b)
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and the non-vanishing action of the differential µ1 given by

λ
µ1
ÞÝÝÑ ´Bµλ P LKR

BV, 0,Λ ,
¨

˚

˚

˝

Λµ

γ

λ̄`

˛

‹

‹

‚

µ1
ÞÝÝÑ

¨

˚

˚

˝

´2BrµΛνs

γ

λ̄`

˛

‹

‹

‚

P
à

φ P pB, ε, γ̄`q

LKR
BV, 1, φ ,

¨

˚

˚

˝

Bµν

Λ̄`µ

αµ

˛

‹

‹

‚

µ1
ÞÝÝÑ

¨

˚

˚

˝

1
2
BκHκµν

αµ

´Λ̄`µ

˛

‹

‹

‚

P
à

φ P pB`, Λ̄, α`q

LKR
BV, 2, φ ,

¨

˚

˚

˝

B`µν

ε`

γ̄

˛

‹

‹

‚

µ1
ÞÝÝÑ

¨

˚

˚

˝

2BνB`µν

´ε`

´γ̄

˛

‹

‹

‚

P
à

φ P pΛ`, γ`, λ̄q

LKR
BV, 3, φ ,

Λ`µ
µ1
ÞÝÝÑ ´B

µΛ`µ P LKR
BV, 4, λ` ,

(4.24c)

There are no higher products because the theory is free. The L8-algebra LKR
BV becomes

cyclic upon introducing

xλ, λ`y :“ ´

ż

ddx λλ` , xλ̄, λ̄`y :“ ´

ż

ddx λ̄λ̄` ,

xΛ,Λ`y :“

ż

ddx ΛµΛ`µ , xΛ̄, Λ̄`y :“ ´

ż

ddx Λ̄µΛ̄`µ ,

xB,B`y :“

ż

ddx BµνB`µν ,

xα,α`y :“

ż

ddx αµα`µ , xε, ε`y :“

ż

ddx εε` ,

xγ, γ`y :“

ż

ddx γγ` , xγ̄, γ̄`y :“ ´

ż

ddx γ̄γ̄` .

(4.25)

Again, the superfield homotopy Maurer–Cartan action (3.25a) of LKR
BV with higher products (3.26)

is the BV action (4.22).

Gauge fixing. Recall the general gauge-fixing procedure in the BV formalism from Sec-

tion 3.1.. The most general Lorentz covariant linear gauge choices are implemented by

the gauge-fixing fermion

Ψ :“ ´

ż

ddx
!

Λ̄ν
`

B
µBµν `

ζ1

2
αν

˘

´ λ̄
`

B
µΛµ ` ζ2γ

˘

` ε
`

B
µΛ̄µ ` ζ3γ̄

˘

)

(4.26)
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for some real parameters ζ1,2,3. The resulting gauge-fixed action (after putting to zero

the anti-fields) is

SKR
BRST “

ż

ddx
!

1
4
Bµν lBµν ` 1

2
pB
µBµνqpBκB

κν
q ´ Λ̄µ l Λµ´

´ pB
µΛ̄µqpBνΛνq ´ λ̄lλ` ζ1

2
αµα

µ
` ανBµBµν `

` εBµα
µ
´ pζ2 ` ζ3q γ̄γ ` γBµΛ̄µ ´ γ̄BµΛµ

)

.

(4.27)

4.5. Einstein–Hilbert gravity

The fourth relevant theory is Einstein–Hilbert gravity on a d-dimensional Lorentzian man-

ifold Md with metric g P ΓpMd ,d2T ˚Mdq. Let ∇ be the Levi–Civita connection for g.

Recall that infinitesimal gauge transformations of the metric are parametrised by a vector

field χ and act as

gµν ÞÑ g̃µν :“ gµν ` pLχgqµν , (4.28)

where Lχ denotes the Lie derivative along χ.

BV action and BV operator. The list of all the fields required in the BV formulation

of Einstein–Hilbert gravity together with their properties is found in Table 4.3 and the BV

action (cf. e.g. [208] or [209] for the gauge-fixed version) is

SEH
BV :“

ż

ddx
!

´ 1
κ2

?
´g R ` g`µνpLχgqµν ` 1

2
χ`µ pLχχqµ ´ %µχ̄`µ

)

, (4.29)

where R denotes the Ricci scalar and 2κ2 “ 16πG
pdq
N Einstein’s gravitational constant.

Consequently, the BV operator (3.18) acts as

χµ
QBV
ÞÝÝÝÑ ´1

2
pLχχqµ , χ`µ

QBV
ÞÝÝÝÑ ´2∇νg`νµ ` pLχχ`qµ ,

gµν
QBV
ÞÝÝÝÑ pLχgqµν , g`µν

QBV
ÞÝÝÝÑ ´ 1

κ2

?
´g

`

Rµν ´ 1
2
gµνR

˘

` pLχg`qµν ,

%µ
QBV
ÞÝÝÝÑ 0 , %`µ

QBV
ÞÝÝÝÑ ´χ̄µ ,

χ̄µ
QBV
ÞÝÝÝÑ %µ , χ̄`µ

QBV
ÞÝÝÝÑ 0 ,

(4.30)

where Rµν is the Ricci tensor.
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fields anti-fields

role | ´ |gh | ´ |L dim | ´ |gh | ´ |L dim

χµ ghost field 1 0 ´1 χ`µ ´2 3 d ` 1

gµν physical field 0 1 0 g`µν ´1 2 d

%µ Nakanishi–Lautrup field 0 1 d
2

%`µ ´1 2 d
2

χ̄µ anti-ghost field ´1 2 d
2

χ̄`µ 0 1 d
2

Table 4.3: The full set of BV fields for Einstein–Hilbert gravity, including their ghost

numbers, their L8-degrees, and their mass dimensions. The mass dimension of the coupling

constant κ is 1´ d
2

. Note that all fields are tensors and all anti-fields are tensor densities.

Perturbation theory. Let us now restrict to a Lorentzian manifold Md for which the

metric can be seen as a fluctuation hµν about the Minkowski metric ηµν on Md , that is,

gµν “: ηµν ` κhµν . (4.31a)

For future reference, we note that

gµν “ ηµν ´ κhµν ` κ2hµρhρ
ν
´ κ3hµρhρ

σhσ
ν
`Opκ4

q , (4.31b)

where hµ
ν :“ ηνλhµλ and hµν :“ ηµκηνλhκλ. Likewise,

?
´g “ 1` 1

2
κh̊ ` κ2

`

1
8
h̊2
´ 1

4
hµ

νhν
µ
˘

`

` κ3
`

1
48
h̊3
´ 1

8
h̊hµ

νhν
µ
` 1

6
hµ

νhν
ρhρ

µ
˘

`Opκ4
q ,

(4.31c)

where h̊ :“ ηµνhµν.

We also introduce the following rescaled anti-fields and unphysical fields:

h`µν :“ κ?
´g
g`µν ,

Xµ :“ 1
κ
χµ , X`µ :“ κ?

´g
χ`µ , X̄µ :“ χ̄µ , X̄`µ :“ 1?

´g
χ̄`µ ,

$µ :“ %µ , $`
µ :“ 1?

´g
%`µ .

(4.32)

In addition to these, we introduce two trivial pairs pβ, δq and pπ, β̄q, together with the

corresponding anti-fields. These do not modify the physical observables; as we shall see

later, however, they do arise rather naturally in the double copy and are crucial once the

dilaton enters. We also note that precisely these trivial pairs were also introduced in [210]
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fields anti-fields

role | ´ |gh | ´ |L dim | ´ |gh | ´ |L dim

Xµ ghost field 1 0 d
2
´ 2 X`µ ´2 3 d

2
` 2

β trivial pair partner of δ 1 0 d
2
´ 1 β` ´2 3 d

2
` 1

hµν physical field 0 1 d
2
´ 1 h`µν ´1 2 d

2
` 1

$µ Nakanishi–Lautrup field 0 1 d
2

$`
µ ´1 2 d

2

π trivial pair partner of β̄ 0 1 d
2
` 1 π` ´1 2 d

2
´ 1

δ trivial pair partner of β 0 1 d
2
´ 1 δ` ´1 2 d

2
` 1

X̄µ anti-ghost field ´1 2 d
2

X̄`µ 0 1 d
2

β̄ trivial pair partner of π ´1 2 d
2
` 1 β̄` 0 1 d

2
´ 1

Table 4.4: The full set of BV fields for perturbative Einstein–Hilbert gravity, including their

ghost numbers, their L8-degrees, and their mass dimension. All the fields are regarded as

tensors on Minkowski space.

in order to explain a unimodular gauge fixing in the BV formalism. The full list of fields

and their properties is given in Table 4.4.

The action itself can now be expanded in orders of κ,

SeEH
BV “

ż

ddx
?
´g

!

´ 1
κ2R `

2?
´g
g`µν∇µχν `

` 1
2
?
´g
χ`µ pLχχqµ ´ 1?

´g
$µχ̄`µ ` βδ

`
` πβ̄`

)

“

ż

ddx
?
´g

!

´ 1
κ2R ` 2h`µν∇µXν ` κ

2
X`µ pLXXqµ ´$µχ̄`µ ` βδ

`
` πβ̄`

)

“:

ż

ddx
8
ÿ

n“0

κnL eEH
n

(4.33)

with indices now raised and lowered with the Minkowski metric. The lowest-order Lag-

rangian L0 is given by the Fierz–Pauli Lagrangian plus the terms containing ghosts and

other unphysical fields,

L eEH
0 “ ´1

4
B
µhνρBµhνρ `

1
2
B
µhνρBνhµρ ´

1
2
B
µh̊Bνhµν `

1
4
B
µh̊Bµh̊`

` 2h`µνBµXν ´$
µX̄`µ ` βδ

`
` πβ̄` ,

(4.34)
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cf. e.g. [211]. To first order in κ, we have

L eEH
1 “ ´hµν

!

1
2
Bµh

ρσ
Bνhρσ ´

1
4
ηµνBσhτρB

σhτρ ` Bν h̊
`

Bρhµ
ρ
´ 1

2
Bµh̊

˘

`

` Bνhµ
ρ
Bρh̊ ´ Bρh̊B

ρhµν ´
1
2
ηµνB

ρh̊
`

Bσhρ
σ
´ 1

2
Bρh̊

˘

` B
ρhµνBσhρ

σ
´

´ 2BνhρσB
σhµ

ρ
´ BρhνσB

σhµ
ρ
` BσhνρB

σhµ
ρ
` 1

2
ηµνBρhτσB

σhτρ
)

`

` 2h`µν
!

hνλBµX
λ
` 1

2
pBµhλν ` Bλhµν ´ BνhµλqX

λ
)

`

` 1
2
X`µ pLXXqµ ` 1

2
h̊p´$µX̄`µ ` βδ

`
` πβ̄`q .

(4.35)

L8-algebra. The full L8-algebra LeEH
BV of Einstein–Hilbert gravity has the underlying com-

plex

Xµ

Ω1pMdq

hµν

Ω2pMdq

h`µν

Ω2pMdq

X`µ

Ω1pMdq

X̄`µ

Ω1pMdq

X̄µ

Ω1pMdq

$µ

Ω1pMdq

$`µ

Ω1pMdq

β̄`

C8pMdq

β̄

C8pMdq

π

C8pMdq

π`

C8pMdq

β

C8
pM

d
q

looomooon

“:LeEH
BV, 0

δ

C8
pM

d
q

looomooon

“:LeEH
BV, 1

δ`

C8
pM

d
q

looomooon

“:LeEH
BV, 2

β`

C8
pM

d
q

looomooon

“:LeEH
BV, 3

2Bpν µ1 2Bν

id

´id

´id

id

id ´id

(4.36a)
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with

LeEH
BV, 0 “ LeEH

BV, 0, X ‘ LeEH
BV, 0, β ,

LeEH
BV, 1 “

à

φ P ph, X̄`,$, β̄`, π, δq

LeEH
BV, 1, φ ,

LeEH
BV, 2 “

à

φ P ph`, X̄,$`, β̄, π`, δ`q

LeEH
BV, 2, φ ,

LeEH
BV, 3 “ LeEH

BV, 0, X` ‘ LeEH
BV, 0, β` .

(4.36b)

The L8-algebra LeEH
BV comes with non-trivial higher products of arbitrarily high order, with

µi encoding the Lagrangian L eEH
BV, i´1. Below, we merely list µ1 and µ2 to prepare our

discussion of the double copy later on. The differentials are

˜

Xµ

β

¸

µ1
ÞÝÝÑ

˜

´BpµXνq

β

¸

P
à

φ P ph, δq

LeEH
BV, 1, φ ,

¨

˚

˚

˚

˚

˚

˚

˚

˝

hµν

X̄`µ

$µ

β̄`

π

˛

‹

‹

‹

‹

‹

‹

‹

‚

µ1
ÞÝÝÑ

¨

˚

˚

˚

˚

˚

˚

˚

˝

“

1
2
pδρµδ

σ
ν ´ ηµνη

ρσql´pδσνηµκ ´ δ
σ
κηµνqB

ρBκ
‰

hρσ

´$µ

X̄`µ

π

´β̄`

˛

‹

‹

‹

‹

‹

‹

‹

‚

P
à

φ P ph`, X̄,$`, β̄, π`q

LeEH
BV, 2, φ ,

˜

h`µν

δ`

¸

µ1
ÞÝÝÑ

˜

´Bνhνµ

´δ`

¸

P
à

φ P pX`, β`q

LeEH
BV, 3, φ ,

(4.36c)
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and the cubic interactions are encoded in the binary products

pX1µ, X2νq
µ2
ÞÝÝÑ pLX1

X2qµ P LeEH
BV, 0, X ,

pXµ, X
`
ν q

µ2
ÞÝÝÑ pBµX

ν
qX`ν ` BνpX

νX`µ q P LeEH
BV, 3, X` ,

p$, X̄`µ q
µ2
ÞÝÝÑ 1

2
$ρX̄`ρ ηµν P LeEH

BV, 2, h` ,

phµν,$q
µ2
ÞÝÝÑ ´1

2
h̊$µ P LeEH

BV, 2, X̄ ,

phµν, X̄
`
ρ q

µ2
ÞÝÝÑ 1

2
h̊X̄`µ P LeEH

BV, 2,$` ,

pβ, δ`q
µ2
ÞÝÝÑ 1

2
βδ`ηµν P LeEH

BV, 2, h` ,

phµν, βq
µ2
ÞÝÝÑ 1

2
h̊β P LeEH

1,δ ,

phµν, δ
`
q

µ2
ÞÝÝÑ ´1

2
h̊δ` P LeEH

BV, 3, β` ,

pπ, β̄`q
µ2
ÞÝÝÑ 1

2
πβ̄`ηµν P LeEH

BV, 2, h` , phµν, πq
µ2
ÞÝÝÑ ´1

2
h̊π P LeEH

BV, 2, β̄ ,

phµν, β̄
`
q

µ2
ÞÝÝÑ 1

2
h̊β̄` P LeEH

BV, 2, π` ,

pXµ, hνρq
µ2
ÞÝÝÑ ´2hνκBµX

κ
´ pBµhκν ` Bκhµν ´ BνhµκqX

κ
P LeEH

BV, 1, h ,

ph`µν, hρσq
µ2
ÞÝÝÑ ´2Bκph

`κνhνµq ` h
`κν
pBκhµν ` Bµhκν ´ Bνhκµq P LeEH

BV, 3, X` ,

ph`µν, Xρq
µ2
ÞÝÝÑ ´2h`κµB

κXν ` B
κ
ph`κνXµq ` Bκph

`µνXκ
q ´ B

κ
ph`µκXνq P LeEH

BV, 2, h` ,

ph1µν, h2ρσq
µ2
ÞÝÝÑ 3

!

1
2
Bµh

ρσ
1 Bνh2ρσ ´

1
4
ηµνBσh1τρB

σhτρ2 ` Bν h̊1

`

Bρh2µ
ρ
´ 1

2
Bµh̊2

˘

`

` Bνh1µ
ρ
Bρh̊2 ´ Bρh̊1B

ρh2µν ´
1
2
ηµνB

ρh̊1

`

Bσh2ρ
σ
´ 1

2
Bρh̊2

˘

`

` B
ρh1µνBσh2ρ

σ
´ 2Bνh1ρσB

σh2µ
ρ
´ Bρh1νσB

σh2µ
ρ
`

` Bσh1νρB
σh2µ

ρ
` 1

2
ηµνBρh1τσB

σhτρ2

)

`

`p1 Ø 2q P LeEH
BV, 2, h` ,

(4.36d)

The cyclic structure is given by the following integrals:

xX,X`y :“

ż

ddx XµX`µ , xX̄, X̄`y :“ ´

ż

ddx X̄µX̄`µ ,

xβ, β`y :“

ż

ddx ββ` , xβ̄, β̄`y :“ ´

ż

ddx β̄β̄` ,

xh, h`y :“

ż

ddx hµνh`µν , x$,$`
y :“

ż

ddx $µ$`
µ ,

xπ, π`y :“

ż

ddx ππ` , xδ, δ`y :“

ż

ddx δδ` .

(4.37)
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Gauge fixing. Gauge fixing proceeds as usual in the BV formalism, but due to our two

additional trivial pairs, we can now write down a much more general gauge fixing fermion.

We restrict ourselves to

Ψ0 :“ ´

ż

ddx
!

X̄ν
`

ζ4B
µhµν ´

ζ5

2
$ν ` ζ6Bν h̊ ´ ζ7Bνδ ` ζ8

Bνπ

l

˘

`

` β̄
`

ζ9h̊ ´ ζ10δ ` ζ11

BµBνhµν
l

˘

)

,

(4.38)

and this is the freedom required for the discussion of the double copy. The resulting

Lagrangian, to lowest order in κ, reads as

L eEH, gf
0 “ 1

4
hµν l hµν `

1
2
pB
µhµνq

2
` 1

2
h̊BµBνhµν ´

1
4
h̊l h̊`

` ζ4$
ν
B
µhµν ´

ζ5

2
$µ$µ ` ζ6$

µ
Bµh̊ ´ ζ7$

µ
Bµδ ` ζ8$

µBµπ

l
´

´ πζ9h̊ ` ζ10πδ ´ ζ11π
BµBνhµν

l
`

` ζ4pB
µX̄ν

` B
νX̄µ

qBµXν ` ζ6pBκX̄
κ
q

2
´ ζ9β̄B

µXµ ´ ζ11

BµBνβ̄

l
BµXν`

´ ζ7βBνX̄
ν
´ ζ10β̄β ,

(4.39)

after putting to zero the anti-fields.

4.6. N “ 0 supergravity

The actions for the free Kalb–Ramond field and Einstein–Hilbert gravity are combined

and coupled to an additional scalar field ϕ, the dilaton, in N “ 0 supergravity. This is

the common, or universal, Neveu–Schwarz-Neveu–Schwarz sector of the α1 Ñ 0 limit of

closed string theories, and the action reads as

SN“0 :“

ż

ddx
?
´g

!

´ 1
κ2R ´

1
d´2
BµϕB

µϕ´ 1
12

e´
4κ
d´2

ϕHµνκH
µνκ

)

. (4.40)

The solutions of the associated equations of motions give backgrounds (with vanishing

cosmological constant) around which strings can be quantised to lowest order in α1 and

string coupling. They also ensure conformal invariance of the string is non-anomalous in

critical dimensions.

We note that the free part of N “ 0 supergravity is a sum of the free Kalb–Ramond

two form, Einstein–Hilbert gravity and a free scalar field. Therefore, the free parts of the
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60 4.6. N “ 0 supergravity

BV formalism as well as the L8-algebra description just add in a straightforward manner.

The interaction terms then consist of the interaction terms of Einstein–Hilbert gravity as

presented in the previous Section, as well as additional terms of arbitrary order involving

the dilaton and the Kalb–Ramond two-form. These are readily read off (4.40), but their

explicit form will not be of relevance to us.
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5
Minimal model and scattering amplitudes

In the previous Chapters, we saw that actions of field theories are encoded in cyclic L8-

algebras. The same holds for tree-level scattering amplitudes, and loop-level scattering

amplitudes are encoded in quantum L8-algebras, as we shall explain in this Chapter.

The material in this Chapter is borrowed from [2, 3, 6].

5.1. Equivalence of field theories

Classically, two physical theories are equivalent, if they have an isomorphic space of ob-

servables.1 Translated to the BV formalism, this implies that classically equivalent physical

theories have isomorphic QBV-cohomology. Dually, this implies that two physical theories

are classically equivalent, if they have quasi-isomorphic L8-algebras, which is also mathem-

atically the natural notion of equivalence for L8-algebras; see Chapter 2 for more details.

Given two L8-algebras pLBV, µiq and pL̃BV, µ̃iq constructed from a BV action, a morph-

ism φ : LBV Ñ L̃BV of L8-algebras is a collection of i-linear totally graded anti-symmetric

maps φi : LBV ˆ ¨ ¨ ¨ ˆ LBV Ñ L̃BV of degree 1 ´ i subject to the conditions (2.32).

We note that the homotopy Jacobi identities (2.17) imply that µ1 and µ̃1 are differen-

tials. Therefore, we may consider their cohomologies H‚µ1
pLBVq :“

À

kPZH
k
µ1
pLBVq and

H‚µ̃1
pL̃BVq :“

À

kPZH
k
µ̃1
pL̃BVq. We also note that the identity (2.32) implies that φ1 is a

cochain map, that is, µ̃1 ˝φ1 “ φ1 ˝µ1 and thus descends to a map H‚µ1
pLBVq Ñ H‚µ̃1

pL̃BVq

1This is weaker than the statement that tree-level scattering amplitudes coincide. To define asymptotic

in- and out-states in the same Hilbert space, one needs the additional data of the symplectic form ω. Two

classical theories have the same tree-level scattering amplitudes if they are related by a quasi-isomorphisms

compatible with the cyclic structures. Again, see [52] for some more details.
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on the cohomologies. Quasi-isomorphisms are those morphisms for which φ1 induces an

isomorphism on cohomology.

Under quasi-isomorphisms, the physical theory remains unchanged as is explained in

Chapter 2, see also [40, 192, 52, 1, 4]. In particular, the BV actions SBV and S̃BV for LBV

and L̃BV are related as S̃BV “ φ˚SBV, where we used the pullback φ˚ : C8pL̃BVr1sq Ñ

C8pLBVr1sq dual to the morphism φ. Consequently, quasi-isomorphisms constitute the

correct notion of equivalence1.

Because the QBV-cohomologies in ghost numbers different from zero (i.e. dual to L8-

degree one) are not measurable, one may wonder if the notion of a full quasi-isomorphism is

not too restrictive. For perturbation theory, agreement in H1
µ1
pLBVq is certainly sufficient,

and this can often be extended to an agreement in further cohomologies, cf. e.g. [54,

Appendix C]. Moreover, some fields in L8-degree zero, such as e.g. anti-fields of anti-

ghosts and Nakanishi–Lautrup fields, are often unphysical, and arise only as internal fields

in loop diagrams. Therefore their contributions to H1
µ1
pLBVq can also be disregarded when

identifying physical observables. At a technical level, one can restrict these fields such

that the kernel of the differential operator describing their linearised equations of motion

vanishes, cf. Remark 3.2.

5.2. Tree-level scattering amplitudes

There is an L8-structure µ˝i with vanishing differential µ˝1 on the cohomology L˝BV :“

H‚µ1
pLBVq of an L8-algebra pLBV, µiq such that L˝BV and LBV are quasi-isomorphic. This

L8-algebra L˝BV is called the minimal model of LBV, cf. Chapter 2. The minimal model cor-

responds to a field theory equivalent to the original field theory, but without any propagat-

ing degrees of freedom. Its higher products therefore have to be the tree-level scattering

amplitudes [33, 52, 161, 2].

The relation between LBV and L˝BV can be understood as follows. We start from the

underlying cochain complexes and the following diagram:

pLBV, µ1q pL˝BV, 0q .h

p

e
(5.1a)

1Here, we are a bit cavalier about the inclusion of the cyclic structure; again, see [52] for some more

details.
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Here, p is the obvious projection onto the cohomology, and e is a choice of embedding

(involving choices, e.g. a choice of gauge for gauge theories). The quasi-isomorphism also

gives rise to a contracting homotopy h, which is a linear map of degree ´1. The maps e

and h can be chosen such that

id “ µ1 ˝ h` h ˝ µ1 ` e ˝ p ,

p ˝ e “ id ,

p ˝ h “ h ˝ e “ h ˝ h “ 0 ,

p ˝ µ1 “ µ1 ˝ e “ 0 .

(5.1b)

Moreover, we now have a decomposition1

LBV – Lharm
BV ‘ Lex

BV ‘ Lcoex
BV ,

Lharm
BV :“ impe ˝ pq , Lex

BV :“ impµ1 ˝ hq , Lcoex
BV :“ imph ˝ µ1q

(5.2)

with Lharm
BV – L˝BV. It is rather straightforward to verify that

impeq – Lharm
BV , impµ1q – Lex

BV , imphq – Lcoex
BV ,

kerppq – Lex
BV ‘ Lcoex

BV , kerpµ1q – Lharm
BV ‘ Lex

BV , kerphq – Lharm
BV ‘ Lcoex

BV .
(5.3)

Mathematically, this is an abstract Hodge–Kodaira decomposition. The map h in L8-

degree two turns out to be the (Feynman–’t Hooft) propagator of the physical theory in

question [212–214], see also [215] and references therein.

We directly extend the diagram (5.1a) to the Chevalley–Eilenberg picture, where we

have

pC8pLBVr1sq, QBV,0q pC8pL˝BVr1sq, 0qH0

E0

P0

id “ P0 ˝ E0 `QBV,0 ˝ H0 ` H0 ˝QBV,0 ,

E0 ˝ P0 “ id ,

E0 ˝ H0 “ H0 ˝ P0 “ H0 ˝ H0 “ 0 ,

E0 ˝QBV,0 “ QBV,0 ˝ P0 “ 0 ,

(5.4a)

where QBV,0 is the linear part of QBV, which encodes the differential µ1. The maps E0,

P0, and H0 are defined by the ‘tensor trick’ [216] as

F0 “
ÿ

iě1

1

i !
pF0q

i for F0 P tE0,P0,H0u (5.4b)

1The superscripts are borrowed from the Hodge decomposition of a differential form into harmonic,

exact, and co-exact parts, see [52, Section 5.2] for the corresponding formulas.
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with

pE0q
i :“ pe˚qdi , pP0q

i :“ pp˚qdi , pH0q
i :“

ÿ

k`l“i´1

1dk d h˚ d pp˚ ˝ e˚qdl . (5.4c)

We can now regard the non-linear part

δ :“ QBV ´QBV,0 (5.5)

of QBV as a perturbation and use the homological perturbation lemma [216, 217], which

asserts that there is a contracting homotopy

pC8pLBVr1sq, QBVq pC8pL˝BVr1sq, Q
˝
BVqH

E

P

id “ P ˝ E`QBV ˝ H` H ˝QBV ,

E ˝ P “ id ,

E ˝ H “ H ˝ P “ H ˝ H “ 0,

E ˝QBV “ Q˝BV ˝ E , QBV ˝ P “ P ˝Q˝BV

(5.6a)

in the deformed setting. In particular,

E “ E0 ˝ pid` δ ˝ H0q
´1 , H “ H0 ˝ pid` δ ˝ H0q

´1 ,

P “ P0 ´ H ˝ δ ˝ P0 , Q˝BV “ E ˝ δ ˝ P0 ,
(5.6b)

and Q˝BV is the Chevalley–Eilenberg differential encoding the higher products of the minimal

model and thus its tree-level scattering amplitudes. Note that here, the inverse operators

are to be seen as geometric series.1 We regard δ as a small parameter, and this is consistent

with the standard perturbative approach in Quantum Field Theory, since δ is at least linear

in the coupling constants. The formula for Q˝BV is then recursive, which has interesting

consequences [2, 3].

Translated to the dual picture, the homological perturbation lemma yields the following

1Because we are interested in perturbation theory, we do not have to concern ourselves with convergence

issues.
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formulas for the quasi-isomorphism φ : pLBV, µiq Ñ pL˝BV, µ
˝
i q [192]:

φ1p`
˝
1q :“ ep`˝1q ,

φ2p`
˝
1, `

˝
2q :“ ´ph ˝ µ2qpφ1p`

˝
1q, φ1p`

˝
2qq ,

...

φip`
˝
1, . . . , `

˝
i q :“ ´

i
ÿ

j“2

1

j!

ÿ

k1`¨¨¨`kj“i

ÿ

σPShpk1,...,kj´1;iq

χpσ; `˝1, . . . , `
˝
i qζpσ; `˝1, . . . , `

˝
i qˆ

ˆ ph ˝ µjq
`

φk1

`

`˝σp1q, . . . , `
˝
σpk1q

˘

, . . . , φkj
`

`˝σpk1`¨¨¨`kj´1`1q, . . . , `
˝
σpiq

˘˘

,

(5.7a)

and the products µ˝i : L˝BV ˆ ¨ ¨ ¨ ˆ L˝BV Ñ L˝BV are constructed recursively as

µ˝1p`
˝
1q :“ 0 ,

µ˝2p`
˝
1, `

˝
2q :“ pp ˝ µ2qpφ1p`

˝
1q, φ1p`

˝
2qq ,

...

µ˝i p`
˝
1, . . . , `

˝
i q :“

i
ÿ

j“2

1

j!

ÿ

k1`¨¨¨`kj“i

ÿ

σPShpk1,...,kj´1;iq

χpσ; `˝1, . . . , `
˝
i qζpσ; `˝1, . . . , `

˝
i qˆ

ˆ pp ˝ µjq
`

φk1

`

`˝σp1q, . . . , `
˝
σpk1q

˘

, . . . , φkj
`

`˝σpk1`¨¨¨`kj´1`1q, . . . , `
˝
σpiq

˘˘

,

(5.7b)

where `˝1, . . . , `
˝
i P L˝BV. Here, χ and ζ are again the Koszul sign (??) and the sign

factor (2.32b), respectively.

Using the higher products of the minimal model, n-point tree-level scattering amplitudes

of the free fields a˝1, . . . , a
˝
n P H

1
µ1
pLBVq are then computed using formula [2] (see also [40,

192] for the case of string field theory)

An,0pa
˝
1, . . . , a

˝
nq “ ixa˝1, µ

˝
n´1pa

˝
2, . . . , a

˝
nqy . (5.8)

Furthermore, in [2] it was shown that the recursion relations (5.7a) encode the famous

Berends–Giele recursion relations [73] for gluon scattering in Yang–Mills theory. For a

related discussion of the S-matrix in the language of L8-algebras, see also [60] as well

as [161, 218] for an interpretation of tree-level on-shell recursion relations in terms of

L8-algebras.
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5.3. Loop-level scattering amplitudes

In order to extend the above discussion to recursion relations for loop-level amplitudes, we

follow [49, 3, 4]. Recall that in the transition from the classical to the quantum master

equation, the classical BV operator is deformed in powers of ~ according to

QBV :“ tSBV,´u Ñ QqBV :“ tS~qBV,´u´2i~∆ with S~qBV “ SBV`Op~q . (5.9)

Consequently, the perturbation

δ :“ QqBV ´QqBV,0 “ QqBV ´QBV,0 (5.10)

between the full and linearised part of QqBV is now also deformed in powers of ~. Starting

again from the diagram (5.20b), we use the homological perturbation lemma to obtain a

contracting homotopy

pC8pLBVr1sq, QqBVq pC8pL˝BVr1sq, Q
˝
qBVq

H E

P

id “ P ˝ E`QqBV ˝ H` H ˝QqBV ,

E ˝ P “ id ,

E ˝ H “ H ˝ P “ H ˝ H “ 0 ,

E ˝QqBV “ Q˝qBV ˝ E , QqBV ˝ P “ P ˝Q˝qBV ,

(5.11a)

where

E “ E0 ˝ pid` δ ˝ H0q
´1 , H “ H0 ˝ pid` δ ˝ H0q

´1 ,

P “ P0 ´ H ˝ δ ˝ P0 , Q˝qBV “ E ˝ δ ˝ P0 .
(5.11b)

Note that because δ contains the second order differential operator ∆, none of the maps

will be algebra morphisms in general; this is just a consequence of the fact that Q˝qBV

defines a loop homotopy algebra.

Importantly, the differential Q˝ can be written as [219, 49]

Q˝qBV “ tW ~
qBV,´u

˝
´ 2i~∆˝ , (5.12)

where t´,´u˝ and ∆˝ are the anti-bracket and the BV Laplacian on C8pL˝BVr1sq, re-

spectively, and W ~
qBV is of the form (3.36) but with µ˝1,L“0 “ 0. Altogether, we obtain

pL˝BVr1s, Q
˝
qBVq which corresponds to a quantum L8-structure on H‚µ1,L“0

pLBVq with a dif-

ferential that vanishes to zeroth order in ~.
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The quantum BV action W ~
qBV is the action that encodes all scattering amplitudes

to arbitrary loop order in perturbation theory.1 In particular, for theories for which the

classical BV action also satisfies the quantum master equation, which includes scalar field

theory, Yang–Mills theory, and Chern–Simons theory, L coincides with the loop expansion

order and hence, the products µ˝n´1,L are the L-loop integrands for the n-point scattering

amplitude. Consequently, (5.8) generalises to

An,Lpa
˝
1, . . . , a

˝
nq “ i xa˝1, µ

˝
n´1,Lpa

˝
2, . . . , a

˝
nqy . (5.13)

To construct the µi ,L, we note that (5.11) immediately implies

E “ E0 ´ E ˝ δ ˝ H0 (5.14)

which is a recursion relation for E. Hence, we can iterate this equation to obtain E

recursively and substitute the result into Q˝qBV “ E ˝ δ ˝ P0 from (5.11) with P0 given

in (5.4c). We conclude, in analogy with (3.38), that

Q˝qBVa
˝
“ ´

ÿ

iě1
Lě0

~L

i !
µ1˝i ,Lpa

˝, . . . , a˝q , (5.15)

from which the µ1˝i ,L and thus the µ˝i ,L can be read off. We refer to [3, 4] for full details.

It is not difficult to see that for ~ Ñ 0, the recursion relation (5.14) coincides with the

recursion relation (5.7a) and (5.15) with that for the products (5.7b) for the minimal

model at the tree level.

The homological perturbation lemma correctly takes into account the symmetry factor

of each Feynman diagram contributing to the scattering amplitude, see [199] for a detailed

discussion of the scalar field theory case.

5.4. Coalgebra picture

Let us discuss in some detail the dual, coalgebra picture, mostly useful when discussing

scattering amplitudes applications of homotopy algebra. For the sake of convenience,

we will consider the (quantum) minimal model associated to a (quantum) A8-algebra:

these can be directly related to BV formalism, as they give rise to L8-algebras from total

1One should not confuse the quantum BV action with the one-particle-irreducible effective action or

the Wilsonian effective action, even though it has the form of ~-corrections to the classical action.
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antisymmetrisation, just as the commutator on a matrix algebra induces a Lie algebra

structure, see Equation (2.19). In particular, we can interpret every Lagrangian field theory

as the homotopy Maurer-Cartan theory associated to a cyclic A8-algebra pA, x´,´yq with

action (2.7). We consider the tensor algebra

T‚pAq :“
8
à

k“0

TkpAq “ R ‘ A ‘ pAb Aq ‘ ¨ ¨ ¨ , (5.16)

and extend the higher products mi as coderivations Mi from A to T‚pAq. For instance, for

ϕ1,...,4 P A1 we set

M3pϕ1 b ¨ ¨ ¨ b ϕ4q :“ m3pϕ1, ϕ2, ϕ3q b ϕ4 ` ϕ1 bm3pϕ2, ϕ3, ϕ4q (5.17)

and M1pRq “ 0, M2pϕ1q “ 0, etc. These coderivations combine into a linear map D :

T‚pAq Ñ T‚pAq,

D :“
ÿ

i

Mi , (5.18)

which is a codifferential. An A8-algebra can indeed be defined to be a Z-graded vector

space with a codifferential on its tensor algebra.

Tree-level. The minimal model construction is analogous to the case of L8 algebras.

To induce an A8-structure on the cohomology A˝ :“ H‚µ1
pAq, we start with an abstract

Hodge–Kodaira decomposition

pA,m1q pA˝, 0q .h

p

e
(5.19a)

where p is the obvious projection, e is a choice of embedding, and h is the contracting

homotopy, such that

1 “ m1 ˝ h` h ˝m1 ` e ˝ p ,

p ˝ e “ 1 ,

p ˝ h “ h ˝ e “ h ˝ h “ 0 ,

p ˝m1 “ m1 ˝ e “ 0 .

(5.19b)

We can extend both p and e trivially to corresponding maps P0 and E0 between T‚pAq and

T‚pA˝q,

P0|Tk pAq :“ pb
k

and E0|Tk pA˝q :“ eb
k

. (5.20a)
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The contracting homotopy h is extended to a map H0 : T‚pAq Ñ T‚pAq via the tensor

trick,

H0|Tk pAq :“
ÿ

i`j“k´1

1b
i

b hb pe ˝ pqb
j

. (5.20b)

Splitting D into the ‘free’ part D0 :“ M1 and the ‘interaction’ part Dint :“
ř

ią1 Mi , we

recover (5.19) with the maps m1, p, e, and h replaced by M1, P0, E0, and H0.

The homological perturbation lemma allows us to deform M1 to the codifferential D,

regarding Dint as a perturbation, which induces a codifferential D˝ on T‚pA˝q,

P “ P0 ˝ p1` Dint ˝ H0q
´1, H “ H0 ˝ p1` Dint ˝ H0q

´1 ,

E “ p1` H0 ˝ Dintq
´1
˝ E0, D˝ “ P ˝ Dint ˝ E0 .

(5.21)

We have a picture analogous to (5.19), with the maps m1, p, e, and h replaced by D, P,

E, and H. Moreover, E and P satisfy the evident relations

P ˝ D “ D˝ ˝ P and D ˝ E “ E ˝ D˝ . (5.22)

The equations for E and H in (5.21) imply

D˝ “ P0 ˝ Dint ˝ E , (5.23a)

E “ E0 ´ H0 ˝ Dint ˝ E . (5.23b)

Substituting (5.23b) back into itself yields a recursion relation in the powers of the coupling

constants since Dint adds one power of either κ or λ. Equation (5.23a) then allows us

to construct D˝ “
ř8

i“2 M
˝
i and hence, the products m˝i entering the amplitude (5.24).

By construction, M˝
1 “ 0 and so m˝1 “ 0. If we restrict the action of E to TnpA˝q and

project the result onto A “ T1pAq Ď T‚pAq, we recover the aforementioned generalisation

of tree-level n-point Berends–Giele currents. The tree-level scattering amplitude reads as

An,0pa
˝
1, . . . , a

˝
nq “ i

ÿ

σPSn´1

xa˝n,m
˝
n´1pa

˝
σp1q, . . . , a

˝
σpn´1qqy

“ i
ÿ

σPSn{Zn

xa˝σp1q,m
˝
n´1pa

˝
σp2q, . . . , a

˝
σpnqqy ,

(5.24)

Loop-level. The BV formalism gives a clear indication as how to generalise the above

to the quantum case: the codifferential D is the dual of the classical BV differential. In

the quantum case, the term ´i~∆ is added to this differential, where ∆ is the usual BV
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Laplacian featuring in the quantum master equation. In the coalgebra picture, this amounts

to adding ´i~∆˚ which inserts a complete set of fields and antifields in any possible way into

the tensor product, preserving the order of the original factors. Considering the example

of a scalar theory in Section 4.1., for ϕ1,2 P A, for instance,

∆˚pϕ1 b ϕ2q “

ż

ddk

p2πqd

!

ψpkq b ψ`pkq b ϕ1 b ϕ2 ` ψpkq b ϕ1 b ψ
`
pkq b ϕ2 ` ¨ ¨ ¨ `

` ψ`pkq b ψpkq b ϕ1 b ϕ2 ` ψ
`
pkq b ϕ1 b ψpkq b ϕ2 ` ¨ ¨ ¨

)

,

(5.25)

where ψpkq is a (momentum space) basis of the field space A1 and ψ`pkq of the antifield

space A2.

To compute the loop-level scattering amplitudes, we replace the perturbation,

Dint Ñ Dint ´ i~∆˚ , (5.26)

in the homological perturbation lemma (see also [219, 49]). This generalises (5.23) to

D˝ “ P0 ˝ pDint ´ i~∆˚q ˝ E , (5.27a)

E “ E0 ´ H0 ˝ pDint ´ i~∆˚q ˝ E . (5.27b)

Contrary to the tree-level case, P and E are no longer coalgebra morphisms but only

morphisms of graded vector spaces. Importantly, the substitution (5.26) is justified for

any theory whose classical BV action also satisfies the quantum master equation. This

includes scalar field theory, Chern–Simons theory, and also Yang–Mills theory.

As before, (5.27) yields a recursion relation, now in the powers of both the coupling

constants and ~. The former counts the number of interaction vertices while the latter

counts the number of loops.1 The map E encodes all currents, and we introduce the

restrictions to j factors in the input and i factors in the output tensor product,

Ei ,j :“
`

prTi pAq ˝ E
˘
ˇ

ˇ

Tj pA˝q
and Di ,jint :“

`

prTi pAq ˝ Dint

˘
ˇ

ˇ

Tj pAq
. (5.28)

If we further restrict to currents with ` loops and v vertices, (5.27) becomes the recursion

relation

Ei ,j`,v “ δ0
` δ

0
vδ
i jE0|Ti pA˝q ´ H0|Ti pAq ˝

i`2
ÿ

k“2

Di ,kint ˝ E
k,j
`,v´1 ` i~H0|Ti pAq ˝ ∆˚|Ti´2pAq ˝ E

i´2,j
`´1,v

(5.29)

1When a classical BV action does not satisfy the quantum master equation, one first has to construct

the quantum BV action which is given as a series expansion in powers of ~. In this case, the parameter ` in

(5.29) is no longer the loop expansion parameter.
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for the scalar field theory in Section 4.1.. Here, we put Ei ,j`,v “ 0 for ` ă 0 or v ă 0 and

this implies that the recursion relation terminates for each finite number of ` and v .

Just as the currents E, we can also decompose the higher products according to their

loop order, m˝i “
ř8

`“0 ~`m˝i ,` with m˝1,0 “ 0. The `-loop scattering amplitude reads as

An,`pa
˝
1, . . . , a

˝
nq “ i

ÿ

σPSn´1

xa˝n,m
˝
n´1,`pa

˝
σp1q, . . . , a

˝
σpn´1qqy

“ i
ÿ

σPSn{Zn

xa˝σp1q,m
˝
n´1,`pa

˝
σp2q, . . . , a

˝
σpnqqy .

(5.30)

A˝ :“ pH‚m1
pAq,m˝i q constitutes (the minimal model of) a quantum A8-algebra.

5.5. Berends–Giele recursion relations

In this Section we interpret the original Berends–Giele recursion relations for Yang–Mills

theory with gauge group supNq in the context of homotopy algebra minimal models. For

convenience, we will adopt the differential form language over space–time indices conven-

tions. The cohomology of the cochain complex (4.14a) reads as L˝YM “ supNq b L˝Maxwell

with

L˝Maxwell :“ p R ÝÝÝÑ kerpd:dq{impdq ÝÝÝÑ kerpd:dq{impdq ÝÝÝÑ R q . (5.31)

We choose the projectors pk to be the evident L2-projectors onto the subspaces L˝YM,k Ď

LYM,k and we have the trivial embeddings ek . To compute the L8-structure on L˝YM, we

need also a contracting homotopy h “ phkq with hk : Lk Ñ Lk´1 which satisfies (5.1b).

Some algebra shows that1

h1 :“ GFd: , h2 :“ GFPex , and h3 :“ GFd (5.32a)

is a possible choice. Here, GF is the Green operator, that formally obeys

GF ˝ µ1|S pMd q “ µ1 ˝ G
F
“ idS pMd q . (5.32b)

see e.g. [220, Chapter 14] for more details. Pex is the projector onto the exact part under

the abstract Hodge–Kodaira decomposition as discussed in Section 5.2. i.e. onto the

1See [52] for details on the compact case.
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image of d:d. Explicitly, in momentum space and suppressing the gauge algebra for the

moment, we have

ĥµν2 pkq “
1

k2 ` iε
P̂ µνex pkq , with P̂ µνex pkq “ ηµν ´

kµkν

k2
. (5.32c)

Recall that our formulas (5.7a) were derived under the assumption that h1pAq “ 0,

cf. (A.4). Here, this implies that we work in Lorenz gauge d:A “ 0, and the propag-

ator GFPex is indeed the corresponding gluon propagator.

It remains to insert the projectors and contracting homotopies into (5.7a) to write

down the quasi-isomorphism as well as the higher products for the minimal model.

Yang–Mills Berends–Giele gluon recursion relation. Let us denote the generators in

the fundamental representation of supNq by τa and set the conventions (for this Section

only):

rτa, τbs “ fab
cτc and gab :“ trpτ :aτbq “ ´trpτaτbq “

1
2
δab . (5.33)

Using gab, we may rewrite the structure constants fabc :“ fab
dgdc as fabc “ ´trprτa, τbsτcq.

Furthermore, with the help of the completeness relation

gabpτaqm
n
pτbqk

l
“ ´δlmδ

n
k `

1
N
δnmδ

l
k (5.34)

we immediately obtain

gabtrpXτaqtrpτbY q “ ´trpXY q ` 1
N

trpXqtrpY q ,

ga1a2gb1b2trpXτa1
qtrpY τb1

qfa2b2c “ ´trprX, Y sτcq
(5.35)

for any two matrices X and Y . Consequently, all commutators appearing below can be

expressed in terms of such traces.

Consider now a plane wave A “ Aµ dxµ with Aµ “ εµpkq eik¨x X, where kµ is the four-

momentum and εµ the polarisation vector with k2 “ 0 and k ¨ ε “ 0, and X P supNq. We

shall also write

Ai :“ Aiµ dxµ with Aiµ :“ εµpkiq
loomoon

“: Jµpiq

eiki ¨x Xi , (5.36)

to denote the ‘i-th gluon’.

Then, the action of φ1 in (5.7a) on A1 is simply given by

φ1pA1q “ epA1q “ Jµp1q eik1¨xX1 dxµ , (5.37)
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with e acting as the identity map. Moreover, the action of φ2 is

φ2pA1, A2q “ ´ph2 ˝ µ2qpφ1pA1q, φ1pA2qq (5.38a)

and with (5.37) and (4.14), we find

µ2pA1, A2q “ d:rA1, A2s ` ‹rA1, ‹dA2s ` ‹rA2, ‹dA1s

“
 

2pJp1q ¨ k2qJµp2q ´ 2pJp2q ¨ k1qJµp1q`

` pJp1q ¨ Jp2qqpk1 ´ k2qµ
(

eipk1`k2q¨x rX1, X2s dxµ

“ rrJp1q, Jp2qssµ eipk1`k2q¨x rX1, X2s dxµ ,

(5.38b)

where

rrJp1q, Jp2qssµ :“ 2pJp1q ¨ k2qJµp2q ´ 2pJp2q ¨ k1qJµp1q ` pJp1q ¨ Jp2qqpk1´ k2qµ . (5.38c)

Consequently, using the contracting homotopy (5.32), we obtain

φ2pA1, A2q “ ´Pex

ˆ

rrJp1q, Jp2qssµ
pk1 ` k2q

2
eipk1`k2q¨x rX1, X2s dxµ

˙

“ ´
rrJp1q, Jp2qssµ
pk1 ` k2q

2
looooooomooooooon

“: Jµp1,2q

eipk1`k2q¨x rX1, X2s dxµ

“ ´
1

2

ÿ

σPS2

Jµpσp1q, σp2qq eipkσp1q`kσp2qq¨x rXσp1q, Xσp2qs dxµ ,

(5.38d)

where in the second step, we used that Pex acts trivially and the sum is over all permuta-

tions. Equation (5.38d) yields indeed the 2-gluon current that can be found in Berends–

Giele [73]. It is also instructive to give the next level expression before turning to the

general case. In particular, the action of φ3 is

φ3pA1, A2, A3q “ ´ph2 ˝ µ2qpφ1pA1q, φ2pA2, A3qq´

´ ph2 ˝ µ2qpφ1pA2q, φ2pA1, A3qq´

´ ph2 ˝ µ2qpφ1pA3q, φ2pA1, A2qq´

´ ph2 ˝ µ3qpφ1pA1q, φ1pA2q, φ1pA3qq .

(5.39a)

From (4.14), we have

µ3pA1, A2, A3q “

“
ÿ

σPZ3

‹rAσp1q, ‹rAσp2q, Aσp3qss

“ ´
ÿ

σPZ3

rrJpσp1qq, Jpσp2qq, Jpσp3qqssµ eipkσp1q`kσp2q`kσp3qq¨x rXσp1q, rXσp2q, Xσp3qss dxµ ,

(5.39b)
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where the sum is over cyclic permutations only and

rrJp1q, Jp2q, Jp3qssµ :“ pJp1q ¨ Jp3qqJµp2q ´ pJp1q ¨ Jp2qqJµp3q . (5.39c)

Combining this with the expression (5.38d) and using the contracting homotopy (5.32),

we immediately find that φ3 is given by

φ3pA1, A2, A3q “

“ Pex

ÿ

σPZ3

J̃µpσp1q, σp2q, σp3qq eipkσp1q`kσp2q`kσp3qq¨x rXσp1q, rXσp2q, Xσp3qss dxµ ,

(5.39d)

where

J̃µp1, 2, 3q :“
rrJp1q, Jp2, 3qssµ ` rrJp1q, Jp2q, Jp3qssµ

pk1 ` k2 ` k3q
2

. (5.39e)

The expression for the 3-gluon current as given by Berends–Giele [73] is simply

Jµp1, 2, 3q :“ J̃µp1, 2, 3q ´ J̃µp3, 1, 2q , (5.39f)

and, upon using the antisymmetry and the Jacobi identity for the Lie bracket r´,´s, a

short calculation reveals that (5.39d) becomes

φ3pA1, A2, A3q “

“
1

3

ÿ

σPS3

Jµpσp1q, σp2q, σp3qq eipkσp1q`kσp2q`kσp3qq¨x rXσp1q, rXσp2q, Xσp3qss dxµ ,
(5.39g)

where the sum here is over all permutations and Pex acts again trivially.

Let us now turn to the general case. The above discussion for 2- and 3-points motivates

us to define

Jap1, . . . , iq “ gabJ
b
p1, . . . , iq :“ ´trpφipA1, . . . , Aiqτaq (5.40)

with gab as given in (5.33). Hence,

φipA1, . . . , Aiq “ Jap1, . . . , iqτa . (5.41)

Furthermore, we also define

Jap1, . . . , iq “: gab
ÿ

σPSi

trpXσp1q ¨ ¨ ¨XσpiqτbqJµpσp1q, . . . , σpiqq eipkσp1q`¨¨¨`kσpiqq¨xdxµ

Jp1, . . . , iq :“ Jµp1, . . . , iq dxµ
(5.42)
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similar to Berends–Giele [73]. Then, the first term in the quasi-isomorphism

φipA1, . . . , Aiq “

“ ´
1

2!

ÿ

k1`k2“i

ÿ

σPShpk1;iq

ˆ

ˆ ph2 ˝ µ2q
`

φk1

`

Aσp1q, . . . , Aσpk1q

˘

, φk2

`

Aσpk1`1q, . . . , Aσpiq
˘˘

´

´
1

3!

ÿ

k1`k2`k3“i

ÿ

σPShpk1,k2;iq

ˆ

ˆ ph2 ˝ µ3q
`

φk1

`

Aσp1q, . . . , Aσpk1q

˘

, . . . , φk3

`

Aσpk1`k2`1q, . . . , Aσpiq
˘˘

(5.43)

is given by

pIq :“ ´
1

2!

ÿ

k1`k2“i

ÿ

σPShpk1;iq

ˆ

ˆ µ2

`

φk1

`

Aσp1q, . . . , Aσpk1q

˘

, φk2

`

Aσpk1`1q, . . . , Aσpiq
˘˘

“ ´
1

2!

ÿ

σPSi

i´1
ÿ

j“1

1

j!pi ´ jq!
ˆ

ˆ µ2

`

φj
`

Aσp1q, . . . , Aσpjq
˘

, φi´j
`

Aσpj`1q, . . . , Aσpiq
˘˘

“ ´
1

2!

ÿ

σPSi

i´1
ÿ

j“1

1

j!pi ´ jq!
rrJapσp1q, . . . , σpjqq, Jbpσpj ` 1q, . . . , σpiqqssfabcg

cdτd

“
ÿ

σPSi

i´1
ÿ

j“1

rrJpσp1q, . . . , σpjqq, Jpσpj ` 1q, . . . , σpiqqss ˆ

ˆ eipkσp1q`¨¨¨`kσpiqq¨x gabtrpXσp1q ¨ ¨ ¨Xσpiqτbqτa ,

(5.44)

where we have substituted (5.42) and used (5.35). In addition, rr´,´ss is the bracket

defined in (5.38c).

Likewise, the second term in (5.43) is given by

pIIq :“ ´
1

3!

ÿ

k1`k2`k3“i

ÿ

σPShpk1,k2;iq

ˆ

ˆ µ3

`

φk1

`

Aσp1q, . . . , Aσpk1q

˘

, . . . , φk3

`

Aσpk1`k2`1q, . . . , Aσpiq
˘˘

“ ´
1

3!

ÿ

σPSi

i´2
ÿ

j“1

i´1
ÿ

k“j`1

1

j!pk ´ jq!pi ´ kq!
µ3

`

φj
`

Aσp1q, . . . , Aσpjq
˘

,

φk´j
`

Aσpj`1q, . . . , Aσpkq
˘

, φi´k
`

Aσpk`1q, . . . , Aσpiq
˘˘
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“
1

2!

ÿ

σPSi

i´2
ÿ

j“1

i´1
ÿ

k“j`1

1

j!pk ´ jq!pi ´ kq!
ˆ

ˆ rrJapσp1q, . . . , σpjqq, Jbpσpj ` 1q, . . . , σpkqq, Jcpσpk ` 1q, . . . , σpiqqss ˆ

ˆ fbcd faef g
degf gτg

“
ÿ

σPSi

i´2
ÿ

j“1

i´1
ÿ

k“j`1

rrJpσp1q, . . . , σpjqq, Jpσpj ` 1q, . . . , σpkqq, Jpσpk ` 1q, . . . , σpiqqss1ˆ

ˆ eipkσp1q`¨¨¨`kσpiqq¨x gabtrpXσp1q ¨ ¨ ¨Xσpiqτbqτa ,

(5.45)

where we have again substituted (5.42), used twice the relations (5.35), and defined

rrJp1q, Jp2q, Jp3qss1 :“ rrJp1q, Jp2q, Jp3qss ´ rrJp3q, Jp1q, Jp2qss (5.46)

with rr´,´,´ss the bracket introduced in (5.39c). Hence, upon adding (I) and (II) and

applying the contracting homotopy h2 from (5.32), we find

Jp1, . . . , iq “

“
1

pk1 ` ¨ ¨ ¨ ` kiq2
ˆ

ˆ P̂ex

#

i´1
ÿ

j“1

rrJp1, . . . , jq, Jpj ` 1, . . . , iqss `

`

i´2
ÿ

j“1

i´1
ÿ

k“j`1

rrJp1, . . . , jq, Jpj ` 1, . . . , kq, Jpk ` 1, . . . , iqss1

+

.

(5.47)

This is precisely the Berends–Giele recursion [73] modulo the appearance of the projector

P̂ex. As before, it acts trivially, as follows from the current conservation property of the

expression inside the curly bracket, that is, pk1 ` ¨ ¨ ¨ ` kiq ¨ t¨ ¨ ¨ u “ 0.

Altogether, we conclude that the quasi-isomorphism between the L8-algebra govern-

ing Yang–Mills theory in the second-order formulation and its minimal model encodes

the Berends–Giele gluon current recursion relations. The actual scattering amplitudes

A p1, . . . , iq now follow directly from the homotopy Maurer–Cartan action for the minimal

model brackets (5.7a) for this quasi-isomorphism. For i ě 2, we have

A pA1, . . . , Ai`1q “ ixA1, µ
˝
i pA2, . . . , Ai`1qyLYM

(5.48a)
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with

µ˝i pA1, . . . , Aiq “

“ ´
ÿ

σPSi

pk1 ` ¨ ¨ ¨ ` kiq
2 Jµpσp1q, . . . , σpiqq eipkσp1q`¨¨¨`kσpiqq¨x ˆ

ˆ gabtrpXσp1q ¨ ¨ ¨Xσpiqτbqτa dxµ
ˇ

ˇ

ˇ

pk1`¨¨¨`ki q2“0
,

(5.48b)

where Jµp1, . . . , iq as given in (5.47). Note that the expression µ˝i pA1, . . . , Aiq is already

co-closed and hence, the projection p in (5.7a) acts by requiring that pk1 ` ¨ ¨ ¨ ` kiq
2 “ 0

in the case at hand. Note also that the symmetry of the amplitude (5.48a) under the

exchange of any two gluons is due to the cyclic property (2.21).

5.6. Colour structure of scattering amplitudes

To further demonstrate the power of our formalism, we examine the colour structure of

scattering amplitudes in YM theory. This is facilitated by our generalisation from the

L8-algebras from the BV formalism to A8-algebras.

Consider plane waves Ai “ aiXi “ aiµ dxµXi P H
1
m1
paq with aiµ :“ εµpkiq eiki ¨x , where

ki is the on-shell momentum, εpkiq is the polarisation in Lorenz gauge ki ¨ εpkiq “ 0, and

Xi P upNq is the colour part. The scattering amplitude then is

AnpA1, A2, . . . , Anq “ i
ÿ

σPSn´1

xAn,m
˝
n´1pAσp1q, . . . , Aσpn´1qqy

“ i
ÿ

σPSn{Zn

xAσp1q,m
˝
n´1pAσp2q, . . . , Aσpnqy ,

(5.49a)

where

m˝i “
`

prT1pA˝q ˝ P0 ˝ Dint ˝ E
˘
ˇ

ˇ

Ti pA˝q
“

8
ÿ

`“0

~`m˝i ,` (5.49b)

as follows from Equation (5.23), and with E satisfying again the recursion relation (5.27b).

The interaction vertices mi in Dint, as given by (4.14), lead to products of the colour parts

and kinematic functions. Given (composite) fields Φi “ φiXi P A1, we can define colour-

stripped interactions mi by

mipΦ1, . . . ,Φiq “: mipφ1, . . . , φiqX1 ¨ ¨ ¨Xi (5.50)
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and Dint acts on tensor products as in (5.17), e.g.

DintpΦ1 bΦ2 bΦ3q “ m2pφ1, φ2qX1X2 b φ3X3 ` φ1X1 bm2pφ2, φ3qX2X3 `

`m3pφ1, φ2, φ3qX1X2X3 .
(5.51)

Moreover, ∆˚ acts similarly as in (5.25) on the components φi of Φi by inserting in all

possible places of the tensor product of the Φis a complete pair of field and antifield

components,

Ψ`
Θ “ ψ`θ pk, εq|aqpb| and ΨΘ

“ ψθpk, εq|bqpa| , (5.52)

where |aqpb| is the pN ˆ Nq-matrix with the only non-vanishing entry 1 at position pa, bq

and Θ are multi-indices including particle species (labelled by θ), momenta (labelled by k),

polarisations (labelled by ε), and colours (labelled by a and b). Contractions of Θ thus

imply sums and integrals.

If ∆˚ is applied once in the recursion, the colour factor of the amplitude contains terms

of the form

N
ÿ

a,b“1

X1 b ¨ ¨ ¨ bXj b |aqpb| b |bqpa| b Xj`1 b ¨ ¨ ¨ bXi (5.53a)

and

N
ÿ

a,b“1

X1 b ¨ ¨ ¨ bXj b |aqpb| b Xj`1 b ¨ ¨ ¨ b Xk b |bqpa| b Xk`1 b ¨ ¨ ¨ bXi . (5.53b)

Contributing to the amplitude (5.49a) are exactly those expressions in which all the

tensor products in the colour factors have been turned into matrix products by the Dint.

The terms (5.53a), with neighbouring insertion points, enter into planar Feynman diagrams

and they come with an additional factor of N. The terms (5.53b) enter into non-planar

Feynman diagrams.

More generally, it is clear that the `-loop n-point amplitude has maximally t “ maxt`, nu

traces in its colour factor and that contributions with t traces come with a factor N`´t`1.

Thus, as well-known, planar Feynman diagrams dominate in the large-N limit.
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5.7. One-loop structure

Let us look at the structure of one-loop scattering amplitudes in more detail. Upon

iterating (5.27b), we find

m˝i ,1 “
`

prT1pA˝q ˝ P|Op~0q ˝ p´i∆˚q ˝ E|Op~0q

˘
ˇ

ˇ

Ti pA˝q
,

P|Op~0q “ P0 ˝ p1` Dint ˝ H0q
´1 ,

E|Op~0q “ p1` H0 ˝ Dintq
´1
˝ E0 ;

(5.54)

see also (5.21). The form of the interaction vertices and our above considerations directly

yield

m˝i ,1pA1, . . . , Aiq “ κi´1
”

NJi ,1p1, . . . , iq eik1i ¨xX1 ¨ ¨ ¨Xi `

`

i´1
ÿ

j“1

K j
i ,1p1, . . . , iq eik1i ¨xX1 ¨ ¨ ¨Xj trpXj`1 ¨ ¨ ¨Xiq

ıˇ

ˇ

ˇ

k2
1i“0

(5.55)

with ki j :“ ki ` ¨ ¨ ¨ ` kj for i ď j . The currents Ji ,1, K
j
i ,1 P Ω1 contain all the kinematical

information and eventually form the one-loop generalisation of the tree-level Berends–Giele

current [73] after symmetrisation.

The general form of the one-loop amplitude thus is

An,1pA1, . . . , Anq “ N
ÿ

σPSn{Zn

α0
n,1pσp1q, . . . , σpnqq trpXσp1q ¨ ¨ ¨Xσpnqq `

`

n´1
ÿ

m“1

ÿ

σPSn{pZmˆZn´mq

αmn,1pσp1q, . . . , σpnqq ˆ

ˆ trpXσp1q ¨ ¨ ¨XσpmqqtrpXσpm`1q ¨ ¨ ¨Xσpnqq ,

(5.56)

where α0
n,1 is a linear combination of (the components of) Jn´1,1 and the αmn,1 of Km´1

n´1,1.

The result (5.56) was first derived in [221] using different methods.

In [222] it was shown that the αmn,1 are linear combinations of the α0
n,1 so that the full

scattering amplitude can be constructed from its planar part. Explicitly,

αmn,1p1, . . . , nq “ p´1qm
ÿ

σPCOPm,n

α0
n,1pσp1q, . . . , σpnqq , (5.57)

where COPm,n are all permutations of p1, . . . , nq which preserve the position of n as well

as the cyclic orders of p1, . . . , mq and pm ` 1, . . . , nq.
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The relation (5.57) can be derived from our recursion relation, but the derivation

simplifies significantly if we use the strictification theorem for homotopy algebras (see

e.g. [197]): any A8-algebra is quasi-isomorphic (read: equivalent for all physical purposes,

cf. [2,52]) to a strict A8-algebra, which is an A8-algebra with mi “ 0 for i ě 3. YM theory

admits a first-order formulation which constitutes a strictification, see [223–225,31,2,52]

(see also [226, 227]) for the L8-algebra description and the quasi-isomorphism, and we

readily apply our formalism. Specifically, we compute again scattering amplitudes using

formulas (5.49), but now m3 “ 0, which simplifies the discussion, and the plane waves have

to be replaced by their pre-image under the (strict!) isomorphism that links the minimal

models of the original A8-algebra and of its minimal model.

As in the ordinary case, m2 is anti-symmetric also in the strict case. Moreover, m˝2

cannot change the order of the colour parts Xi , and so, αmn,1 arises from the terms

n´1
ÿ

k“m

ÿ

σPCm

A

epAnq,M
`

DtreepAm`1 b ¨ ¨ ¨ b Ak b hpΨ`
Θqb

b Aσp1q b ¨ ¨ ¨ b Aσpmq bΨΘ
b Ak`1 b ¨ ¨ ¨ b An´1q

˘

`

`M
`

DtreepAm`1 b ¨ ¨ ¨ b Ak bΨΘ
b Aσp1qb

b ¨ ¨ ¨ b Aσpmq b hpΨ`
Θq b Ak`1 b ¨ ¨ ¨ b An´1q

˘

E

,

(5.58)

where Dtree :“ Dint˝pH˝Dintq
n´1 produces a formal sum of full binary trees with n`1 leaves

corresponding to the n ` 1 arguments and nodes corresponding to the map m2 applied to

their children. We call these trees non-planar trees and the leaves corresponding to the

A1, . . . , Am inner leaves, while all other leaves are outer leaves. For any tree, the sequence

of arguments corresponding to the leaves of the tree will be called its leaf sequence.

Similarly, the planar trees relevant in the planar contributions arise from expressions

n´1
ÿ

k“0

ÿ

σPCOPm,n

@

epAnq,MpDtreepAσp1q b ¨ ¨ ¨ b Aσpkqb

b phpΨ`
Θq bΨΘ

`ΨΘ
b hpΨ`

Θqq b Aσpk`1q b ¨ ¨ ¨ b Aσpn´1qqq
D

.

(5.59)

For both the non-planar and planar trees, the linear function M assigns a combinatorial

factor to each tree, arising from the various sequences of the operations H˝Dint and H˝∆˚

in the recursion relation (5.27b).

Upon stripping off the colour factor in each tree, trpX1 ¨ ¨ ¨XmqtrpXm`1 ¨ ¨ ¨Xnq, we
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obtain two formal sums of binary trees with nodes corresponding to m2 and leaf sequences

consisting of ai , ψ
θpk, εq and hpψ`θ pk, εqq.

There is now a one-to-one correspondence between the two sets of full binary trees

with leaf sequence A1, . . . , Ak and with leaf sequence Ak , . . . , A1, by inverting the order of

children in each of the k ´ 1 nodes (‘flipping the nodes’), which gives rise to a factor of

p´1qk´1.

In each non-planar binary tree with inner leaves, we can now flip common ancestor of

a ψ, turning inner leaves into outer leaves. We start from common ancestors closest to

the leaves. In each flip, k inner leaves are turned into outer leaves, and together with the

initial flip, fully reversing their ordering leads to a relative factor of p´1qk . We stop this

process when all m inner leaves have become outer leaves, with a relative factor of p´1qm.

This map from non-planar to planar trees is clearly injective. It is, however, not surject-

ive since its image does not contain planar trees which have vertices who have a ψ and a

root of a subtree containing both inner and outer leaves as descendants. These, however,

cancel pairwise: pick any outer leaf, and flip the first common ancestor with an inner leaf.

This leads to a negative contribution from another tree, which is included in (5.59) due

to the sum over the COP permutations.

It remains to compare the multiplicities M for non-planar and planar trees. Flipping

a node does not change the combinatorial factor for applying H ˝ Dint in different ways.

It can, however, affect the multiplicity arising from applying H ˝ ∆˚ at different positions

since in the planar trees, inner and outer leaves can be joined to subtrees before applying

H ˝ ∆˚, which was not possible in the non-planar case. These subtrees are of the type

discussed in the previous paragraph and they cancel again pairwise.
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6
Factorisation of homotopy algebras and colour ordering

The tensor product between arbitrary homotopy structures is not defined in general. An

adequate notion of factorisation of homotopy algebras is instrumental to our interpretation

of the colour–kinematic duality and double copy: in this Chapter we consider a notion of

tensor product between (strict) homotopy algebras, and we generalise it with the intro-

duction of a twist. In Chapter 7 and Chapter 9 this construction will be applied to the

factorisation of the L8-algebras of biadjoint scalar theory, Yang–Mills theory and N “ 0

supergravity, providing a Lagrangian, homotopy algebra realisation of double copy.

The material in this Chapter is borrowed from [6].

6.1. Tensor products of homotopy algebras

Tensor products of strict homotopy algebras. Let Ass, Com, and Lie denote (the

categories of) associative, commutative, and Lie algebras, respectively. Schematically, we

have tensor products of the form

b : Assˆ Ass Ñ Ass , b : Comˆ Ass Ñ Ass , b : Assˆ Com Ñ Ass ,

b : Comˆ Com Ñ Com , b : Comˆ Lie Ñ Lie , b : Lieˆ Com Ñ Lie .
(6.1)

In particular, let A and B be two algebras from this list for which there is a tensor product.

The vector space underlying the tensor product algebra AbB is simply the ordinary tensor

product of vector spaces and the product mAbB
2 is given by

mAbB
2 pa1 b b1, a2 b b2q :“ mA

2 pa1, a2q bmB
2 pb1, b2q (6.2)

for a1, a2 P A and b1, b2 P B.
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On the other hand, the tensor product of two cochain complexes pA,mA
1 q and pB,mB

1 q

is defined as the tensor product of the underlying (graded) vector spaces A and B,

AbB “
à

kPZ

pAbBqk with pAbBqk :“
à

i`j“k

Ai bBj , (6.3a)

cf. (3.2). The differential mAbB
1 is defined as

mAbB
1 pa b bq :“ mA

1 paq b b ` p´1q|a|Aa bmB
1 pbq (6.3b)

for a P A and b P B.

Strict A8-, C8-, and L8-algebras are nothing but differential graded associative, com-

mutative, and Lie algebras, respectively. For such algebras A and B, the above formulas

combine to

mAbB
1 pa1 b b1q :“ mA

1 pa1q b b1 ` p´1q|a1|Aa1 bmB
1 pb1q ,

mAbB
2 pa1 b b1, a2 b b2q :“ p´1q|b1|B|a2|AmA

2 pa1, a2q bmB
2 pb1, b2q

(6.4)

for a1, a2 P A and b1, b2 P B. If, in addition, the two differential graded algebras carry

cyclic inner products x´,´yA and x´,´yB, then the tensor product carries the cyclic inner

product

xa1 b b1, a2 b b2yAbB :“ p´1q|b1|B|a2|A`sp|a1|A`|a2|Aqxa1, a2yA xb1, b2yB (6.5)

for a1, a2 P A and b1, b2 P B. Here, s :“ |x´,´yB|B is the degree of the inner product

on B.

Tensor products of general homotopy algebras. There is a simple argument that ex-

tends the above tensor product of strict homotopy algebras to general homotopy algebras,

using not much more than the homological perturbation lemma. Let us therefore also

briefly consider this case, even though we will only make use of it in passing when discuss-

ing colour-stripping of Yang–Mills amplitudes.

An extension from the strict case to the general case can be performed as follows. Re-

call that the strictification theorem asserts that every homotopy algebra is quasi-isomorphic

to a strict homotopy algebra, see Section 2.4. for details. Using this theorem, we first

strictify each of the factors A and B in the tensor product AbB we wish to define. We

then compute the tensor product Ast bBst of the strictified factors. This is a homotopy
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algebra whose underlying cochain complex ChpAstbBstq is quasi-isomorphic to the tensor

product ChpAq b ChpBq of the two differential complexes underlying the factors A and

B. We can then use the homological perturbation lemma, most readily in the form used

e.g. in [3] for the coalgebra formulation of homotopy algebras, to transfer the full homotopy

structure from ChpAstbBstq to ChpAqbChpBq along the quasi-isomorphism between the

cochain complexes. This yields a homotopy algebra structure on ChpAq bChpBq together

with a quasi-isomorphism to the tensor product of the strictified factors. We stress that

this transfer is not unique and depends on the choice of contracting homotopy (essentially,

a choice of gauge).

We stress that the fact that the tensor products (6.1) lift to corresponding tensor

products of homotopy algebras is found in the literature for special cases, see e.g. [228,229]

for the case of A8-algebras, as well as [230, Appendix B] for the case of tensor products

of C8-algebras with Lie algebras.

Tensor products of matrix and Lie algebras with homotopy algebras. To capture

the colour decomposition of amplitudes in Yang–Mills theory, it suffices to consider the

tensor product between homotopy algebras and matrix (Lie) algebras. In particular, given

a matrix algebra (or, more generally, an associative algebra) a and an A8-algebra pA,miq,

then the tensor product ab A is equipped with the higher products

mabA
i pe1 b a1, . . . , ei b aiq :“ e1 ¨ ¨ ¨ ei bmipa1, . . . , aiq (6.6)

for all e1, . . . , ei P a and a1, . . . , ai P A and i P N`. Evidently, these formulas can also

be applied to the tensor product between a matrix algebra and a C8-algebra, however,

the result will, in general, be an A8-algebra rather than a C8-algebra as, for instance, the

binary product on the tensor product will not necessarily be graded commutative.

Next, we may consider the tensor product gbC between a Lie algebra pg, r´,´sq and a

C8-algebra pC,miq. We obtain an L8-algebra pL, µiq with L :“ gbC, however, the higher

products µi are less straightforward than the ones in (6.6) for A8-algebras. Nevertheless,

they can be computed iteratively, and we obtain for the lowest products1

µ1pe1 b c1q :“ e1 bm1pc1q ,

µ2pe1 b c1, e2 b c2q :“ re1, e2s bm2pc1, c2q ,
(6.7a)

1As detailed in (2.19), the graded anti-symmetrisation of any A8-algebra yields an L8-algebra, and so

the form of the higher products can be gleaned from the graded anti-symmetrisation of (6.6).
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and

µ3pe1 b c1, e2 b c2, e3 b c3q :“ re1, re2, e3ss bm3pc1, c2, c3q´

´ p´1q|c1|C|c2|Cre1, re2, e3ss bm3pc2, c1, c3q`

` p´1q|c1|C|c2|Crre1, e2s, e3s bm3pc2, c1, c3q ,

µ4pe1 b c1, e2 b c2, e3 b c3, e4 b c4q :“ re1, re2, re3, e4sss bm4pc1, c2, c3, c4q´

´ p´1q|c2|C|c3|Cre1, re3, re2, e4sss bm4pc1, c3, c2, c4q´

´ p´1q|c1|C|c2|Cre2, re1, re3, e4sss bm4pc2, c1, c3, c4q`

` p´1q|c1|Cp|c2|C`|c3|Cqrrre1, e4s, e3s, e2s bm4pc2, c3, c1, c4q´

´ p´1qp|c1|C`|c2|Cq|c3|Crre1, re2, e4ss, e3s bm4pc3, c1, c2, c4q´

´ p´1q|c1|Cp|c2|C`|c3|Cq`|c2|C|c3|Crrre1, e4s, e2s, e3s bm4pc3, c2, c1, c4q

...

(6.7b)

for all e1, . . . , e4 P g and c1, . . . , c4 P C. We list these formulas here as they are useful

in colour-stripping in Yang–Mills theory and we have not been able to find them in the

literature.

6.2. Colour-stripping in Yang–Mills theory

As an example of the above factorisations, let us discuss colour-stripping in Yang–Mills

theory and show that this is nothing but a factorisation of homotopy algebras. For con-

creteness, let us consider the gauge-fixed action (4.17) and the corresponding L8-algebra

LYM, gf
BV .

If the gauge Lie algebra g is a matrix Lie algebra, then the L8-algebra LYM, gf
BV is the

total anti-symmetrisation via (2.19) of a family of A8-algebras. One of these is special in

that it is totally graded anti-symmetric [3] and thus is also a C8-algebra.

More generally, we can factorise LYM, gf
BV into a gauge Lie algebra g and a colour C8-

algebras CYM, gf
BV using formula (6.6),

LYM, gf
BV “ gb CYM, gf

BV (6.8)
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Explicitly, the C8-algebra CYM, gf
BV has the underlying cochain complex

Aµ

Ω1pMdq

A`µ

Ω1pMdq

b

C8pMdq

b`

C8pMdq

c

C8
pM

d
q

looomooon

“:CYM, gf
BV, 0

c̄`

C8
pM

d
q

looomooon

“:CYM, gf
BV, 1

c̄

C8
pM

d
q

looomooon

“:CYM, gf
BV, 2

c`

C8
pM

d
q

looomooon

“:CYM, gf
BV, 3

´pBνB
µ´δµν lq

´Bµ

´Bµ
ξ

Bµ

´Bµ

´l ´l

(6.9a)

where we label subspaces again by the fields parametrising them

CYM, gf
BV, 0 “ CYM, gf

BV, 0, c , CYM, gf
BV, 1 “

à

φ P pA, b, c̄`q

CYM, gf
BV, 1, φ ,

CYM, gf
BV, 2 “

à

φ P pA`, b`, c̄q

CYM, gf
BV, 2, φ , CYM, gf

BV, 3 “ CYM, gf
BV, 3, c`

.
(6.9b)

The non-trivial actions of the differential m1 are

c
m1
ÞÝÝÑ

¨

˚

˚

˝

´Bµc

0

´l c

˛

‹

‹

‚

P
à

φ P pA, b, c̄`q

CYM, gf
BV, 1, φ ,

¨

˚

˚

˝

Aµ

b

c̄`

˛

‹

‹

‚

m1
ÞÝÝÑ

¨

˚

˚

˝

´pBµB
ν ´ δνµ lqAν ´ Bµb

BµAµ ` ξb

0

˛

‹

‹

‚

P
à

φ P pA`, b`, c̄q

CYM, gf
BV, 2, φ ,

¨

˚

˚

˝

A`µ

b`

c̄

˛

‹

‹

‚

m1
ÞÝÝÑ ´B

µ
pA`µ ` Bµc̄q P CYM, gf

BV, 3, c`
,

(6.9c)
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the binary product m2 acts as

pc1, c2q
m2
ÞÝÝÑ gc1c2 P CYM, gf

BV, 0, c ,
¨

˚

˚

˝

c,

¨

˚

˚

˝

Aµ

b

c̄`

˛

‹

‹

‚

˛

‹

‹

‚

m2
ÞÝÝÑ g

¨

˚

˚

˝

´cAµ

0

´BµpcAµq

˛

‹

‹

‚

P
à

φ P pA, b, c̄`q

CYM, gf
BV, 1, φ ,

¨

˚

˚

˝

c,

¨

˚

˚

˝

A`µ

c̄

b`

˛

‹

‹

‚

˛

‹

‹

‚

m2
ÞÝÝÑ g

¨

˚

˚

˝

cpA`µ ` Bµc̄q

0

0

˛

‹

‹

‚

P
à

φ P pA`, b`, c̄q

CYM, gf
BV, 2, φ ,

pc, c`q
m2
ÞÝÝÑ gcc` P CYM, gf

BV, 3, c`
,

¨

˚

˚

˝

¨

˚

˚

˝

Aµ

b

c̄`

˛

‹

‹

‚

,

¨

˚

˚

˝

A`ν

c̄

b`

˛

‹

‹

‚

˛

‹

‹

‚

m2
ÞÝÝÑ ´gAµpA`µ ` Bµc̄q P CYM, gf

BV, 3, c`
,

¨

˚

˚

˝

¨

˚

˚

˝

A1µ

b1

c̄`1

˛

‹

‹

‚

,

¨

˚

˚

˝

A2ν

b2

c̄`2

˛

‹

‹

‚

˛

‹

‹

‚

m2
ÞÝÝÑ 2g

¨

˚

˚

˝

BνpA1rνA2µsq ` A
ν
1BrνA2µs ´ BrνA1µsA

ν
2

0

0

˛

‹

‹

‚

P
à

φ P pA`, b`, c̄q

CYM, gf
BV, 2, φ ,

(6.9d)

and the ternary product m3 acts as
¨

˚

˚

˝

¨

˚

˚

˝

A1µ

b1

c̄`1

˛

‹

‹

‚

,

¨

˚

˚

˝

A2ν

b2

c̄`2

˛

‹

‹

‚

,

¨

˚

˚

˝

A3κ

b3

c̄`4

˛

‹

‹

‚

˛

‹

‹

‚

m3
ÞÝÝÑ ´2g2

¨

˚

˚

˝

Aν1A2rµA3νs ´ A1rµA2νsA
ν
3

0

0

˛

‹

‹

‚

P
à

φ P pA`,b`,c̄q

CYM, gf
2, φ .

(6.9e)

It is a straightforward exercise to check that these higher products do indeed satisfy the

C8-algebra relations (2.1) and (2.14).

The factorisation (6.8) descends to the minimal model LYM, gf ˝
BV ,

LYM, gf ˝
BV “ gb CYM, gf ˝

BV , (6.10)

and the higher products in the C8-algebra CYM, gf ˝ describes the colour-ordered tree-level

scattering amplitudes. We set

An,0p1, . . . , nq “: i
ÿ

σPSn{Zn

trpeaσp1q ¨ ¨ ¨ eaσpnqqAn,0pσp1q, . . . , σpnqq , (6.11)
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and we have the formula

An,0p1, . . . , nq “ xn,m˝n´1p1, . . . , n ´ 1qy , (6.12)

where the numbers 1, . . . , n represent the external free fields. The symmetry of the colour-

stripped amplitude is reflected in the graded anti-symmetry of the higher products m˝i in

the C8-algebra CYM, gf ˝, because all fields are of degree one.

6.3. Twisted tensor products of strict homotopy algebras

The factorisation of the L8-algebras corresponding to the field theories involved in the

double copy is a twisted factorisation and we define our notion of twisted tensor products

in the following.

Cochain complexes. A graded vector space is a particular example of a cochain complex

with trivial differential. In our situation, we would like the vector space to act as an Abelian

Lie algebra on the cochain complex. We therefore generalise the usual tensor product as

follows. Given a graded vector space V together with a cochain complex pA,mq, we define

a twist datum τ1 to be a linear map

τ1 : V Ñ Vb EndpAq ,

v ÞÑ τ1pv q :“
ÿ

π

τπ,11 pv q b τπ,21 pv q ,
(6.13)

where the index π labels the summands in the twist element τ1pv q.
1 Given a twist datum

τ1, the twisted differential is defined by

mτ1
1 pv b aq :“

ÿ

π

p´1q|τ
π,1
1 pvq|V τπ,11 pv q bm1pτ

π,2
1 pv qpaqq (6.15)

for v b a P V b A. This rather cumbersome formula describes a rather simple procedure

and it will become fully transparent in concrete examples. Evidently, there are constraints

on admissible twist data. Firstly, mτ1
1 has to be differential and satisfy

mτ1
1 ˝m

τ1
1 “ 0 , (6.16)

1In Sweedler notation, popular e.g. in the context of Hopf algebras, we would simply write

τ1pvq :“ τ
p1q
1 pvq b τ

p2q
1 pvq . (6.14)
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and secondly, mτ1
1 has to be cyclic with respect to the inner product (6.5) on the tensor

product V b A. We note that as it stands, the twisted tensor product is not necessarily

compatible with quasi-isomorphisms as its cohomology is, in general, independent of those

of the underlying factors. This is not an issue for our constructions, but explains why the

above twist is not readily found in the mathematical literature.

As we shall see momentarily, one of the key roles of the twist is the construction of

a complex of differential forms from a complex of functions. The following toy example

exemplifies what we have in mind.

Example 6.1. Consider the graded vector space V and the cochain complex pA,m1q

defined by

V :“ M
d
‘R

looomooon

“:V0

and A :“
`

C8
pM

d
q

looomooon

“:A1

id
ÝÝÑ C8

pM
d
q

looomooon

“:A2

˘

. (6.17)

For a basis pvµ, nq of Md ‘R, a choice of twist datum is given by

τ1pv
µ
q :“ 0b 0 and τ1pnq :“ vµ b

B

Bxµ
. (6.18)

The complex Vbτ A with the twisted differential mτ
1 is then

Vbτ A “

¨

˚

˚

˚

˝

Ω1pMdq – M
d b C8pMdq Ω1pMdq “ M

d b C8pMdq

‘ ‘

C8pMdq – Rb C8pMdq C8pMdq “ Rb C8pMdq

d

˛

‹

‹

‹

‚

(6.19)

Hence, we obtain a description of the cochain complex pC8pMdq‘Ω1pMdq, dq, albeit with

some amount of redundancy.

Differential graded algebras. Twisted tensor products for unital algebras were discussed

in various places in the literature, e.g., in [231]. We would like to twist the ordinary tensor

product of differential graded algebras introduced in Section 6.1., by extending the notion

of twist datum from cochain complexes as follows. Given a graded vector space V and a

differential graded algebra pA,m1,m2q, a twist datum is a pair of maps, one linear and the

other one bilinear,

τ1 : V Ñ Vb EndpAq ,

v ÞÑ τ1pv q :“
ÿ

π

τπ,11 pv q b τπ,21 pv q ,
(6.20a)
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and

τ2 : VbV Ñ Vb EndpAq b EndpAq ,

v1 b v2 ÞÑ τ2pv1, v2q :“
ÿ

π

τπ,12 pv1, v2q b τ
π,2
2 pv1, v2q b τ

π,3
2 pv1, v2q ,

(6.20b)

where we again label summands in the tensor product by π. The twisted tensor product

has then higher maps

mτ1
1 pv b aq :“

ÿ

π

p´1q|τ
π,1
1 pvq|Vτπ,11 pv q bm1pτ

π,2
1 pv qpaqq ,

mτ2
2 pv1 b a1, v2 b a2q :“

:“ p´1q|v2|V |a1|A
ÿ

π

τπ,12 pv1, v2q bm2pτ
π,2
2 pv1, v2qpa1q, τ

π,3
2 pv1, v2qpa2qq .

(6.21)

Note that in general, one may want to insert an additional sign p´1q|τ
π,3
2 pv1,v2q|V |a1|A into

this equation; all our twist, however, satisfy |τπ,32 pv1, v2q|V “ 0.

Clearly, not every twist datum leads to a valid homotopy algebra, and just as in the

case of cochain complexes, one has to check that this works for a given twist by hand.

We also note that the twist datum relevant for the double copy will be able to mix types

of homotopy algebras, that is, for A an L8-algebra, we obtain a C8-algebra and for A a

C8-algebra, we obtain again an L8-algebra.

Altogether, our twisted tensor products are a way of factorising strict homotopy algeb-

ras in a unique fashion as necessary for the double copy. However, it remains to be seen

if our construction in its present form is mathematically interesting in a wider context.
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7
Factorisation of free field theories and free double copy

The first step toward the realisation of N “ 0 supergravity as the double copy of Yang-

Mills theory is at the level of the free theories. In this Chapter, we expose the factorisation

of the cochain complexes associated to the L8-algebras of the theories relevant to our

interpretation of the double copy prescription, namely biadjoint scalar field theory, Yang–

Mills theory, and N “ 0 supergravity. We obtain explicit field redefinitions that link

Yang–Mills theory double copy and N “ 0 supergravity at linear level.

The double copy of supersymmetric gauge theories will be discussed in the upcoming

paper [190]. The material in this Chapter is borrowed from [6].

Summary. Recall that the unary product µ1 in any L8-algebra is a differential. Con-

sequently, any L8-algebra pL, µiq naturally comes with an underlying cochain complex

ChpLq :“
`

¨ ¨ ¨ L0 L1 L2 L3 ¨ ¨ ¨
˘

.
µ1 µ1 µ1 µ1 µ1

(7.1)

In an L8-algebra corresponding to a field theory, the cochain complex ChpLq is the L8-

algebra of the free theory with all coupling constants put to zero. In each factorisation,

we thus expose the field content as well as the free fields that parametrise the theory’s

scattering amplitudes.

We will obtain the following factorisations of cochain complexes isomorphic to the

cochain complexes underlying the L8-algebras of biadjoint scalar field theory, Yang–Mills

93



94 7.1. Factorisation of the cochain complex of biadjoint scalar field theory

theory in Rξ-gauge, and gauge-fixed N “ 0 supergravity:

ChpLbiadj
BRSTq “ ChpL̃biadj

BRSTq “ gb pḡb ChpScalqq ,

ChpLYM
BRSTq – ChpL̃YM

BRSTq “ gb pKinbτ1
ChpScalqq ,

ChpLN“0
BRSTq – ChpL̃N“0

BRSTq “ Kinbτ1
pKinbτ1

ChpScalqq ,

(7.2)

where g and ḡ are semi-simple compact matrix Lie algebras corresponding to the colour

factors, Kin is a graded vector space and Scal is the L8-algebra of a scalar field theory.

L̃YM
BRST, L̃biadj

BRST, and L̃N“0
BRST are L8-algebras associated to field redefinitions of biadjoint

scalar theory, Yang–Mills theory, and N “ 0 supergravity. We see that the cochain

complex ChpL̃N“0
BRSTq is fully determined by the factorisation of ChpL̃YM

BRSTq, which is nothing

but the double copy at the linearised level.

There are two points to note concerning the factorisations of all those field theories

but that of biadjoint scalar field theory. Firstly, these factorisations are most conveniently

performed in particular field bases. We explain the required changes of basis, which are

canonical transformations on the relevant BV field spaces. Secondly, these factorisations

are twisted factorisation of cochain complexes of the type introduced in Section 6.3., with

common twist datum τ1, as indicated in (7.2). We remark that the twist we will consider is

dictated only by Yang–Mills theory L8-algebra L̃YM
BRST. In general, applying different twists

one obtains inequivalent theories.

7.1. Factorisation of the cochain complex of biadjoint scalar field the-

ory

Let us start with the case of biadjoint scalar field theory as introduced in Section 4.2..

This case is particularly simple as its cochain complex ChpLbiadj
BRSTq factorises as an ordinary

tensor product.

Factorisation of the cochain complex. We can factor out the colour Lie algebras g and

ḡ leaving us with the L8-algebra Scal of a plain scalar theory,

ChpLbiadj
BRSTq “ gb pḡb ChpScalqq , (7.3)
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where Scal is a homotopy algebra of cubic scalar field theory which we will fully identify

later in (9.4). The natural cochain complex is1

ChpScalq :“

¨

˚

˝

sx

Fr´1s
loomoon

Scal1

l
ÝÝÑ

s`x

Fr´2s
loomoon

Scal2

˛

‹

‚
, (7.4)

concentrated in degrees one and two, cf. [52,2]. Here, sx and s`x are basis vectors for the

function spaces Fr´1s and Fr´2s with F given in (3.28). Their inner product is given by

xsx1
, s`x2

y :“ δpdqpx1 ´ x2q . (7.5)

fields anti-fields

| ´ |gh | ´ |L dim | ´ |gh | ´ |L dim

sx 0 1 d
2
´ 1 s`x ´1 2 d

2
` 1

Table 7.1: The basis vectors of Scal with their L8-degrees, their ghost numbers, and their

mass dimensions.

fields anti-fields

factorisation | ´ |gh | ´ |L dim factorisation | ´ |gh | ´ |L dim

ϕ “ eaēāsxϕ
aāpxq 0 1 d

2
´ 1 ϕ` “ eaēās

`
x ϕ

`aāpxq ´1 2 d
2
` 1

Table 7.2: Factorisation of the BV fields in the theory of biadjoint scalars. Note that we

suppressed the integrals over x and the tensor products for simplicity.

The L8-degrees correspond to the evident ghost numbers and the differential induces

mass dimensions, and both are summarised in Table 7.1. The factorisation of the BV

fields is listed in Table 7.2. The differential µ1 : Lbiadj
BRST, 1 Ñ Lbiadj

BRST, 2 is given by (6.3b) for

the untwisted tensor product,

µ1pϕq “ µ1

ˆ

ea b ēā b

ż

ddx sxϕ
aā
pxq

˙

“ ea b ēā b µ
Scal
1

ˆ
ż

ddx sxϕ
aā
pxq

˙

“ lϕ ,

(7.6)

1See (3.4) for the notation Frks.
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where µScal
1 is the product appearing in (7.4). Furthermore, the inner product is

xϕ,ϕ`y “ trgpeaebq trḡpēāēb̄q

ż

ddx1

ż

ddx2 xsx1
, s`x2

yϕaāpx1qϕ
`bb̄
px2q

“

ż

ddx ϕaāpxqϕ`aāpxq .

(7.7)

In conclusion, we have thus verified the factorisation of the cochain complex (7.3).

7.2. Factorisation of the cochain complex of Yang–Mills theory

The case of Yang–Mills theory is more involved than the previous one. We start with

the gauge fixed BV action (4.18) and perform a canonical transformation on BV field

space, which then allows for a convenient factorisation of the resulting cochain complex

ChpL̃YM
BRSTq. For the following discussion, recall the gauge-fixing procedure and the gauge-

fixed action from Section 4.3..

Canonical transformation. We note that the term BµAaµ will vanish for physical states

due to the polarisation condition p ¨ ε “ 0 where pµ is the momentum and εµ is the

polarisation vector for Aaµ. Off-shell, and at the level of the action, our gauge fixing terms

allow us to absorb quadratic terms in BµAaµ in a field redefinition1 of the Nakanishi–Lautrup

field ba. We further rescale the field ba in order to homogenise its mass dimension with

that of Aaµ, which will prove useful in our later discussion. Explicitly, we perform the field

redefinitions

c̃a :“ ca , c̃`a :“ c`a ,

Ãaµ :“ Aaµ , Ã`aµ :“ A`aµ `
1´

?
1´ ξ

ξ
Bµb

`a ,

b̃a :“

c

ξ

l

ˆ

ba `
1´

?
1´ ξ

ξ
B
µAaµ

˙

, b̃`a :“

c

l

ξ
b`a ,

˜̄ca :“ c̄a , ˜̄c`a :“ c̄`a .

(7.8)

Under these field redefinitions, the action (4.18)

SYM
BRST “

ż

ddx
!

1
2
Aaµ lAaµ` 1

2
pB
µAaµq

2
´ c̄a l ca ` ξ

2
bab

a
` baB

µAaµ

)

`SYM, int
BRST , (7.9)

1The redefinition of the anti-fields preserves the cyclic structure of the L8-algebra; it is mostly irrelevant

for our discussion.
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where SYM, int
BRST represents the interaction terms, turns into

S̃YM
BRST :“

ż

ddx
!

1
2
Ãaµ l Ãaµ ´ ˜̄ca l c̃a ` 1

2
b̃a l b̃a ` ξ̃ b̃a

?
l BµÃaµ

)

` S̃YM, int
BRST , (7.10)

where we rewrote the gauge-fixing parameter as

ξ̃ :“

d

1´ ξ

ξ
. (7.11)

Note that at the level of the BV field space, the redefinitions (7.8) constitute a canonical

transformation. For a more detailed discussion, including the precise meaning of the

inverses of the l operator, see Remark 3.2.

L8-algebra. The action (7.10) is now the superfield homotopy Maurer–Cartan action (3.25b)

for an L8-algebra L̃YM
BRST. The complex underlying L̃YM

BRST is given as

Ãaµ

Ω1pMdq b g
Ã`aµ

Ω1pMdq b g

b̃a

C8pMdq b g
b̃`a

C8pMdq b g

c̃a

C8
pM

d
q b g

loooooomoooooon

“: L̃YM
BRST, 0

˜̄c`a

C8
pM

d
q b g

loooooomoooooon

“: L̃YM
BRST, 1

˜̄ca

C8
pM

d
q b g

loooooomoooooon

“: L̃YM
BRST, 2

c̃`a

C8
pM

d
q b g

loooooomoooooon

“: L̃YM
BRST, 3

l

´ξ̃
?

l Bµ

l

ξ̃
?

l Bµ

´l ´l

(7.12a)

with

L̃YM
BRST, 0 “ L̃YM

BRST, 0, c̃ , L̃YM
BRST, 1 “

à

φ P pÃ, b̃, ˜̄c`q

L̃YM
BRST, 1, φ ,

L̃YM
BRST, 2 “

à

φ P pÃ`, b̃`, ˜̄cq

L̃YM
BRST, 1, φ , L̃YM

BRST, 3 “ L̃YM
BRST, 3, c̃` .

(7.12b)

The differential µ1 acts on the various fields as follows

pc̃aq
µ1
ÞÝÝÑ ´l c̃a P L̃YM

BRST, 1, ˜̄c` ,
˜

Ãaµ

b̃a

¸

µ1
ÞÝÝÑ

˜

l Ãaµ ´ ξ̃
?

l Bµb̃
a

l b̃a ` ξ̃
?

l BµÃaµ

¸

P
à

φ P pÃ`, b̃`q

L̃YM
BRST, 2, φ ,

p˜̄caq
µ1
ÞÝÝÑ ´l ˜̄ca P L̃YM

BRST, 3, c̃`

(7.12c)
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with all other actions trivial. The non-vanishing images of the higher products µ2 and µ3

are

pÃaµ, c̃
b
q

µ2
ÞÝÝÑ ´gfbc

a
B
µ
pÃbµc̃

c
q P L̃YM

BRST, 1, ˜̄c` ,

pc̃a, ˜̄cbq
µ2
ÞÝÝÑ ´gfbc

ac̃bBµ ˜̄cc P L̃YM
BRST, 2, Ã`

,

pÃaµ, Ã
b
νq

µ2
ÞÝÝÑ 3!gfbc

a
B
ν
pÃbνÃ

c
µq P L̃YM

BRST, 2, Ã`
,

pÃaµ, ˜̄cbq
µ2
ÞÝÝÑ ´gfbc

aÃbµB
µ ˜̄cc P L̃YM

BRST, 3, c̃` ,

pÃaµ, Ã
b
ν, Ã

c
κq

µ3
ÞÝÝÑ ´3!g2fbc

afde
bÃνcÃdν Ã

e
µ P L̃YM

BRST, 2, Ã`
,

(7.12d)

and the general expressions follow from anti-symmetrisation and polarisation. We note

that the formulas (3.26) are useful in the derivation of the explicit form of these higher

products.

By construction, pL̃YM
BRST, µiq forms an L8-algebra, and with the inner products

xÃ, Ã`y :“

ż

ddx ÃaµÃ
`µ
a , xb̃, b̃`y :“

ż

ddx b̃ab̃`a ,

xc̃ , c̃`y :“

ż

ddx c̃ac̃`a , x˜̄c, ˜̄c`y :“ ´

ż

ddx ˜̄ca ˜̄c`a ,

(7.13)

it is cyclic.

We stress that the Chevalley–Eilenberg differential of the L8-algebra L̃YM
BRST is not the

usual gauge-fixed BV operator1

Q̃YM, gf
BV :“

 

S̃YM, gf
BV ,´

(ˇ

ˇ

Φ̃`I “0
, (7.14)

where S̃YM, gf
BV is the gauge-fixed BV action that is obtained from (3.29) by the canonical

transformation determined by the gauge fixing fermion (4.16). Instead, we are merely

using the general correspondence between Lagrangians and L8-algebras as pointed out in

Section 3.2.. This is reflected in the images of all higher products of (7.12a) lying in

spaces parametrised by anti-fields.

Factorisation of the cochain complex. As explained in Section 6.2., we may factor out

the gauge Lie algebra g, and we are left with a C8-algebra. This C8-algebra can be further

factorised into a twisted tensor product, extending Example 6.1, and we obtain

ChpL̃YM
BRSTq “ gb pKinbτ1

ChpScalqq . (7.15)

1Here, |Φ̃`
I “0 is again the restriction to the subspace of the BV field space where all anti-fields are zero.
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Here, g is the colour Lie algebra, ChpScalq is the cochain complex (7.4), and Kin is the

graded vector space1

Kin :“
g

Rr1s
loomoon

“:Kin´1

‘
`

vµ

M
d
‘
n

R
˘

loooomoooon

“:Kin0

‘
a

Rr´1s
loomoon

“:Kin1

, (7.16)

where the typewriter letters label basis elements of the corresponding vector spaces. The

natural degree-zero inner product on Kin is given by

xg, ay :“ ´1 , xvµ, vνy :“ ηµν , xn, ny :“ 1 . (7.17)

The elements of Kin also carry mass dimensions, which are listed in Table 7.3.

We summarise the factorisation of individual Yang–Mills fields in Table 7.4. A few

remarks about the structure of the factorisation are in order. Whilst fields always have a

factor of sx , anti-fields always have a factor of s`x . This guarantees that the inner product

is indeed that of the factorisation: (7.13) is reproduced correctly using the factorisations

given in Table 7.4 and Equation (7.17) complemented by the inner product xea, eby “

´trpeaebq “ δab on g:

xc̃ , c̃`y “

B

ea b gb

ż

ddx1 sx1
c̃apx1q, eb b ab

ż

ddx2 s
`
x2
c̃`bpx2q

F

“ ´xea, eby xg, ay

ż

ddx1

ż

ddx2 δ
pdq
px1 ´ x2qc̃

a
px1q c̃

`b
px2q

“

ż

ddx c̃apxq c̃`a pxq ,

xÃ, Ã`y “

B

ea b v
µ
b

ż

ddx1 sx1
Ãaµpx1q, eb b v

ν
b

ż

ddx2 s
`
x2
Ã`bν px2q

F

“ xea, eby xv
µ, vνy

ż

ddx1

ż

ddx2 δ
pdq
px1 ´ x2qÃ

a
µpx1q Ã

`b
ν px2q

“

ż

ddx Ãaµpxq Ã
`µ
a pxq ,

(7.18a)

1See (3.4) for the notation Rrks, etc.
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xb̃, b̃`y “

B

ea b nb

ż

ddx1 sx1
b̃apx1q, eb b nb

ż

ddx2 s
`
x2
b̃`bpx2q

F

“ xea, eby xn, ny

ż

ddx1

ż

ddx2 δ
pdq
px1 ´ x2qc̃

a
px1q c̃

`b
px2q

“

ż

ddx b̃apxq b̃`a pxq ,

x˜̄c, ˜̄c`y “

B

ea b ab

ż

ddx1 sx1
˜̄capx1q, eb b gb

ż

ddx2 s
`
x2

˜̄c`bpx2q

F

“ ´xea, eby xa, gy

ż

ddx1

ż

ddx2 δ
pdq
px1 ´ x2q˜̄c

a
px1q˜̄c

`b
px2q

“ ´

ż

ddx ˜̄capxq ˜̄c`a pxq .

(7.18b)

Note that the kinematic factor Kin essentially arranges the fields in a quartet: the physical

field has a ghost, a Nakanishi–Lautrup field, and an anti-ghost. These patterns reoccur in

the double copy.

| ´ |gh | ´ |L dim

g 1 ´1 ´1

vµ 0 0 0

n 0 0 0

a ´1 1 1

Table 7.3: The elements of Kin with their L8-degrees, their ghost numbers, and their

mass dimensions.

To extend this factorisation of graded vector spaces to a factorisation of cochain

complexes, we introduce the twist datum τ1 given by

τ1pgq :“ gb id ,

τ1pv
µ
q :“ vµ b id` ξ̃nb

1
?

l
B
µ ,

τ1pnq :“ nb id´ ξ̃vµ b
1
?

l
Bµ ,

τ1paq :“ ab id , (7.19)

and we shall use the convenient shorthand notation

τ1pv
µ, nq

˜

ş

ddx sx Ã
a
µpxq

ş

ddx sx b̃
apxq

¸

“ pvµ, nq b

˜

id ´
ξ̃?
l
Bµ

ξ̃?
l
Bµ id

¸˜

ş

ddx sx Ã
a
µpxq

ş

ddx sx b̃
apxq

¸

. (7.20)

The twisted differentials on gb pKinbτ1
Scalq are now indeed those of (7.12c):

µ1pc̃q “ µ1

ˆ

ea b gb

ż

ddx sx c̃
a
pxq

˙
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fields anti-fields

factorisation | ´ |gh | ´ |L dim factorisation | ´ |gh | ´ |L dim

c̃ “ eagsx c̃
apxq 1 0 d

2
´ 2 c̃` “ eaas

`
x c̃

`apxq ´2 3 d
2
` 2

Ã “ eav
µsx Ã

a
µpxq 0 1 d

2
´ 1 Ã` “ eav

µs`x Ã
`a
µ pxq ´1 2 d

2
` 1

b̃ “ eansx b̃
apxq 0 1 d

2
´ 1 b̃` “ eans

`
x b̃

`apxq ´1 2 d
2
` 1

˜̄c “ eaasx ˜̄capxq ´1 2 d
2

˜̄c` “ eags
`
x

˜̄c`apxq 0 1 d
2

Table 7.4: Factorisation of the redefined BV fields for Yang–Mills theory from Table 4.1

after the field redefinitions (7.8). Here, ea denote the basis vectors of g. Likewise, g, n,

vµ, and a denote the basis vectors of Kin defined in (7.16). Furthermore, sx and s`x are

the basis vectors of Scal from Table 7.1. Note that we suppressed the integrals over x

and the tensor products for simplicity.

“ ´ea b gb µ
Scal
1

ˆ
ż

ddx sx c̃
a
pxq

˙

“ ea b gb

ż

ddx s`x
 

´l c̃apxq
(

, (7.21a)

µ1

˜

Ã

b̃

¸

“ µ1

˜

ea b pv
µ, nq b

˜

ş

ddx sx Ã
a
µpxq

ş

ddx sx b̃
apxq

¸¸

“ ea b pv
µ, nq b µScal

1

˜˜

id ´
ξ̃?
l
Bµ

ξ̃?
l
Bµ id

¸˜

ş

ddx sx Ã
a
µpxq

ş

ddx sx b̃
apxq

¸¸

“ ea b pv
µ, nq b

˜

ş

ddx s`x
 

l Ãaµpxq ´ ξ̃
?

l Bµb̃
apxq

(

ş

ddx s`x
 

l b̃apxq ` ξ̃
?

l BµÃaµpxq
(

¸

“ ea b

˜

vµ b
ş

ddx s`x
 

l Ãaµpxq ´ ξ̃
?

l Bµb̃
apxq

(

nb
ş

ddx s`x
 

l b̃apxq ` ξ̃
?

l BµÃaµpxq
(

¸

, (7.21b)

µ1p˜̄cq “ µ1

ˆ

ea b ab

ż

ddx sx ˜̄capxq

˙

“ ´ea b ab µ
Scal
1

ˆ
ż

ddx sx ˜̄capxq

˙

“ ea b ab

ż

ddx s`x
 

´l ˜̄capxq
(

. (7.21c)

Altogether, we saw that the factorisation (7.15) is valid for twist datum τ1.
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7.3. Canonical transformation for the free Kalb–Ramond two-form

To keep our discussion manageable, we shall discuss the canonical transformations for

the free Kalb–Ramond two-form and Einstein–Hilbert gravity separately. For the following

discussion, recall the gauge-fixing procedure and the gauge-fixed action from Section 4.4..

Canonical transformation. Analogously to the case of Yang–Mills theory, we can now

perform a field redefinition in order to eliminate the quadratic terms that would vanish

on-shell in Lorenz gauge due to contractions between momenta and polarisation tensors.

We also insert inverses of the wave operator to match the mass dimensions of fields of

L8-degree one. The field redefinitions are

λ̃ :“ λ , λ̃` :“ λ` ,

Λ̃µ :“ Λµ , Λ̃`µ :“ Λ`µ `
1´

?
1´ ξ

ξ
Bµγ

` ,

γ̃ :“

c

ξ

l

ˆ

γ `
1´

?
1´ ξ

ξ
B
µΛµ

˙

, γ̃` :“

c

l

ξ
γ` ,

B̃µν :“ Bµν , B̃`µν :“ B`µν `
1´

?
1´ ξ

ξ
Brµα

`

νs ,

α̃µ :“

c

ξ

l

ˆ

αµ ´ Bµε ´ α̃`µ :“

c

l

ξ

ˆ

α`µ `
1´ ξ

2 l
Bµε

`

˙

,

´
1´ ξ

2 l
BµB

ναν `

`
1´

?
1´ ξ

ξ
B
νBνµ

˙

,

ε̃ :“ ε`
1´ ξ

2 l
B
µαµ , ε̃` :“

1` ξ

2
ε` ´ Bµα`µ ,

˜̄Λµ :“ Λ̄µ ,
˜̄Λ`µ :“ Λ̄`µ `

1´
?

1´ ξ

ξ
Bµγ̄

` ,

˜̄γ :“

c

ξ

l

ˆ

γ̄ `
1´

?
1´ ξ

ξ
B
µΛ̄µ

˙

, ˜̄γ` :“

c

l

ξ
γ̄` ,

˜̄λ :“ λ̄ , ˜̄λ` :“ λ̄` ,

(7.22a)

with

ξ :“ ξ1 “ ξ3 ´ ξ2 . (7.22b)
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These redefinitions constitute canonical transformations on the BV field space. Upon

applying these transformations to the action (4.27), we obtain

S̃KR
BRST :“

ż

ddx
!

1
4
B̃µν l B̃µν ´ ˜̄Λµ l Λ̃µ ` 1

2
α̃µ l α̃µ ´ ξ̃2

2
pB
µα̃µq

2
` 1

2
ε̃l ε̃´ ˜̄λl λ̃´

´ ˜̄γl γ̃ ` ξ̃α̃ν
?

l BµB̃µν ` ξ̃γ̃
?

l Bµ
˜̄Λµ ´ ξ̃˜̄γ

?
l BµΛ̃µ

)

,

(7.23)

where we have again used the shorthand ξ̃ :“
b

1´ξ
ξ

, cf. (7.11).

L8-algebra. The action (7.23) is the superfield homotopy Maurer–Cartan action (3.25b)

of an L8-algebra, denoted by L̃KR
BRST, that is given by

ε̃

C8pMdq

ε̃`

C8pMdq

Λ̃µ

Ω1pMdq

˜̄Λ`µ

Ω1pMdq

˜̄Λµ

Ω1pMdq

Λ̃`µ

Ω1pMdq

γ̃

C8pMdq

˜̄γ`

C8pMdq

˜̄γ

C8pMdq

γ̃`

C8pMdq

λ̃

C8pMdq

˜̄λ`

C8pMdq

B̃µν

Ω2pMdq

B̃`µν

Ω2pMdq

˜̄λ

C8pMdq

λ̃`

C8pMdq

looomooon

“: L̃KR
BRST,´1

looomooon

“: L̃KR
BRST, 0

α̃µ

Ω1
pM

d
q

looomooon

“: L̃KR
BRST, 1

α̃`µ

Ω1
pM

d
q

looomooon

“: L̃KR
BRST, 2

looomooon

“: L̃KR
BRST, 3

looomooon

“: L̃KR
BRST, 4

l

´l

´ξ̃
?

l Bµ

´l

´ξ̃
?

l Bµ

´l

ξ̃
?

l Bµ

´l

ξ̃
?

l Bµ

l l

´ξ̃
?

l Bν

l

l

ξ̃2BνB
µ

ξ̃
?

l Brν

(7.24a)

with

L̃KR
BRST,´1 “ L̃KR

BRST,´1, λ̃
, L̃KR

BRST, 0 “
à

φ P pΛ̃, γ̃, ˜̄λ`q

L̃KR
BRST, 0, φ ,

L̃KR
BRST, 1 “

à

φ P pε̃,˜̄Λ`, ˜̄γ`, B̃, α̃q

L̃KR
BRST, 1, φ , L̃KR

BRST, 2 “
à

φ P pε̃`,˜̄Λ,˜̄γ, B̃`, α̃`q

L̃KR
BRST, 2, φ ,

L̃KR
BRST, 3 “

à

φ P pΛ̃`, γ̃`, ˜̄λq

L̃KR
BRST, 3, φ , L̃KR

BRST, 4 “ L̃YM
BRST, 4, λ̃`

,

(7.24b)

Tommaso Macrelli



104 7.4. Canonical transformation for Einstein–Hilbert gravity with dilaton

and the non-vanishing differential

pλ̃q
µ1
ÞÝÝÑ l λ̃ P L̃KR

BRST, 0, ˜̄λ`
,

˜

Λ̃µ

γ̃

¸

µ1
ÞÝÝÑ ´

˜

l Λ̃µ ´ ξ̃
?

l Bµγ̃

l γ̃ ` ξ̃
?

l BµΛ̃µ

¸

P
à

φ P p˜̄Λ`, ˜̄γ`q

L̃KR
BRST, 1, φ ,

˜

B̃µν

α̃µ

¸

µ1
ÞÝÝÑ

˜

l B̃µν ´ 2ξ̃
?

l Brµα̃νs

l α̃µ ` ξ̃
?

l BνB̃νµ ` ξ̃
2BµB

να̃ν

¸

P
à

φ P pB̃`, α̃`q

L̃KR
BRST, 2, φ ,

˜

˜̄Λµ

˜̄γ

¸

µ1
ÞÝÝÑ ´

˜

l ˜̄Λµ ´ ξ̃
?

l Bµ˜̄γ

l ˜̄γ ` ξ̃
?

l Bµ ˜̄Λµ

¸

P
à

φ P pΛ̃`, γ̃`q

L̃KR
BRST, 3, φ ,

p˜̄λq
µ1
ÞÝÝÑ l ˜̄λ P L̃KR

BRST, 4, λ̃`
.

(7.24c)

There are no additional higher products because the theory is free. The expressions

xλ̃, λ̃`y :“ ´

ż

ddx λ̃λ̃` , x˜̄λ, ˜̄λ`y :“ ´

ż

ddx ˜̄λ˜̄λ` ,

xΛ̃, Λ̃`y :“

ż

ddx Λ̃µΛ̃`µ , x˜̄Λ, ˜̄Λ`y :“ ´

ż

ddx ˜̄Λµ ˜̄Λ`µ ,

xB̃, B̃`y :“ 1
2

ż

ddx B̃µνB̃`µν ,

xα̃, α̃`y :“

ż

ddx α̃µα̃`µ , xε̃, ε̃`y :“

ż

ddx ε̃ε̃` ,

xγ̃, γ̃`y :“

ż

ddx γ̃γ̃` , x˜̄γ, ˜̄γ`y :“ ´

ż

ddx ˜̄γ ˜̄γ`

(7.25)

define a cyclic inner product on pL̃YM
BRST, µ1q.

7.4. Canonical transformation for Einstein–Hilbert gravity with dilaton

The case of Einstein–Hilbert gravity with dilaton is now more involved that of the free

Kalb–Ramond field. For the following discussion, recall the gauge-fixing procedure and

the gauge-fixed action from Section 4.5..

Canonical transformations. We start from the Lagrangian (4.39) but add a scalar kin-

etic term for the dilaton ϕ,

L eEHD, gf
0 :“ L eEH, gf

0 ` 1
2
ϕlϕ . (7.26)
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We perform a field redefinition analogous to the case of Yang–Mills theory and the Kalb–

Ramond field, absorbing various terms that vanish on-shell, as well as the trace of hµν in δ

and ensuring that all fields come with the right propagators. For the fields of non-vanishing

ghost number, the transformation read as

X̃µ :“ Xµ , X̃`µ :“ X`µ ,

β̃ :“
1
?

l
β , β̃` :“

?
lβ`

˜̄Xµ :“ X̄µ ,
˜̄X`µ :“ X̄`µ ´

1´
?

1´ ξ
?
ξ

Bµβ̄
` ,

˜̄β :“
1
?

l

ˆ

β̄ ´
1´

?
1´ ξ

?
ξ

B
µX̄µ

˙

, ˜̄β` :“
?

l β̄` ,

(7.27a)

where we worked in the special gauge

ζ4 “ 1 , ζ5 “
1´

?
1´ ξ

?
ξ

, ζ6 “ ´1
2
, ζ7 “ ´

4pξ ` 2
?

1´ ξξ ´
?

1´ ξ ´ 1q
?
ξp4ξ ´ 3q

,

ζ8 “
1

4p3´ 4ξq2
?
ξ

´

50p1`
a

1´ ξq ´ ξ
`

5p34` 29
a

1´ ξq`

` 8ξp´23´ 15
a

1´ ξ ` 2p4`
a

1´ ξqξq
˘

¯

,

ζ9 “ 0 , ζ10 “
1

2ξ `
?

1´ ξ ´ 1
, ζ11 “ 0 .

(7.27b)

From the expressions for ζ7 and ζ8, it is already apparent that the field redefinitions we

would like to perform here are much more involved than in the case of the Kalb–Ramond

field.1 Because the resulting expressions for the fields of ghost number zero are too

involved and not very illuminating, we restrict ourselves to the case ξ “ 1 corresponding

to Feynman gauge in Yang–Mills theory. Here, we have the inverse field transformations

hµν “ h̃µν `
BµBν

˚̃h

l
´ 2

BµB
κh̃κν
l

´
Bµ$̃ν ` Bν$̃µ

?
l

,

$µ “ ´Bµδ̃ ´ B
κh̃µκ ´

?
l$̃µ ,

π “ ´2 l δ̃ `l π̃ ´ BµBν h̃µν ,

δ “
δ̃

2
`
π̃

4
`
BµBν h̃µν

4 l
,

ϕ “
1
?

2
˚̃h ´

1
?

2 l
B
µ
B
ν h̃µν

(7.27c)

1We suspect that there is a simpler field redefinition in a simpler gauge which we have not been able to

identify yet.
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with readily computed antifield transformations. We note that the field redefinition for

ϕ agrees precisely with the expectation of how the dilaton should be extracted from the

double copied metric perturbation h̃.

For general ξ, the total Lagrangian to lowest order in κ, reads as

L̃ eEHD
BRST, 0 “ 1

4
h̃µν l h̃µν ` 1

2
$̃µ l $̃µ

` 1
2
ξ̃2
pB
µ$̃µq

2
` ξ̃$̃ν

?
lBµh̃µν ´

´ 1
2
δ̃l δ̃ ` 1

4
π̃l π̃ ` ξ̃π̃

?
lBµ$̃

µ
` 1

2
ξ̃2π̃BµBν h̃

µν
´

´ ˜̄Xµ l X̃µ
´ ˜̄βl β̃ ` ξ̃β̃

?
lBµ

˜̄Xµ
´ ξ̃ ˜̄β

?
lBµX̃

µ .

(7.28)

This is the quadratic part of the Lagrangian of the superfield homotopy Maurer–Cartan

action (3.25b) for an L8-algebra L̃eEHD
BRST. The latter has underlying complex

ϕ̃

C8pMdq

ϕ̃`

C8pMdq

δ̃

C8pMdq

δ̃`

C8pMdq

X̃µ

Ω1pMdq

˜̄X`µ

Ω1pMdq

˜̄Xµ

Ω1pMdq

X̃`µ

Ω1pMdq

β̃

C8pMdq

˜̄β`

C8pMdq

˜̄β

C8pMdq

β̃`

C8pMdq

h̃µν

Ω2pMdq

h̃`µν

Ω2pMdq

$̃µ

Ω1pMdq

$̃`µ

Ω1pMdq

looomooon

“: L̃eEHD
BRST, 0

π̃

C8
pM

d
q

looomooon

“: L̃eEHD
BRST, 1

π̃`

C8
pM

d
q

looomooon

“: L̃eEHD
BRST, 2

looomooon

“: L̃eEHD
BRST, 3

0

l

´l ´l

´l ´l

l

l´ξ̃2BµB
ν

l

(7.29a)
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with

L̃eEHD
BRST, 0 “

à

φ P pβ̃, X̃q

L̃eEHD
BRST, 0, φ , L̃eEHD

BRST, 1 “
à

φ P pδ̃, ˜̄X`, ˜̄β`, h̃, $̃, π̃q

L̃eEHD
BRST, 1, φ ,

L̃eEHD
BRST, 3 “

à

φ P pβ̃`, X̃`q

L̃eEHD
BRST, 3, φ , L̃eEHD

BRST, 2 “
à

φ P pδ̃`, ˜̄X, ˜̄β, h̃`, $̃`, π̃`q

L̃eEHD
BRST, 2, φ ,

(7.29b)

and the lowest non-vanishing products
˜

X̃µ

β̃

¸

µ1
ÞÝÝÑ ´

˜

l X̃µ ´ ξ̃
?

lBµβ̃

l β̃ ` ξ̃
?

lBµX̃
µ

¸

P
à

φ P p ˜̄X`, ˜̄β`q

L̃eEHD
BRST, 1, φ ,

¨

˚

˚

˝

h̃µν

$̃µ

π̃

˛

‹

‹

‚

µ1
ÞÝÝÑ

¨

˚

˚

˝

l h̃µν ´ 2ξ̃
?

lBµ$̃ν ` ξ̃
2BµBνπ̃

l $̃µ ` ξ̃
?

lBµh̃µν ´ ξ̃
?

lBµπ̃ ´ ξ̃
2BµB

ν$̃ν

l π̃µpxq ` 2ξ̃
?

lBµ$̃µpxq ` ξ̃
2BµBν h̃µν

˛

‹

‹

‚

P
à

φ P ph̃`, $̃`, π̃`q

L̃eEHD
BRST, 2, φ ,

˜

˜̄Xµ
˜̄β

¸

µ1
ÞÝÝÑ ´

˜

l ˜̄Xµ ´ ξ̃
?

lBµ
˜̄β

l ˜̄β ` ξ̃
?

lBµ
˜̄Xµ

¸

P
à

φ P pX̃`, β̃`q

L̃eEHD
BRST, 3, φ .

(7.29c)

The L̃eEHD
BRST algebra is endowed with the following cyclic structure:

xX̃, X̃`y :“

ż

ddx X̃µX̃`µ , x ˜̄X, ˜̄X`y :“ ´

ż

ddx ˜̄Xµ ˜̄X`µ ,

xβ̃, β̃`y :“

ż

ddx β̃β̃` , x ˜̄β, ˜̄β`y :“ ´

ż

ddx ˜̄β ˜̄β` ,

xh̃, h̃`y :“ 1
2

ż

ddx h̃µν h̃`µν ,

x$̃, $̃`
y :“

ż

ddx $̃µ$̃`
µ ,

xπ̃, π̃`y :“ 1
2

ż

ddx π̃π̃` , xδ̃, δ̃`y :“ ´

ż

ddx δ̃δ̃` .

(7.30)

7.5. Factorisation of the cochain complex of N “ 0 supergravity

The factorisation of the cochain complex of the L8-algebra for Yang–Mills theory now

fixes completely the factorisation of the cochain complex of the L8-algebra of N “ 0

supergravity. In view of (7.15), it thus merely remains to verify that

ChpL̃N“0
BRSTq “ Kinbτ1

pKinbτ1
ChpScalqq (7.31)

at the level of cochain complexes, where Kin is given in (7.16) and ChpScalq in (7.4).

Furthermore, the twist in the outer tensor product of (7.31) will only affect ChpScalq and
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108 7.5. Factorisation of the cochain complex of N “ 0 supergravity

commute with the other factor of Kin. Let us stress that we could have allowed for two

different twist parameters for each of the tensor products. This, however, would make our

discussion unnecessarily involved.

Factorisation of fields. It is not surprising that the identification works at the level of

graded vector spaces for the physical fields. This is merely the statement that a rank-two

(covariant) tensor decomposes into its symmetric part and its anti-symmetric part. The

symmetric part splits further into the trace, which can be identified with the dilaton, and

the remaining components, which describe gravitational modes. More interesting is the

sector of unphysical fields, and the complete factorisation of all fields is given in Table 7.5.

The elements of Kin form a quartet, which is reflected in the well-known quartet of

fields in the gauge-fixed Yang–Mills action:

n

vµ

g a

ÝÑ

ba

Aaµ

ca c̄a

(7.32)

In the last diagram, and in the following ones, a field is connected to the associated

Nakanishi–Lautrup field, ghost and BRST antighost by an upward arrow, a left downward

arrow and a right downward arrow, respectively. The relationships between the terms in

the diagram correspond to the entries in Table 7.4. Each field in ChpL̃N“0
BRSTq thus lives in

the tensor product of two such quartets. This tensor product further splits into (graded)

symmetric, anti-symmetric, and trace parts, which belong to the two-form Bµν, the grav-

iton modes hµν, and the dilaton ϕ. Because the product of two ghosts gg̃ is automatically

anti-symmetric, only the B-field has a ghost for ghost λ. On the graviton/dilaton side,

we do not have the higher gauge transformations, but contrary to Yang–Mills theory, the

ghost is a vector. We can summarise the relations between the fields in the following two

Tommaso Macrelli



7.5. Factorisation of the cochain complex of N “ 0 supergravity 109

fields anti-fields

factorisation | ´ |gh | ´ |L dim factorisation | ´ |L dim

λ̃ “ ´rg, gssx
1
2
λ̃pxq 2 ´1 d

2
´ 3 λ̃` “ ´ra, ass`x

1
2
λ̃`pxq 4 d

2
` 3

Λ̃ “ rg, vµssx
1?
2

Λ̃µpxq 1 0 d
2
´ 2 Λ̃` “ ra, vµss`x

1?
2

Λ̃`µ 3 d
2
` 2

γ̃ “ rg, nssx
1?
2
γ̃pxq 1 0 d

2
´ 2 γ̃` “ ra, nss`x

1?
2
γ̃`pxq 3 d

2
` 2

B̃ “ rvµ, vνssx
1

2
?

2
B̃µνpxq 0 1 d

2
´ 1 B̃` “ rvµ, vνss`x

1
2
?

2
B̃`µνpxq 2 d

2
` 1

α̃ “ rn, vµssx
1?
2
α̃µpxq 0 1 d

2
´ 1 α̃` “ rn, vµss`x

1?
2
α̃`µ pxq 2 d

2
` 1

ε̃ “ ´rg, assx
1?
2
ε̃pxq 0 1 d

2
´ 1 ε̃` “ ´rg, ass`x

1?
2
ε̃`pxq 2 d

2
` 1

˜̄Λ “ ra, vµssx
1?
2

˜̄Λµpxq ´1 2 d
2

˜̄Λ` “ rg, vµss`x
1?
2

˜̄Λ`µ pxq 1 d
2

˜̄γ “ ra, nssx
1?
2

˜̄γpxq ´1 2 d
2

˜̄γ` “ rg, nss`x
1?
2

˜̄γ`pxq 1 d
2

˜̄λ “ ´ra, assx
1
2

˜̄λpxq ´2 3 d
2
` 1 ˜̄λ` “ ´rg, gss`x

1
2

˜̄λ`pxq 0 d
2
´ 1

X̃ “ pg, vµqsx
1?
2
X̃µpxq 1 0 d

2
´ 2 X̃` “ pa, vµqs`x

1?
2
X̃`µ pxq 3 d

2
` 2

β̃ “ pg, nqsx
1?
2
β̃pxq 1 0 d

2
´ 2 β̃` “ pa, nqs`x

1?
2
β̃`pxq 3 d

2
` 2

h̃ “ pvµ, vνqsx
1

2
?

2
h̃µνpxq 0 1 d

2
´ 1 h̃` “ pvµ, vνqs`x

1
2
?

2
h̃`µνpxq 2 d

2
` 1

$̃ “ ´pn, vµqsx
1?
2
$̃µpxq 0 1 d

2
´ 1 $̃` “ ´pn, vµqs`x

1?
2
$̃`
µ pxq 2 d

2
` 1

π̃ “ pn, nqsx
1

2
?

2
π̃pxq 0 1 d

2
´ 1 π̃` “ pn, nqs`x

1
2
?

2
π̃`pxq 2 d

2
` 1

δ̃ “ ´pg, aqsx
1?
2
δ̃pxq 0 1 d

2
´ 1 δ̃` “ ´pg, aqs`x

1?
2
δ̃`pxq 2 d

2
` 1

˜̄X “ pa, vµqsx
1?
2

˜̄Xµpxq ´1 2 d
2

˜̄X` “ pg, vµqs`x
1?
2

˜̄Xµpxq 1 d
2

˜̄β “ pa, nqsx
1?
2

˜̄βpxq ´1 2 d
2

˜̄β` “ pg, nqs`x
1?
2

˜̄β`pxq 1 d
2

Table 7.5: Factorisation of the redefined BV fields for N “ 0 supergravity. Just as in

the case of Yang–Mills theory, all fields have a factor of sx , while all anti-fields have a

factor of s`x . Here, we again suppressed the integrals over x and we used the notation

rx, ys :“ xb y´ p´1q|x| |y|yb x and px, yq :“ xb y` p´1q|x| |y|yb x for x, y P Kin.
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diagrams:

αµ

γ Bµν γ̄

Λµ Λ̄µ

λ ε λ̄

π

$µ

β hµν β̄

Xµ X̄µ

δ

(7.33)

where upper, lower left, and lower right arrows point to fields where a vector factor vµ has

been replaced by a factor n, g, and a, respectively. The L8-degrees of the fields are the

same in each column, increasing from left to right by one.

Factorisation as cyclic complex. From Table 7.5, it is clear that the tensor product (7.31)

is indeed correct at the level of graded vector spaces. The inner product structure on the

anti-symmetric part is given by

xλ̃, λ̃`y “

B

´gb gb

ż

ddx1 sx1
λ̃px1q,´ab ab

ż

ddx2 s
`
x2
λ̃`px2q

F

“ ´xg, ayxg, ay

ż

ddx1

ż

ddx2 δ
pdq
px1 ´ x2qλ̃px1qλ̃

`
px2q

“ ´

ż

ddx λ̃pxqλ̃`pxq ,

(7.34a)

Similarly,

xΛ̃, Λ̃`y “

ż

ddx Λ̃µpxqΛ̃`µ pxq , x˜̄Λ, ˜̄Λ`y “ ´

ż

ddx ˜̄Λµpxq˜̄Λ`µ pxq ,

xγ̃, γ̃`y “

ż

ddx γ̃pxqγ̃`pxq , x˜̄γ, ˜̄γ`y “ ´

ż

ddx ˜̄γpxq˜̄γ`pxq ,

xB̃, B̃`y “ 1
2

ż

ddx B̃µνpxqB̃`µνpxq , xε̃, ε̃`y “

ż

ddx ε̃pxqε̃`pxq ,

xα̃, α̃`y “

ż

ddx α̃µpxqα̃`µ pxq , x˜̄λ, ˜̄λ`y “ ´

ż

ddx ˜̄λpxq˜̄λ`pxq .

(7.34b)
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On the symmetric part, we have analogously

xX̃, X̃`y “

ż

ddx X̃µ
pxqX̃`µ pxq , xπ̃, π̃`y “ 1

2

ż

ddx π̃pxqπ̃`pxq ,

xβ̃, β̃`y “

ż

ddx β̃pxqβ̃`pxq , xδ̃, δ̃`y “ ´

ż

ddx δ̃pxqδ̃`pxq ,

xh̃, h̃`y “ 1
2

ż

ddx h̃µνpxqh̃`µνpxq , x ˜̄X, ˜̄X`y “ ´

ż

ddx ˜̄Xµ
pxq ˜̄X`µ pxq ,

x$̃, $̃`
y “

ż

ddx $̃µ
pxq$̃`

µ pxq , x ˜̄β, ˜̄β`y “ ´

ż

ddx ˜̄βpxq ˜̄β`pxq .

(7.34c)

Next, we compute the action of the differential µ1, which is completely fixed by the

tensor product Kinbτ1
pKinbτ1

Scalq, cf. definition (6.15). Following the notation described

in Table 7.5, we have, for example,

µ1pλ̃q “ µ1

ˆ

´rg, gs b 1
2

ż

ddx sx λ̃pxq

˙

“ ´rg, gs b 1
2
µ1

ˆ
ż

ddx sx λ̃pxq

˙

“ l λ̃ ,

µ1

˜

Λ̃

γ̃

¸

“ µ1

˜

prg, vµs, rg, nsq b

˜

ş

ddx sx
1?
2

Λ̃µpxq
ş

ddx sx
1?
2
γ̃pxq

¸¸

“ ´prg, vµs, rg, nsq b µ1

˜˜

id ´ξ̃l ´ 1
2Bµ

ξ̃l ´ 1
2Bµ id

¸˜

ş

ddx sx
1?
2

Λ̃µpxq
ş

ddx sx
1?
2
γ̃pxq

¸¸

“ ´prg, vµs, rg, nsq b

˜

ş

ddx s`x
1?
2
tl Λ̃µpxq ´ ξ̃

?
lBµγ̃pxqu

ş

ddx s`x
1?
2
tl γ̃pxq ` ξ̃

?
lBµΛ̃µpxqu

¸

,

µ1

˜

B̃

α̃

¸

“ µ1

˜

prvµ, vνs, rn, vµsq b

˜

ş

ddx sx
1

2
?

2
B̃µνpxq

ş

ddx sx
1?
2
α̃µpxq

¸¸

“ prvµ, vνs, rn, vµsq b

˜

ş

ddx s`x
1?
2
t1

2
l B̃µνpxq ´ ξ̃

?
lBµα̃νpxqu

ş

ddx s`x
1?
2
tl α̃µpxq ` ξ̃

?
lBνB̃νµpxq ` ξ̃

2BµB
να̃νpxqu

¸

,

µ1

¨

˚

˚

˝

h̃

$̃

π̃

˛

‹

‹

‚

“ µ1

¨

˚

˚

˝

ppvµ, vνq, pn, vµq, pn, nqq b

¨

˚

˚

˝

ş

ddx sx
1

2
?

2
h̃µνpxq

ş

ddx sx

´

´ 1?
2
$̃µpxq

¯

ş

ddx sx
1

2
?

2
π̃µpxq

˛

‹

‹

‚

˛

‹

‹

‚

“ ppvµ, vνq, pn, vµq, pn, nqq bM

(7.35a)
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with

M :“

¨

˚

˚

˝

ş

ddx s`x t
1

2
?

2
l h̃µνpxq ´

1?
2
ξ̃
?

lBµ$̃νpxq `
1

2
?

2
ξ̃2BµBνπ̃pxqu

ş

ddx s`x t´
1?
2

l $̃µpxq ´
1?
2
ξ̃
?

lBµh̃µνpxq `
1?
2
ξ̃
?

lBµπ̃pxq `
1?
2
ξ̃2BµB

ν$̃νpxqu
ş

ddx s`x t
1

2
?

2
l π̃µpxq `

1?
2
ξ̃
?

lBµ$̃µpxq `
1

2
?

2
ξ̃2BµBν h̃µνu

˛

‹

‹

‚

.

(7.35b)

Furthermore, we have

µ1

˜

˜̄Λ

˜̄γ

¸

“ ´pra, vµs, ra, nsq b

˜

ş

ddx s`x
1?
2
tl ˜̄Λµpxq ´ ξ̃

?
lBµ˜̄γpxqu

ş

ddx s`x
1?
2
tl ˜̄γpxq ` ξ̃

?
lBµ

˜̄Λµpxqu

¸

,

µ1pε̃q “ l ε̃ ,

µ1p
˜̄λq “ l ˜̄λ ,

µ1

˜

X̃

β̃

¸

“ ´ppg, vµq, pg, nqq b

˜

ş

ddx s`x
1?
2
tl X̃µpxq ´ ξ̃

?
lBµβ̃pxqu

ş

ddx s`x
1?
2
tl β̃pxq ` ξ̃

?
lBµX̃

µpxqu

¸

,

µ1

˜

˜̄X

˜̄β

¸

“ ´pra, vµs, ra, nsq b

˜

ş

ddx s`x
1?
2
tl ˜̄Xµpxq ´ ξ̃

?
lBµ

˜̄βpxqu
ş

ddx s`x
1?
2
tl ˜̄βpxq ` ξ̃

?
lBµ

˜̄Xµpxqu

¸

,

µ1pδ̃q “ l δ̃ .

(7.35c)

The resulting superfield homotopy Maurer–Cartan action (3.25a) for the superfield a “

λ̃` Λ̃` ¨ ¨ ¨ ` B̃ ` h̃ is

S̃DC
0 :“

ż

ddx
!

1
4
B̃µν l B̃µν ´ ˜̄Λµ l Λ̃µ ` 1

2
α̃µ l α̃µ ´ ξ̃2

2
pB
µα̃µq

2
` 1

2
ε̃l ε̃´ ˜̄λl λ̃´

´ ˜̄γl γ̃ ` ξ̃α̃ν
?

lBµB̃µν ` ξ̃γ̃
?

lBµ
˜̄Λµ ´ ξ̃˜̄γ

?
lBµΛ̃µ`

` 1
4
h̃µν l h̃µν ´ ˜̄Xµ l X̃µ

` 1
2
$̃µ l $̃µ

`
ξ̃2

2
pB
µ$̃µq

2
´

´ 1
2
δ̃l δ̃ ` 1

4
π̃l π̃ ´ ˜̄βl β̃ ` ξ̃$̃ν

?
lBµh̃µν ` ξ̃π̃

?
lBµ$̃

µ
`

` 1
2
ξ̃2π̃BµBν h̃

µν
` ξ̃β̃

?
lBµ

˜̄Xµ
´ ξ̃ ˜̄β

?
lBµX̃

µ
)

.

(7.36)

This action is precisely the sum of the transformed Kalb–Ramond action (7.23) and of

the transformed zeroth-order gravity action augmented by a dilaton kinetic term (7.28).

Consequently, we see that our double copy prescription, arising from the factorisation of

the L8-algebras of Yang–Mills theory and N “ 0 supergravity into three factors, works at

the level of cochain complexes.
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8
Quantum field theoretic preliminaries

After completing the discussion of double copy for the free theories, the objective is to

extend our picture to the full, interacting level.

As discussed in Section 1.3., to double copy Yang–Mills amplitudes we need to refor-

mulate them in terms of diagrams with trivalent vertices only. Interpreted in the context of

homotopy algebras, this corresponds to a strictification of the original theory, associated

to a physically equivalent action with only cubic interaction terms. We will give explicit

formulas for the lowest orders in coupling constants.

The strictification of the underlying L8-algebra of the theory allows us to factorise

it accordingly with our twisted tensor product notion, introduced in Chapter 6, and to

construct the Lagrangian double copy theory associated with Yang–Mills theory. We will

refrain from giving fully explicit expressions for this action.

In this Chapter we introduce a set of quantum field theoretic observations, that prepare

the ground for the proof of the quantum equivalence between Yang–Mills theory double

copy theory and N “ 0 supergravity given in the final Chapter.

In the following, we shall always clearly distinguish between scattering amplitudes

A p¨ ¨ ¨ q and correlation functions x¨ ¨ ¨ y. Correlation functions, contain operators that

create and annihilate arbitrary fields without any constraints. Scattering amplitudes, on

the other hand, are labelled by external fields, which usually are physical fields with on-shell

momenta and physical polarisations. For our arguments, it is convenient to lift the restric-

tion to physical polarisations and work with the BRST-extended Hilbert space of external

fields which, in the case of Yang–Mills theory, includes gluons of arbitrary polarisations as

well as the ghosts and anti-ghosts, as we will explain in the following.
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The material in this Chapter is borrowed from [5, 6].

8.1. BRST-extended Hilbert space and Ward identities

The tree-level scattering amplitudes of Yang–Mills theory are parametrised by degree one

elements of the minimal model of the L8-algebra (7.12). These are the physical, on-shell

states. A convenient set of coordinates for these are the gluon’s momentum pµ as well

as a discrete label indicating the gluon’s helicity. More conveniently, we can replace the

discrete labels by a linearly independent set of polarisation vectors εµ that satisfy

pεµq “

˜

0

~ε

¸

, ~p ¨ ~ε “ 0 , and |~ε | “ 1 . (8.1)

BRST-extended Hilbert space. We can extend this conventional Hilbert space of ex-

ternal fields to the full BRST field space HYM
BRST as done, e.g., in [232]. We thus have two

additional, unphysical polarisations of the gluon, called forward and backward and denoted

by AÒ aµ and AÓ aµ , respectively. We can be a bit more explicit for general gluons with light-

like momenta. Here, the polarisation vector εÒµ is proportional to the momentum pµ and

the backwards polarisation vector εÓµ is obtained by reversing the spatial part,

pεÒµq “
1

?
2|~p |

˜

p0

~p

¸

and pεÓµq “
1

?
2|~p |

˜

p0

´~p

¸

, (8.2a)

so that

εÒ ¨ εÒ “ 0 , εÓ ¨ εÓ “ 0 , and εÒ ¨ εÓ “ ´1 . (8.2b)

We also have ghost and anti-ghost states. All scattering amplitudes we shall consider will

be built from the Hilbert space HYM
BRST. We note that the S-matrix of the physical Hilbert

space HYM
phys is then the restriction of the S-matrix for the BRST extended Hilbert space

HYM
BRST. Although there are scattering amplitudes producing unphysical particles in HYM

BRST

from physical gluons in HYM
phys, this is consistent, because the restricted S-matrix is unitary.

This is a consequence of the full S-matrix on HYM
BRST being unitary and BRST symmetry,

cf. [233, Section 16.4].

Evidently, HYM
BRST carries an action of the linearisation of the BRST operator, denoted

by Qlin
BRST, cf. again [232] or the discussion in [233, Section 16.4]. Note that after gauge-
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fixing, the full BRST transformations are given by the restriction of the BV transforma-

tions (4.13) since the gauge-fixing fermion is assumed to be independent of the anti-fields.

We have

ca
QYM

BRST
ÞÝÝÝÝÑ ´1

2
gfbc

acbcc , c̄a
QYM

BRST
ÞÝÝÝÝÑ ba ,

Aaµ
QYM

BRST
ÞÝÝÝÝÑ p∇µcqa , ba

QYM
BRST

ÞÝÝÝÝÑ 0 ,

(8.3)

and pQYM
BRSTq

2 “ 0 off-shell. In momentum space, it is then easy to see that the trans-

versely-polarised or physical gluon states AK aµ are singlets under the action of the linearised

BRST operator, QYM, lin
BRST A

K a
µ “ 0, since Bµc is parallel to kµ. The remaining four states

arrange into two doublets,

AÒ aµ
QYM, lin

BRST
ÞÝÝÝÝÑ Bµc

a and c̄a
QYM, lin

BRST
ÞÝÝÝÝÑ ba “

1

ξ
B
µAÓ aµ ` ¨ ¨ ¨ , (8.4)

where the ellipsis indicates terms that would arise from the shift of the gauge-fixing fermion

in (8.20).

Connected correlation functions. In our later analysis of the double copy, we shall com-

pare correlation functions at the tree level. Recall that the partition function Z and the

free energy W :“ logpZq are the generating functionals for the correlation functions and

the connected correlation functions, respectively. Evidently, this implies that the connec-

ted correlation functions can be written as linear combinations of products of correlation

functions. This simplifies our analysis as we can restrict ourselves to the contributions of

connected Feynman diagrams to correlation functions.

Observation 8.1. The set of connected correlation functions is BRST-invariant because

the connected correlation functions can be written as linear combinations of products of

correlation functions.

Ward identities for scattering amplitudes. In order to translate colour–kinematics du-

ality for scattering amplitudes from gluons to ghosts, we shall use supersymmetric on-shell

Ward identities, cf. [76, 77], and we focus on the supersymmetry generated by the linear-

ised BRST operator QYM, lin
BRST acting on the BRST-extended Hilbert space HYM

BRST, whose

elements label our scattering amplitudes.
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The free vacuum is certainly invariant under the action of QYM, lin
BRST , cf. again [232]

or [233, Section 16.4]. We therefore have the on-shell Ward identity

0 “ x0|rQYM, lin
BRST ,O1 ¨ ¨ ¨Ons|0y . (8.5)

In order to use this Ward identity to link scattering amplitudes with k ghost–anti-ghost

pairs to amplitudes with k ` 1 such pairs, we consider the special case

O1 ¨ ¨ ¨On “ AÒc̄pcc̄qkAK1 ¨ ¨ ¨A
K
n´2k´2 , (8.6)

where the gluon AÒ aµ is forward polarised while all other gluons have physical polarisation.

In this special case, the on-shell Ward identity (8.5) directly implies

pAÒx0|pcc̄q
k`1AK1 ¨ ¨ ¨A

K
n´2k´2|0y ` x0|A

Òbpcc̄qkAK1 ¨ ¨ ¨A
K
n´2k´2|0y `

`

k´1
ÿ

j“0

x0|AÒc̄pcc̄qjcbpcc̄qk´j´1AK1 ¨ ¨ ¨A
K
n´2k´2|0y “ 0 .

(8.7)

Observation 8.2. Any amplitude with k ` 1 ghost–anti-ghost pairs and all gluons trans-

versely polarised is given by a sum of amplitudes with k ghost pairs.

The simplest non-trivial concrete example to illustrate Observation 8.2 is the case

n “ 4, k “ 0 in Yang–Mills theory (the three-point scattering amplitudes vanish). We

may then identify

x0|ÂÒ app1qb̂
b
pp2qÂ

K c
1 pp3qÂ

K d
2 pp2q|0y “

“ p0
2AAAAA

`

εÒpp1q, p1, a; εÓpp2q, p2, b; εK1 pp3q, p3, c ; εK2 pp4q, p4, d
˘

(8.8a)

and

x0|ĉapp1qˆ̄c
b
pp2qÂ

K c
1 pp3qÂ

K d
2 pp4q|0y “

“ p0
1Acc̄AA

`

p1, a; p2, b; εK1 pp3q, p3, c ; εK2 pp4q, p4, d
˘

,
(8.8b)

where AAAAA and Acc̄AA denote the four-gluon and two-ghost–two-gluon scattering amp-

litudes, respectively, with external particles labelled by polarisation vectors, momenta, and

colour indices. The hat indicates the Fourier transform. A standard Feynman diagram
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computation then shows that

p0
2AAAAA “

f adefe
bc

?
2

!

pε2 ¨ ε4q
“

pp1 ¨ ε3q ` 2pp2 ¨ ε3q
‰

´ pε3 ¨ ε4q
“

pp1 ¨ ε2q ` 2pp3 ¨ ε2q
‰

´

´
p0

2pp2 ¨ ε3qpp1 ¨ ε4q
?

2
`

pp1 ¨ p2q ` pp1 ¨ p3q
˘ ´ pε2 ¨ ε3qpp1 ¨ ε4q

´ 2pε2 ¨ ε3qpp2 ¨ ε4q ´
?

2p0
2pε3 ¨ ε4q

)

`

`
f abefe

cd

?
2

!

´
p0

2?
2pp1 ¨ p2q

“

2pp1 ¨ ε4qpp2 ¨ ε3q ´ 2pp1 ¨ ε3qpp2 ¨ ε4q
‰

´

´
p0

2?
2pp1 ¨ p2q

“

pp1 ¨ p2q ´ 2pp1 ¨ p3q
‰

pε3 ¨ ε4q´

´ pε2 ¨ ε3q
“

pp1 ¨ ε4q ` 2pp2 ¨ ε4q
‰

`

` pε2 ¨ ε4q
“

pp1 ¨ ε3q ` 2pp2 ¨ ε3q
‰

´

´ pε3 ¨ ε4q
“

pp1 ¨ ε2q ` 2pp3 ¨ ε2q
‰

)

`

`
f acefe

bd

?
2

!p0
2pp1 ¨ ε3qpp2 ¨ ε4q
?

2pp1 ¨ p3q
` pε2 ¨ ε3q

“

pp1 ¨ ε4q ` 2pp2 ¨ ε4q
‰

´

´ pε2 ¨ ε4q
“

pp1 ¨ ε3q ` 2pp2 ¨ ε3q
‰

`

` pε3 ¨ ε4q
`

pp1 ¨ ε2q ` 2pp3 ¨ ε2q
‰

`
?

2p0
2pε3 ¨ ε4q

)

(8.9a)

and

p0
1Acc̄AA “ f acefe

bd p
0
2pp1 ¨ ε3qpp2 ¨ ε4q

2pp1 ¨ p3q

` f abefe
cd p0

2

pp1 ¨ p2q

!

pp1 ¨ ε3qpp2 ¨ ε4q ´ pp1 ¨ ε4qpp2 ¨ ε3q`

`
“

1
2
pp1 ¨ p2q ` pp1 ¨ p3q

‰

pε3 ¨ ε4q

)

´

´ f adefe
bc p0

2pp1 ¨ ε4qpp2 ¨ ε3q

2
“

pp1 ¨ p2q ` pp1 ¨ p3q
‰ .

(8.9b)

The sum of both terms vanishes,

p0
2AAAAA ` p

0
1Acc̄AA “ 0 , (8.10)

upon using momentum conservation, transversality of the physically polarised gluons, the

explicit form of the on-shell polarisation vectors (8.2), and the Jacobi identity. That is,
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the s-, t-, and u-channels are not related separately. This is not very surprising: the four-

point gluon vertex can be distributed in different ways to the various channels and each

distribution would imply a different relation between the channels of the two amplitudes. If

we ensured colour–kinematics duality for the four-point vertex, however, then the relation

between the two amplitudes would hold for each individual channel.

When we come to discussing the double copy theory, we will be able to ensure BRST

invariance of the action only on-shell. However, from the construction of correlators from

Feynman diagrams it is clear that the action of QYM, lin
BRST on the on-shell BRST-extended

Hilbert space will still be preserved, and we again have (8.5) with the corresponding link

between scattering amplitudes with different number of ghost–anti-ghost pairs:

Observation 8.3. Suppose that QYM
BRSTS

YM
BRST “ 0 and pQYM

BRSTq
2 “ 0 only on-shell. Then,

we still have an identification of scattering amplitudes with k ` 1 ghost–anti-ghost pairs

and all gluons transversely polarised and a sum of amplitudes with k ghost–anti-ghost

pairs.

Off-shell Ward identities. BRST invariance of the action, being a global symmetry,

induces an off-shell Ward identity for correlation functions,

xpB
µjµpxqqO1px1q ¨ ¨ ¨Onpxnqy “

n
ÿ

i“1

¯δpdqpx ´ xiq

C

pQBRSTOipxiqq
ź

j‰i

Ojpxjq

G

, (8.11)

where jµ is the BRST current and the sign is the Koszul sign arising from permuting

operators of non-vanishing ghost number. Note that in general, QYM
BRST is the renormalised

BRST operator of the full quantum theory, cf. [234, Chapter 17.2]. As we will always

discuss tree-level correlators, however, we can restrict ourselves to the classical BRST

operator with action (8.3). We note that the left-hand side of (8.11) vanishes after

integration over x and the Ward identity simplifies to

0 “

n
ÿ

i“1

˘

C

pQYM
BRSTOipxiqq

ź

j‰i

Ojpxjq

G

. (8.12)

When applying Ward identities to correlation functions, we can use Observation 8.1

to restrict the correlation functions to purely connected correlators, i.e. the contribution

arising from connected Feynman diagrams. Moreover, we can restrict the correlation

functions to a particular order in the coupling constant g. This implies that for operators
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linear in the fields we can truncate the action of the BRST operator QYM
BRST to the Abelian

action.

As a short explicit example, let us consider (8.12) for the special case n “ 3 with

Ô1 “ ÂaÒµ pp1q , Ô2 “ ˆ̄cbpp2q , Ô3 “ ÂcÒµ pp3q , (8.13)

and we switched to momentum space for simplicity. We obtain the identity

PÒµ
µ1
pp1qP

Ò
ν
ν1
pp3q

`

xÂaÒµ1 pp1qb̂
b
pp2qÂ

cÒ
ν1 pp3qy ` xp1µ1 ĉ

a
pp1qˆ̄c

b
pp2qÂ

cÒ
ν1 pp3qy´

´ xÂaÒµ1 pp1qˆ̄c
b
pp2qp3 ν1 ĉ

c
pp3qy

˘

“ 0 ,
(8.14)

where PÒµ
µ1ppq is the projector onto (off-shell) forward polarised gluons. Explicitly,

PÒµ
ν
ppq :“ pµ

pp ¨ p̃q

pp ¨ p̃q2 ´ pp ¨ pq2

„

p̃ν ´
pp ¨ pq

pp ¨ p̃q
pν


,

PÓµ
ν
ppq :“ p̃µ

pp ¨ p̃q

pp ¨ p̃q2 ´ pp ¨ pq2

„

pν ´
pp ¨ pq

pp ¨ p̃q
p̃ν


,

(8.15)

where p̃µ is pµ with spatial components reverted.

The relevant vertices are clearly the cubic gluon vertex to which b̂bpp2q is linked by a

propagator, as well as the ghost–anti-ghost–gluon vertex. At tree-level, we thus obtain

PÒµ
µ1
pp1qP

Ò
ν
ν1
pp3q xÂ

aÒ
µ1 pp1qb̂

b
pp2qÂ

cÒ
ν1 pp3qy “

“ f abcPÒµ
µ1
pp1qP

Ò
ν
ν1
pp3q

“

p2µ1p1ν1 ´ p3µ1p2ν1 ` ηµ1ν1pp3 ´ p1q ¨ pP
Ó
pp2q ¨ p2q

‰

,

(8.16a)

PÒµ
µ1
pp1qP

Ò
ν
ν1
pp3q xp1µ1 ĉ

a
pp1qˆ̄c

b
pp2qÂ

cÒ
ν1 pp3qy “ f abcPÒµ

µ1
pp1qP

Ò
ν
ν1
pp3qp1µ1p2ν1 , (8.16b)

and

PÒµ
µ1
pp1qP

Ò
ν
ν1
pp3q xÂ

aÒ
µ1 pp1qˆ̄c

b
pp2qp3 ν1 ĉ

c
pp3qy “ f cbaPÒµ

µ1
pp1qP

Ò
ν
ν1
pp3qp3ν1p2µ1 . (8.16c)

Summing these three terms according to the signs set in (8.14) we obtain

f abcPÒµ
µ1
pp1qP

Ò
ν
ν1
pp3qηµ1ν1

“

pp3 ´ p1q ¨ pP
Ó
pp2q ¨ p2q

‰

, (8.17)

which vanishes after inserting the explicit expressions (8.15).

We conclude with the following observation.

Observation 8.4. We have Ward identities between tree-level correlation functions for the

linearised BRST operator.
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8.2. Quantum equivalence, correlation functions, and field redefini-

tions

Let us now leave the special case of Yang–Mills theory for a moment and reconsider

notions of equivalence between field theories in general. As discussed in Chapter 5, two

field theories are classically equivalent if they are quasi-isomorphic and thus have a common

minimal model. In the same Chapter, it was explained how the minimal model of a field

theory is constructed using the homological perturbation lemma.

Perturbative quantum equivalence. For the full quantum equivalence at the perturb-

ative level, we have the following evident statement.

Observation 8.5. Two field theories are perturbatively quantum equivalent if all correlators

built from polynomials of fields and their derivatives agree to any finite order in coupling

constant and loop level. Since correlators can be glued together from tree-level correlators

(up to regularisation issues), it suffices if the tree level correlators agree.

We stress that we are only interested in the integrands of scattering amplitudes, which

allows us to ignore all issues related to regularisation.

To provide a link between the double-copied action and the action of N “ 0 super-

gravity, we will need to perform a sequence of field redefinitions. The field content of the

theories will be the same from the outset, and we choose to work with the same path

integral measure in both cases. We are therefore interested in field redefinitions that leave

the path integral measure invariant.

There are large classes of such field redefinitions. The most evident such class of field

redefinitions is

φ ÞÑ φ̃ :“ φ` f pφ11, . . . , φ
1
nq , (8.18)

where f is a polynomial function of a set of fields tφ11, . . . , φ
1
nu and their derivatives with

φ R tφ11, . . . , φ
1
nu. Under such a field redefinition, the path integral measure remains

unchanged; this becomes evident when imagining the finite-dimensional analogue of volume

forms and a coordinate shifted by a function of different coordinates.

More subtle is the fact that field redefinitions of the form

φ ÞÑ φ̃ :“ φ`Opφ2
q , (8.19)
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where Opφ2q denotes local polynomial functions in arbitrary fields and their derivatives

which are at least of quadratic order in φ can also be considered as leaving the path

integral measure invariant.

Invariance of the S-matrix under (8.19) without derivatives is captured by the Chisholm–

Kamefuchi–O’Raifeartaigh–Salam equivalence theorem [235, 236]. A proof using the

BV formalism of perturbative quantum equivalence for local field redefinitions of the

form (8.19) allowing for derivatives was given in [237]. This is sufficient for our purposes

as we are only concerned with the integrands of scattering amplitudes. Note, however,

the well-known need to choose the counter-terms consistently, as emphasised in [237].

With this in mind, the simplest approach is to use dimensional regularisation, since (8.19)

produces a Jacobian which is then regulated to unity, see [238, 239] as well as [240, Sec-

tions 18.2.3–4].

We sum up the above discussion as follows.

Observation 8.6. A shift of a field by products of fields and their derivatives which do not

involve the field itself does not change the path integral measure. Local field redefinitions

that are trivial at linear order are quantum mechanically safe as they produce a Jacobian

that can be regulated to unity in dimensional regularisation.

Nakanishi–Lautrup field shifts and changes of gauge. Besides field redefinitions, we

also adjust our choice of gauge to link equivalent field theories. In particular, we can shift

the usual choice (4.16) for Rξ-gauge to

Ψ ÞÑ Ψ` Ξ with Ξ :“

ż

ddx c̄aYa . (8.20)

Here, Y a is of ghost number zero, and we limit ourselves to terms Y a that are independ-

ent of the Nakanishi–Lautrup field. The shift (8.20) leads to a shift of the gauge-fixed

Lagrangian (4.18) given by

L YM
BRST ÞÑ L YM

BRST `
δΞ

δAaµ
p∇µcqa `

g

2
fbc

a δΞ

δca
cbcc ´ ba

δΞ

δc̄a
. (8.21)

Evidently, this new Lagrangian is quantum-equivalent to the one with Y a “ 0, as we merely

chose to work in a different gauge.

Subsequently, we may perform the shift

ba ÞÑ ba ` Za (8.22)
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in the Nakanishi–Lautrup field with Za polynomials in the fields and their derivatives. The

combination of this shift and (8.20) results in

L YM
BRST ÞÑ L YM

BRST `
δΞ

δAaµ
p∇µcqa `

g

2
fbc

a δΞ

δca
cbcc `

`
ξ

2
ZaZ

a
` Zapξb

a
` B

µAaµq ´ pb
a
` Zaq

δΞ

δc̄a
.

(8.23)

We shall assume that Za is independent of the Nakanishi–Lautrup field as this will yield

a quantum-equivalent Lagrangian by Observation 8.6. We shall also assume that Za

depends at least quadratically on the other fields and their derivatives to preserve the

linearised BRST action on the BRST-extended Hilbert space introduced in Section 8.1..

Interaction terms linear in the Nakanishi–Lautrup fields. Let us now consider the

following special case: suppose that we are in Rξ-gauge and that our Lagrangian contains

a term ZaB
µAaµ with Za independent of the Nakanishi–Lautrup field and at least quad-

ratic in the fields and their derivatives. On the physical Hilbert space with transversely

polarised gluons, such expressions vanish. Off-shell, we can still remove such terms by the

shifts (8.22). Given the need to shift by Za, we can then iteratively construct a Y a which

cancels any new terms linear in ba, as is clear from (8.23). Explicitly, we solve the equation

0 “ ξZa ´
δΞ

δc̄a
“ ξZa ´ Ya ` c̄

b BYb
Bc̄a

` ¨ ¨ ¨ , (8.24)

where the ellipsis denotes terms containing partial derivatives with respect to derivatives

of the anti-ghost field c̄b. Clearly, for consistency, Y a needs to be at least quadratic in the

fields and their derivatives because Za is. We are left with the terms

´
ξ

2
ZaZ

a
`
δΞ

δAaµ
p∇µcqa `

g

2
fbc

a δΞ

δca
cbcc , (8.25)

which are either at least quartic in the fields or at least cubic in the fields, containing ghost

fields. The ability to remove any terms of the form ZapB
µAµq

a through local shifts of the

Nakanishi–Lautrup field, absorbing them into ba, and a compensating gauge choice is the

‘off-shell’ Lagrangian analogue of being able to impose that the on-shell external gluons

in an amplitude are transverse. We summarise as follows.

Observation 8.7. Interaction terms in the Lagrangian of degree n ě 3 of the form

ZapB
µAµq

a with Za independent of the Nakanishi–Lautrup field can be removed in Rξ-gauge
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by shifting the Nakanishi–Lautrup field according to (8.22). This creates the additional

terms (8.25) which do no modify the scattering amplitudes by Observation 8.6 and, in

addition, contribute only to interaction vertices of degree n with more ghost–anti-ghost

pairs or to interaction vertices of degree greater than n.

We also note that a shift of the gauge-fixing fermion by itself (8.20) allows us to absorb

physical terms proportional to the Nakanishi–Lautrup field without further affecting the

physical sector.

Observation 8.8. Terms in the action that are proportional to the Nakanishi–Lautrup

field can be absorbed by choosing a suitable term Y a. This leaves the physical sector

invariant but it may modify the ghost sector. Because Nakanishi–Lautrup fields appear

via trivial pairs in the BV action, this extends to general gauge theories, e.g. with several

Nakanishi–Lautrup fields and ghosts–for–ghosts.

Actions related by field redefinitions. Let us return to a general setting. Suppose that

we are given two classical field theories which are specified by local actions S and S̃, as

power series in the fields and their derivatives, whose corresponding L8-algebras have the

same minimal model, the same field content and the same kinetic parts.

Consider the cubic interaction terms L3 and L̃3 in S and S̃. Since the three-point

amplitudes agree, these interaction terms can differ at most in terms that vanish on ex-

ternal fields. Therefore, these terms have to be proportional to either the on-shell equation

for an external field or to a field with unphysical polarisation which is not contained in the

external fields. Both types of terms can be cancelled by a local field redefinition which

shifts the discrepancy into the quartic and higher interaction terms. Such field redefin-

itions constitute a quasi-isomorphism of L8-algebras and leaves the tree-level scattering

amplitudes unmodified. We are left with two theories with the same tree-level scattering

amplitudes and which agree to cubic order in the interaction terms.

The discrepancy between the total quartic terms of both field theories after the above

field redefinition is again invisible at the level of external fields, because the tree-level

scattering amplitudes still agree. We then compensate again by further field redefinitions,

shifting the discrepancy into quintic and higher interaction terms. In this way, we can

remove the differences between the Lagrangians order by order in the interaction vertices,

field-redefining the difference away to higher order interaction vertices. Since we are merely
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interested in perturbation theory, agreements to arbitrary finite orders are completely suf-

ficient.

Altogether, we can conclude that for the purpose of perturbative quantum field theory,

we can regard the actions S and S̃ to be related by local field redefinitions. In certain cases

it is even possible to give closed all order expression for (part of) the field redefinitions,

providing a formal non-perturbative equivalence.

Observation 8.9. If two field theories have the same tree-level scattering amplitudes,

then the minimal models of the corresponding L8-algebras coincide, cf. [52, 2]. If also the

associated actions are local and given by power series of the fields and their derivatives,

and have the same field content and kinetic parts, then they are related by local (invertible)

field redefinitions.

The explicit example of Yang–Mills theory may be instructive. Consider the action (7.10)

of Yang–Mills theory in Rξ-gauge with the field redefinitions (7.8) implemented as in Sec-

tion 7.2. and consider an action S̃ with the same fields, the same kinematic parts and

identical tree-level scattering amplitudes. The discrepancies in the interaction vertices at

each order are proportional to (at least) one of the terms

ÃÒ aµ ,
?

l b̃a ` ξ̃BµÃaµ , l Ãaµ , l c̃a , l ˜̄ca , and l b̃a . (8.26)

Given the BRST invariance, we can always exclude terms proportional to ÃÒ aµ , as these can

be absorbed by residual gauge transformations. Terms proportional to
?

lb̃a` ξ̃BµÃaµ can

be absorbed by a field redefinition of the Nakanishi–Lautrup field due to Observation 8.7.

All remaining differences are sums of terms proportional to l Ãaµ, l c̃a, l ˜̄ca, or l b̃a,

and they can be absorbed by iterative field redefinitions, starting with the three-point

amplitudes. There is an evident field redefinition of the relevant field, quadratic in the fields

and their derivatives, such that the kinetic term of redefined Yang–Mills theory produces

the difference in kinetic terms. Since such a field redefinition is a quasi-isomorphism of

the corresponding L8-algebras, it preserves the minimal model and thus the tree-level

amplitudes. Moreover, such a field redefinition is clearly local.

8.3. Strictification of Yang–Mills theory

Generalities. An important structure theorem for homotopy algebras is the strictification

theorem, cf. Section 2.4.. In particular, it implies that any L8-algebra is quasi-isomorphic
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to a strict L8-algebra, i.e. an L8-algebra with µi “ 0 for i ě 3, better known as a

differential graded Lie algebra.

From a field theory perspective, this implies that any classical field theory is equivalent

to a classical field theory with interaction terms which are all cubic in the fields. Gener-

ically, a strictifying quasi-isomorphism may produce non-local terms, but there is always

a systematic choice of strictification that is entirely local. This is quite evident for the

interactions of scalar fields, since we can ‘blow up’ n-ary vertices to cubic graphs with

edges corresponding to propagating auxiliary fields, cf. e.g. the discussions in [52, 2].

As a simple example of a strictification, consider the first-order formalism of Yang–Mills

theory on four-dimensional Euclidean space R4 [226], in which an additional self-dual two

form B` P Ω2
`pR

4q b g in the adjoint representation of the gauge Lie algebra is added to

the field content,

SYM1 :“

ż

d4x
!

1
2
εµνκλFaµνB

a
`κλ `

1
4
εµνκλB`aµνB

a
`κλ

)

. (8.27)

The L8-algebra corresponding to the full BV complex of this theory is indeed strict; see [31,

52] for a quasi-isomorphism between this L8-algebra and that of the ordinary, second-order

formulation of Yang–Mills theory.

Note, however, that the full strictification of gauge theories including ghosts is a bit

more involved: the equations of motion of the introduced auxiliary fields would be at

least quadratic in other fields, and if these transform in the adjoint representation or as

connections, the gauge transformations of auxiliary fields are at least cubic in fields and

ghosts, leading to quartic or higher terms in the BV action. The strictification theorem

still guarantees the existence of an equivalent formulation as a field theory with cubic

interaction vertices, but we may have to extend our field space not merely by adding

fields, but by switching e.g. to its loop space. This is due to the fact that cubic gauge

transformations in an L8-algebra are encoded in a µ3, which in turn corresponds to a

particular three-cocycle. The latter can be transgressed to a two-cocycle over loop space,

which merely corresponds to a Lie algebra extension and thus, is turned into a higher

product µ2. For fully gauge-fixed actions, however, this problem never arises.

We also note that the factorisation in the double copy is most easily performed in a

specific strictification1, which is not the first order formulation (8.27). Its precise form is

discussed in the following.

1It is actually a family of strictifications.
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Colour–kinematics-dual form and cubic diagrams. Recall from 1.3. that the tree-level

Yang–Mills amplitudes can be rearranged in colour–kinematics-dual form, which is by now

a well-established fact [85, 84, 241, 144, 242–246].

Observation 8.10. The tree amplitudes of Yang–Mills theory can be written in colour–

kinematics-dual form.

Explicitly, one can construct a Lagrangian whose Feynman diagrams generate colour–

kinematics-dual tree-level amplitudes of physical (transverse) gluons in Yang–Mills theory,

making colour–kinematics duality manifest at the Lagrangian level. This is achieved by

adding non-local interaction terms OpAnq, for all n ą 5, to the action that vanish identically

due to the colour Jacobi identity. The necessary terms were first constructed in [83] up

to six points. The algorithm of Tolotti–Weinzierl [160] is a prescription of how to find the

necessary terms to arbitrary order.

Since the new terms are identically zero they obviously leave the theory and amplitudes

invariant, but nonetheless change the individual kinematic numerators to realise colour–

kinematics duality. Moreover, the new terms can be rendered cubic and local through

the introduction of auxiliary fields [5], as demonstrated explicitly at five points in [83].

Roughly speaking, one starts from Yang–Mills theory and strictifies the already present

quartic interaction vertex by inserting an auxiliary field, redistributing the contributions to

ensure colour–kinematics duality for four-point amplitudes. The colour–kinematics duality

of the five-point amplitudes then requires a new interaction term OpA5q which vanishes due

to the Jacobi identity. This vertex is then strictified by inserting further auxiliary fields,

etc. The overall action is thus trivially equivalent to Yang–Mills theory. We note that

the form of the strictification is encoded in the action produced by the Tolotti–Weinzierl

algorithm. We shall be completely explicit below, but let us first summarise the situation.

Observation 8.11. Given tree-level physical gluon amplitudes in colour–kinematics-dual

form, there is a corresponding purely cubic Lagrangian whose Feynman diagrams (summed

over identical topologies) produce kinematic numerators satisfying the kinematic Jacobi

identities (1.14b).

To illustrate the strictification, let us consider the four- and five-point contributions,
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which were already computed in [83]:

L p4q
„ tr

 

rAµ, AνsrA
µ, Aνs

(

“ ´ηµνηκρηλσ B12
µ B

34
ν

tr
 

rAκ, AλsrAρ, Aσs
(

l12

,

L p5q
„ tr

"

rAν, Aρs
1

l

ˆ„

rBµAν, Aρs,
l

l
Aµ



`

`

„

rAρ, A
µ
s,

l

l
BµAν



`

„

rAµ, BµAνs,
l

l
Aρ

˙*

.

(8.28)

We immediately note that L p5q vanishes by the colour Jacobi identity. Its presence,

however, is required for the kinematic Jacobi identity to hold after factorisation.

As explained in 1.3., these terms reflect a ‘blow up’ of n-point interaction vertices into

trees with trivalent vertices and all symmetries taken into account:

n “ 4 :

1 3

2 4

,

1 2

3 4

,

1 2

4 3

,

n “ 5 :

1 3 4

2 5

,

1 4 3

2 5

, . . .

(8.29)

Here, an internal wavy line comes with a propagator in Feynman gauge 1
l

, while a dashed

line corresponds to the identity operator
l

l
.

The general Lagrangian at n-th order is then of the form

L pnq
“ fM1¨¨¨Mk

EM1
1 D1pE

M2
2 D2pE

M3
3 D3 ¨ ¨ ¨ qq , (8.30)

where Di stands for either 1
l

or
l

l
and the Mis are Lorentz multi-indices. Note that all

the Eis are polynomials of degree one or two in the fields. In the tree picture, the wave

operators in the denominator correspond precisely to the edges in the trees.

Strictification. To strictify the non-local action, we now iteratively insert auxiliary fields

GMn,Γ,i and Ḡn,Γ,iM for each operator Di . If we are dealing with an operator of the form
l

l
,
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we first use partial integration

EM1
1 l1 E

M2
2

l1

“ ´
pBµE

M1
1 qpBµEM2

2 q

l1

, (8.31)

where EMi is an arbitrary expression in the fields, derivatives, and auxiliary fields. We then

use the fact that the Lagrangians

EM1
1

l
E2
M (8.32a)

and

´ GMn,Γ,i l Ḡn,Γ,iM ` GMn,Γ,iE
2
M ` E

M
1 Ḡ

n,Γ,i
M (8.32b)

are physically equivalent after integrating out the auxiliary fields GMn,Γ,i and Ḡn,Γ,iM . We

iterate this process until all the inverse wave operators have been replaced in this manner.

We note that in each iteration, EM1 and E2
M are both polynomials of degree at least

two in the fields. Introducing the auxiliary fields reduces the polynomial degree at least

by one, and in the end, the action has indeed only cubic interaction terms and thus is a

strictification of the original action. We also note that two auxiliary fields can be combined

into one if they have identical equations of motion.

Homotopy algebraic perspective. The strictification LYM, st
BRST of the L8-algebra LYM

BRST

or, equivalently, of the colour–kinematics-dual action is nothing but a quasi-isomorphism

(see Section 2.3.)

φ : LYM
BRST Ñ LYM, st

BRST , (8.33)

and the map φ is given by

Ast
`

ÿ

n,Γ,i

Gn,Γ,i “ φ1pAq `
1
2
φ2pA,Aq ` ¨ ¨ ¨ “

ÿ

kě1

1
k!
φkpA, . . . , Aq , (8.34)

where Ast is the gauge potential in LYM, st,

Ast
“ φ1pAq , (8.35)

and the higher maps are such that Gn,Γ,i are given by their equations of motion, fully

reduced to expressions in the original gauge potential A.

Let us work out the details for the example of the fourth- and fifth-order terms (8.28).

The explicit form of the corresponding strictified Lagrangian is already found in [83],

L YM, st :“ 1
2

tr
 

Aµ lAµ
(

`L YM, st
4 `L YM, st

5 , (8.36a)
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with

L YM, st
4 :“ tr

!

´ 1
2
Gµνκ4,Γ,1 lG4,Γ,1

µνκ ´ gpBµAν `
1?
2
B
κG4,Γ,1

κµν qrA
µ, Aνs

)

,

L YM, st
5 :“ tr

!

Gµν5,Γ,1 l Ḡ5,Γ,1
µν ` Gµνκ5,Γ,2 l Ḡ5,Γ,2

µνκ ` G
µνκλ
5,Γ,3 l Ḡ5,Γ,3

µνκλ`

` gGµν5,Γ,1rAµ, Aνs ` gBµG
µνκ
5,Γ,2rAν, Aκs ´

g
2
BµG

µνκλ
5,Γ,3 rBrνAκs, Aλs `

` gḠµν5,Γ,1

`

1
2
rB
κḠ5,Γ,2

κλµ , B
λAνs ` rB

κḠ5,Γ,3
κλνrµ, A

λ
s
˘

)

.

(8.36b)

Consequently, the resulting quasi-isomorphism reads as

φ1pAq `
1
2
φ2pA,Aq `

1
3!
φ3pA,A,Aq “

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Asµ

G4,Γ,1
µνκ

G5,Γ,1
µν

Ḡ5,Γ,1
µν

Gµνκ5,Γ,2

Ḡ5,Γ,2
µνκ

Gµνκλ5,Γ,3

Ḡ5,Γ,3
µνκλ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Aµ
g

2 l
BµrAν, Aκs

´
g2

2 l

`

rrAλ, Aµs, B
λAνs ´ rrBrλAνs, Aµs, A

λs
˘

´
g
l
rAµ, Aνs

´
g2

2 l
Bµ
“

BνAλ,
1
l
rAκ, Aλs

‰

g
l
BµrAν, Aκs

´
g2

l
Bµ
“

Aν, 1
l
rAλ, Aκs

‰

´
g

2 l
BµrBrνAκs, Aλs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
(8.37)

Note that the decomposition into the images of the maps φi corresponds to the decom-

position of the image into monomials of power i in the fields.

Tree-level double copy. As reviewed in Section 1.3., the double copy of the kinematic

numerators in the scattering amplitudes of the strictified Yang–Mills theory produces the

tree-level scattering amplitudes of N “ 0 supergravity [81–83].

Observation 8.12. Double copying the Yang–Mills tree-level scattering amplitudes of phys-

ical gluons in colour–kinematics-dual form yields the physical tree-level scattering amp-

litudes of N “ 0 supergravity.

Compatibility with quantisation. It is clear that quantisation does not commute with

quasi-isomorphisms: classically equivalent field theories can have very different quantum

field theories. A simple example making this evident is the L8-algebra of Yang–Mills theory

LYM
BRST and one of its quasi-isomorphic minimal models LYM ˝

BRST. The vector space of LYM ˝
BRST is
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simply the free fields labelling external states in Yang–Mills scattering amplitudes, together

with some irrelevant cohomological remnants in the ghosts, Nakanishi–Lautrup fields, and

anti-ghosts. The tree-level scattering amplitudes of LYM
BRST are given by the higher products

of LYM ˝
BRST. They are also the tree-level scattering amplitudes of LYM ˝

BRST since there are no

propagating degrees of freedom left. Clearly, however, there are loop-level scattering

amplitudes in Yang–Mills theory which LYM
BRST can describe but which are absent in LYM ˝

BRST.

Thus, the quantum theories described by the quasi-isomorphic L8-algebras LYM
BRST and

LYM ˝
BRST differ.

Certainly, there are quasi-isomorphisms which are compatible with quantisation. In

particular, any quasi-isomorphism that corresponds to integrating out fields which appears

at most quadratically in the action are of this type: we can simply complete the square

in the path integral and perform the Gaußian integral. This amounts to replacing each

auxiliary field by the equation of motion.

This is precisely the case in the above strictification of Yang–Mills theory, and the

original formulation is quantum equivalent to its strictification. This is also clear at the

level of Feynman diagrams: as the kinematic terms are all of the form ´GMn,Γ,i l Ḡn,Γ,iM , each

auxiliary field propagates into precisely one other auxiliary field. Moreover, each auxiliary

field G appears in precisely one type of vertex and then only as one leg. That is, once a

propagator ends in one of the auxiliary fields, the continuation of the diagram at this end is

unique until all the remaining open legs are non-auxiliaries. There are no loops consisting

of purely auxiliary fields. All loops containing at least one gluon propagator are simply

contracted to gluon loops. It is thus clear that the degrees of freedom running around

loops in the strictified theory are the same as those running around in ordinary Yang–Mills

theory.

8.4. Colour–kinematics duality for unphysical states

The action and factorisation we have presented so far are the complete data to double

copy tree-level gauge theory amplitudes to gravity amplitudes. For the full double copy

at the loop level, however, we need to work a bit harder, as explained in our previous

paper [5].

So far, colour–kinematics duality is only ensured for all on-shell gluon states with

physical polarisation. Our goal will be to double copy arbitrary tree-level correlators, which
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can have unphysical polarisations of gluons as well as ghost states on external legs. We

therefore need to ensure that colour–kinematics duality holds more generally. In order to

establish the off-shell double copy it is sufficient to guarantee colour–kinematics duality

for on-shell states in the BRST-extended Hilbert space from Section 8.1..

Unphysical states. Colour–kinematics duality is not affected by forward-polarised gluons,

as these can be absorbed by residual gauge transformations. Furthermore, colour–kinematics

duality for backward-polarised gluons can be achieved by adding new terms to the action,

which are physically irrelevant since they are introduced only through the gauge-fixing

fermion. Colour–kinematics duality for ghosts is then achieved by transferring colour–

kinematics duality for longitudinal gluons to the ghost sector by Observation 8.2 via the

BRST Ward identities. We now explain the procedure in detail.

We perform the corrections order by order in the degree n of the vertices and for

each degree order by order in the number k of ghost–anti-ghost pairs. The first vertex

to consider is n “ 4, and we start at k “ 0. Colour–kinematics duality for four on-shell

gluons in the BRST-extended Hilbert space can only be violated by terms proportional to

ξba`BµAaµ and we can introduce a vertex compensating these violations in the Lagrangian.

We do this directly in a BRST-invariant fashion, and a short calculation shows that the

appropriate addition to the Lagrangian is

L YM, comp
n“4, k“0 “ ´ξ

"

bbAcµ
1

l

“

pB
νAdµqA

e
ν

‰

´ c̄bQBRST

ˆ

Acµ
1

l

“

pB
νAdµqA

e
ν

‰

˙*

fed
afacb .

(8.38)

Here, the first term compensates the colour–kinematics duality violating term for four

gluons and the second term renders the compensation BRST-invariant, thus ensuring

QBRSTL YM, corr
n“4, k“0 “ 0 . (8.39)

To show that these terms are indeed unphysical and that they do not modify the tree-

level correlation functions, we use Observation 8.7 and Observation 8.8: these terms are

produced by a shift (8.22) of the form

Za :“ ´Acµ
1

l

“

pB
νAdµqA

e
νq
‰

fed
bfbc

a and Y a :“
1

ξ
Za . (8.40)

We note that the terms in L YM, comp
n“4, k“0 come with a canonical strictification given by the

colour structure. This strictification then yields colour–kinematics-dual four-point gluon

amplitudes.
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The next case to consider is n “ 4, k “ 1. We now use Observation 8.4 to relate

the four-gluon correlation function to this correlation function, and, correspondingly, the

four-gluon tree-level correlator to the two gluon, one ghost-anti-ghost pair correlator. We

obtain colour–kinematics duality for amplitudes consisting of a ghost–anti-ghost pair as

well as two physically polarised gluons. Generalising the latter to two arbitrary gluons in

the BRST-extended Hilbert space, we expect colour–kinematics duality violating terms

proportional to ξba ` BµAaµ. It turns out that these terms happen to vanish and there is

nothing left to do. Note that if these terms had not vanished, we would have compensated

for them again by inserting physically irrelevant terms to the action in a BRST-invariant

fashion.

Observation 8.3 now immediately implies that the amplitudes for n “ 4, k “ 2 are

colour–kinematics-dual, because those for n “ 4, k “ 1 are.

So far, we constructed a strict Lagrangian for Yang–Mills theory with the same tree-

level scattering amplitudes for the BRST-extended Hilbert space as ordinary Yang–Mills

theory, but with a manifestly colour–kinematics-dual factorisation of the four-point amp-

litudes.

We now turn to n “ 5, k “ 0 and iterate our procedure in the evident fashion:

Step 1) Identify the colour–kinematics duality violating terms. They are necessarily pro-

portional to ξba ` BµAaµ.

Step 2) Compensate by inserting a corresponding non-local vertex. Complete the com-

pensating term to a BRST-invariant one, which may be deduced directly via the

gauge-fixing fermion.

Step 3) The colour structure of the vertices induces a canonical strictification, implement

this strictification.

Step 4) Use Observation 8.3 to transfer colour–kinematics duality to tree level correlators

with one more ghost–anti-ghost pair, but all other gluons physically polarised.

Step 5) Continue with Step 1), if there is room for backward-polarised gluons. Otherwise

turn to the next higher n-point scattering amplitudes.

The outcome of this construction is a strictified BRST action for Yang–Mills the-

ory which is perturbatively quantum equivalent to ordinary Yang–Mills theory and whose

scattering amplitudes come canonically factorised in colour–kinematics-dual form.
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We note that this action comes with a BRST operator which is cubic in the fields of

the BRST-extended Hilbert space, but of higher order in its action on the auxiliary fields

introduced in strictification.
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9
Double copy from factorisation of homotopy algebras

In this final Chapter we use the notion of twisted tensor products of differential graded

algebras to factorise the (strictified) L8 algebra associated to the full, interacting Yang–

Mills theory

L̃YM, st
BRST “ gb pKinst

bτ Scalq. (9.1)

Relying on the results exposed in the previous Chapters, we finally show that the double

copied theory

L̃DC
BRST “ Kinst

bτ pKin
st
bτ Scalq (9.2)

is perturbatively equivalent to N “ 0 supergravity.

The material in this Chapter is borrowed from [5, 6].

9.1. Biadjoint scalar field theory

Before discussing the factorisation of full Yang–Mills theory, let us examine the simpler

case of interacting biadjoint scalar field theory, cf. Section 4.2.. The factorisation of the

free theory cochain complexes (7.3) does not require any twist, and can be lifted to the

full (strict) L8-algebra

Lbiadj
BRST “ gb pḡbScalq. (9.3)

A technicality: in Equation (9.3) we have ḡ b Scal, the tensor product between ḡ and

Scal. While the tensor product between a Lie algebra and an L8-algebra (in general

not defined) does not appear in the list (6.1) of possible tensor product between strict

homotopy algebras, in this special case the product is well defined. Indeed, for nilpotent

L8-algebras, i.e. L8-algebras with µi ˝ µj “ 0, the product exists and yields a C8-algebra.
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The full L8-algebra is then obtained tensoring the latter by a Lie algebra, as exposed in

Section 6.1..

L8-algebra Scal. Explicitly, the L8-algebra Scal is built from the cochain complex (7.4),

Scal :“

˜

sx

Fr´1s
l
ÝÝÑ

s`x

Fr´2s

¸

, (9.4a)

and the only non-vanishing higher product beyond the differential µScal
1 is

µScal
2

ˆ
ż

ddx1 sx1
ϕ1px1q,

ż

ddx2 sx2
ϕ2px2q

˙

:“ λ

ż

ddx s`x ϕ1pxqϕ2pxq . (9.4b)

Evidently, Scal is nilpotent.

Factorisation. Following the prescription for the untwisted tensor product of strict ho-

motopy algebras from Section 6.1., we obtain the binary product

µ2pea b ēā b sx1
, eb b ēb̄ b sx2

q “ rea, ebs b rēā, ēb̄s b λδ
pdq
px1 ´ x2qs

`
x1
, (9.5)

which, together with the differential

µ1pea b ēā b sx1
q “ ea b ēā bl s`x1

, (9.6)

and the cyclic structure

xϕ,ϕ`y “

ż

ddx ϕaāpxqϕ`aāpxq , (9.7)

forms the cyclic L8-algebra Lbiadj
BRST. The homotopy Maurer–Cartan action of this L8-

algebra is then the action (4.5) of biadjoint scalar field theory,

Sbiadj
“ 1

2
xϕ,µ1pϕqy `

1
3!
xϕ,µ2pϕ,ϕqy

“

ż

ddx
!

1
2
ϕaā lϕaā ´ λ

3!
fabc fāb̄c̄ϕ

aāϕbb̄ϕcc̄
)

,
(9.8)

which verifies (9.3).
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9.2. Strictified Yang–Mills theory

General considerations. The strictification of Yang–Mills theory formulated in Sec-

tion 8.3. is now readily extended to a BV action, which can then be gauge fixed and

converted into a strict L8-algebra L̃YM, st
BRST .

The full strictification of Yang–Mills theory involves an infinite number of additional

auxiliary fields and corresponding interaction terms in the Lagrangian. Thus, our discussion

cannot be fully explicit and has to remain somewhat conceptual, but as before, we shall

give explicit lowest order terms to exemplify our discussion. Recall, however, that for

computing n-point correlation function at the tree-level, only a finite number of auxiliary

fields and interaction terms are necessary. Moreover, for computing n-point scattering

amplitudes up to ` loops, only a finite number of correlators is necessary. Therefore, we

can always truncate the Yang–Mills action to finitely many auxiliary fields to perform our

computations.

We note that gauge fixing of Yang–Mills theory is fully equivalent to gauge fixing of

the strictified theory. Moreover, the additional interaction vertices that arise from the BV

formalism are all cubic, except for the terms involving anti-fields of the auxiliary fields; the

latter, however, will not contribute.

The last point implies that the L8-algebra L̃YM, st
BRST for the strictified and gauge-fixed

form of Yang–Mills theory contains the cochain complex of the L8-algebra L̃YM
BRST which

we have computed in Section 4.3.. This cochain complex is enlarged by the kinematic

terms for all the auxiliary fields. We then have additional binary products encoding the

cubic interactions.

L8-algebra of Yang–Mills theory. We consider the strictification up to quartic terms,

as explained in Section 8.3.. By the arguments given there, however, it is clear that our

discussion trivially generalises to strictifications up to an arbitrary order. The Lagrangian,

including the strictification of the colour–kinematics duality producing terms (8.38), reads
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as

L YM, st
BRST, 4 “ 1

2
Ãaµ l Ãµa ´ ˜̄ca l c̃a ` 1

2
b̃a l b̃a ` ξ̃ b̃a

?
l BµÃ

µa
´ gfabc c̄

a
B
µ
pÃbµc̃

c
q´

´ 1
2
G̃µνκa l G̃aµνκ ` gfabc

´

BµÃ
a
ν `

1?
2
B
κG̃aκµν

¯

ÃµbÃνc ´

´ K̃µ
1a l ˜̄K1a

µ ´ K̃
µ
2a l ˜̄K2a

µ ´

´ gfabc

!

K̃aµ
1 pB

νÃbµqÃ
c
ν `

”´

´

b

l

ξ
b̃a ` 1´

?
1´ξ

?
ξ
B
κÃaκ

¯

Ãbµ ´ ˜̄caBµc̃b
ı

˜̄K1c
µ

)

`

` gfabc

!

K̃aµ
2

”

pB
ν
Bµc̃

b
qÃcν ` pB

νÃbµqBν c̃
c
ı

` ˜̄caÃbµ ˜̄K2c
µ

)

,

(9.9)

where Kaµ
i and K̄ai

µ are auxiliary g-valued one-forms, strictifying L YM, comp
BRST, n“4, k“0, and we

used the shorthand G̃aµνκ :“ G̃4,γ,1,a
µνκ . The field content is summarised in Table 9.1. Note

that Kaµ
1 and K̄a1

µ are of ghost number zero, while Kaµ
2 and K̄a2

µ carry ghost numbers

´1 and `1, respectively. The L8-algebra L̃YM, st
BRST to quartic order has underlying cochain

complex

pK̃aµ1 , ˜̄K1a
µ q

R
2 bΩ1pMdq b g

pK̃`aµ1 , ˜̄K1`a
µ q

R
2 bΩ1pMdq b g

G̃aµνκ

b3Ω1pMdq b g
G̃`aµνκ

b3Ω1pMdq b g

Ãaµ

Ω1pMdq b g
Ã`aµ

Ω1pMdq b g

b̃a

C8pMdq b g
b̃`a

C8pMdq b g

˜̄K2a
µ

Ω1pMdq b g
K̃`aµ2

Ω1pMdq b g
K̃aµ2

Ω1pMdq b g

˜̄K2`a
µ

Ω1pMdq b g

c̃a

C8
pM

d
q b g

loooooomoooooon

“: L̃YM, st
BRST, 0

˜̄c`a

C8
pM

d
q b g

loooooomoooooon

“: L̃YM, st
BRST, 1

˜̄ca

C8
pM

d
q b g

loooooomoooooon

“: L̃YM, st
BRST, 2

c̃`a

C8
pM

d
q b g

loooooomoooooon

“: L̃YM, st
BRST, 3

l

l

l

ξ̃
?

l Bµ

l

´ξ̃
?

l Bµ

´l ´l

´l ´l

(9.10a)
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Besides the differentials in (9.10a), we also have the following higher products

¨

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˚

˝

K̃aµ
1

˜̄K1a
µ

G̃aµνκ

Ãaµ

b̃

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

˜

˜̄K2a
µ

c̃a

¸

˛

‹

‹

‹

‹

‹

‹

‹

‚

µ2
ÞÝÝÑ gfbc

a

˜

pBνÃbµqBν c̃
c ´ ÃbνB

νBµc̃
c

´BµpÃbµc̃
cq ´ ˜̄Kb

1µpB
µc̃cq ` Ãbµ ˜̄K2c

µ

¸

P
à

φ P pK̃`2 , ˜̄c`q

L̃YM, st
BRST, 1, φ ,

(9.10b)

˜˜

˜̄K2a
µ

c̃a

¸

,

˜

K̃aµ
2

˜̄ca

¸¸

µ2
ÞÝÝÑ gfbc

a

˜

´pBµc̃bq˜̄cc

´ ˜̄K2b
µ

˜̄cc ` pBµBν c̃
bqK̃cν

2 ` BνpBν c̃
bK̃c

2µq ´ c̃
bBµ ˜̄cc

¸

P
à

φ P p ˜̄K`1 , Ã
`q

L̃YM, st
BRST, 1, φ ,

(9.10c)

¨

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˚

˝

K̃aµ
1

˜̄K1a
µ

G̃aµνκ

Ãaµ

b̃a

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˚

˝

K̃aµ
1

˜̄K1a
µ

G̃aµνκ

Ãaµ

b̃a

˛

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‚

µ2
ÞÝÝÑ gfbc

a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

2pBνÃbµqÃ
c
ν

2 1´
?

1´ξ
?
ξ
pBκÃbκqÃ

cµ ` 2
b

l

ξ
pÃbµb̃

cq
?

2BµpÃ
b
νÃ

c
κq

RÃ
`

bcµ

´2
b

l

ξ

` ˜̄K1b
µ Ã

cµ
˘

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

P
à

φ P pK̃`1 ,
˜̄K1`, G̃`, Ã`,b̃`q

L̃YM, st
BRST, 2, φ ,

RÃ
`

bcµ :“ ´3!BνpÃbνÃ
c
µq ´

?
8ÃνbBκG̃cκνµ ´ 4K̃bν

1 BµÃ
c
ν ´

´ 4
1´

?
1´ ξ

?
ξ

pB
κÃbκq

˜̄K1c
µ ` 2 ˜̄K1b

µ

c

l

ξ
b̃c ,

(9.10d)
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and

¨

˚

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˚

˝

K̃aµ
1

˜̄K1a
µ

G̃aµνκ

Ãaµ

b̃a

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

˜

K̃2a
µ

˜̄ca

¸

˛

‹

‹

‹

‹

‹

‹

‹

‚

µ2
ÞÝÝÑ gfbc

a

˜

Ãbµ ˜̄cc

´ÃbµB
µ ˜̄cc ´ Bµp ˜̄K1b

µ
˜̄ccq ` BνBµpÃ

b
νK̃

cµ
2 q

¸

P
à

φ P p ˜̄K2`, c̃`q

L̃YM, st
BRST, 1, φ ,

(9.10e)

and the cyclic structure is given by

xÃ, Ã`y :“

ż

ddx ÃaµÃ
`µ
a , xb̃, b̃`y :“

ż

ddx b̃ab̃`a ,

xc̃ , c̃`y :“

ż

ddx c̃ac̃`a , x˜̄c, ˜̄c`y :“ ´

ż

ddx ˜̄ca ˜̄c`a ,

xK̃1, K̃
`
1 y :“ ´

ż

ddx K̃aµ
1 K̃

`
1aµ , x ˜̄K1, ˜̄K1`

y :“ ´

ż

ddx ˜̄K1a
µ

˜̄K1`µ
a ,

xK̃2, K̃
`
2 y :“ ´

ż

ddx K̃aµ
2 K̃

`
2aµ , x ˜̄K2, ˜̄K2`

y :“

ż

ddx ˜̄K2a
µ

˜̄K2`µ
a ,

xG̃, G̃`y :“ ´

ż

ddx G̃aµνκG̃
`µνκ
a .

(9.10f)

Factorisation and twist datum. We factorise this L8-algebra as

L̃YM, st
BRST “ gb pKinst

bτ Scalq , (9.11)

where g is the usual colour Lie algebra, Kinst the graded vector space

Kinst :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

t̄
µ
2

M
d

‘
g

Rr1s
loomoon

“:Kinst
´1

‘

t1
µ, t̄

µ
1

M
d ‘Md

‘

t
µνκ
0

M
d b pMd ^Mdq

‘
vµ

M
d

‘

R
n

looooooooooomooooooooooon

“:Kinst
0

‘

t2
µ

M
d

‘
a

Rr´1s
looomooon

“:Kinst
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (9.12)
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and Scal the L8-algebra defined in (9.4). This L8-algebra is cyclic with the inner products

given by (7.17) together with

xt1
µ, t̄

ν
1y :“ ´δνµ , xt̄ν1, t

1
µy :“ ´δνµ , xt2

µ, t̄
ν
2y :“ δνµ , xt̄ν2, t

2
µy :“ δνµ ,

xtµνκ0 , tλρσ0 y :“ ´1
2
ηµλpηνρηκσ ´ ηνσηκρq .

(9.13)

fields anti-fields

factorisation | ´ |gh | ´ |L dim factorisation | ´ |gh | ´ |L dim

c̃ “ eagsx c̃
apxq 1 0 d

2
´ 2 c̃` “ eaas

`
x c̃

`apxq ´2 3 d
2
` 2

Ã “ eav
µsx Ã

a
µpxq 0 1 d

2
´ 1 Ã` “ eav

µs`x Ã
`a
µ pxq ´1 2 d

2
` 1

b̃ “ eansx b̃
apxq 0 1 d

2
´ 1 b̃` “ eans

`
x b̃

`apxq ´1 2 d
2
` 1

˜̄c “ eaasx ˜̄capxq ´1 2 d
2

˜̄c` “ eags
`
x

˜̄c`apxq 0 1 d
2

K̃1 “ eat
1
µsxK̃

µ
1 pxq 0 1 d

2
´ 1 K̃`1 “ eat

1
µs
`
x K̃

`aµ
1 pxq ´1 2 d

2
´ 1

˜̄K1 “ eat̄
µ
1sx

˜̄K1a
µ pxq 0 1 d

2
´ 1 ˜̄K1` “ eat̄

µ
1s
`
x

˜̄K1`a
µ pxq ´1 2 d

2
´ 1

K̃2 “ eat
2
µsxK̃

µ
2 pxq ´1 2 d

2
´ 1 K̃`2 “ eat

2
µs
`
x K̃

`aµ
2 pxq 0 1 d

2
´ 1

˜̄K2 “ eat̄
µ
2sx

˜̄K2a
µ pxq 1 0 d

2
´ 1 ˜̄K2` “ eat̄

µ
2s
`
x

˜̄K2`a
µ pxq ´2 3 d

2
´ 1

G̃ “ eat
µνκ
0 sx G̃

a
µνκpxq 0 1 d

2
´ 1 G̃` “ eat

µνκ
0 s`x G̃

`a
µνκpxq ´1 2 d

2
´ 1

Table 9.1: Factorisation of the fields in the L8-algebra corresponding to the Lagrangian

L YM, st
BRST, 4. Note that we suppressed the integrals over x and the tensor products for sim-

plicity.

The twist datum τ , see (6.20) for the general definition, in the factorisation (9.11) is

then given by the maps

τ1pgq :“ gbid ,

τ1pt
i
µq :“ tiµ b id , τ1pt̄

µ
i q :“ t̄µi b id ,

τ1pt
µνκ
0 q :“ tµνκ0 b id ,

τ1pv
µq :“ vµ b id` ξ̃nbl ´ 1

2Bµ ,

τ1pnq :“ nb id´ ξ̃vµ bl ´ 1
2Bµ ,

τ1paq :“ abid (9.14a)

and

τ2pg, v
µ
q :“ ´gb pidb Bµ ` Bµ b idq ` tµ2 b pB

ν
b Bν ´ B

µ
Bν b idq ,

τ2pv
µ, gq :“ gb pidb Bµ ` Bµ b idq ´ tµ2 b pB

ν
b Bν ´ idb BµBνq ,

τ2pg, t̄
1
µq :“ ´gb Bµ b id ,

τ2pt̄
1
µ, gq :“ gb idb Bµ ,
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142 9.2. Strictified Yang–Mills theory

τ2pt̄
µ
2 , v

ν
q :“ ηµνgb idb id ,

τ2pv
µ, t̄ν2q :“ ´ηµνgb idb id ,

τ2pg, aq :“ vµ b idb Bµ ` t̄
µ
1 b Bµ b id ,

τ2pa, gq :“ ´vµ b Bµ b id´ t̄µ1 b idb Bµ ,

τ2pt̄
µ
2 , aq :“ vµ b idb id ,

τ2pa, t̄
µ
2 q :“ ´vµ b idb id ,

τ2pg, t
µ
2 q :“ ´vν b BνB

µ
b id´ vµ blbid´ vµ b Bν b B

ν ,

τ2pt
µ
2 , gq :“ vν b idb BνB

µ
` vµ b idbl`vµ b Bν b B

ν ,

τ2pv
µ, aq :“ ´t̄2

µ b idb id` ab idb Bµ ,

τ2pa, v
µ
q :“ t̄2

µ b idb id´ ab Bµ b id ,

τ2pt̄
µ
1 , aq :“ ab pBµ b id` idb Bµq , (9.14b)

τ2pa, t̄
µ
1 q :“ ´ab pBµ b id` idb Bµq ,

τ2pv
µ, tν2q :“ ´ab pBµBν b id` Bµ b Bν ` Bν b Bµ ` idb BµBνq ,

τ2pt
µ
2 , v

ν
q :“ ab pBµBν b id` Bµ b Bν ` Bν b Bµ ` idb BµBνq ,

τ2pv
µ, vνq :“ tµ1 b B

ν
b id´ tν1 b idb Bµ`

`
1´

?
1´ ξ

?
ξ

`

t̄ν1 b B
µ
b id´ t̄µ1 b idb Bν

˘

´

´ 3
”

vν b pBµ b id` idb Bµq ´ vµ b pBν b id` idb Bνq
ı

`

`
?

2
`

tκµν0 b Bκ b id` tκµν0 b idb Bκ
˘

,

τ2pv
µ, nq :“ t̄µ1 b

c

l

ξ

p1q

b

c

l

ξ

p2q

,

τ2pn, v
µ
q :“ ´t̄µ1 b

c

l

ξ

p1q

b

c

l

ξ

p2q

,

τ2pv
µ, tνκλ0 q :“ ´

?
2

2

`

ηµκvλ b idb Bν ´ ηµλvκ b idb Bν
˘

,

τ2pt
νκλ
0 , vµq :“

?
2

2

`

ηµκvλ b Bν b id´ ηµλvκ b Bν b id
˘

,

τ2pt
µ
1 , v

ν
q :“ ´2ηµνvκ b idb Bκ ,

τ2pv
ν, tµ1 q :“ 2ηµνvκ b Bκ b id ,

τ2pv
ν, t̄µ1 q :“ ´2

1´
?

1´ ξ
?
ξ

vµ b Bν b id` ηµνnb

c

l

ξ

p1q

b

c

l

ξ

p2q

,
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τ2pt̄
µ
1 , v

ν
q :“ 2

1´
?

1´ ξ
?
ξ

vµ b idb Bν ´ ηµνnb

c

l

ξ

p1q

b

c

l

ξ

p2q

,

τ2pt̄
µ
1 , nq :“ vµ b idb

c

l

ξ
,

τ2pn, t̄
µ
1 q :“ ´vµ b

c

l

ξ
b id ,

where we defined
˜

c

l

ξ

p1q

b

c

l

ξ

p2q
¸

pf b gq :“

c

l

ξ
pf gq . (9.14c)

We note that the twisted tensor product Kinst
bτ Scal is a (strict) C8-algebra, which

becomes an L8-algebra after the tensor product with the colour Lie algebra g; see Sec-

tion 6.1. for details.

9.3. BRST Lagrangian double copy

A key feature of our double copy prescription based on factorisations of the L8-algebras

of gauge-fixed BRST Lagrangians is that not only the action but also the BRST operator

double copies. This fact guarantees that the double copy creates the appropriate gauge-

fixing sectors which is crucial in considering the double copy at the loop level. In the

following, we give a general discussion of what we called the BRST Lagrangian double

copy in [5].

Strictification of BRST-invariant actions. As discussed in Section 8.3., any field theory

can be strictified to a classically equivalent field theory with purely cubic interaction terms,

and this equivalence extends to the quantum level. Consider a general strictified field theory

S “
1

2
ΦIgIJΦJ

`
1

3!
ΦIfIJKΦJΦK , (9.15)

where gIJ and fIJK are some structure constants. As in Section 3.1., I, J, . . . are DeWitt

indices that include labels for the field species, the gauge and Lorentz representations, as

well as the space-time position.

Let us now consider a theory which is invariant under a gauge symmetry. We extend the

action of this theory to its BV form by including ghosts, anti-ghosts, and the Nakanishi–

Lautrup field, as done in Chapter 4. We then strictify the full BV action to an action with
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144 9.3. BRST Lagrangian double copy

cubic interaction vertices. Restricting to gauge-fixing fermions which are quadratic in the

fields1 guarantees that the action remains cubic after gauge fixing. The resulting BRST

operator QBRST, given by (3.17c), is then automatically at most quadratic in the fields,

and we can write

ΦI QBRST
ÞÝÝÝÝÑ QIJΦJ

`
1

2
QIJKΦJΦK (9.16)

for some structure constants QIJ and QIJK.

V V̄

Biadjoint scalar field theory g ḡ

Yang–Mills theory g Kin

N “ 0 supergravity Kin Kin

Table 9.2: Factors appearing in the field space factorisation (9.17) with Kin given in (7.16)

and g and ḡ the colour Lie algebras.

Factorisation of structure constants. As indicated previously, the key to the double

copy is the factorisation of the field space L into

L :“ Vb V̄b C8
pM

d
q , (9.17)

where V and V̄ are two (graded) vector spaces. In our preceeding discussion, we have

encountered the three examples in Table 9.2. Consequently, in our formulas, we shall split

the multi indices into triples, that is, I “ pα, ᾱ, xq, and write (see e.g. (3.12b))

pLr1sq˚ b L Q a “ ΦI
b eI “

ż

ddx Φαᾱ
pxq b peα b ēᾱ b sxq . (9.18)

We also demand that the structure constants gIJ and fIJK that appear in the action (9.15)

as well as the structure constants QIJ and QIJK that appear in the BRST operator (9.16)

are local in the sense that they vanish unless all the space-time points in the multi-indices

agree.

We write

gIJ “: gαβ ḡᾱβ̄ l , (9.19)

1This is the case for all explicit gauge-fixing fermions used in this paper.

Tommaso Macrelli



9.3. BRST Lagrangian double copy 145

where gαβ and ḡᾱβ̄ are differential operators, mapping C8pMdq to itself. In more detail,

we have

gIJΦJ
”

ż

ddy gpα,ᾱ,xq;pβ,β̄,yqΦ
ββ̄,y

“

ż

ddy

ż

ddz gαβpx, y qḡᾱβ̄py , zql Φββ̄,z , (9.20a)

where the integral kernels are of the fom

gαβpx, y q “ δpdqpx ´ y qgαβpxq and ḡᾱβ̄py , zq “ δpdqpy ´ zqḡᾱβ̄py q (9.20b)

due to our assumption about locality, and we assume that gαβpxq and ḡᾱβ̄py q are invertible.

Analogously, we write

fIJK “ fpα,ᾱ,xq;pβ,β̄,yq;pγ,γ̄,zq “: p fαβγ f̄ᾱβ̄γ̄ , (9.20c)

where fαβγ and f̄ᾱβ̄γ̄ are bi-differential operators C8pMdqbC8pMdq Ñ C8pMdqbC8pMdq

and

p : C8
pM

d
q b C8

pM
d
q Ñ C8

pM
d
q (9.20d)

is the natural diagonal product of functions. For the integral kernels of fαβγ and f̄ᾱβ̄γ̄ we

have again the locality condition

fαβγpx1, x2; y1, y2q “ δpdqpx1 ´ y1qδ
pdq
px2 ´ y2qfαβγpy1, y2q ,

f̄ᾱβ̄γ̄px1, x2; y1, y2q “ δpdqpx1 ´ y1qδ
pdq
px2 ´ y2q̄fᾱβ̄γ̄py1, y2q .

(9.20e)

We note that there is some ambiguity in the definition (9.20c) due to the projection onto

the diagonal involved in p, but this redundancy never arises in any formula. To give a

clearer picture of what the above construction is doing, we can expand the fαβγ and the

f̄ᾱβ̄γ̄ further in a basis of differential operators BM for M a Lorentz multiindex, and we have

pp fαβγ f̄ᾱβ̄γ̄qpΦbΦq “ fαβM1γM2
f̄ᾱβ̄N1γ̄N2

pB
M1B

N1Φββ̄
qpB

M2B
N2Φγγ̄

q . (9.21)

For convenience, we also introduce the operators fαβγ and f̄ᾱ
β̄γ̄

by

p fαβγ “: gαδ p f
δ
βγ and p f̄ᾱβ̄γ̄ “: ḡᾱδ̄ p f̄

δ̄
β̄γ̄ , (9.22)

which is possible due to the invertibility of gαβ and ḡᾱβ̄ as well as the form of the integral

kernels (9.20e) . Evidently, fαβγ and f̄ᾱ
β̄γ̄

are again bi-differential operators, just as fαβγ and

f̄ᾱβ̄γ̄.
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With the factorisation restriction, the action (9.15) becomes

S “

ż

ddx

"

1

2
Φαᾱgαβ ḡᾱβ̄ l Φββ̄

`
1

3!
Φαᾱ

pp fαβγ f̄ᾱβ̄γ̄qpΦ
ββ̄
bΦγγ̄

q

*

. (9.23)

For the BRST operator QBRST, the factorisation of indices and the linearity of QBRST imply

the decomposition

QBRST “: qBRST ` q̄BRST , (9.24)

where qBRST and q̄BRST are BRST operators acting in a non-trivial way on the factors

V b C8pMdq and V̄ b C8pMdq in the factorisation (9.18), respectively. By this, we

mean that the structure constants QIJ and QIJK decompose as QIJ Ñ pqIJ, q̄
I
Jq and QIJK Ñ

pqIJK, q̄
I
JKq. More explicitly,

q
pα,ᾱ,xq

pβ,β̄,yq
“ δpdqpx ´ y qqαβ pxqδ

ᾱ
β̄ , q

pα,ᾱ,xq

pβ,β̄,yq;pγ,γ̄,zq
“ δpdqpx ´ y qδpdqpx ´ zqqαβγpx q̄f

ᾱ
β̄γ̄pxq ,

q̄
pα,ᾱ,xq

pβ,β̄,yq
“ δpdqpx ´ y qδαβ q̄

ᾱ
β̄ pxq , q̄

pα,ᾱ,xq

pβ,β̄,yq;pγ,γ̄,zq
“ δpdqpx ´ y qδpdqpx ´ zqfαβγpxqq̄

ᾱ
β̄γ̄pxq ,

(9.25)

where qαβ and q̄ᾱ
β̄

are differential operators and qαβγ and q̄ᾱ
β̄γ̄

are again bi-differential oper-

ators, just as fαβγ and f̄ᾱ
β̄γ̄

, with locality again restricting their integral kernels. Note that in

this splitting, the association of terms of the form δpdqpx ´ y qδαβ δ
ᾱ
β̄

and δpdqpx ´ y qδpdqpx ´

zqfαβγpy , z q̄f
ᾱ
β̄γ̄
py , zq is not unique; we assign half of each of these terms to pqIJ, q

I
JKq and

half to pq̄IJ, q̄
I
JKq.

Example. To make our rather abstract discussion more concrete, let us briefly consider

the case of Yang–Mills theory (4.12). We refrain from discussing the details of the stricti-

fication of the BV action, but it is clear that V “ g and V̄ “ Kin1 with Kin1 some extension

of Kin allowing for auxiliary fields, similar to Kinst defined in (9.13). It is then also clear

that gαβ and fαβγ are the Killing form and the structure constants of the gauge Lie algebra

g.

On Kin1, the integral kernel for the differential operator ḡµν is given by

ḡµν “ ηµν ´
1

l
BµBν . (9.26)

We note that qαβ “ 0 and q̄ᾱ
β̄

is only non-trivial for ᾱ labelling ghost and Nakanishi–Lautrup

fields, and β̄ labelling the gauge potential and the anti-ghost field, all colour-stripped.

Working out all other structure constants is a straightforward but tedious process; since

no more insights would be obtained from it, we refrain from listing them here. We only

note that for Yang–Mills theory, the ambiguity in assigning terms to q and q̄ is absent.
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Double copy. We now note that the decomposition of the Lagrangian matches precisely

the decomposition of scattering amplitudes in the discussion of colour–kinematics duality,

cf. Section 1.3., which is the starting point for the double copy. We merely extended the

factorisation of the interaction vertices to a factorisation of the whole BRST structure.

In the usual double copy, we start from the factorisation for Yang–Mills theory and

replace the colour factor by a kinematic factor. More generally, however, we can certainly

replace any one of the (graded) vector spaces V and V̄ and the corresponding struc-

ture constants with (graded) vector spaces and structure constants from other theories.

This gives us a new action, which we shall denote by S̃DC
BRST. The corresponding BRST

operator Q̃DC
BRST is obtained by replacing one set of kinematic structure constants in the

decomposition of the BRST operator (9.23) with those from the new factor.

BRST Lagrangian double copy. In order to obtain a consistent and quantisable theory,

we demand the new BRST structure to be consistent. Specifically,

Q̃DC
BRSTS̃

DC
BRST “ 0 and pQ̃DC

BRSTq
2
“ 0 . (9.27)

By construction, we have again a decomposition Q̃DC
BRST “: q̃DC

BRST ` ˜̄qDC
BRST. The condition

Q2
BRST “ 0 implies q2

BRST “ 0, and we decompose the latter into linear, quadratic, and

cubic terms in the fields,

q2
BRSTΦ¨¨¨

“: q
p2,0q
1 ` q

p2,0q
2 ` q

p2,0q
3 , (9.28)

and analogously for q̄2
BRST, pq̃DC

BRSTq
2, and p ˜̄qDC

BRSTq
2, respectively. Schematically, the sum-

mands read as

q
p2,0q
1 “ ¨ ¨ ¨ qαβq

β
γ ¨ ¨ ¨ ,

q
p2,0q
2 “ ¨ ¨ ¨ pqαδ q

δ
βγ ` qδβq

α
δγ ˘ qδγq

α
βδ q̄f

ᾱ
β̄γ̄ ¨ ¨ ¨ ,

q
p2,0q
3 “ ¨ ¨ ¨ pqεβγq

α
εδ f̄

ε̄
β̄γ̄ f̄

ᾱ
ε̄δ̄ ˘ qεβγq

α
δεf̄

ε̄
β̄γ̄ f̄

ᾱ
δ̄ε̄q ¨ ¨ ¨ ,

(9.29a)

and

q̃
p2,0q
1 “ ¨ ¨ ¨ qαβq

β
γ ¨ ¨ ¨ ,

q̃
p2,0q
2 “ ¨ ¨ ¨ pqαδ q

δ
βγ ` qδβq

α
δγ ˘ qδγq

α
βδ q̃̄f

ᾱ
β̄γ̄ ¨ ¨ ¨ ,

q̃
p2,0q
3 “ ¨ ¨ ¨ pqεβγq

α
εδ

˜̄f ε̄β̄γ̄
˜̄fᾱε̄δ̄ ˘ qεβγq

α
δε

˜̄f ε̄β̄γ̄
˜̄fᾱδ̄ε̄q ¨ ¨ ¨ ,

(9.29b)

where f̃αβγ and ˜̄fᾱ
β̄γ̄

denote the kinematic constants in S̃DC
BRST. It is now clear that q̃

p2,0q
1 and

q̃
p2,0q
2 vanish if q2

BRST “ 0 and thus, q
p2,0q
1 and q

p2,0q
2 vanish on arbitrary fields.
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So far, our discussion was fairly general and nothing singled out colour–kinematics-dual

theories from other theories. This changes with the condition that q
p2,0q
3 “ 0 must imply

q̃
p2,0q
3 “ 0. Vanishing of q

p2,0q
3 relies on a transfer of the symmetry properties of the open

indices of f̄ ε̄
β̄γ̄
f̄ᾱ
ε̄δ̄

and f̄ ε̄
β̄γ̄
f̄ᾱ
δ̄ε̄

via the contracting fields (in which the expression is totally

symmetric) to qεβγq
α
εδ and qεβγq

α
δε. It follows that if the symmetry properties of the open

indices in the terms quadratic in f̄ᾱ
β̄γ̄

are the same as for the terms quadratic in ˜̄fᾱ
β̄γ̄

then

q̃
p2,0q
3 “ 0. The colour–kinematics duality provides such a condition.

The same argument shows that p ˜̄qDC
BRSTq

2 “ 0, and we can directly turn to the cross

terms and split them again into linear, quadratic, and cubic pieces,

pqBRSTq̄BRST ` q̄BRSTqBRSTqΦ
¨¨¨
“: q

p1,1q
1 ` q

p1,1q
2 ` q

p1,1q
3 , (9.30a)

and

pq̃DC
BRST

˜̄qDC
BRST ` ˜̄qDC

BRSTq̃
DC
BRSTqΦ

¨¨¨
“: q̃

p1,1q
1 ` q̃

p1,1q
2 ` q̃

p1,1q
3 . (9.30b)

We note that the conditions q
p1,1q
1 “ 0 and q̃

p1,1q
1 “ 0 are implied directly when q1 and

q̄1 and q̃1 and ˜̄q1 anti-commute, respectively, which is always the case in the theories we

study. Moreover, we have, again schematically, the conditions

q
p1,1q
2 “ ¨ ¨ ¨ qαβγpq̄

ᾱ
δ̄ f̄
δ̄
β̄γ̄ ˘ q̄δ̄β̄ f̄

ᾱ
δ̄γ̄ ˘ q̄δ̄γ̄ f̄

ᾱ
β̄δ̄q ¨ ¨ ¨ ` ¨ ¨ ¨ q̄

ᾱ
β̄γ̄pq

α
δ f
δ
βγ ˘ qδβf

α
δγ ˘ qδγf

α
βδq ¨ ¨ ¨ ,

q
p1,1q
3 “ ¨ ¨ ¨ pqαεδ f̄

ᾱ
ε̄δ̄f

ε
βγ q̄

ε̄
β̄γ̄ ˘ qαβεf̄

ᾱ
β̄ε̄f

ε
γδq̄

ε̄
γ̄δ̄ ˘ fαεδq̄

ᾱ
ε̄δ̄q

ε
βγ f̄

ε̄
β̄γ̄ ˘ fαβεq̄

ᾱ
β̄ε̄q

ε
γδ f̄

ε̄
γ̄δ̄q ¨ ¨ ¨ .

(9.31)

We see that q
p1,1q
2 “ 0 splits into two separate conditions on the indices in V and V̄ and

thus it implies q̃
p1,1q
2 “ 0. The condition q̃

p1,1q
3 “ 0 can, in principle, be non-trivial, but

again colour–kinematics duality as well as the special form of the BRST operator in the

theories in which we are interested renders q̃
p1,1q
3 “ 0 equivalent to q

p1,1q
3 “ 0.

Finally, we have to check that Q̃DC
BRSTS̃

DC
BRST “ 0, and we consider

qBRSTS “: s
p1,0q
2 ` s

p1,0q
3 ` s

p1,0q
4 , (9.32)

where s
p1,0q
2 , s

p1,0q
3 , and s

p1,0q
4 are quadratic, cubic, and quartic in the fields. Analogously,

we have q̃DC
BRSTS̃

DC
BRST “: s̃

p1,0q
2 ` s̃

p1,0q
3 ` s̃

p1,0q
4 , and the discussion for q̄BRST and ˜̄qDC

BRST is

similar. Schematically, we compute

s
p1,0q
2 “

ż

ddx ¨ ¨ ¨ pqγαgγβ ḡᾱβ̄ lq ¨ ¨ ¨ ,

s
p1,0q
3 “

ż

ddx ¨ ¨ ¨ pgαδ l qδβγ ` fαδγq
δ
β ` fαβδq

δ
β q̄fᾱβ̄γ̄ ¨ ¨ ¨ ,

s
p1,0q
4 “

ż

ddx ¨ ¨ ¨ pfαεδq
ε
βγ f̄ᾱε̄δ̄ f̄

ε̄
β̄γ̄ ` fαβεq

ε
γδ f̄ᾱβ̄ε̄f̄

ε̄
γ̄δ̄q ¨ ¨ ¨ ,

(9.33)
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where we have assumed that qBRST commutes with the differential and bi-differential

operators in the action, which is the case in all our theories. We see that s
p1,0q
2 “ 0

and s
p1,0q
3 “ 0 imply s̃

p1,0q
2 “ 0 and s̃

p1,0q
3 “ 0, respectively. The relation s̃

p1,0q
4 “ 0 can, in

principle, lead to additional conditions. In a theory with colour–kinematics duality, however,

the contraction of the kinematic structure constants f̄ᾱ
β̄γ̄

appears as in the Jacobi identity,

and s
p1,0q
4 as well as s̃

p1,0q
4 vanish automatically.

In general, if we have a theory where Q2
BRST “ 0, QBRSTS “ 0 are satisfied only because

of the algebraic properties of the structure constants, and if we replace a set of structure

constants with a new set of structure constants that obey the same algebraic properties

of the old ones, we obtain an action S̃ and a BRST operator Q̃BRST such that Q̃2
BRST “ 0,

Q̃BRSTS̃ “ 0. Colour–kinematic duality provides precisely this condition.

Partial BRST Lagrangian double copy. There are few theories where we expect the

BRST Lagrangian double copy to work perfectly. The reason is that in most formulations,

colour–kinematics duality will not hold. In Yang–Mills theory, for example, it is not known

if colour–kinematics duality can be made manifest for off-shell fields.1

Now if colour–kinematics duality fails to hold up to certain terms, say the ideal of

functions of the fields vanishing on-shell as in the case of Yang–Mills theory, then the

equation Q̃DC
BRSTS̃

DC
BRST “ 0 will also fail to hold up to the same ideal. Consequently,

Q̃DC
BRSTS̃

DC
BRST is a product of factors whose vanishing amounts to the equations of motion

possibly multiplied by other fields and their derivatives.

9.4. BRST Lagrangian double copy of Yang–Mills theory

After the above general discussion, we now focus our attention on the instance of BRST

Lagrangian double copy that constitute the main object of our interest:

L̃DC
BRST :“ Kinst

bτ pKin
st
bτ Scalq , (9.34)

where Kinst is given in Equation (9.12) and Scal in Equation (9.4), respectively.

1Recall that we only extended colour–kinematics to the BRST-extended Hilbert space in Section 8.4.,

but with all fields still on-shell.
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Field content. From the analysis at the level of cochain complexes in Section 7.5., we

already know that the field content of double-copied BRST-extended Hilbert space of

Yang–Mills theory agrees with the field content of the BRST-extended Hilbert space of

N “ 0 supergravity. We shall continue to label fields as in Table 7.5.

However, when we consider the homotopy algebra associated to the full, interactive

picture, we have an additional infinite tower of auxiliary fields, coming from the infinitely

many additional auxiliary fields of colour–kinematics duality preserving, strictified Yang–

Mills theory. In Chapter 8, we wrote explicitly five of the auxiliary fields in Yang–Mills

theory,

K̃aµ
1 , ˜̄Kaµ

1 , Gaµνκ , K̃2a
µ , ˜̄K2a

µ , (9.35)

which correspond to the additional basis elements

t1
µ , t̄µ1 , tµνκ0 , t2

µ , t̄µ2 (9.36)

in Kinst. From them, the tensor product (9.34) produces 40 auxiliary fields involving one

auxiliary kinetic factor and another 25 auxiliary fields involving two auxiliary kinetic factors.

Instead of giving these auxiliary fields individual labels, we collectively denote them by k1
Υk2

,

where k1 and k2 denote the first and second kinematic factors, respectively. For example,

gΥg :“ gb gb

ˆ
ż

ddx sxϕ
gg
pxq

˙

“ λ̃ ,

vΥv :“ ea b v
µ
b vν b

ˆ
ż

ddx sxϕ
vv
µνpxq

˙

“ h̃ ` B̃ ,

t1Υt0
:“ t1

µ b t
νκλ
0 b

ˆ
ż

ddx sxϕ
t1t0µ

νκλpxq

˙

.

(9.37)

Higher products. The twist (9.14a) and (9.14b) determines the products µ1 and µ2

between the elements of L̃DC
BRST. The formulas from Section 6.3. with all the appropriate

signs included read as

µ1px1 b y1 b ϕ1q :“ p´1q|τ
p1q
1 px1q|`|τ

p1q
1 py1q| τ

p1q
1 px1q b τ

p1q
1 py1q b

`

τ
p2q
1 px1qpτ

p2q
2 py1qpϕ1qq

˘

,

µ2px1 b y1 b ϕ1 , x2 b y2 b ϕ2q :“

:“ p´1qp|y1|`|ϕ1|q|x2|`|ϕ1| |y2|ˆ

ˆ τ
p1q
2 px1, x2q b τ

p1q
2 py1, y2q b

`

τ
p2q
2 px1, x2qϕ1pxq

˘`

τ
p2q
2 py1, y2qϕ2pxq

˘

.

(9.38)
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Note that there are no additional signs because our τ
p2q
i are always even. While the com-

putation is readily performed, listing the higher products for all 81 fields is not particularly

enlightening.

Action. The factorisation (9.34) induces the following cyclic structure:

xx1 b y1 b ϕ1, x2 b y2 b ϕ2y :“

:“ p´1q|x2|Kinp|y1|Kin`|ϕ1|Scalq`|x2|Kin|ϕ1|Scalxx1, x2y xy1, y2y xϕ1, ϕ2y .
(9.39)

Together with the formulas for the super homotopy Maurer–Cartan action (3.27), we can

compute the (gauge-fixed) BRST action corresponding to the L8-algebra L̃DC
BRST. Again,

listing all the terms would not provide much insight, but we stress that we obtain all the

expected terms, in particular the lowest terms of the Fierz–Pauli version of the N “ 0

supergravity action as well as the evident terms involving ghosts.

Double copy of the BRST operator. We now consider the double copy of the BRST

operator to a BRST operator Q̃DC
BRST. For our purposes, the double copy of the linearised

part without considering the auxiliary fields will be sufficient. We start from Yang–Mills

theory with the factors V :“ g and V̄ :“ Kin in (9.17) and the usual BRST relations in

terms of coordinate functions on L̃YM
BRST,

Ãaµ
QYM, lin

BRST
ÞÝÝÝÝÑ δabBµc̃

b , b̃a
QYM, lin

BRST
ÞÝÝÝÝÑ δab

1´
?

1´ ξ
?
ξ

?
l c̃b ,

c̃a
QYM, lin

BRST
ÞÝÝÝÝÑ 0 , ˜̄ca

QYM, lin
BRST

ÞÝÝÝÝÑ δab

ˆ
c

l

ξ
b̃b ´

1´
?

1´ ξ

ξ
B
µÃbµ

˙

.

(9.40)

We thus have qαβ “ δ
α
β , and the non-vanishing components of q̄ᾱ

β̄
are given by

q̄ᾱβ̄ “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Bµ for ᾱ “ g˚ , β̄ “ v˚µ

1´
?

1´ξ
?
ξ

?
l for ᾱ “ g˚ , β̄ “ n˚

b

l

ξ
for ᾱ “ n˚ , β̄ “ a˚

´
1´
?

1´ξ
ξ

Bµ for ᾱ “ v˚µ , β̄ “ a˚

. (9.41)

After the double copy, we have V :“ Kin “: V̄ and, correspondingly, qαβ “ q̄αβ . The

linearisation of the double-copied BRST operator is then non-trivial on a field containing
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a factor of vµ or a and we have in the anti-symmetrised sector

λ̃
Q̃DC, lin

BRST
ÞÝÝÝÝÑ 0 ,

Λ̃µ
Q̃DC, lin

BRST
ÞÝÝÝÝÑ Bµλ̃ ,

γ̃
Q̃DC, lin

BRST
ÞÝÝÝÝÑ

1´
?

1´ ξ
?
ξ

?
l λ̃ ,

B̃µν
Q̃DC, lin

BRST
ÞÝÝÝÝÑ BµΛ̃ν ´ BνΛ̃µ ,

α̃µ
Q̃DC, lin

BRST
ÞÝÝÝÝÑ

1´
?

1´ ξ
?
ξ

?
l Λ̃µ ´ Bµγ̃ ,

ε̃
Q̃DC, lin

BRST
ÞÝÝÝÝÑ

c

l

ξ
γ̃ ´

1´
?

1´ ξ

ξ
B
µΛ̃µ ,

˜̄Λµ
Q̃DC, lin

BRST
ÞÝÝÝÝÑ Bµε̃`

c

l

ξ
α̃µ ´

1´
?

1´ ξ

ξ
B
νB̃µν ,

˜̄γ
Q̃DC, lin

BRST
ÞÝÝÝÝÑ

1´
?

1´ ξ
?
ξ

?
l ε̃`

1´
?

1´ ξ

ξ
B
µα̃µ ,

˜̄λ
Q̃DC, lin

BRST
ÞÝÝÝÝÑ

c

l

ξ
˜̄γ ´

1´
?

1´ ξ

ξ
B
µ ˜̄Λµ ,

(9.42a)

and in the symmetrised sector

X̃µ Q̃DC, lin
BRST

ÞÝÝÝÝÑ 0 ,

β̃
Q̃DC, lin

BRST
ÞÝÝÝÝÑ 0 ,

h̃µν
Q̃DC, lin

BRST
ÞÝÝÝÝÑ BµX̃ν ` BνX̃µ ,

$̃µ Q̃DC, lin
BRST

ÞÝÝÝÝÑ ´
1´

?
1´ ξ

?
ξ

?
l X̃µ

´ B
µβ̃ ,

π̃
Q̃DC, lin

BRST
ÞÝÝÝÝÑ 2

1´
?

1´ ξ
?
ξ

?
l β̃ ,

δ̃
Q̃DC, lin

BRST
ÞÝÝÝÝÑ

c

l

ξ
β̃ ´

1´
?

1´ ξ

ξ
BµX̃

µ ,

˜̄Xµ Q̃DC, lin
BRST

ÞÝÝÝÝÑ ´B
µδ̃ ´

c

l

ξ
$̃µ

´
1´

?
1´ ξ

ξ
Bν h̃

νµ ,

˜̄β
Q̃DC, lin

BRST
ÞÝÝÝÝÑ ´

1´
?

1´ ξ
?
ξ

?
l δ̃ `

1´
?

1´ ξ

ξ
Bµ$̃

µ
`

c

l

ξ
π̃ .

(9.42b)
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Importantly, this BRST operator is related to the usual linearised BRST operator forN “ 0

supergravity, (4.23) and (4.30),

λ
QN“0, lin

BRST
ÞÝÝÝÝÝÑ 0 , ϕ

QN“0, lin
BRST

ÞÝÝÝÝÝÑ 0 ,

Λµ
QN“0, lin

BRST
ÞÝÝÝÝÝÑ Bµλ , Xµ QN“0, lin

BRST
ÞÝÝÝÝÝÑ 0 ,

γ
QN“0, lin

BRST
ÞÝÝÝÝÝÑ 0 , β

QN“0, lin
BRST

ÞÝÝÝÝÝÑ 0 ,

Bµν
QN“0, lin

BRST
ÞÝÝÝÝÝÑ BµΛν ´ BνΛµ , hµν

QN“0, lin
BRST

ÞÝÝÝÝÝÑ BµXν ` BνXµ ,

αµ
QN“0, lin

BRST
ÞÝÝÝÝÝÑ 0 , $µ QN“0, lin

BRST
ÞÝÝÝÝÝÑ 0 ,

ε
QN“0, lin

BRST
ÞÝÝÝÝÝÑ γ , δ

QN“0, lin
BRST

ÞÝÝÝÝÝÑ β ,

Λ̄µ
QN“0, lin

BRST
ÞÝÝÝÝÝÑ αµ , X̄µ QN“0, lin

BRST
ÞÝÝÝÝÝÑ $µ ,

γ̄
QN“0, lin

BRST
ÞÝÝÝÝÝÑ 0 , β̄

QN“0, lin
BRST

ÞÝÝÝÝÝÑ π ,

λ̄
QN“0, lin

BRST
ÞÝÝÝÝÝÑ γ̄ , π

QN“0, lin
BRST

ÞÝÝÝÝÝÑ 0 .

(9.42c)

by the field redefinitions (7.22) and (7.27), respectively.

9.5. Equivalence of the double copied action and N “ 0 supergravity

We now conclude this final Chapter by showing that the double copied action S̃DC
BRST we

constructed in Section 9.4. is fully perturbatively quantum equivalent to the suitably gauge

fixed version of the BV action of N “ 0 supergravity, SN“0
BRST, defined in Section 4.6.. For

this, we have to show that up to a field redefinition, both theories have the same tree-level

correlation functions. A crucial point in our discussion will be the BRST Lagrangian double

copy formalism developed in the previous section.

Before exposing with our argument, let us introduce some terminology: we shall speak

of ‘auxiliary fields connected to a field φ’ by which we mean all auxiliary fields which appear

together with φ in Feynman diagrams containing only propagators of auxiliary fields. In

other terms, an auxiliary field ψ connected to a field φ can have an interaction vertex with

φ or interact with an auxiliary field that propagates to an auxiliary field that non-trivially
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interacts with φ, etc.:

. . .

ψ φ

,

. . . . . .

ψ φ

,

. . . . . . . . .

ψ φ

, . . . ,

(9.43)

where a dashed line denotes an auxiliary field. We also use the adjectives physical and

unphysical when referring to fields, interaction terms and scattering amplitudes. The

unphysical fields are all ghosts, anti-ghosts, and Nakanishi–Lautrup fields as well as auxiliary

fields connected to these. Physical fields are the remaining fields, consisting of the metric,

the Kalb–Ramond field and the dilaton as well as a number of auxiliary fields. Physical

interaction vertices are those consisting exclusively of physical fields. Physical scattering

amplitudes are those with physical fields as external labels.

Physical tree-level scattering amplitudes. We first note that the auxiliary fields in the

double copied action S̃DC
BRST can be integrated out, after which the field content and the

kinematic terms in both actions fully agree, up to the field redefinitions we discussed in

Chapter 7. Implementing these field redefinitions on SN“0
BRST, we obtain the action SN“0

BRST, 0.

Moreover, the physical tree-level scattering amplitudes computed from the interaction

vertices of the action S̃DC
BRST are by design precisely those arising in the usual double copy

prescription for the construction ofN “ 0 supergravity tree amplitudes from a factorisation

of Yang–Mills amplitudes. The tree-level double copy has been demonstrated to hold, cf.

Observation 8.12, and therefore the physical tree-level scattering amplitudes of S̃DC
BRST and

SN“0
BRST, 0 agree.

If we put all unphysical fields to zero, the resulting theories S̃DC
BRST, phys and SN“0

BRST, phys

are classically equivalent by Observation 8.9. In the homotopy algebraic picture, this

corresponds to a restriction LN“0
BRST, phys and L̃DC

phys to two quasi-isomorphic L8-subalgebras.

In order to improve this restricted classical equivalence to a full perturbative quantum

equivalence, we need to adjust and modify the actions or, equivalently, the corresponding

L8-algebras. We shall do this now in a sequence of steps, expanding the discussion in [5].

Auxiliary fields of ghost number zero. The reformulation of the tree-level scattering

amplitudes of N “ 0 supergravity used in the double copy defines a local strictification
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of the physical part of the action SN“0
BRST to the action SN“0

BRST, 1 by promoting all cubic

interaction vertices to cubic interaction terms. This is fully analogous to the strictification

implied by the manifestly colour–kinematics-dual form of the Yang–Mills action explained

in Section 8.3..

By construction, the actions SN“0
BRST, 1 and S̃DC

BRST, phys have the same field content, the

same kinematical terms for the physical and auxiliary fields and identical tree-level scat-

tering amplitudes for the physical fields.

Let us now consider the tree-level scattering amplitudes which have auxiliary fields of

ghost number zero on their external legs. Such amplitudes are fully determined by the

(iterated) collinear limits of physical tree-level scattering amplitudes. Because, again, the

physical tree-level scattering amplitudes of SN“0
BRST, 1 and S̃DC

BRST, phys agree, the tree-level

scattering amplitudes with physical and auxiliary fields of ghost number zero on external

legs agree.

By Observation 8.9, we then have a local field redefinition of SN“0
BRST, 1 to SN“0

BRST, 2 such

that both actions agree after all fields except for physical ones and auxiliary fields of ghost

number zero are put to zero. If we integrated out all auxiliary fields in both actions, the

resulting actions would agree in their purely physical parts.

Nakanishi–Lautrup fields. In the next step, we deal with the difference between S̃DC
BRST

and SN“0
BRST, 2 proportional to any of the Nakanishi–Lautrup fields ( ˜̄β, $̃µ, π̃, γ̃, α̃µ, ˜̄γ); we

shall come to the ghost field β later. After integrating out all auxiliary fields, this difference

can be compensated by Observation 8.8. That is, we can modify the gauge-fixing fermion

and perform a field redefinition of the Nakanishi–Lautrup fields such that this difference is

removed. We note that neither of these two processes modifies the physical parts of the

action and both preserve quantum equivalence. We can thus replace all terms in SN“0
BRST, 2

containing Nakanishi–Lautrup fields by the terms in S̃DC
BRST containing Nakanishi–Lautrup

fields as well as auxiliary fields connected to Nakanishi–Lautrup fields. We call the resulting

action SN“0
BRST, 3.

Recall that there is a ghost number ´2 field λ̄ which is paired with the Nakanishi–

Lautrup-type field γ in the gauge fixing fermion (4.26), allowing us to absorb any term

proportional to γ in a different gauge choice. This is not the case for the corresponding

Nakanishi–Lautrup-type field in the gravity sector, β. Any discrepancy proportional to β
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between SN“0
BRST, 3 and S̃DC

BRST (again, after integrating out all the auxiliary fields) should

instead be absorbed by shifting the gauge fixing fermion Ψ from (4.38) by a term δP ,

where βP is the discrepancy. This will generate the desired corrections. This will also lead

to new ghost terms, which we will treat separately in the next step.

Ghost sector. Let us now examine the ghost interactions. We know that the action

SN“0
BRST, 3 comes with a BRST operators QN“0

BRST, 3 which satisfies

pQN“0
BRST, 3q

2
“ 0 and QN“0

BRST, 3S
N“0
BRST, 3 “ 0 . (9.44)

From our discussion in the previous section, we know that the double-copied BRST oper-

ator Q̃DC
BRST satisfies

pQ̃DC
BRSTq

2
P I and Q̃DC

BRSTS̃
DC
BRST P I , (9.45)

where I is the ideal of polynomials in the fields and their derivatives which vanishes for

on-shell fields. We also know from the discussion around (9.42) that the linearisations of

the BRST operators satisfy

Q̃DC, lin
BRST “ QN“0, lin

BRST, 3 . (9.46)

After integrating out all auxiliary fields, these BRST operators link the physical tree-level

scattering amplitudes to tree-level scattering amplitudes containing ghosts by the on-shell

Ward identities, cf. Observation 8.2.

At the level of the BRST operators Q̃DC, lin
BRST and QN“0, lin

BRST, 3 the situation is more involved,

but we still end up with similar on-shell Ward identities. The BRST doublets in the BRST-

extended Hilbert space of Yang–Mills theory double copy to BRST doublets of auxiliary

and non-auxiliary fields.

Therefore, the tree-level scattering amplitudes for the BRST-extended Hilbert spaces

of SN“0
BRST, 3 and S̃DC

BRST are fully determined via on-shell Ward identities by the tree-level

scattering amplitudes of the physical and auxiliary fields of ghost number zero. We con-

clude that all these tree-level scattering amplitudes agree between both theories.

Full quantum equivalence. For full quantum equivalence, it remains to show that there

is a local field redefinition that links the action SN“0
BRST, 3 to S̃DC

BRST. Both actions fully agree

in their kinematic terms and their interaction vertices that contain exclusively fields of
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ghost number zero. Moreover, they have identical tree-level scattering amplitudes on their

BRST-extended (i.e. full) Hilbert spaces. We can therefore invoke Observation 8.9 one

final time in order to provide us with a local field redefinition that shifts the discrepancies

between both actions to interaction vertices of arbitrarily high degree. This renders the

actions fully quantum equivalent from the perspective of perturbative quantum field theory.
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A
Minimal model recursive construction

To derive the recursion relations (5.7a), we need to construct a quasi-isomorphism φ :

L˝ Ñ L that allows us to pull back the higher products on L to L˝ via formula (2.32)

(with φ0 “ 0). Our construction of φ follows the idea of [247], where essentially the

same construction was given in the case of A8-algebras. In particular, we assume that

we have a Maurer–Cartan element a˝ in L˝ and map it to an element a in L. The

fact that Maurer–Cartan elements are mapped to Maurer–Cartan elements under quasi-

isomorphisms, cf. (2.36), together with the assumption that a˝ (and therefore a) is

small, will give us enough constraints to determine the quasi-isomorphisms and the higher

products on L˝.

The material in this Appendix is borrowed from [2].

A.1. Minimal model recursive construction

We start from the contracting homotopy

pL, µ1q pL˝, 0q .h

p

e
(A.1)

where we can assume that h2 “ 0 and e ˝ p, µ1 ˝ h and h ˝ µ1 are projectors onto Lharm,

Lex, and Lcoex, respectively. Moreover, let a˝ P L˝1 be a Maurer–Cartan element. Under a

quasi-isomorphism φ, a˝ is mapped to

a “
ÿ

iě1

1

i !
φipa

˝, . . . , a˝q . (A.2)

A convenient choice is φ1 “ e, and it remains to identify φi for i ą 1. We will do this by

fixing a as a function of a˝.
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Recall that (5.2) yields the unique decomposition

a “ aharm ` aex ` acoex , with aharm, ex, coex P Lharm, ex, coex . (A.3)

There is some freedom in the choice of φ and without of loss of generality, we may impose

the gauge fixing condition

hpaq “ 0 . (A.4)

This is, in fact, a generalisation of the Lorenz gauge fixing condition from ordinary gauge

theory. Consequently, aex “ pµ1 ˝ hqpaq “ 0. Moreover, the fact that µ1 is a chain map

implies that µ1paharmq “ pµ1 ˝ e ˝pqpaq “ 0 so that the homotopy Maurer–Cartan equation

for a becomes

µ1pacoexq `
ÿ

iě2

1

i !
µipaharm ` acoex, . . . , aharm ` acoexq “ 0 . (A.5)

Upon acting with h on both sides of this equation, we obtain

acoex “ ´
ÿ

iě2

1

i !
ph ˝ µiqpaharm ` acoex, . . . , aharm ` acoexq . (A.6)

If we now assume that a˝ is small, say of order Opgq with g ! 1 for g a formal

parameter, we may rewrite (A.2) as

a “
ÿ

iě1

g i

i !
φipa

˝, . . . , a˝q “ g epa˝q
loomoon

“: ap1q

`
g2

2
φ2pa

˝, a˝q
loooomoooon

“: ap2q

` ¨ ¨ ¨

“ g
`

a
p1q
harm ` a

p1q
coex

˘

`
g2

2

`

a
p2q
harm ` a

p2q
coex

˘

` ¨ ¨ ¨

(A.7a)

We can then compute the solution a of the homotopy Maurer–Cartan equation order by

order in g using (A.6). In this process, we can choose to put a
piq
harm “ 0 for i ą 1 so that

a “ g a
p1q
harm

loomoon

“ aharm

`
ÿ

iě2

g i

i !
apiqcoex

loooomoooon

“ acoex

“ aharm ` acoex .
(A.7b)

Observe that a
p1q
coex “ 0 follows from the condition µ1pa

p1q
coexq “ 0 obtained at linear or-

der from Equation (A.5). Substituting the expansion (A.7) into (A.6), we arrive at the

recursion relation

apiqcoex “ ´

i
ÿ

j“2

1

j!

ÿ

k1`¨¨¨`kj“i

ph ˝ µjqpa
pk1q

harm ` a
pk1q
coex, . . . , a

pkj q

harm ` a
pkj q
coexq (A.8)
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for acoex. Comparison with (A.2) then yields the quasi-isomorphism (5.7a) when evaluated

at degree 1 elements.

To recover also the brackets µ˝i on L˝ listed in (5.7a) by pullback, we note that upon

applying the projector p to (A.5) and using the fact that p is a chain map, we immediately

find that
ÿ

iě2

1

i !
pp ˝ µiqpaharm ` acoex, . . . , aharm ` acoexq “ 0 . (A.9)

Hence, after substituting the expansion (A.7), we recover the brackets (5.7a) for degree 1

elements.

Our derivation above is strictly speaking only applicable to Maurer–Cartan elements,

which are elements of the L8-algebra of degree 1. As noted in [52], however, we may

enlarge every L8-algebra L to the L8-algebra LC :“ C8pLr1sq b L where C8pLr1sq are

the smooth functions on the grade-shifted vector space Lr1s. Then, every element in L

gives rise to a degree 1 element in LC , and, applying the above construction to LC yields

the full L8-quasi-isomorphism and brackets listed in (5.7a).

Cyclic L8-algebras. Finally, we note that the above construction also extends to the

cyclic case. For this, we need h chosen such that

xLcoex,Lcoex
yL “ 0 . (A.10)

This is always possible since cyclicity (2.21) for µ1 implies in general that

xLex,Lex
yL “ xLharm,Lex

yL “ 0 . (A.11)

The remaining freedom in the choice of h can therefore be used to ensure that the only

non-vanishing entries of the underlying metric are

xLharm,Lharm
yL , xLex,Lcoex

yL , and xLcoex,Lex
yL . (A.12)

If we now pull-back the cyclic structure from L to L˝ and define

x`˝1, `
˝
2yL˝ :“ xφ1p`

˝
1q, φ1p`

˝
2qyL , (A.13)

we have satisfied the first condition in (2.40) on a morphism of cyclic L8-algebras. The

second condition in (2.40) is implied by (A.10) together with impφq Ď Lcoex.
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B
A generalisation of Berends–Giele recursion relations

Let us present a derivation of the Berends–Giele recursion from the quasi-isomor-

phism (5.43) in the case of a general gauge group not necessarily simple and compact,

which relies on the Dynkin–Specht–Wever lemma.

The material in this Appendix is borrowed from [2].

B.1. Dynkin–Specht–Wever lemma

Statement. For simplicity, let a be a matrix algebra and l be the Lie subalgebra generated

by the elements that generate a, that is, the free Lie algebra over a. Consider the Dynkin

map D : aÑ l defined by

a Q
ÿ

σPSi

λσ Xσp1q ¨ ¨ ¨Xσpiq ÞÑ
ÿ

σPSi

λσ rXσp1q, rXσp2q, . . . rXσpi´1q, Xσpiqs ¨ ¨ ¨ ss P l , (B.1)

where X1, . . . , Xi P a and the coefficients λσ are some numbers, and by the identity if i “ 1.

The Dynkin–Specht–Wever lemma then asserts that if ppXq :“
ř

σPSip
λ
ppq
σ Xσp1q ¨ ¨ ¨Xσpipq P

l then

DpppXqq “ ip ppXq . (B.2)

Hence, for any homogeneous polynomial ppXq P a of degree ip, we obtain pD˝DqpppXqq “

ipDpppXqq.

Proof. To prove (B.2), we follow [248]. Firstly, we set adpXqpY q :“ rX, Y s. Then, one

can show by induction on the degree of the polynomial ppXq that if ppXq P l then

adpppXqq “ ppadpXqq (B.3a)
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with

ppadpXqq :“
ÿ

σPSip

λppqσ adpXσp1qq ˝ ¨ ¨ ¨ ˝ adpXσpipqq . (B.3b)

Secondly, (B.2) is certainly true for ip “ 1 so let us assume it is true for ip ą 1 and prove

the statement by induction. To this end, let ppXq P l and qpXq P l be homogeneous

polynomials of degrees ip and iq, respectively. Then,

DpppXqqpXqq “
ÿ

σPSip

λppqσ rXσp1q, rXσp2q, . . . rXσpip´1q, rXσpipq, DpqpXqqss ¨ ¨ ¨ ss

“ ppadpXqqpDpqpXqq

“ adpppXqqpDpqpXqq

“ rppXq, DpqpXqqs

“ iqrppXq, qpXqs ,

(B.4)

where in the third step we have used (B.3a) since qpXq P l and in the fifth step the

induction hypothesis. Thus,

DprppXq, qpXqsq “ pip ` iqqrppXq, qpXqs . (B.5)

This concludes the proof of (B.2).

Applications. Consider now

DpX1 ¨ ¨ ¨Xiq “ rX1, rX2, . . . rXi´1, Xi s ¨ ¨ ¨ ss

“

i´1
ÿ

j“0

ÿ

σPShpj ;i´1q

p´1qi`j`1Xσp1q ¨ ¨ ¨XσpjqXiXσpi´1q ¨ ¨ ¨Xσpj`1q

“
1

i

i´1
ÿ

j“0

ÿ

σPShpj ;i´1q

p´1qi`j`1DpXσp1q ¨ ¨ ¨XσpjqXiXσpi´1q ¨ ¨ ¨Xσpj`1qq ,

(B.6)

where in the third step we have used (B.2).

Then, again using (B.2), we obtain

rDpX1 ¨ ¨ ¨Xiq, DpXi`1 ¨ ¨ ¨Xi`jqs
looooooooooooooooooomooooooooooooooooooon

“: pi`jq
ř

σPSi`j
λ
pi ;i`jq
σ Xσp1q¨¨¨Xσpi`jq

“
1

i ` j
DprDpX1 ¨ ¨ ¨Xiq, DpXi`1 ¨ ¨ ¨Xi`jqsq

“
ÿ

σPSi`j

λpi ;i`jqσ DpXσp1q ¨ ¨ ¨Xσpi`jqq ,

(B.7)
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where the λ
pi ;i`jq
σ are given in terms of the coefficients in (B.6).

Likewise, again using (B.2), we have

rDpX1 ¨ ¨ ¨Xiq, rDpXi`1 ¨ ¨ ¨Xi`jq, DpXi`j`1 ¨ ¨ ¨Xi`j`kqss “

“
1

pj ` kqpi ` j ` kq
DprDpX1 ¨ ¨ ¨Xiq, DprDpXi`1 ¨ ¨ ¨Xi`jq, DpXi`j`1 ¨ ¨ ¨Xi`j`kqsqsq

“
1

pi ` j ` kq

ÿ

σ2PSj`k

λpj ;j`kqσ2
DprDpX1 ¨ ¨ ¨Xiq, DpXi`σ2p1q ¨ ¨ ¨Xi`σ2pj`kqqsqsq

“
ÿ

σ1PSi`j`k
σ2PSj`k

λpi ;i`j`kqσ1
λpj ;j`kqσ2

DpXσ1p1q ¨ ¨ ¨Xσ1piqXσ1pi`σ2p1qq ¨ ¨ ¨Xσ1pi`σ2pj`kqqq

“:
ÿ

σPSi`j`k

λpi ,j ;i`j`kqσ DpXσp1q ¨ ¨ ¨Xσpi`j`kqq ,

(B.8a)

where the coefficients λ
pi ,jq
σ are defined as follows: letting

σ3 :“ σ1 ˝ τσ2
, with τσ2

p`q :“

$

&

%

` for ` P t1, . . . , iu ,

i ` σ2p`´ iq for ` P ti ` 1, . . . , i ` j ` ku ,

(B.8b)

we obtain

ÿ

σ1PSi`j`k

ÿ

σ2PSj`k

λpi ;i`j`kqσ1
λpj ;j`kqσ2

DpXσ1p1q ¨ ¨ ¨Xσ1piqXσ1pi`σ2p1qq ¨ ¨ ¨Xσ1pi`σ2pj`kqqq “

“
ÿ

σ3PSi`j`k

ÿ

σ2PSj`k

λ
pi ;i`j`kq

σ3˝τ
´1
σ2

λpj ;j`kqσ2
DpXσ3p1q ¨ ¨ ¨Xσ3pi`j`kqq ,

(B.8c)

since when σ1 runs over all of Si`j`k so does σ3. Consequently, we may set

λpi ,j ;i`j`kqσ :“
ÿ

σ1PSj`k

λ
pi ;i`j`kq

σ˝τ´1

σ1

λ
pj ;j`kq
σ1 . (B.8d)

B.2. Gluon recursion for general Lie groups

We again consider plane waves of the form (5.36) and make the ansatz

φipAp1q, . . . , Apiqq “ ´
p´1qi

i

ÿ

σPSi

Jµpσp1q, . . . , σpiqq eipkσp1q`¨¨¨`kσpiqq¨x ˆ

ˆ rXσp1q, rXσp2q, r. . . , rXσpi´2q, rXσpi´1q, Xσpiqss ¨ ¨ ¨ ss dxµ .

(B.9)
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Upon substituting this into (5.43) and using the contracting homotopy (5.32), a straight-

forward calculation shows that

Jµp1, . . . , iq “

“
1

pk1 ` ¨ ¨ ¨ ` kiq2
ˆ

ˆ Pex

#

i´1
ÿ

j“1

rrJp1, . . . , jq, Jpj ` 1, . . . , iqss1µ`

`

i´2
ÿ

j“1

i´1
ÿ

k“j`1

rrJp1, . . . , jq, Jpj ` 1, . . . , kq, Jpk ` 1, . . . , iqss2µ

+

(B.10a)

with

rrJp1, . . . , jqq, Jpj ` 1, . . . , iqss1µ :“

:“
i

2jpi ´ jq

ÿ

σPSi

λ
pj ;iq

σ´1rrJpσp1q, . . . , σpjqq, Jpσpj ` 1q, . . . , σpiqqssµ ,

rrJp1, . . . , jq, Jpj ` 1, . . . , kq, Jpk ` 1, . . . , iqss1µ :“

:“
i

3jpk ´ jqpi ´ kq

ÿ

σPSi

λ
pj,k´j ;iq

σ´1 ˆ

ˆ rrJpσp1q, . . . , σpjqq, Jpσpj ` 1q, . . . , σpkqq, Jpσpk ` 1q, . . . , σpiqqssµ ,

rrJp1q, Jp2q, Jp3qss2µ :“ rrJp1q, Jp2q, Jp3qss1µ ´ rrJp3q, Jp1q, Jp2qss
1
µ ,

(B.10b)

where rr´,´ssµ and rr´,´,´ssµ were introduced in (5.38c) and (5.39c) and the λ-coefficients

are defined in (B.7) and (B.8), respectively. This is the Berends–Giele recursion for any

matrix gauge algebra.
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