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Abstract: We perform the maximal twist of eleven-dimensional supergravity. This twist
is partially topological and exists on manifolds of G, x SU (2) holonomy. Our derivation
starts with an explicit description of the Batalin—Vilkovisky complex associated to the
three-form multiplet in the pure spinor superfield formalism. We then determine the L
module structure of the supersymmetry algebra on the component fields. We twist the
theory by modifying the differential of the Batalin—Vilkovisky complex to incorporate
the action of a scalar supercharge. We find that the resulting free twisted theory is given
by the tensor product of the de Rham and Dolbeault complexes of the respective G, and
SU (2) holonomy manifolds as conjectured by Costello.
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In conclusion, two things remain to be done with our theory. First, we are studying
the reduction to four dimensions... (Cremmer, Julia and Scherk [1]).

1. Introduction

Eleven-dimensional supergravity [1] is the low energy limit of M-theory, a conjectural
theory that is believed to unify type I, II, and heterotic superstring theories [2]. It realizes
the maximal dimension that has a supersymmetric representation with particles of spin
at most two [3], and the action of eleven-dimensional supergravity is unique [1]. M-
theory compactifications on manifolds with G, holonomy result in four-dimensional
field theories with minimal supersymmetry and have been intensely studied in relation
to non-perturbative string dualities and phenomenology.

Over the past years, twists of supersymmetric field theories have mediated a lot
of interactions between mathematics and physics. To this end, twisting can be used
as a tool to construct new field theories which are topological or holomorphic in some
spacetime directions from a given supersymmetric field theory. The observables of these
twisted theories are often interesting mathematical invariants of the underlying spacetime
manifold; the prime example here being the appearance of Donaldson polynomials as
observables in Donaldson—Witten theory.

More recently, twisted supergravity theories have been studied in the light of the
AdS/CFT correspondence [4-8]. As twisted theories are mathematically way more
tractable than their untwisted versions, twisting on both sides of the correspondence is
a promising way to provide rigorous manifestations of holography. Concretely, isomor-
phisms between certain algebras attached to the theories on each side of the correspon-
dence have been established. Thus, for a thorough understanding of twisted holography,
understanding twists of supergravity theories is crucial.

In this note, we consider a partial topological twist of eleven-dimensional supergravity
on manifolds of Go x SU(2) holonomy. Partial topological twists are a natural arena
where off-shell representations of supersymmetry, supersymmetric localization, special
holonomy manifolds, and elliptic moduli problems converge. A partial topological twist
can only be performed on a manifold of special holonomy. The equations of motion after
twisting often simplify to elliptic complexes that are specific to the special holonomy
manifold on which the twist is defined.

A conjectured partial topological twist of eleven-dimensional supergravity on mani-

folds, M7 x M*, of Go x SU(2) holonomy is given in [5,9,10]. As a free BV theory,
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Table 1. Fields in maximally twisted supergravity

QO @lwmy wy Qdwmh i’y @My QtwmTy Qw7

Q%omt O c c® c® W Al cO®F ct
Q%4 M c® c® v Al c® cOf cOT
Q%M @ c® ¥ Al cO®F c@t cOF cO

the twisted theory is described by the cochain complex
() @0, pv), (1.1)

where the differential D'V decomposes into
DY =dyp @1+1® 4. (1.2)

Here d,,7 is the de Rham differential on M7 and 3,4 is the Dolbeault differential on
M*. In principle, higher interaction terms will also be present, but here we restrict our
attention to the free theory.

Already, twisted M-theory has had several applications to mathematical physics [5,
10]. While these works are rigorous mathematics in the sense of Jaffe—Quinn [11], our
aim is to connect them to eleven-dimensional supergravity as originally envisioned by
Cremmer—Julia—Scherk [1] and its more recent formulations in the pure spinor formalism
[12,13].

In this note we will show how to obtain the fields and BV differential by directly
twisting the component fields of eleven-dimensional supergravity in the BV formalism
[14]. After the twist, the three-form C® with its ghost system C @, cV, cO the spin-
3/2 Rarita—Schwinger field 1, and all of their corresponding antifields organize into a
differential form A € Q*(M") @ QO*(M*), as conjectured by Costello. Its components
are displayed in Table 1.

We will derive the conjectured form of the twisted fields and differential starting from
the manifestly covariant formulation of eleven-dimensional supergravity [12,13,15,16]
in the pure spinor superfield formalism [17—-19]. We use this formalism to obtain the BV
complex of the three-form multiplet in eleven dimensional supergravity, including the
full action of the supersymmetry algebra on the component fields. These results are then
used to carry out the actual twist on the level of component fields. This gives an explicit
understanding of the fields in the twisted theory as well as the formation of trivial pairs
in terms of the fields of the untwisted supergravity multiplet.

The traditional approach to eleven-dimensional supergravity in superspace [20-24]
starts with the supervielbein and imposes conventional constraints [25,26] on torsions
and curvatures. We will make some speculative remarks about the twist of the super-
vielbein at the end. A partially off-shell formulation of eleven-dimensional supergravity
adapted to manifolds of G, x SU (2) holonomy is given in [27-29] and is closely related
to the twisted theory.

We will work in Euclidean signature. We hope to return to the twist of the higher
order terms and the formulation in Lorentzian signature in subsequent work.

From the outset you know, more or less, what became of the three-form multiplet,
so most of your curiosity is invested in the question of how it all came to pass.
(Adapted from A.O. Scott.)
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Organization:

The rest of this work is structured as follows. In Sect. 2 we review supersymmetric
theories in the BV formalism and explain how to twist them with respect to a supercharge.
We describe the types of twists in eleven-dimensional supergravity and the G, x SU (2)
invariant twist in detail. In Sect. 3 we specialize our general discussion of BV theories
to eleven-dimensional supergravity. We introduce the BV complex for the three-form
multiplet and describe the action of supersymmetry on its component fields. Finally,
in Sect. 4 we describe the decomposition of the fields and supersymmetry transforma-
tions with respect to G> x SU(2). We then use the decomposition to determine the
fields surviving the partial topological twist and the resulting action of the modified BV
differential. We conclude with some thoughts on further directions in Sect. 5.

Note added:

The authors thank Ingmar Saberi and Brian Williams for informing them of their
related paper [30] and coordinating submission to the arXiv. Their work derives the
holomorphic twist of the eleven-dimensional three-form multiplet. Starting from the
holomorphic twist of Saberi—Williams, Ingmar Saberi, Surya Raghavendran and Brian
Williams independently derive the G, x SU (2) invariant twist in their forthcoming work
[31]. Our work is complementary to that of Saberi—Williams and Raghavendran—Saberi—
Williams in the sense that we determine the origin of the twisted fields in the untwisted
theory, whereas their work cleverly bypasses the component fields of the untwisted
theory. Further discussion of the relations between these different perspectives will
appear in [32].

2. Twisting a la Costello

2.1. Supersymmetric field theories in the BV formalism. In the BV formalism, a field
theory is described by a sheaf of cyclic (super) Lo, algebras over a spacetime M. This
sheaf models the space of solutions to the equations of motion up to gauge equivalence
[14,33,34]. Here we are only concerned with free field theories, which means that all
involved L, algebras have no higher operations (u; = 0 fori > 2) and hence simply are
cochain complexes. Given such an L, algebra L, the space £ of BV fields is obtained
by a homological shift £ = L[1]. The space of BV fields usually arises as the sections
of a Z x 7,/2Z graded vector bundle E — M over the spacetime M,

€&, D)y=TWM,E), D), (2.1)

where the differential D arises as a differential operator of degree (1, +). The Z-grading
is usually called ghost number, while the Z /27 grading corresponds to the usual parity
distinguishing bosons and fermions. By assumption, E is equipped with a fiberwise
non-degenerate, graded antisymmetric map of bidegree (1, +)

w: E®E — Densy, 2.2)

which induces a pairing on compactly supported sections £, C £ via integration. Due
to its degree, this pairing connects fields and antifields.

A free classical BV theory, specified by the data (E, D, w), can also be described in
a second way that is, in a sense, dual to the above description. The pairing @ endows
the functionals O(E) of the fields with an odd Poisson bracket {—, —} of degree 1. The
differential D induces a BV operator Qpy : O(€) — O(E) that can be written in the
form

Ov = {Spv, —} (2.3)
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for the BV action Spy, which satisfies the classical master equation {Spy, Spy} = 0.
As we are dealing with free theories, the BV action can be written as

Spy[®P] = / (P, DD) . (2.4)
M

Thus, for free theories and in the presence of a non-degenerate pairing w, the BV operator
QO v, the differential D and the BV action Spy all contain the same information.

An important subset of all functionals of the fields are the local operators: For any
point x € M, we have local operators supported at x

Ox(€) = Sym*(J®E|,)" , (2.5)

where J*° denotes the infinite jet space. For example, given a field ¢ € &, the corre-
sponding local operator in O, (€) evaluates ¢ at the point x.

Corresponding to these two point of views, there are also two ‘dual’ ways of encoding
the action of supersymmetry in the BV formalism. Let us start from the perspective of
fields. The endomorphisms End(€), equipped with the commutator and the differential
[D, —], form a differential graded super Lie algebra. Inside (End(£), [D, —]), there is a
sub dg super Lie algebra denoted by (D(E), [D, —1), consisting of all endomorphisms
of £ acting by differential operators.

Now let p = p4 @ p_ denote a super Poincaré algebra. In a supersymmetric field
theory, the action of supersymmetry is described on the fields by a map of super L
algebras

pip~(DE),ID,-]. (2.6)

As such p consists of component maps
p i p® —DE), j=1 2.7)

of degree 1 — i satisfying the usual consistency relations for morphisms of super L
algebras.

The action of supersymmetry can also be encoded on the operators of the theory. This
is done by combining, for Q € p, p)(Q, ..., Q)" the dual maps into a differential

8o = Zp(i)(Q, e 0)Y L 0E) — OL(E) . (2.8)

Note that this is the same procedure as encoding a gauge symmetry in the BRST differ-
ential. We will see in Sect. 3.4 how to describe the action of the supersymmetry algebra
in the pure spinor formalism.

2.2. Twisting in the BV formalism. Let us fix a square zero element Q € p_ of the
odd part of the supersymmetry algebra. Given a supersymmetric field theory in the BV
formalism, the twist of the theory by Q is defined by deforming the BV operator

Opv — Qpv +1dg, 2.9

where t € C* and taking C*-invariants [35,36]. After taking invariants, we specialize
to t = 1. Equivalently, we can deform the BV action to

Sgy[®] = Spy[®] + Z/Mw(cb, P(Q, ..., 0)(®) (2.10)
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following [37]. This defines the twisted theory as a classical BV theory (E, SBQV, ) with
the same space of fields and odd-symplectic pairing, but with a new action. Deforming
the differential typically breaks the grading on E. Importantly, the presence of new terms
in the differential often results in the formation of trivial pairs that decouple and thus
play no role in the dynamics of the twisted theory and hence can be neglected. More
precisely, one can pass over to a theory with a smaller space of fields, where all trivial
pairs are omitted. This gives an equivalent formulation of the twisted theory, which is
often drastically simplified. One usually also refers to this formulation as the twisted
theory.

2.3. Twisting and the Nilpotence Variety. Eleven-dimensional supergravity can be twisted
in two distinct ways that correspond to the two types of nilpotent supercharges. In this
note, we are exclusively concerned with the maximal twist, which is possible on a
manifold with G, x SU (2) holonomy [5,38,39]. In addition, there is also a minimal
(holomorphic) twist.

The possible twists of a supersymmetric field theory are described by the variety of
square zero elements Y inside the supersymmetry algebra of the theory. The nilpotence
variety

Y ={0 ep_l{Q, 0} = 0} (2.11)
has a natural stratification such that each stratum can be identified with a twisted the-
ory [40]. Different strata can be distinguished by the commutant

Z(Q) = {x € Al[x, 0] =0}, (2.12)

which is constant along the strata.
Recall that, in any dimension, the Dirac spinor representation S is obtained from a
maximal isotropic subspace L C V by setting

S=A°LY. (2.13)
S forms a Clifford module for CI(V) and thus in particular a representation of so(V).
In the case where d = dim(V) is odd, this representation is irreducible. As we are

interested in eleven-dimensional supergravity, we restrict to this case for the moment.
For Q € S, the annihilator with respect to Clifford multiplication

Amn(Q) ={ve Vjv-Q =0} (2.14)

gives an isotropic subspace Ann(Q) C V. Q is called a Cartan pure spinor if Ann(Q)
is maximal isotropic. Every Cartan pure spinor is square zero. The converse, however,
is in general not true as we will see below. More generally, one can define the varieties

PSy = {0 € S|dim(L) — dim(Ann(Q)) < k}, (2.15)

which define a filtration
PSo CPS, C...PS, =S. (2.16)
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2.4. Two families of twists. Ineleven dimensions, the variety of square zero supercharges
is described in coordinates by the eleven equations

,\“rgjﬁ,\ﬁ =0. (2.17)

This variety is closely related to the variety of Cartan pure spinors. In fact, one finds
Y = PS3 [40]. The variety of Cartan pure spinors sits inside Y as a subvariety PSy C
PS3 = Y. Furthermore, PSy is the singular locus of Y and can be described by imposing
the additional equations

AC* A =0. (2.18)

For Q on the singular locus, the degree zero part of the commutant is Z%(0Q) = u(5).
This corresponds to the holomorphic twist of eleven-dimensional supergravity. Away
from the singular locus, the commutant is an algebra with Levi factor g, x gl(2). This
corresponds to the maximal twist of eleven-dimensional supergravity that we will study.

Let us elaborate a little further on the maximal twist. The spinor representation in
eleven dimensions decomposes as

SH=8®&S;. (2.19)

The Dirac Spin representation in four dimensions, S4, decomposes into Weyl spinor
representations Sy and S_:

Sy = ALY = ALY @ ACULY =S, @S . (2.20)

Identifying the group Spin(4) = SU2)+ x SU(2)_, S+ and S_ are the fundamen-
tal representations of SU(2), and SU(2)_, respectively. On a manifold M’ with G,
holonomy, the spinor representation S7 further decomposes as

S7 = 1G2 @ VGZ s (221)
where Vg, is the seven-dimensional representation of G». Thus we have the decompo-
sition

St = (lg, ® Vg,) ® (\LY @ ALY ® S-) . (2.22)

As arepresentation of G x SU(2)— x U (1), where U(1) is the Cartan subgroup of
SU(2)+ this gives
S =(00) & (10) ® (1-1 & 141 & 20) - (2.23)

Here we introduced Dynkin labels for the G,-representation. SU(2) x U (1)-represen
tations are labeled by the dimension of the SU (2)-representation, with the U (1) charge
as a subscript. To study the maximal twist, we choose a square zero supercharge

0 elg, ®ALY = (00)1_; . (2.24)

Thus, we immediately see that Q is invariant under the action of G, x SU (2)_ and has
U(1)p charge —1,.
The normal space to the nilpotence variety is spanned by the supercharges

Om € (Vg, ® A2LY), (2.25)
04 € (16, ® S-). (2.26)

They satisfy the anticommutator relations

{Qv Qm} = Py (2~27)
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{0, 04} = P4 . (2.28)

Here we already used that the vector representation decomposes under Go x SU(2) x
U(l) as

Vii=0)e2_182. (2.29)
Our conventions are that jndices m,n, ... are indices for the seven-dimensional vector
representation, while &, 8, ... correspond to SU (2)_.

The above anticommutator relations state that translations on M’ and anti-holomorphic
translations on M* are exact. Therefore, one can see already at this point that the twisted
theory will depend only on the topological structures of M, but will be sensitive to
holomorphic ones of M*. Hence this twist is “partially topological” or “holomorphic-
topological”.

3. Eleven-Dimensional Supergravity in the Pure Spinor Superfield Formalism

In this section, we give a short review of eleven-dimensional supergravity in the pure
spinor superfield formalism. The pure spinor superfield formalism has been developed
in the physics literature, in particular by Berkovits [41] and Cederwall [19]. In the
context of eleven-dimensional supergravity, we in particular refer to [12,13] and the
references therein. The pure spinor superfield formalism was reinterpreted from a more
modern mathematical perspective in [39]. For a detailed treatment in modern language,
we refer to our forthcoming work [32]. Here we only use the pure spinor formalism as a
tool to describe the action of supersymmetry on the BV complex of eleven-dimensional
supergravity and therefore only give a brief treatment, exclusively tailored to the example
of eleven-dimensional supergravity.

3.1. General remarks. The general idea of the pure spinor superfield formalism is to
replace the usual BV complex (£, D) by a much larger object, which we will denote
by (A, D), encoding the same information. In the case of eleven-dimensional super-
gravity, the construction can be carried out in the following way. Let R = O(S1) =
C[r!, ..., 1%2] be the ring of polynomial functions on the eleven-dimensional spin rep-
resentation S;1 and

I = (T*)) 3.1

the ideal generated by the defining equation of the nilpotence variety. The quotient R/
can then be identified with the ring of functions on the nilpotence variety Y. Furthermore,
let T denote the supertranslation subgroup of the super Poincaré group. There are two
commuting actions of 7' on the smooth functions C>°(T) on T, namely acting by left
and right translations. Infinitesimally, these actions are described by Lie algebra maps

L,R:t—> Vect(T). (3.2)

We denote the images of a basis of t_ under L and R by Q, and D,. Introducing
coordinates 6% on t_ and x* on t; = Vi1, these vector fields are the usual left and right
translations on superspace.

a w g 0

T oee @B gy

ad P ad
_ 2 B_~_
Dy = 594 +Faﬂ9 Fok

Qo
(3.3)
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Now we can define
(A, D) = (C°°(T) ®R/I, D= )J"Da) . (3.4)

Note that the defining equation of the ideal I ensures that the differential D is indeed
square zero. In coordinates, an element of this complex can be thought of as a function
W (x, 0, 1) and is called a pure spinor superfield. With these coordinates, A takes the
form

(A, D) = (COO(Vu) ®CH',.... 021 R/I, D) . (3.5)
The differential D has an obvious decomposition
D =Dy+D (3.6)
where Dy = A% 3ga . This makes (A, D) into a bicomplex. Note that
(A, Do) = (K*(R/I) ® C®(V11) , dg Qidco(vyy)) (3.7

is simply the Koszul complex of R/I tensored with smooth functions on V.

The usual component field description is obtained by taking the cohomology with
respect to Dy and transferring all relevant structures like the differential D; (which gives
to the differential D on the component field in the sense of Sect. 2.1), the action of the
supersymmetry algebra (which gives rise to the Lo, module structure on the component
fields), and possibly higher terms of an L o, structure (which would rise to an L, structure
encoding interactions on the component field level). For a systematic account of this
perspective, we refer the reader to our future work [32]. In the next subsection, we will
explain how the Dy-cohomology can be computed and how the action of supersymmetry
can be transferred for the case of eleven-dimensional supergravity.

3.2. Dy-cohomology and representatives. The Dy-cohomology can be identified with
the tensor product

(L*®r C)® C™*(Vi1) , (3.8)
where L* is the minimal free resolution of R/ in R-modules. In our case the minimal
free resolution of R/I takes the form

d 5 &, s dy
R®(C<fV11 A=V @ Vi P AV @ Sym= (Vi) @ S11 + S11 @ Vi
5
6 3 2 dy 2 dg
S11® Vi <= A7V @ Sym* (Vi) @ St <— AV @ Vi <7(C). (3.9)

The resolution differential was already described in [12]. Let us choose a basis (e, ) of
V11 and (s ) of S11. We will need the maps dj, . . . ds. In this basis they take the following
form.
di: Vi — CCD s reney
dy 1 A2V @ Vii — Viv > AT uge,
C > (AT CHe”
d3: A3Vi @ Sym? (Vi) @ 11 —> A2Vi @ ViiC® s (ADFA)C, (e” A eP)
g > ((AT#Ney + npe ATV A) (e A eP)) guv
o > (ATM)gen + 3 AT (e A e’)) o
dy: S11 ® Vit — A3y @ Sym2 (Vi) @ Sy — =~ )Y sa + %(XF“”)a(AFM)ﬁ%ﬂS“
+ 3D Y (e @ )
+ 2T Y pget Ae¥ AeP

ds: S ® Vi — Sy Vgl — ()\Mgek)lﬁgvv“ ® Sa-
(3.10)



68 R. Eager, F. Hahner

Table 2. 0 and A degrees for the supergravity three-form BV multiplet

0 A

0 1 2 3 4 5 6 7
o cO
1 c®

2

2 P v,
3 w C(3), 8uv
4 14
5 T
6 cOT, gLU of
7 ct, of
8 cF
9 cO1

We do not specify the tensor Mg'z here, but just remark that it is a rather complicated

expression in terms of ['-matrices. The Dy-cohomology is bigraded by A and 6. The
component fields organize according to degree in A and 6 according to Table 2. We will
call the A degree the BV degree. This convention is non-standard because it places the
physical fields in BV degree three. However, we will see that it simplifies other aspects
of our presentation.

To find explicit representatives for the cohomology classes corresponding to the
component fields we define the adjoint differential

3
D} eam. (3.11)

Representatives can then be found by applying the resolution differential and DS itera-
tively. This was already noted in [42] and will be elaborated on in [32]. For example we
find for the one-form

DT
c® 4, arsnc® = areo e, (3.12)

such that the one-form field is represented by ()\F“G)C,(Ll).
Similarly one finds for the two-form
dy Dg dy Dg
C®S are)Cle’ — Ar*e)CRe’ = (I HAI*O)CT) —> (I'o)(Ir*6)Ccq)
(3.13)

such that the two-form is represented by ()»F”@)(AF“@)C,% . Likewise, the three-form
is represented by (AT"V6) (AT“0) (AT26)C oy

Let us continue with the vector ghost v

dp v Dg v d v D(T) v
v > A" Ve, — A0 vpe, — AT A AT 0)v, — (AT ,0)(ATHV0)v,.

(3.14)

Thus the representative is (A",60)(AI'*8)v,. For the graviton we find with a similar
calculation (AT ,0) (AT#0)(ATP6) g,y

Performing this procedure one can find representatives for the gravitino and its ghost.
The results are summarized in Table 3.
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Table 3. Representatives for the fields in 11D supergravity organized by 0-degree

Field Representative in Dy-cohomology

c© c©

c® aree)cy

c® OrHe)Arvo)C )

v O (ATHV8)v,

w [(xrﬂe)(xr#w)(erv)a + %(AFMQ)(AI“’G)(QFW)} ®

c® (ATHO)ATVO)(ATPO)C ),

g T ATEY ) (AT P0) g,

v [ATHEO)(AT V) (ATPH) (BT vp)a — (THO) AT O)(ATvO) (OT p)a ] ¥t

3.3. The BV differential. The differential D acting on the component fields is obtained
by transferring D to the Dy-cohomology. In general, this is done by a homotopy transfer
of Dyo-algebras but here we are only interested in the lowest order term that acts on the
representatives simply by the usual formula of Dy,

Dy = (A[0)d), . (3.15)

This gives part of the differential, that is first order in derivatives. For example, we can
act on the C@ ghost
D1(C?) = (xI*6)9,C . (3.16)

Thus we see that the differential corresponds to the de Rham differential. This obviously
generalizes to C1 and C® such that we see that the ghost system of the three-form
indeed corresponds to the usual ghost system of a higher form field. Moving on to the
diffeomorphism ghost v, for the graviton, we find

D1 ((AT,.0) (6T 6)v,) = (AT,6)(OT*’6) (AT 6)d,v, . (3.17)

From our calculations of the representatives, we know that only the part where p and v
are symmetrized corresponds to a non-trivial cohomology class. Thus we find

Dy (v) = AT (OTHVO)(ATP0) (3,0, + dyv,) - (3.18)
Written dually in terms of operators, we find that the BV operator acts by
OBvEuv = 0uvy + 0V, = (Evn)uv s (3.19)

which is indeed the expected gauge transformation for the graviton.
A similar story also holds for the gravitino and its ghost. There we find

Di(w) = (AT?0) [(AFMG)(AF““Q)(QFU)O[ + (AF“B)(XF”@)(@FW)O,] dpw” . (3.20)
This gives a gauge transformation
QpvY, = do” . (3.21)

Thus we see that D; encodes the usual gauge transformations, expected for the field
content. Furthermore, one expects D; to encode the Rarita—Schwinger equation between
the gravitino and its antifield. In addition, homotopy transfer is expected to induce a
second order differential giving the linearized equations of motions of the graviton and
the three-form field.



70 R. Eager, F. Hahner

3.4. The action of supersymmetry. Asexplainedin Sect. 2.1, the supersymmetry algebra
usually does not act strictly on the component fields. This is indeed the case for eleven-
dimensional supergravity. Instead there is a Lo, map

pip~ DE). (3.22)

The components of p can be obtained from the action of Q, by left translation using
a homotopy transfer procedure. The strict part is simply obtained by letting (3.3) act
on the representatives. For an element O = €“ Q,, of the supersymmetry algebra, this
means

0
() = € o — Ty, (3.23)

For the second order part one finds

p?(Q1.02) = po (p(Q1) 0 D0 p(Q2) +p(Q2) 0 D0 p Q1)) 0 (324

Here i is the inclusion map from the Dy-cohomology to the total complex (3.4) (mapping
a component field to its representative, as computed above) and p is the projection
back onto the Dy-cohomology. The presence of p® signals that the supersymmetry
transformations only close up to the equations of motions and gauge transformations.
In fact, p® nullhomotopes the failure of the supersymmetry algebra to be represented
strictly and thus exactly corresponds to what is called a “closure term” in the physics
literature. Higher order components will not appear for eleven-dimensional supergravity.
In [12], a close connection between the resolution differential and the non-derivative
supersymmetry transformations and their closure terms was conjectured. We will explain
this claim in modern language and provide a proof in [32]. Here it suffices to say that,
as we will see momentarily, one can obtain the non-derivative part of p by replacing A
with € in the resolution differential at appropriate places. Now let us start deriving the
action of the supersymmetry algebra on the BV fields. The strict part gives the usual
supersymmetry transformations known from the literature [12].

3.4.1. The three-form ghost system We begin with the ghost system of the three-form.
From degree reasons, it is obvious that p'!) acts trivially on the ghost system for the
three-form. Thus we have

p(l)(C(O)) — p(l)(c(l)) — p(l)(c(z)) =0. (3.25)
However, this will be corrected by higher order contributions. There we find

P, (€)= p?(Q, 0)(C}) (I"0))

= (eT"e)CY (3.26)
=1g,0C".
Thus we find a map
0@(0Q, 0) =10.0): Q' (M) — QM) . (3.27)

Here we also see the relation to the resolution differential: d; acts on the one-form by
c® — oIr#a)CY, thus replacing A with € we obtain p@.
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Written dually for operators, this gives a supersymmetry transformation rule
8¢V = (erue)c©. (3.28)
With similar calculations, we also see that there are higher order transformations
pP(Q. Q) = 10.0) : (M) — Q' (M) (3.29)

and
pP(0, 0) = yg.0) : LX(M) — Q*(M) . (3.30)
However, these transformations will not cancel any components in the twist since there

the relevant supercharge satisfies { O, O} = 0 and thus the above maps all vanish.

3.4.2. The diffeomorphism ghost The only non-derivative transformation for the diffeo-
morphism ghost appears in p®. It takes the form

p?(0, Q)W) = p@(Q, O)((AT,6)(OTH 1)v,)

3.31
= (ALL0)(eT*e), (3:31)

and thus gives a transformation rule
8CV = (eI'yven”. (3.32)

In addition, there is a p)-piece involving a derivative that can be seen to give rise to the
usual supersymmetry transformation between the diffeomorphism and supertranslation
ghost [12]

1 v
Swy = —E(EF“ a0y - (3.33)
3.4.3. The gravitino ghost For the gravitino ghost, we obtain

p V() (@) = (AT LO)(ATH0)(eT ) + %(Arue)(xrve)(erlww) ) (3.34)

Again, note the relation to the free resolution. This gives two supersymmetry transfor-
mations
dv, = el
5CT) = éef‘ww. 33

By now the methodology should be clear. In this style, one can derive the full higher
order corrections to the supersymmetry transformations and encode them in the differ-
ential .

We summarize the full non-derivative supersymmetry transformations in Table 4.
These results first appeared in [12].

In addition, we list the transformations including derivatives for the gravitino and its
ghost in Table 5.
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Table 4. Non-derivative supersymmetry transformations

Operator ¢ Transformation rule ¢

c® 5CO = (erre)ctV

c® 5CY) = (I"e)Cia) + (T yven”
2

c® 5CH) = YeTvw + (eTPe)CR), + (€M pupe)s”,

v Svy = elpw+ (€TVe)gun

) 8w = (eTHe)Yau + 5 (€M) (TP g,
3

c® 5Ci)y = 1Ty )

8 68/1.1) = jer‘(ﬂlﬁv)

v Sy = Moyt

Table 5. Supersymmetry transformations with derivatives

Operator ¢ Transformation rule 5¢
) Swg = (eTHY)q 8,0y
v 81//5 — (F;PHT _ SFPUTBZ)Gl()A}))(TIGa

4. Twisting the Free Theory

In this section, we will show that the fields of the twisted theory arrange into a differential
form

Ae M) e Q% m*. (4.1)

The strategy to establish this result is clear: we restrict the supersymmetry transforma-
tions from Table 4 to our G x SU(2) invariant supercharge and look for fields that
form trivial pairs under 8. In the twisted theory these fields decouple and can be ne-
glected. To find such cancellations we have to decompose the field content as well as
the supersymmetry transformations equivariantly under G, x SU(2) x U(1).

As aresult, we will see that only certain components of the three-form, the three-form
ghost system, the gravitino, and the corresponding antifields play a role in the twisted
theory. These fields then arrange into the differential form described above.

We will see that the twisted differential takes the form

DV =dy @1+ 1® dyp. 4.2)

The fields in the untwisted theory have a have a Z x Z-grading given by the BV degree
dpy and the U (1), charge dy (1), . After twisting, the new BV operator Q gy +8 ¢ breaks
the Z x Z-grading on the space of fields E to the Z-grading

dBQV =dpy —dyq),, 4.3)

in the twisted theory. Note that D™ is not homogenous with respect to this grading
since 0,74 operator carries U (1), charge -1. The new BV degree of a component of
A is simply its de Rham form degree on M. Alternatively, note that the twisted BV
differential preserves the total form degree and we can assign a total form degree to the
components of 4. We observe that for component fields in .4 the total form degree agrees
with their original 8-degree. However, interactions might not preserve these degrees.
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Table 6. Branching of Spin(11) — Spin(7) x SU(2)— x U(1) -representations

Spin(11) Spin(7) x SUQ)— x U()

(00000) (000)(1¢)

(10000) (000)(2—1 +21) @ (100)(1¢p)

(00001) 00)(1—1 + 11 +2p)

(01000) (000)(1—2 + 1g + 3¢ + 12) @ (010)(1p) @ (100)(2_1 +21)

(00100) (000)(2_1 +21) @ (002)(1p) & (010)(2_1 +21) @ (100)(1_7 + 1o + 30 + 12)
(20000) (000)(3_2 + 19 + 30 +32) @ (100)(2_1 +21) + (200)(1¢)

(10001) 002 +3_1+1_1+ 28)2 +11+31+29) D (10D (1_1 +2¢+17)

Table 7. Branching of Spin(7) — G,-representations

Spin(7) G2

(000) (00)

(100) (10)

(001) (10) ® (00)

(010) (01) @ (10)

(002) (00) ® (10) ® (20)
(101) (01) ® (10) ® (20)
(200) (20)

4.1. Decomposition of the field content. We now decompose the field content into rep-
resentations of Go x SU((2)— x U(1)r. To do this, recall the following sequence of
inclusions

Spin(11) D Spin(7) x SUR)—- xU()L D G2 x SUR)_xU1)L . (4.4)

The branching of the relevant representations from Spin(11) to Spin(7) x SU(2)_ x
U (1), is described by Table 6.

Here we are using Dynkin labels to identify the Spin(11) and Spin(7) represen-
tations. We identify SU (2) x U (1)-representations by the dimension of the SU (2)-
representation and denote the U (1) charge as a subscript. Recall that the vector rep-
resentation V1 has Dynkin label (10000) and its second and third exterior powers
are labeled by (01000) and (00100). The spinor representation S7; has Dynkin label
(00001). Furthermore, the gravitino representation already decomposes as a Spin(11)
representation according to

S11 ® Vi1 = (00001) & (10001) . 4.5)
Finally, the graviton transforms in the representation
Sym? Vi1 = (20000) @ (00000) . (4.6)

We also need the branching rules for Spin(7) — G, which we collect in Table 7.

We see that the three-form and its ghosts C(?) splitinto forms in Q (M7)®@Q/72(M*),
where i + ji + jo = p is the total form degree. Thus, in the light of the conjecture, we
expect all components with non-zero holomorphic form degree (j; 7# 0) to cancel in the
twisted theory.

We now consider the decomposition of the gravitino field 7. It transforms in the
product of the Spin(11) vector and spinor representations. We first consider its decom-
position under Spin(11) — Spin(7) x SU(2)_. We will later see that the only compo-
nents that survive in the twisted multiplet have index u transforming in a Spin(7)-vector
representation whose components we denote by m.
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On a manifold of G, holonomy the de Rham complex splits into three sub-complexes
[43]

0 1 2 3 4 5 6 7
Q) 4l 4y 4, Q3 Qf 4505 45 8 4, Q]

2 v O3 v 04 v OS
Q, Ll 4t 4, @7)

To define the space of differential forms Qk, recall that we can identify the differential
forms ©F in the de Rham complex with sections of the k-th exterior power of the
cotangent bundle of M7. When M7 has G, holonomy the exterior powers of the cotangent
bundle decompose into irreducible representations of G, and we denote the sections by
Qf‘, where the subscript denotes the respective dimension of the G,-representation.

The spin 1/2 and spin 3/2 fields on M7 decompose as [44,45]

Tip=le o) (4.8)
Tip = Q0 QF, © Q3 (4.9)

Using the above decomposition and the Spin(11) — Spin(7) x SU(2) x U (1), branch-
ings in Table 6, and the isomorphisms

T30 ® D1 & (Q; ® Q2,8 5237) ® (Q? ® sz;) (4.10)
= Q2 Q°, 4.11)

we see that the gravitino, given by a pair of spin 3/2 and spin 1/2 fields on a G, holonomy
manifold, can be identified with a pair of two- and three-forms on the manifold. We will
find that the components of the gravitino that survive the twist are contained in the
representation

($+@S)® (T30 @ i) = (S @S ® (2@ QY. (4.12)

However, not all of these components survive. We will find that the surviving components
are Q° ® /\OLX, QP ®S_,and Q?® /\ZLX. The gravitino has BV degree 3 in the
untwisted theory and the representations /\OLX, S_, A? L, have U (1) charge —1, 0, and
1, respectively. Thus their new BV defined by Eq. (4.3) are 4, 3, and 2. The components
surviving the twist are therefore in Q*M7y @ QUOMmY), B(MT) @ QO (MY, and
Q* (M) @ Q02(M*), where we have used the isomorphism €3 = Q* to ensure that the
gravitino has its correct twisted BV degree.

The components of the three-form and its ghosts C(”), p = 0...3 and the gravitino
along with their antifields that survive the twist therefore give exactly the right field
content to be described by a form

Ae M) Q% M%), (4.13)



Maximally Twisted Eleven-Dimensional Supergravity 75

4.2. Decomposition of the supersymmetry transformations. We now determine the su-
persymmetry transformations for the scalar supercharge Q. For the moment we are only
interested in the supersymmetry transformations without derivatives since these are the
ones responsible for the formation of trivial pairs. The transformations with deriva-
tives will later be used to determine the twisted BV differential. Recall that the spin
representation S1; decomposes as

[(00) ® (10)] (11 + 11 +20) . (4.14)
This means that we can decompose the parameter € from Table 4 into
€ —> (€, €4, €4, €,y €xm, €ma) - (4.15)

Here m is an index for the seven-dimensional representation of G;. To act by Q, we
specify e_ = 1 and set all other components to zero.

On general grounds, these transformation take a very simple form. As explained
above, the supercharge Q is invariant under G, x SU(2) and has U(1) charge —1.
As a consequence, 8¢ is an Gy x SU(2)-equivariant map. By decomposing the field
content into irreducible G, x SU (2)-representations, 8o splits up as a map between these
irreducibles. However, since §¢ is equivariant, we can apply Schur’s lemma and find,
first, that there can not be any non-trivial maps between non-isomorphic components and,
second, transformations between isomorphic G, x SU (2)-representations are always of
the form « - id for some o € C. Thus, to check whether there are any trivial pairs, we
only have to see if there is a non-vanishing map between isomorphic representations. In
addition, 8¢ carries a U (1) charge that simply equals minus the number of €’s appearing
in the transformation, which can be used as a further criterion to establish that certain
maps vanish.

To check whether or not supersymmetry transformation yields a trivial pair we need
to decompose ["-matrices.

4.2.1. Gamma matrix decomposition In eleven dimensions the symmetric square of the
spin representation decomposes as

Sym? S11 Z Vi1 & A2V @ AV . (4.16)
Accordingly, there are maps denoted by I'*, '*¥ and I'*1--#5 given by projecting onto

the summands in this decomposition. So for example, I'* is given by the composition

Sym?(S11) S5 VL@ AV @ ATV

K ! . (4.17)

Vi

Recall the spin representation S1; decomposes under G, x SU(2) x U(1) as
S]] — 1,1+11+20+(10)(1,1+1]+2()). (4.18)

We are interested in €_I'*€ and e_I'*Ve, where e_ € 1_ in the above decomposition
and € is arbitrary. This means we are lookingatamap 11 ® S1; — Vjjorl_; ® S;1 —
A2V, respectively. The representations V11 and AV decompose as

Vii—=> 21921 & (10)

2 4.19)
AVII > (12810 @30® 12) @ (10)(2-1 & 21) & (10) & (01).
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We can now compare this with the decomposition of 1_; ® S11 and read off the following

results for I'*:
e_THe_ =

€_Tte,

€_THe,
e_THeyn
e_Tte_,,
e_THeng

|
o

! (4.20)

Imm

For I'*Y we find:
e_THVe_

S
e_THe, €
€e_THey =
e_TWey =
e_THe_, =
e THe¢,s € (10)2_1.

For example, we immediately see that all terms of the form e_I"*e_ vanish and hence
do not affect the twist. This is also a direct consequence of Q being nilpotent.

Let us start examining the supersymmetry transformations. Note that we are ignoring
any potential non-zero scalar coefficients o as we are only interested in the formation
of trivial pairs.

Furthermore, we are only considering cancellations between the fields of the multi-
plet as well as between the gravitino and its antifield. Since the action of supersymmetry
respects the pairing on the BV complex, the same cancellations also occur for the re-
spective antifields.

—
—
SN

(4.21)

SO O

4.2.2. The zero-form C© For the zero-form ghost, we obviously have 8QC(O) = 0.
Since there is no supersymmetry transformation generating C©), it will become a field
in the twisted theory.

4.2.3. The diffeomorphism ghost v Next we consider the diffeomorphism ghost v,,. It
decomposes into components

O = (U, Vs V) - (4.22)
We have a supersymmetry transformation of the form
Sovy =€elyw. 4.23)

The gravitino ghost w lives in the spinor representation and hence decomposes according
to Eq. (4.15). From the I'-matrix decomposition in Eq. (4.20), we know that e_T",, w is
only non-vanishing for the components wg and w,,, of w. Thus we get up to potential
non-zero prefactors

8QUm = Wim (4.24)
and

Sov_g = wg . 4.25)
Finally we have,

SoVss = 0. (4.26)

Thus we already find that some components of the diffeomorphism ghost v form trivial
pairs with parts of the gravitino ghost. In addition, it is interesting to note that s g v44 = 0.
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As v4 Will not be part of the twisted three-form multiplet, we expect it to be in the image
of 8¢, forming a trivial pair with another field. Indeed, we will momentarily find that

V4 cancels the holomorphic part of the one-form C(D.

4.2.4. The one-form CV For the field C", we have a supersymmetry transformation
rule

8oC = (e-Type . 4.27)

From the I'-matrix decomposition, we know €_I";,,e_ € 1_,. Thus we immediately
find

spC'V =0 (4.28)
and
socH =0 4.29
O%+q — V- (4.29)
In addition, we have
80C") = v,y . (4.30)

This shows that C(_I; and v, form a trivial pair and thus do not appear in the twisted
theory. Recall that the choice (e_, €4, €5) = (1,0, 0) defines a complex structure on
R* = C?. The four-dimensional vector representation decomposes as

V=S, 985_=2192_,. “4.31)

The representation 2_; corresponds to holomorphic and 2 to the antiholomorphic com-
ponents. Thus we see that, for this complex structure, the components C(J; form the

holomorphic parts of the one-form ghost C(1). As expected, only the anti-holomorphic
part of the one-form plays a role in the twisted theory.

We can alternatively describe the cancellation using holomorphic geometry. With
respect to the complex structure on C2,

Q = (e_T'ye_)dx" ndx” (4.32)

defines a holomorphic (2, 0)-form. Introducing coordinates 7% onV =2_,®2,
the holomorphic (2, 0)-form simplifies to

Q=dz' ANdF*. (4.33)
This allows us to rewrite the supersymmetry transformation of the one-form ghost as
5oC = 1,Q = v,4d7* . (4.34)

Thus, we again see that the holomorphic components of C! cancel with the diffeomor-
phism ghost.



78 R. Eager, F. Hahner

4.2.5. The two-form field C® Let us continue with the supersymmetry transformation
of the two-form

1
8oCL) = €T+ e Tipe- gh (4.35)

The two-form and the graviton decompose into components

C;(sz) N (C(2) C(Z) C(Z)

mn’ ~m+d’ “m—a’

2 ~0) ~Q  ~2
G Cap ) (4.36)
8uv = (Zmn, Em+d> Em—iv> 82(af): 8(af) 80> §—2(apy> M) -

Consulting the I'-matrix decomposition in Eq. (4.21), we get

80C% =0

50C1p; =0

80C2) = Oma + gma
80C =0 (4.37)
30CY = w,

2 _ .
8QC(d5) = 82wap)
8QC£22) =w_+g0.

Thus we find that the components

(@3 (2 (@) (@)
Cfmdt CO C(dﬂ') C—2 (4.38)

do not appear in the twisted multiplet, while

c? c@ ¥ (4.39)

+ma

are in the kernel of 8¢ and thus, since there are no supersymmetry transformations that
could make these exact, part of the twisted multiplet. Note again that this matches with
the expectation that only (0, %)-forms on M* play a role in the twisted multiplet.

Note that we can rewrite the piece of the supersymmetry transformation (4.35) in-
volving the graviton using the holomorphic (2,0)-form €2 as

80C? =10y QA dx". (4.40)

However, due to the symmetry properties of the graviton, this transformation alone
does not cancel all holomorphic component of the two-form. So one really needs the

supersymmetry ghost to cancel the singlet C(gz).
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4.2.6. The three-form field C'® For the three-form field, we have a supersymmetry
transformation of the form

1
8oCL), = 26 TV - (4.41)

The three-form decomposes into components

©) B ~® ©) ©) B ~3
Civo = Coips Comnrar Con—i> C—2> Cinos Cm(dB))' (4.42)
To decompose this transformation, we write for the gravitino
Vu =& ® xu (4.43)

where £% takes values in 11 and x, in Vii. From (4.21), we see that £% has to live in
11 @1 ®(10)2 (4.44)

to get a non-zero result. Decomposing (1_1 ® 11 @ (10)2p) ® V11 into irreducibles, we
can identify the decomposed transformations. The results are listed in Table 8.

4.2.7. The supersymmetry ghost ® The non-derivative part of the supersymmetry trans-
formation of w, reads

Spwy = %(e_r““)a(e_ruwv) . (4.45)

Again decomposing the gravitino as we did for the three-form field and using the de-
composition (4.20), we find that £ has to take values in

20 ® (10)1; . (4.46)

Tensoring with the vector representation V1 and identifying matching representations
gives the result listed below.

4.2.8. The graviton g, The supersymmetry transformation

1
8p8uy = Ee_l"(ﬂlﬁu) (4.47)

again only allows for £ to come from 2g & (10)1;. As before, we just list the results in
Table 8.

In Table 8, we collect all decomposed non-derivative supersymmetry transformations.
Here M is an index for the 14-dimensional representation (01) of G». It appears in the
variation

80CY) = Vg + Vg (4.48)

where the notation describes the decomposition A2(10) — (10) @ (01) of Gs-
representations.
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Table 8. Decomposed supersymmetry transformations

Operator ¢ Transformation rule 6 ¢
cO 0
Wocl 0,0, v4g
e 2. c?® e e, cgg), ) 0.0 @i + Zamr 0 @+ 8345, @ + 80
Vs Vi V— Wim, 0, wg
WO, W—, Oy, D—m> D+m> O 0, ¥+, 0, Yam, 0, Yomg
Chinps Comeaes Com—i Con2 iy C,(,,S()dﬁ) 0,0, Vg + Ymars Ym—s Vim+s ¥ a)
e, e el 0, Yia V26
8mns> Em+ds §m—a» 82(aB)’ 8(ap)> 80> 8—2(ap) h Ymn+s Vomas Yme» 0s W+(d5‘)s Vs, W,(dﬂ')’ Ve
v St = (e~ Mihe )y}’

4.3. Supersymmetry variation of the gravitino. The non-derivative supersymmetry trans-
formation of the gravitino reads

Sy = (eMphe)y,” . (4.49)

This transformation reflects the fact that the supersymmetry algebra acts only up to
the equations of motions of the gravitino. Correspondingly, there is a quadratic term in
antifields appearing in the BV action [12,46]

S o (eMe)yy Ty, (4.50)

The transformation (4.49) is responsible for the remaining cancellations between of the

gravitino. To argue that indeed the correct components of i cancel, we change our

strategy. As the structure of Mﬁ’g is very complicated, we will not decompose it directly

under G> x SU(2). Instead we give an indirect argument.

For this, recall that (4.49) is precisely the term that corrects for the failure of the
linearized supersymmetry transformation to act strictly. Denoting the linearized part
of the supersymmetry transformation by 815‘ and the quadratic transformation of the

gravitino by chad, we have

(5555 = 85 g1¥ +85" Qav v’
=53 vyt (4.51)
= (e-Me_)Qpvy",

where we have used the fact that Q is square zero in the second equality.
Thus, for ¥ outside of the kernel of Q gy,

B sy =0 = 55y =0. (4.52)

For such components there can not be any cancellations between v and ¥ . Furthermore
this reasoning suggests to view the cancellations between components of the gravitino
and its antifield as a two-step procedure. First, the linearized transformation identifies a
piece of ¥ with a component of G® = dC®. Then we can act with another linearized
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transformation to obtain a component of ¥ . Clearly the U (1) charges of components
connected in this way satisfy

duy(W") = dyay(GP) + 1 =dyay(¥) +2. (4.53)

Now recall that the linear part of supersymmetry transformations on the three-form
and the gravitino are

Sg Wy = (TP — 8077 8") G e (4.54)
1
sprCy) = 26 T ¥or (4.55)

However, from Table 8 we know that the components

c® C(3)

mnp > = mn+é

c®) (4.56)

are in the kernel of § 9. Thus the pieces of r, which are mapped to the corresponding field
strengths by (4.54) are annihilated by applying the second linear transformation (4.55)
and hence satisfy {81“1 (Sh“}w =0.

With this 1nf0rmat10n we can analyze the components of the gravitino. In Table 9,
we display the G, x SU (2)-equivariant decomposition of the gravitino, its antifield, and
the field strength organized by U (1) charges. All components of ¥ and v that form
trivial pairs with other fields according to Table 8 are indicated with an arrow.

We immediately see that the components of v with U (1) charge 1 cannot be canceled
and thus are part of the twisted multiplet. We circle these components in blue.

Furthermore, we can take a look at the remaining components of ¥ with U (1) charge
—1. There we have a representation

00)(1) @ (10)(1) & 20)(1) = *(M") ® Q™0 (M*), (4.57)

which maps under 8¢ to dy;7 Cmnp This means the corresponding components are part
of the twisted multiplet. With similar reasoning the components

00)(2) @ (10)(2) @ 20)(2) = ¥ (M") ® Q™' (M*) (4.58)

with U (1) charge zero transform to the field strength of d;,7C ,31) and 9C ,(,,,,p under 8¢
and hence are also part of the twisted multiplet.

On the other hand, we see that different pieces of the gravitino are mapped to com-
ponents of the field strength which are not part of the kernel of §p. These than can
have {81“‘ 81“‘}1/f = 0, such that a cancellation is possible. In Table 9 we indicate such
components the correspondmg intermediate components of the field strength and the
respective partners from 1" with green rectangles.

Nevertheless one has to remain careful. As we explained above, these arguments only
hold outside of the kernel of Qpy. For U (1) charge zero, there is a component (00)(2)
boxed in green. This can be viewed as a differential form

00)2) = QM) @ Q' (M* c P M) @ QO (m*). (4.59)

The corresponding field strength, however, does come from C ;513;2 +g Whichis in the kernel

of . This is not a contradiction, since the corresponding representation (00)(2) is in the
kernel of Q gy . The trivial representation (00) C €3(M7) corresponds to a covariantly
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Table 10. Cancellations of fields under Q

Field | Spin(11) 2 1 0 -1 -2
c© | (00000) (00)(1)
c® | (10000 0@ om wor %"
c@ | (01000) 00)(1) (10)(2) (00T % (ool & [(W)] (J—(—)?T?ﬁdv * Md’ Y
v | (10000) (0oyeay " oy Wf
w | (00001 (oo & oyety wortrh poey”” (o7 & hoyey”
c@® | (00100 (10)(1) Looamis[mo)(m 3 (00@) (oo @ 10 & 20)(1)) 0ot % 03T 5 (0w ooy
0oty h oy’
o | o000y | o oo 0ot S word's oty ooy’ wordy”
(00000) M"
v | o) (e b o’ (@0 © oD 0ot % 003 5 (0w ot et |word b wery”
worts b gl Lol | (@06 (0@ 6 @) (@0 @ G0 8 E0m)
(0o e’ e (093 & woredy
(00001) wort)'s porcty’ B b wordy oty & woray

Fields are decomposed into G, x SU(2)— x U(1)-representations

constant spinor inside the tensor product (T M7)C ® SM7 [44], which is a zero-mode
for the BV operator Qpy which acts as the Rarita—Schwinger operator. This means
that the above argument does not apply here, in the light of the results so far and the
conjecture, we nevertheless expect this component to cancel. An explicit investigation

using a decomposition of the tensor Mﬁf would still be interesting.

4.4. Summary of cancellations. We summarize the cancellations obtained in the previ-
ous sections in Table 10. The fields that do not form trivial pairs are circled in blue. They
form the multiplet A € Q*(M7) ® Q*(M*) and appear in Table 1. The bi-directional
strike-through arrows indicate cancellations that occur between ¥ and its anti-field '
found in Sect. 4.3.

Special care should be taken for the variations of the components of C® that cancel
with a linear combination of components of the graviton and supersymmetry ghost

50C2 = Omi + gima (4.60)
80C%) = w_ +go (4.61)

that occur in Eq. (4.37). A subsequent variation yields

8oWmg = —808+ma = V2ma (4.62)
Sow_ = —8080 = Vs (4.63)

which is consistent with §2,C® = 0. These extra cancellations are indicated by the
strike-through arrows with Iabels x and y.

4.5. The twisted differential. Recall that the BV differential of the twisted theory is the
sum of two terms

Q%’VV = QBV +3Q . (4.64)
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We already examined how the non-derivative part of 8 leads to the formation of various
trivial pairs; now we turn towards the parts containing derivatives in order to see how
they act on the twisted multiplet.

The BV operator ‘g’v is dual to a differential D'V acting on the fields of the twisted
multiplet. We already know that D acts as the de Rham differential on the three-form
ghost system. Under G, x SU (2) the de Rham differential decomposes

d=dy7+dys + e . (4.65)
As only (0, *)-forms are part of the twisted multiplet, this restricts to
dM7 + 5M4 . (466)

In addition, D acts on the gravitino by the Rarita—Schwinger equation. Identifying the
gravitino as a spinor valued one-form, ¥ € Q!(M)® Si1, the Rarita—Schwinger operator
can be understood as a composition of the exterior differential and Clifford multiplica-
tion [45]. From this one can see that it also acts by dj;7 + 9,44 on the relevant pieces of
the gravitino.

Finally, there is a contribution to D" coming from the supersymmetry transfor-
mation (4.55). This transformation also acts by d;;7 + 9,44 and provides the missing
differential between C® and 1.

In summary, the twisted multiplet can thus be described by the cochain complex

(Q'(M7) ® Q" (MY, D™ =d,; + 5M4) , (4.67)

as conjectured by Costello.
Interestingly, the form of the differential can also be deduced directly from the explicit
formulas in the pure spinor formalism. Recall that D; acts on the representatives by

Dy = (AT'*0)9,, (4.68)

and that the one-form was represented by the cohomology classes C,(Ll)(M“I‘G). As we
already know that the twisted multiplet forms the exterior algebra Q2* (M e Qe (M 4),
we see that Dy simply acts by taking derivatives and wedging with the corresponding
component of the one-form, i.e. precisely by dy,7 + 944.

In addition the derivative part of the supersymmetry transformation acts by

05, = (e_T*0)d, . (4.69)
From the Gamma matrix decomposition (4.15), we see
(e_T"9) €2_1 @ (10) . (4.70)

Identifying the corresponding components with dz% and dx™, we once again see that
Q5. acts as desired.

A more roundabout way of understanding the appearance of the de Rham differential
is as follows. Recall that the gravitino field on M7 can be organized into 2 @ Q3 when
M7 has G, holonomy. Since there are b*(M7) + b3 (M) zero modes of the gravitino on
M7 [44,45,47,48], we see that the BV differential acts by the de Rham differential

dig QP Q- Qo 4.71)
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This is similar to the holomorphic twist of ten-dimensional abelian super Yang—Mills
theory on C>. In that case, the analogous BV differential between the gaugino and its
antifield expresses the Dirac equation. The relevant part of the differential in the twisted
theory is

Opy (™) = ie™P9" 0y, 4.72)

and only involves the Dolbeault operator on 2%*(C?).

5. Conclusions and Future Directions

Eleven-dimensional supergravity in the pure spinor formalism incorporates both the
three-form and super-vielbein multiplets. We have seen how the twist of the three-form
multiplet is given by a differential form

Ae M) e (M*). (5.1)

The super-vielbein multiplet has the graviton, gravitino, and 4-form field strength G
as its physical fields. It is used in the traditional superspace formulation of supergravity.
It is natural to expect that the twisted fields of the super-vielbein multiplet organize into
a differential form

dIAe QM) ®Q M, (5.2)

with leading component v, from the diffeomorphism ghost. In future work [32], we
plan to directly twist Cederwall’s pure spinor action [13] and compare to Costello’s
conjectural action [5, 10] for the twisted theory.

The conjectural twist of type IIB supergravity was developed by Costello and Li to
give a precise formulation of a sub-sector of AdS/CFT with rigorously defined math-
ematical objects [4,49]. We hope that a similar approach can be used to derive the
holomorphic twist of M-theory and Costello—Li’s conjectural form of the twist of type
IIB supergravity as a BCOV theory using the presymplectic BV formalism of [50].

The AdS/CFT conjecture is a holographic duality between string and M-theory on
anti-de Sitter spaces and gauge theories. In a particular limit it relates weakly coupled
type IIB supergravity on products of five-dimensional AdS space AdSs with arbitrary
Sasaki-Einstein manifolds S E to four-dimensional supersymmetric gauge theories. A
different form of the conjecture relates the weak coupling limit of M-theory on the
products AdS; x SE” to three-dimensional supersymmetric gauge theories. The cone
over the Sasaki—Einstein manifold is a local Calabi—Yau manifold. One corollary of
the conjecture is the equivalence of the superconformal index [51,52] under gauge-
gravity duality. The gravity superconformal index was computed in terms of holomorphic
invariants of the Calabi—Yau manifold in [53,54]. The corresponding field theory index
was later shown to be most directly computed in the holomorphic twist [40,55]. Thus a
full derivation of the holomorphic twist of type IIB supergravity and eleven—dimensional
supergravity should reproduce the index calculations of [53,54]. This would serve as a
natural bridge between physical and mathematical approaches to holography.

We hope that a further twist of the one considered in this paper can be used to derive
twisted M-theory in the ©2-background [5] following [56]. This could provide a physical
origin for the applications in [57,58] by coupling a twisted M5-brane [50] to twisted
M-theory. Finally, we hope that twisted M-theory can shed new light on topological M-
theory [59—-63], which is believed to unify the Kéhler [64] and Kodaira—Spencer theories
of topological gravity.
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