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Abstract: Weperform themaximal twist of eleven-dimensional supergravity. This twist
is partially topological and exists onmanifolds ofG2×SU (2) holonomy. Our derivation
starts with an explicit description of the Batalin–Vilkovisky complex associated to the
three-form multiplet in the pure spinor superfield formalism. We then determine the L∞
module structure of the supersymmetry algebra on the component fields. We twist the
theory by modifying the differential of the Batalin–Vilkovisky complex to incorporate
the action of a scalar supercharge. We find that the resulting free twisted theory is given
by the tensor product of the de Rham and Dolbeault complexes of the respective G2 and
SU (2) holonomy manifolds as conjectured by Costello.
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In conclusion, two things remain to be done with our theory. First, we are studying
the reduction to four dimensions... (Cremmer, Julia and Scherk [1]).

1. Introduction

Eleven-dimensional supergravity [1] is the low energy limit of M-theory, a conjectural
theory that is believed to unify type I, II, and heterotic superstring theories [2]. It realizes
the maximal dimension that has a supersymmetric representation with particles of spin
at most two [3], and the action of eleven-dimensional supergravity is unique [1]. M-
theory compactifications on manifolds with G2 holonomy result in four-dimensional
field theories with minimal supersymmetry and have been intensely studied in relation
to non-perturbative string dualities and phenomenology.

Over the past years, twists of supersymmetric field theories have mediated a lot
of interactions between mathematics and physics. To this end, twisting can be used
as a tool to construct new field theories which are topological or holomorphic in some
spacetime directions from a given supersymmetric field theory. The observables of these
twisted theories are often interestingmathematical invariants of the underlying spacetime
manifold; the prime example here being the appearance of Donaldson polynomials as
observables in Donaldson–Witten theory.

More recently, twisted supergravity theories have been studied in the light of the
AdS/CFT correspondence [4–8]. As twisted theories are mathematically way more
tractable than their untwisted versions, twisting on both sides of the correspondence is
a promising way to provide rigorous manifestations of holography. Concretely, isomor-
phisms between certain algebras attached to the theories on each side of the correspon-
dence have been established. Thus, for a thorough understanding of twisted holography,
understanding twists of supergravity theories is crucial.

In this note,we consider a partial topological twist of eleven-dimensional supergravity
on manifolds of G2 × SU (2) holonomy. Partial topological twists are a natural arena
where off-shell representations of supersymmetry, supersymmetric localization, special
holonomy manifolds, and elliptic moduli problems converge. A partial topological twist
can only be performed on a manifold of special holonomy. The equations of motion after
twisting often simplify to elliptic complexes that are specific to the special holonomy
manifold on which the twist is defined.

A conjectured partial topological twist of eleven-dimensional supergravity on mani-

folds, M7 × M4, of G2 × SU (2) holonomy is given in [5,9,10]. As a free BV theory,
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Table 1. Fields in maximally twisted supergravity

�0(M7) �1(M7) �2(M7) �3(M7) �4(M7) �5(M7) �6(M7) �7(M7)

�0,0(M4) C(0) C(1) C(2) C(3) ψ ψ† C(3)† C(2)†

�0,1(M4) C(1) C(2) C(3) ψ ψ† C(3)† C(2)† C(1)†

�0,2(M4) C(2) C(3) ψ ψ† C(3)† C(2)† C(1)† C(0)†

the twisted theory is described by the cochain complex
(
�•(M7) ⊗ �0,•(M4) , Dtw

)
, (1.1)

where the differential Dtw decomposes into

Dtw = dM7 ⊗ 1 + 1 ⊗ ∂̄M4 . (1.2)

Here dM7 is the de Rham differential on M7 and ∂̄M4 is the Dolbeault differential on
M4. In principle, higher interaction terms will also be present, but here we restrict our
attention to the free theory.

Already, twisted M-theory has had several applications to mathematical physics [5,
10]. While these works are rigorous mathematics in the sense of Jaffe–Quinn [11], our
aim is to connect them to eleven-dimensional supergravity as originally envisioned by
Cremmer–Julia–Scherk [1] and itsmore recent formulations in the pure spinor formalism
[12,13].

In this note we will show how to obtain the fields and BV differential by directly
twisting the component fields of eleven-dimensional supergravity in the BV formalism
[14]. After the twist, the three-formC (3) with its ghost systemC (2),C (1),C (0), the spin-
3/2 Rarita–Schwinger field ψ, and all of their corresponding antifields organize into a
differential formA ∈ �•(M7)⊗�0,•(M4), as conjectured by Costello. Its components
are displayed in Table 1.

Wewill derive the conjectured form of the twisted fields and differential starting from
the manifestly covariant formulation of eleven-dimensional supergravity [12,13,15,16]
in the pure spinor superfield formalism [17–19]. We use this formalism to obtain the BV
complex of the three-form multiplet in eleven dimensional supergravity, including the
full action of the supersymmetry algebra on the component fields. These results are then
used to carry out the actual twist on the level of component fields. This gives an explicit
understanding of the fields in the twisted theory as well as the formation of trivial pairs
in terms of the fields of the untwisted supergravity multiplet.

The traditional approach to eleven-dimensional supergravity in superspace [20–24]
starts with the supervielbein and imposes conventional constraints [25,26] on torsions
and curvatures. We will make some speculative remarks about the twist of the super-
vielbein at the end. A partially off-shell formulation of eleven-dimensional supergravity
adapted to manifolds ofG2× SU (2) holonomy is given in [27–29] and is closely related
to the twisted theory.

We will work in Euclidean signature. We hope to return to the twist of the higher
order terms and the formulation in Lorentzian signature in subsequent work.

From the outset you know, more or less, what became of the three-form multiplet,
so most of your curiosity is invested in the question of how it all came to pass.
(Adapted from A.O. Scott.)
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Organization:
The rest of this work is structured as follows. In Sect. 2 we review supersymmetric

theories in theBV formalism and explain how to twist themwith respect to a supercharge.
We describe the types of twists in eleven-dimensional supergravity and the G2 × SU (2)
invariant twist in detail. In Sect. 3 we specialize our general discussion of BV theories
to eleven-dimensional supergravity. We introduce the BV complex for the three-form
multiplet and describe the action of supersymmetry on its component fields. Finally,
in Sect. 4 we describe the decomposition of the fields and supersymmetry transforma-
tions with respect to G2 × SU (2). We then use the decomposition to determine the
fields surviving the partial topological twist and the resulting action of the modified BV
differential. We conclude with some thoughts on further directions in Sect. 5.
Note added:

The authors thank Ingmar Saberi and Brian Williams for informing them of their
related paper [30] and coordinating submission to the arXiv. Their work derives the
holomorphic twist of the eleven-dimensional three-form multiplet. Starting from the
holomorphic twist of Saberi–Williams, Ingmar Saberi, Surya Raghavendran and Brian
Williams independently derive theG2×SU (2) invariant twist in their forthcoming work
[31]. Our work is complementary to that of Saberi–Williams and Raghavendran–Saberi–
Williams in the sense that we determine the origin of the twisted fields in the untwisted
theory, whereas their work cleverly bypasses the component fields of the untwisted
theory. Further discussion of the relations between these different perspectives will
appear in [32].

2. Twisting à la Costello

2.1. Supersymmetric field theories in the BV formalism. In the BV formalism, a field
theory is described by a sheaf of cyclic (super) L∞ algebras over a spacetime M . This
sheaf models the space of solutions to the equations of motion up to gauge equivalence
[14,33,34]. Here we are only concerned with free field theories, which means that all
involved L∞ algebras have no higher operations (μi = 0 for i ≥ 2) and hence simply are
cochain complexes. Given such an L∞ algebra L , the space E of BV fields is obtained
by a homological shift E = L[1]. The space of BV fields usually arises as the sections
of a Z × Z/2Z graded vector bundle E → M over the spacetime M ,

(E, D) = (�(M, E), D) , (2.1)

where the differential D arises as a differential operator of degree (1,+). The Z-grading
is usually called ghost number, while the Z/2Z grading corresponds to the usual parity
distinguishing bosons and fermions. By assumption, E is equipped with a fiberwise
non-degenerate, graded antisymmetric map of bidegree (1,+)

ω : E ⊗ E −→ DensM , (2.2)

which induces a pairing on compactly supported sections Ec ⊆ E via integration. Due
to its degree, this pairing connects fields and antifields.

A free classical BV theory, specified by the data (E, D, ω), can also be described in
a second way that is, in a sense, dual to the above description. The pairing ω endows
the functionals O(E) of the fields with an odd Poisson bracket {−,−} of degree 1. The
differential D induces a BV operator QBV : O(E) → O(E) that can be written in the
form

QBV = {SBV ,−} (2.3)
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for the BV action SBV , which satisfies the classical master equation {SBV , SBV } = 0.
As we are dealing with free theories, the BV action can be written as

SBV [�] =
∫

M
ω(�, D�) . (2.4)

Thus, for free theories and in the presence of a non-degenerate pairingω, the BVoperator
QBV , the differential D and the BV action SBV all contain the same information.

An important subset of all functionals of the fields are the local operators: For any
point x ∈ M , we have local operators supported at x

Ox (E) = Sym•(J∞E |x )∨ , (2.5)

where J∞ denotes the infinite jet space. For example, given a field φ ∈ E , the corre-
sponding local operator in Ox (E) evaluates φ at the point x .

Corresponding to these two point of views, there are also two ‘dual’ ways of encoding
the action of supersymmetry in the BV formalism. Let us start from the perspective of
fields. The endomorphisms End(E), equipped with the commutator and the differential
[D,−], form a differential graded super Lie algebra. Inside (End(E), [D,−]), there is a
sub dg super Lie algebra denoted by (D(E), [D,−]), consisting of all endomorphisms
of E acting by differential operators.

Now let p = p+ ⊕ p− denote a super Poincaré algebra. In a supersymmetric field
theory, the action of supersymmetry is described on the fields by a map of super L∞
algebras

ρ : p � (D(E), [D,−]) . (2.6)

As such ρ consists of component maps

ρ(i) : p⊗i −→ D(E) , j ≥ 1 (2.7)

of degree 1 − i satisfying the usual consistency relations for morphisms of super L∞
algebras.

The action of supersymmetry can also be encoded on the operators of the theory. This
is done by combining, for Q ∈ p, ρ(i)(Q, . . . , Q)∨ the dual maps into a differential

δQ =
∑
i

ρ(i)(Q, . . . , Q)∨ : Ox (E) −→ Ox (E) . (2.8)

Note that this is the same procedure as encoding a gauge symmetry in the BRST differ-
ential. We will see in Sect. 3.4 how to describe the action of the supersymmetry algebra
in the pure spinor formalism.

2.2. Twisting in the BV formalism. Let us fix a square zero element Q ∈ p− of the
odd part of the supersymmetry algebra. Given a supersymmetric field theory in the BV
formalism, the twist of the theory by Q is defined by deforming the BV operator

QBV → QBV + tδQ, (2.9)

where t ∈ C
× and taking C

×-invariants [35,36]. After taking invariants, we specialize
to t = 1. Equivalently, we can deform the BV action to

SQBV [�] = SBV [�] +
∑
i

∫

M
ω(�, ρ(i)(Q, . . . , Q)(�)) (2.10)
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following [37]. This defines the twisted theory as a classical BV theory (E, SQBV , ω)with
the same space of fields and odd-symplectic pairing, but with a new action. Deforming
the differential typically breaks the grading on E . Importantly, the presence of new terms
in the differential often results in the formation of trivial pairs that decouple and thus
play no role in the dynamics of the twisted theory and hence can be neglected. More
precisely, one can pass over to a theory with a smaller space of fields, where all trivial
pairs are omitted. This gives an equivalent formulation of the twisted theory, which is
often drastically simplified. One usually also refers to this formulation as the twisted
theory.

2.3. Twistingand theNilpotenceVariety. Eleven-dimensional supergravity canbe twisted
in two distinct ways that correspond to the two types of nilpotent supercharges. In this
note, we are exclusively concerned with the maximal twist, which is possible on a
manifold with G2 × SU (2) holonomy [5,38,39]. In addition, there is also a minimal
(holomorphic) twist.

The possible twists of a supersymmetric field theory are described by the variety of
square zero elements Y inside the supersymmetry algebra of the theory. The nilpotence
variety

Y = {Q ∈ p−|{Q, Q} = 0} (2.11)

has a natural stratification such that each stratum can be identified with a twisted the-
ory [40]. Different strata can be distinguished by the commutant

Z(Q) = {x ∈ A|[x, Q] = 0}, (2.12)

which is constant along the strata.
Recall that, in any dimension, the Dirac spinor representation S is obtained from a

maximal isotropic subspace L ⊂ V by setting

S = ∧•L∨ . (2.13)

S forms a Clifford module for Cl(V ) and thus in particular a representation of so(V ).
In the case where d = dim(V ) is odd, this representation is irreducible. As we are
interested in eleven-dimensional supergravity, we restrict to this case for the moment.

For Q ∈ S, the annihilator with respect to Clifford multiplication

Ann(Q) = {v ∈ V |v · Q = 0} (2.14)

gives an isotropic subspace Ann(Q) ⊂ V . Q is called a Cartan pure spinor if Ann(Q)

is maximal isotropic. Every Cartan pure spinor is square zero. The converse, however,
is in general not true as we will see below. More generally, one can define the varieties

PSk = {Q ∈ S|dim(L) − dim(Ann(Q)) ≤ k} , (2.15)

which define a filtration

PS0 ⊆ PS1 ⊆ . . . PSn = S . (2.16)
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2.4. Two families of twists. In eleven dimensions, the variety of square zero supercharges
is described in coordinates by the eleven equations

λα�
μ
αβλβ = 0 . (2.17)

This variety is closely related to the variety of Cartan pure spinors. In fact, one finds
Y = PS3 [40]. The variety of Cartan pure spinors sits inside Y as a subvariety PS0 ⊂
PS3 = Y . Furthermore, PS0 is the singular locus of Y and can be described by imposing
the additional equations

λ�μνλ = 0 . (2.18)

For Q on the singular locus, the degree zero part of the commutant is Z0(Q) = u(5).
This corresponds to the holomorphic twist of eleven-dimensional supergravity. Away
from the singular locus, the commutant is an algebra with Levi factor g2 × gl(2). This
corresponds to the maximal twist of eleven-dimensional supergravity that we will study.

Let us elaborate a little further on the maximal twist. The spinor representation in
eleven dimensions decomposes as

S11 = S7 ⊗ S4 . (2.19)

The Dirac Spin representation in four dimensions, S4, decomposes into Weyl spinor
representations S+ and S−:

S4 = ∧•L∨
4 = ∧evenL∨

4 ⊕ ∧oddL∨
4 =: S+ ⊕ S− . (2.20)

Identifying the group Spin(4) ∼= SU (2)+ × SU (2)−, S+ and S− are the fundamen-
tal representations of SU (2)+ and SU (2)−, respectively. On a manifold M7 with G2
holonomy, the spinor representation S7 further decomposes as

S7 = 1G2 ⊕ VG2 , (2.21)

where VG2 is the seven-dimensional representation of G2. Thus we have the decompo-
sition

S11 = (1G2 ⊕ VG2) ⊗ (∧0L∨
4 ⊕ ∧2L∨

4 ⊕ S−) . (2.22)

As a representation of G2 × SU (2)− ×U (1)L , where U (1)L is the Cartan subgroup of
SU (2)+ this gives

S11 = ((00) ⊕ (10)) ⊗ (1−1 ⊕ 1+1 ⊕ 20) . (2.23)

Here we introduced Dynkin labels for the G2-representation. SU (2) × U (1)-represen
tations are labeled by the dimension of the SU (2)-representation, with the U (1) charge
as a subscript. To study the maximal twist, we choose a square zero supercharge

Q ∈ 1G2 ⊗ ∧0L∨
4 = (00)1−1 . (2.24)

Thus, we immediately see that Q is invariant under the action of G2 × SU (2)− and has
U (1)L charge −1,.

The normal space to the nilpotence variety is spanned by the supercharges

Qm ∈ (VG2 ⊗ ∧2L∨
4 ), (2.25)

Qα̇ ∈ (1G2 ⊗ S−). (2.26)

They satisfy the anticommutator relations

{Q, Qm} = Pm (2.27)
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{Q, Qα̇} = P−α̇ . (2.28)

Here we already used that the vector representation decomposes under G2 × SU (2) ×
U (1) as

V11 = (10) ⊕ 2−1 ⊕ 21 . (2.29)

Our conventions are that indices m, n, . . . are indices for the seven-dimensional vector
representation, while α̇, β̇, . . . correspond to SU (2)−.

The above anticommutator relations state that translations onM7 and anti-holomorphic
translations on M4 are exact. Therefore, one can see already at this point that the twisted
theory will depend only on the topological structures of M7, but will be sensitive to
holomorphic ones of M4. Hence this twist is “partially topological” or “holomorphic-
topological”.

3. Eleven-Dimensional Supergravity in the Pure Spinor Superfield Formalism

In this section, we give a short review of eleven-dimensional supergravity in the pure
spinor superfield formalism. The pure spinor superfield formalism has been developed
in the physics literature, in particular by Berkovits [41] and Cederwall [19]. In the
context of eleven-dimensional supergravity, we in particular refer to [12,13] and the
references therein. The pure spinor superfield formalism was reinterpreted from a more
modern mathematical perspective in [39]. For a detailed treatment in modern language,
we refer to our forthcoming work [32]. Here we only use the pure spinor formalism as a
tool to describe the action of supersymmetry on the BV complex of eleven-dimensional
supergravity and therefore only give a brief treatment, exclusively tailored to the example
of eleven-dimensional supergravity.

3.1. General remarks. The general idea of the pure spinor superfield formalism is to
replace the usual BV complex (E, D) by a much larger object, which we will denote
by (A,D), encoding the same information. In the case of eleven-dimensional super-
gravity, the construction can be carried out in the following way. Let R = O(S11) =
C[λ1, . . . , λ32] be the ring of polynomial functions on the eleven-dimensional spin rep-
resentation S11 and

I = (λ�μλ) (3.1)

the ideal generated by the defining equation of the nilpotence variety. The quotient R/I
can then be identifiedwith the ring of functions on the nilpotence variety Y . Furthermore,
let T denote the supertranslation subgroup of the super Poincaré group. There are two
commuting actions of T on the smooth functions C∞(T ) on T , namely acting by left
and right translations. Infinitesimally, these actions are described by Lie algebra maps

L , R : t −→ Vect(T ) . (3.2)

We denote the images of a basis of t− under L and R by Qα and Dα . Introducing
coordinates θα on t− and xμ on t+ = V11, these vector fields are the usual left and right
translations on superspace.

Qα = ∂

∂θα
− �

μ
αβθβ ∂

∂xμ

Dα = ∂

∂θα
+ �

μ
αβθβ ∂

∂xμ
.

(3.3)
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Now we can define

(A,D) = (
C∞(T ) ⊗ R/I , D = λαDα

)
. (3.4)

Note that the defining equation of the ideal I ensures that the differential D is indeed
square zero. In coordinates, an element of this complex can be thought of as a function
�(x, θ, λ) and is called a pure spinor superfield. With these coordinates, A takes the
form

(A,D) =
(
C∞(V11) ⊗ C[θ1, . . . , θ32] ⊗ R/I , D

)
. (3.5)

The differential D has an obvious decomposition

D = D0 +D1 (3.6)

where D0 = λα ∂
∂θα . This makes (A,D) into a bicomplex. Note that

(A,D0) = (
K •(R/I ) ⊗ C∞(V11) , dK ⊗ idC∞(V11)

)
(3.7)

is simply the Koszul complex of R/I tensored with smooth functions on V11.
The usual component field description is obtained by taking the cohomology with

respect toD0 and transferring all relevant structures like the differentialD1 (which gives
to the differential D on the component field in the sense of Sect. 2.1), the action of the
supersymmetry algebra (which gives rise to the L∞ module structure on the component
fields), andpossibly higher termsof an L∞ structure (whichwould rise to an L∞ structure
encoding interactions on the component field level). For a systematic account of this
perspective, we refer the reader to our future work [32]. In the next subsection, we will
explain how theD0-cohomology can be computed and how the action of supersymmetry
can be transferred for the case of eleven-dimensional supergravity.

3.2. D0-cohomology and representatives. The D0-cohomology can be identified with
the tensor product

(L• ⊗R C) ⊗ C∞(V11) , (3.8)
where L• is the minimal free resolution of R/I in R-modules. In our case the minimal
free resolution of R/I takes the form

R ⊗
(
C V11 ∧2V11 ⊕ V11 ∧3V11 ⊕ Sym2(V11) ⊕ S11 S11 ⊗ V11

S11 ⊗ V11 ∧3V11 ⊕ Sym2(V11) ⊕ S11 ∧2V11 ⊕ V11 C

)
.

d1 d2 d3 d4

d5
d6 d7 d8

(3.9)

The resolution differential was already described in [12]. Let us choose a basis (eμ) of
V11 and (sα) of S11.Wewill need themaps d1, . . . d5. In this basis they take the following
form.

d1 : V11 −→ CC (1) �→ (λ�μλ)C (1)
μ

d2 : ∧2V11 ⊕ V11 −→ V11v �→ (λ�μνλ)vμeν

C (2) �→ (λ�μλ)C (2)
μν eν

d3 : ∧3V11 ⊕ Sym2(V11) ⊕ S11 −→ ∧2V11 ⊕ V11C (3) �→ (λ�μλ)C (3)
μνρ(eν ∧ eρ)

g �→ (
(λ�μλ)eν + ηρσ (λ�σνλ)(eμ ∧ eρ)

)
gμν

ω �→ (
(λ�μ)αeμ + 1

2 (λ�μν)α(eμ ∧ eν)
)
ωα

d4 : S11 ⊗ V11 −→ ∧3V11 ⊕ Sym2(V11) ⊕ S11ψ �→ −(λ�μλ)ψα
μsα + 1

2 (λ�μν)α(λ�μ)βψνβsα

+ 1
2 (λ�μ)αψνα(e(μ ⊗ eν))

+ 1
4 (λ�νρ)αψμαeμ ∧ eν ∧ eρ

d5 : S11 ⊗ V11 −→ S11 ⊗ V11ψ† �→ (λMαβ
μν λ)ψ

†ν
β vμ ⊗ sα.

(3.10)
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Table 2. θ and λ degrees for the supergravity three-form BV multiplet

θ λ

0 1 2 3 4 5 6 7
0 C(0)

1 C(1)

2 C(2), vμ

3 ω C(3), gμν

4 ψ

5 ψ†

6 C(3)†, g†μν ω†

7 C(2)†, v
†
μ

8 C(1)†

9 C(0)†

We do not specify the tensor Mαβ
μν here, but just remark that it is a rather complicated

expression in terms of �-matrices. The D0-cohomology is bigraded by λ and θ . The
component fields organize according to degree in λ and θ according to Table 2. We will
call the λ degree the BV degree. This convention is non-standard because it places the
physical fields in BV degree three. However, we will see that it simplifies other aspects
of our presentation.

To find explicit representatives for the cohomology classes corresponding to the
component fields we define the adjoint differential

D†
0 = θα ∂

∂λα

. (3.11)

Representatives can then be found by applying the resolution differential and D†
0 itera-

tively. This was already noted in [42] and will be elaborated on in [32]. For example we
find for the one-form

C (1) d1�−→ (λ�μλ)C (1)
μ

D†
0�−→ (λ�μθ)C (1)

μ , (3.12)

such that the one-form field is represented by (λ�μθ)C (1)
μ .

Similarly one finds for the two-form

C (2) d2�−→ (λ�μλ)C (2)
μν e

ν
D†

0�−→ (λ�μθ)C (2)
μν e

ν d1�−→ (λ�νλ)(λ�μθ)C (2)
μν

D†
0�−→ (λ�νθ)(λ�μθ)C (2)

μν ,

(3.13)

such that the two-form is represented by (λ�νθ)(λ�μθ)C (2)
μν . Likewise, the three-form

is represented by (λ�νθ)(λ�μθ)(λ�ρθ)C (3)
μνρ .

Let us continue with the vector ghost v

v
d2�−→ (λ�μνλ)vνeμ

D†
0�−→ (λ�μνθ)vνeμ

d1�−→ (λ�μλ)(λ�μνθ)vν

D†
0�−→ (λ�μθ)(λ�μνθ)vν.

(3.14)
Thus the representative is (λ�μθ)(λ�μνθ)vν . For the graviton we find with a similar
calculation (λ�μθ)(λ�μ(νθ)(λ�ρ)θ)gρν .

Performing this procedure one can find representatives for the gravitino and its ghost.
The results are summarized in Table 3.
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Table 3. Representatives for the fields in 11D supergravity organized by θ -degree

Field Representative in D0-cohomology

C(0) C(0)

C(1) (λ�μθ)C(1)
μ

C(2) (λ�μθ)(λ�νθ)C(2)
μν

v (λ�μθ)(λ�μνθ)vν

ω
[
(λ�μθ)(λ�μνθ)(θ�ν)α + 1

2 (λ�μθ)(λ�νθ)(θ�μν)
]
ωα

C(3) (λ�μθ)(λ�νθ)(λ�ρθ)C(3)
μνρ

g (λ�μθ)(λ�μ(νθ)(λ�ρ)θ)gρν

ψ
[
(λ�μθ)(λ�νθ)(λ�ρθ)(θ�νρ)α − (λ�μθ)(λ�νρθ)(λ�νθ)(θ�ρ)α

]
ψα

μ

3.3. The BV differential. The differential D acting on the component fields is obtained
by transferringD1 to theD0-cohomology. In general, this is done by a homotopy transfer
of D∞-algebras but here we are only interested in the lowest order term that acts on the
representatives simply by the usual formula of D1,

D1 = (λ�μθ)∂μ . (3.15)

This gives part of the differential, that is first order in derivatives. For example, we can
act on the C (0) ghost

D1(C
(0)) = (λ�μθ)∂μC

(0) . (3.16)

Thus we see that the differential corresponds to the de Rham differential. This obviously
generalizes to C (1) and C (2) such that we see that the ghost system of the three-form
indeed corresponds to the usual ghost system of a higher form field. Moving on to the
diffeomorphism ghost vμ for the graviton, we find

D1((λ�μθ)(θ�μνθ)vν) = (λ�μθ)(θ�μνθ)(λ�ρθ)∂ρvν . (3.17)

From our calculations of the representatives, we know that only the part where ρ and ν

are symmetrized corresponds to a non-trivial cohomology class. Thus we find

D1(v) = (λ�μθ)(θ�μ(νθ)(λ�ρ)θ)(∂ρvν + ∂νvρ) . (3.18)

Written dually in terms of operators, we find that the BV operator acts by

QBV gμν = ∂μvν + ∂νvμ = (Lvη)μν , (3.19)

which is indeed the expected gauge transformation for the graviton.
A similar story also holds for the gravitino and its ghost. There we find

D1(ω) = (λ�ρθ)
[
(λ�μθ)(λ�μνθ)(θ�ν)α + (λ�μθ)(λ�νθ)(θ�μν)α

]
∂ρωα . (3.20)

This gives a gauge transformation

QBVψα
μ = ∂μωα . (3.21)

Thus we see that D1 encodes the usual gauge transformations, expected for the field
content. Furthermore, one expectsD1 to encode the Rarita–Schwinger equation between
the gravitino and its antifield. In addition, homotopy transfer is expected to induce a
second order differential giving the linearized equations of motions of the graviton and
the three-form field.
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3.4. The action of supersymmetry. As explained in Sect. 2.1, the supersymmetry algebra
usually does not act strictly on the component fields. This is indeed the case for eleven-
dimensional supergravity. Instead there is a L∞ map

ρ : p � D(E) . (3.22)

The components of ρ can be obtained from the action of Qα by left translation using
a homotopy transfer procedure. The strict part is simply obtained by letting (3.3) act
on the representatives. For an element Q = εαQα of the supersymmetry algebra, this
means

ρ(1)(Q) = εα ∂

∂θα
− εα�

μ
αβθβ∂μ . (3.23)

For the second order part one finds

ρ(2)(Q1, Q2) = p ◦
(
ρ(1)(Q1) ◦ D†

0 ◦ ρ(Q2) + ρ(Q2) ◦ D†
0 ◦ ρ(1)(Q1)

)
◦ i . (3.24)

Here i is the inclusionmap from theD0-cohomology to the total complex (3.4) (mapping
a component field to its representative, as computed above) and p is the projection
back onto the D0-cohomology. The presence of ρ(2) signals that the supersymmetry
transformations only close up to the equations of motions and gauge transformations.
In fact, ρ(2) nullhomotopes the failure of the supersymmetry algebra to be represented
strictly and thus exactly corresponds to what is called a “closure term” in the physics
literature. Higher order components will not appear for eleven-dimensional supergravity.
In [12], a close connection between the resolution differential and the non-derivative
supersymmetry transformations and their closure termswas conjectured.Wewill explain
this claim in modern language and provide a proof in [32]. Here it suffices to say that,
as we will see momentarily, one can obtain the non-derivative part of ρ by replacing λ

with ε in the resolution differential at appropriate places. Now let us start deriving the
action of the supersymmetry algebra on the BV fields. The strict part gives the usual
supersymmetry transformations known from the literature [12].

3.4.1. The three-form ghost system We begin with the ghost system of the three-form.
From degree reasons, it is obvious that ρ(1) acts trivially on the ghost system for the
three-form. Thus we have

ρ(1)(C (0)) = ρ(1)(C (1)) = ρ(1)(C (2)) = 0 . (3.25)

However, this will be corrected by higher order contributions. There we find

ρ(2)(Q, Q)(C (1)) = ρ(2)(Q, Q)(C (1)
μ (λ�μθ))

= (ε�με)C (1)
μ

= ι{Q,Q}C (1) .

(3.26)

Thus we find a map

ρ(2)(Q, Q) = ι{Q,Q} : �1(M) −→ �0(M) . (3.27)

Here we also see the relation to the resolution differential: d1 acts on the one-form by
C (1) → (λ�μλ)C (1)

μ , thus replacing λ with ε we obtain ρ(2).
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Written dually for operators, this gives a supersymmetry transformation rule

δC (1)
μ = (ε�με)C (0) . (3.28)

With similar calculations, we also see that there are higher order transformations

ρ(2)(Q, Q) = ι{Q,Q} : �2(M) −→ �1(M) (3.29)

and

ρ(2)(Q, Q) = ι{Q,Q} : �3(M) −→ �2(M) . (3.30)

However, these transformations will not cancel any components in the twist since there
the relevant supercharge satisfies {Q, Q} = 0 and thus the above maps all vanish.

3.4.2. The diffeomorphism ghost The only non-derivative transformation for the diffeo-
morphism ghost appears in ρ(2). It takes the form

ρ(2)(Q, Q)(v) = ρ(2)(Q, Q)((λ�μθ)(θ�μνλ)vν)

= (λ�μθ)(ε�μνε)vν

(3.31)

and thus gives a transformation rule

δC (1)
μ = (ε�μνε)v

ν. (3.32)

In addition, there is a ρ(1)-piece involving a derivative that can be seen to give rise to the
usual supersymmetry transformation between the diffeomorphism and supertranslation
ghost [12]

δωα = −1

2
(ε�μν)α∂μvν . (3.33)

3.4.3. The gravitino ghost For the gravitino ghost, we obtain

ρ(1)(Q)(ω) = (λ�μθ)(λ�μνθ)(ε�νω) +
1

2
(λ�μθ)(λ�νθ)(ε�μνω) . (3.34)

Again, note the relation to the free resolution. This gives two supersymmetry transfor-
mations

δvμ = ε�μω

δC (2)
μν = 1

2
ε�μνω .

(3.35)

By now the methodology should be clear. In this style, one can derive the full higher
order corrections to the supersymmetry transformations and encode them in the differ-
ential δ.

We summarize the full non-derivative supersymmetry transformations in Table 4.
These results first appeared in [12].

In addition, we list the transformations including derivatives for the gravitino and its
ghost in Table 5.
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Table 4. Non-derivative supersymmetry transformations

Operator φ Transformation rule δφ

C(0) δC(0) = (ε�με)C(1)
μ

C(1) δC(1)
μ = (ε�νε)C(2)

μν + (ε�μνε)vν

C(2) δC(2)
μν = 1

2 ε�μνω + (ε�ρε)C(3)
μνρ + (ε�[μρε)gρ

ν]
v δvμ = ε�μω + (ε�νε)gμν

ω δωα = (ε�με)ψαμ + 1
2 (ε�μν)α(ε�μ)βψβν

C(3) δC(3)
μνρ = 1

4 ε�[μνψρ]
g δgμν = 1

2 ε�(μψν)

ψ δψα
μ = (εMαβ

μν ε)ψ
†ν
β

Table 5. Supersymmetry transformations with derivatives

Operator φ Transformation rule δφ

ω δωα = (ε�μν)α∂μvν

ψ δψα
μ = (�

νρστ
μ − 8�ρστ δν

μ)G(4)
νρστ εα

4. Twisting the Free Theory

In this section, wewill show that the fields of the twisted theory arrange into a differential
form

A ∈ �•(M7) ⊗ �0,•(M4) . (4.1)

The strategy to establish this result is clear: we restrict the supersymmetry transforma-
tions from Table 4 to our G2 × SU (2) invariant supercharge and look for fields that
form trivial pairs under δ. In the twisted theory these fields decouple and can be ne-
glected. To find such cancellations we have to decompose the field content as well as
the supersymmetry transformations equivariantly under G2 × SU (2) ×U (1).

As a result, wewill see that only certain components of the three-form, the three-form
ghost system, the gravitino, and the corresponding antifields play a role in the twisted
theory. These fields then arrange into the differential form described above.

We will see that the twisted differential takes the form

Dtw = dM7 ⊗ 1 + 1 ⊗ ∂̄M4 . (4.2)

The fields in the untwisted theory have a have a Z× Z-grading given by the BV degree
dBV and theU (1)L charge dU (1)L .After twisting, the new BV operator QBV +δQ breaks
the Z × Z-grading on the space of fields E to the Z-grading

dQ
BV = dBV − dU (1)L , (4.3)

in the twisted theory. Note that Dtw is not homogenous with respect to this grading
since ∂̄M4 operator carries U (1)L charge -1. The new BV degree of a component of
A is simply its de Rham form degree on M7. Alternatively, note that the twisted BV
differential preserves the total form degree and we can assign a total form degree to the
components ofA.Weobserve that for component fields inA the total form degree agrees
with their original θ -degree. However, interactions might not preserve these degrees.
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Table 6. Branching of Spin(11) → Spin(7) × SU (2)− ×U (1)L -representations

Spin(11) Spin(7) × SU (2)− ×U (1)L

(00000) (000)(10)
(10000) (000)(2−1 + 21) ⊕ (100)(10)
(00001) (001)(1−1 + 11 + 20)
(01000) (000)(1−2 + 10 + 30 + 12) ⊕ (010)(10) ⊕ (100)(2−1 + 21)
(00100) (000)(2−1 + 21) ⊕ (002)(10) ⊕ (010)(2−1 + 21) ⊕ (100)(1−2 + 10 + 30 + 12)
(20000) (000)(3−2 + 10 + 30 + 32) ⊕ (100)(2−1 + 21) + (200)(10)
(10001) (001)(2−2 + 3−1 + 1−1 + 2⊕2

0 + 11 + 31 + 22) ⊕ (101)(1−1 + 20 + 11)

Table 7. Branching of Spin(7) → G2-representations

Spin(7) G2

(000) (00)
(100) (10)
(001) (10) ⊕ (00)
(010) (01) ⊕ (10)
(002) (00) ⊕ (10) ⊕ (20)
(101) (01) ⊕ (10) ⊕ (20)
(200) (20)

4.1. Decomposition of the field content. We now decompose the field content into rep-
resentations of G2 × SU (2)− × U (1)L . To do this, recall the following sequence of
inclusions

Spin(11) ⊃ Spin(7) × SU (2)− ×U (1)L ⊃ G2 × SU (2)− ×U (1)L . (4.4)

The branching of the relevant representations from Spin(11) to Spin(7) × SU (2)− ×
U (1)L is described by Table 6.

Here we are using Dynkin labels to identify the Spin(11) and Spin(7) represen-
tations. We identify SU (2) × U (1)-representations by the dimension of the SU (2)-
representation and denote the U (1) charge as a subscript. Recall that the vector rep-
resentation V11 has Dynkin label (10000) and its second and third exterior powers
are labeled by (01000) and (00100). The spinor representation S11 has Dynkin label
(00001). Furthermore, the gravitino representation already decomposes as a Spin(11)
representation according to

S11 ⊗ V11 ∼= (00001) ⊕ (10001) . (4.5)

Finally, the graviton transforms in the representation

Sym2 V11 ∼= (20000) ⊕ (00000) . (4.6)

We also need the branching rules for Spin(7) → G2, which we collect in Table 7.
Wesee that the three-formand its ghostsC (p) split into forms in�i (M7)⊗� j1, j2(M4),

where i + j1 + j2 = p is the total form degree. Thus, in the light of the conjecture, we
expect all components with non-zero holomorphic form degree ( j1 �= 0) to cancel in the
twisted theory.

We now consider the decomposition of the gravitino field ψα
μ . It transforms in the

product of the Spin(11) vector and spinor representations. We first consider its decom-
position under Spin(11) → Spin(7) × SU (2)−. We will later see that the only compo-
nents that survive in the twisted multiplet have indexμ transforming in a Spin(7)-vector
representation whose components we denote by m.
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On amanifold ofG2 holonomy the de Rham complex splits into three sub-complexes
[43]

�0
1 �1

7 �2
7 �3

1 �4
1 �5

7 �6
7 �7

1

�2
14 �3

7 �4
7 �5

14.

�3
27 �4

27

d d d d d d

d

d

d d

d

d
(4.7)

To define the space of differential forms �k
l , recall that we can identify the differential

forms �k in the de Rham complex with sections of the k-th exterior power of the
cotangent bundle ofM7.WhenM7 hasG2 holonomy the exterior powers of the cotangent
bundle decompose into irreducible representations of G2 and we denote the sections by
�k

l , where the subscript denotes the respective dimension of the G2-representation.
The spin 1/2 and spin 3/2 fields on M7 decompose as [44,45]

�1/2 ∼= �0
1 ⊕ �1

7 (4.8)

�3/2 ∼= �1
7 ⊕ �2

14 ⊕ �3
27. (4.9)

Using the above decomposition and the Spin(11) → Spin(7)×SU (2)×U (1)L branch-
ings in Table 6, and the isomorphisms

�3/2 ⊕ �1/2 ∼=
(
�1

7 ⊕ �2
14 ⊕ �3

27

)
⊕

(
�0

1 ⊕ �1
7

)
(4.10)

∼= �2 ⊕ �3, (4.11)

we see that the gravitino, given by a pair of spin 3/2 and spin 1/2 fields on aG2 holonomy
manifold, can be identified with a pair of two- and three-forms on the manifold. We will
find that the components of the gravitino that survive the twist are contained in the
representation

(S+ ⊕ S−) ⊗ (�3/2 ⊕ �1/2) ∼= (S+ ⊕ S−) ⊗ (�2 ⊕ �3) . (4.12)

However, not all of these components survive.Wewill find that the surviving components
are �3 ⊗ ∧0L∨

4 , �3 ⊗ S−, and �2 ⊗ ∧2L∨
4 . The gravitino has BV degree 3 in the

untwisted theory and the representations∧0L∨
4 , S−,∧2L∨

4 haveU (1) charge−1, 0, and
1, respectively. Thus their new BV defined by Eq. (4.3) are 4, 3, and 2. The components
surviving the twist are therefore in �4(M7) ⊗ �0,0(M4), �3(M7) ⊗ �0,1(M4), and
�2(M7)⊗�0,2(M4), where we have used the isomorphism �3 ∼= �4 to ensure that the
gravitino has its correct twisted BV degree.

The components of the three-form and its ghosts C (p), p = 0 . . . 3 and the gravitino
along with their antifields that survive the twist therefore give exactly the right field
content to be described by a form

A ∈ �•(M7) ⊗ �0,•(M4). (4.13)
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4.2. Decomposition of the supersymmetry transformations. We now determine the su-
persymmetry transformations for the scalar supercharge Q. For the moment we are only
interested in the supersymmetry transformations without derivatives since these are the
ones responsible for the formation of trivial pairs. The transformations with deriva-
tives will later be used to determine the twisted BV differential. Recall that the spin
representation S11 decomposes as

[(00) ⊕ (10)] (1−1 + 11 + 20) . (4.14)

This means that we can decompose the parameter ε from Table 4 into

ε → (ε−, ε+, εα̇, ε−m, ε+m, εmα̇) . (4.15)

Here m is an index for the seven-dimensional representation of G2. To act by Q, we
specify ε− = 1 and set all other components to zero.

On general grounds, these transformation take a very simple form. As explained
above, the supercharge Q is invariant under G2 × SU (2) and has U (1) charge −1.
As a consequence, δQ is an G2 × SU (2)-equivariant map. By decomposing the field
content into irreducibleG2×SU (2)-representations, δQ splits up as amap between these
irreducibles. However, since δQ is equivariant, we can apply Schur’s lemma and find,
first, that there can not be any non-trivialmaps between non-isomorphic components and,
second, transformations between isomorphic G2 × SU (2)-representations are always of
the form α · id for some α ∈ C. Thus, to check whether there are any trivial pairs, we
only have to see if there is a non-vanishing map between isomorphic representations. In
addition, δQ carries aU (1) charge that simply equals minus the number of ε’s appearing
in the transformation, which can be used as a further criterion to establish that certain
maps vanish.

To check whether or not supersymmetry transformation yields a trivial pair we need
to decompose �-matrices.

4.2.1. Gamma matrix decomposition In eleven dimensions the symmetric square of the
spin representation decomposes as

Sym2 S11 ∼= V11 ⊕ ∧2V11 ⊕ ∧5V11 . (4.16)

Accordingly, there are maps denoted by �μ, �μν and �μ1...μ5 given by projecting onto
the summands in this decomposition. So for example, �μ is given by the composition

Sym2(S11) V11 ⊕ ∧2V11 ⊕ ∧5V11

V11

∼=

�μ

. (4.17)

Recall the spin representation S11 decomposes under G2 × SU (2) ×U (1) as

S11 → 1−1 + 11 + 20 + (10)(1−1 + 11 + 20) . (4.18)

We are interested in ε−�με and ε−�μνε, where ε− ∈ 1−1 in the above decomposition
and ε is arbitrary. This means we are looking at a map 1−1⊗ S11 → V11 or 1−1⊗ S11 →
∧2V11, respectively. The representations V11 and ∧2V11 decompose as

V11 → 21 ⊕ 2−1 ⊕ (10)

∧2V11 → (1−2 ⊕ 10 ⊕ 30 ⊕ 12) ⊕ (10)(2−1 ⊕ 21) ⊕ (10) ⊕ (01).
(4.19)
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We can now compare this with the decomposition of 1−1⊗S11 and read off the following
results for �μ:

ε−�με− = 0
ε−�με+ = 0
ε−�μεα̇ ∈ 2−1
ε−�με+m ∈ (10)
ε−�με−m = 0
ε−�μεmα̇ = 0.

(4.20)

For �μν we find:
ε−�μνε− ∈ 1−2
ε−�μνε+ ∈ 10
ε−�μνεα̇ = 0
ε−�μνε+m = 0
ε−�μνε−m = 0
ε−�μνεmα̇ ∈ (10) 2−1.

(4.21)

For example, we immediately see that all terms of the form ε−�με− vanish and hence
do not affect the twist. This is also a direct consequence of Q being nilpotent.

Let us start examining the supersymmetry transformations. Note that we are ignoring
any potential non-zero scalar coefficients α as we are only interested in the formation
of trivial pairs.

Furthermore, we are only considering cancellations between the fields of the multi-
plet as well as between the gravitino and its antifield. Since the action of supersymmetry
respects the pairing on the BV complex, the same cancellations also occur for the re-
spective antifields.

4.2.2. The zero-form C (0) For the zero-form ghost, we obviously have δQC (0) = 0.
Since there is no supersymmetry transformation generating C (0), it will become a field
in the twisted theory.

4.2.3. The diffeomorphism ghost v Next we consider the diffeomorphism ghost vμ. It
decomposes into components

vμ → (vm, v+α̇, v−α̇) . (4.22)

We have a supersymmetry transformation of the form

δQvμ = ε�μω . (4.23)

The gravitino ghostω lives in the spinor representation and hence decomposes according
to Eq. (4.15). From the �-matrix decomposition in Eq. (4.20), we know that ε−�μω is
only non-vanishing for the components ωα̇ and ω+m of ω. Thus we get up to potential
non-zero prefactors

δQvm = ω+m (4.24)

and
δQv−α̇ = ωα̇ . (4.25)

Finally we have,
δQv+α̇ = 0 . (4.26)

Thus we already find that some components of the diffeomorphism ghost v form trivial
pairs with parts of the gravitino ghost. In addition, it is interesting to note that δQv+α̇ = 0.
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As v+α̇ will not be part of the twisted three-formmultiplet, we expect it to be in the image
of δQ , forming a trivial pair with another field. Indeed, we will momentarily find that
v+α̇ cancels the holomorphic part of the one-form C (1).

4.2.4. The one-form C (1) For the field C (1), we have a supersymmetry transformation
rule

δQC
(1)
μ = (ε−�μνε−)vν . (4.27)

From the �-matrix decomposition, we know ε−�μνε− ∈ 1−2. Thus we immediately
find

δQC
(1)
m = 0 (4.28)

and

δQC
(1)
+α̇ = 0 . (4.29)

In addition, we have

δQC
(1)
−α̇ = v+α̇ . (4.30)

This shows that C (1)
−α̇ and v+α̇ form a trivial pair and thus do not appear in the twisted

theory. Recall that the choice (ε−, ε+, εα̇) = (1, 0, 0) defines a complex structure on
R
4 ∼= C

2. The four-dimensional vector representation decomposes as

V4 = S+ ⊗ S− = 21 ⊕ 2−1 . (4.31)

The representation 2−1 corresponds to holomorphic and 21 to the antiholomorphic com-
ponents. Thus we see that, for this complex structure, the components C (1)

−α̇ form the
holomorphic parts of the one-form ghost C (1). As expected, only the anti-holomorphic
part of the one-form plays a role in the twisted theory.

We can alternatively describe the cancellation using holomorphic geometry. With
respect to the complex structure on C

2,

� = (ε−�μνε−)dxμ ∧ dxν (4.32)

defines a holomorphic (2, 0)-form. Introducing coordinates (zα̇, z̄α̇) on V = 2−1 ⊕ 21,
the holomorphic (2, 0)-form simplifies to

� = dz1 ∧ dz2 . (4.33)

This allows us to rewrite the supersymmetry transformation of the one-form ghost as

δQC
(1) = ιv� = v+α̇dz

α̇ . (4.34)

Thus, we again see that the holomorphic components of C (1) cancel with the diffeomor-
phism ghost.
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4.2.5. The two-form field C (2) Let us continue with the supersymmetry transformation
of the two-form

δQC
(2)
μν = 1

2
ε−�μνω + ε−�[μρε−gρ

ν] . (4.35)

The two-form and the graviton decompose into components

C (2)
μν → (C (2)

mn,C
(2)
m+α̇,C (2)

m−α̇,C (2)
2 ,C (2)

0 ,C (2)
(α̇β̇)

,C (2)
−2)

gμν → (gmn, gm+α̇, gm−α̇, g2(α̇β̇), g(α̇β̇), g0, g−2(α̇β̇), h) .
(4.36)

Consulting the �-matrix decomposition in Eq. (4.21), we get

δQC
(2)
mn = 0

δQC
(2)
+mα̇ = 0

δQC
(2)
−mα̇ = ωmα̇ + g+mα̇

δQC
(2)
2 = 0

δQC
(2)
0 = ω+

δQC
(2)
(α̇β̇)

= g2(α̇β̇)

δQC
(2)
−2 = ω− + g0 .

(4.37)

Thus we find that the components

C (2)
−mα̇ C (2)

0 C (2)
(α̇β̇)

C (2)
−2 (4.38)

do not appear in the twisted multiplet, while

C (2)
mn C (2)

+mα̇ C (2)
2 (4.39)

are in the kernel of δQ and thus, since there are no supersymmetry transformations that
could make these exact, part of the twisted multiplet. Note again that this matches with
the expectation that only (0, ∗)-forms on M4 play a role in the twisted multiplet.

Note that we can rewrite the piece of the supersymmetry transformation (4.35) in-
volving the graviton using the holomorphic (2,0)-form � as

δQC
(2) = ιgρ

ν ∂ρ
� ∧ dxν . (4.40)

However, due to the symmetry properties of the graviton, this transformation alone
does not cancel all holomorphic component of the two-form. So one really needs the
supersymmetry ghost to cancel the singlet C (2)

0 .
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4.2.6. The three-form field C (3) For the three-form field, we have a supersymmetry
transformation of the form

δQC
(3)
μνρ = 1

4
ε−�[μνψρ] . (4.41)

The three-form decomposes into components

C (3)
μνρ → (C (3)

mnp,C
(3)
mn+α̇,C (3)

mn−α̇,C (3)
m−2,C

(3)
m0,C

(3)
m(α̇β̇)

). (4.42)

To decompose this transformation, we write for the gravitino

ψα
μ = ξα ⊗ χμ (4.43)

where ξα takes values in S11 and χμ in V11. From (4.21), we see that ξα has to live in

1−1 ⊕ 11 ⊕ (10)20 (4.44)

to get a non-zero result. Decomposing (1−1 ⊕ 11 ⊕ (10)20) ⊗ V11 into irreducibles, we
can identify the decomposed transformations. The results are listed in Table 8.

4.2.7. The supersymmetry ghost ω The non-derivative part of the supersymmetry trans-
formation of ωα reads

δQωα = 1

2
(ε−�μν)α(ε−�μψν) . (4.45)

Again decomposing the gravitino as we did for the three-form field and using the de-
composition (4.20), we find that ξα has to take values in

20 ⊕ (10)11 . (4.46)

Tensoring with the vector representation V11 and identifying matching representations
gives the result listed below.

4.2.8. The graviton gμν The supersymmetry transformation

δQgμν = 1

2
ε−�(μψν) (4.47)

again only allows for ξ to come from 20 ⊕ (10)11. As before, we just list the results in
Table 8.

InTable 8,we collect all decomposed non-derivative supersymmetry transformations.
Here M is an index for the 14-dimensional representation (01) of G2. It appears in the
variation

δQC
(3)
mn−α̇ = ψMα̇ + ψmα̇ (4.48)

where the notation describes the decomposition ∧2(10) → (10) ⊕ (01) of G2-
representations.
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Table 8. Decomposed supersymmetry transformations

Operator φ Transformation rule δQφ

C(0) 0

C(1)
m , C(1)

+α̇
, C(0)

−α̇
0, 0, v+α̇

C(2)
mn , C

(2)
+mα̇

, C(2)
−mα̇

, C(2)
2 , C(2)

0 , C(2)
(α̇β̇)

, C(2)
−2 0,0, ωmα̇ + g+mα̇ , 0, ω+, g2(α̇β̇), ω− + g0

vm , v+α̇ , v−α̇ ω+m , 0, ωα̇
ω+, ω−, ωα̇ , ω−m , ω+m , ωmα̇ 0, ψ+, 0, ψ+m , 0, ψ2mα̇

C(3)
mnp , C

(3)
mn+α̇

, C(3)
mn−α̇

, C(3)
m−2, C

(3)
m0, C

(3)
m(α̇β̇)

0, 0, ψMα̇ + ψmα̇ , ψm−, ψm+, ψm+(α̇β̇)

C(3)
m2, C

(3)
−α̇

, C(3)
+α̇

0, ψα̇ , ψ2α̇
gmn , gm+α̇ , gm−α̇ , g2(α̇β̇), g(α̇β̇), g0, g−2(α̇β̇), h ψmn+, ψ2mα̇ , ψmα̇ , 0, ψ+(α̇β̇), ψ+, ψ−(α̇β̇), ψ+

ψ δQψα
μ = (ε−Mαβ

μν ε−)ψ
†ν
β

4.3. Supersymmetry variationof the gravitino. Thenon-derivative supersymmetry trans-
formation of the gravitino reads

δψα
μ = (εMαβ

μν ε)ψ
†ν
β . (4.49)

This transformation reflects the fact that the supersymmetry algebra acts only up to
the equations of motions of the gravitino. Correspondingly, there is a quadratic term in
antifields appearing in the BV action [12,46]

S(2) ∝ (εMε)ψ†ψ† . (4.50)

The transformation (4.49) is responsible for the remaining cancellations between of the
gravitino. To argue that indeed the correct components of ψ cancel, we change our
strategy. As the structure of Mαβ

μν is very complicated, we will not decompose it directly
under G2 × SU (2). Instead we give an indirect argument.

For this, recall that (4.49) is precisely the term that corrects for the failure of the
linearized supersymmetry transformation to act strictly. Denoting the linearized part
of the supersymmetry transformation by δlinQ and the quadratic transformation of the

gravitino by δ
quad
Q , we have

{δlinQ , δlinQ }ψ = δlin{Q,Q}ψ + δ
quad
Q QBVψ†

= δ
quad
Q QBVψ†

= (ε−Mε−)QBVψ† ,

(4.51)

where we have used the fact that Q is square zero in the second equality.
Thus, for ψ outside of the kernel of QBV ,

{δlinQ , δlinQ }ψ = 0 �⇒ δ
quad
Q ψ = 0 . (4.52)

For such components there can not be any cancellations betweenψ andψ†. Furthermore
this reasoning suggests to view the cancellations between components of the gravitino
and its antifield as a two-step procedure. First, the linearized transformation identifies a
piece of ψ with a component of G(4) = dC (3). Then we can act with another linearized



Maximally Twisted Eleven-Dimensional Supergravity 81

transformation to obtain a component of ψ†. Clearly the U (1) charges of components
connected in this way satisfy

dU (1)(ψ
†) = dU (1)(G

(4)) + 1 = dU (1)(ψ) + 2 . (4.53)

Now recall that the linear part of supersymmetry transformations on the three-form
and the gravitino are

δlinQ ψμ = (�νρστ
μ − 8�ρστ δν

μ)G(4)
νρστ ε− (4.54)

δlinQ C (3)
μνρ = 1

4
ε−�[μνψρ] . (4.55)

However, from Table 8 we know that the components

C (3)
mnp ,C (3)

mn+α̇ ,C (3)
m2 (4.56)

are in the kernel of δQ . Thus the pieces ofψ , which aremapped to the corresponding field
strengths by (4.54) are annihilated by applying the second linear transformation (4.55)
and hence satisfy {δlinQ , δlinQ }ψ = 0.

With this information, we can analyze the components of the gravitino. In Table 9,
we display the G2× SU (2)-equivariant decomposition of the gravitino, its antifield, and
the field strength organized by U (1) charges. All components of ψ and ψ† that form
trivial pairs with other fields according to Table 8 are indicated with an arrow.

We immediately see that the components ofψ withU (1) charge 1 cannot be canceled
and thus are part of the twisted multiplet. We circle these components in blue.

Furthermore, we can take a look at the remaining components ofψ withU (1) charge
−1. There we have a representation

(00)(1) ⊕ (10)(1) ⊕ (20)(1) ∼= �4(M7) ⊗ �0,0(M4) , (4.57)

which maps under δQ to dM7C (3)
mnp. This means the corresponding components are part

of the twisted multiplet. With similar reasoning the components

(00)(2) ⊕ (10)(2) ⊕ (20)(2) ∼= �3(M7) ⊗ �0,1(M4) (4.58)

withU (1) charge zero transform to the field strength of dM7C (2)
mn+α̇ and ∂̄C (3)

mnp under δQ
and hence are also part of the twisted multiplet.

On the other hand, we see that different pieces of the gravitino are mapped to com-
ponents of the field strength which are not part of the kernel of δQ . These than can
have {δlinQ , δlinQ }ψ �= 0, such that a cancellation is possible. In Table 9 we indicate such
components, the corresponding intermediate components of the field strength and the
respective partners from ψ† with green rectangles.

Nevertheless one has to remain careful. As we explained above, these arguments only
hold outside of the kernel of QBV . For U (1) charge zero, there is a component (00)(2)
boxed in green. This can be viewed as a differential form

(00)(2) ∼= �3
1(M

7) ⊗ �0,1(M4) ⊂ �3(M7) ⊗ �0,1(M4) . (4.59)

The corresponding field strength, however, does come fromC (3)
mn+α̇ which is in the kernel

of δQ . This is not a contradiction, since the corresponding representation (00)(2) is in the
kernel of QBV . The trivial representation (00) ⊂ �3(M7) corresponds to a covariantly
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Table 10. Cancellations of fields under Q

Field Spin(11) 2 1 0 -1 -2

C(0) (00000) (00)(1)

C(1) (10000) (00)(2) (10)(1)
a

(00)(2)

C(2) (01000) (00)(1) (10)(2)
b

(00)(1) ⊕
c

(00)(3) ⊕ (10)(1) ⊕ (01)(1)
d, x

(10)(2)
d, y

(00)(1)

v (10000)
a

(00)(2)
e

(10)(1)
f

(00)(2)

ω (00001)
b

(00)(1) ⊕
e

(10)(1)
f

(00)(2) ⊕
g, x

(10)(2)
h, y

(00)(1) ⊕ h
(10)(1)

C(3) (00100) (10)(1)
i

(00)(2) ⊕ (10)(2) ⊕ (01)(2) (00)(1) ⊕ (10)(1) ⊕ (20)(1)
k

(00)(2) ⊕ k
(10)(2) ⊕ k

(01)(2)
l

(10)(1)

j
(10)(1) ⊕

j
(10)(3)

g (20000)
c

(00)(3)
d

(10)(2)
d

(00)(1) ⊕
m

(00)(3) ⊕
m

(20)(1)
o

(10)(2)
p

(00)(3)

(00000)
n

(00)(1)

ψ (10001)
i

(00)(2) ⊕
g

(10)(2) (10)(1) ⊕ (01)(1)
k

(00)(2) ⊕ k
(10)(2) ⊕ k

(01)(2)
l

(10)(1) ⊕
q

(01)(1)
q

(00)(2) ⊕
q

(10)(2)

h
(00)(1) ⊕ h

(10)(1) ⊕
m

(20)(1) (00)(2) ⊕ (10)(2) ⊕ (20)(2) (00)(1) ⊕ (10)(1) ⊕ (20)(1)

m
(00)(3) ⊕

j
(10)(3)

o
(10)(2)

p
(00)(3) ⊕

q
(10)(3)

(00001)
n

(00)(1) ⊕
j

(10)(1)
q

(00)(2) ⊕
q

(10)(2)
q

(00)(1) ⊕
q

(10)(1)

Fields are decomposed into G2 × SU (2)− ×U (1)L -representations

constant spinor inside the tensor product (T M7)C ⊗ SM7 [44], which is a zero-mode
for the BV operator QBV which acts as the Rarita–Schwinger operator. This means
that the above argument does not apply here, in the light of the results so far and the
conjecture, we nevertheless expect this component to cancel. An explicit investigation
using a decomposition of the tensor Mαβ

μν would still be interesting.

4.4. Summary of cancellations. We summarize the cancellations obtained in the previ-
ous sections in Table 10. The fields that do not form trivial pairs are circled in blue. They
form the multiplet A ∈ �•(M7) ⊗ �0,•(M4) and appear in Table 1. The bi-directional
strike-through arrows indicate cancellations that occur between ψ and its anti-field ψ†

found in Sect. 4.3.
Special care should be taken for the variations of the components of C (2) that cancel

with a linear combination of components of the graviton and supersymmetry ghost

δQC
(2)
−mα̇ = ωmα̇ + g+mα̇ (4.60)

δQC
(2)
−2 = ω− + g0 (4.61)

that occur in Eq. (4.37). A subsequent variation yields

δQωmα̇ = −δQg+mα̇ = ψ2mα̇ (4.62)

δQω− = −δQg0 = ψ+ (4.63)

which is consistent with δ2QC
(2) = 0. These extra cancellations are indicated by the

strike-through arrows with labels x and y.

4.5. The twisted differential. Recall that the BV differential of the twisted theory is the
sum of two terms

Qtw
BV = QBV + δQ . (4.64)
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We already examined how the non-derivative part of δQ leads to the formation of various
trivial pairs; now we turn towards the parts containing derivatives in order to see how
they act on the twisted multiplet.

The BV operator Qtw
BV is dual to a differential Dtw acting on the fields of the twisted

multiplet. We already know that D acts as the de Rham differential on the three-form
ghost system. Under G2 × SU (2) the de Rham differential decomposes

d = dM7 + ∂̄M4 + ∂M4 . (4.65)

As only (0, ∗)-forms are part of the twisted multiplet, this restricts to

dM7 + ∂̄M4 . (4.66)

In addition, D acts on the gravitino by the Rarita–Schwinger equation. Identifying the
gravitino as a spinor valued one-form,ψ ∈ �1(M)⊗S11, the Rarita–Schwinger operator
can be understood as a composition of the exterior differential and Clifford multiplica-
tion [45]. From this one can see that it also acts by dM7 + ∂̄M4 on the relevant pieces of
the gravitino.

Finally, there is a contribution to Dtw coming from the supersymmetry transfor-
mation (4.55). This transformation also acts by dM7 + ∂̄M4 and provides the missing
differential between C (3) and ψ .

In summary, the twisted multiplet can thus be described by the cochain complex
(
�•(M7) ⊗ �0,•(M4) , Dtw = dM7 + ∂̄M4

)
, (4.67)

as conjectured by Costello.
Interestingly, the formof the differential can also be deduced directly from the explicit

formulas in the pure spinor formalism. Recall that D1 acts on the representatives by

D1 = (λ�μθ)∂μ , (4.68)

and that the one-form was represented by the cohomology classes C (1)
μ (λ�μθ). As we

already know that the twisted multiplet forms the exterior algebra�•(M7)⊗�0,•(M4),
we see that D1 simply acts by taking derivatives and wedging with the corresponding
component of the one-form, i.e. precisely by dM7 + ∂̄M4 .

In addition the derivative part of the supersymmetry transformation acts by

Q∂x = (ε−�μθ)∂μ . (4.69)

From the Gamma matrix decomposition (4.15), we see

(ε−�μθ) ∈ 2−1 ⊕ (10) . (4.70)

Identifying the corresponding components with dz̄α̇ and dxm, we once again see that
Q∂x acts as desired.

A more roundabout way of understanding the appearance of the de Rham differential
is as follows. Recall that the gravitino field on M7 can be organized into �2 ⊕ �3 when
M7 has G2 holonomy. Since there are b2(M7) + b3(M7) zero modes of the gravitino on
M7 [44,45,47,48], we see that the BV differential acts by the de Rham differential

ddR : �2 ⊕ �3 → �3 ⊕ �4. (4.71)
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This is similar to the holomorphic twist of ten-dimensional abelian super Yang–Mills
theory on C

5. In that case, the analogous BV differential between the gaugino and its
antifield expresses the Dirac equation. The relevant part of the differential in the twisted
theory is

QBV (λmn)† = iεmnpqr ∂̄pλqr , (4.72)

and only involves the Dolbeault operator on �0,•(C5).

5. Conclusions and Future Directions

Eleven-dimensional supergravity in the pure spinor formalism incorporates both the
three-form and super-vielbein multiplets. We have seen how the twist of the three-form
multiplet is given by a differential form

A ∈ �•(M7) ⊗ �0,•(M4). (5.1)

The super-vielbein multiplet has the graviton, gravitino, and 4-form field strength G(4)

as its physical fields. It is used in the traditional superspace formulation of supergravity.
It is natural to expect that the twisted fields of the super-vielbein multiplet organize into
a differential form

∂A ∈ �•(M7) ⊗ �1,•(M4), (5.2)

with leading component v+α̇ from the diffeomorphism ghost. In future work [32], we
plan to directly twist Cederwall’s pure spinor action [13] and compare to Costello’s
conjectural action [5,10] for the twisted theory.

The conjectural twist of type IIB supergravity was developed by Costello and Li to
give a precise formulation of a sub-sector of AdS/CFT with rigorously defined math-
ematical objects [4,49]. We hope that a similar approach can be used to derive the
holomorphic twist of M-theory and Costello–Li’s conjectural form of the twist of type
IIB supergravity as a BCOV theory using the presymplectic BV formalism of [50].

The AdS/CFT conjecture is a holographic duality between string and M-theory on
anti-de Sitter spaces and gauge theories. In a particular limit it relates weakly coupled
type IIB supergravity on products of five-dimensional AdS space AdS5 with arbitrary
Sasaki-Einstein manifolds SE5 to four-dimensional supersymmetric gauge theories. A
different form of the conjecture relates the weak coupling limit of M-theory on the
products AdS4 × SE7 to three-dimensional supersymmetric gauge theories. The cone
over the Sasaki–Einstein manifold is a local Calabi–Yau manifold. One corollary of
the conjecture is the equivalence of the superconformal index [51,52] under gauge-
gravity duality. The gravity superconformal indexwas computed in terms of holomorphic
invariants of the Calabi–Yau manifold in [53,54]. The corresponding field theory index
was later shown to be most directly computed in the holomorphic twist [40,55]. Thus a
full derivation of the holomorphic twist of type IIB supergravity and eleven–dimensional
supergravity should reproduce the index calculations of [53,54]. This would serve as a
natural bridge between physical and mathematical approaches to holography.

We hope that a further twist of the one considered in this paper can be used to derive
twisted M-theory in the�-background [5] following [56]. This could provide a physical
origin for the applications in [57,58] by coupling a twisted M5-brane [50] to twisted
M-theory. Finally, we hope that twisted M-theory can shed new light on topological M-
theory [59–63], which is believed to unify the Kähler [64] and Kodaira–Spencer theories
of topological gravity.
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