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We investigate how the comoving curvature and tensor perturbations are transformed under the
generalized disformal transformation with the second-order covariant derivatives of the scalar field,
where the free functions depend on the fundamental elements constructed with the covariant derivatives
of the scalar field with at most the quadratic order of the second-order covariant derivatives. Our analysis
reveals that on the superhorizon scales the difference between the comoving curvature perturbations
in the original and new frames is given by the combination of the time derivative of the comoving
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Modified theories of gravity curvature perturbation, the intrinsic entropy perturbation of the scalar field, and its time derivative in the
Cosmology original frame. Thus, in the case that on the superhorizon scales (1) the intrinsic entropy perturbation

and its time derivative vanish and (2) the comoving curvature perturbation in the original frame, R, is
conserved, the comoving curvature perturbation becomes invariant under the disformal transformation
on the superhorizon scales. We also show that the tensor perturbations are also disformally invariant, in
the case that the tensor perturbations in the original frame are conserved with time.
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1. Introduction

Cosmological inflation is recognized as the most promising sce-
nario about the history in the early Universe [1-6]. Although the
latest observational data of the large-scale anisotropies of the
Cosmic Microwave Background (CMB) [7-10] strongly favour the
simplest single-field and slow-roll inflation models, models of in-
flation driven by various mechanisms, e.g., multiple scalar fields,
other field species such as vector and spinor fields, modified ki-
netic terms, nonminimal (derivative) couplings to the spacetime
curvature, and self-derivative interactions have also been explored
[11-20].

For a long time, the scalar-tensor theories with the higher-
derivative interactions have been thought to be problematic, since
the equations of motion for the metric and the scalar field would
generically contain derivatives higher than second-order, indicating
the appearance of the Ostrogradsky ghosts [21]. Ref. [22] argued
that an invertible frame transformation with the derivatives of the
scalar field maps a class of the conventional scalar-tensor theo-
ries to a new class without the Ostrogradsky ghosts, despite the
apparent higher-derivative features of the theory. More explicit
studies have revealed that the appearance of the Ostrogradsky
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ghosts can be avoided by imposing the certain degeneracy con-
ditions amongst the equations of motion with the highest order
time derivatives. The scalar-tensor theories under the imposition of
the degeneracy conditions have been developed and are currently
recognized as the degenerate higher-order scalar-tensor (DHOST)
theories [23-26]. The DHOST theories correspond to the most gen-
eral scalar-tensor theories with the single scalar field without the
Ostrogradsky ghosts and include all the previously known classes
of the scalar-tensor theories, especially, the Horndeski theories
[15,27,28] and the beyond-Horndeski theories [29-31].

In order to compare the inflationary models with the ob-
servational data, we consider the linear perturbations about the
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime

ds® = Zuvdxtdx”
== (1+24@.%)) de* + 20 3;B(t, xdtdx
+a)? [ (1-2w %)) oy + 20,0, E(E. X)
+hij xi)] dxidx! (1)
where t and xi(i =1, 2, 3) are the physical time and comoving spa-

tial coordinates, a(t) is the cosmic scale factor, A, B, ¥, and E
are the scalar metric perturbation variables, and h;; denotes the
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tensor metric perturbations obeying the transverse-traceless con-
ditions §Yh;; =0 and 9'h;; = 0, respectively. We also consider the
perturbation of the scalar field

¢ = do(t) + P1(t, X)), (2)

ad neglect the vector metric perturbations. In order to see the
dependence on the scales, from now on, we decompose any per-
turbation variable Q into the comoving Fourier modes

Q- / BkQye 3)

where k; is the comoving momentum vector and k? := §"kikj, al-
though we will not show the subscript “k” explicitly. After the
Fourier transformation, the spatial derivative 9; and the Laplacian
term A :=813;9; are replaced by (—ik;) and (—k?) in the pertur-
bation equations, respectively. Since in this paper we focus on the
regime of the linearized perturbations, there will be no coupling
of the different k modes.

While the tensor perturbations h;j are gauge-invariant, the
scalar perturbations A, B, ¥, E, and ¢; are not. Thus, in order
to compare with the observational data, we have to construct
the gauge-invariant combinations of them [32-34]. The gauge-
invariant perturbations relevant for the inflationary models in the
scalar-tensor theories are given by the combinations of the metric
and scalar field perturbations. The particularly important gauge-
invariant quantity is the comoving curvature perturbation [35-38]

Rei= v+~ 21, (4)
¢o a

where ‘dot’ denotes the derivative with respect to the time t. The

spectral features of the comoving curvature perturbation are di-

rectly related to the data of the large-scale CMB anisotropies.

In developing the new inflationary models in the more general
scalar-tensor theories, frame invariance of the cosmological observ-
ables should be very useful, since it allows us to evaluate the
observables in the frame which is technically the most convenient.
The conformal transformation g, = C(¢)guv, Where ¢ denotes
the scalar field, maps a class of the conventional scalar-tensor the-
ories,

L=E(PR - w(@)X —V(e), (5)

with the potential V (¢), the nonminimal coupling to the Ricci cur-
vature &£(¢)R, the kinetic function w(¢), and the kinetic term of
the scalar field

X :=9¢"¢y, (6)

where we have defined the shorthand notation for the covari-
ant derivatives of the scalar field by ¢;v..q := Vo ---V, V¢ and
PHVY = V.. VIV = gPhgV ... g¥P V...V, V,¢ represent
the covariant derivatives of the scalar field associated with the
metric gy, to another class in which the structure of the La-
grangian density (5) is preserved with the redefined functions of
£(¢), @(¢), and V(¢). Interestingly, it has been shown that the
gauge-invariant comoving curvature perturbation (4) is invariant
under the conformal transformation [39-41], which allows us to
evaluate observables in the Einstein frame obtained after eliminat-
ing nonminimal couplings. Similarly, the tensor metric perturba-
tions, h;;, are also manifestly conformally invariant.

Similarly, the disformal transformation [22,42,43]

guv =C(¢, X)guv +D(d, X)dpdv, (7)

where C and D are the free functions of the scalar field ¢ and
the kinetic term X (see Eq. (6)), is known as the most general
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frame transformation which is composed of the scalar field and
its first-order derivatives. The transformation (7) maps a class of
the Class-2N-I and Class->N-I DHOST theories to another class [24-
26]. The Horndeski theories [15,27,28] are framed by the subclass
of the disformal transformation (7), C = C(¢) and D = D(¢) [43],
and the beyond-Horndeski theories are done by the subclass of the
disformal transformation (7) C = C(¢) and D = D(¢, X) [29-31],
respectively.

The invariance of the comoving curvature perturbation within
the above class of the disformal transformation has been shown in
Refs. [44-47]. The tensor perturbations are always shown to be dis-
formally invariant. On the other hand, the invariance of the comov-
ing curvature perturbation depends on the subclass of the disfor-
mal transformation. In the class of C =C(¢) and D = D(¢, X), the
disformal invariance of the comoving curvature perturbation al-
ways holds [44,45]. In the most general class that C =C(¢, X) and
D =D(¢, X), the invariance of the comoving curvature perturba-
tion holds approximately on the superhorizon scales k/(aH) « 1
[46,47], where H(t) :=a/a represents the Hubble expansion rate,
whenever the gauge-invariant perturbation about the scalar field

L (83X e

Yi=—¢odo | = — + | = Agg + d1do — o1, (8)
Yo ¢o

is suppressed on the superhorizon scales k/(aH) <« 1, where X

and §X represent the background and perturbation parts of X

given, respectively, by

Xo=—¢f.  8X:=2d(Ado— ). 9
Following the definition in Eq. (8), ¥ represents the relative per-
turbation between the scalar field and its kinetic term. In the in-
flation models with the canonical/noncanonical kinetic terms, X
is proportional to the intrinsic entropy perturbation of the scalar
field

Do) (©) )
8T (p) =8P(g) — (— 80 (10)
@) @~ By © L)

where (o) (t). Po)(t)) and (8pg),8p(p)) represent the back-
ground and perturbation parts of the energy density and pressure
of the scalar field, respectively [38,48]. For this reason, we call X
the intrinsic entropy perturbation of the scalar field. In the models
in the Horndeski theories with the canonical or noncanonical ki-
netic terms, it has been shown that when the comoving curvature
perturbation is conserved on the superhorizon scales,

Re~0, (11)

where ‘~’ means that the equality holds only on the superhori-
zon scales, the perturbation X is suppressed on the superhorizon
scales,

> &0, (12)

(see Refs. [38,44,46,48]). The results in Ref. [46] suggest that also
in the Class-2N-I and Class->N-I DHOST theories, when ¥ is sup-
pressed on the superhorizon scales, which are related to the Horn-
deski theory, R, is conserved on the superhorizon scales via the
disformal transformation (7) [24-26]. On the other hand, in the
more general scalar-tensor theories with more than the third- or-
der time derivatives, the correspondence between the conservation
of R. and the suppression of X on the superhorizon scales has not
been clarified yet. Since the scalar-tensor theories with the third-
order time derivatives mentioned below have not been formulated
yet, for now we leave this subject for future work.

In this paper, we consider the generalized disformal transfor-
mation with the second-order covariant derivatives of the scalar
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field. First, we list the most fundamental scalar quantities con-
structed with the covariant derivatives of the scalar field with at
most the quadratic order of the second-order derivatives. By “fun-
damental”, we mean that all the other scalar quantities constructed
with the derivatives of the scalar field can be expressed as the
products of them. For instance, only the fundamental scalar quan-
tity constructed with the first-order derivatives of the scalar field
is given by the kinetic term X, Eq. (6). The other scalar quantities
with the first-order derivatives can be expressed in terms of the
nonlinear combination of X, e.g., p*¢" (pu¢v) = X2.

At the linear order of the second-order covariant derivatives of
the scalar field, there are the two fundamental scalar quantities
composed of the covariant derivatives of the scalar field given by

0¢ :=g" x Buv, (13)
Vi=20"¢" x dpv = 8" pu Xy, (14)

where we have introduced the shorthand notation for the covari-
ant derivative of the kinetic term &), := V,X. At the quadratic
order of the second-order covariant derivatives of the scalar field,
there are also two the fundamental scalar quantities composed of
the covariant derivatives of the scalar field given by

Z:=4g"¢pP ¢ x (¢up¢va) = g'qu;LXw (15)
W= gh"gl? x (¢up¢v0) . (16)

The other combinations of the covariant derivatives of the scalar
field with the quadratic order of the second-order covariant deriva-
tives can be expressed in terms of the fundamental quantities at
the linear order (13)-(14), e.g., $?¢*¢° ¢" x (¢puppvo ) = V*/4 and
ghP PV % x (¢up¢va) = (0O¢) Y/2. We assume that the free func-
tions in the general disformal transformation are the functions of
the fundamental elements (6), and (13)-(16), as well as the scalar
field itself ¢.

We also consider the tensors constructed with the covariant
derivatives of the scalar field

¢,u¢w (f’;w’ (b(/LXv)v ¢'0,u¢pw (17)

whose contraction gives rise to the above fundamental scalar
quantities X, d¢, YV, Z, and W (Egs. (6), and (13)-(16)), respec-
tively, and assume that Egs. (17) constitute the nonconformal part
of the generalized disformal transformation. By multiplying the
free scalar functions of ¢, X, O¢, YV, Z, and W to the conformal
and nonconformal parts, we arrive at the disformal transformation
considered in this paper

XXy,

Euv = Fo&uv + Fi1oudv + Fadpv + F3dqu iy
+ FaX Xy +]:5gpg¢pu¢av7 (18)

where Fj := Fil¢, X,0¢,Y,2Z, W] (I =0,1,2,3,4,5). Eq. (18)
manifestly includes all the classes of the disformal transformation
constructed with the covariant derivatives of the scalar field with
at most the first-order covariant derivatives (7). On the other hand,
Ref. [49] considered the disformal transformation with the second-
order covariant derivatives of the scalar field given by

guv =Goguv + (g1¢p. + szu) (G1oy + G2 X)), (19)

where Gj :=Gjl¢,X,), Z] (J =0,1,2,3). The correspondence
between Egs. (18) and (19) is given by Fo = Go, F1 = 912, Fr =0,
F3=2G1Ga, F4 = gg, and F5 = 0. Thus, the transformation (18)
generalizes Eq. (19), in terms of the additional dependence on O¢
and W, and the additional nonconformal parts ¢, and ¢” ¢,y
in Eq. (17). As we will see in Sec. 4, these new terms result in the
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difference in the tensor perturbations between the frames, when
the tensor perturbations are not conserved.

A crucial difference of the generalized disformal transformation
with the second-order covariant derivatives of the scalar field from
the disformal transformation only with the first-order derivatives
(7) is that there will be infinite number of terms that consti-
tute the transformation. For instance, we may add the more than
the cubic order powers of the second-order covariant derivative of
the scalar field, e.g., ¢.”¢p% v, ¢,Lp¢p°‘¢a’3¢,gv, and so on in
Eq. (18). In order to scan the full space of the disformal transfor-
mation with the second-order covariant derivatives of the scalar
field, a step-by-step analysis by adding a higher-order power of
the second-order covariant derivatives of the scalar field would
be necessary. On the other hand, higher-order derivative couplings
to the matter and gravity sectors in the cosmological backgrounds
would lead to anomalous behaviours, e.g., the partial breaking of
the screening mechanism inside the stars [50-52] and the de-
cay of gravitational waves [53,54], which would severely constrain
the theory from the observational viewpoints, although these con-
straints may not be applied to the models of inflation and early
Universe. Thus, to what extent we should extend the framework
of the disformal transformation is indeed the matter of interests.
We would like to emphasize that the framework of the general-
ized disformal transformation (18) is self-contained, and sufficient
to see the essential features of the disformal transformation with
the second-order covariant derivatives of the scalar field.

After the generalized disformal transformation (18), the action
of the scalar-tensor theory written in terms of the new frame
metric g,, and the scalar field ¢ would contain the third-order
covariant derivatives of the scalar field @Mﬁvﬁazp, where @M de-
notes the covariant derivative associated with the new metric g,
and after the Arnowitt-Deser-Misner (ADM) decomposition [55],
the third-order time derivative terms such as H(¢, ¢, ¢)é>, which
would lead to the equations of motion with the sixth-order time
derivatives, and hence the two Ostrogradsky ghosts. To our knowl-
edge, the degenerate scalar-tensor theories with the third- and
higher order covariant derivative terms of the scalar field have not
been constructed yet. Although the construction of these scalar-
tensor theories is not our main purpose, we would like to mention
the properties of the theory with the third-order time derivatives
within analytical mechanics.

In Appendix A, we show a simple example of the degenerate
theory with the third-order time derivative in analytical mechan-
ics. Refs. [56,57] discussed more general properties of analytical
mechanics with the third- and higher-order time derivatives, and
obtained the conditions to avoid the Ostrogradsky ghosts. In an-
alytical mechanics with the second-order time derivatives, elim-
inating the linear momentum terms in the Hamiltonian by the
secondary constraints that ensure the time evolution of the pri-
mary constraints arising from the degeneracy conditions is enough
to remove all the Ostrogradsky ghosts [23,58-60]. On the other
hand, in analytical mechanics with more than the third-order time
derivatives, eliminating all the linear momentum terms from the
Hamiltonian is not enough and more secondary constraints are
necessary to remove all the Ostrogradsky ghosts. The extension of
analytical mechanics with more than the third-order time deriva-
tives to the scalar-tensor theories would also be the nontrivial
issue from both the theoretical and technical aspects. In this paper,
we will not focus on the construction of the scalar-tensor theories
with more than the third-order time derivative terms without the
Ostrogradsky ghosts, and simply assume that these scalar-tensor
theories exist and the subclass of them is related via the gener-
alized disformal transformation (18) as in the case of analytical
mechanics.

In Sec. 2, we will derive the generalized disformal transforma-
tion of the scalar perturbations. In Sec. 3, we will derive the gen-
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eralized disformal transformation (18) of the comoving curvature
perturbation and the conditions under which the comoving curva-
ture perturbations are disformally invariant on the superhorizon
scales. In Sec. 4, we discuss the generalized disformal transfor-
mation (18) of the tensor perturbations. The last Sec. 5 will be
devoted to giving a brief summary and conclusion.

2. The scalar perturbations

First, we consider the disformal transformation of scalar pertur-
bations. Following the decomposition (1) and (2), the fundamental
scalar quantities in the generalized disformal transformation (18)
are decomposed into the background and perturbation parts as Eq.
(9), and

g = — (aso+39¢o)

<¢o +3ﬂ> A+ (—(251 - 3%051)

. o 1
+ oA + 3o — k5 (59), (20)

Y =2¢3o

+2¢o (—4A<f50<}50 — GaA +2¢0h1 + <130<}51) . (21)
2=

+ 8¢odo (3A<130<}50 + G2 A — o1 — <I30<i51> , (22)

2
= (éé +3a—2¢5)
24
—4A <¢0 +3 2¢0> — 2¢odoA + 6 d"’d’]
¢01/’ 2 ¢0

+2¢od1 + 2k —3- (8g9). (23)

where we have introduced the gauge—mvariant scalar field pertur-
bation in the longitudinal gauge (B = E =0),

5. (. B
8gp :=¢1—a“¢go | E — <) (24)
Accordingly, the functions in Eq. (18) can be written as

Fi=Fi(t) + 8 Fi (£, x), (25)
where Fj(t) = Filoo, Xo, Dodo, Yo, 20, Wo] with the index “0”
representing the background part of Egs. (2), (9), (20)-(23), and
§F = F1'¢(S¢ + F]q)(SX + F1,|:|¢8(\:|¢)

+ F1,y8Y + F1,28Z + FlwdW, (26)

with 8¢, §X, §(0¢), 8), §Z, and §WV being the perturbation parts
of Egs. (2), (9), and (20)-(23), and Fj g4 := 94 F], Fi x = 0xFI,
Fi.o¢ '=0a¢F1, F1.y :=0yF1, F1,z :=09zF], and Fjyy := oy F|
evaluated at the background [¢g, Xp, Oo¢o, Vo, 20, Wol.

Under the generalized disformal transformation (18), the back-
ground part of Eq. (1) is mapped to the in the form of the FLRW
metric

d33 = 8o, vdxPdx” = —dE% +a(F)?sydxidx’, (27)
where we have defined

dt .= A(t)dt, a(t) :=/B®)a(t) (28)

with the requirements A(t) > 0 and B(t) > 0, respectively, with
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A(t) := Fo — F1}
— do{F2 — 2F3¢} + (4Fad} — Fs) do] (29)
B(t) := Fo — géon + Z—E%FS, (30)
and the perturbed part of Eq. (1) is disformally transformed as

88 vdxtdx’ = 88y dt? + 288 dtdx' + 8g;jdxidx’, (31)

where

881t 1= —8F0 + Pa8F1 + PodF2 — 2¢3 $od F3
+ 4dp Pa8Fa — R8s Fs
— 2AFo + 2dod1 F1 + (—¢oAz + $1) Fa
+ 240 (2¢0$0A + PG A — 2¢od1 — 450451) F
— 8odo (2A¢50<50 + @5 A — pod1 — éofb}) Fy
+ 260 (oA + ¢oA — 1) Fs, (32)

} o
88t :=a(t)o; [BFO + 7¢>1 Fq

(i)

% 2 (954 — dogn — dodi ) F

¢oa¢o (oA — ) Fa
a2 a2
+a<¢OA+¢¢A+ ¢03+ﬂ¢
+%¢1 - ﬂqﬁl ézioqi}]) Fs], (33)
and
ago a2
88ij:=a(t)? |:5]-'0 - _5]:2 + 05]_—5

2y Fo + <2ﬂA +2ﬂw - —¢1 +¢ow)

22 12 2 2
- (4“ 9% 4 42° ¢°w 2 ‘f% +2 ¢0w>F5:|5,-j
a a

+ a(t)?;9; [2EFo
(¢° 2@E+ﬂ — o E)

_|_

a

2
+< 2%34—2 %E 2%¢ +2— ¢° )Fs] (34)

By changing the time coordinate from t to f, 88z = 71(8;;1“ and
88 = j—z8§ti, we define the metric perturbations after the gener-
alized disformal transformation (18) in the same manner as Eq. (1)
by attaching ‘tilde’ to all the perturbation variables in the new
frame. Thus, the metric perturbations in the new frame are given
by
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A=\ sr - Lazsr - 1gos s+ 92g0s
=713 0= 5%00/1 = 590072 0900773

- 2635+ 5B

+ AFg — ¢od1 F1 — 1 ( doAz + 1) Fa

— o (2050(}50/\ + @A —2¢od1 — ¢0¢1) F3
+ 4¢odo (2A¢50<}50 + ¢EA — o1 — <ﬁ0<51> Fq

— ¢0 (PoA + doA — 1) Fs], (35)
and
-~ 1 ago 2(1')3
'(//—E|:—58]:0+2_8]: - 2a2 8]:5

a. a. a . 1. .
+y Fo — (—¢0A + —d’olﬁ - —¢1+ —¢olﬁ> Fp
a 2a 2

(‘12(&2 2¢ Zd')o . a¢2 .
—(—2 aZOA °w+ = ¢1—T°1/f Fs|.  (36)

We define the comoving curvature perturbation in the new
frame, given by

3. The comoving curvature perturbations

1 a;
=Y+ -— —¢1 (37)
boi @
which is shown to be gauge-invariant. A straightforward compu-
tation shows that the difference between the comoving curvature
perturbations in the original and new frames, Eqgs. (4) and (37), is
given by the combination of the gauge-invariant perturbations in
the original frame

- 1
Re=Re = CIZFQ — ad(ﬁoFZ +('12(].§§F5 x
(QOR+ QO +Q30E — 12 Q4 (89) ) (38)

where the background-dependent functions Qq(t), Qa(t), Qs(t),
and Qq4(t) are, respectively, given in Egs. (B.1)-(B.4) in Appendix B.
Thus, in the case that

e (1) the adiabaticity holds on the superhorizon scales, X ~ 0
and 3 ~0,

e (2) the comoving curvature perturbation in the original frame
R is conserved on the superhorizon scales, Re~0,

we find that the comoving curvature perturbations in both the
frames coincide on the superhorizon scales k/(aH) <« 1,

7§»c ~ Re, (39)

and the equivalence of the comoving curvature perturbations on
the superhorizon scales. This is a direct extension of the results
obtained in Ref. [49].

As mentioned in Sec. 1, in the various single-field inflation
models, the conditions (1) and (2) hold at the same time on the
superhorizon scales [38,44,46,48]. In these models, when X ~ 0
and ¥ ~ 0, the decaying mode among the two independent solu-
tions of R is negligible on the superhorizons scales and R ~ 0.
On the other hand, in the more general scalar-tensor models,
e.g., in the DHOST theories and the theories with more than the
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third-order time derivatives, the correspondence between the con-
ditions (1) and (2) has not been clarified yet. The exceptional case
is that the background-dependent coefficients vanish coincidently,
Q1(t) =0, Qr(t) =0, O3(t) =0, and Q4(t) = 0, where the exact
frame invariance R. = R, holds at any scale, irrespective of the
adiabaticity of the scalar field. Since there are the six free func-
tions F; (1 =0,1,2,3,4,5), it is able to achieve this condition.

It is also straightforward to confirm that the gauge-invariant
intrinsic entropy perturbation in the new frame, denoted by %
can be written in terms of the gauge-invariant perturbations in
the original frame

3= A¢§f + $1d0.3 — b1.:%0¢

A1 (O + O + a3(ORe — Kaa(t) (559)

= e , (40)
where o/ (t), aa(t), as(t), and a4(t) are the background-dependent
coefficients given in Eqs. (B.5)-(B.8) in Appendix B, respectively.
Thus, whenever conditions (1) and (2) hold in the original frame,
Re ~ 0, the adiabaticity also holds in the new frame < ~ 0.

Now, we confirm that the previous results for the disformal
transformation with the first-order derivative of the scalar field (7)
can be reproduced.

o In the case

= Fo(¢), F1=F1(¢, X),

(I =2,3,4,5) with A= Fo — F1$3 and B = Fo, which re-
lates a class of the Horndeski [15,27,28] and beyond-Horndeski
[29-31] theories to another [43], we obtain Qq(t) = Q,(t) =
Q3(t) = Q4(t) =0 and hence the relation

F1=0, (41)

7~éc =R, (42)

which shows that the disformal invariance of the comoving
curvature perturbations exactly holds at any scale [44,45].
e In the case that

=Fo(¢, X)), Fi=F(, X)), Fi=0, (43)

(I =2,3,4,5) with A= Fo — Fi$3 and B = Fo, which re-
lates a class of the Class-2N-1 and Class->N-I DHOST theo-

ries to another [24-26], we find that Q1 = Q3 = Q4 =0 and

Q) = —a%Fyx, and hence the relation

- F

Re—Re=——-%, (44)
Fo

which confirms the results in Refs. [46,47]. Thus, in the
Class-2N-1 and Class->N-I DHOST theories, the equivalence
between R, and R, holds when the intrinsic entropy per-
turbation X is suppressed on the superhorizon scales.

Since R, X/ (</§0)2, and 8g¢/(—a’¢o) are all the gauge-
invariant versions of the metric perturbations v, A, and E — B/a
constructed as the combinations with the scalar field perturba-
tion ¢1, we expect that the form of the relations between frames
(38) and (40) would remain the same even for the more general
disformal transformations than Eq. (18), although the background-
dependent coefficients Qq(t), Qa(t), Q3(t), Qa(t), aq(t), ax(t),
a3(t), and oy4(t) are modified accordingly. Thus, whenever in the
original frame on the superhorizon scales the conditions (1) and
(2) are satisfied at the same time we expect that the comoving
curvature perturbation is disformally invariant on the superhorizon
scales, R ~ R. even for the more general disformal transforma-
tions.
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4. The tensor perturbations

We then consider the tensor perturbations about a FLRW space-
time (1). The functions X, O¢, Y, Z, W, and hence F; (I =
0,1,2,3,4,5) in the generalized disformal transformation (18) re-
main the same as the background against the tensor perturbations.

Defining the tensor perturbations in the new frame fl,j as
in the same manner of the scalar perturbations, Sg,jdx"dxj =
@ (bh; (t, x')dx'dxJ, the difference between h;; and hj; can be com-
puted as

(1¢0 (an — Zd(f)oFs)

2 (azFo — adq'ﬁon + (.12(].531:5)
where the nonzero difference arises from the disformal elements
¢uv and gP%¢p,u¢sy in Eq, (17), which were not discussed in
Ref. [49]. This is because for instance the ¢;; term in the spatial
components of Eq. (18) gives rise to the nonzero contribution to
the difference as ~ h,-jq'ﬁo. Eq. (45) also confirms that the tensor
perturbations in the new frame also obeys the transverse-traceless
gauge conditions 5ifh,-j = aihij =0.

Thus, the tensor perturbations are also disformally invariant, in
the case that the tensor perturbations in the original frame h;;
are conserved with time, h;; = 0. The exceptional case is that the
background-dependent coefficient aF; — 2a¢oF5(t) =0 or ¢g =0,
where the exact frame invariance h;j = h;; is obtained even if
hij #0.

We expect that even for the more general disformal transfor-
mation than Eq. (18), the difference in the tensor perturbations
between frames is proportional to fl,-j. This is because at the level
of the linearized perturbations the nonzero difference between h;;

and ﬁij would always arise from the contributions as 8F§jq30 and

hij — hij = — hij, (45)

SF{td)g, both of which are proportional to hij. Thus, even in the
case of the more general disformal transformation than Eq. (18),
whenever the tensor perturbations are conserved on the super-

horizon scales, h;j; ~ 0, the tensor perturbations remain invariant
on the superhorizon scales, h;j ~ h;;.

5. Conclusions

We have investigated how the comoving curvature perturbation
and tensor perturbations are transformed under the generalized
disformal transformation with the second-order covariant deriva-
tives of the scalar field. To construct the generalized disformal
transformation, we considered the fundamental elements (6) and
(13)-(16) constructed with the covariant derivatives of the scalar
field with at most the quadratic order of the second-order covari-
ant derivatives of the scalar field, and the covariant tensors whose
contraction gives rise to the above fundamental elements. The re-
sultant general form of the disformal transformation was given by
Eq. (18), which included all the models with the disformal trans-
formation (7) studied previously.

We then defined the gauge-invariant comoving curvature per-
turbations both in the original and new frames defined by Eqs. (4)
and (37), and computed their difference. While reproducing the
previous results on the disformal invariance in Refs. [44-47,49],
we have also shown that the difference between the comoving
curvature perturbations in the original and new frames, R, and
R¢, was given by the combination of the time derivative of the
comoving curvature perturbation in the original frame R, the
gauge-invariant perturbation X given by Eq. (8), which is related to
the intrinsic entropy perturbation of the scalar field, and its time
derivative. In the case that

e (1) the adiabaticity holds on the superhorizon scales, ¥~ 0
and X ~0,
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e (2) the comoving curvature perturbation in the original frame
R is conserved on the superhorizon scales, R, ~ 0,

the equivalence of the comoving curvature perturbations under the
generalized disformal transformation (18) holds on the superhori-
zon scales. While in the previously known scalar-tensor theories,
whenever the condition (1) holds the condition (2) also hods, in
the more general scalar-tensor theories with the third-order time
derivatives, which are related via the generalized disformal trans-
formation (18) the relationship between the conditions (1) and (2)
has not been clarified yet. Thus, in this paper, we raise the condi-
tions (1) and (2) as the independent ones.

We have also shown that the difference between the tensor
perturbations was proportional to the time derivative of the tensor
perturbations in the original frame. Thus, the tensor perturbations
were also disformally invariant, whenever the tensor perturbations
in the original frame were conserved with time.

We should emphasize again that the disformal transformation
Eq. (18) is not the most general one, in terms of the power of the
second-order covariant derivatives and the order of the highest-
order derivatives in the transformation. It would be interesting and
important to extend the analysis in this paper to these more gen-
eral disformal couplings. We hope to come back to these issues in
our future work.
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Appendix A. A degenerate theory with third-order time
derivatives in analytical mechanics

We consider the theory with the third-order time derivative in
analytical mechanics

a-l ) a2 ) a3 ) bl .9 .,
=052 Ry Bgay Oy

L7+ 25+ 207+ 2 4 b
- V(. D),

where ay, ay, as, by, and b, are constants, and the potential is
given by the quadratic terms

(A1)

&1 g3
Vo0 =0+ 8209+ 0, (A2)
with g1, g2, and g3 being constants. The theory equivalent to Eq.
(A.1) can be obtained by introducing the two auxiliary fields R and

Q
a . az as by . .,
L=—0Q%+ Q%+ —R*+ 4> +b204 - V($.9)
2 2 2 2
+&(@—R)+A(R—Q).
It is straightforward to recover the theory (A.3) after eliminating
the auxiliary fields R and Q by varying the Lagrangian (A.3) with
respect to the Lagrange multipliers A and &.
We regard ¢, R, Q, and q as the dynamical variables, and define
the conjugate momenta by

(A3)
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aL,
PQ = —_a1Q+b2q, (A.4)
9Q
dLly . .
Pg:=— =b1q+hb2Q, (A.5)
g
8L2
Pr = s A.6
Ri= = (A.6)
oLy
Py = — =E&. A7
*= 05 § (A7)
First, we consider the nondegenerate case
92Ly 921 9Ly \°
2 .22—< . 2,) =byay — b2 #£0. (A8)
9Q2 9q 0Qaq
In this case, by rewriting Q and ¢ in terms of Pq and Py,
ai1Pg—byP . —byPg+b1P
=L =2 Q=—17% (A.9)
biai — b5 biay — b3
we obtain the Hamiltonian
H:=PqQ + PrRR+ Py + Pgq — Lo
1
=—— (a1P? —2byPgPg +b Pz)
2(b1a1—b§)<1 q 2hatQ 17
+ PRQ+P¢,R— 2Q2- R2+V(¢ q). (A10)

Thus, the Hamiltonian (A.] 0) is not bounded from below, because

of the linear dependence on the momenta Py and Pg. In other

words, the theory (A.1) contains the two Ostrogradsky ghosts.
Second, we consider the degenerate case

2Ly %Ly (921"

2 ,22—< .?) —bia; —b2=0 (A11)
3Q2% 9q 0Qq
under which P and Pq satisfy

b
P, — —ZPQ —0. (A12)
Regarding
b

Xp = Pq——zpq ~0, (A13)

as the primary constraint, the total Hamiltonian can be defined as

I:I'=H+/LQ=(PQQ+PRR+P¢45+PqQ—L2)+MX1
bzp§+PRQ+P¢R——Q2 BR2yvig.g
T ouX. (A14)

The time evolution of the primary constraint X; then generates
the secondary constraint

X3 1= X1 ={X1, H}
b,
= —g2¢—g3q+ a(PR —a2Q)~0, (A15)
where we define the Poisson bracket,
dUy oUy 0Uq 0U>
(U1 Ug) = ( SSL 2 - 21022
09 0Py 0Py 09
dUq dUy 9Uq aUy
JdR 0Pr 0Pr OR
U1 aUy Uy Uy
dQ dPq dPq 9Q
U oU U7 oU
8U1 80U, _ 9U1 39U, (A16)
dq 0Pq oPg 9q
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which relates Py to the other phase space variables and eliminates
the term linear in Pg in the total Hamiltonian (A.14).

There is still the other term linear in Py in the total Hamil-
tonian (A.14). We note that no further constraint is generated if
{X2, X1} # 0, since the time evolution of X, fixes the Lagrange
multiplier . In order to obtain enough constraints, we have to
impose

b3
{X1, X2} =g3 — 2% ~ 0.
1
The time evolution of the secondary constraint X, provides the
tertiary constraint

(A17)

X3:= X2 = {Xa, H)
(A18)

which relates P, to the other phase space variables and eliminates
the term linear in Py in the Hamiltonian (A.14). Since {X3, X1} =0,
the time evolution of X3 provides the quaternary condition

X4:=X3={X3, H}

b azbiq
_ 82 2q+ 2 2 — 20
a a]
asb a b
L 2Q + 2g2¢+g1 2¢~0 (A19)
a a a

Since {X4, X1} # 0, the time evolution of X4, X4 = {X4, H} ~ 0,
fixes the Lagrange multiplier i and no further constraint is gener-
ated.

We note that all the constraints X; ~0 (i =1, 2,3,4), (A.13),
(A.15), (A.18), (A.19), are the second-class ones, since

{X1, X2} = {X1, X3} =0,

by
(X1, X4} =—{X2, X3} ==

( 2a1g2 — a2b2 + a1a3b2)
aj

{X2, X4} =

(X5, Xel = o2 ( @3ba + % 2282 + g1b2)) (A20)
1

Starting from the 8-dimensional phase space (¢, R, Q,q, Py, Rg,
Pq, Pg), the 4 second-class constraints leave 4(= 2 x 2) indepen-
dent variables in the phase space, namely, 2 degrees of freedom,
and hence all the Ostrogradsky ghosts are removed.

Appendix B. The coefficients in Eqs. (38) and (40)

The coefficients in Eq. (38) are given by
(12 . 3(12 . )
Q1(t) := —3¢0F2 - T¢OF0,D¢ + aagyFs
3@ dg Fa.

. 3aa .
+ 3aada Fow + —¢§F2,D¢ -

3a% .
- _¢0F5 D¢+—¢0F5 W (B.1)

Qy(t) := —a®Fo_x + 24®Fs + 6a*Fo vy + 34*F2.0p
aaF, 3aaFo 06

- — —i—aa(pon X
$o o
6aPoFa,w 3 PoFs,0p
a a
V) 4¢0 5W
— &®Q3Fs v + —2 > 1 2a’goFo.y



M. Minamitsuji

— 2aagodoFa,y + 2adEdoFs,y — 4a’ P Fo z
+ dadgodg Fa,z — 423 P3Fs. 2, (B.2)
- 2 22
2 a~¢o
Fo,np +a"¢oFo,y — TFS’D¢

a
Q3(t) := ?FZ,Dqﬁ -

2o
— a('l(Z)SFz,y + (12(]531:5,3; - add;on,W
a*o

+ ¢—F w —4a*dogoFo, z + agodoFs

0
+ 4aagp poFa, z — 4a* P doFs, z, (B.3)
Fo, adoF a '0F2,
0u(t) = — 008 $oFo,w n PoF2.00

2 a 2a
a*P3Fa 3 a*¢2Fs o N a®¢3 Fs
a? 2a? a3

The coefficients in Eq. (40) are given by

(B.4)

3dgy . 6622
o1(t) :=Fo+ —Fo,u¢ + ¢(2)F0,X -— 0

Fow
3a¢ 6a2¢3 ..
a°F1 0e — dgF1.x + °F1,W—¢0Fz

3a¢o¢o
——F2,00 — 2¢3doFo,y — $idoFa2 x

6a2 6
+ jzo ¢0 F27 ¢0 ¢O

— 97" F3.00 + 2¢gd0F1.y

+2¢goF3 x — F3w + 5 Fs

s 2
+—¢;°¢° F

12a2¢g¢0
a2

5.00 + 40585 Fo.z + 20565 F2.y
+3dg Fs.x0 — GdzzﬁFs,w - %F«w
—Ado g Fr.z — Ado Py Fay — AdgdgFax
V2O g 4R 2~ 2030Fs
+8¢adaF3,z + 8dgdaFay

+4d o Fs,z — 16456 Fa 2., (B.5)

do do s

az(t) == —F2+—Fo:|¢ s 3——F1u¢—¢oF0y

+<153F1,y — ¢odoFs — dodoFo, v — 54')0@'01‘"2,@
+4¢gdoFa + dadoF1w + dadoFs 0 + 4dgdoFo z
+q5(3)‘250F2,)7 - 4‘1‘58(2501:1,2 - 2(]'58&501:3,); +¢0$8F2,W
bod? _— e

+—= 2 Fs.00 — 20060 F3 w — 20063 Fa.op
—Ad3bgFa.z — dadgFs.y + 8 Fs. =
43 h2Fay — doda Fs.w + 4dadaFaw
+4d3dg Fs.z — 16¢5¢g Fa z, (B.6)
33 3a¢d 363 3ag¢

() i= 220 F % % o
3('1¢.)4¢.;() R

Fa,0¢ + TOFz,W +35doF3,0p

6aggdo 3¢3ds 3aggdg
- F F ——F
a R 2 5,0¢ 4 5,

- 642
—6hgdEFang + —Om W (B.7)
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@2 agy aq'ﬁs
ay4(t) = ﬁl“o’[@——oF W_Z 2F1 D¢+ F 1w
¢ o agado ¢ o
202 Fa.0p + ; Fow + —— 0 F3.04
2a¢gbo b3 Be a¢0 3%
-0 F - F
s 3w+ 2@ 309 PR
2¢ b2 dadpd?
g 0F4 m¢+%l’4w (B.8)
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