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Abstract
The Lie symmetry analysis is adopted to the (2  +  1)-dimensional dispersionless 
B-type Kadomtsev–Petviashvili (dBKP) equation. The combination of symmetry 
analysis and symbolic computing methods proves that Lie algebra of infinitesimal 
symmetry of the dBKP equation depends on four independent arbitrary functions 
and one arbitrary parameter. The Lie algebra is reduced to four classes for deriving 
commutative relations, group invariant solutions of dBKP equation and conserva-
tion laws, and the optimal system of 1-dimensional subalgebras from one class is 
constructed. Based on the optimal system and other particular infinitesimal symme-
tries, plentiful symmetry reductions and invariant solutions are computed by using 
Lie group method. Six successive symmetries and conserved quantities of the dBKP 
equation are linked by the new conservation theorem. Besides, exact solution of the 
dBKP equation is constructed according to a conservation vector.
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1  Introduction

Non-linear partial differential equations (NLPDEs) are widely used to explain non-
linear physical phenomena in engineering sciences such as fluid dynamics, plasma 
physics and oceanography. Analysing mathematical properties of NLPDEs such as 
symmetry reductions, exact closed-form solutions and dynamic behavior of solu-
tions is crucial to predict and utilize these phenomena. Lie symmetry analysis, a 
valid and concise approach to comprehend these properties of NLPDEs, was first 
presented by Lie in 1881 [1]. Based on transformative invariance of one-parameter 
Lie group, this method can reduce the number of independent variables. Since a 
Lie algebra of NLPDEs almost always contains infinite subalgebras, an optimal sys-
tem should be found to avoid getting the equivalent group invariant solutions. In 
recent six decades, scholars such as Ovsyannikov, Olver, Ibragimov, Miao and Hu 
et al. [2–6] have sought to, but not limited to improve the way of searching optimal 
system. The impact of Lie symmetry’s thought simultaneously spread more widely 
[7–9].

Conservation law appears in NLPDEs related to areas such as water waves, foam, 
atmospheric flows, etc, its existence strongly proves the integrability of NLPDEs. 
Symmetries of NLPDEs could connect with conservation laws, Noether’s theorem 
in [10], partial Noether’s approach in [11] and multiplier approach in [12] are all 
highly effective for the derivation of conservation laws. The new conservation theo-
rem is more widely utilized since there is no need for Lagrangian and relies only on 
the commutator table [13]. According to the fundamental notion of nonlinearly self-
adjointness, corresponding conservation laws by self-adjointness can be generated 
by adjoint symmetry [14], which are examples of conservation laws by pairs of sym-
metries and adjoint symmetries [15]. In addition, exact solutions of NLPDEs could 
be constracted adopting particular conservation laws [16].

The significance has been realized recently to dispersionless limits of integrable 
hierarchies and equations, since they present in the research of various problems in 
applied mathematics and physics from the theory of conformal maps to the theory 
of quantum fields and strings [17–19]. In the quasi-classical �−dressing scheme for 
dispersionless KP hierarchy, dispersionless B-type KP hierarchy is dispersionless 
KP hierarchy with even times frozen at zero plus symmetry, and the dBKP equation 
can be given by the compatibility condition for the first two Hamilton–Jacobi equa-
tions [20–22]

where w = w(x, y, t) denotes the unknown function of space variables x, y and time 
variable t,  �−1 means to integrate x. Substituting w = ux into Eq. (1) to remove the 
integral symbol

(1)3wt + 15w2wx − 5(w�−1wy)x −
5

3
�−1wyy = 0,

(2)(3ut + 5u3
x
− 5uxuy)x −

5

3
uyy = 0.
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Quantum W-infinity algebra, classical quantum torus structure and other discussions 
of dBKP hierarchy have been detailed in [21, 23, 24], yet mathematical properties of 
dBKP equation is just beginning to explore.

This paper explores new group invariant solutions of the dBKP equation by 
the Lie symmetry approach, the Lie point symmetries of dBKP equation are 
presented and discussed which have not been studied in previous literature. Lie 
symmetry method was applied to the dBKP equation and eight symmetry reduc-
tions were derived in 2021, but we derive twenty-five symmetry reductions. The 
invariant solutions are dissimilar since our research involves the general Lie alge-
bra and its four reductive classifications, whereas the previous discussion was 
based on one reduction of the general Lie algebra. In the construction of opti-
mal system, adjoint representation was adopted by previous research, yet we rely 
only on commutator table and its derivation process is given. Depending on the 
constracted optimal system, four indirectly solvable symmetry reductions with 
infinite number of solutions are given and discussed, which were not available 
in previous study. Although the new conservation theorem is both applied, the 
conservation laws are distinct for distinct Lie point symmetries, we further con-
struct exact solution of the dBKP equation by a conservation law. The aim of this 
paper is to analyze the Lie algebra classifications, symmetry reductions and exact 
invariant solutions of the dBKP equation based on the Lie point symmetry, and to 
derive the conservation laws according to the new conservation theorem.

The whole structure can be divided into five main sections. In next section, 
we review the connection between the dBKP hierarchy and equation. Section 3 
describes the Lie algebra with one-parameter transformation and their reductions 
for the dBKP equation under Lie symmetry analysis. Section 4 constructs an one-
dimensional optimal system of subalgebras of dBKP equation. In Sect. 5, plen-
tiful reduced equations and invariant solutions are derived. In Sect.  6, the new 
conservation theorem is utilized to link six successive symmetries and conserved 
quantities of the dBKP equation, besides, exact solution is constructed according 
to a set of conservation law. The last section gives conclusions and discussions.

2 � The dBKP Hierarchy and the dBKP Equation

We begin with a brief review to the connection between the dBKP equation and 
dBKP hierarchy. The Lax function of dispersionless BKP hierarchy

in which � is a conjugate variable of x,  and �  is odd Laurent series of �. �  can be 
written as

the form of the dressing function is as

(3)� = � + u2n−1�
2n−1, n = 1, 3, 5,… ,

(4)� = ead� (�), ad� (� ) = {� ,�} = ��� �x� − ����x� ,
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Definition 2.1  The dispersionless BKP hierarchy are composed of flows in the Lax 
pair [20]

in which “ + ” represents the nonnegative projection about � and “ − ” represents the 
negative projection. Eq. (1) is the simplest nontrivial flow in the dBKP hierarchy.

3 � Lie Algebra Classifications

In this section, the Lie symmetry analysis to Eq. (2) starts at considering following 
one-parameter Lie group of infinitesimals transformation

where �x, �t, �y,� are functions of x,  t, y, u and 𝜍 > 0 is a sufficiently small one-
parameter, the vector field relevant to (7) is

The following second prolongation holds

with

in which Dp, (p = x, y, t) are the total derivatives respectively about p .
Above deterministic Eq. (10) can be produced under constant condition

(5)� = �2�
−1 + �4�

−3 +⋯ .

(6)��i
=
{
(� i)+,�

}
= ��(�

i)+�x� − ����x(�
i)+, i = 1, 3, 5,… ,

(7)

⎧⎪⎨⎪⎩

x̃ ∶ x + 𝜍𝜉x + O(𝜍2),

t̃ ∶ t + 𝜍𝜉t + O(𝜍2),

ỹ ∶ y + 𝜍𝜉y + O(𝜍2),

ũ ∶ u + 𝜍𝛷 + O(𝜍2),

(8)V = �x�x + �t�t + �y�y +��u.

(9)pr(2) V = V +�x�ux +�y�uy +�yy�uyy +�xt�uxt +�xy�uxy +�xx�uxx ,

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�y = Dy(� − �xux − �yuy − �tut) + �xuxy + �yuyy + �tuty,

�x = Dx(� − �xux − �yuy − �tut) + �xuxx + �yuyx + �tutx,

�yy = D2
y
(� − �xux − �yuy − �tut) + �xuxyy + �yuyyy + �tutyy,

�xy = DyDx(� − �xux − �yuy − �tut) + �xuxxy + �yuxyy + �tuxty,

�xx = D2
x
(� − �xux − �yuy − �tut) + �xuxxx + �yuxxy + �tuxxt,

�xt = DtDx(� − �xux − �yuy − �tut) + �xuxxt + �yuxyt + �tuxtt,

(11)pr(2) V||Δ=0 = 0,
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with Δ = 3uxt + 15u2
x
uxx − 5uxuxy − 5uxxuy −

5

3
uyy = 0. According to Eq.  (11), the 

following equation holds

The form of the coefficient function is obtained by calculating the standard symme-
try group

where c is an arbitrary constant, f1, f2, f3 and f4 are arbitrary functions about t. 
Consequently, the vector field of Eq. (2) can be determined by below infinitesimal 
symmetries

This set of vectors form a Lie algebra under commutative operations 
[Vi,Vj] = ViVj − VjVi, which is skew symmetric with each diagonal term being zero. 
One can give the commutator table of system (2) (see Table 1).

The following four cases are convenient for calculating the commutative relations 
of infinitesimal symmetries and deriving invariant solutions of Eq. (2), if arbitrary 
functions fi (i = 1,… , 4) are defined as

Case 1. f1 = ⋯ = f4 = 1 The infinitesimal symmetries of Eq. (2) form the five-
dimensional Lie algebra L5 are spanned by the following independent operators

(12)

3�xt +�x(30uxuxx − 5uxy) +�xx(15u2
x
− 5uy) − 5ux�

xy − 5uxx�
y −

5

3
�yy = 0

(13)

⎧
⎪⎪⎨⎪⎪⎩

�x =
x

5
(f1t + 10c) +

9

50
y2f1tt +

3

5
yf2t + f3,

�y = y(
3

5
f1t + c) + f2,

�t = f1,

� = u(3c −
1

5
f1t) −

3x

25
(yf1tt +

5

3
f2t) −

9

250
y3f1ttt −

9

50
y2f2tt −

3

5
yf3t + f4,

(14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V1(f1) = f1�t + (
x

5
f1t +

9

50
y2f1tt)�x +

3y

5
f1t�y − (

u

5
f1t +

3x

25
yf1tt +

9

250
y3f1ttt)�u,

V2(f2) =
3y

5
f2t�x + f2�y − (

x

5
f2t +

9y2

50
f2tt)�u,

V3(f3) = f3�x −
3

5
yf3t�u,

V4(f4) = f4�u,

V5 = 2x�x + y�y + 3u�u.

Table 1   Commutation table of symmetries

[Vi,Vj] V1 V2 V3 V4 V5

V1 0 V2(f1f2t −
3

5
f1t f2) V3(f1f3t −

1

5
f1t f3) V4(f1f4t +

1

5
f1t f4)

0

V2 V2(−f1f2t +
3

5
f1t f2)

0 V4(−
3

5
f2f3t +

1

5
f2t f3)

0 V2(f2)

V3 V3(−f1f3t +
1

5
f1t f3) V4(

3

5
f2f3t −

1

5
f2t f3)

0 0 V3(2f3)

V4 V4(−f1f4t −
1

5
f1t f4)

0 0 0 V4(3f4)

V5 0 V2(−f2) V3(−2f3) V4(−3f4) 0
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Then the commutative relations of above operators can be given in Table 2.
The following one-parameter � symmetry groups �i (1, … , 5) generated by the 

correlating infinitesimal symmetries Vi (i = 1 … , 5) hold

where �1 is a translation of time, �2, �3 are translations about space, �4 is a dependent 
variable translation, �5 is a translation of scale. (16) implies that if u = f (x, y, t) is a 
solution of Eq. (2), so are u(j) (1 ≤ j ≤ 5)

Case 2. f1 = ⋯ = f4 = t + 1

The infinitesimal symmetries are shown as follows

Case 3. f1 = f2 = t + 1, f3 = f4 = (t + 1)2

With the infinitesimal symmetries

Case 4. f1 = f2 = 1, f3 = f4 = et

With the infinitesimal symmetries

(15)V1 = �t, V2 = �y, V3 = �x, V4 = �u, V5 = 2x�x + y�y + 3u�u.

(16)

⎧
⎪⎪⎨⎪⎪⎩

𝜏1 ∶ (x̃, ỹ, t̃, ũ) → (x, y, 𝜍 + t, u),

𝜏2 ∶ (x̃, ỹ, t̃, ũ) → (x, y + 𝜍, t, u),

𝜏3 ∶ (x̃, ỹ, t̃, ũ) → (x + 𝜍, y, t, u),

𝜏4 ∶ (x̃, ỹ, t̃, ũ) → (x, y, t, u + 𝜍),

𝜏5 ∶ (x̃, ỹ, t̃, ũ) → (e2𝜍x, e𝜍y, t, e3𝜍u),

(17)
{

u(1) = f (x, y, t − �), u(2) = f (x, y − �, t), u(3) = f (x − �, y, t),

u(4) = � + f (x, y, t), u(5) = e−3�f (xe−2�, ye−�, t).

(18)

{
V2

1
= (t + 1)�t +

x

5
�x +

3y

5
�y −

u

5
�u, V2

2
=

3y

5
�x + (t + 1)�y −

x

5
�u,

V2

3
= (t + 1)�x −

3y

5
�u, V2

4
= (t + 1)�u, V5 = 2x�x + y�y + 3u�u.

(19)

{
V2

1
= (t + 1)�t +

x

5
�x +

3y

5
�y −

u

5
�u, V2

2
=

3y

5
�x + (t + 1)�y −

x

5
�u,

V3

3
= (t + 1)2�x −

6y

5
(t + 1)�u, V3

4
= (t + 1)2�u, V5 = 2x�x + y�y + 3u�u.

(20)
V1 = �t, V2 = �y, V4

3
= et�x −

3y

5
et�u, V4

4
= et�u, V5 = 2x�x + y�y + 3u�u.

Table 2   Commutation table of 
symmetries in case 1

[Vi,Vj] V1 V2 V3 V4 V5

V1 0 0 0 0 0
V2 0 0 0 0 V2

V3 0 0 0 0 2V3

V4 0 0 0 0 3V4

V5 0 −V2 −2V3 −3V4 0
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The commutative operations of infinitesimal symmetries in cases  2, 3, 4 are pre-
sented in the Appendix 1.

4 � Optimal System

In this section, we construct an optimal system of one-dimensional subalgebras of 
case 1 for Eq. (2) with the method of Ibragimov in [6], which has the advantage of 
relying only on the commutator table (see Table 2), Supposing that any vector field 
can be written as

utilizing the following generators to find linear transformations of the vector 
(R1,R2,R3,R4,R5)

where P�

ij
 are represented by the formula [Vi, Vj] = P

�

ij
.

Theorem  4.1  The following operators provide an optimal system of one-dimen-
sional subalgebras of the Lie algebra spanned by V1, V2, V3, V4, V5

Proof  According to (22) and the Table 2, �1,�2,�3,�4 and �5 can be written as

for the generators �i, ci with the initial condition R̃|ci=0 = R (i = 1,… , 5) are written 
as

(21)V = R1V1 + R2V2 + R3V3 + R4V4 + R5V5,

(22)�i = P
�

ij
Rj�R� , i = 1, 2, 3, 4,

(23)

{
V1, V2, V3, V4, V5, V1 ± V2, V1 ± V3, V1 ± V4, V1 ± V5, V2 ± V3, V2 ± V4, V3 ± V4,

V1 ± V2 ± V3, V1 ± V2 ± V4, V1 ± V3 ± V4, V2 ± V3 ± V4, V1 ± V2 ± V3 ± V4.

(24)

⎧⎪⎪⎨⎪⎪⎩

�1 = 0,

�2 = R5�R2 ,

�3 = 2R5�R3 ,

�4 = 3R5�R4 ,

�5 = −R2�R2 − 2R3�R3 − 3R4�R4 ,

(25)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dR̃1
dc1

= 0, dR̃2
dc1

= 0, dR̃3
dc1

= 0, dR̃4
dc1

= 0, dR̃5
dc1

= 0,

dR̃1
dc2

= 0, dR̃2
dc2

= R̃5,
dR̃3
dc2

= 0, dR̃4
dc2

= 0, dR̃5
dc2

= 0,

dR̃1
dc3

= 0, dR̃2
dc3

= 0, dR̃3
dc3

= 2R̃5,
dR̃4
dc3

= 0, dR̃5
dc3

= 0,

dR̃1
dc4

= 0, dR̃2
dc4

= 0, dR̃3
dc4

= 0, dR̃4
dc4

= 3R̃5,
dR̃5
dc4

= 0,

dR̃1
dc5

= 0, dR̃2
dc5

= −R̃2,
dR̃3
dc5

= −2R̃3,
dR̃4
dc5

= −3R̃4,
dR̃5
dc5

= 0,
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and the solutions of Eq. (25) give the transformations

It is necessary to construct the optimal system to simplify the vector

Since the rank of a matrix ‖��

��
��‖(� = 1,… , 5) of the coefficients of the operators 

(24) is three, which means that the matrix has two functionally independent invari-
ants Rm (m = 1, 2). Integrating the equation

following invariants hold

Since whether the invariant is 0 or not affects the combinations of generators, the 
process of constructed optimal system can only be divided into two cases. 	�  ◻

Case 1. R5 ≠ 0

Respectively taking c2 = −
R2

R5

, c3 = −2
R3

R5

, c4 = −3
R4

R5

 in T3, T4, T5 and simplify 
the vector (27) to the form

(1.1) R1 = 0

Providing the operator

(1.2) R1 ≠ 0

Without losing generality, assuming R1 = 1,R5 = ±1 in the vector (27), providing 
the operator

Case 2. R5 = 0

(2.1) R1 ≠ 0

The vector (27) is reduced to the form

(26)

⎧
⎪⎪⎨⎪⎪⎩

T1 ∶ R̃1 = R1, R̃2 = R2, R̃3 = R3, R̃4 = R4, R̃5 = R5,

T2 ∶ R̃1 = R1, R̃2 = R2 + c2R5, R̃3 = R3, R̃4 = R4, R̃5 = R5,

T3 ∶ R̃1 = R1, R̃2 = R2, R̃3 = R3 + 2c2R5, R̃4 = R4, R̃5 = R5,

T4 ∶ R̃1 = R1, R̃2 = R2, R̃3 = R3, R̃4 = R4 + 3c2R5, R̃5 = R5,

T5 ∶ R̃1 = R1, R̃2 = e−c5R2, R̃3 = e−2c5R3, R̃4 = e−3c5R4, R̃5 = R5.

(27)R = (R1, R2, R3, R4, R5).

(28)�� (�) = 0, � = 1,… , 5,

(29)
{

R1 = R1,

R2 = R5.

(30)� = (R1, 0, 0, 0, R5).

(31)V5.

(32)V1 ± V5.

(33)� = (R1, R2, R3, R4, 0),
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that cannot be reduced, taking all possible linear combinations, the following repre-
sentatives are given

(2.2) R1 = 0

Taking into account all combinations, we obtain the following representatives

The optimal system is provided by collecting subalgebras (31), (32), (34) and (35), 
thus the proof is completed.

5 � Symmetry Reductions and Invariant Solutions

In this section, the Lie group of point transformation method is employed in the 
dBKP equation. The subalgebras in (14), the obtained optimal system and cases 2–4 
are selected to acquire symmetry reductions and group invariant solutions of dBKP 
equation, which can been realized through solving associated Lagrange characteris-
tic equation

Subalgebra V3(f3) = f3�x −
3

5
yf3t�u

Associated Lagrange equation is

Then, the following similarity form holds

Substituting above variables from Eq. (38) into Eq. (2), then Eq. (2) is reduced to

therefore, solutions of Eq. (1) are

Subalgebra V3(f3) + V4(f4) = f3�x −
3

5
yf3t�u + V4(f4) = f4�u

By solving the associated characteristic equation, the similarity variables yield

(34)
V1, V1 ± V2, V1 ± V3, V1 ± V4, V1 ± V2 ± V3, V1 ± V2 ± V4,

V1 ± V3 ± V4, V1 ± V2 ± V3 ± V4.

(35)V2 ± V3 ± V4, V2 ± V3, V2 ± V4, V3 ± V4, V2, V3, V4.

(36)
dx

�x(x, y, t, u)
=

dy

�y(x, y, t, u)
=

dt

�t(x, y, t, u)
=

du

�(x, y, t, u)
.

(37)
dx

f3
= −

5du

3yf3t
.

(38)� = t, � = y, u =
5f (�, �) − 3x�f3�

5f3
.

(39)27�f3�� + 25f�� = 0,

(40)w = ux = −
3yf3t

5f3
.
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Substituting these variables into Eq. (2), one has

therefore, we get solutions of Eq. (1)

The concrete results in optimal system and cases 2–4 are presented in Tables 3 and 4 
by repeating the Lie group method

The exact solutions of Eq. (1) can be acquired by determining certain arbitrary 
functions.

Subalgebra V2 = �y Taking F1(z) =
1

3
(c1z + c2), where c1 and c2 are arbitrary 

constants, we get following binary equation

solving Eq. (44), a solution of Eq. (1) is derived as

Subalgebra V2 + V4 = �y + �u
Taking F1(z) = lnz, we get the following binary equation

a solution of Eq. (1) can be obtained by solving Eq. (46)

Subalgebra V2 + V3 = �y + �x
Taking F1(z) = 0, solving the following binary equation

we acquire solutions of Eq. (1)

Subalgebra V2 − V3 + V4 = �y − �x + �u
Taking F1(z) = 0, solving the following binary equation

(41)� = t, � = y, u =
(f (�, �) − x)(5f4 + 3�f3t)

5f3
.

(42)27y(f3�� + f4�) + 25f�� = 0,

(43)w = ux =
−3yf3t − 5f4

5f3
.

(44)5z2(x, t)t + c1z(x, t) + c2 − 3x = 0,

(45)w =

(−c1 ±

√
60tx − 20c2t + c2

1
)

10t
.

(46)15z2(x, t)t + lnz(x, t) − 5t − 3x = 0,

(47)w = exp(−
1

2
LamberW(30t ⋅ exp(10t + 6x)) + 5t + 3x).

(48)45z2(x, t)t + 30tz(x, t) − 5t − 9x − 9y = 0,

(49)w = −
1

3
±

√
50t2 + 45t(x − y)

15t
∓ ∫

3

2(
√
50t2 + 45t(x − y))

dy.
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solutions of Eq. (1) can be given as

6 � Construction of Conservation Laws of the dBKP System

6.1 � Nonlinear Self‑Adjointness

In this subsection, we will introduce certain symbols and theorems from [13, 14]. 
For a kth-order system of PDEs with n-independent variables � = (x1, x2,… , xn) and 
m-dependent variables � = (u1, u2,… , um)

where u(r) represents the set of derivatives of order r (r = 1,… ,m), the system of 
adjoint equations for system (52) is as follows

where

The formal Lagrangian and Euler–Lagrange operator are defined as

in which Di is total derivative operator with respect to xi.

Definition 6.1  A nonlinear system is nonlinear self-adjoint if its adjoint system 
satisfies

where ��
�
(�, �) ≠ � is undecided, � = (�1,… , �m) is a n-dimension vector.

Theorem 6.1  For symmetry generator admitted by system (52)

(50)45z2(x, t)t − 30tz(x, t) − 20t − 9x − 9y = 0,

(51)w =
1

3
±

√
125t2 + 45t(x + y)

15t
± ∫

3

2(
√
50t2 + 45t(x + y))

dy.

(52)F�(x, u(1), u(2),… , u(k)) = 0, � = 1, 2,… ,m,

(53)F∗
�
(x, u(1), u(2),… , u(k)) = 0, � = 1, 2,… ,m,

(54)F∗
�
(x, u(1), u(2),… , u(k)) =

�L

�u�
.

(55)L = v�F�(x, u(1), u(2),… , u(k)) = 0, v=v(x).

(56)
�

�u�
=

�

�u�
+

∞∑
i=1

(−1)sDi1
…Dij

�

u�
i1…ij

, � = 1, 2,… ,m,

(57)F∗
�
(x, v, u,… , v(s), u(s)) ∣v�=��(x,u)= ��

�
F�(x, v, u,… , v(s)), � = 1,… ,m.



106	 Journal of Nonlinear Mathematical Physics (2023) 30:92–113

1 3

the adjoint equations (53) conserve symmetry above, which means the following 
adjoint symmetry must be admitted by the system of adjoint equations (53),

where Y(F�) = �
�
�F� , with ��� is a constant that needs to be determined.

Theorem  6.2  (New conservation theorem) Every Lie point symmetry, Lie–Bäck-
lund symmetry and nonlocal symmetry X admitted by the system of (52) can give the 
conservation law of the system consisting of Eq. (52) and the adjoint equations (53), 
its conservation vector � = (C1,C2,…) has the form

where W� = �� − � ju�
j
, � = 1, 2,… ,m.

Theorem 6.3  If a vector � = (Cx,Cy,Ct) satisfies the conservation equation

it is called a conserved vector for Eq. (2).

6.2 � Construction of Conservation Laws Using Symmetries

According to the definition and theorems mentioned in Sect. 6.1, for system

we write the formal Lagrangian in symmetric form

with L satisfies

Therefore

(58)X� = � i(x, u(1), u(2),…)
�

�xi
+ ��(x, u(1), u(2),…)

�

�u�
,

(59)Y = X + ��
∗

�

�v�
, ��

∗
= −[��

�
+ Di(�

i)]v� ,

(60)

Ci = �nL +W�

[
�L

�u�
i

− Dj

(
�L

�u�
ij

)
+ DiDk

(
�L

u�
ijk

)
−⋯

]

+ Dj(W
�)

[
�L

�u�
ij

− Dk

(
�L

�u�
ij

)
+⋯

]
+ DjDk(W

�)

[
�L

�u�
ijk

−⋯

]
,

(61)Dx(C
x) + Dy(C

y) + Dt(C
t) = 0,

(62)F = 3uxt + 15u2
x
uxx − 5uxuxy − 5uxxuy −

5

3
uyy,

(63)L = −3uxvt + 15u2
x
uxxv + 5uxuyvx +

5

3
uyvy,

(64)
�L

�u
= F∗,

�L

�v
= F.
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here �i are arbitrary functions of t.
The next step is to use particular symmetries obtained in Sect. 3 to construct con-

servation laws.
Symmetry generator X1 =

�

�x
We derive the corresponding Lie characteristic functions W1 = −ux and 

W2 = −vx, hence the conserved vector is composed of

Symmetry generator X2 =
�

�y

The corresponding Lie characteristic functions are W1 = −uy and W2 = −vy, then 
conserved vector is composed of

It can be calculated and verified

Symmetry generator X3 =
�

�t
In this case, we have the corresponding Lie characteristic functions W1 = −ut 

and W2 = −vt, and conserved vector is composed of

We can verify that

Symmetry generator X4 = (t + 1)
�

�x
−

3y

5

�

�u
We can get the Lie characteristic functions W1 = −

3y

5
− (t + 1)ux and 

W2 = −(t + 1)vx, then following conserved component vectors hold

(65)v = �1(t)y + �2(t),

(66)

⎧
⎪⎨⎪⎩

Cx
1
=

5

3
uyvy,

C
y

1
= −

5

3
uxvy,

Ct
1
= 0.

(67)

⎧⎪⎨⎪⎩

Cx
2
= 3uyvt − 5uxuyvy − 15u2

x
uxyv,

C
y

2
= L −

10

3
uyvy,

Ct
2
= 3uxvy.

(68)Dx(C
x
2
) + Dy(C

y

2
) + Dt(C

t
2
) = vyF = 0.

(69)

⎧⎪⎨⎪⎩

Cx
3
= 3utvt − 5uxuyvt − 15u2

x
uxtv,

C
y

3
=

5

3
utvy −

5

3
uyvt,

Ct
3
= 15u2

x
uxxv +

5

3
uyvy.

(70)Dx(C
x
3
) + Dy(C

y

3
) + Dt(C

t
3
) = vtF = 0.

(71)

⎧⎪⎨⎪⎩

Cx
4
=

5(t+1)

3
uyvy +

9y

5
vt,

C
y

4
= −

5(t+1)

3
uxvy,

Ct
4
= 0.
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Symmetry generator X5 = 2x
�

�x
+ y

�

�y
+ 3u

�

�u

The coefficients of X5 ’s extension can be calculated

An adjoint symmetry is generated

the corresponding Lie characteristic functions are W1 = 3u − 2xux − yuy and 
W2 = −4v − yvy − 2xvx, and following conserved component vectors hold

Conservation law can be verified

Symmetry generator X6 = (t + 1)
�

�t
+

x

5

�

�x
+

3y

5

�

�y
−

u

5

�

�u

The coefficients of X6 ’s extension can be calculated

and one gives adjoint symmetry

the corresponding Lie characteristic functions are W1 = −
u

5
− (t + 1)ut −

x

5
ux −

3y

5
uy 

and W2 = −
2v

5
− (t + 1)vt −

3y

5
vy, then following conserved component vectors

can be obtained. Conservation law can be verified

(72)�5 = 1, �∗ = −4.

(73)Y5 = 2x
�

�x
+ y

�

�y
+ 3u

�

�u
− 4v

�

�v
,

(74)

⎧
⎪⎨⎪⎩

Cx
5
=

10x

3
uyvy + y(3uyvt − 5uxuyvy − 15u2

x
uxyv) − 9uvt − 20uxuyv + 15u3

x
v,

C
y

5
= y(−3uxvt + 15u2

x
uxxv −

5

3
uyvy) −

10x

3
uxvy + 5uvy −

20

3
vuy,

Ct
5
= 12vux + 3yuxvy.

(75)Dx(C
x
5
) + Dy(C

y

5
) + Dt(C

t
5
) = (yvy + 4v)F = 0.

(76)�6 = −
7

5
, �∗ = −

2

5
,

(77)Y6 = (t + 1)
�

�t
+

x

5

�

�x
+

3y

5

�

�y
−

u

5

�

�u
−

2v

5

�

�v
,

(78)

⎧⎪⎨⎪⎩

Cx
6
=

x

3
uyvy +

3y

5
(3uyvt − 5uxuyvy − 15u2

x
uxyv) + (t + 1)(3utvt − 5uxuyvt − 15u2

x
uxtv),

C
y

6
=

3y

5
(−3uxvt + 15u2

x
uxxv −

5

3
uyvy) + (t + 1)(−

5

3
utvy −

5

3
utvt) −

x

3
uxvy −

u

3
vy −

2

3
uyv,

Ct
6
= (t + 1)(15u2

x
uxxv +

5

3
uyvy) +

6

5
vux +

9y

5
uxvy

(79)Dx(C
x
6
) + Dy(C

y

6
) + Dt(C

t
6
) =

2v

5
F = 0.
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6.3 � Constructing Solution of the dBKP Equation by Conserved Vector (66)

We know the conserved component vectors obtained of symmetry generator X1

Taking

and assuming

then

Substituting the relationships of (81) into Eq. (2), one has

only the last two terms 9GHx,−Gy may contain independent variable y,  thus the cal-
culations can be shorten significantly if we consider two special cases.

Case 1. Hx = 0

Under this circumstance, the following relationship holds

Then Eq. (84) becomes

using the constant coefficient variation method, we obtain

where a is an arbitrary constant, Eq. (83) can be written as

(80)

⎧
⎪⎨⎪⎩

Cx
1
=

5

3
uyvy,

C
y

1
= −

5

3
uxvy,

Ct
1
= 0.

(81)Dx(C
x
1
) = Dy(C

y

1
) = Dt(C

t
1
) = 0,

(82)

{
5

3
uy�1 = G(t, y),

5

3
ux�1 = H(t, x),

(83)

{
uy =

3G

5�1
,

w(x, y, t) = ux = −
3H

5�1
.

(84)
9

5

(
H�1t − Ht�1

�1

)
−

81H2Hx

25�1
+ 9GHx − Gy = 0,

(85)
{

H(x, t) = h(t),

Gy(y, t) = g(t).

(86)ht −
�1t

�1
h = −

5

9
g,

(87)h = �1(a − ∫
5

9

g

�1
dt),
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Integrating the system (88), we get

where l, m are arbitrary functions of t.
Case 2. G(t, y) = g(t)

Equation (84) becomes

if taking

the following formula is calculated

where k is an arbitrary functions of z,  a solution of Eq. (84) can be acquired if we 
make k(z) = lnz .

Hence one of solutions of Eq. (1) is

7 � Conclusions and Discussions

In summary, the authors study the dBKP equation using the Lie symmetry method 
and Ibragimov’s adjoint symmetry approach. The important results are that the Lie 
point symmetries of the dBKP equation are reduced to four classes, the rich sym-
metry reductions and new group invariant solutions are derived based on the above 
reduced symmetries. Except for particular complex symmetries themselves tend to 
generate still complex reduced equations, these main results prove that the reduction 
of the infinite-dimensional Lie algebra of symmetries to four classes is effective. 
For the symmetry reductions of subalgebras V2, V2 + V4, V2 + V3 and V2 − V3 + V4 
contain infinite solutions which can not be obtained directly, we obtain the exact 

(88)

{
uy =

3

5

yg+l

�1
,

w(x, y, t) = ux = ∫ g

3�1
dt −

3

5
c.

(89)u(x, y, t) =
3

5�1

(
y2g

2
+ yl

)
+ x

(
∫

g

3�1
dt −

3

5
c

)
+ m,

(90)Ht +
9HxH

2 − 5H�1t

5�1
− GHx = 0,

(91)
{

�1 = 1,

G = t,

(92)H(t, x) = RootOf (18z2t − 5t2 − 10k(z) − 10x),

(93)H(x, t) = exp
(
−
1

2
LambertW(−36t ⋅ exp(−10t2 − 20x)) − 5t2 − 10x

)
.

(94)
w = ux = −

3

5
H(x, t) = −

3

5
exp

(
−
1

2
LambertW(−36t ⋅ exp(−10t2 − 20x)) − 5t2 − 10x

)
.
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solutions by determining arbitrary functions. The traveling wave solutions can not 
be acquired since the dBKP system has the characteristic that each term contains the 
first power factor of the same order without dispersion term. Compared with other 
published papers on the study related to B-type equations [25–28], the current paper 
adds the application of symmetry analysis on the dispersionless B-type equation. 
Further research on obtained Lie point symmetries and special symmetry reductions 
by �-symmetry [29], Laplace transform [30] and PT-symmetry [31] are worth trying 
in the future.

Appendix 1: Commutation Tables of Cases 2–4 in Sect. 3

See Tables 5, 6 and 7.

Table 5   Commutation table of 
symmetries in case 2 [V2

i
,V2

j
] V

2

1
V

2

2
V

2

3
V

2

4
V5

V
2

1
0 2

5
V2

2

4

5
V2

3

6

5
V2

4
0

V
2

2 −
2

5
V2

2
0 −

2

5
V2

4
0 V

2

2

V
2

3 −
4

5
V2

3

2

5
V2

4
0 0 2V2

3

V24 −
6

5
V2

4
0 0 0 3V2

4

V5 0 −V2

2
−2V2

3
−3V2

4
0

Table 6   Commutation table of 
symmetries in case 3 [V3

i
,V3

j
] V

2

1
V

2

2
V

3

3
V

3

4
V5

V
2

1
0 2

5
V2

2

9

5
V3

3

11

5
V3

4
0

V
2

2 −
2

5
V2

2
0 −V3

4
0 V

2

2

V
3

3 −
9

5
V3

3
V

3

4
0 0 2V3

3

V
3

4 −
11

5
V3

4
0 0 0 3V3

4

V5 0 −V2

2
−2V3

3
−3V3

4
0

Table 7   Commutation table of 
symmetries in case 4

V1 V2 V
4

3
V

4

4
V5

V1 0 0 V
4

3
V2 0

V2 0 0 −
3

5
V4

4
0 V2

V
4

3
−V4

3

2

5
V4

4
0 0 2V4

3

V
4

4
−V4

4
0 0 0 3V4

4

V5 0 −V2 −2V4

3
−3V4

4
0
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