Journal of Nonlinear Mathematical Physics (2023) 30:92-113
https://doi.org/10.1007/s44198-022-00073-6

RESEARCH ARTICLE

®

Check for
updates

Lie Symmetry Analysis and Conservation Laws
for the (2 + 1)-Dimensional Dispersionless B-Type
Kadomtsev-Petviashvili Equation

Qiulan Zhao'® - Huanjin Wang' - Xinyue Li' - Chuanzhong Li'

Received: 21 May 2022 / Accepted: 11 July 2022 / Published online: 25 July 2022
© The Author(s) 2022

Abstract

The Lie symmetry analysis is adopted to the (2 + 1)-dimensional dispersionless
B-type Kadomtsev—Petviashvili (dBKP) equation. The combination of symmetry
analysis and symbolic computing methods proves that Lie algebra of infinitesimal
symmetry of the dBKP equation depends on four independent arbitrary functions
and one arbitrary parameter. The Lie algebra is reduced to four classes for deriving
commutative relations, group invariant solutions of dBKP equation and conserva-
tion laws, and the optimal system of 1-dimensional subalgebras from one class is
constructed. Based on the optimal system and other particular infinitesimal symme-
tries, plentiful symmetry reductions and invariant solutions are computed by using
Lie group method. Six successive symmetries and conserved quantities of the dBKP
equation are linked by the new conservation theorem. Besides, exact solution of the
dBKP equation is constructed according to a conservation vector.
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1 Introduction

Non-linear partial differential equations (NLPDEs) are widely used to explain non-
linear physical phenomena in engineering sciences such as fluid dynamics, plasma
physics and oceanography. Analysing mathematical properties of NLPDEs such as
symmetry reductions, exact closed-form solutions and dynamic behavior of solu-
tions is crucial to predict and utilize these phenomena. Lie symmetry analysis, a
valid and concise approach to comprehend these properties of NLPDEs, was first
presented by Lie in 1881 [1]. Based on transformative invariance of one-parameter
Lie group, this method can reduce the number of independent variables. Since a
Lie algebra of NLPDEs almost always contains infinite subalgebras, an optimal sys-
tem should be found to avoid getting the equivalent group invariant solutions. In
recent six decades, scholars such as Ovsyannikov, Olver, Ibragimov, Miao and Hu
et al. [2-6] have sought to, but not limited to improve the way of searching optimal
system. The impact of Lie symmetry’s thought simultaneously spread more widely
[7-9].

Conservation law appears in NLPDE:s related to areas such as water waves, foam,
atmospheric flows, etc, its existence strongly proves the integrability of NLPDEs.
Symmetries of NLPDEs could connect with conservation laws, Noether’s theorem
in [10], partial Noether’s approach in [11] and multiplier approach in [12] are all
highly effective for the derivation of conservation laws. The new conservation theo-
rem is more widely utilized since there is no need for Lagrangian and relies only on
the commutator table [13]. According to the fundamental notion of nonlinearly self-
adjointness, corresponding conservation laws by self-adjointness can be generated
by adjoint symmetry [14], which are examples of conservation laws by pairs of sym-
metries and adjoint symmetries [15]. In addition, exact solutions of NLPDEs could
be constracted adopting particular conservation laws [16].

The significance has been realized recently to dispersionless limits of integrable
hierarchies and equations, since they present in the research of various problems in
applied mathematics and physics from the theory of conformal maps to the theory
of quantum fields and strings [17-19]. In the quasi-classical d—dressing scheme for
dispersionless KP hierarchy, dispersionless B-type KP hierarchy is dispersionless
KP hierarchy with even times frozen at zero plus symmetry, and the dBKP equation
can be given by the compatibility condition for the first two Hamilton—Jacobi equa-
tions [20-22]

- 5.
3w+ 15whw, = 5w~ lwy), = 207wy, =0, (1)

where w = w(x, y, ) denotes the unknown function of space variables x, y and time
variable #, 07! means to integrate x. Substituting w = u_ into Eq. (1) to remove the
integral symbol

5
Bu, + Sui = Su,uy), — Flhy = 0. )
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Quantum W-infinity algebra, classical quantum torus structure and other discussions
of dBKP hierarchy have been detailed in [21, 23, 24], yet mathematical properties of
dBKP equation is just beginning to explore.

This paper explores new group invariant solutions of the dBKP equation by
the Lie symmetry approach, the Lie point symmetries of dBKP equation are
presented and discussed which have not been studied in previous literature. Lie
symmetry method was applied to the dBKP equation and eight symmetry reduc-
tions were derived in 2021, but we derive twenty-five symmetry reductions. The
invariant solutions are dissimilar since our research involves the general Lie alge-
bra and its four reductive classifications, whereas the previous discussion was
based on one reduction of the general Lie algebra. In the construction of opti-
mal system, adjoint representation was adopted by previous research, yet we rely
only on commutator table and its derivation process is given. Depending on the
constracted optimal system, four indirectly solvable symmetry reductions with
infinite number of solutions are given and discussed, which were not available
in previous study. Although the new conservation theorem is both applied, the
conservation laws are distinct for distinct Lie point symmetries, we further con-
struct exact solution of the dBKP equation by a conservation law. The aim of this
paper is to analyze the Lie algebra classifications, symmetry reductions and exact
invariant solutions of the dBKP equation based on the Lie point symmetry, and to
derive the conservation laws according to the new conservation theorem.

The whole structure can be divided into five main sections. In next section,
we review the connection between the dBKP hierarchy and equation. Section 3
describes the Lie algebra with one-parameter transformation and their reductions
for the dBKP equation under Lie symmetry analysis. Section 4 constructs an one-
dimensional optimal system of subalgebras of dBKP equation. In Sect. 5, plen-
tiful reduced equations and invariant solutions are derived. In Sect. 6, the new
conservation theorem is utilized to link six successive symmetries and conserved
quantities of the dBKP equation, besides, exact solution is constructed according
to a set of conservation law. The last section gives conclusions and discussions.

2 The dBKP Hierarchy and the dBKP Equation

We begin with a brief review to the connection between the dBKP equation and
dBKP hierarchy. The Lax function of dispersionless BKP hierarchy

I'=x+uy, x"', n=13,5,..., 3)

in which « is a conjugate variable of x, and I" is odd Laurent series of k. I" can be
written as

I'=eY(), adY(P)={Y,¥}=0Y0¥ —0,.¥d)Y, 4)

the form of the dressing function is as
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Y = Yok 4+ YT e 5)

Definition 2.1 The dispersionless BKP hierarchy are composed of flows in the Lax
pair [20]

o ={UI",. T} =0,I'", 0, =0, I (I'),, i=135,..., (6)

in which “+” represents the nonnegative projection about x and “—” represents the
negative projection. Eq. (1) is the simplest nontrivial flow in the dBKP hierarchy.

3 Lie Algebra Classifications

In this section, the Lie symmetry analysis to Eq. (2) starts at considering following
one-parameter Lie group of infinitesimals transformation

Dx+gE + 0(ch),
D1+ gE + 0(?),

Dy +¢E +0(6?),
S u+cd+ 0(c?),

@)

NI I N AT

where &', &', &, @ are functions of x, z, y, u and ¢ > 0 is a sufficiently small one-
parameter, the vector field relevant to (7) is

V=£9480,+80,+ @9, ®)
The following second prolongation holds
pr?V=V+®9, + @9, + 79, +®"9, +@d%, +@%0, ., (9
with

@Y =D (P - &u, — &uy — &'u,) + Euy, + Suyy, + Euy,

@ = D (D — Euy — Euy — Eu) + Ey, + Ettyy + Ey,

DV = Di(cD = &u, — &uy — &) + Euyy, + Euyy + Sy, 0
QY =D D (D — &u, — &uy — &'u) + Euyyy + Euy, + Sy, (10)
O = DD — Eu, — E'uty — Eu) + E Uy, + Etty, + El,

@' = DD (P — Eu, — Euy — &'u) + Euyy + Euyyy + E'uyy,

L

in which Dp, (p = x,y,1t) are the total derivatives respectively about p .
Above deterministic Eq. (10) can be produced under constant condition

prP V] =0, (11)
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with A = 3u,, + 154°u

x Pxx

- %uyy = 0. According to Eq. (11), the
following equation holds

= Suyty, — Suu,

30" + @*(30u,u,, — Su,) + (Dxx(lSui = Su,) = Su, @ — S5u, @ — %cpw =0
(12)
The form of the coefficient function is obtained by calculating the standard symme-
try group

&= %(flt +10c) + %yzfltt + %yfzt + /3
. 3
&= y(gflt + o)+,

=1,
1 3 5 9 9 3
@ = u(3c — gflt) - %(yfln + §f2t) - ﬁy3flm - 5y2f2tt - gyf3, + fas

(13)

where ¢ is an arbitrary constant, f,,f,,f; and f; are arbitrary functions about ¢.
Consequently, the vector field of Eq. (2) can be determined by below infinitesimal
symmetries

x 9 3 u 3x 9

Vi(f) =10, + (gflt + Eyzflzz)ax + ?yfltay - (gflr + EYfln + ﬁy3f1m)6u’
, X 2
] Vath) = 250, + 10, = Gy, + )9,

3
V() = £10, = 2¥/3,0,
V4(f4) =f40u,
Vs = 2x0, + yo, + 3ud,.

(14)

This set of vectors form a Lie algebra under commutative operations
[Vi, Vi1 = V;V; = V;V;, which is skew symmetric with each diagonal term being zero.
One can give the commutator table of system (2) (see Table 1).

The following four cases are convenient for calculating the commutative relations
of infinitesimal symmetries and deriving invariant solutions of Eq. (2), if arbitrary
functions f; (i = 1, ..., 4) are defined as

Case 1. f; = .- = f, = 1 The infinitesimal symmetries of Eq. (2) form the five-

dimensional Lie algebra L’ are spanned by the following independent operators

Table 1 Commutation table of symmetries

VyVil v, v, \E Va Vs
Vi 0 Vol = 3 Vathfs = shdy) Vil + shifd O
Va Vaol=hfa+ 3fif) O Vi=3hfs + 368 O Va(h)
Vs Vi(fifs + shs) VaGhfy — shd) O 0 V3(3f)
Va Vififu = shif 0 0 0 Vi)
Vs 0 Vo (=£f2) Vi(=2£3) V(=31 0
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X

Vi=0, V,=9,, Vy=0,, Vy=9, Vs=2x0,+yo,+3ud, (15)

Then the commutative relations of above operators can be given in Table 2.

The following one-parameter ¢ symmetry groups 7; (1, ... ,5) generated by the
correlating infinitesimal symmetries V; i =1 ... ,5) hold
7 L (55,50 = (Y, ¢+ 1w,
7, 0 (&9, 5 0) = (x,y+ ¢, 1, u),
73 0 (55, 40) > (x+6,y, 1w, (16)
7t (LR L) = (xLy,Lu+t o),
75 1 (X, 9,1,0) — (€%x, ey, t, e u),

where 7, is a translation of time, 7,, 75 are translations about space, 7, is a dependent
variable translation, 75 is a translation of scale. (16) implies that if u = f(x,y,?) is a
solution of Eq. (2), so areu? (1 <j <5)

u) =fr,y, 1 =€), u® =fl,y—e0, u=flx-¢ey0,
u® =g +f(x,y,0), u® =e¥f(xe %, ye7E, 1). (a7)
Case2. fi=--=f,=t+1
The infinitesimal symmetries are shown as follows
V2= (t+ 10, + fox+ 2oy — You, V3= Lox+(+ 1), — Tou, s
Vi=(t+ 1o, - 35—yau, Vi=(+1)0,. Vs=2x0,+yd, +3ud,.

Cased. fi=f,=t+1,,=f=(@+1)?
With the infinitesimal symmetries

V2= (t+ )0, + Zox + 35—yay —tou, Vi= %ax+ (t+ 1)d, — Zou,
V3i=(t+ 1), - %(r +Dou, V3=(@+1)9,, Vs=2x9,+yd,+3ud,.
(19)

Cased. fi=f, =1, f=f,=¢€
With the infinitesimal symmetries

3
Vi=o, Vy=0, Vi=eo,- gyetau, Vi=¢d, Vs=2x0,+0,+3ud,

(20)
e Conmusionuledt  yyi v, v, v v W,
v, 0 0 0 0 0
\A 0 0 0 0 \A
A 0 0 0 0 2V,
v, 0 0 0 0 3V,
Vs 0 -V, -2v, -3V, 0
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The commutative operations of infinitesimal symmetries in cases 2, 3, 4 are pre-
sented in the Appendix 1.

4 Optimal System

In this section, we construct an optimal system of one-dimensional subalgebras of
case 1 for Eq. (2) with the method of Ibragimov in [6], which has the advantage of
relying only on the commutator table (see Table 2), Supposing that any vector field
can be written as

utilizing the following generators to find linear transformations of the vector
(R17R27R37R47R5)

[1]

=P R()R,, i=1,2 3,4, (22)
where PZ. are represented by the formula[V;, V;] = PZ

Theorem 4.1 The following operators provide an optimal system of one-dimen-
sional subalgebras of the Lie algebra spanned by V,, V,, V5, V4, Vs

Vi Voo Vi, Vi, Ve, Vi Vo, Vi 2V, ViV, Vi 2 Vs, Vo2 Vs, VoV, Va2V,
VliVZiV3, VliV2iV4, VliV3iV4, Vziv3iv4, Vlivziv3iv4-
(23)
Proof According to (22) and the Table 2, =, Z,, 55, 5, and =5 can be written as

- R aRZ’

1] _EI]

Z, = 2R50R3, (24)
.:4 = 3R 0R4,

Zs = —R%0p — 2R%0ps — 3R*0ps,

for the generators =;, ¢; with the initial condition R| =0 = =R(i=1,...,5) are written
as

dR, -0 dR, -0 dR, -0 dR, -0 dR; -0

de, - de, - de, - de, - de, -

dF, AR, 5 dR dR, dF,s

—_ = —_— = R —_—= —_—= —_— =

dc, 0’ dc, 5 dc, 0, dc, 0, dc, 0,

d_ﬁl_() d_ﬁz_() dR3 R "_R:t_() &_0

\ de; — 7 dey TS e, T dey, T (25)

dr, _ dr, _ dr; _ dR4 g dR;

dey - 0’ dey 0’ dey - 0 =3 5 dey - 0’

dr, _ 0 dr, _ _R Ry, _ _2R~ dR, —_3R dRs _ -0

des - des - 2> dcs - 3 dcs 4 des -
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and the solutions of Eq. (25) give the transformations

Ty : Ry =Ry, R, =Ry, Ry=R;, R, =Ry, Rs =Rs,

T,: R =R, Ry =Ry +¢,Rs, Ry =Ry, R, =Ry, Rs =Ry,

T,: R =R, R, =Ry, Ry = Ry +2¢,Rs, Ry = Ry, Rs = Ry, (26)
T,: Ry =Ry, R, =Ry, Ry =R;, R, —R4+3c2R5, Rs =R,

Ts: R, =R,, R, =¢%R,, Ry =e¢ 2Ry, R, = ¢ R, Rs = Rs.

It is necessary to construct the optimal system to simplify the vector

R= (R1’ RZ’ R3, R4, Rs)- (27)

Since the rank of a matrix ”Pi}.,iRJ' I(y =1,...,5) of the coefficients of the operators

(24) is three, which means that the matrix has two functionally independent invari-
ants R” (m = 1, 2). Integrating the equation

EY(R)=O, y=1,...,5, (28)
following invariants hold
Rl = Rl’
R? =Ry, (29)
Since whether the invariant is 0 or not affects the combinations of generators, the
process of constructed optimal system can only be divided into two cases. O

Casel.R; #0
Respectively taking ¢, = —%, c3 = —2&, cy = —3% in T5, T,, Ts and simplify
5 5
the vector (27) to the form
R = (R]’ O’ O’ 03 RS)' (30)

(1.)R, =0
Providing the operator

Vs. (31)

(12)R, #0
Without losing generality, assuming R, = 1, R; = +1in the vector (27), providing
the operator

Vi Vs (32)

Case2. R; =0
Q21HR #0
The vector (27) is reduced to the form

R= (R, Ry, Ry, Ry, 0), (33)
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that cannot be reduced, taking all possible linear combinations, the following repre-
sentatives are given

Vl’ VliVQ, VliV3, VliV4, VliniV3, VliVZiV4,

Vi VotV Vi V£ Vi %V, (G4

22)R, =0
Taking into account all combinations, we obtain the following representatives

Vot ViV, Vo V3, Vot Vi, Va2V, V), V3, V. (35)

The optimal system is provided by collecting subalgebras (31), (32), (34) and (35),
thus the proof is completed.

5 Symmetry Reductions and Invariant Solutions

In this section, the Lie group of point transformation method is employed in the
dBKP equation. The subalgebras in (14), the obtained optimal system and cases 2—4
are selected to acquire symmetry reductions and group invariant solutions of dBKP
equation, which can been realized through solving associated Lagrange characteris-
tic equation

dx _ dy _ dr _ du 36)
Sy, bu) &y, tu) GGy tu) Py, tu)
Subalgebra V(f3) = f30, — %)’fyau
Associated Lagrange equation is
dx _ _ 5du -
f A &7
Then, the following similarity form holds
5f(a, B) — 3xPf3,
a=t, f=y, y=—m———0 38
5 (38)
Substituting above variables from Eq. (38) into Eq. (2), then Eq. (2) is reduced to
27Bf30q + 25f55 = 0, (39)
therefore, solutions of Eq. (1) are
3yf5
w=u, = 57, (40)

Subalgebra Vy(fy) + V,(fy) = f30, — 2¥/3,9, + Va(f)) = 19,
By solving the associated characteristic equation, the similarity variables yield
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it ey, uo C@H DG 305 )
5,

Substituting these variables into Eq. (2), one has
2TY(fagq +Jaa) + 25055 = 0, (42)
therefore, we get solutions of Eq. (1)
_ -
x 5, .

The concrete results in optimal system and cases 2—4 are presented in Tables 3 and 4
by repeating the Lie group method

The exact solutions of Eq. (1) can be acquired by determining certain arbitrary
functions.

(43)

Subalgebra V, = 9, Taking F,(z) = %(Clz + ¢,), where ¢; and c, are arbitrary

constants, we get following binary equation
52 (x, )t + c,z(x, 1) + ¢, — 3x = 0, (44)
solving Eq. (44), a solution of Eq. (1) is derived as

/ _ 2
(=c; = 4/60tx — 20¢,1 + ¢} ). 45)

10¢

w =
SubalgebraV, +V, =9, + 9,
Taking F,(z) = Inz, we get the following binary equation
152%(x, )t + Inz(x, 1) — 5t — 3x = 0, (46)

a solution of Eq. (1) can be obtained by solving Eq. (46)
w= exp(—%LamberWGOt - exp(10t + 6x)) + 5t + 3x). 47)

Subalgebra V, + V5 =9, + 0,
Taking F';(z) = 0, solving the following binary equation

457%(x, 1)t + 301z(x, 1) — 5t — 9x — 9y = 0, (48)

we acquire solutions of Eq. (1)

1 \/50t2+45t(x y)

w=—=%

3 / 2(\/50[2 +45t(x—y )

SubalgebraV, —V;+V, =0, -0, +9,
Taking F';(z) = 0, solving the following binary equation

(49)
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457%(x, )t — 301z(x, 1) — 20f — 9x — 9y = 0, (50)

solutions of Eq. (1) can be given as

V1252 + 45t(x + y)
+ +

3 15 ) 2(1/5022 + 451(x + y))

w =

(G

6 Construction of Conservation Laws of the dBKP System
6.1 Nonlinear Self-Adjointness

In this subsection, we will introduce certain symbols and theorems from [13, 14].
For a kth-order system of PDEs with n-independent variables x = (x', x%, ..., x") and

m-dependent variables u = (u', 12, ..., u")
F,(x, Uy, Ug), .. ,u(k)) =0, a=12,....m, (52)
where u,, represents the set of derivatives of order r (r = 1, ..., m), the system of

adjoint equations for system (52) is as follows

F(x, Uiy, U, .. Ug) =0, a=1,2,....m, (53)
where
< oL
Fa(x, Uy, Ug), .. ,u(k)) = S (54)

The formal Lagrangian and Euler—Lagrange operator are defined as

L=VFyX,u,),us,...,05) =0, v=v(x). (55)

5 _ 0

0 ‘ a
= + -1)’D; ...D;

o oa=1,2,...,m, (56)

in which D; is total derivative operator with respect to x'.

Definition 6.1 A nonlinear system is nonlinear self-adjoint if its adjoint system
satisfies

Fo(X, Vo, oo Vi, o) yacgaem ™= yfFﬂ(x, VU, V), a=1,...,m (57)

where @g (x,u) # 0 is undecided, ® = (@', ..., 0™) is a n-dimension vector.

Theorem 6.1 For symmetry generator admitted by system (52)
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; 0 0
X, ={'(Xug), up), )@ +7(X, Uy, ), "')ﬁ’ (58)
the adjoint equations (53) conserve symmetry above, which means the following
adjoint symmetry must be admitted by the system of adjoint equations (53),

«a 9

Y=X+ ,
n*dv"

ng = =14} + DO, (59)
where Y(F,) = igFa, with AL is a constant that needs to be determined.

Theorem 6.2 (New conservation theorem) Every Lie point symmetry, Lie—Bdick-
lund symmetry and nonlocal symmetry X admitted by the system of (52) can give the
conservation law of the system consisting of Eq. (52) and the adjoint equations (53),
its conservation vector C = (CL, C2, ...) has the form

C'=("L+W*” 9L _p( oL + D,D, oL _ ..
ou ] 0ug. qu

(60)
oL oL oL
+DW") | — —-Di| — |+ | +DDW)| — — |,
i )lau? k(@u?) ] il )laug ]
y y ij
where W = 5% — Cju;”, a=1,2,....m.
Theorem 6.3 [f a vector C = (C*, C?, C") satisfies the conservation equation
D,(C%) +D,(C") + D,(C") =0, (61)
it is called a conserved vector for Eq. (2).
6.2 Construction of Conservation Laws Using Symmetries
According to the definition and theorems mentioned in Sect. 6.1, for system
5
F=3u,+ 15”,%”){)( = Su iy, — Suu, — 3ty (62)
we write the formal Lagrangian in symmetric form
L=-3uy, + ISM?CMXXV + Suuyv, + %uyvy, (63)
with L satisfies
6L 6L
—=F" —=F.
ou ov 64

Therefore
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v =p @0y + py(D), (65)

here p; are arbitrary functions of .

The next step is to use particular symmetries obtained in Sect. 3 to construct con-
servation laws.

Symmetry generator X, =

We derive the correspondmg Lie characteristic functions W! = —u, and
W? = —v_, hence the conserved vector is composed of
_s
i
C = —Su,, (66)
Ci=0
Symmetry generator X, = e
The corresponding Lie characteristic functions are W' = —u, and wW? = —v,, then
conserved vector is composed of
Cj = 3u, tho Suuyvy — 15u Uy Vs
C,=L- T Uy ©7)
t —
G, = 3u,v,.
It can be calculated and verified
D.(C) + D},(C;) +D,(C) = vF =0. (68)
Symmetry generator X; = —
In this case, we have the corresponding Lie characteristic functions W! = —u,
and W? = —v,, and conserved vector is composed of
G =3uv, — Suuyy 15u u,
5 5
Cy=3uyy =3 ygw (69)
t_ 15,2
G, = 15uu, v + FUyVy-
We can verify that
D.(C) + D),(Cg) +D,(C}) =v,F =0. (70)
Symmetry generator X, = (1 + 1) 35V ;
We can get the Lie characterlstlc functions W' = —% —(+ Du, and
W? = —(t + 1)v,, then following conserved component vectors hold
_ 50D 9y
Cj = §’( i/t)yvy + <V
A 1+
¢, = —TS Uy, (71)
C,=0.

@ Springer



108 Journal of Nonlinear Mathematical Physics (2023) 30:92-113

Symmetry generator X5 = 2x% + ya% + 3u%
The coefficients of X5’s extension can be calculated
=1 n=-4 (72)
An adjoint symmetry is generated

0 0 0 d
Y =2x— +y— +3u— —4v—,

5 xax ydy ”au v()v (73)
the corresponding Lie characteristic functions are W' = 3u — 2xu, — yu, and
W? = —4y — yvy, — 2xv,, and following conserved component vectors hold

_ 10x 2 3
C5 = S uywy +yGuyv, = Suu v, — 15uu,v) = 9uv, — 20u,u,v + 15u; v,

Xy Yy
Cg = y(=3uv, + 15u2u,v — guyvy) - lToxuxvy + Suv, — 23—0vuy,
Cy = 12vu, + 3yu,v,.
(74)
Conservation law can be verified
D,(CY) + Dy(C3) + D,(CY) = (yv, + 4)F = 0. (75)
= 9 4x0 o _uod
Symmetry generator X, = (1 + 1) S tsn Tt % 5o
The coefficients of X4’s extension can be calculated
7 2
B=-z m=-% (76)

and one gives adjoint symmetry

0 x0 3y90 wuod 2o
Yo=(+Hh=+= 422 22 22 ,
6 (+)dt+5()x+50y 50u 5 dv 77

the corresponding Lie characteristic functions are W' = —g —(t+ Du, — gux - %u},

and W2 = —% —(+ Dy, - %v},, then following conserved component vectors
Ci=suy, + %(3u}‘vt = Suuyv, — 1514)2(14)@,\/) + @+ DGuy, — Su,u,v, — 15u%u,,v),

A 2y y—3
Co = 5 (3uw, + 15uu, v —suy,

5 5 X u 2
uv,)+ (t+ 1)(—§u,vy - EMYV’) = SUYy = 3V = SUY,

C’6 =+ 1)(15u§umv + %uyvy) + gvux + %uxvy
(78)
can be obtained. Conservation law can be verified
x ) 2v
D(C) +D,(C)) + D,(Cy) = ?F =0. (79)
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6.3 Constructing Solution of the dBKP Equation by Conserved Vector (66)

We know the conserved component vectors obtained of symmetry generator X,

¢ = Eb;.vvw
Yy _
C = =3 UVys (80)
¢ =o.
Taking
D(C}) = D,(C)) = D(C}) =0, 81)

and assuming

{ 2u,p; = G(t,y),

SUpy = H(t, x), (82)
then
{ w(x,y, 1) =u, = —%. (83)
Substituting the relationships of (81) into Eq. (2), one has
2
%<Hp1,p—1H,p1> _ Slzglpflx +9GH, - G, =0, 84)

only the last two terms 9GH,, —G, may contain independent variable y, thus the cal-
culations can be shorten significantly if we consider two special cases.

Casel. H. =0

Under this circumstance, the following relationship holds

H(x, 1) = h(),
{qmn=ga 5)
Then Eq. (84) becomes
plz 5
h ——h=-=g,
S 98 (86)
using the constant coefficient variation method, we obtain
58
h=p(a—/——dt), 87
1 97, 87

where a is an arbitrary constant, Eq. (83) can be written as
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= el
YT 57
88
{W(X,y,t)zl/lx:f;?dt—gc. ( )
Integrating the system (88), we get
3 (Y8
) =—=+y)+ S dgr—2¢) +m,
u(x,y, t) 5o, < y> x< 3 c) m (89)

where [, m are arbitrary functions of z.
Case 2. G(t,y) = g(t)
Equation (84) becomes

9H H? — 5Hp,,
+ —_—

H, -GH, =0, (90)
5p,
if taking
(82!
the following formula is calculated
H(t,x) = RootOf (182%t — 5¢* — 10k(z) — 10x), (92)

where k is an arbitrary functions of z, a solution of Eq. (84) can be acquired if we
make k(z) = Inz .

H(x,1) = exp(—%LambertW(—S& - exp(—=10£* — 20x)) — 5¢* — 10x>. 93)
Hence one of solutions of Eq. (1) is

w=u, = —gH(x, f) = —%exp(—%LambertW(—%)t - exp(—107 — 20x)) — 57 — 10x>.
%94)

7 Conclusions and Discussions

In summary, the authors study the dBKP equation using the Lie symmetry method
and Ibragimov’s adjoint symmetry approach. The important results are that the Lie
point symmetries of the dBKP equation are reduced to four classes, the rich sym-
metry reductions and new group invariant solutions are derived based on the above
reduced symmetries. Except for particular complex symmetries themselves tend to
generate still complex reduced equations, these main results prove that the reduction
of the infinite-dimensional Lie algebra of symmetries to four classes is effective.
For the symmetry reductions of subalgebras V,, V, +V,, V, +V;and V, = V; +V,
contain infinite solutions which can not be obtained directly, we obtain the exact
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solutions by determining arbitrary functions. The traveling wave solutions can not
be acquired since the dBKP system has the characteristic that each term contains the
first power factor of the same order without dispersion term. Compared with other
published papers on the study related to B-type equations [25-28], the current paper
adds the application of symmetry analysis on the dispersionless B-type equation.
Further research on obtained Lie point symmetries and special symmetry reductions
by p-symmetry [29], Laplace transform [30] and PT-symmetry [31] are worth trying
in the future.

Appendix 1: Commutation Tables of Cases 2-4 in Sect. 3

See Tables 5, 6 and 7.

Table 5 Commutation table of

2 12 2 2 2 2 Y,
symmetries in case 2 Vi, V] ] Vi Vi Vi Vi 5
2 212 4y 61,2
Vi 0 H Vi H Vi H v, 0
2 2y2 21,2 2
V2 -3 V2 0 -3 V4 0 V2
2 4y2 2y2 2
V3 -3 V3 5 V4 0 0 2V3
612 2
Vo4 -V 0 0 0 3v;
Vs 0 -vZ —2v2 -3v2 0
Table 6 Commutation table of V3.V V2 V2 V3 v v
symmetries in case 3 i’ 1 2 3 4 5
2 212 91,3 11,3
Vi 0 : V2 : V3 3 1% 0
2 2 3 2
V2 -2 V2 0 -v; 0 V3
3 9 3 3
Vi -V Vi 0 0 2v;
3 11 3
v, - A 0 0 0 3V3
Vs 0 -V; -2v3 -3v3 0
Table 7 ~Cor‘nmutauon table of v, v, V4 V4 Vs
symmetries in case 4 3 4
v, 0 Vi v, 0
Vs, 0 - % Vf 0 v,
4 4 2 4
V3 -Vi H Vi 0 0 A
4 4 4
v, -V, 0 0 0 3vi
Vs 0 -V, -2v; -3V 0
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