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Abstract 

We present a high-performance solver for the 
magnetostatic equations. The solver can simulate nonlinear 
and anisotropic magnetic materials on a highly variable 
grid, enabling efficient resolution of fine features even in 
very large systems. It is built on the Tpetra parallel sparse 
linear algebra package, allowing it to handle problems with 
billions of degrees of freedom and employ hardware 
acceleration with Nvidia graphics processing units. 
Integration into the VSim electromagnetics software 
allows users to design magnetic systems using existing 
graphical interface features. Example simulations of 
nonlinear magnets, with application to particle accelerator 
magnet design, are shown. 

INTRODUCTION 
In this paper, we present magnet simulation software that 

can efficiently and accurately solve large magnet problems, 
such as the multi-bend achromat magnets required for the 
Advanced Photon source (APS) upgrade at ANL [1]. For 
instance, a proposed MBA dipole design is shown in 
Figure 1. This magnet is over 2 m long, but with spacings 
between iron segments and coil thicknesses of just 2 cm, 
and chamfered edges with a feature length scale of just 
1mm.  This large separation of length scales raises the 
problem of computational modeling of the entire structure 
while resolving the smallest features [2, 3]. In addition, the 
simulation involves solving a nonlinear problem because 
nonlinear magnetic materials are used. An engineer invol-
ved in the design of this magnet reported that the existing 
software used to simulate the magnetic fields failed on a 
problem with less than 10 million degrees of freedom, 
without reaching the desired 1 mm resolution of fields in 
the gap [4]. 

Figure 1: A Schematic of a proposed dipole magnet for the 
APS lattice upgrade, with exterior shields cut away. 

The new magnet solver is incorporated into VSim 
software, a high-performance multiphysics simulation tool 
under development at Tech-X Corporation [5]. Its compu-
tational engine, Vorpal, is a high-performance code which 

runs highly efficiently on large-scale compute systems, 
such as supercomputers with as many as 100,000 cores [6], 
and is designed to work with hardware acceleration 
through graphics processing units (GPUs). In addition to 
its Vorpal physics engine, VSim includes a graphical user 
interface, called Composer, which provides geometry setup 
from CAD files, material selection, parameter adjustment, 
and visualization. Integrating our magnetic code into VSim 
allows us to leverage its existing capabilities including 
efficient parallelism, structured data architecture for fields 
and geometries, and the GUI to provide a user-friendly and 
efficient computational tool for magnet designers. 

METHODOLOGY 
The Magnetostatic Problem 

We solve the magnetic equations: 

∇ × H = J       (1) 
∇ ⋅ B = 0      (2) 

Here H and B have a nonlinear relationship, described 
by a vector function B(H). We reduce the nonlinearity in 
this system to a scalar equation as follows: First, we use a 
Helmholtz decomposition of H, letting H = ∇ × u + ∇φ. 
Then the magnetostatic equations become 

∇ × (∇ × u) = J   (3) 
∇ ⋅ B (∇ × u + ∇φ) = 0  (4) 

Since Eq. (1) implies that ∇ ⋅ J = 0, Eq. (3) becomes 
−∇2u = J, so u is solved with a linear equation. Then Eq. (4) 
is a nonlinear equation in φ only. To solve it, we use the 
Newton method, an iterative approach to solving nonlinear 
equations. Given an intermediate solution φn at iteration n, 
we compute a correction φn+1 = φn + δφ by linearizing Eq. 
(4). Letting Hn = ∇ × u + ∇φn , we approximate 

0 = ∇ ⋅ B (Hn + ∇δφ) ≈ ∇ ⋅ B (Hn ) + ∂B/∂Hn ∇(δφ)  (5) 

where ∂B∕∂H is the Jacobian of the magnetic constitutive 
relation. This yields the linear equation 

−∇ ⋅ ∂B/∂Hn∇(δφ) = ∇ ⋅ B (Hn)    (6) 

Equations (3) and (6) are sparse linear systems which can 
readily be solved with iterative methods such as GMRES 
without the need to form the matrix inverse. Because the 
operator matrices only depend on nearest cell neighbours 
in a structured grid, the number of non-zero matrix entries 
scales linearly with problem size, yielding to efficient 
computation of large systems. Convergence of the problem 
can be accelerated with the use of multigrid methods. In 
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particular, we benefit from the use of the algebraic 
multigrid (AMG) preconditioner [7], which is designed for 
problems where operator matrix entries can vary by 
multiple orders of magnitude (in our case, caused by large 
variation in the ∂B∕∂H term). 

Figure 2: VSim simulation of a nonlinear, 2D H-Magnet on 
a variable mesh. Contours of vertical magnetic flux shown, 
Maximum B = 2.6T. 

Figure 3: Centerline By of the H-Magnet shown above for 
varying ratios of maximum to minimum cell size. 

Figure 4: Relative residual as a function of nonlinear 
iteration steps for varying mesh ratios for the H-Magnet 
simulation. 

To implement the solution of the above equations, we 
used Tpetra [8], a package within Trilinos that supports 
linear algebra for large, distributed systems using MPI, 

with options for hardware acceleration including GPUs. 
Tpetra includes classes for distributed vectors and sparse 
matrices, along with iterative linear solvers through the 
Belos package and algebraic multigrid preconditioners 
through MueLu. To solve the magnetostatic equations, we 
generate the B and J fields in Vorpal along with the grid 
and in/out fields for each magnetic object. The latter are 
used by the magnetic solver to determine where the 
magnetic permeability and flux values are to be applied for 
each magnetic material. The fields are translated into 
Tpetra vectors and the grid data is used to form the discrete 
divergence and curl operators in Eqs. (3) and (6). We then 
use the Belos pseudo block GMRES solver package to 
solve the linear systems in (3) and (6), repeating the 
Newton iteration step (6) until convergence of B. 

RESULTS 

Verification of the magnetic solver was performed with 
a 2D H-Magnet simulation. The magnet poles are sur-
rounded by current-carrying coils represented by 
62.5 A/m2 current density fields oriented into and out of the 
simulation plane. The magnetic material was selected to be 
AISI 1006 carbon steel.  The vertical magnetic field solu-
tion from the solver is shown in Fig. 2. A key feature of this 
work is enabling the solver to work on a Cartesian mesh 
with non-uniform cell spacing. This is critical for simulat-
ing large magnets with fine features, as selective resolution 
allows a dramatic decrease in overall problem size while 
maintaining physical accuracy. We demonstrated this for 
the magnetic solver by maintaining a fine resolution at the 
gap of the H-magnet while coarsening the grid outside. The 
vertical magnetic field profile is presented in Fig. 3 for var-
ying ratios of minimum to maximum cell spacing, and 
compared with the results for a uniform high-resolution 
mesh. The magnetic field profiles in the gap are almost 
identical for all meshes. Figure 4 shows the nonlinear con-
vergence for the H-Magnet under differing mesh size ra-
tios, showing rapid convergence of the simulations as the 
outside mesh is coarsened. 

Another motivation for using Tpetra as the basis for the 
magnetic solver is the ability to use double-precision inte-
ger indexing, allowing for problems with greater than 231 
(2.1 billion) elements. This enabled us to perform a mag-
netostatic solve with over 231 field components, and in do-
ing so, reach the desired resolution of 1mm for ANL's APS 
dipole magnet computation [9]. At that resolution, the 
problem had 2.26 billion degrees of freedom. Fig. 5 shows 
the vertical magnetic fields in the magnet; these are con-
sistent with the lower resolution computations performed 
previously. We found convergence in 18 iterations of the 
nonlinear Newton solver, comparable to the convergence 
for much smaller problems, thus demonstrating excellent 
scaling of the magnetic algorithms for large systems. The 
entire simulation required 20.6 node-hours using 32 nodes 
/ 1024 cores on the NERSC Cori cluster. 
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Figure 5: VSim simulation of the APS dipole magnet in 
Figure 1, showing vertical magnetic flux values in Tesla. 
Figure previously shown in [9]. 

GPU Acceleration 
We performed GPU benchmark tests on a non-linear, 

anisotropic 3-D grain-oriented electrical steel (GOES) bar 
magnet problem. We first compared the timings of the 
nonlinear iteration loop on a single AMD EPYC 7302 CPU 
and NVIDIA A100 GPU as the domain size was increased 
from 503 (0.375M degrees of freedom) to 1503 (10.1M 
degrees of freedom). On average, each simulation required 
5 nonlinear iteration loops and 23 total Krylov iterations in 
the linear solves. Overall, the software is very performant; 
the entire nonlinear iteration loop for the 1503 cell problem 
took 33.9 seconds on a single GPU. Figure 6 shows the 
total per-iteration timings as a function of problem size.  
The GPU provides approximately a factor of two speedup 
over the CPU for sufficiently large problems. The step time 
also increases linearly with problem size for both CPU and 
GPU, which is a key feature for efficient solves of very 
large problems. The GPU speedup can be further improved 
by a different choice of linear solver since Belos is not 
optimized for GPU [10]; moving to a more performant 
solver such as Hypre should provide overall speedups of 
8x or beyond [11,12]. The evaluation of B(H) and  ∂B∕∂H 
takes up a small fraction of the overall solve time but also 
showcases the largest GPU speedup. The B-H interpolation 
for each cell is handled independently by a single GPU 
thread; on an NVIDIA A100 GPU, this enables the 
simultaneous evaluation of 221,000 cells. Figure 7 shows 

the per-DOF evaluation time of ∂B∕∂H for the 3D problem. 
For the largest problem tested, the GPU provided a 24x 
speedup over the CPU for a time  of  0.37 microseconds, or 
0.005% of the total Newton iteration time. 

Figure 6: Wall clock time for each nonlinear iteration of the 
3D magnet simulation as a function of problem size. 

Figure 7: Global dB/dH evaluation time for 3D nonlinear 
magnet problem normalized by problem size. 

CONCLUSION 
This work demonstrated the implementation of an 

efficient, highly scalable magnetostatic solver into the 
VSim software. The solver is able to simulate highly 
nonlinear, anisotropic magnetic systems with billions of 
degrees of freedom while taking advantage of GPU 
acceleration through the Tpetra linear solver framework. 
As we continue development of the software, we intend to 
add additional magnetic physics features such as eddy 
currents and hysteresis, and pursue further GPU 
optimization. 
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