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ABSTRACT

Over the last decades our knowledge of the Universe has reached an unprecedented level of accuracy. The
observations of the Cosmic Microwave Background and the large scale structure of the Universe opened
the so-called epoch of precise cosmology, enabling us to test with increasing precision several aspects of
fundamental physics, from the first principles of the cosmological model to global theoretical scenarios
beyond General Relativity and the Standard Model of elementary particles. The research subject of this PhD
thesis goes exactly in this direction: working at the interface of cosmology, gravitation and (astro)particle
physics, I analyze cosmological and astrophysical observations to identify, characterize and constrain pos-
sible hints for new physics in light of their implications for the Early Universe.

mailto:william.giare@uniroma1.it
https://orcid.org/0000-0002-4012-9285


SCIENTIFIC PRODUCTION
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OVERVIEW

In this thesis I discuss how non-standard physics, either in the gravitational sector or in the Standard Model
of particle physics can be hidden in different kinds of relics from the Early Universe and how we can use
current and future cosmological and astrophysical large and small scale observations to unveil it. Here I
briefly summarize the structure of the work to guide the interested reader. What follows is not a summary
of the results, that instead can be found in the conclusion.

This thesis is made of three chapters.

[1] In chapter I I provide an exhaustive review of the field of cosmology, paying special attention to the
physics of the Early Universe. This chapter is thought to contextualize the original results discussed in
the subsequent two chapters. All the different topics reviewed should be largely known to the expert
reader. Nevertheless, I tried to organize the discussion in the most possible original way, trying always
to follow what I considered the best approach to derive the different results. The chapter is organized as
follows.

– In section I.I I review the so-called Hot Big Bang Cosmology: a predictive theory of the Universe based
on Einstein’s theory of General Relativity and the Standard Model of particle physics. This section is
organized as follows.

* In subsection I.I.I I review the geometrical large-scale structure of the cosmological space-time
following an approach based on symmetries.

* In subsection I.I.II I solve the Einstein equations for the FRW metric deriving the equations of
motion that relate the dynamics of the Universe to its matter and energy content.

* In subsection I.I.III I collect the basic equations that describe the thermodynamics in an expanding
Universe and then I review the most important steps of the thermal history.

– In section I.II I study the small scale structure of the Universe, introducing the cosmological perturba-
tion theory and following this path

* In subsection I.II.I I classify the different perturbations into three categories: scalar, vector and
tensor. Then I prove the so-called Scalar-Vector-Tensor decomposition theorem, showing that
they evolve independently.

* In subsection I.II.II I derive the linearized Einstein Equations for scalar and tensor perturbations
around a FRW spacetime.

* In subsection I.II.III I study the dynamics of scalar perturbations along the different cosmological
epochs using the linearized Theory developed in the previous subsection.

* In subsection I.II.IV I describe the dynamical evolution of tensor perturbations in en expanding
Universe.

– In section I.III I introduce perhaps the most important cosmological observable: the Cosmic Mi-
crowave Background. I describe the physics of temperature anisotropies and polarization, connecting
the small irregularities observed in the CMB with the physics of the Early Universe. In particular

* In subsection I.III.I I review the theory of CMB temperature anisotropies, discussing different
physical mechanisms able to produce primary and secondary anisotropies and the respective sig-
natures left in the angular power spectrum.

* In subsection I.III.II I review the theory of CMB polarization, discussing in details different phys-
ical mechanisms able to produce them and highlighting the effects of relic gravitational waves
from the Early Universe.



– In section I.IV I introduce the theory of cosmological inflation, showing how an early epoch of fast
accelerated expansion can solve many fine-tuning problems with the initial conditions. Then I extend
the discussion following the subsequent path.

* In subsection I.IV.I I characterize the simplest dynamical models of inflation that involve a scalar
field and a sufficiently flat potential to allow a phase of slow-roll evolution.

* In subsection I.IV.II I show that inflation provides an elegant mechanism able to generate the pri-
mordial scalar and tensor perturbations. I perform a detailed and complete calculation in quan-
tum field theory, deriving the expressions for the spectra of scalar and tensor perturbations in an
almost de-Sitter spacetime.

* In subsection I.IV.III I study how inflation can emerge as a theory of broken time diffeomorphisms
and I point out the most relevant strengths of the Effective Theory of inflation.

– In section I.V I finally introduce the standard ΛCDM cosmological model, pointing out all the theo-
retical assumptions beyond the main unknown ingredients of this standard scenario:

* In subsection I.V.I using the most recent cosmological and astrophysical datasets to date, I de-
tailed review the most recent observational constraints on this standard scenarios, highlighting
the implications for the physics of the Early Universe.

* In subsection I.V.II I discuss why one should consider the possibility to explore extensions of the
ΛCDM cosmological model, and I explain why among the different extension maybe the most
interesting ones are those connected with extensions to fundamental physics. Finally I outline the
research project that I develop in the subsequent two chapters.

[2] In chapter II I present the results obtained during my PhD in the field of inflation and Primordial Gravi-
tational Waves. This chapter is entirely based on original results discussed in different papers published
along the years. In particular

– In section II.I I provide an updated review of the observational constraints on the standard slow roll
paradigm of inflation based on the techniques and the results obtained in the following works that I
authored and co-authored

[1] William Giarè, Eleonora Di Valentino, and Alessandro Melchiorri "Testing the inflationary slow-roll
condition with tensor modes", Phys. Rev. D 99, 123522

[6] Matteo Forconi, William Giarè, Eleonora Di Valentino and Alessandro Melchiorri "Cosmological
constraints on slow roll inflation: an update" , Phys.Rev D 104, 103528 , [arXiv:2110.01695]

– In section II.II I discuss the implications of direct gravitational wave observations for models of infla-
tion beyond the standard slow-roll paradigm with Einstein gravity, reviewing the results published
in

[2] William Giarè and Alessandro Melchiorri "Probing the inflationary background of gravitational waves
from large to small scales", Phys. Lett. B 815 (2021) 136137 , [arXiv:2003.04783]

– In section II.III I discuss the implications for the cosmological observables of a non trivial propagation
of gravity during the inflationary epoch, retracing the results published in

[3] William Giarè and Fabrizio Renzi, "Propagating speed of Primordial Gravitational Waves", Phys. Rev.
D 102, 083530 , [arXiv:2007.04256]

– In section II.IV I investigate the effects of higher-curvature gravity in models of inflation with a mini-
mal breaking of conformal symmetry, following the results published in

[4] William Giarè, Fabrizio Renzi and Alessandro Melchiorri, "Higher-Curvature corrections and Tensor
Modes", Phys.Rev D 103, 043515 , [arXiv:2012.00527]

[3] In chapter III I use cosmological and astrophysical observations to probe and constrain well motivated
extensions of the standard model of particle physics that involve spineless axions as a solution of the
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strong CP problem in Quantum Chromodynamics. In particular I focused on QCD Axions produced in
the Early Universe via interactions with other particles in realistic mixed hot dark matter scenarios that
consider also massive neutrinos as additional thermal relics. The chapter is organized as follows.

– In section III.I I provide a brief review of the axion theory. In particular:

* In subsection III.I.I I discuss some aspects of the quantum theory of strong interactions;

* In subsection III.I.II I discuss the nature of the strong CP problem in the Standard Model of ele-
mentary particles;

* In subsection III.I.III I show how axions can arise from the Peccei Quinn solution of the strong CP
problem and I characterize their underlying physical properties.

– In section III.II I discuss the implications of cosmological observations for axions produced thermally
in the Early Universe, and, in light of the most recent cosmological and astrophysical measurements,
I derive new cosmological constraints on hot thermal relics following the results published in

[5] William Giarè, Eleonora Di Valentino, Alessandro Melchiorri, and Olga Mena, "New cosmological
bounds on hot relics: Axions & Neutrinos ", MNRAS 505 (2021) 2, 2703–2711 , [arXiv:2011.14704]

– In section III.III I study the improvement in the constraining power on hot relics expected by the next-
gen CMB and BAO observations. I investigate and discuss the implications for axions (themralized
before the QCD transition), neutrinos and BBN elements, following the results presented in

[7] William Giarè, Fabrizio Renzi, Alessandro Melchiorri, Olga Mena and Eleonora Di Valentino "Cos-
mological forecasts on thermal axions relic neutrinos and primordial elements", [arXiv:2012.00527]

Along with these three main chapters, the work is enriched by two other different appendices:

[A] In the Supplementary Material (Appendix A) I provide different secondary results that were always
derived and discussed in the works this thesis is based on, Refs [1–7]. While they are not essential to
the comprehension of the main discussion, this information is very useful because it enriches the overall
presentation through a multitude of different practical examples and detailed calculations. Furthermore,
sometimes I generalize the major results to scenarios beyond the theoretical assumptions under which
they were originally derived. The Supplementary Material is organized as follows.

– In section A.1 I review the standard slow roll relations among the higher-order (scalar and tensor)
inflationary parameters proving that a set of consistency relation exists at any order in the power-
law expansion. These results were derived first in Ref. [1].

– In section A.2 I study inflation in relation with the spatial curved of the cosmological spacetime,
discussing the implication of curvature for the slow-roll dynamics. This section is based on Ref. [6].

– In section A.3 I show different examples of negligible and non-negligible scale dependence in the
tensor two-point function originally discussed in Ref. [2].

– In section A.4 I provide a detailed computation of the primordial tensor spectrum using en effective
field theory approach and allowing a non-standard propagation of gravity. This section follows the
discussion in Ref. [3].

– In section A.5 I generalize the results discussed in section II.III for non linear propagation of gravity
as done in Ref. [3].

– In section A.6 I discuss the effects of a superluminal propagation of gravity during inflation follow-
ing Ref. [3].

– In section A.7 I discuss how to relate our constraints on the propagation of gravity at early epochs
with those one can obtain by direct GW measurements, showing they perfectly agree. This section
is based on Ref. [3].

https://academic.oup.com/mnras/article-abstract/505/2/2703/6279684?redirectedFrom=fulltext
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– In section A.8 I generalize the results discussed in section II.IV for generic inflaton-Weyl couplings
following Ref. [4].

[B] In the Appendix B for completeness I provide a review of axions produced non-thermally that are natural
candidates for the cold dark matter component of the Universe.



CONVENTIONS

A few remarks on the conventions adopted in this thesis. They are useful to avoid misunderstanding with
the reader.

UNITS, CONVERSIONS AND CONSTANTS

Even though sometimes I will keep the fundamental constants explicit in the equations, in this work I will
largely adopt the so-called natural units: c = } = kb = 1. In this way there is only one fundamental
dimension:

[Energy] = [Mass] = [Temperature] =
1

[Length]
=

1
[Time].

Some useful conversion factors for these units are listed below:

1g = 5.61× 1023GeV

1s = 1.5× 1024 1
GeV

1 Kelvin = 8.6× 10−14GeV

1cm = 5.1× 1013 1
GeV

1 Mpc = 3.08× 1022 m = 1.56× 1038 1
GeV

Some useful fundamental constants are listed below:

Planck Mass .
= Mpl

.
=

√
} c
G

= 1.22× 1019 GeV

Reduced Planck Mass .
= M̄p

.
=

√
} c

8πG
= 2.43× 1018 GeV = 2.2× 10−5g

Planck time .
= tp

.
=

1
Mpl

= 5.4× 10−44 s

Planck length .
= lp

.
=

1
Mpl

= 1.6× 10−33 cm

Planck temperature .
= Tp

.
= Mpl = 1.42× 1032 Kelvin

Hubble constant .
= H0 = 100 h Km/s/Mpc = 2.1 h× 10−42 GeV

Critical Density .
= ρc = 1.87 h2 × 10−29 g cm−3 = 8.1 h2 × 10−47 GeV4

METRIC AND SPACETIME

In this work, I adopt the signature (-,+,+,+) for the metric tensor. I recall that the signature of a metric tensor
is defined as the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real
symmetric matrix associated to the metric tensor with respect to a basis. Here, the "-" is associated to the
time dimension, and the "(+, +, +,)" to the space and physical dimension. With this choice, the line element



of a flat maximally symmetric Minkowsky spacetime reads

ds2 = −c dt2 + dx2 + dy2 + dz2

and the three-dimensional Euclidean sub-space admits a positive scalar product. The interval between
timelike separated events (i.e. the interval between a given event and the set of points that are inside its
past and future light cone) is negative (∆s2 < 0), while the interval between spacelike events (i.e. the
interval between a given event and the set of points that are outside its past and future light cone) is
positive (∆s2 > 0). Finally, light-like events (∆s2 = 0) define the limit between the two cases.

PERTURBED FRW LINE ELEMENT

In chapter I I define the most general perturbed line element for a FRW spacetime with a signature (-,+,+,+)
as

ds2 = −(1 + 2Φ) dt2 + 2 a(t)Bi dxi dt + a2(t)
[
(1− 2Ψ) δij + 2Eij

]
dxi dxj,

deriving the linearized Einstein Equations accordingly. In literature this line element if often defined with
the opposite sign for Ψ, i.e.,

ds2 = −(1 + 2Φ) dt2 + 2 a(t)Bi dxi dt + a2(t)
[
(1 + 2Ψ) δij + 2Eij

]
dxi dxj.

Notice that some authors often change Ψ with Φ in the line elements and other common definitions are

ds2 = −(1 + 2Ψ) dt2 + 2 a(t)Bi dxi dt + a2(t)
[
(1− 2Φ) δij + 2Eij

]
dxi dxj,

and
ds2 = −(1 + 2Ψ) dt2 + 2 a(t)Bi dxi dt + a2(t)

[
(1 + 2Φ) δij + 2Eij

]
dxi dxj,

Finally in literature the metric signature is sometimes chosen to be (+,-,-,-). To correctly derive the linearized
Einstein Equations we should remain consistent with the convention we chose, but clearly the final results
do not relay on it.

DIMENSIONLESS PRIMORDIAL SPECTRA

For a generic Gaussian random field ψk, the spectrum is defined in terms of its two-point correlation func-
tion as

〈ψk ψk′〉 .
= (2π)3δ3

k+k′ Pψ(k)

and that the other higher-order correlation functions are expected to vanish. It is worth noting that in this
thesis I work in terms of the dimensionless primordial spectra defined as

Pψ(k)
.
= (k3/2π2) Pψ(k)

We should be ready to start!
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CHAPTER I

THE EARLY UNIVERSE

In this chapter I review some of the major aspects of Physical Cosmology paying special
attention to the physics of the Early Universe. I start pointing out the large-scale structure of the
cosmological spacetime, discussing the dynamics and thermodynamics of the cosmic expansion
and revisiting the main steps of the thermal evolution. Then I study the small-scale dynamics
of primordial perturbations, highlighting their connections with the Cosmic Microwave Back-
ground Radiation and the implications for the theory of Cosmic inflation. Finally, I introduce
the Standard ΛCDM Cosmological Model, reviewing the theoretical assumptions and the most
recent observational constraints.



W. GIARÈ THE EARLY UNIVERSE

I.I HOT BIG BANG THEORY

Modern Cosmology is based on Einstein’s Theory of General Relativity [8–10] (GR) which relates the space-
time geometry and its dynamics to the matter-energy content and distribution. In this section we introduce
and review the major aspects of the so-called Hot Big Bang Theory, i.e., the predictive theory which, starting
from first principles, is able to describe the large scale dynamics and the thermal evolution of our Universe.

I.I.I GEOMETRY

Despite the fact that our observable Universe is full of highly inhomogeneous structures such as stars,
galaxies and galaxy clusters, the central premise of modern cosmology is that, on large scales, the Universe
can be regarded as homogeneous and isotropic. Homogeneity and isotropy are physical requirements that
imply symmetries. In modern physics symmetries are acquiring an increasing importance and in this
chapter, as well as in the rest of this thesis, we will often follow approaches based on symmetries to derive
our results.

Here we start discussing the spacetime geometry of maximally symmetric spaces. A D-dimensional
space is said to be maximally symmetric if it has 1/2 D(D + 1) independent isometries1. A first obvious
consequence of isometries on the manifold is that the curvature is the same in every point in space and the
Ricci scalar R is constant. Moreover, because of invariance under rotations and translations, the geome-
try must look the same in every direction constraining the Riemann tensor to be invariant under Lorentz
transformations. Since by definition the Minkowski metric tensor is invariant under Lorentz transforma-
tions itself, we can write the Riemann curvature tensor in a local inertial frame as a combination of Lorentz
invariant quantities. The only possible combination which preserves all the symmetries reads [10]:

Rαβµν =
R

D(D− 1)
(

gαµgβν − gανgβµ

)
, Rβν =

(
R
D

)
gβν. (I.1)

If we focus on D = 4 dimensions we see that the Einstein equations in the vacuum

Rµν −
1
2

gµν R + Λ gµν = 0, (I.2)

imply R = Λ/4 and, depending on R, we can classify three different maximally symmetric solutions [10,
11]:

• the Minkowki spacetime with vanishing curvature R = 0 (or Λ = 0) ,

• the de Sitter spacetime with positive curvature R > 0 (or Λ > 0),

• the anti-de Sitter spacetime with negative curvature R < 0 (or Λ < 0 ).

We will appreciate their importance in Modern Cosmology. Anyway, it is clear that, if we want to describe
a realistic Universe, our cosmological spacetime cannot be maximally symmetric as this would imply in-
variance under time translation and the Universe would appear the same at each time. We are forced to
reduce the degrees of symmetries requiring homogeneity and isotropy only on space. This request is often
called cosmological principle.

It is well known that a spatially homogeneous and isotropic spacetime which evolves in time can be
foliated into space-like slices [10, 11]. Therefore we can consider our spacetime to be described by a Man-
ifold M = R× Σ where R represents the time direction and where Σ is a 3-dimensional homogeneous
and isotropic surface (i.e. a surface of a maximally symmetric 3-dimensional manifold). In our spacetime
foliation we can choose the threading to be orthogonal to the slices which gives for the metric g0i = 0.

1We can think to RD: it is invariant under translations and rotations and so we have D isometries related to invariance under
translation and 1/2 D(D − 1) isometries related to invariance under rotations giving a total number of D + 1/2 D(D − 1) =
1/2 D(D + 1) isometries
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THE EARLY UNIVERSE W. GIARÈ

Furthermore, thanks to homogeneity, time intervals among slices do not depend on the position and so
we can choose a universal time coordinate t in such a way that g00 = −1. These coordinates are called
comoving coordinates. Note that only a comoving observer (i.e., an observer at rest in these coordinates) will
see an isotropic Universe, while a non-comoving observer will see anisotropies due to the Doppler effect
because a non-vanishing velocity in his frame breaks symmetry under rotations and introduces a preferred
direction.

Introducing a function of time R(t) (with the dimension of a length), in comoving coordinates, the
metric reads:

ds2 = −dt2 + R2(t) dσ2, (I.3)

where dσ2 is the metric of the 3-dimensional maximally symmetric slices Σ that we can write in full gener-
ality as

ds2 = −dt2 + R2(t)
[

dr2

1− Kr2 + r2 dΩ2
]

. (I.4)

where dΩ2 = dθ2 + sin2 θ dφ2 and K .
= R(3D)/6 with R(3D) the 3D-Ricci scalar on Σ. From equation (I.4)

we see that one can absorb the physical size of the manifold into the factor R(t) normalizing K in such
a way that K = {+1, 0,−1}. Moreover using the fact that the metric is invariant under the following
simultaneous set of transformations: 

R→ λ−1 R,
r → λr,
K → λ−2K.

(I.5)

one can write

ds2 = −dt2 + a2(t)
[

dr2

1− κr2 + r2 dΩ2
]

. (I.6)

This is called Friedmann Robertson Walker (FRW) metric. The dimensionless time dependent function a(t)
is called scale factor and, with this normalization, the radial coordinate r has the dimension of a length. The
quantity κ is related to the spatial curvature and now can take any value. We can distinguish three different
cases:

• κ > 0 corresponding to a positive curved space (closed Universe);

• κ = 0 corresponding to a flat space (flat Universe);

• κ < 0 corresponding to a negative curved space (open Universe).

For our future discussion it is worth pointing out the causal structure of FRW spacetime. We recall that
causality is defined by null geodesics ds2 = 0 and, in an isotropic Universe, by the radial propagation of
photons. It is easy to show that the FRW metric is conformally equivalent to the Minkowski metric. We
recall that Conformal Transformations are a local metric re-scaling [11]:

g̃µν = Ω2(xα)gµν, (I.7)

with Ω(xα) a regular non-vanishing function defined on the whole Manifold. Clearly conformal transfor-
mations do not alter the causal structure as d2s = 0 implies ˜d2s = 0. Using an important quantity called
Conformal time defined as

η
.
=
∫ dt

a(t)
. (I.8)

the conformal equivalence between (flat) FRW and Minkowski is trivially proved

ds2 = a2(η)

[
−dη2 +

dr2

1− κr2 + r2 dΩ2
]

. (I.9)
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W. GIARÈ THE EARLY UNIVERSE

I.I.II DYNAMICS

So far we used symmetries to find out an appropriate cosmological spacetime geometry. Here we discuss
its large-scale dynamics. Modern cosmology is based on general relativity, and the Einstein’s equations
relate the FRW metric to the matter/energy content of the Universe. We recall the Einstein equations

Rµν −
1
2

gµν R + Λgµν = 8πG Tµν (I.10)

where the stress-energy tensor Tµν satisfies the local covariant conservation law

∇νTµν = 0. (I.11)

Notice also that in what follows we will consider the cosmological constant term Λ gµν in the Einstein equa-
tions as a component of the stress energy tensor. In cosmology matter and energy are commonly modeled
as a perfect fluid where both viscosity and heat flow are assumed negligible. Within these assumptions the
stress-Energy tensor takes the following form:

Tµ
ν = (ρ + P) uµuν + P δ

µ
ν (I.12)

where ρ is the energy density, P is the pressure and uµ is the fluid 4-velocity. Moreover, as we deal with
extremely rarefied fluid, we can use a linear equation of state P = ωρ, with the dimensionless parameter ω
such that ω = 0 for matter, ω = 1

3 for radiation and ω = −1 for the cosmological constant (we will prove
this in what follows).

Finally, to solve the Einstein Equations, we need the Ricci tensor and the Ricci scalar for the FRW metric.
After some calculations one can obtain what follows [9, 10].

• Non zero Christoffel symbols for FRW metric

Γ0
11 =

a ȧ
1− κr2 (I.13a)

Γ0
22 = a ȧ r2 (I.13b)

Γ0
33 = ȧ a r2 sin2 θ (I.13c)

Γ1
01 = Γ2

02 (I.13d)

Γ1
22 = −r(1− κ r2) (I.13e)

Γ1
11 =

κ r
1− κr2 (I.13f)

Γ1
33 = −r(1− κ r2) sin2 θ (I.13g)

Γ2
12 = Γ3

13 =
1
r

(I.13h)

Γ2
33 = − sin θ cos θ (I.13i)

Γ3
03 =

ȧ
a

(I.13j)

Γ3
23 = cot θ (I.13k)
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• Non zero Ricci tensor’s components for the FRW metric

R00 = −3
ä
a

(I.14a)

R11 =
ä a + 2ȧ2 + 2κ

1− κr2 (I.14b)

R22 = r2 (ä a + 2ȧ2 + 2κ
)

(I.14c)

R33 = r2 (ä a + 2ȧ2 + 2κ
)

sin2 θ (I.14d)

• Ricci scalar for the FRW metric

R = 6

[
ä
a
+

(
ȧ
a

)2

+
κ

a2

]
(I.15)

We can now find out the equations of motions. A first important relation can be easily obtained using
Eq. (I.11):

ρ̇ + 3
ȧ
a
(ρ + P) = 0. (I.16)

This is called Continuity equation and it holds for each component of the cosmic fluid which is uncoupled
from the others. Sometimes it is said to be the analog of energy conservation for the spacetime motion, even
though this is perhaps misleading since actually energy is not conserved during the cosmic expansion (we
will prove this in what follows).

Because of symmetries, we can derive only two other independent relations that correspond to the
components (µ, ν) = (0, 0) and (µν) = (i, j) of the Einstein Equations. After a few simplifications, we
obtain: (

ȧ
a

)2

=
8πG

3
ρ− κ

a2 , (I.17)

ä
a
= −4πG

3
(ρ + 3p). (I.18)

Together they are known as Friedmann equations, but sometimes we will refer to Eq. (I.18) as "acceleration
equation". At this point it is convenient to introduce the following quantities:

• the Hubble parameter:

H(t) .
=

ȧ
a

(I.19)

• the critical density:

ρc(t)
.
=

3H2

8πG
(I.20)

• the density parameter:

Ω(t) .
=

ρ(t)
ρc(t)

(I.21)

• the curvature parameter:
Ωκ(t) = 1−Ω(t). (I.22)

Notice that Eq. (I.17) can be easily written in terms of H(t) and the curvature parameter as

Ωκ(t) = −
κ

(a H)2 (I.23)

from which it follows that Ωκ = 0 corresponds to a spatially flat Universe while Ωκ < 0 and Ωκ > 0
correspond to a spatially closed and open Universe, respectively.
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In what follows we will appreciate that different kinds of components such as baryons, photons, neu-
trinos, dark matter and dark energy can contribute to the energy density and the pressure in the cosmic
fluid. Therefore ρ and P should be considered as the sum of all these different components

ρ(t) = ∑
i

ρi(t), P(t) = ∑
i

Pi(t). (I.24)

Consequently, it is convenient to define a density parameter Ωi(t)
.
= ρi(t)/ρc(t) for each component i,

related to the density parameter Ω(t) and the curvature parameter Ωκ(t) by

Ω(t) = ∑
i

Ωi(t), Ω(t) + Ωκ(t) = 1. (I.25)

To simplify the notation, from now on, when we refer to the density parameters evaluated at the present
time, t = t0, we drop the time-dependence in such a way that Ωi,κ(t0) ≡ Ωi,κ. We also adopt the commonly
used normalization a(t = t0)

.
= a0 = 1 and the notation H0

.
= H(t = t0) = ȧ0

a0
= ȧ0 for the present

day Hubble parameter. By noting that from the continuity equation we get ρ ∝ a−3(ω+1), the Friedmann
equation (I.17) can be easily written in terms of present density parameters:(

H
H0

)2

= ∑
i

Ωi a−3(1+ωi) + Ωκ a−2. (I.26)

Notice that we could also describe curvature as another component of cosmic fluid with equation of state
ω = − 1

3 writing down the more compact expression(
H
H0

)2

= ∑
i

Ωi a−3(1+ωi) (I.27)

with

ωi =


0; for Non relativistic Matter,
1
3 ; for Radiation,
− 1

3 ; for Curvature,
−1; for Cosmological constant.

(I.28)

It is also worth evaluating the behavior of the scale factor when the Universe is dominated by different
component of the cosmic fluid. In the most relevant case of flat Universe (i.e., κ = 0) an easy computation
gives:

a(t) ∝

{
t

2
3(ω+1) if ω 6= −1,

eHt if ω = −1.
(I.29)

Therefore a (flat) Universe dominated by matter, radiation or cosmological constant expands with time. We
may ask if such an expansion is accelerated or decelerated. This information can be derived by equation
(I.18) from which we see that only components with ω < − 1

3 give positive acceleration. It follows that both
matter and radiation give deceleration while the cosmological constant gives acceleration.

Cosmological Horizon

We conclude this subsection spending a few words on some causal Horizons for the FRW spacetime as
they play a primary role in our subsequent discussions. Consider an observer which measures particles
velocity in his frame at a given time. In an expanding Universe, the particle velocity can be obtained as

v =
dx
dt

=
d
dt

[a(t)r] = ȧ(t)r = H(t)a(t)r, (I.30)
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where r is a comoving coordinate. We can define the Hubble Horizon as the boundary among particles
that are moving slower and faster than light v = c = 1. We immediately see that this defines the so-called
(Comoving) Hubble Radius

Comoving Hubble Radius .
= (a H)−1, (I.31a)

Hubble Radius .
= H−1. (I.31b)

If particles at the time t are separated by distances greater than the (comoving) Hubble radius they are not
in causal contact at that time and they cannot talk to each other. In a Universe dominated by a fluid with
equation of state ω, we have

(a H)−1 = H−1
0 a

1
2 (3ω+1) (I.32)

which means that the Hubble radius grows for each fluid with equation of state ω > − 1
3 . Therefore, given

a physical length λ corresponding to a wavenumber k = 2π a/λ we see that λ is well outside or inside the
Hubble radius if k/(aH)� 1 or k/(aH)� 1, respectively.

Since the age of the Universe and the light velocity have finite values, there is another horizon which
represents the longest distance we can receive information from the past and defines the past observ-
able Universe. Since light signals satisfy the geodesic equation ds2 = 0, because of the homogeneity and
isotropy, without loss of generality, we can focus on radial propagation to find that the maximum comov-
ing distance that light can run between an initial time ti = 0 and some later time t is given by the so called
(comoving) Particle Horizon:

Comoving Particle Horizion .
=
∫ t

0

dt′

a(t′)
(I.33a)

Particle Horizon .
= a(t)

∫ t

0

dt′

a(t′)
. (I.33b)

If the (comoving) particle horizon is finite, it would naturally set the boundary between the visible Universe
and that part of the Universe from which light has not reached us, yet. It is important to point out that we
can write the (comoving) particle horizon in terms of the comoving Hubble radius (a H)−1 as

Comoving Particle Horizon =
∫ a

0
d ln(a) (a H)−1 , (I.34a)

Particle Horizon = a(t)
∫ a

0
d ln(a′) (a H)−1 . (I.34b)

We see that also the comoving particle horizon grows for each fluid with equation of state ω > − 1
3 .

I.I.III THERMODYNAMICS

We now collect the basic equations that describe the (equilibrium) thermodynamics in an expanding Uni-
verse. Then we review the most important steps of the thermal history, too.

Equilibrium Thermodynamics in the Expanding Universe

We start noting that the rate of interactions among particles in the Universe is often much higher than the
expansion rate H(t). Therefore the cosmic medium is in thermal equilibrium almost at any time of the
cosmological history. For this reason it is useful to describe the equilibrium thermodynamics of a system
with different particle species in terms of the chemical potential µ. Consider the reaction

i1 + i2 + · · ·+ in ↔ f1 + f2 + · · ·+ fn (I.35)
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where {ij} are the initial particles and { f j} are the final ones. In thermal equilibrium, we have:

µi1 + µi2 + · · ·+ µin = µ f1 + µ f2 + · · ·+ µ fn . (I.36)

Applying this relation to the process e−e− → e−e−γ we immediately see that the chemical potential of a
photon is zero: µγ = 0. Instead if we apply the relation (I.36) to the process e+ + e− ↔ 2γ, we see that
µe+ = −µe− . Generalizing, we can conclude that the chemical potential of a given particle is equal to the
chemical potential of its antiparticle, but with the opposite sign. For much of the thermal history, we can
ignore interaction energies among particles in such a way that the particle energy is simply given by

E =
√

p2 + m2 (I.37)

where p ≡ |~p| is the magnitude of the momentum. Furthermore, interactions among particles in cosmic
plasma are often fairly weak and the equilibrium distributions of Bosons and Fermions spatial momenta p
are well described by the Bose-Einstein and Fermi-Dirac distributions, respectively:

f (p) =
1

(2π)3
1

e
(E(p)−µ)

T ± 1
. (I.38)

We recall that the sign + corresponds the Fermi-Dirac distribution which describes the behavior of fermions
while the sign − corresponds to the Bose-Einstein distribution for bosons. Finally, neglecting the term ±1
in the denominator, one obtains the classical Boltzmann distribution

f (p) =
1

(2π)3 e−
(E(p)−µ)

T (I.39)

which can be adopted to describe a low density gas made of non-relativistic particles. From now on, in
this subsection we refer to T as to the mean temperature of the Universe that can be approximated with
the photon temperature T ≡ Tγ since photons are the dominant specie. The number density n, the energy
density ρ and the pressure P of a dilute gas of weakly interacting particles with g internal degrees of
freedom can be written in terms of its phase-space distribution function f (p) as [12–16]:

n =
g

(2π)3

∫
d3 p f (p) (I.40a)

ρ =
g

(2π)3

∫
d3 p E(p) f (p) (I.40b)

P =
g

(2π)3

∫
d3 p

|p|2
3E(p)

f (p) (I.40c)

Using that EdE = |p|d|p| and neglecting the chemical potential at the thermal equilibrium we have

n =
g

2π2

∫ ∞

m
dE E

(
E2 −m2)1/2

exp(E/T)± 1
(I.41a)

ρ =
g

2π2

∫ ∞

m
dE E2

(
E2 −m2)1/2

exp(E/T)± 1
(I.41b)

P =
g

6π2

∫ ∞

m
dE

(
E2 −m2)3/2

exp(E/T)± 1
(I.41c)
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These relations can be studied distinguishing two interesting physical limits and discriminating whether
particles are relativistic or not.

• In the non-relativist limit, the distribution function of a dilute gas of non-relativistic particles is described
by the Boltzmann distribution (I.39). As a result, then number density is

n = g
(

mT
2π

)3/2

e
µ−m

T , (I.42)

while the energy density and pressure read

ρ = m n +
3
2

nT, P = T n� ρ. (I.43)

Therefore, up to corrections of order O(T/m), the equation of state of non relativistic matter is P =
0 +O(T/m) and we recover the result ω = 0 anticipated before.

• In the relativistic limit T � m the number density, the energy-density and the pressure instead reads:

n =

{
g ζ(3)

π2 T3 − Bose
3
4 g ζ(3)

π2 T3 − Fermi
(I.44a)

ρ =

{
g π2

30 T4 − Bose
7
8 g π2

30 T4 − Fermi
(I.44b)

P =
ρ

3
(I.44c)

where ζ(3) ≈ 1.2. We see that for relativistic matter ω = 1/3 as anticipated. Notice also that in the non-
relativist case the energy density is exponentially smaller than in the relativist case. So the contribution
of non-relativistic particle to total energy-density of a plasma made of both relativistic and non-relativist
particles is essentially negligible.

In the case on many relativistic particles one can write

ρtot = 3Ptot = g∗
π2

30
T4 (I.45)

where

g∗(T) = ∑
bosons

gi

(
Ti

T

)4

+
7
8 ∑

fermions
gi

(
Ti

T

)4

(I.46)

counts the effective total number of relativistic degrees of freedom in the cosmic plasma as a function of
temperature. Assuming the particle content expected in the standard model of elementary particles, we
have that [12–18]

• for T & 100 GeV all the standard model degrees of freedom (dof) are relativistic and we have gBoson
∗ = 28

(2 dof for photons, 9 for W± and Z0, 16 for gluons, 1 for Higgs) and gFermion
∗ = 90 (72 dof for quarks, 12

for charged leptons and 6 for neutrinos) so that g∗ = gBoson
∗ + 7/8 gFermion

∗ = 106.75;

• for T ∼ 30 GeV the heaviest particles of the Standard Model, the top quarks which have 12 fermionic
dof, are annihilated and we have g∗ = 106.75− 7/8× 12 = 96.25;

• for T ∼ 10 GeV the Higgs boson (1 bosonic dof) and the gauge bosons W± and Z0 (9 bosonic dof) are
annihilated and we have g∗ = 96.25− 10 = 86.25;
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• for 10 Gev . T . 160 MeV we first have the bottom quarks annihilation (12 fermionic dof) which gives
g∗ = 86.25− 7/8× 12 = 75.75, then we have the charm quarks (12 fermionic dof) and the tau leptons (4
fermionic dof) annihilation giving g∗ = 75.75− 7/8× (12 + 4) = 61.75.

• for T . 160 MeV we have the QCD phase transition and quarks combine with gluons into baryons
(protons, neutrons, etc) and mesons (pions, ect). So, after the QCD phase transition there are many dif-
ferent species of baryons and mesons, but all except the pions are non-relativistic below the temperature
of the QCD phase transition. Thus, the only relativistic species are pions (3 bosonic dof), electrons (4
fermionic dof), muons (4 fermionic dof), neutrinos (6 fermionic dof), and photons (2 bosonic dof) giving
g∗ = 5 + 7/8× 14 = 17.25

• for T ∼ 10 MeV muons and pions annihilate giving g∗ = 17.25− 3− 7/8× 4 = 10.75

• for T . 0.5 MeV finally electrons and positrons annihilate and the residual relativistic degrees of free-
dom today is made of photons (2 bosonic dof) and Neutrinos. Anyway the calculation of the residual
relativistic degrees of freedom can be estimated only by entropy conservation since shortly after the neu-
trino decoupling, the electron positron heats photons and the neutrino decoupling is not instantaneous.
A precise computation gives g∗ = 2 + 7/8× 2Neff (4/11)4/3 = 3.36 where Neff = 3.046 is the effective
number of relativistic species in the standard model (3 neutrino species and a further contribution of
0.046 which comes from the non-instantaneous neutrino decoupling).

We show the relativistic degrees of freedom in the Early Universe in Figure I.1.

FIGURE I.1: Relativistic (entropic) degrees of freedom in the Early Universe as predicted by
the Standard Model of elementary particles. Figure based on Ref. [17].

Geodesic motion in the Expanding Universe

Now we want to investigate in some details the physical consequences of the cosmic expansion for light
propagation. Let us consider the geodesic equation

d2xα

dτ2 + Γα
µν

dxµ

dτ

dxν

dτ
= 0, (I.47)
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where by definition dxα/dτ = (E , ~p). Let us focus on the α = 0 component of this equation, since, Γ0
00 = 0,

we have:
d2x0

dτ2 + Γ0
ij

dxi

dτ

dxj

dτ
=

d2x0

dτ2 + Γ0
ij pi pj = 0, (I.48)

In a flat Universe we have Γ0
ij = δij ȧa and so:

d2x0

dτ2 + ȧa δij pi pj = 0, (I.49)

Performing the following manipulation

d
dτ

=
dx0

dτ

d
dx0 = E

d
dt

, (I.50a)

d2x0

dτ2 =

(
d

dτ

)(
d

dτ
x0
)
=

(
E

d
dt

)(
E

dt
dt

)
= E

dE
dt

(I.50b)

equation (I.49) reads

E
dE
dt

+ ȧa δij pi pj = 0. (I.51)

The term ȧa δij pi pj can be estimated as follows. We remember that we are interested in photons and by
definition we have gµν pµ pν = 0 and using a flat FRW metric we get E2 − a2 δij pi pj = 0 It follows that

a δij pi pj =
E2

a
. (I.52)

Using Eq. (I.51) we finally obtain the equation for the Energy of a photon in an expanding (flat) Universe:

dE
dt

+

(
ȧ
a

)
E = 0 (I.53)

It is easy to convince yourself by direct substitution that

E ∝ 1/a (I.54)

is the solution of the equation (I.53). We have found a very important result: the energy of a photon decays
as the Universe expands. That’s why we claimed in the previous section that energy is not conserved
during the cosmic expansion. Remembering that E = hc

λ , we find that λ ∝ a and so that the relation
between the wave length λ(te) ≡ λe of the emitted photon and the wave length λ(to) ≡ λo of the observed
photon is

λe

λo
=

a(te)

a(to)
(I.55)

If we define the redshift as

z =
λo − λe

λe
(I.56)

we have:

z + 1 =
a(to)

a(te)
. (I.57)
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This relation is usually written considering to = today so that a(to) = a0 = 1, so that relabeling te → t we
find the relation between the redshift and the scale factor a(t):

a(t) =
1

z + 1
(I.58)

Entropy in the Expanding Universe

Entropy is an important thermodynamic characteristic of a system. In the general case of variable number
of particles, the first law of thermodynamics reads

dE = TdS− PdV + ∑
i

µidNi (I.59)

where the subscript i labels the particle specie. In terms of the entropy density s = S/V , the number
density n = N/V and the energy density ρ = E/V, we can write

(T s− P− ρ + µ n)dV + (Tds− dρ + µ dn)V = 0. (I.60)

This relation is valid both for the entire system and for any of its parts. Focusing on a region of constant
volume we obtain T ds = dρ− µdn that put in (I.60) gives for the whole volume:

s =
P + ρ− µ n

T
(I.61)

Neglecting the chemical potential as usual, in the relativistic case we obtain:

s =
P + ρ

T
=

4
3

ρ

T
=

{
gS

2π2

45 T3 − Bose
7
8 gS

2π2

45 T3 − Fermi
(I.62)

where gS counts the entropic degree of freedom. In the case of many different relativistic species, the total
entropy density is straightforward generalized to

s =
2π2

45
g∗ST3 (I.63)

where g∗S now counts the total entropic degrees of freedom:

g∗S(T) = ∑
bosons

gi

(
Ti

T

)3

+
7
8 ∑

fermions
gi

(
Ti

T

)3

. (I.64)

For most of the story of the Universe all particles had the same temperature and before the neutrino freeze-
out g∗S = g∗ while after the neutrino freez-out, the present residual entropic degrees of freedom can be
computed as g∗S = 2 + 7/8× 2Neff (4/11) ' 3.91 [17], see also Figure I.1.

Finally, notice that for any closed system we expect the entropy in a comoving volume to be conserved

dS
dt

=
d(a3 s)

dt
= 0 (I.65)

Using the relation (I.63), entropy conservation gives
(
a3 g∗ST3) = const and so we find out that, in general

during the expansion

T ∝ g−
1
3
∗S a−1 (I.66)

As long as g∗S = const, the usual inverse relation between the temperature and the scale factor T ∝ 1
a

is restored, as well. This means that as the Universe expands temperature decreases and so energy does.
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As a matter of fact, the Early Universe was denser and warmer: going much back in time, we come to
some epochs that cannot be directly probed by observations with current particle colliders. Instead we
can use cosmology as a literally unique laboratory to test and constrain fundamental physics which is an
important achievement of the subsequent discussion. Anyway, in what follows we give a brief overview
of the different steps of the thermal evolution.

Phase Transitions

At high temperatures there are many epochs of interest, at least from a theoretical point of view, such as
phase transitions [19–23]. Some theoretical hints suggest that at temperatures T & 1016 GeV, the fundamen-
tal forces (excluding gravity) can be described as unique Grand force with no distinction between strong,
weak and electromagnetic interactions [24–27]. Anyway we don’t know if these temperatures actually ex-
isted in the Universe, but, if so, we expect a first phase transition on GUT scales. Furthermore, we expect
another phase transition at T & 100 GeV from weak interactions. Indeed, before the electroweak phase
transition, the Higgs condensate is absent, and the W− and Z− bosons have zero masses while at T ∼ 100
GeV the electroweak symmetry is spontaneously broken and they acquire mass due to the Higgs mecha-
nism [28–30]. Lastly, we expect another phase transition by strong interactions. The QCD phase transition
is the transition from quark-gluon plasma to the hadronic matter. Its temperature is determined by the
energy scale of strong interactions, about TQCD . 200 MeV. For T > TQCD, quarks and gluons behave as
individual particles, while for T . TQCD they are confined in colorless bound states, hadrons [31–35]. The
QCD phase transition will be a hot-topic in the last chapter of this work.

Neutrino Decoupling

Another important steps in the cosmic evolution is represented by the neutrinos decoupling. Neutrinos
today contribute only to the radiation component of the total energy density of the Universe which is
negligible small in the total balance. Anyway going back in time, the neutrino density becomes a crucial
parameter for the Early Universe Cosmology. For example the neutrino number density plays a crucial
role during the Big Bang Nucleosynthesis [36] as neutrinos affect the expansion rate and hence the cooling
rate of the primordial plasma [37–41]. Here we want to give a roughly estimation of the temperature at
which the interactions between neutrinos and the cosmic plasma switch off and estimate their relic number
density today.

Neutrinos participate only to weak interactions since they have no charge. At energies of interest, the
interactions cross sections are proportional to G2

F, where GF ' 1.17× 10−5 GeV−2 is the Fermi constant.
The relevant processes in the picture are (i) neutrino scattering off electrons or positrons; (ii) neutrino-
antineutrino annihilation into electrons and (iii) positrons or neutrino-antineutrino annihilation into neu-
trino and antineutrino pairs of different types. At the temperature of interest all the particles involved are
relativistic and all the cross section σν are σν ∼ G2

FE2 ∼ G2
FT2 where the energy E is a typical collision

energy, E ∼ T. The mean free time τν is given by 1/τν = 〈n v σν〉where v is the relative velocity of neutrino
and the colliding particle, n is the number density of the latter particles. Being all the particles involved
relativist, we have v ∼ c ∼ 1 and n ∼ T3. This means

1/τν ∼ G2
FT5. (I.67)

Using the Freedman relation (I.17) and the relativistic relation between temperature and energy-density,
Eq. (I.45), one can relate the temperature to the Hubble parameter in a radiation dominated Universe as

H =

√
4π3

45
g?(T)

(
T2

Mpl

)
, (I.68)

with Mpl = 1/
√

G the Planck mass in natural units. As the Universe cools down, τν increases faster than
1/H and so, being the free time shorter than the Hubble time, neutrinos are in thermal equilibrium with
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matter. One can estimate the number of neutrinos collisions since the time t as [15, 16]

N(t) ∼
∫ ∞

t

dt′

τν (t′)
=
∫ ∞

t

dt′

t′
t′

τν (t′)
∼ t

τν(t)
∼ 1

H(t)τν(t)
(I.69)

where we made use of the fact that in a radiation dominated era the Hubble parameter is H(t) = 1/(2t).
Therefore if N(t) � 1 neutrinos are in thermal equilibrium while when N(t) . 1 interactions switch off.
We can therefore estimate the neutrinos decoupling temperature Tν,d as the temperature when

1
τν(Tν,d)

∼ H(Tν,d) (I.70)

obtaining that Neutrinos decouple at temperature Tν,d ∼ 2 − 3 MeV and propagate freely through the
Universe. Today relic neutrinos temperature can be estimated as

Tν,d = Tν,0

(
a(t0)

a(tν,d)

)
= (1 + zν,d) Tν,0 (I.71)

where tν,d and zν,d are the time and the redshift at neutrino decoupling, respectively. The easiest way to
compute the temperature of relic neutrinos is to associate it to the photon temperature. At the time of
freeze-out, neutrino temperature equals that of photons but after neutrino decoupling their temperature
starts decreasing with the expansion of the Universe. Instead photons are still in thermal equilibrium since
they decouple later. When the temperature drops, because of the electron-positron annihilation e+ + e− →
γ, photons acquire energy and their temperature becomes higher than the effective neutrino temperature.
This effect can be quantified using entropy conservation (in comoving volume): g∗(T)a3T3 = const. After
the neutrinos decoupling, the plasma is basically made of relativistic electrons, positrons and photons.
The total number of relativistic degrees of freedom therefore is given by g∗ (Tν,d) = 2 + 7/8× (2 + 2) =
11/2. When all free electrons and positrons annihilate away because of electron-positron annihilation,
the effective number of relativistic degrees of freedom will be all due to photons and therefore we have
g∗(T0) = 2. Applying entropy conservation it follows that

g∗(Tν,d) a(tν,d)
3 T3

ν,d = g∗(T0) a(t0)
3 T3

γ,0. (I.72)

Using Eq. (I.71) we can write g∗(Tν,d) T3
ν,0 = g∗(T0) T3

γ,0 from which it follows

Tν,0

Tγ,0
=

(
g∗(T0)

g∗(Tν,d)

) 1
3

=

(
4
11

) 1
3

(I.73)

As we will see, the temperature of relic photons today is measured with great precision to be Tγ,0 ' 2.75 K
[42], implying for the relic neutrinos Tν,0 ' 1.95 K and by Eq. (I.44a)

nν,0 = 2 · 3
4

ζ(3)
π2 T3

ν,0 ' 112 cm−3 (I.74)

of the same order of the temperature and number density of photons, but, unfortunately, direct detection
of relic neutrinos is very difficult from an experimental point of view.

Big Bang Nucleosynthesis

One of the most important step in the cosmological evolution is the Big Bang Nucleosynthesis (BBN) [36,
43–45]. The BBN is the period in the Early Universe during which the primordial light elements are formed.
It starts at temperatures T . 0.1 MeV and finishes at temperature T ∼ 50 KeV, corresponding to an epoch
lasted from about 1 to 300 seconds after the Big Bang singularity. Most of the light nuclei formed in this
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phase are helium-4 (the most tightly bound light nucleus) but there are also small amounts of deuterium,
helium-3 and lithium-7. Notice that the binding energy of the elements are [15, 16]:

• D: binding energy ' 2.2 MeV

• 3H: binding energy ' 8.4 MeV

• 3He: binding energy ' 7.7 MeV

• 4He: binding energy ' 28.3 MeV

A first question naturally arises: why does BBN start so late if the binding energies of primordial elements
are so high? The answer is that, at higher temperatures, the elements that were forming are suddenly
destroyed by scatterings with the CMB photons. Indeed, due to the huge number of photons per baryon
(we recall that we have about 109 photons for each baryon) in the energy distribution tails there were
still too many energetic free CMB photons that could hit and break the primordial elements as they were
forming. However as the Universe cooled down, at T ∼ 0.1 MeV, also light nuclei could form without
being destroyed by photons. The computation of the abundance of the primordial nuclei, that makes use
of General Relativity and the nuclear physics, predicts a given amount for each primordial specie and these
predictions can be tested by observation even if with some efforts. Anyway, we can say that there is a good
agreement between theory and observations and that BBN is one of the cornerstones of the Hot Big Bang
Cosmology. Here we only briefly review this process.

We start considering the number density of protons and neutrons. Since BBN occurs at temperatures
T ∼ 0.1 MeV while the masses of protons and neutrons are mp ' 938.28MeV and mn ' 939.57MeV
respectively, we can use the expression non relativistic limit (I.42) to obtain

nn = g
(

mBT
2π

)3/2

exp
(

µn −mn

T

)
(I.75)

np = g
(

mBT
2π

)3/2

exp
(

µp −mp

T

)
(I.76)

where since mn ' mp we have considered the difference in the neutron and proton masses only in the
exponential but not in the overall factor where we have denoted mB ' mp ' mn. Let now suppose that
the particles 1 and 2 annihilate in order to form the particles 3 and 4. The generic particle has to satisfy the
Boltzmann equation (that in what follows we write for the particle 1)

a−3 d
(

n1 a3)
dt

=
∫ d3 p1

(2π)3 2 E1

d3 p2

(2π)3 2 E2

d3 p3

(2π)3 2 E3

d3 p4

(2π)3 2 E4
·

· (2π)4 δ3(p1 + p2 − p3 − p4) δ(E1 + E2 − E3 − E4)·
· |M|2 { f3 f4 [1± f1] [1± f2]− f1 f2 [1± f3] [1± f4]} (I.77)

where:

• a−3 d( n1 a3)
dt is essentially the time variation of the specie n1 (and would be 0 without interactions)

• the factors 1/2Ei come from the fact that we are integrating over all the momenta that satisfy the
relation E2 = m2 + p2

• f1, f2, f3 and f4 are the distribution functions of the different particles

• in [1± fi], the sign depends on the species (+ for bosons and - for fermions)

• δ3(p1 + p2 − p3 − p4) ensures the total momentum conservation

• δ(E1 + E2 − E3 − E4) ensures the total energy conservation
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• M is the scattering matrix that carries information about the physics of nuclear interaction

In the non relativistic limit we have that
f (E) ' e

µ−E
T (I.78)

from which
{ f3 f4 [1± f1] [1± f2]− f1 f2 [1± f3] [1± f4]} ' e−

E1+E2
T

[
e

µ3+µ4
T − e

µ1+µ2
T

]
(I.79)

Defining the number density in the non-relativistic limit evaluated at µ = 0 as

ni,0
.
= gi

(
miT
2π

)3/2

e−
mi
T (I.80)

and the time averaged cross section as

〈σ v〉 .
=

(2π)4

n1,0 n2,0

∫ d3 p1

(2π)3 2 E1

d3 p2

(2π)3 2 E2

d3 p3

(2π)3 2 E3

d3 p4

(2π)3 2 E4
e−

E1+E2
T

· δ3(p1 + p2 − p3 − p4) δ(E1 + E2 − E3 − E4) · |M|2 (I.81)

with v the particle velocity, the Boltzmann equation (I.77) becomes:

a−3 d
(

n1 a3)
dt

= n1,0 n2,0 〈σ v〉
[

n3 n4

n3,0 n4,0
− n1 n2

n1,0 n2,0

]
(I.82)

It is useful to study this equation in the limit of strong couplings. If we define the usual interaction rate
Γ .
= n 〈σ v〉 we know that particles are strongly coupled when Γ(t) � H(t) and so they are essentially in

thermal equilibrium. Expanding the derivative in the left side term

a−3 d
(

n1 a3)
dt

= n1 a−3 d a3

dt
= 3 n1

ȧ
a
∼ O(H) (I.83)

and noting that n1,0 n2,0 〈σ v〉 ∼ Γ� H, we see that Eq. (I.82) naturally implies[
n3 n4

n3,0 n4,0
− n1 n2

n1,0 n2,0

]
' 0 (I.84)

which is translated into
µ1 + µ2 ' µ3 + µ4. (I.85)

We recovered nothing but the result discussed at the beginning of this section: the chemical potential is
conserved in thermal equilibrium. Let us suppose that nuclei of atomic mass A made of Z protons and
A− Z neutrons are formed by a reaction in the thermal equilibrium limit. Because of Eq. (I.85) (sometimes
called Saha equation) we have

µA = Z µp + (A− Z) µn. (I.86)

Defining the Binding energy as
BA

.
= Z mp + (A− Z)mn −mZ (I.87)

with mZ the mass of the formed element, and reversing the Eqs. (I.75) and (I.76) we can write the number
density nA for the nuclei A as:

nA = gA 2−A A
3
2

(
2π

mB T

) 3(A−1)
2

nZ
p nA−Z

n e
BA
T . (I.88)

We now introduce the so called mass function defined as XA
.
= A (nA/nB) where nB is the Baryon number

density and the baryon to photon ratio η̂ = nB/nγ ' 10−9. We can easily write all the number density in
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terms of these quantities as:

nA = η̂ nγ
XA

A
(I.89a)

np = np Xp = η̂ nγ Xp (I.89b)
nn = nn Xn = η̂ nγ Xn (I.89c)

Using nγ = (2ξ(3)/π2)× T3 we eventually find

XA = f (A)

(
T

mB

) 3(A−1)
2

η̂A−1 XZ
p XA−Z

n e
BA
T (I.90)

with
f (A) = gA A

5
2

[
2

3A−5
2 π

1−A
2 ζ(3)A−1

]
. (I.91)

Notice that in the expression of XA there is a term η̂A−1 � 1 and to have an XA of order one the exponential

e
BA
T must be sufficiently large. This means that the temperature T must be sufficiently smaller than the

binding energy BA. This explains why the BBN starts at temperatures smaller than the binding energy of
the primordial elements. For example, from Eq. (I.90) we can roughly estimate the temperature at which
the mass function XA becomes of order one to obtain

T =


0.07 MeV for D,
0.10 MeV for 3H,
0.11 MeV for 3He,
0.28 MeV for 4He.

(I.92)

We conclude this discussion, deriving an estimation of the abundance of primordial Helium. The
agreement between the observation and the estimation is one of the most important success of cosmol-
ogy. In our toy-model we assume thermal equilibrium and that all the neutrons produce only 4He. This
is clearly a strong approximation and extremely precise calculations can be done. Nevertheless, consider
the following processes ν + n ←→ p + e− and e+ + n ←→ p + ν̄, where e+ is the positron and ν̄ is some
anti-neutrino. Because of the conservation of chemical potential (I.36) we have µn + µν = µp + µe and
µn − µe = µp − µν, where we have used that µe+ = −µe− and µν̄ = −µν. Combining the previous equa-
tions above: µn − µp = µe − µν. Using that µe ' µν ' 0 we find µp ' µn which means:

nn

np
' Xn

Xp
= e−

∆m
T (I.93)

where ∆m = mn − mp ' 1.3 MeV. When T ' 0.7 MeV the ratio between neutron and proton freezes out
at the value nn/np ' 1/6. Nevertheless at temperature of the order of T ∼ 0.1 MeV, because of the β-
decay the above mentioned ratio acquires a correction and it is estimated to be 1/7. Assuming that all the
neutrons form4He, we can estimate the abundance of the primordial helium to be

YP =
4 · nn/2
nn + np

=
2
(

nn
np

)
1 +

(
nn
np

) ' 0.25 (I.94)

Therefore our approximate computation suggests a primordial abundance of Helium-4 of about 25%. This
abundance, as well as the abundance of all the other primordial elements, today is computed with high
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precision integrating the Boltzmann equations, as we show in the next sections and chapters2. Moreover
observations are in good agreement with the theoretical estimations (even if there are some tensions with
7Li) and the BBN represents one milestone in modern cosmology. We don’t provide other details on the
physics of the BBN, but we want only to discuss the following interesting aspect. Thanks to the obser-
vational constraints on the abundance of primordial elements, we are able to constrain with precision the
total amount of Byronic matter in our Universe to be Ωb ' 0.05. We also measure the total amount of
matter in the Universe to be Ωm ' 0.3. This implies that most of the matter in the Universe is not made of
Baryon and it is one of the major indirect evidences for Dark Matter.

Recombination

In the Early Universe there is full ionization as long as the temperature remains high compared to the
hydrogen ionization energy [12, 13]. Matter is ionized and photons, strongly coupled to electrons through
Compton scattering, are in thermal equilibrium with a black-body distribution of momenta. On the other
hand, at lower temperatures the formation of neutral atoms is favored and the Compton scattering is no
more an efficient process. Photons decouple from electrons giving a fossil radiation: the so called Cosmic
Microwave Background (CMB). In order to visualize this fact, we define the optical depth

τ(t) .
= σT

∫ t0

t
ne(t) dt (I.95)

where σT is the Thomson scattering cross-section and ne(t) is the number density of free electrons at the
cosmic time t. Notice that neσT is the probability per unit time for a photon to scatter, so we can express the
probability P that a CMB photon traveled freely since the time t in terms of the optical depth as

dP
dt

= ne(t) σT P = −dτ

dt
P, (I.96)

from which it follows P(t) = e−τ(t). On the other hand, the probability that a photon scattered in the
interval time between t and t + dt travelling free since then is

g(t) ≡ dP
dt

= −dτ

dt
e−τ(t) = ne(t) σT e−τ(t). (I.97)

The function g(t), known as visibility function, can be thought also as a function of the redshift and so as
the probability for a photon to be scattered between z and z + dz. From the recombination era on, τ → 0
because there are no free electrons, ne → 0. Therefore we expect the visibility function to be highly peaked.
Its maximum can be estimated to be around z ∼ 1100 and it defines the epoch when the CMB photons last
scattered on electrons. After recombination, the Universe becomes transparent and photons can propagate
in all directions freely. Given its importance for this work and in general for cosmology, we will dedicate
the whole section I.III to the Cosmic Microwave Background Radiation.

I.II COSMOLOGICAL PERTURBATION THEORY

So far we studied the large-scale behavior of the Universe assuming Homogeneity and Isotropy. However
on small scales the Universe is not so regular but highly inhomogeneous structures such as stars, galaxies,
and galaxy clusters are formed by the gravitational collapse of primordial inhomogeneities. Indeed, the
Early Universe was not perfectly homogeneous, but small irregularities δT/T ∼ 10−5 are observed in
the temperature distribution of the Cosmic Microwave Background relic photons. Such irregularities are
extremely small and therefore they can be analyzed in linear perturbation theory around a homogeneous

2For example, within the standard model of cosmology, a precise evaluation of primordial Helium abundance is YP =
0.246721± 0.000057 at 68% CL (from BBN and Planck TT TE EE and lensing data), see also Table I.1
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and isotropic background in such a way that the Einstein equations eventually reduce to a set of ordinary
differential equations. In this section, our aim is to review the dynamics of primordial perturbations.

I.II.I SCALAR, VECTOR AND TENSOR PERTURBATIONS

Given a generic quantity Q(t, x) we can split it into a homogeneous part and a spatially dependent pertur-
bation: Q(t, x) = Q̃(t) + δQ(t, x). Since we are interested into perturbations around a FRW spacetime, we
can use the background symmetries to classify perturbations into three different categories: Scalar, Vector
and Tensor. We work in the Fourier space, defining the Fourier transform and anti-transform of a generic
quantity as

δQ(t, k) =
∫

d3x δQ(t, x)e−ikixi
, (I.98a)

δQ(t, x) =
∫ d3k

(2π)3 δQ(t, k)eikixi
. (I.98b)

We can classify perturbations using their helicity. Consider a rotation of the coordinate system around the
wave-vector k by an angle θ; a perturbation is said to have helicity m if its amplitude is multiplied by ei m θ

under rotation: δQ(t, k)→ ei m θδQ(t, k). So we define:

• Scalar perturbations those with helicity m = 0;

• Vector perturbations those with helicity m = ±1;

• Tensor perturbations those with helicity m = ±2.

We now show that these three kinds of perturbations evolve independently. Consider the linear time
evolution of N perturbations δQn, with n = {1, ..., N} from a time t1 to a time t2. Without loss of generalities
we can write:

δQn(t2, k) =
N

∑
`=1

∫
d3k̃ On`(t1, t2, k, k̃) δQ`(t1, k̃), (I.99)

where On`(t1, t2, k, k̃) is an operator which gives the evolution and that in general can mix different k-
modes. Notice that it could be computed using the Einstein equations but here we do not need its exact
expression. Indeed, symmetries are enough to find out how modes with different k and helicity evolve.
In particular, we can use invariance under translations and rotations. We start considering the translation
x′ i = xi + αi. By equation (I.98a) we see that the relation between δQn(t, k) and δQ′n(t, k) is

δQ′n(t, k) =
∫

d3x δQ(t, x)e−iki(xi+αi) = δQn(t, k) e−ikiα
i

(I.100)

and using Eq. (I.99) we obtain

δQ′n(t, k) eikiα
i
=

N

∑
`=1

∫
d3k̃ On`(t1, t2, k, k̃) δQ′`(t1, k̃)eik̃iα

i
. (I.101)

Thus the evolution equation (I.99) in the primed coordinate system reads

δQ′n(t, k) =
N

∑
`=1

∫
d3k̃ On`(t1, t2, k, k̃) ei(k̃i−ki)α

i
δQ′`(t1, k̃) (I.102)

≡
N

∑
`=1

∫
d3k̃ O′n`(t1, t2, k, k̃) δQ′`(t1, k̃). (I.103)
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Notice that because of invariance under translations the equation of motion must be the same in both the
coordinate systems, On` = O′n` which implies

On`(t1, t2, k, k̃)ei(k̃i−ki)α
i
= On`(t1, t2, k, k̃). (I.104)

This must hold for any αi giving k̃i = ki. We found out that, because of translation invariance, Fourier
modes with different wave-vector k evolve independently.

We now consider a rotation around the wave-vector k by an angle θ. Perturbations transform as:

δQ′n(t, k) = ei m θδQn(t, k), (I.105)

putting into (I.99) and remembering that Fourier modes with different wave-vector k evolve independently
we get

δQ′n(t, k) e−i mn θ =
N

∑
`=1

∫
d3k On`(t1, t2, k) δQ′`(t1, k)e−i m` θ , (I.106)

therefore

δQ′n(t, k) =
N

∑
`=1

∫
d3k On`(t1, t2, k) e−i (m`−mn) θ δQ′`(t1, k) (I.107)

≡
N

∑
`=1

∫
d3k O′n`(t1, t2, k) δQ′`(t1, k). (I.108)

Again, because of invariance under rotations, the equation of motion must be the same in both the coordi-
nate systems, On` = O′n` implying

On`(t1, t2, k) = On`(t1, t2, k) e−i (m`−mn) θ . (I.109)

This holds for any θ and the only way is that mn = m`. So, because of invariance under rotation, pertur-
bations with different helicity m evolve independently: we can consider scalar tensor and vector pertur-
bations as independent. With these results in mind, we can now write down the perturbed metric and
Stress-energy tensor.

I.II.II LINEARIZED EINSTEIN EQUATIONS

We consider small perturbations to the background metric. The most general line element is [46–54]

ds2 = −(1 + 2Φ) dt2 + 2 a(t)Bi dxi dt + a2(t)
[
(1− 2Ψ) δij + 2Eij

]
dxi dxj, (I.110)

where

• Φ is a 3-scalar called Lapse;

• Ψ is a 3-scalar called spatial curvature perturbation;

• Bi is a 3-vector called shift;

• Eij is a spatial symmetric and traceless 3-tensor called shear.

Due to the SVT decomposition we can write

Bi = ∂iB︸︷︷︸
Scalar

− Si︸︷︷︸
Vector

, and Eij = 2∂ijE︸ ︷︷ ︸
Scalar

+ 2∂(iFj)︸ ︷︷ ︸
Vector

+ hij︸︷︷︸
Tensor

, (I.111)
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where we used the notation t(µν) ≡ 1
2 (tµν + tνµ). Notice that the vector perturbations must satisfy the

transverse conditions ∂iSi = 0 = ∂iFi while tensor perturbations are transverse and trace-less: hi
i = ∂ihij =

0.
As concerns the stress-energy tensor, while for a perfect fluid it can be described in terms of the energy

density ρ, the pressure P and the 4-velocity uµ, when we consider perturbations we may also need an
anisotropic stress tensor Σµν. Energy density and pressure perturbations can be defined as [54]

δρ(t, x) = ρ(t, x)− ρ̃(t), δP(t, x) = P(t, x)− P̃(t). (I.112)

while for the perturbed metric (I.110), the perturbed 4-velocity reads

uµ = (−1−Φ , a(t)vi) , (I.113)

with vi the velocity of the perturbations. The anisotropic stress is a first-order perturbation because it
vanishes in the unperturbed case. It is defined to be orthogonal to the 4-velocity uνΣµν = 0. This implies
that only its spatial components are non-zero and that its trace is zero; i.e., it is a symmetric traceless 3-
tensor. The perturbed components of the Stress-Energy tensor are [54]

T0
0 = −(ρ̃ + δρ), (I.114a)

T0
i = (ρ̃ + P̃) a(t) vi

.
= a δqi, (I.114b)

Ti
0 = −(ρ̃ + P̃)

vi − Bi

a(t)
, (I.114c)

Ti
j = (P̃ + δP)δi

j + Σi
j (I.114d)

where in equation (I.114b) we have defined the 3-momentum density δqi
.
= (ρ̃+ P̃) vi. In a multi-component

fluid the total stress-energy tensor is instead given by the sum of the different components: Tµν = ∑s T(s)
µν .

Gauge Freedom

Before going further, we need to stress an important aspect. Comoving coordinates define a privileged
coordinate system in which the Universe appears to be homogeneous and isotropic. In any other coordi-
nate system the Universe would not appear so regular. For example, in an unperturbed homogeneous and
isotropic Universe, where the energy density is only a function of time ρ = ρ(t), fictitious perturbations
could appear as a consequence of a time coordinate transformation of type t̃ = t + δt(t, x). Indeed this
transformation defines new slices of constant time t̃ and in general the hypersurfaces of constant time t̃
would have an inhomogeneous energy density ρ̃(t̃(t, x)). Of course, we can reverse the process and say
that, in an unperturbed Universe, requiring not to have fake irregularities defines a privileged coordinate
choice (the comoving coordinates). Anyway, if we want to describe a perturbed Universe we must be care-
ful because the split into homogeneous background and perturbations is not unique, but it depends on the
coordinates and, because of irregularities, there is not a privileged coordinate system, anymore. We have
the so-called Gauge freedom: when we chose a Gauge to define the slicing and threading of the spacetime
we implicitly also define perturbations and fake perturbations could appear or real perturbations could dis-
appear because of our Gauge choice. To say the truth, tensor perturbations are intrinsically gauge-invariant,
but both scalar perturbations and vector perturbations are not. Even though Vector perturbations are not
of interest for our purpose (they decay with the expansion of the Universe and above all are not naturally
generated during inflation), the issue of gauge freedom is crucial for scalar perturbations and deserves to
be clarified carefully.

To solve ambiguities between real and fake perturbations, it is useful to derive some Gauge indepen-
dent combinations of perturbations. We start considering the gauge transformation given by t → t + α,
and xi → xi + (∂jβ)δ

ij; it is possible to show that scalar perturbations in the metric transform as [15, 16, 54]
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Φ→ Φ− α̇, (I.115a)

Ψ→ Ψ + H α, (I.115b)

B→ B +
α

a(t)
− a(t)β̇, (I.115c)

E→ E− β. (I.115d)

while perturbations in Stress-Energy perturbations transform as [15, 16, 54]

δρ→ δρ− ˙̃ρ α, (I.116a)

δP→ δP− ˙̃P α, (I.116b)

δq→ δq + (ρ̃ + P̃) α. (I.116c)

We decompose the pressure perturbation δP into an adiabatic part and an entropic part as [15, 16, 54]:

δP = δPad + δPen, (I.117)

where:

δPad =
˙̃P
˙̃ρ

δρ, (I.118a)

δPen = δP−
˙̃P
˙̃ρ

δρ. (I.118b)

Using equations (I.116a) and (I.116b) it is easy to show that the entropic part (I.118b) is Gauge independent.
Two other important Gauge independent quantities are the Bardeen potentials:

ΦB ≡ Φ− d
dt

[
a2(t)

(
Ė− B

a(t)

)]
, (I.119)

ΨB ≡ Ψ + a2(t) H
(

Ė− B
a(t)

)
. (I.120)

Moreover, combining the Stress-Energy perturbations with the metric perturbations we can find the fol-
lowing other important gauge invariant variables

• The primordial curvature perturbation ζ:

−ζ ≡ Ψ +
H
˙̃ρ

δρ. (I.121)

• The comoving curvature perturbationR:

R ≡ Ψ− H
ρ̃ + P̃

δq, (I.122)

Geometrically, ζ measures the spatial curvature of constant-density hypersurfaces (i.e., the hypersurfaces
on which ρ = const), whileRmeasures the curvature on comoving hypersurfaces. Using equations (I.115a)
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- (I.116c) it is easy to check that both ζ and R are Gauge independent. Furthermore the Einstein equations
give a link between ζ andR. Indeed it can be shown that

−ζ = R+
k2

(aH)2
2ρ̃

3
(
ρ̃ + P̃

)ΨB. (I.123)

From which we see that on superhorizon scale (k� a H) we get

ζ = −R. (I.124)

Einstein equations for Scalar Perturbations

Einstein equations relate the Stress-Energy perturbations and the metric perturbations. Because of the
SVT-Decomposition we can deal with Scalar, Vector and Tensor perturbations separately. Here, we are
interested only in scalar and tensor modes. We start with scalar modes. The perturbed Einstein equations
δGµν = 8πGδTµν in the scalar case give the following equations (in the Fourier space):

3H
(
Ψ̇ + HΦ

)
+

k2

a2

[
Ψ + H

(
a2(t)Ė− a(t)B

)]
= −4πGδρ, (I.125)

Ψ̇ + HΦ = −4πGδq, (I.126)

Ψ̈ + 3HΨ̇ + HΦ̇ +
(
3H2 + 2Ḣ

)
Φ = 4πG

(
δp− 2

3
k2δΣ

)
, (I.127)

ΨB −ΦB = 8πG a2(t) δΣ. (I.128)

The Stress-Energy conservation law ∇νTµν = 0 gives other two equations:

δ̇ρ + 3H (δρ + δP) =
k2

a2(t)
δq +

(
ρ̃ + P̃

) [
3Ψ̇ + k2

(
Ė +

B
a(t)

)]
, (I.129)

δ̇q + 3Hδq = −δP +
2
3

k2δΣ− (ρ̃ + P̃)Φ. (I.130)

A very interesting relation for our purpose is the Eq. (I.129). It can be written in terms of Gauge indepen-
dent variables as

ζ̇ = −H
δPen

ρ̃ + P̃
+

H
3

k2

(aH)2

[
ζ −ΨB

(
1− 2ρ̃

9(ρ̃ + P̃)
k2

(aH)2

)]
(I.131)

Einstein equations for Tensor Perturbations

As concerns tensor perturbations, they are intrinsically gauge-invariant at linear order. It is useful to in-
troduce the eigenmodes of the spatial Laplacian ∇2eij = −k2 eij so that we can decompose the tensor
perturbations hij as h+,×

ij = h(t) e+,×
ij where + and × denote the two possible polarization states of the

gravitational waves. The evolution of gravitational waves in an expanding Universe can be described by
Einstein equations that in the case of tensor perturbations reduce to only one equation. Assuming the
anisotropic stress negligible this equation reads [12, 14, 15, 54]:

ḧ + 3Hḣ +
k2

a2 h = 0. (I.132)
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We will see that Gravitational waves can be sourced during inflation, but unfortunately they decay with the
expansion of the Universe. Anyway their amplitude at the time of recombination might be large enough
to leave a signature in the Cosmic Microwave Background B-modes spectrum on large angular scales and
their detection can be regarded as one of the main goal on modern cosmology.

I.II.III DYNAMICS OF SCALAR PERTURBATIONS

Here we study the dynamics of cosmological perturbations using the linearized Theory developed in the
previous subsection. More precisely, here we analyze the evolution of scalar perturbations before recom-
bination while we discuss the dynamics of tensor perturbations in the next subsection. Notice that this is
the period when CMB photons decouple from baryonic matter and perturbations at that epoch are directly
related to CMB observations [12–16, 55]. Moreover, perturbations of dark matter and baryons at recombi-
nation provide the initial conditions for the subsequent evolution that leads to structure formation [15, 47,
49].

Single Ideal Fluid Approximation

Studying primordial perturbations is rather complicated from an analytic point of view, and so it is useful
to start with the simplest case of single-component fluid approximation. This is of great interest because
it can be used to describe perturbations in the component which dominates the background dynamics at
a given cosmological epoch. Anyway then we also generalize our result for the multi-component case.
In both cases we work in the framework of negligible anisotropic stress tensor (δΣ ' 0), assuming the
cosmic fluid to be ideal. Notice that the cosmic medium is not always ideal and this assumption becomes
particularly important for baryon-electron-photon plasma and neutrino components [12, 15]. However for
our aim an ideal-fluid approximation is accurate enough.

Before recombination, the independent components in the cosmic fluid are baryon-electron-photon
plasma, dark matter and neutrinos (while photons and baryons become two separate components only
after recombination). We can write down the linearized Einstein equation (in the momentum representa-
tion) for a single ideal fluid by choosing a gauge. In what follows we work in the Conformal Newtonian
Gauge defined by E = B = 0 and3

ds2 = a2(t)
[
−(1 + 2Φ) dη2 + (1− 2Ψ) dxi dxi

]
. (I.133)

In this gauge Φ has the meaning of Newtonian gravitational potential while Ψ is the space curvature.
Notice however that assuming an ideal fluid (δΣ = 0) for Eq.(I.128), it follows that Φ = Ψ. In this case only
two of Eqs. (I.125) - (I.130) are independent and, working in conformal time (dη = a dt), we can write [12,
56]

k2Φ + 3
a′

a
Φ′ + 3

a′2

a2 Φ = −4πGa2δρ (I.134a)

Φ′′ + 3
a′

a
Φ′ +

(
2

a′′

a
− a′2

a2

)
Φ = 4πGa2δP (I.134b)

where the prime represents a derivative with respect to the conformal time. Assuming an equation of state
δP = u2

s δρ we can combine the two equations into a single master differential equation for the gravitational
potential which reads

Φ′′ + 3
a′

a
(
1 + u2

s
)

Φ′ +
[

2
a′′

a
− a′2

a2

(
1− 3u2

s
)]

Φ + u2
s k2Φ = 0 (I.135)

3It is worth noting that quite often in literature the spatial curvature perturbation Ψ is defined with a different sign with respect
to that adopted here in Eqs.(I.110) and (I.133). In that case the all the relations differ by an additional minus sing in front of Ψ (and
its derivatives) and the relation between Ψ and Φ becomes Φ = −Ψ, see also the conventions.
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Notice that using the second Freedman equation, the element in square brackets can be put in the form

2
a′′

a
− a′2

a2

(
1− 3u2

s
)
= −8πGa2 (P− u2

s ρ
)
= 0 (I.136)

where in the last line we assumed to consider the specie which dominates the cosmological expansion in
such a way that ω = u2

s (i.e., P = u2
s ρ). We can therefore simplify the master equation to

Φ′′ + 3
a′

a
(
1 + u2

s
)

Φ′ + u2
s k2Φ = 0 (I.137)

To study the behavior of this equation, it is helpful to introduce the so-called sound acoustic Horizon as4

sound acoustic Horizon .
= usH−1. (I.138)

and the density contrast as

δ
.
=

δρ

ρ
. (I.139)

For perturbations with wavelengths well outside the acoustic horizon, λ� usH−1, we see that the last term
in Eq.(I.137) becomes negligibly small and we get the trivial solution Φ = Φi = Const. Therefore, on
super-horizon scales (k� a′/a) we have

δ = δ(i) = −2Φ(i) (I.140)

On the other hand, for sub-sound horizon modes, the solution of Eq.(I.137) depends strongly on the equa-
tion of state.

• For Relativistic Matter (a ∝ η and ω = u2
s = 1/3) we have

Φ(η) = −3Φ(i) ·
1

(uskη)2

[
cos (uskη)− sin (uskη)

uskη

]
(I.141)

and well inside the sound horizon (uskη � 1) it describes a wave with decaying amplitude and definite
phase:

Φ(η) = −3Φ(i)
1

(uskη)2 cos (uskη) . (I.142)

The behavior of the energy-density perturbations δρrad can be obtained by using Eq.(I.134a), from which
it follows that

δρrad(η) = −
1

4πG
k2

a2 Φ(η) (I.143)

while using also the Freedman equations, we get

δrad(η) = 6Φ(i) cos (uskη) = −3δrad,(i) cos (uskη) (I.144)

from which we easily see that energy density perturbations undergo acoustic oscillations and their am-
plitude nor decreases neither grows at radiation domination epoch.

• For Non-Relativistic Matter (a ∝ η2 and ω = u2
s = 0) we get Φ(η) = const and the density perturbation

reads

δρ = − 1
4πGa2

(
k2 +

12
η2

)
Φ (I.145)

4Notice that the sound-horizon must not be confused with the causal cosmological horizon (aH)−1. In what follows when
we say "super/sub-horizon" modes, we always refer to modes outside/inside the causal horizon, while we always specify "sound"
when we refer to the sound horizon.

PAGE 25 OF 200



W. GIARÈ THE EARLY UNIVERSE

On super-horizon scales (kη � 1) the second term in the round brackets dominates and we have δρ ∝
a−3 which gives δ

.
= δρ/ρ = −2Φ. Instead on sub-horizon scales (kη � 1) it is the first term which

dominates resulting into δ ∝ a(η). This means that matter perturbations start growing with the scale
factor.

• For Matter perturbations at late times (i.e., after the matter to cosmological constant transition) Eq.(I.136)
is no longer valid and it is convenient to use Eq.(I.134b) which for a Λ dominated Universe with δρΛ =
δPΛ = 0 and and a ∝ eH t gives

Φ′′ − 3
η

Φ′ +
3
η2 Φ = 0. (I.146)

On sub-horizon scales, the solutions are Φ ∝ η ∝ 1/a and δ = const. It follows that matter perturbations
stop growing when the cosmological constant dominates. Structure formation is over; forever.

Multi Component Ideal Fluid Approximation

In the real Universe, the cosmological fluid is composed of several components such as baryons, photons,
neutrinos, dark matter and dark energy [12, 16, 56]. At late times, there is no interaction between the
different species, except for the gravitational one. Anyway, it should be noted that gravitational interaction
between the components affects perturbations in each of them and so in principle all the different species
should be considered together. In this case the full set of linearized Einstein Equations is [14, 37, 56]

k2Φ + 3
a′

a
Φ′ + 3

a′2

a2 Φ = −4πGa2 ∑
λ

δρλ (I.147a)

Φ′ +
a′

a
Φ = −4πGa2 ∑

λ

(ρλ + Pλ)vλ (I.147b)

Φ′′ + 3
a′

a
Φ′ +

(
2

a′′

a
− a′2

a2

)
Φ = 4πGa2 ∑

λ

δPλ (I.147c)

while the covariant conservation law gives the following two relations

δρ′λ + 3
a′

a
(δρλ + δPλ)− (ρλ + Pλ)

(
k2vλ + 3Φ′

)
= 0 (I.148a)

[(ρλ + Pλ) vλ]
′ + 4

a′

a
(ρλ + Pλ) vλ + δPλ + (ρλ + Pλ)Φ = 0 (I.148b)

Here λ runs over the different species in the cosmic fluid. Notice that for an ideal fluid with n component
the system above reduces to 2n + 3 equations for 2n + 1 unknowns (Pλ = u2

s,λ ρλ ; vλ and Φ) and so not
all the equations are independent. As in the previous subsection it is helpful to use the density contrast
δλ = δρλ/ρλ. Recalling that

δρλ = ρλδλ, δPλ = u2
s,λδρλ = u2

s,λρλδλ, Pλ = wλρλ (I.149)

and noting that in this case ωλ 6= u2
s,λ and that in principle they can both depend on time, the covariant

conservation laws Eqs.(I.148a) and (I.148b) read

δ′λ + 3
a′

a
(
u2

s,λ − wλ

)
δλ − (1 + wλ) k2vλ = 3 (1 + wλ)Φ′ (I.150a)

[(1 + wλ) vλ]
′ +

a′

a
(1− 3wλ) (1 + wλ) vλ + u2

s,λδλ = − (1 + wλ)Φ. (I.150b)
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Before going further we need to specify the initial conditions for perturbations. The initial conditions are
typically specified well inside the radiation dominated epoch and, in linear perturbation theory, solutions
will be linear in the initial conditions. Primordial perturbations can be decomposed into two different
modes: adiabatic modes and isocurvature modes that behave in a fairly different way. While adiabatic per-
turbations are measured in the Cosmic Microwave Background, no evidences are currently found about
the existence of isocurvature modes [57, 58] and so, in what follows, we define the differences between
these two classes but then we focus exclusively on adiabatic modes.

There are many ways to define Adiabatic and Isocurvature perturbations. A common practice in lit-
erature [12, 13, 15, 50, 59] is to define Adiabatic modes those corresponding to the situation where, well
inside the radiation dominated epoch, the relativistic matter has non-vanishing energy density perturba-
tions (i.e., space-dependent temperature fluctuations) and the composition of the cosmic fluid is assumed
to be spatially homogeneous. Notice that, in the formal limit η → 0 (which corresponds to consider the
super-horizon regime) the adiabatic modes must therefore satisfy the following relation for the (conserved)
number (density) of baryon and Cold Dark Matter per unit of entropy (density) [12, 15]:

δ
(nb

s

)
= δ

(nCDM

s

)
= 0 (I.151)

Conversely, Isocurvature modes are defined as those corresponding to the situation where, well inside the
radiation dominated epoch, the relativistic matter has vanishing energy-density perturbations (i.e., vanish-
ing temperature fluctuations) but the composition of the cosmic fluid is spatially inhomogeneous. While
these definitions capture the physical meaning of these two kinds of perturbations, it should be noted that
they are not gauge invariant. Indeed, through a gauge transformation, we can always choose hypersurfaces
of constant time where temperature is spatially homogeneous at each moment of time. The latter gauge
anyway will be different from Newtonian gauge.

A more formal and gauge independent definition of adiabatic (and isotropic) perturbations can be ob-
tained as follows. Let us consider the primordial curvature perturbation ζ which, by definition, is a gauge
invariant quantity. In the super-horizon limit k/(aH) � 1, the equation of motion of ζ, Eq.(I.131), reduces
to [50, 54, 55]

ζ̇ ' −H
δPen

ρ̃ + P̃
(I.152)

where we recall that δPen is the entropic part of perturbations. We define adiabatic perturbations those with
δPen = 0 and isocurvature perturbations those with δPen 6= 0. Notice that this definition does not differ
much from the previous one since we have already pointed out that when the cosmic fluid is assumed to be
spatially homogeneous perturbations of entropy per baryon and entropy per dark matter are expected to
vanish while when temperature perturbations are absent, but the cosmic fluid is inhomogeneous, we expect
non-vanishing perturbations of entropy per baryon and entropy per dark matter particle, respectively.
Since isocurvature modes are not of interest for this thesis, from now on we omit them from the discussion,
focusing exclusively on adiabatic modes.

With the previous definition in mind, the initial condition for adiabatic perturbations can be derived
straightforward. Indeed, we immediately see that for adiabatic modes on super-horizon scales ζ freezes
out [12, 54, 55]:

ζ̇ → 0⇒ ζ = const. (I.153)

Since in the Newtonian gauge (within the ideal fluid approximation) ζ reads

ζ = −Φ +
δρtot

3 (ρtot + Ptot)
(I.154)
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well inside the radiation dominated epoch, when the relativistic matter is widely the most important specie
(ρtot ' ρrad = 3Prad ' 3Ptot), we have

ζ = −Φ +
1
4

δρrad

ρrad
= −Φ +

1
4

δrad = −3
2

Φ (I.155)

where in the last line we used that, in the RD epoch and on super horizon scales the single fluid approxima-
tion holds giving δrad = −2Φ, see Eq. (I.140). Notice also that, if the cosmic fluid is spatially homogeneous,
by definition the density contrast of all the relativistic species will be the same: δγ = δν = δrad = −2Φ. As
concerns the density contrast of non-relativistic matter, it can be easily obtained by noting that ρM ∝ a−3

and ρrad ∝ a−4 from which it follows that δM
.
= δρM/ρM = 3/4 δρrad/ρrad

.
= 3/4 δrad. Given that for adia-

batic perturbations the density contrast of all the non-relativistic species is the same as well (δb = δCDM =
δM), in the Radiation dominated epoch we finally get

δCDM = δb =
3
4

δγ =
3
4

δν = −3
2

Φ. (I.156)

This is exactly the equation that fixes the initial conditions for each component of the cosmic fluid. Notice
that, this equation can be also expressed in term of the primordial curvature perturbation for each single
specie, ζλ, defined as

ζλ = −Φ +
δρλ

3 (ρλ + Pλ)
= −Φ +

δλ

3 (1 + ωλ)
. (I.157)

It easily follows that Eq. (I.156) is equivalent to set ζCDM = ζb = ζγ = ζν = ζ. These relations provide an
elegant formal definition of adiabatic perturbations. Now that the initial conditions for adiabatic pertur-
bations have been pointed out, in principle we could solve the system of differential Equations to find out
the small-scale dynamics of perturbations. Anyway, the evolution itself is fairly complex, and a general
solution cannot be derived analytically. A complete precise analysis is therefore possible only adopting
numerical methods. Notice also that a description of the effects beyond the ideal fluid approximation can
be obtained by a system of Boltzmann equations that can be solved only numerically, as well. A full nu-
merical treatment of the dynamics of primordial perturbations is beyond the aim of this section. In what
follows we study only some interesting limits where an analytic description is possible.

The evolution of primordial perturbations depends on their wavelength. Adiabatic modes with large
wavelength enter the causal horizon at matter domination (MD), while perturbations with small wave-
length enter the sound horizon at radiation domination (RD). These two limits can be studied analytically
within the ideal fluid approximation.

• Large Wavelength Limit. Modes with large wavelengths enter the causal horizon at the matter domi-
nation epoch. Therefore, during the radiation domination epoch, these modes are super-horizon. The
super-horizon evolution of adiabatic modes is rather simple because, due to Eq. (I.131), they remain
constant until they enter the causal horizon. After the horizon entry, during the MD epoch, relativis-
tic matter gives very small contribution to the energy density of the Universe which we can assume to
be negligible. Therefore the evolution of modes proceeds in analogy to the single component fluid ap-
proximation with the matter contrast δM growing linearly with the scale factor. On the other hand, we
can study how the gravitational potential Φ changes between the RD and the MD epoch. Since super-
horizon modes are frozen, at the matter domination, when perturbations in the non-relativistic matter
already dominate, by Eq. (I.140) we have δM = −2ΦMD and by Eq.(I.154), (with PM = 0) we can easily
find out that ζ = −Φ + 1/3δM from which it follows that

ΦMD = −3
5

ζ (I.158)
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Since ζ does not evolve on super-horizon scales it will be equal to its initial value, that, because of
Eq.(I.155), is ζ = −3/2 ΦRD. So we finally get

ΦMD =

(
9
10

)
ΦRD. (I.159)

For these modes the gravitational potential decreases by a factor of 9/10 at radiation-matter equality.
Notice also that, because of Eq. (I.156), in the MD epoch we have

δγ =
4
3

δM = −8
3

ΦMD = −12
5

ΦRD (I.160)

• Small Wavelength Limit. We now study what happens when perturbations with small wavelengths
enter the sound horizon during radiation domination. It is useful to distinguish perturbations in the rel-
ativistic component, perturbations in the Dark Matter component and perturbations in the baryon-photon
plasma.

– Perturbations in the Relativistic Component dominate during the RD epoch and their evolution is
well described by the single fluid approximation. They will therefore evolve according to Eq.(I.141)
with the adiabatic initial condition Φ(i) = −2/3 ζ.

– Perturbations in Dark Matter are subdominant during the RD epoch. Nevertheless here we highlight
that they logarithmically grow during this period. This effect is crucial for structure formation since,
without it, the growth of dark matter perturbations during the MD epoch would not be enough to
produce δM ∼ 1. To find out the dynamics of CDM perturbations we can write down Eqs. (I.150a)
and (I.150b) for the matter component in RD (ωCDM = u2

s = 0 and a ∝ η), obtaining

δ′CDM − k2 vCDM = 3Φ′, (I.161a)

v′CDM +
1
η

vCDM = −Φ, (I.161b)

We also recall that the evolution of gravitational potential Φ during the RD epoch is given by
Eq.(I.141) and that it rapidly decays well inside the sound horizon, when us k η � 1. Therefore
we can consider the homogeneous equations

δ′CDM − k2vCDM = 0, (I.162a)

v′CDM +
1
η

vCDM = 0. (I.162b)

From Eq.(I.162b) we get vCDM = c1/(k2η) and inserting in Eq.(I.162a) it gives

δCDM = c1 log kη + c2 (I.163)

where c1 and c2 are integration constants that can be derived [15]. Anyway for our task it is enough
to note that Dark Matter perturbation actually grows during the RD epoch. After the RD epoch,
when matter becomes the dominant component in the Universe, its evolution is well described
within the single fluid approximation and we have already pointed out that they linearly grow
with the scale factor.

– Perturbations in the Baryon-Photon plasma are subdominant at the period from radiation-matter
equality to recombination. Nonetheless they are extremely important from the point of view of
Cosmic Microwave Background as they produce the so-called acoustic oscillations. First, notice
that, due to intense photon-electron scatterings and Coulomb interaction between electrons and
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baryons, the baryon-photon plasma can be regarded as a single ideal fluid. This is sometimes called
tight-coupling limit. We can therefore assume that baryons and photons share then same velocities
vγ = vb

.
= vbγ. Furthermore the adiabatic initial conditions imply δγ = δb. In what follows we

write Eq.(I.150a) for Baryon and photons separately obtaining

δ′b − k2vbγ = 3Φ′ and δ′γ −
4
3

k2vbγ = 4Φ′ (I.164)

respectively. On the other hand, it is useful to write Eq.(I.150a) in terms of δγ and a new variable

Rb(η)
.
= 3ρb/4ργ (I.165)

getting

v′Bγ +
a′

a
RB

1 + RB
vBγ +

3
4

u2
s δγ + Φ = 0, (I.166)

with the sound speed of the baryon-photon plasma u2
s (η) given by

u2
s (η) =

δP
δρ

=
1
3

δργ

δργ + δρb
=

1
3 (1 + Rb)

. (I.167)

We also define the sound horizon for a time-dependent sound speed as

Sound Horizon .
= rs(η)

.
=
∫ η

0
dη̃ us(η) (I.168)

which is clearly a generalization of Eq.(I.138). By noting that for the sub-horizon modes (at matter
domination) Φ′ � kΦ we can neglect derivatives in Φ and, combining Eqs.(I.164) into a single
relation for δγ, we obtain

δ′′γ +
a′

a

(
Rb

1 + Rb

)
δ′γ + k2u2

s δγ = −4
3

k2Φ (I.169)

As we will see, this equation captures many features of the angular spectrum of CMB photons
anisotropies [12, 15, 60]. Here, without the intention to be mathematically accurate, we only note
that it describes acoustic oscillation in the baryon-photon component: its solution basically contains
oscillating terms with a definite phase that are nothing but the generalization of the oscillations
discussed in the single fluid approximation for the relativistic species. We will come back to this
equation in the next section when we discuss the CMB anisotropies, providing a more quantitative
discussion and highlighting they are of primary importance for the CMB angular spectrum.

We conclude this section with Figure I.2 which summarizes the evolution of Cosmological perturbations
(and the gravitational potential Φ) both before and after recombination. Notice that here we just focused on
their evolution before recombination as we are mainly interested in their signature in CMB. Anyway, after
recombination, perturbations in the Baryon component, δb are importantly enhanced, δb = δCDM ∝ η2, and
this is of primary relevance for the process of structure formation in the Universe [15, 47, 49].

I.II.IV DYNAMICS OF TENSOR PERTURBATIONS

Tensor Modes are of primary interest in this work: along with scalar perturbations, they can be sourced
during inflation and their detection represents maybe one of the main goals of modern cosmology. In this
subsection we describe the dynamical evolution of tensor perturbations.
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FIGURE I.2: Time evolution of adiabatic modes towards different cosmological epochs. Nor-
malization is arbitrary. Figure based on Ref. [15].

We start recalling that the equation of motion of tensor modes is given by Eq.(I.132) which we can write
in term of conformal time as

h′′ + 2
a′

a
h′ + k2h = 0 (I.170)

where for sake of simplicity we are dropping the two polarization states + and ×. As usual, we can
identify two different cases: depending whether perturbations are super-horizon k � a′/a or sub-horizon
k� a′/a.

Super-Horizon Tensor Modes

When tensor modes are on super-horizon scales k � a′/a or equivalently kη � 1, the equation of motion
simply reduces to

h′′ + 2
a′

a
h′ = 0 (I.171)

with the trivial solution h = const. Therefore on super-horizon scales tensor modes do not evolve at all.

Sub-Horizon Tensor Modes

To study the sub-horizon evolution, it is useful to write the equation of motion in term of the field u(η) =
a(η) h(η) getting

u′′ +
[

k2 − a′′

a

]
u = 0 (I.172)

this is often called Mukhanov Equation and we will study it extensively when we discuss the Quantum
inflationary Fluctuations. Here we just note that the a′′/a ∝ 1/η2 and on sub-horizon scales k � a′/a or
equivalently kη � 1 the equation is simplified to u′′ + k2u = 0 and we come to the oscillator equation. The
general solution for h(η) is

h(η) =
A

a(η)
cos(kη + α) (I.173)
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where A and α are the (conformal) time-independent amplitude and phase, respectively that can be ob-
tained by fixing the initial conditions [15]. After the horizon crossing, tensor perturbations describe gravity
waves whose amplitude decays with the cosmic expansion as ∝ 1/a(η).

I.III COSMIC MICROWAVE BACKGROUND RADIATION

The Cosmic Microwave Background represents maybe the most important observable in Cosmology. After
recombination the Universe becomes transparent to photons and today the Universe is embedded into
this fossil electromagnetic radiation that dates back to 380.000 years after the Big Bang singularity. This
fossil radiation carries unique information about Primordial Universe and was first accidentally measured
by Penzias and Wilson, awarded with Nobel Prize in Physics in 1978. They found a black-body thermal
energy coming from all parts of the sky. We recall that the specific intensity of a gas of photons with a
black-body spectrum is

Iν =
4π} ν3

c2

[
e

2π}ν
kb T − 1

]−1

. (I.174)

Today we measure the CMB black-body spectrum with unbelievable precision and the theoretical curve
fixes the present day CMB photon temperature to T = 2.7260± 0.0013K [57, 61]. We also recall that as the
Universe expands the temperature decreases as T ∝ 1/a and this is why today CMB photons are in the
microwave frequency band.

Despite Cosmic Microwave Background radiation appears to be very homogeneous and isotropic; we
observe small intrinsic temperature anisotropies and polarization that are crucial in our understanding of
the underlying physics of the Early Universe. In what follows we point out their primary role in modern
cosmology with particular attention to the link with the primordial perturbations.

I.III.I ANISOTROPIES

The physics of CMB anisotropies [60, 62–67] is well understood and described in terms of linear pertur-
bation theory [14, 55]. The angular variations in temperature that we observe today, see Figure I.4, are a
snapshot of the local properties of relic photons at redshift z ∼ 1100 that must be related to primordial
perturbations [12, 14, 55]. Therefore anisotropies encode information on the primordial perturbation itself.
Here we first introduce the formalism used to describe CMB anisotropies and then we review the main
physical processes that sourced them.

Multipoles Expansion and Angular Spectra

It is useful to define the so-called brightness function

Θ(η, x, n̂) ≡ δT(η, x, n̂)
T(η)

, (I.175)

where n̂ = p/p is the unitary vector which defines the direction of the photon momentum; x is a given
point of the space and η is the conformal time. It is somehow useful to define also the direction in which the
photon is seen ê = −n̂. Indeed the brightness function depends equivalently on n̂ or ê. Since the photons
we observe today were emitted on a 3-sphere given by the intersection between the last scattering surface
and our past light cone, it is natural to expand the bright function into spherical harmonics. The multipoles
expansion reads [12, 55]

Θ(η, x, n̂) = ∑
`≥1

∑
m
(−1)`Θ`m(η, x)Y`m(n̂). (I.176)

where

Y`m =

[
2`+ 1

4π

(`−m)!
(`+ m)!

] 1
2

Pm
` (cos θ) ei mφ. (I.177)
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FIGURE I.3: The map of temperature anisotropies in the Cosmic Microwave Background as
measured by the Planck Collaboration. Figure adopted from the Planck legacy archive [42].

are the spherical harmonics while θ and φ represent the usual spherical coordinates that identify the direc-
tion n̂. Pm

` (cos θ) are the associated Legendre functions

Pm
` (x) = (−1)`

(1− x2)
m
2

2``!
d`+m

dx`+m (1− x2)`. (I.178)

It is well known that the Spherical harmonics are a complete orthonormal set of functions which means
that ∫

Y`mY∗`′m′ dΩ = δ``′δmm′ . (I.179)

Notice also that in the equation (I.176) we can absorb the factor (−1)` into spherical harmonics using ê
instead of n̂:

Θ(η, x, n̂) = ∑
`≥1

∑
m

Θ`m(η, x)Y`m(ê). (I.180)

In the sum we do not consider the monopole contribution ` = 0. The reason is that such term carries
information about the energy of relic photons at different positions but we cannot measure CMB photons
at positions different than ours and so we cannot measure this effect which is proportional to the photons
energy fluctuations [55]. For this reason we start the spherical harmonics expansion considering the dipole
contribution ` = 1.

The dipole term, ` = 1, in the sum is due to the doppler shift caused by the relative motion between
the observer and the photons fluid. We stress that we are not comoving observers because we move by the
Earth’s motion. Therefore in our frame a dipole effect is expected and indeed observed. We can evaluate
the Doppler shift to the first order in the relative photon velocity vγ:

∑
m

Θ1m(η, x)Y1m(ê) = −vγ · ê. (I.181)

While the CMB dipole is the dominant effect, it does not give any appreciable information about the in-
trinsic primordial temperature fluctuations and consequently should be removed from the map of CMB
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anisotropies.
Multipoles with ` ≥ 2. In this case the effect of Earth motion on multipoles is proportional to (vγ)

` and
so it becomes small as vγ � 1. Multipoles with ` ≥ 2 show a small magnitude of order 10−5, that cannot be
brought back to the Earth motion effect since this is expected to be at least of order 10−6 for ` = 2. Therefore
multipoles with ` ≥ 2, while small, are a snapshot of the intrinsic anisotropies in the CMB radiation that
are related to its underlying physical production and evolution. From now on, we call such terms a`m:

a`m
.
= Θ`m(η0, x0 = 0), for ` ≥ 2. (I.182)

Here x0 is our position chosen to be the origin of coordinates. We are interested in the stochastic properties
of the CMB multipoles a`m. We first note that invariance under rotations implies that 〈a`m〉 = 0 and that
the two-point correlator therefore reads

〈a`ma∗`′m′〉 = CTT
` δ` `′δm m′ , (I.183)

where CTT
`

.
= 〈 |a`m|2〉 is the angular power spectrum of the CMB anisotropies. Given a model of the Early

Universe, the angular power spectrum can be computed. It is an important tool in the statistical analysis
of the CMB anisotropies as it describes the physical information contained in the million pixels of the CMB
anisotropies in a very compact way. The angle brackets in the equation (I.183) denote the average over an
ensemble of random fluctuations. For the moment we assume such fluctuations to be Gaussian. We will
appreciate next how the simplest models of inflation predict Gaussianity at early times. We see that multi-
poles a`m are uncorrelated for different ` and m. If we assume gaussianity, they become also independent
and the power spectrum provides a complete statistical description of the temperature anisotropies. For
this reason measuring the anisotropies power spectrum has been one of the main goals of observational
cosmology.

If we measured the temperature fluctuations over the full sky in an ideal situation of noise-free, the
CMB power spectrum could be simply estimated as:

Ĉ` =
1

2`+ 1 ∑
m
|a`m|2 . (I.184)

This gives for sure an estimator of the “true” angular power spectrum, but it must be noted that there is
an irremovable cosmic variance, due to the finite (2` + 1) modes that we can observe. In other words,
assuming the temperature anisotropies to be Gaussian distributed, the estimator has a χ2 distribution with
2`+ 1 degrees of freedom and a variance given by [12, 55]:

var
[
Ĉ`

]
≡ 〈Ĉ` Ĉ`〉 − 〈Ĉ`〉2 =

2
(2`+ 1)

C2
` . (I.185)

The cosmic variance is negligible at higher ` while it becomes an important limitation at low multipoles.
Furthermore, in practice estimating the power spectrum is complicated by a number of real-world com-
plexities such as partial sky coverage and instrumental noise. Describing the experimental methods used
to estimate the temperature power spectrum is beyond our aim and we remand to the vast literature ded-
icated. Here instead we would like to stress that, given a model of the Early Universe, the angular power
spectrum can be computed using cosmological perturbation theory. One can write a system of coupled
Einstein-Boltzmann equations that can be integrated numerically and predictions can be compared with
observations. In Figure I.5 we show the angular spectra for temperature anisotropies (and polarization) as
measured by the Planck Collaboration together with the best fit obtained with the standard ΛCDM model
of cosmology. We see a remarkable agreement between theory and observations which provides one of the
greatest successes of modern cosmology.

PAGE 34 OF 200



THE EARLY UNIVERSE W. GIARÈ

Primary Anisotropies

Temperature fluctuations in the CMB photons, as well as their measured power spectrum shown in Fig.(I.5),
carry information about the Early Universe and can be sourced by interactions of the photons with other
fields, such as gravity and density perturbations [12, 13, 15, 16, 38, 40, 46, 55, 60, 67]. Here we study
anisotropies originated on the last scattering surface, before (or at least at) the time of recombination.
Sometimes these are called primary anisotropies and are strongly linked with the primordial perturbations
discussed in the previous section. In what follows we briefly review the main processes that generated
them and their signature in the power spectrum.

There are basically three processes which contributed to primary anisotropies: (i) the Sachs-Wolfe effect
due to the gravitational potential fluctuations on the last scattering surface [68], (ii) the intrinsic adiabatic
fluctuations of the baryon-photon plasma [69] and lastly (iii) the Doppler effect due to the peculiar velocity
of the different regions on the last scattering surface [70], for which photons emerging from regions that
move in opposite (same) direction to the observer are red-shifted (blue-shifted). The total temperature
fluctuations are simply given by the sum of the three contributions and so the measured mean squared
temperature fluctuations are given by〈(

∆T
T

)2
〉

= (Φ + Θ)2 + (n̂ ·~vb)
2 (I.186)

Looking at Figure I.5, we can identify three different regions in the angular power spectrum:

• The Sachs-Wolfe Plateau on scales greater than the horizon at decoupling 2 . ` . 100. On such
large scales the main contribution is due to fluctuations in the gravitational potential at recombination.
In particular, depending on whether the fluctuations in the gravitational potential generate a potential
well or a potential peak, photons are red-shifted and blue-shifted, respectively. The fluctuations in the
photons temperature are simply given by [

δT
T

]
SW

=
δΦ
Φ

(I.187)

Also, due to the intrinsic adiabatic fluctuations in the baryon-photon plasma, photons diffused from
over-dense regions (δb > 0) will be hotter, while those coming from sub-dense regions (δb < 0) will be
colder. This is another primary isotropy which affects the same multipole range than the Sachs-Wolfe
effect and in this case the fluctuations in the CMB Photons temperature are given by[

δT
T

]
δb

=
1
3

δρb

ρb
= −2

3
δΦ
Φ

(I.188)

where we have used ρb ∝ 1/a3 ∝ T3 and in the last line we used the adiabatic conditions that relate
fluctuations in the cosmic fluid to the gravitational potential. So, notice that this effect is opposed to the
SW effect and the sum of the two effects is in favor of gravity.

• Acoustic Peaks at intermediate scales 100 . ` . 1000. In the previous section we saw that, during the
matter dominated epoch, perturbations in baryon-photon plasma, falling in the gravitational potential,
generate relativistic sound waves that propagate until recombination. These waves lead to the dramatic
acoustic oscillations in the angular spectrum of CMB temperature anisotropies on scales between 0.1
and 2 angular degrees. As anticipated, these features are captured by Eq.(I.169) that, by noting that
ργ ∝ 1/a4 ∝ T4, we can easily write in term of Θ = δT/T as

Θ′′ +
a′

a

(
Rb

1 + Rb

)
Θ′ + k2u2

s Θ = −1
3

k2Φ. (I.189)
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We recall that us is given by Eq.(I.167) and that we are ignoring the time variations of the potential (which
is a good approximation since recombination happens during matter dominance when the potential is
approximately constant, see also Figure I.2). To point out much of the physics underlying this equation,
we can consider a simple toy model, getting rid of Θ′ and writing

Θ′′ + k2u2
s Θ = −1

3
k2Φ (I.190)

This is the equation of a simple harmonic oscillator with a constant gravitational forcing term. For
adiabatic initial conditions Θ(0) = −2/3Φ and Θ′(0) = 0, the general solution is

Θ(η, k) =
1
3
(
1 + 3Rb

)
Φ(k) cos (krs)− (1 + Rb)Φ(k) (I.191)

with rs the sound horizon of the baryon-photon plasma, Eq.(I.168). We can use this simple solution to
study some interesting limits. First, when photons dominate the cosmic fluid we can take the limit Rb →
0 from which we see that (I.191) becomes the equation of motion of a harmonic oscillator with a zero-
point displaced by gravity. This means that photons oscillate in and out the potential well and because
of these oscillations after decoupling different modes will arrive in different phases of their evolution.
Therefore there will be a set of discrete wave-numbers {kn} = nπ/rs(ηr) which will correspond to the
oscillation peaks at recombination time (η = ηr). In other words a single scale k, which has done half-
oscillation at recombination, is in the maximum compression in the potential wells and in the maximum
rarefaction on the peaks. This scale would produce the highest δT/T, i.e., the first peak of the CMB
power spectrum. On the other hand, the scale corresponding to the half of the previous scale, has
done a complete oscillation at recombination, and is in the maximum compression on the potential
peaks, and in the maximum rarefaction in the wells. This latter scale corresponds to the second acoustic
peak of the CMB power spectrum. Therefore, in practice, the odd acoustic peaks, of the CMB power
spectrum, correspond to the maximum compression in the potential wells while the even acoustic peaks
correspond to the maximum compression on the potential peaks. These are nothing but the peaks that
we observe in the CMB angular spectrum. Anyway it should be noted that, without Baryons (Rb = 0),
we would not have acoustic waves at all since the two contributions of density and velocity of the fluid
would cancel each other. Therefore one has to consider also Rb and, from the general solution (I.191),
we see that the displacement is further enhanced by Baryons. In other words, Baryons allow a greater
compression of the fluid in the potential well and this is translated into an enhancements of all the peaks
due to compression over those from rarefaction.

• Dumping tail on small scales ` & 1000. Due to photons diffusion, the temperature fluctuations are
washed out. Indeed on those scales the ideal fluid approximation used to derive the dynamics of pri-
mordial perturbation breaks down and it can be shown that [12]

Θ ∝ e−k2/k2
D cos (krs) . (I.192)

were kD is also known as Silk damping scale [12, 13, 15]. It can be shown that a detailed calculation of
the damping scale involving the quadruple moment in the Einstein-Boltzmann equations gives [12, 15]

k−2
D (k) .

=
∫ η

0

dη̃

6(1 + Rb)ne σT a(η̃)

[
R2

b
1 + Rb

+
8
9

]
(I.193)

where ne is the number of free electrons and σT the Thompson cross section.
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Secondary Anisotropies

We refer to the anisotropies generated after recombination, when photons freely traveled from the last
scattering surface to us, as secondary anisotropies. In what follows we review the main formation processes

• (early and late) Integrated Sachs-Wolf Effect: after decoupling, if the CMB photons cross a time-
dependent gravitational potential, they will be red-shifted or blue-shifted depending on the variation
in the potential. This is exactly what happened also before recombination with the SW effect, but with
the difference that, instead of occurring on the last scattering surface, in this case the shift is integrated
along the photon’s path. Notice that if the Universe is matter dominated, at linear order in perturba-
tion theory, the gravitational potential is constant and therefore the Integrated Sachs-Wolf (ISW) effect is
zero. Anyway, in a realistic cosmological model the matter domination is not instantaneous and, for a
short period after decoupling, the gravitational potential still slightly changes in (conformal) time. Fur-
thermore, at late time, after the matter-dark energy equality, the gravitational potential starts changing
again, see Figure I.2. So, we can actually distinguish the Early ISW, that occurs shortly after decoupling,
when matter does not completely dominate, and the Late ISW, that instead occurs quite recently, when
dark energy starts dominating. The ISW leaves signatures in the CMB angular spectrum on multipoles
` . 200.

• Gravitational Weak Lensing: on large scales the Universe is full of structures, such as galaxies, that
can both produce secondary anisotropies and distort primary anisotropies through the so called gravita-
tional lensing. Consider a pair of photons that move towards the observer forming at the beginning an
angle θ between their directions of propagation. Due to the lensing effect the observer will see instead
an angle θ + δθ. The distortion of light is typically of a few arcmins and the result is the smearing of the
oscillations of the CMB angular power spectrum at small scales [12, 15, 71].

• Sunyaev-Zel’dovich Effect: this effect is due to the inverse Compton scattering between low energy
CMB photons and high energy free electrons in the hot ionized gas in a cluster of galaxies. This effect
produces two distinct signatures: first, photons, crossing the cluster, are scattered by the random motion
of free electrons, deforming the black body spectrum and leading to a reduction (increment) in temper-
ature at the low (high) frequencies. Second, because of the peculiar velocity of the hot ionized gas in
galaxies, CMB photons will be red-shifted or blue-shifted for the Doppler effect [12, 15, 70, 72].

• Reionization: at late times, the Universe reionized again and CMB photons scattered off free electrons,
reaching the observer from a different direction with respect to the initial one. While the physical nature
of reionization is still discussed, its signature on the CMB angular spectrum can be observed, giving a
decrease of the power in the spectra on multipoles ` & 10 that are reduced by a factor e2τ where τ is the
optical depth defined as [12, 16]

τ
.
=
∫ η0

ηreion

dη̃ ne σT a (I.194)

While reionization suppresses the peaks amplitude in the temperature anisotropies spectrum, these ef-
fects are completely degenerate with other cosmological parameters. On the other hand, the reioniza-
tion signal dominates the position and the height of the peaks in the polarization spectra at multipoles
` . 10. Therefore it is worth noting that the constraints on τ come basically from polarization and not
from anisotropies.

• Relic Gravity Waves: tensor perturbations that enter the horizon after recombination in general con-
tribute to the CTT

` and so produce temperature anisotropies. Here we briefly show that the contribution
of primordial gravity waves to CMB anisotropies is extremely small. It is useful to relate the mode with
wave-vector k at the time η to the primordial amplitude defining the so-called transfer function h(k, η)
as

h(η, k) = h(k, η) · hi(k) (I.195)
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where hi(k) is the primordial amplitude. We have shown that after the horizon re-entry, tensor pertur-
bations behave as gravitational waves which decay with the expansion of the Universe. It can be shown
that their contribution to the C` is given by [15]

GWCTT
` =

9π

2
(l + 2)!
(l − 2)!

∫ ∞

0

dk
k
PT(k) ·

(∫ η0

ηr

dη
∂h(k, η)

∂η

jl [(η0 − η) k]
(η0 − η)2 k2

)2

(I.196)

where PT(k) is the primordial spectrum of tensor perturbations predicted by inflation (that we will in-
troduce in the next section and will be the central topic of the next chapter) and jl are the spherical
Bessel function. This integral depends basically on (the parametrization of) the primordial spectrum
and (derivative of ) the transfer function. We will see that the simplest inflationary scenarios predict a
basically flat tensor spectrum, while the term inside the round brackets gives non-negligible contribu-
tions only on scales k(η0 − η) ∼ ` and kη ∼ 1. In this regime the spherical Bessel functions behave as
jl [(η0 − η) k] ∼ `−1 and so the integrals behave as ∼ (`−3)2 ∼ `−6. Since the overall factor grows as `4

and we finally get
GWCTT

` ∝ `−2. (I.197)

Gravity waves contribution decays very rapidly on multipoles ` & 100 because in that case tensor modes
enter the horizon before recombination. On multipoles 2 . ` . 50 they instead behave similar to the
SW effect, but in any case, also on such large angular scales, their contribution is always subdominant
because the primordial amplitude of tensor modes is at least 100 times smaller than the amplitude of
scalar modes, see also Figure I.6 where we compare the scalar and tensor contribution in the different
angular spectra. Fortunately a more promising approach for the detection of primordial tensor modes
can be obtained by searching their signatures in the B-modes polarization. We would like to conclude
with a final remark: the parametrization of the primordial spectrum, plays an important role in deriving
this result. As a matter of fact, if during inflation the power spectrum is sufficiently "blue" (i.e., the
gravity wave production is amplified at large k) the contribution of short waves is enhanced, and hence
GWCTT

` may not be so small at large `. We will discuss some of these models in the next chapter.

I.III.II POLARIZATION

The temperature anisotropies originated from primordial fluctuations, are polarized by the Thomson scat-
tering [71, 73–75]. Recombination was not an instantaneous process: while protons and electrons were
combining into neutral hydrogen, the photons developed a quadrupole anisotropy that was converted
into CMB polarization by the Thomson scattering. A combined analysis of polarization and anisotropies
allows us to evaluate the consinstency of the standard cosmological model: measuring the CMB polar-
ization increases the accuracy the cosmological parameters are measured with. Moreover, the search for
B-modes in the CMB polarization is one of the target of observational cosmology as they are related to
the inflationary production of gravitational waves on super-horizon scale which is a unique prediction of
inflation theory. Therefore it is worth recalling the classic theory of polarized electromagnetic radiation.

Consider a plane wave coming from the positive direction of the z axis:

E(t) =
1
2

[
E eiω t + E∗ e−iω t

]
, (I.198)

the amplitude E can be decomposed into its (x, y) components as Eφ = Ex cos φ + Ey sin φ. Defining the
unpolarized intensity I

I ≡ |Ex|2 + |Ey|2, (I.199)
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FIGURE I.4: The map of polarized Cosmic Microwave Background anisotropies as measured
by the Planck Collaboration. Figure adopted from the Planck legacy archive [42].

and the Stokes parameters {Q, U, V}

Q ≡ |Ex|2 − |Ey|2, (I.200a)

U ≡ 2 Re
[
E∗x Ey

]
, (I.200b)

V ≡ 2 Im
[
E∗x Ey

]
(I.200c)

one obtains
|E2

φ| = I + Q cos 2φ + U sin 2φ. (I.201)

We recall that Q and U are two Stokes parameters that specify the polarization plane, while V is a third
Stokes parameter that measures the intensity of circular polarization. If we perform a rotation around the
axis z of an angle ϕ so that φ → φ + ϕ clearly |E2

φ| must not change. This implies that under rotation the
Stokes parameters (Q, U) change as [55](

Q
U

)
→
(

cos 2ϕ − sin 2ϕ
sin 2ϕ cos 2ϕ

)(
Q
U

)
. (I.202)

Using the combination Q± ≡ Q± i U we find a more compact expression:

Q± → e±2 i ϕ Q± (I.203)

which implies the existence of a preferred direction, i.e., the direction in which the Stokes parameter U
vanishes. Therefore, because of the assumption of spatial isotropy, in an unperturbed Universe the Stokes
parameters must be all null. Anyway in our Universe small deviations from homogeneity and isotropy
are observed as well as a map of polarized CMB anisotropies, see Figure I.4. To understand why, we can
consider a toy model where a photon travels in the direction of an incident single free electron. In a frame in
which the electron is located at the origin, the electron itself will oscillate with a displacement r(t) and with
an acceleration r̈ = − e

me
E(t). This will induce a dipole momentum d(t) = −e r(t) and a corresponding
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FIGURE I.5: The TT, TE, EE and Lensing (bottom right) angular power spectra of Cosmic
Microwave Background Radiation as measured by the Planck Collaboration with DX,Y
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2π CX,Y
` . The blue solid line represents the best fit obtained within the standard

ΛCDM cosmological model. Figure adopted from the Planck legacy archive [42].
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outgoing scattered spherical wave E = 1
4π r

(
d̈(t− r)× n̂′

)
× n̂′ whose components (E′x, E′y) are related to

the original radiation components (Ex, Ey) as follows:

E′x =
e2

4π me r
Ex cos θ, E′y =

e2

4π me r
Ey (I.204)

In terms of the outgoing and ingoing Stokes parameters this reads:

I′ =
3σT

8π r2

[
2
(
cos2 θ + 1

)
I +

(
cos2 θ − 1

)
Q+ +

(
cos2 θ − 1

)
Q−
]

(I.205)

Q′± =
3σT

8π r2

[
2
(
cos2 θ − 1

)
I + (cos θ ± 1)2 Q+ + (cos θ ∓ 1)2 Q−

]
(I.206)

The second of these relations clearly shows that the outgoing Stokes parameters are non zero also for
unpolarized radiation. This description can be applied also to CMB radiation. However since for a black-
body radiation I ∝ T4 and since we work with Θ = δT

T = δI
4I , it is useful to redefine the Stokes parameters

in a cosmological contest with the following normalization

Q± →
Q±
4I

(I.207)

According to the Q± transformation propriety under rotations (I.203), we clearly see that it is a spin-2 field
that can be expanded in terms of spin-weighted spherical harmonics. The spin-weighted spherical harmonics
can be defined in terms of rotations matrices a:

sY`m(θ, φ) =

√(
2`+ 1

4π

)
D`
−s,m(φ, θ, 0). (I.208)

They reduce to ordinary spherical harmonics when s = 0. In this case s = 2 and defining 2Y`m ≡ Y±`m, one
can expand Q± as:

Q±(ê) =
∞

∑
`=2

`

∑
m=−`

Q±`m Y±`m(ê). (I.209)

At this point we can introduce the Polarization multipoles E`m and B`m defined as:

Q±`m ≡ E`m ± i B`m (I.210)

One can show that under parity transformation ê → −ê the E modes E`m → (−1)`E`m while the B modes
B`m → (−1)`+1B`m. Therefore the E-modes are parity-even while the B-modes are parity-odd. Roughly
speaking, we can think of the E-modes as the gradient of a scalar and the B-modes as the curl of a vec-
tor. The stochastic properties under rotations and parity transformations allow us to define the following
correlators among a`m, E`m and B`m

〈a`ma∗`′m′〉 = CTT
` δ` `′δm m′ (I.211a)

〈a∗`m E`′m′〉 ≡ CTE
` δ``′δmm′ (I.211b)

〈E∗`m E`′m′〉 ≡ CEE
` δ``′δmm′ (I.211c)

〈B∗`m B`′m′〉 ≡ CBB
` δ``′δmm′ , (I.211d)

where for sake of completeness we wrote also the correlator (I.183). Notice that since B is parity-odd, while
T and E are parity-even, in a parity-conserving theory we expect CTB

` = CEB
` = 0 and for each ` we can
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define the so called covariance matrix

Ĉ`
.
=

 CTT
` CTE

` 0
CET
` CEE

` 0
0 0 CBB

`

 . (I.212)

Today, the spectrum of E modes polarization (as well as the cross-correlator TE spectrum) is measured
with good precision by the Planck Collaboration, see also Figure I.5. Again a remarkable agreement with
the prediction of standard cosmological model is found. Measurements of CTE

` and CEE
` give additional

information on the cosmological parameters, often braking the degeneracy between them. In particular

• The spectrum CTT
` of temperature anisotropies is mostly sensitive to scalar perturbations and the gravi-

tational potential.

• The spectrum CEE
` on large multipoles 100 . ` . 1000 is mostly determined by the velocity of the

baryon-photon plasma at the recombination epoch while on low multipoles it strongly depends on the
optical depth at reionization: CEE

` ∝ τ2. We clearly show this dependence in Figure I.6 where the effect of
τ on the low multipoles of the EE angular spectrum has been emphasized adopting an unrealistic large
value τ = 0.2.

• The spectrum CTE
` on low multipoles strongly depends on the optical depth at reionization: CTE

` ∝
τ. Once again, in Figure I.6 we show the effect of τ in the TE spectrum for an unrealistic large value
of τ = 0.2. The (combined) measurement of CTE

` and CEE
` allows us to constrain τ which would be

difficult within only the spectrum of temperature anisotropies CTT
` as in that case it turns out to be

extremely degenerate with the other parameters. Notice also that since both CEE
` and CTE

` are dominated
by reionization on low multipoles, the cosmic variance sets a natural limit on the maximum precision τ
can be measured with. We are already close to such limit.

• The spectrum CBB
` is not measured. Anyway scalar perturbations can produce only E-modes while ten-

sor perturbations can produce both E-modes and B-modes. Hence a detection of B-modes can be a hint
for the existence of tensor modes. However the B-mode spectrum can have two different contributions:
together with tensor perturbations, also gravitational lensing can mixes E modes and the B modes, con-
verting the first into the second. Therefore a careful characterization of the B-mode spectrum is required
to distinguish the two sources. In what follows we give some details.

E-modes from relic gravity waves

Tensor modes produce both temperature anisotropies and E and B modes polarization in the CMB radia-
tion. Therefore they not only contribute to the angular spectrum of temperature anisotropies via Eq.(I.196)
but they contribute also to the TE EE and BB angular spectra. In particular the EE and TE contributions can
be estimated to be [15]

GWCEE
` ∝

∫ ∞

0

dk
k
PT(k)

(
∂h

∂η

)2{ (l + 2)(l + 1)
(2l − 1)(2l + 1)

jl−2 [(η0 − ηr) k]

− 6(l + 2)(l − 1)
(2l − 1)(2l + 3)

jl [(η0 − ηr) k] +
l(l − 1)

(2l + 1)(2l + 3)
jl+2 [(η0 − ηr) k]

}2

(I.213)
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and

GWCTE
` ∝

√
(l + 2)!
(l − 2)!

∫ ∞

0

dk
k
PT(k)

(
∂h

∂η

) ∫ η0

ηr

dη

(
∂h

∂η

)
jl [(η0 − η) k]
(η0 − η)2 k2

×
{

(l + 2)(l + 1)
(2l − 1)(2l + 1)

jl−2 [(η0 − ηr) k]− 6(l + 2)(l − 1)
(2l − 1)(2l + 3)

jl [(η0 − ηr) k]

+
l(l − 1)

(2l + 1)(2l + 3)
jl+2 [(η0 − ηr) k]

}
(I.214)

respectively. The effect of gravitational waves in the angular spectra of CMB polarization is shown in
Figure I.6. As one can see, also for unrealistic large values of the tensor amplitude, the tensor contribution
is always sub-dominant with respect to the scalar counterpart both in the EE and EE spectra. This is one
of the reason why a detection of tensor perturbations is extremely challenging from an experimental point
of view. Fortunately, while scalar modes do not produce B-mode polarization, tensor modes contribute
also in the BB spectrum and so searching for B-modes polarization is a more promising way for detecting
Primordial Gravitational Waves.

FIGURE I.6: A comparison between scalar and tensor contributions in the CMB temperature
anisotropy and polarization angular spectra. On the left the contributions from adiabatic
scalar perturbations (and lensing) in the TT TE EE (and BB) spectra. On the right the con-
tributions from tensor perturbations in the same spectra. To better emphasize the effects of
tensor modes and reionization, the tensor amplitude and the optical depth are fixed to the

unrealistically large values of r = 0.4 and τ = 0.2, respectively. Figure based on Ref. [15].

B-modes from relic gravity waves

The detection of B-mode polarization can be considered a major task of observational cosmology as it can
be produced by inflationary gravity waves. Here we briefly review the signatures that relic gravitational
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radiations may have left in the B-spectrum. A detailed computation of the relic gravity waves contributions
to CBB

` would be rather expensive, involving the polarization tensor and some maths. Here we avoid to get
lost in mathematical details and we just point out that this contribution can be computed to be [15]

GWCBB
` ∝

∫ ∞

0

dk
k
PT(k)

(
∂h

∂η

)2

×
[
`+ 2

2`+ 1
j`−1 (kη0)−

`− 1
2`+ 1

j`+1 (kη0)

]2

(I.215)

where the constant of proportionality is rather small. In any case, one can see that

• Tensor perturbations that are super-horizon at recombination give small contributions in the integral
as in that case the modes are frozen and the derivative with respect to the conformal time is extremely
small.

• The largest contribution in Eq.(I.215) is given by tensor modes that enter the horizon exactly at the
time of recombination (kηr ∼ 1) which corresponds to multipoles ` . η0/ηr ∼ 50 or to angles smaller
than about 3 degrees. Indeed in that region ∂h/∂η ∝ 1/ηr while the spherical Bessel functions result
to be j`(kη0) ∼ 1/(kη0). Therefore CBB

` is constant in ` in that range of multipoles and its magnitude
will depend on the amplitude of tensor modes as sourced by inflation: if during inflation a satiable
background of primordial gravitational waves is generated this contribution can be dominant on these
scales.

• On smaller scales, 50 . ` . 1000 the behavior of the integral is very different as it saturates for k ∼ `/η0.
Indeed on small scales ∂h/∂η ∝ 1/η2

r ∝ 1/` as well as j`(kη0) ∝ 1/`. Therefore we get that CBB
` ∝ 1/`4

which decays very rapidly wit `. Furthermore on small scales the B-mode spectrum is dominated by
the signal due to gravitational lensing which, converting E modes into B modes, contains information
related to the different cosmological parameters, such as dark matter, dark energy or spatial curvature.

We conclude that CMB polarization is particularly important also from the viewpoint of the search for
tensor perturbations. Indeed the analysis of temperature anisotropies CTT

` alone has a limited sensitivity
on tensor perturbations both because the cosmic variance affects signals at low mulitipoles and above all
because of degeneracy with the other cosmological parameters. While the measurement of E-mode po-
larization improves the sensitivity to tensor modes, the analysis of B-mode offers us a unique opportunity.
In particular, of primary interest is the study of B-mode at intermediate angular scales, where the cosmic
variance is not very significant and gravitational lensing is not dominant, yet. While currently there is no
evidence for B-mode polarization, future cosmological experiments are designed specifically for probing
the range of multipoles of interest for tensor perturbations, possibly leading to a first detection of relic
gravity waves and opening to the possibility to test and constrain fundamental physics on the inflationary
energy scales, literally at the dawn of time. In the next chapter we will discuss exactly how non-standard
physics on the inflationary energy scales can be encoded in the inflationary parameters and how we can
test and probe it using primordial gravitational waves.

I.IV INFLATION THEORY

As often happens in Science, observations challenge theories. Many evidences are extremely difficult to ex-
plain in contest of the Hot Big Bang Theory. For example the previous discussion of the Cosmic Microwave
background teaches us that the Early Universe was very homogeneous and all the CMB photons share the
same temperature within small fluctuations of order δT/T ≈ 10−5. This is very hard to explain in the the-
oretical framework we described so far because CMB photons are separated by a distance grater than the
particle horizon and they have never communicated [54, 76, 77]. So, according to Hot Big Bang Theory, the
last scattering surface should consist of many causally disconnected regions and there is any dynamical
reason why such regions (that never "talked") could share similar physical conditions. We are forced to
suppose a fine-tuning of thousands initial conditions to explain homogeneity in the Early Universe.
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Another observational evidence is that the Universe is spatially flat [78]. We pointed out that the Hubble
radius 1/(aH) grows with time for each component of the cosmic fluid with equation of state ω > − 1

3 .
Therefore when the Universe is dominated by radiation or matter we have Ω − 1 ∝ a2 and Ω − 1 ∝ a,
respectively. In both cases Ω − 1 decreases and so going backwards with time |1−Ω| should diverge.
Flatness is not a tracking solution of the FRW dynamics and in the Hot Big Bang cosmology, a flat geometry
today would require an extreme fine-tuned Ω at early times. We can roughly deduce its value at the Planck
time (i.e., the time when the temperature of the Universe is the Planck epoch):

|Ω− 1|T=TPlanck

|Ω− 1|T=T0

≈
(

a2
Pl

a2
0

)
≈
(

T2
0

T2
Pl

)
≈ O

(
10−64

)
(I.216)

where we have assumed a Radiation dominated Universe, we have used that T ∝ 1
a and we remember that

the present epoch temperature of the Universe is T0 ≈ 10−13 GeV. Is it something meaningful to require a
precision in the initial conditions within 1 part over 1060?

Although all these "problems" are not inconsistencies able to falsify the Big Bang picture, it is clear that
one would prefer a physical mechanism able to fix all the required initial conditions without controversial
assumptions. Inflation [79], an early epoch of "fast" accelerated expansion with repulsive gravity, is largely
believed to be exactly the physical mechanism able to set the correct initial conditions [54, 55, 76, 77, 80–83].

To figure out how a phase of repulsive gravity can drive the Universe towards homogeneity and flat-
ness, we recall that an accelerated expansion requires ω < − 1

3 and that in this case also the Hubble radius
(aH)−1 decreases over the time. This automatically solves also the flatness problem:

|1−Ω(a)|︸ ︷︷ ︸
Driven to flatness

=
∣∣−κ(a H)−2∣∣︸ ︷︷ ︸
⇐decrease

. (I.217)

In particular it should be noted that in the de Sitter limit, ω = −1, the spacetime expansion becomes
exponentially accelerated as well as the Hubble sphere exponentially shrinks: (aH)−1 ∝ e−Ht. In terms of
the particle horizon, η = −(1/H)e−Ht, we see that the initial singularity is pushed back to ηi → −∞ with
the hypersurface η = 0 corresponding to the end of inflation. So, not only the curvature is exponentially
driven to flatness but now there is an "infinite" amount of conformal time to let the past light-cones of CMB
photons intersect in such a way that the homogeneity observed in the CMB radiation is simply explained
in terms of thermal equilibrium.

Anyway it is also evident that in an exact de Sitter background the end of inflation is reached at the
cosmological time t = ∞ which means that inflation would go on forever. This is clearly due to the isome-
tries of the de Sitter background which, being a maximally symmetric solution, preserve invariance under
time translations. Therefore to ensure the end of inflation, the de Sitter limit, although valid at early times,
must be broken near the end of inflation. Therefore we need a dynamical process able to transit from an
inflating phase to a radiation dominated era.

I.IV.I SINGLE FIELD SLOW-ROLL INFLATION

The simplest dynamical model of Inflation involves a scalar field φ, which from now on we call the inflaton,
minimally coupled to gravity. The action of the field reads [54, 55, 76, 77, 80–83]

S = SEH + Sφ =
∫

d4x
√
−g

[
M̄2

p

2
R +

1
2

gµν∂µφ∂νφ−V(φ)

]
, (I.218)

with M̄p = 1/
√

8πG the reduced Planck Mass in the natural units c = } = 1 (see also the conventions).
This theory is said to be “minimal coupled to gravity” because there is not a direct coupling between the
inflaton field and the metric tensor in the action. The equation of motion can be obtained minimizing the
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action with respect to the field δSφ/δφ = 0. A trivial computation gives:

1√−g
∂µ

(√
−g∂µφ

)
+

δV(φ)

δφ
= 0. (I.219)

In principle, to solve this equation in full generality we should use the FRW metric with a non-vanishing
curvature since it is the inflation itself that drives the spacetime to be flat. Anyway the observational
consequences of the inflation come out from its ending phase when the spacetime is already nearly flat. So
a consistent theory of initial conditions is not required for investigating the inflationary predictions and we
can simply use a flat FRW metric. In this way from Eq. (I.219) we obtain

φ̈ + 3Hφ̇− a−2(t)∇2φ +
δV(φ)

δφ
= 0. (I.220)

If we restrict our attention on homogeneous scalar fields, the gradient term vanishes ∇2φ = 0 and the
functional derivative δV(φ)/δφ reduces to the ordinary one dV(φ)/dφ ≡ V ′(φ). The equation of motion
eventually becomes

φ̈ + 3Hφ̇ + V ′(φ) = 0. (I.221)

Minimizing the action with respect to the metric δS/δgµν = 0 we can find the relation for Stress-Energy
tensor

Tφ
µν = gµνLφ − 2

δLφ

δgµν
= −∂µφ∂νφ + gµν

(
1
2

∂αφ∂αφ−V(φ)

)
(I.222)

and get the relation for the energy-density and pressure in a inflaton-dominated Universe, namely:

ρφ =
1
2

φ̇2 + V(φ), (I.223)

pφ =
1
2

φ̇2 −V(φ). (I.224)

The equation of state ω is now a function of the scalar field

ωφ ≡
pφ

ρφ
=

1
2 φ̇2 −V(φ)
1
2 φ̇2 + V(φ)

. (I.225)

and we clearly see that if V � φ̇2 a phase of repulsive gravity ωφ ≈ −1 < −1/3 is obtained and the
Universe starts inflating. This scenario is commonly called slow roll inflation. The price to pay for this
paradigm of inflation is that we need to put some restrictions on the scalar field φ and above all on the
shape of its potential V(φ) in order to obtain a de sitter expansion. First of all it is useful to write down the
Freedman equations (I.17) and (I.18) for a Universe dominated by the homogeneous scalar field φ:

3M̄2
p H2 = ρφ =

(
1
2

φ̇2 + V(φ)

)
, (I.226)

M̄2
p

(
ä
a

)
= −1

6
(
ρφ + 3pφ

)
= −1

3
(
φ̇2 −V(φ)

)
. (I.227)

Taking the derivative of the equation (I.226) and using the equation of motion (I.221) we have:

2 M̄2
pḢ = −φ̇2 (I.228)
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During the slow roll phase we want an almost exponentially expansion and so we have to require ωφ ≈ −1
that implies φ̇2 � V(φ). So from equation (I.226)

V(φ) ≈ 3 M̄2
p H2, (I.229)

and the slow roll condition is equivalent to require that

|Ḣ|
H2 � 1. (I.230)

On the other hand, taking the derivative of Eq.(I.229) and using the slow roll condition we get also

V ′(φ) ≈ −3 Hφ̇, (I.231)

that implies |φ̈| � 3 H|φ̇|. Therefore it is useful to introduce the following potential slow-roll parameters

εV
.
= M̄2

p
1
2

(
V2

φ

V2

)
, (I.232a)

ηV
.
= M̄2

p

(
Vφφ

V

)
, (I.232b)

ξ2
V

.
= M̄4

p

(
VφVφφφ

V2

)
, (I.232c)

v3
V

.
= M̄6

p

(
V2

φ Vφφφφ

V3

)
(I.232d)

where Vφ...φ
.
= V ′...′ indicates the derivatives of the potential with respect to the filed. Notice that the

potential parameters will be largely used in the subsequent discussion together with the parameters {εi}
defined as

ε1
.
= − Ḣ

H2 ' εV , εi>1
.
=

d log εi−1

d log k
. (I.233)

that are instead clearly related to the background dynamics. During the slow-roll phase all these param-
eters are expected to be small with the limit 1 � |εV | ' |ε1| → 0 corresponding to an exactly de Sitter
expansion.

Inflation can be easily achieved when the potential looks like that shown in Figure I.7. Along the flat
plateau the kinetic energy of the scalar field φ̇ becomes negligible with respect to the potential energy
V(φ) which is instead approximately constant. In this way, ωφ ≈ −1 and we have an almost de Sitter
phase. On the other hand, when this condition breaks down, inflation ends and the scalar field typically
falls into a potential well starting oscillating. This phase of oscillation around the vacuum state is called
reheating [84–93] and is required to restore particles in the Universe. Indeed during the slow period, the
Universe is exponentially driven towards flatness and homogeneity but all its pre-inflationary contents are
exponentially diluted as well. This means that at the end of inflation the Universe appears nearly empty
and dominated by a scalar field in a state of coherent oscillation about the vacuum state. This looks far
away from the Hot Big Bang picture: there is no radiation or particles but only an enormous amount of
energy. Indeed, as by definition the energy-density during the inflationary expansion remains constant, the
total energy Ei = ρVi exponentially expands with the volume of the Universe. Such an exponential amount
of energy can easily decay into radiation and particles when the field starts oscillating during the reheating
phase. The details of reheating clearly depend on the specific shape of the potential, nevertheless this is
typically a very rapid process. When the field is oscillating around the minimum, we can approximate the
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FIGURE I.7: The typical shape of a good Inflationary Potential.

potential as V(φ) ≈ λ2

2 φ2 so that:

ρφ =
1
2
(
φ̇2 + λ2φ2) , (I.234)

taking the time derivative, ρ̇φ = φ̇ φ̈ + λ2φ φ̇, and using Eq. (I.221) we get:

ρ̇φ + 3Hρφ =
3H
2
(
λ2φ2 − φ̇2)︸ ︷︷ ︸

oscillates

. (I.235)

The oscillating factor on the right hand side averages out to zero over one oscillation period and the long-
time behavior of the energy density eventually reads:

˙̄ρφ + 3Hρ̄φ = 0. (I.236)

Note that the inflaton field is doing small oscillations around the potential minimum and the energy density
can decay into particles. If the decay is slow the inflaton energy density follows the equation:

˙̄ρφ + (3H + Γ)ρ̄φ = 0, (I.237)

where Γ represents the inflation decay rate and so−Γρφ is the energy transferred to other particles. Whether
the inflaton decays into bosons, the process may be very rapid and violent and it is known as pre-heating.
Anyway the particles produced in this stage will eventually interact, creating other particles unless the
thermal equilibrium will be restored at some temperature so that the standard Hot Big Bang evolution can
start.

I.IV.II QUANTUM INFLATIONARY FLUCTUATIONS

In the previous section we described the dynamics of scalar and tensor perturbation and their imprinting
in the cosmic microwave background, but we said nothing about their origin: which is the physical nature
of primordial perturbations? One could say that they simply exist, but a remarkable aspect of the CMB is
that the primordial perturbations are correlated on scale well outside the horizon at the time of decoupling.
This can be considered as another aspect of the horizon problem: how can perturbations that have never
interacted be correlated? Here we want to answer all these questions showing that inflation provides a
fascinating mechanism able to unveil the nature of primordial density perturbations. This is maybe one
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of the most relevant aspects of inflation theory: one can calculate the power spectrum both of scalar and
tensor perturbations and since this spectra are related to the CMB anisotropies, this calculation provides
an important prediction directly connected with observations.

The basic idea underlying the origin of the primordial perturbations is that, during inflation, the infla-
ton field φ evolving on the potential V(φ) will not have a completely classical dynamics, but it will also
have some small quantum fluctuations around its classical trajectory. Quantum fluctuations of the infla-
ton field are so blown up on superhorizon scales by inflation itself becoming classical perturbations: the
source of the primordial power spectra of scalar and tensor fluctuations. Therefore inflation, combined
with quantum mechanics, provides an elegant mechanism for generating the initial seeds of all structures
in the Universe [13, 55, 77, 94, 95].

To describe a rigorous picture of quantum fluctuations, in general, we should consider perturbations
in the metric, too. Nevertheless the Einstein equations relate perturbations in the metric to perturbations
in the fields and so there is essentially only one physical degree of freedom [83, 96]. If we choose to work
in the so called spatially flat Gauge, namely the Gauge in which the curvature of space-like hypersurfaces
is zero and the spatial part of the metric is unperturbed, we can quantify this degree of freedom as the
field fluctuations δφ, leaving the metric unperturbed [53, 82, 83, 96]. At the same level of accuracy, we
can also drop the contribution that arises from the inflationary potential V(φ), considering the field to be
free. In this way, we can just focus on δφ, and, according to the perturbation theory, we split field and the
fluctuations φ → φ + δφ. The perturbations in general will not be homogeneous, δφ = δφ(t, x), so in their
equation of motion we must consider also the spatial dependence and, in light of Eq. (I.220), we write

δ̈φ + 3H ˙δφ− a−2(t)∇2δφ = 0. (I.238)

It is useful to use the conformal coordinates ∂t = (1/a)∂η in such a way that

δφ′′ + 2
(

a′

a

)
δφ′ −∇2δφ = 0 (I.239)

where we used the notation (. . . )′ ≡ ∂η(. . . ). We have to quantize the field in a FRW spacetime. We proceed
analogously to the canonical quantization process, expanding the field δφ into its Fourier components

δφ(η, x) =
∫ d3k

(2π)3

[
δφk(η) bkeik·x + δφ∗k(η) b∗k e−ik·x

]
(I.240)

and promoting the field δφ to be an operator δφ → δ̂φ and (bk, b∗k) → (b̂k, b̂†
k). We interpret (b̂k, b̂†

k) as the
common creation and annihilation operators. We also impose the canonical quantization conditions:[

b̂k , b̂†
k’

]
= δ3(k− k’), (I.241)

[
b̂k , b̂k’

]
=
[
b̂†

k , b̂†
k’

]
= 0. (I.242)

Using the equation of motion (I.239), we easily find the equation for the Fourier components [13, 14, 55]

δφ′′k + 2
(

a′

a

)
δφ′k + k2δφk = 0 (I.243)

where with k2 we are intending the spatial Euclidean amplitude k2 = |k|2. At this point it is useful to
introduce the following field redefinition:

uk ≡ a(η) δφk(η), (I.244)
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The equation for the Fourier modes (I.243) in terms of the new field uk reads

u′′k +

[
k2 − a′′

a

]
uk = 0. (I.245)

This is nothing but the Mukhanov equation we have already discussed in section I.II and can be considered
the generalization of the Klein-Gordon equation in an expanding Universe. In the so called Ultraviolet limit
k� a′′

a , Eq. (I.245) simplifies to
u′′k + k2 uk = 0. (I.246)

whose solution is given by

uk(η) =
1√
2k

(
Ak e−ikη + Bk eikη

)
(I.247)

with Ak and Bk to be fixed by choosing an appropriate vacuum state (we will do this soon). On the other
hand, in the so called Infrared limit k� a′′

a the equation (I.245) reads

a u′′k − a′′ uk = 0, (I.248)

with the easy solution
uk ∝ a(η)⇒ δφk = const. (I.249)

proving a very interesting feature: the Fourier mode δφk does not evolve on the super-horizon scales (i.e.
k� a(t)H). This phenomenon is called mode freezing.

We now come back to the issue of the vacuum state. The mode amplitude depends on the constant
Ak and Bk and all of their physics boils down the boundary condition for the field perturbations in the
ultraviolet limit. This problem is strictly related to the vacuum selection in the canonical quantization
process. Indeed with some efforts, one can show that the canonical quantization condition for the operators
(b̂k, b̂†

k ) translates into a boundary condition for the uk and u∗k modes that is nothing else but the Wronskian
condition

W(uk , u∗k ) ≡ uk (u∗k )
′ − (uk)

′u∗k = i. (I.250)

Using the solution (I.247) it is easy to see that this implies |Ak|2 − |Bk|2 = 1, the same condition that one
would obtain in a Minkowski spacetime. Anyway, it is not enough to complete the solution and, in fact,
a second relation arises from the vacuum selection in our FRW spacetime. We define the vacuum state for
the FRW spacetime as the state where all the comoving observers see no particles which is to require that in
the ultraviolet limit the FRW spacetime is asymptotically Minkowskian, i.e., Ak = 1 and Bk = 0. This is
known as the Bunch-Davies vacuum. It is not the only discussed choice in literature (see e.g., Refs [97–102]),
but it is of course the most reasonable and we will adopt it. With this choice the solution in the ultraviolet
limit eventually becomes

uk(η) =
1√
2k

e−ikη , (I.251)

Notice that equation (I.245) depends on the spacetime background by a term a′′
a and so it is quite difficult

to find a generic solution for this equation. However, here, we are interested in the quantum inflationary
fluctuations and, since during inflation our spacetime is approximately de Sitter, it is worth finding an
exact solution in this limit. By noting that in a de Sitter spacetime η = −1/(a H), and a′′/a = 2/η2, the
Mukhanov equation becomes:

u′′k +

(
k2 − 2

η2

)
uk = 0. (I.252)

By a direct substitution one can check that an exact solution is:

uk = Ak
e−ikη

√
2k

(
1− i

kη

)
+ Bk

eikη

√
2k

(
1 +

i
kη

)
. (I.253)
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which fixing the Bunch-Davies vacuum (Ak = 1 and Bk = 0) eventually becomes

uk =
e−ikη

√
2k

(
1− i

kη

)
. (I.254)

So we have the complete expression of the field operator δ̂φ in the de Sitter spacetime

δ̂φ(η, x) =
∫ d3k

(2π)3

[(uk

a

)
b̂keik·x +

(
u∗k
a

)
b̂†

k e−ik·x
]

. (I.255)

One can now compute the power spectrum of the fluctuations around the vacuum state in the de Sitter
limit

〈0|δ̂φ(η, x)δ̂φ(η, x’)|0〉 =
∫ d3k d3k′

(2π)6

(
uku∗k’

a2

)
〈0|bkb†

k’|0〉eik·xe−ik’·x’ + .... (I.256)

where all the other terms omitted from the integral vanish. The only non vanishing matrix element

〈0|bkb†
k’|0〉 = 〈0|bkb†

k’ − b†
k’bk|0〉︸ ︷︷ ︸
=0

= 〈0|
[
bk , b†

k’

]
|0〉 = δ3(k− k’). (I.257)

gives

〈0|δ̂φ(η, x)δ̂φ(η, x’)|0〉 =
∫ d3k d3k′

(2π)6

(
uku∗k’

a2

)
ei k·xe−i k’·x’ δ3(k− k’) (I.258)

=
∫ d3k

(2π)3

( |uk|2
a2

)
ei k·(x+x’) (I.259)

.
=
∫ d3k

(2π)3 Pδφ(k) ei k·(x+x’), (I.260)

where in the last line we have defined the power spectrum

Pδφ(k)
.
=
|uk|2

a2 , (I.261)

and so the dimensionless power spectrum (see also the conventions)

Pδφ
.
=

k3

2π2 Pδφ(k) =
k3

2π2
|uk|2

a2 . (I.262)

Using equation (I.251) we obtain for |uk|2

|uk|2 =
1
2k

(
1 +

1
k2η2

)
, (I.263)

which gives

Pδφ =

(
H
2π

)2
[

1 +
(

k
aH

)2
]

. (I.264)

This is the expression for the dimensionless power spectrum of the inflaton fluctuations in an exact de
Sitter spacetime. Note that well outside the Hubble horizon (i.e., k� (aH)) it approaches to be a constant:

Pδφ =

(
H
2π

)2

. (I.265)
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This result is consistent with the phenomenon of modes freezing that we discussed above.

Scalar Modes

Thanks to these efforts, computing the power spectrum for the primordial scalar and tensor perturbations
is almost trivial. We must use some Gauge-invariant measures for the fluctuations induced in the space-
time geometry and for the scalar spectrum we use the primordial curvature perturbation ζ. The inflaton
quantum fluctuations can be easily related to the primordial curvature perturbations ζ in the zero spatial
curvature Gauge where the spatial component of the metric is unperturbed (Ψ = 0) and the spacelike
hypersurfaces at constant time are flat. According to equation (I.121), in the spatially flat Gauge, ζ for an
inflaton-dominated Universe reads

ζ ≈ −
(

H
φ̇

)
δφ. (I.266)

Therefore the calculation of the scalar power spectrum is straightforward:

Ps =

(
H
φ̇

)2

Pδφ (I.267)

This is the dimensionless power spectrum for scalar perturbations predicted by inflation at the time of
horizon crossing. Note that since ζ is a gauge independent quantity (or more rigorously speaking a gauge
fixed quantity), this result is gauge independent as well.

Notice that in the single-field slow roll paradigm the physics at the end of inflation is the same every-
where and the perturbations are adiabatic: since there is only one scalar degree of freedom that measures
the slightly density differences where there is an over-density in dark matter there is also a corresponding
over-density in the photons, baryons and neutrinos. Notice also that in an exact de Sitter spacetime the
spectrum of inflaton fluctuations is exactly scale independent. Therefore in an almost de Sitter epoch, we
expect the scale dependence to be very small. This is why the primordial scalar spectrum is commonly
parametrized with a power

Ps(k) = As

(
k
k∗

)ns−1

(I.268)

which includes only an amplitude As = P(k∗) (evaluated at the pivot scale k∗) and a scalar spectral index
(or scalar tilt) ns − 1 .

= d logPs/d log k.
We conclude recalling that the inflationary fluctuations are directly related to the small irregularities

observed in the Cosmic Microwave Background. A simply way to link them to the statistical properties
of the CMB anisotropies and polarizations (i.e. the different C`s) is to define the so called scalar transfer
functions

CX Y, scalar
` =

∫ ∞

0
d ln k Ts

` X(k) Ts
`Y(k)Ps(k), (I.269)

where for scalar perturbations X and Y run over X, Y = {T, E}. The transfer functions depend only on
known physics: a set of coupled Einstein-Boltzmann equations at linear order. Roughly speaking, the form
of the linear transformations encoded in the transfer functions probe the (late) time evolution while the
primordial power spectrum is determined by inflation.

Tensor Modes

Along with scalar modes, the quantum fluctuations of the inflaton field can source also Tensor modes, a
stochastic background of metric fluctuations known as Primordial Gravitational Waves. The underlying
reason is easy to understand: during the inflationary epoch the energy density of the Universe is dominated
by the energy of the inflaton filed. Therefore fluctuations in the filed φ → φ + δφ source fluctuations in
the stress energy tensor Tµν[φ + δφ] → Tµν + δTµν. The Einstein Equations relate fluctuations in the stress
energy tensor to fluctuations in the metric, i.e., Primordial Gravitational Waves. We have already pointed
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out that the equation of motion of primordial gravitational waves is

ḧ×,+ + 3Hḣ×,+ + k2h×,+ = 0, (I.270)

with the two polarization states × and +. With the efforts of the previous sections the computation of the
tensor spectrum is trivial. The only point to be carefully considered is the normalization of the field h×,+.
In order to use the formalism developed from a scalar field, we have to be sure that h×,+ and φ have the
same physical unit. Since in natural units [φ] = energy while h is dimensionless, it is useful to introduce
the normalized fields

ψ×,+ ≡
√

2 M̄p h×,+ , (I.271)

where the factor
√

2 simply counts the two polarization states. The equation of motion for the normalized
fields read

ψ̈×,+ + 3Hψ̇×,+ + k2 ψ×,+ = 0, (I.272)

Using conformal time dt = a dη and defining a new field u×,+ = a(η)ψ×,+ we get

u′′×,+ +

[
k2 − a′′

a

]
u×,+ = 0. (I.273)

For each polarization (× and +) this is nothing else but the Mukhanov equation (I.245). Therefore we can
use the results already derived to obtain the dimensionless tensor power spectrum that, taking into account
all the factors corresponding to the two different polarization states, reads:

PT =
8

M̄2
p

(
H
2π

)2
∣∣∣∣∣
k=a H

. (I.274)

Once again the symmetries of the almost de Sitter background constrain the scale dependence to be very
small and also in this case the tensor spectrum is commonly parametrized with a power

PT(k) = AT

(
k
k∗

)nT

(I.275)

which includes only an amplitude AT = P(k∗) (evaluated at the pivot scale k∗) and a tensor spectral index
(or tensor tilt) nT

.
= d logPT/d log k.

In the next chapter we will discuss in great details Primordial Gravitational Waves. We conclude this
section underlying that, as for scalar modes, also tensor perturbations are directly related to the CMB by
Eqs.(I.196), (I.213), (I.214) and (I.215) for the temperature anisotropies, E-mode and B-modes polarization,
respectively.

I.IV.III EFFECTIVE FIELD THEORY OF INFLATION

So far we assumed the existence of a fundamental scalar field minimally coupled to gravity, the inflaton.
Here we review inflation under a completely different approach based on (broken) symmetries. We formu-
late inflation as an example of a spontaneous symmetry breaking theory and we describe its underlying
Goldstone dynamics [59, 76, 103–106].

Broken time diffeomorphisms

What we really know about inflation is that it is a transient phase of accelerated expansion and the space-
time is approximately, but not exactly, de Sitter. A de Sitter spacetime is a maximally symmetric solution of
the Einstein equations with a positive cosmological constant. It is well known that the de Sitter spacetime,
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being maximally symmetric, has 10 different Killing vectors ( i.e. the maximum possible number for a 4-
dimensional spacetime) that roughly correspond to 10 different isometries, namely: 3 spatial translations,
3 spatial rotations, 1 dilatation and 3 special conformal transformations5. However in almost any physical
model of inflation the de Sitter symmetries are broken to ensure the end of inflation as if the spacetime is
exactly de Sitter it would be invariant under time translations and we could not identify any preferred time
slicing. In other words we need a ‘clock’ (i.e. an order parameter such as, for example, the Hubble rate H)
that measures how long inflationary expansion lasts. Consider a generic clock-field ψ(t) (that can be a mat-
ter field or the inflaton field itself) driving inflation. We can point out a privileged time-slicing where the
field is taken as uniform. Anyway, if we want to use the formalism of the spontaneous symmetry breaking
in the inflationary cosmology, we have to consider the metric tensor gµν as our fundamental gauge field. It
is well known that General Relativity is invariant under spacetime diffeomorphisms of the type:

xµ → x′µ (xν) . (I.276)

In inflationary cosmology we are clearly interested in the time component

x0 ≡ t→ t′(xν) ≡ x′0(xν) (I.277)

that must be broken since the spacetime dependent transformation t → t + π(t, x) does not leave the
action invariant unless π is constant. An immediate consequence of a broken symmetry is the existence of
a Goldstone boson excitation in the direction of the broken generator corresponding to the transformation
U(x) = t + π(t, x). The formalism of the Goldstone boson is very useful in the cosmological perturbation
theory. Indeed a generic adiabatic fluctuation of the clock-field ψ(t) can be easily related to the Goldstone
boson:

δψ(t) ≡ ψ(t + π(t, x))− ψ(t) ≈ ψ̇ π(t, x), (I.278)

In other words, at linear order, adiabatic fluctuations are proportional to the Goldstone mode [76]. If we
decide to work in the so called spatially flat gauge (i.e., the gauge in which the spatial part of the metric is
flat) we get [59, 76]

gij = a2(t) δij, (I.279)

and all the metric perturbations are related to the Goldstone mode by the Einstein equations.

The Action in the Unitary Gauge

We can always perform a time shifting t → t− π(t, x) such that the fluctuations of the clock field vanish:
δψ(t) = 0. In this way we have no more the Goldstone boson (π = 0) and its effect is eaten by the metric
gµν since we induce a perturbation to the spatial part of the metric given by [59, 76]:

δgij = a2(t) e−2Hπ(t,x) δij. (I.280)

This gauge is called Unitary Gauge. In what follows, we derive the most general action in the Unitary gauge
compatible with all the symmetries of our problem. In particular, after Gauge fixing, our theory must be
invariant only under time-dependent spatial diffeomorphisms xi → xi + ζ i(t, xj) but it does not have to
respect the full diffeomorphism invariance. Therefore, besides the usual curvature invariants like R and
RµνρσRµνρσ that are invariant under all diffeomorphism by definition, the reduced degrees of symmetry
allow other terms in the action. We can think to these terms as those that describe the additional degrees
of freedom coming from the Goldstone boson that, in our Gauge, are eaten by the metric. For example it is
easy to show that the g00 is invariant under the time-dependent spatial diffeomorphism

g̃00 =
∂t̃

∂xµ

∂t̃
∂xν

gµν = δ0
µ δ0

ν gµν = g00 (I.281)

5At late times, special conformal transformations act like conformal transformations on the space-like boundary
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and so its polynomials can appear freely in the Unitary Gauge action. Instead, to describe the metric
fluctuations we follow a geometrical approach: we first define the unit four-vector nµ on the constant time
hypersurfaces Σt that in the unitary gauge reads

nµ = −
δ0

µ√
−g00

. (I.282)

By contracting covariant tensors with nµ, we can produce objects with un-contracted upper 0 indices, such
as g00 and R00 that we argued to be scalars under spatial diffeomorphisms and so allowed in the action.
Generalizing, any four-dimensional covariant tensors with free upper 0 indices (but with all spatial indices
contracted) are allowed operators. Furthermore we can have three-dimensional quantities describing the
geometry of the hypersurfaces Σt. In order to describe the geometry of these hypersurfaces, we can define
the so called induced metric hµν = gµν + nµnν, the extrinsic curvature tensor Kµν = hρ

µ∇ρnν, and the
Riemann tensor of the induced metric R̂αβγδ = hµ

α hν
β hρ

γ hσ
δ Rµνρσ − KαγKβδ + KαδKβγ. The most general

action will eventually read [54, 59, 76]

S =
∫

d4x
√
−gL

[
Rµνρσ, g00, Kµν, R̂µν, t

]
, (I.283)

with the prescription that the only free indices can be upper 0s. Expanding this action around a flat FRW
spacetime:

g00 = −1, R = 12H2 + 6Ḣ, K = 3H, (I.284)

with some efforts one can show that the action can be put in the following form [59, 76, 80]

S =
∫

d4x
√
−g

[
M̄2

p

2
R− f1(t)− f2(t)g00

]
+ ∆S (I.285)

where f1(t) and f2(t) are time dependent functions and ∆S is the part of the action containing quadratic
order and higher-terms . We will deal with this part of the action later; now let us focus on the linear order
terms. Variating this part of the action respect to gµν we obtain the following relations:

H2 =
1

3M̄2
p
[ f1(t) + f2(t)] , (I.286)

Ḣ + H2 = − 1
3M̄2

p
[2 f2(t)− f1(t)] . (I.287)

The equations (I.286) and (I.287) are nothing else but the Freedmen equations that solved give

f1(t) = M̄2
p
(
3H2 + Ḣ

)
, (I.288)

f2(t) = −M̄2
pḢ. (I.289)

Therefore the two unknown functions are completely fixed by imposing the FRW background (i.e., speci-
fying H(t)). The action becomes:

S =
∫

d4x
√
−g

[
M̄2

p

2
R− M̄2

p
(
3H2 + Ḣ

)
+ M̄2

pḢg00

]
+ ∆S (I.290)
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It is worth proving that if the slow roll condition−Ḣ � H2 holds, so the linear part of this action is nothing
else that the minimal coupled action (I.218). In the unitary gauge, where φ = φ(t), the action (I.218) reads:

S =
∫

d4x
√
−g

[
M̄2

p

2
R +

1
2

gµν∂µφ∂νφ−V(φ)

]
(I.291)

=
∫

d4x
√
−g

[
M̄2

p

2
R +

1
2

g00φ̇2 −V(φ)

]
(I.292)

=
∫

d4x
√
−g

[
M̄2

p

2
R− M̄2

p
(
3H2 + Ḣ

)
+ M̄2

pḢg00

]
, (I.293)

where in the last line we have used the slow roll relations (I.228) and (I.229). Note that it matches the linear
part of (I.290).

If we want to consider also the higher order terms ∆S, we have to take into account higher expansions
in powers of fluctuations such as [59, 76, 80]:

∆S =
∫

d4x
√
−g

[
∞

∑
n=2

M4
n(t)
n!

(δg00)n − g2
1(t)
2

(δg00δK)− g2
2(t)
2

(δg00R̂) − g2
3(t)
2

(δK)2 + ...

]
, (I.294)

where we remember that around a flat FRW spacetime δg00 = 1 + g00.

The Goldstone Dynamics

We now introduce the Goldstone boson π again. Sometimes the procedure of reintroducing the Goldstone
boson is called Stuckleberg trick. As we are going to see, once that π is reintroduced, also the gauge
invariance of the theory is restored. In order to reintroduce the Goldstone boson, we perform a spacetime
dependent time reparametrization of the form:

t→ t′ = t + π(t, xi) (I.295a)
xi → x′i = xi (I.295b)

Let us see how the elements of the action (I.290) transform under such a parametrization. First of all we
recall that the volume element

√−g d4x is invariant under general four-dimensional diffeomorphism as
well as the Ricci scalar. As concerns the time dependent coefficients, instead they transform as

f (t)→ f (t + π) = f (t) + ḟ (t)π +
1
2

f̈ (t)π2 + ... (I.296)

while the contravariant components of any tensor transform as

tµν → ∂x′µ

∂xα

∂x′ν

∂xβ
tαβ =

(
δµα + δµ0∂απ

) (
δνβ + δν0∂βπ

)
tαβ. (I.297)

As concerns the covariant components, instead we get

tµν →
∂xα

∂x′µ
∂xβ

∂x′ν
tαβ =

(
δµα + δα0∂µπ

)−1 (
δνβ + δβ0∂νπ

)−1 tαβ. (I.298)

We eventually get the following transformation rules for the metric tensor

g00 → g00 + 2∂µπg0µ + ∂µπ∂νπgµν, (I.299)
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g0i → g0i + ∂µπgµi, (I.300)

gij → gij. (I.301)

Considering only powers of δg00 in∆S (without considering the quantities related to the extrinsic curva-
ture), the action for the goldstone boson finally reads[76, 80]:

S =
∫

d4x
√
−g

[
M̄2

p

2
R− M̄2

p
(
3H2 (t + π) + Ḣ (t + π)

)
+ M̄2

pḢ
(

g00 + 2∂µπg0µ + ∂µπ∂νπgµν
)]

+

+
∫

d4x
√
−g

∞

∑
n=2

M4
n(t + π)

n!
(
1 + g00 + 2∂µπg0µ + ∂µπ∂νπgµν

)n

︸ ︷︷ ︸
∆S

(I.302)

This appears to be very complicated. Even ignoring ∆S, we see that the goldstone boson π mixes with
the metric perturbations and so its dynamics is highly non linear. However a simplification may occur
at sufficiently short distances when we expect that, because of the equivalence principle, the Goldstone
dynamics can be studied without taking into account the metric fluctuations. In other words, the quadratic
terms that mix π and gµν contain fewer derivatives than the kinetic terms of π. Therefore at sufficiently
high energy scales they can be ignored. It is worth studying what happens when we consider the so called
decoupling limit defined as

M̄p → ∞, Ḣ → 0 for M̄2
pḢ = const (I.303)

This limit suggests that the Goldstone boson decouples from the metric perturbation for frequencies higher
than ω2

mix ≈ |Ḣ|, where we can consider the metric unperturbed so that the action (I.302) up to terms of
order ω2

mix/ω2 reads:

S =
∫

d4x
√
−g

[
M̄2

p

2
R− M̄2

p
(
3H2 (t + π) + Ḣ (t + π)

)
+ M̄2

pḢ
(
−1− 2π̇ + (∂µπ)2)]+

+
∫

d4x
√
−g

∞

∑
n=2

M4
n(t + π)

n!
(
−2π̇ + (∂µπ)2)n

︸ ︷︷ ︸
∆S

(I.304)

This works for any arbitrary FRW background. If we are interested in a quasi de Sitter background we
have to consider that −Ḣ � H2. In other words the fractional change in H per Hubble time is small. We
will assume that this propriety holds also for any other time dependent function and so that all the time
dependent parameters vary slowly. Assuming this implies that the action in the quasi de Sitter spacetime
will be approximately invariant under time translation. This approximate invariance of the action must not
be confused with the broken time diffeomorphism of the Background that is what we have used in order
to write the action. In other words this is another approximate global symmetry of the fluctuation and not
of the background. Taking into account this consideration, let us see when in a quasi de Sitter spacetime
the mixing terms are negligible. Let us consider the Lagrangian for the Goldstone π given by the first part
of (I.302) (i.e. we are not considering the higher terms in ∆S) [59, 76, 80]:

Lπ = −M̄2
p
(
3H2 (t + π) + Ḣ (t + π)

)
+ M̄2

pḢ
(

g00 + 2∂µπg0µ + ∂µπ∂νπgµν
)

, (I.305)

We have to compare the mixing term 2M̄2
p Ḣ π̇ δg00 (that comes from the term 2M̄2

p Ḣ∂µπg0µ in (I.305)) with
the kinetic term−M̄2

p Ḣ π̇2 (that comes from M̄2
p Ḣ(∂µπ∂νπ) for ν = µ = 0 always in (I.305).) One can show

that the Einstein equations give δg00 = 2 εH H π. Therefore the mixing term becomes 4M2
pḢ(εH H π̇π).

Since π̇π is a total derivative of π this term can be integrated by part in the action (I.302) in order to obtain
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a mixing term −6M̄2
pḢ
(
εH H2 π2). However a similar term comes from the expansion −3M̄2

p H2(t + π) ≈
3M̄2

pḢ
(
εHH2π2)+ ... Combining all these terms the ratio between the mixing term and the kinetic term

is:
mixing term
kinetic term

=
−6M̄2

pḢ
(
εH H2 π2)+ 3̄̄M2

pḢ
(
εH H2π2)

−M̄2
p Ḣ π̇2

=
3εH H2 π2

π̇2 . (I.306)

We see that the decoupling is reached when:

ω � ωmix ≡
√

εH H. (I.307)

Therefore in a quasi de Sitter spacetime εH � 1 the decoupling takes place at very low frequencies. For
example it is interesting to observe that at the horizon crossing ω ≈ H we are in this limit. If in this regime
we evaluate the Lagrangian (I.305) using an unperturbed metric, after a few efforts due to the quite long
calculation, one finds that the Lagrangian at the second order in π is very simple and reads:

Lπ = M̄2
p
∣∣Ḣ∣∣ (π̇2 − (∂iπ)2

a2

)
(I.308)

The equation (I.308) is the second order (in π) Lagrangian of the inflation. It is a different but equivalent
description of the dynamics given by action (I.290) in the unitary gauge that, as we have shown, includes
also the slow roll inflation. We have therefore formulated inflation as a theory of broken time diffeomor-
phism writing its dynamics in terms of the corresponding Goldstone boson. This means that we can also
read off the spontaneous symmetry breaking energy scale from the Noether current associated with the
Lagrangian (I.308). The Noether current is:

Jµ = −
√(

2M̄2
p|Ḣ|

)
∂µ

[√(
2M̄2

p|Ḣ|
)

π

]
= −

√(
2M̄2

p|Ḣ|
)

∂µπc (I.309)

The normalization of the current f 4
π tells us that the energy scale of the symmetry breaking is [76, 80]

f 4
π ≡ 2M̄2

p|Ḣ| = φ̇2. (I.310)

This result formalizes the intuitive fact that, in the single field inflation, the inflaton itself is responsible of
the symmetry breaking because of its time evolution.

It is now useful to briefly provide a different strategy for computing the primordial spectra using the
Goldestone Dynamics. We use a different Gauge in which δφ = 0 to obtain [76]

gij = a2(t)
[

(1− 2R) δij︸ ︷︷ ︸
scalar perturbations

+ hij︸︷︷︸
tensor perturbations

]
. (I.311)

where R is the comoving curvature perturbation defined in (I.122). In this way the inflaton scalar field φ
is unperturbed and the scalar degree of freedom is described by the metric fluctuations from which both
scalar and tensor perturbations arise. In this gauge there is a relation between the comoving curvature
perturbationR and the Goldstone boson π is given by:

R = −H π (I.312)

Since scalar and tensor perturbations evolve independently at linear order we split the computation. As
concerns scalar perturbations, we can write down the Lagrangian (I.308) in term of R that in the slow-roll
approximation reads [76]:

SR =
1
2

∫
d4x a3 φ̇2

H2

[
Ṙ2 − 1

a2 (∂iR)2
]

. (I.313)
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Using the conformal time η and defining the following variables

z2 ≡ a2 φ̇2

H2 , u ≡ zR, (I.314)

one obtains:

SR =
1
2

∫
dη d3x

[
(u′)2 + (∂iu)2 +

z′′

z
u2
]

. (I.315)

Expanding the field u in its Fourier components, they must satisfy the Mukhanov equation

u′′k +

(
k2 − z′′

z

)
uk = 0. (I.316)

and considering that in the de Sitter limit z′′/z → a′′a, the quantization process gives the same results
discussed before.

Similarly, for the tensor perturbations the second order action in hij is [76]:

Sh =
M̄2

p

8

∫
dηd3x a2

[
(h′ij)

2 − (∂i hij)
2
]

. (I.317)

Defining the Fourier expansion

hij =
∫ d3k

(2π)3 ∑
p=(×,+)

ε
(p)
ij h(p)

k ei k·x, (I.318)

with
kiε

(p)
ij = 0 ε

(p)
ij ε

(p′)
ij = 2δp p′ , (I.319)

and normalizing the field

u(p)
k ≡ a

2
Mp h(p)

k , (I.320)

the action eventually becomes:

Sh = ∑
p=(×,+)

1
2

∫
dη d3x

[
(u(p)

k

′
)2 −

(
k2 − a′′

a

)
(v(p)

k )2
]

(I.321)

and we can recognize the Mukhanov equation and so also in the tensor case the quantization process gives
the same results.

I.V THE STANDARD MODEL OF COSMOLOGY

We conclude this chapter with a brief overview of the current status of the standard model of cosmology,
the so called ΛCDM cosmological model.

Our previous discussions pointed out that to have a good agreement between the Hot Big Bang theo-
retical picture and the wide surveys of cosmological observations from large to small scales, we essentially
need three major unexpected ingredients: an early stage of accelerated expansion, an unknown matter com-
ponent able to facilitate structure formation and finally an unknown energy component able to explain the
current accelerated expansion. Within the standard ΛCDM cosmological models these three ingredients
are introduced as follows:

• Single-Field Slow Roll Inflation: the early stage of accelerated expansion is regarded to be driven
by a single slow-rolling scalar field minimally coupled to gravity. The quantum fluctuations of the
scalar field are expected to produce only adiabatic scalar modes while within the standard model of
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cosmology isocurvature modes are not expected and Primordial Tensor Modes are usually assumed
to be negligibly small. Moreover inflation is supposed to be long enough to drive the spatial geometry
towards flatness in such a way that the curvature parameter is set to Ωκ = 0.

• Cold Dark Matter: the missing matter component able to facilitate structure formation is parametrized
by a pressure-less fluid made of collision-less particles with low momenta known as Cold Dark Mat-
ter (here the meaning of CDM in ΛCDM). Since possible interactions/decays are ignored and the
energy density of relativistic species decreases very rapidly with the scale factor, other Hot Dark
Matter species in the Universe are considered absent or negligible.

• Cosmological Constant Dark Energy: the late-time epoch of accelerated expansion is supposed to be
due to the cosmological constant term Λ in the Einstein Equations (here the meaning of Λ in ΛCDM).
Therefore the late time equation of state is assumed to be ωDE = −1 (i.e., P = −ρ) and there is no
dynamical evolution in the dark energy component: ΩDE(t) ≡ ΩΛ = Const.

It should be noted that from a theoretical side, these choices are mostly motivated by simplicity. The
theoretical predictions (as well as the computational efforts) become less expensive if we include fewer free
parameters in the theory. As a matter of fact the ΛCDM model is made of only six free parameters that we
can fix by observations, namely:

• the baryon energy density, Ωbh2;

• the cold dark matter energy density, Ωch2;

• the angular size of the horizon at the last scattering surface, θMC;

• the optical depth at reionization, τ;

• the amplitude of the primordial spectrum of scalar inflationary perturbation, AS;

• the spectral index of of the primordial spectrum of scalar inflationary perturbation, nS.

Equivalently we may consider the Hubble constant H0 (= 100 h [Km/s/Mpc]) instead of θMC. In what
follows we review the current constraints on these parameters.

I.V.I DATA STORYTELLING

So far we have outlined a phenomenological model of the Universe with only six degrees of freedom. We
can therefore use cosmological observations to constrain such free parameters.

It should be clear from our previous discussion of the Cosmic Microwave Background Radiations that
the study of the angular spectrum of CMB polarization and isotropies play a crucial role in observational
cosmology since the combined analysis of the TT TE and EE correlators breaks the degeneracy among the
different parameters allowing us to obtain precise values for all of them. Furthermore, along with the
Cosmic Microwave Background, other cosmological observations can be used to improve these results.

Methodology

Here we use the final release of Planck 2018 temperature and polarization data [42], combined with other
cosmological observations, to derive updated bounds on the ΛCDM model. In particular we perform
Monte Carlo Markov Chain (MCMC) analyses using the publicly available package CosmoMC [107, 108] and
computing the theoretical model with the latest version of the Boltzmann code CAMB [109, 110]. We consider
the canonical ΛCDM model described by the usual six-parameters.

The posteriors of our parameter space have been explored using the MCMC sampler developed for
CosmoMC and tailored for parameter spaces with a speed hierarchy which also implements the "fast drag-
ging" procedure described in Ref. [111]. The convergence of the chains obtained with this procedure
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is tested using the Gelman-Rubin criterion [112] and we choose as a threshold for chain convergence
R− 1 . 0.02.

Our baseline data-set consists of:

• Planck 2018 temperature and polarization (TT TE EE) likelihood, which also includes low multipole
data (` < 30) [42, 113, 114]. We refer to this combination as "Planck".

• Planck 2018 lensing likelihood [115], constructed from measurements of the power spectrum of the
lensing potential. We refer to this dataset as "lensing".

• Baryon Acoustic Oscillations (BAO) measurements extracted from data from the 6dFGS [116], SDSS
MGS [117] and BOSS DR12 [118] surveys. We refer to this dataset as "BAO".

• Type Ia Supernovae (SNeIa) distance moduli measurements from the Pantheon sample [119]. We
refer to this dataset as "Pantheon".

In particular we stress that for the Planck data we consider both the high-multipole likelihood (which
includes multipoles 30 . ` . 2500 for the TT spectrum and 30 . ` . 2000 for TE and EE spectra) and
the "low-E" polarization likelihood (which covers the multipole range 2 ≤ ` ≤ 30 for the EE spectrum). In
this way, analyzing the Planck anisotropies and polarization measurements, we can derive constraints on
all the cosmological parameters of the model. Furthermore, we combine the Planck TT TE EE spectra with
the Planck lensing measurement. Indeed the CMB photons that we measure today traversed almost the
entire observable Universe and, along their paths, are deflected by gradients in the gravitational potentials
associated with inhomogeneities in the Universe. This can cause a smoothing of the acoustic peaks and a
conversion of E-mode polarization into B-mode polarization. Therefore the Planck lensing reconstruction,
being the most significant detection of CMB lensing to date, is useful to improve the constraints on cosmo-
logical parameters, providing sensitivity above all on parameters that affect the late-time expansion and
the background geometry. However, while the Planck lensing measurements partially break the geomet-
ric degeneracy, it is well known that the inclusion of the baryon acoustic oscillation (BAO) measurements
from galaxy surveys is a much more powerful way to break degeneracy in the geometrical sector. BAOs
are the counterpart to the CMB acoustic peaks in the baryon distribution which remain imprinted also into
the present-day matter distribution. Using the transverse BAOs information one can constrain the ratio
between the comoving angular diameter distance (DM) and the sound horizon (rd) at the epoch when the
baryon evolution becomes unaffected by coupling to photons. On the other hand, from the line-of-sight
information we can constrain the quantity H(z) rd. These two information can be combined together to con-
strain the acoustic-scale distance ratio DV/rd

.
=
[
c z D2

M(z)H−1(z)
]1/3 /rd. The acoustic scale measured by

BAOs (at around 147 Mpc), being much larger than the scale of virialized structures, makes the BAO mea-
surements relatively simple geometric measurements insensitive to nonlinear physics, providing a robust
geometrical test of cosmology. Here, in combination with the Planck data, we use the measurements of
DV/rd from the 6dF survey at an effective redshift zeff = 0.106 [120], the SDSS Main Galaxy Sample at
zeff = 0.15 [117] and the final BOSS DR12 data with separate constraints on H(z) rd and DM/rd in three
correlated redshift bins at zeff = [0.38 , 0.51 , 0.61] [118].

The results for cosmological parameters are given in Table I.1 for different combinations of the datasets
listed above. On the other hand in Figure I.8 we show the 1D and 2D posterior distributions of the six
free parameters of the standard ΛCDM cosmological model. It is worth pointing out that, once these
parameters are fixed by observations, the whole cosmological evolution is determined as all the other cos-
mological parameters can be derived starting from the knowledge of these six ones. In Figure I.9 we show
the marginalized 2D distributions of different derived cosmological parameters, most of them introduced
in the previous discussions. In what follows we briefly review the major results.

Inflation and Adiabatic Scalar Modes

Two of the six parameters of the standard cosmological model are related to inflation. Indeed both the
spectral amplitude of adiabatic scalar modes As and the spectral index ns are free parameters in the ΛCDM
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Parameter Planck (TT TE EE) + lensing + lensing + phanteon + lensing + BAO + lensing + BAO + Pantheon

Ωbh2 0.02236± 0.00015 0.02237± 0.00015 0.02239± 0.00014 0.02242± 0.00014 0.02243± 0.00013

Ωch2 0.1202± 0.0014 0.1200± 0.0012 0.1197± 0.0011 0.11933± 0.00091 0.11921± 0.00089

100 θMC 1.04090± 0.00031 1.04092± 0.00031 1.04095± 0.00031 1.04101± 0.00029 1.04102± 0.00029

τ 0.0544± 0.0079 0.0544± 0.0073 0.0551± 0.0073 0.0561± 0.0071 0.0564± 0.007

log(1010As) 3.045± 0.016 3.044± 0.014 3.045± 0.014 3.047± 0.014 3.047± 0.014

ns 0.9649± 0.0044 0.9649± 0.0042 0.9655± 0.0041 0.9665± 0.0038 0.9668± 0.0037

H0 [km/s/Mpc] 67.27± 0.60 67.36± 0.54 67.48± 0.50 67.66± 0.42 67.72± 0.40

Ωm 0.3166± 0.0084 0.3153± 0.0073 0.3136± 0.0068 0.3111± 0.0056 0.3103± 0.0054

ΩΛ 0.6889± 0.0056 0.6847± 0.0073 0.6864± 0.0068 0.6889± 0.0056 0.6897± 0.0054

σ8 0.8120± 0.0073 0.8111± 0.0060 0.8108± 0.0060 0.8102± 0.0060 0.8100± 0.0060

S8
.
= σ8 (Ωm/0.3)1/2 0.834± 0.016 0.832± 0.013 0.829± 0.012 0.825± 0.011 0.824± 0.010

100 θ∗ 1.04109± 0.00030 1.04110± 0.00031 1.04113± 0.00030 1.04119± 0.00029 1.04120± 0.00029

rs,∗ [Mpc] 144.39± 0.30 144.43± 0.26 144.49± 0.25 144.57± 0.22 144.59± 0.21

kD [Mpc−1] 0.14078± 0.00028 0.14087± 0.00030 0.14083± 0.00029 0.14078± 0.00028 0.14076± 0.00028

zre 7.68± 0.79 7.67± 0.73 7.73± 0.73 7.82± 0.71 7.85± 0.7

YBBN
P 0.246716± 0.000059 0.246721± 0.000057 0.246729± 0.000055 0.246740± 0.000052 0.246744± 0.000051

Age [Gyr] 13.800± 0.024 13.797± 0.023 13.793± 0.022 13.787± 0.020 13.785± 0.020

TABLE I.1: Results for the ΛCDM cosmological model obtained for different combinations of
datasets. The bounds on parameters are 1σ errors (68% CL).

model and we can fix them only by observation since inflation does not predict their magnitude. From data
we obtain at 68% CL

log(1010As) = 3.044± 0.014 Planck (TT TE EE + lensing), (I.322)

ns = 0.9649± 0.0042 Planck (TT TE EE + lensing). (I.323)

Therefore the spectrum of scalar (adiabatic) perturbations in measured with great precision and it should
be noted that the result for the scalar spectral index is one of the major successes of inflation theory. Indeed,
in the simplest single field slow roll inflation paradigm, due to the breaking of the de-Sitter isometries by
a dynamical scalar field (the inflaton), we expect a slightly red tilted spectrum ns = 1− 2ηV − 6εV . 1
that is exactly what we measure. At the beginning of the next chapter, we will study extensively the
observational constraints on the standard paradigm of inflation, so we postpone a more precise discussion
of the implications on the physics of inflation to the next chapter.

Acoustic oscillations, sound horizon and dumping tail

The acoustic oscillations in the TT correlator discussed in the previous section on the CMB radiation, cor-
respond to a sharply-defined acoustic angular scale on the sky, given by

θ∗ =
rs,∗
DM

(I.324)
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FIGURE I.8: Marginalized 2D and 1D posteriors of the six free parameters of standard ΛCDM
Cosmological Model obtained exploiting different combinations of cosmological data-sets

listed above.

with rs,∗ the (comoving) sound horizon at recombination and DM = (1 + z) DA the comoving angular
distance. In practice θ∗ is nothing but the angular distance corresponding to the sound horizon at recom-
bination. The CMB data by the Planck Collaborations measure at 68% CL

100 θ∗ = 1.04110± 0.000311 Planck (TT TE EE + lensing) (I.325)

with a precision of about 0.03%. Notice that since θ∗ has a simple geometrical interpretation, these results
are very robust and almost independent both on the datasets and also on of the cosmological model.

Similarly we can extract information also on the physical size of the Sound Horizon rs,∗ at recombina-
tion, obtaining at 68% CL

rs,∗ = 144.43± 0.26 Mpc Planck (TT TE EE + lensing) (I.326)
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and on the dumping scale kD given by Eq.(I.193) obtaining always at 68% CL

kD = 0.14087± 0.00030 Mpc−1 Planck (TT TE EE + lensing) (I.327)

Reionization

As we have already pointed out, the sub-horizon CMB anisotropies are scattered by free electrons that
are present after reionization, and their observed amplitude decays as As e−2τ, where τ is the reionization
optical depth, measured with good precision

τ = 0.0544± 0.0073 Planck (TT TE EE + lensing) (I.328)

at 68% CL. Combining the anisotropies and polarization (cross) correlators, see Tab(I.1), one can extract
information on the redshift when reionization takes place. Assuming a parametrization for the ionization
fraction

xe
.
=

ne

nH
=

1 + nHe/nH

2

[
1 + tanh

(
y (zre)− y(z)

∆y

)]
(I.329)

with y(z) = (1+ z)3/2, ∆y ' 3
4 (1 + zre)

1/2, this implies a mid-point redshift of reionization measured to be
at 68% CL

zre = 7.67± 0.73 Planck (TT TE EE + lensing) (I.330)

which tells us that reionization is a quite recent event in the Universe whose physical nature is still debated.

Dark Matter and Dark Energy

As one can see in Table I.1, the Baryon and Cold Dark Matter content in the Universe, Ωb h2 and Ωc h2

respectively, are measured with a great precision by current cosmological observations:

Ωb h2 = 0.02237± 0.00015 Planck (TT TE EE + lensing) (I.331)

Ωc h2 = 0.1200± 0.0012Planck (TT TE EE + lensing) (I.332)

both at 68% CL. This means that the matter and energy content of the Universe is well understood. In
particular, the matter density can be measured from the CMB spectra using the scale-dependence of the
amplitude, as, for fixed θ∗, a larger matter density would reduce the small-scale CMB power. Furthermore,
the matter density also affects the amount of lensing in the CMB spectra and the amplitude of the CMB-
lensing reconstruction spectrum. Therefore we can obtain at 68% CL the tight constrain

Ωm = 0.3153± 0.0073 Planck (TT TE EE + lensing) (I.333)

from which it follows that about the 31% of the energy content of the Universe is due to matter. In particular
Baryonic matter is only a small fraction (about 4%) while the largest contribution is due to Cold Dark
Matter. Indeed baryonic matter can be constrained at sub-percent level, see Table I.1 since changes in
the baryon density would affect the CMB angular spectrum in characteristic ways, modifying the relative
heights of the even and odd acoustic peaks, see also the discussion on CMB anisotropies. Notice also that,
a very important quantity in the matter (power spectrum) measurements is the parameter σ8 defined to be
the root mean squared of the fluctuations over a volume of radius 8 h−1 Mpc. Indeed this is constrained
by the detection of the Baryon Acoustic Oscillations that, due to the effect of the oscillations of baryons
(that are tightly coupled to photons before decoupling and then oscillate with them) are imprinted at small
scales in the matter power spectrum. From the CMB data, we get at 68% CL for σ8

σ8 = 0.8111± 0.0060 Planck (TT TE EE + lensing). (I.334)
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Alternatively one can use the combination S8
.
= σ8 (Ωm/0.3)1/2 obtaining at 68% CL

S8 = 0.832± 0.013 Planck (TT TE EE + lensing). (I.335)

Finally, since the Universe is regarded to be spatially flat (Ωκ = 0) and the radiation energy density
is expected to be negligibly small (Ωr � Ωm), because of Eq.(I.25), this means that the missing fraction
of energy density, about ∼69%, must be accounted by Dark Energy. We recall that within the standard
ΛCDM model, Dark Energy is assumed to be the cosmological constant term in the Einstein equations so
that ΩΛ = 1−Ωm. From the CMB measurements it follows that at 68% CL

ΩΛ = 0.6847± 0.0073 Planck (TT TE EE + lensing). (I.336)

that corresponds to a value Λ ' 4.2× 10−66 eV2 for the cosmological constant. This value is much smaller
than those expected for example in Quantum Field Theory where Λ can be interpreted as the vacuum
energy and so its physical meaning is not clear yet.

The Expansion Rate and the Age of the Universe

The Hubble constant is one of the most important cosmological parameters since it quantifies the expansion
rate of the Universe. The CMB measurements fix H0 at 68% CL to

H0 = 67.36± 0.54 [Km/s/Mpc] Planck (TT TE EE + lensing) (I.337)

Notice that the CMB radiation carries information about the Early Universe while H0 quantifies the expan-
sion rate today. This means that this value is extrapolated by data within the ΛCDM cosmological model.
In the last years several convincing evidences for a statistically significant tension between the value of
H0 derived by measurements of the Early Universe (CMB) and those derived by late time measurements
(Supernovae) suggest either systematic in (one of) these experiments or possible modifications to the stan-
dard ΛCDM paradigm. We remand to Ref. [121] for an extensive review of the problem and its possible
solutions.

Once that the energy-density content and the expansion rate of the Universe are specified, the age of
the Universe can be easily computed integrating the cosmological evolution from early to late time. The
CMB measurements give at 68% CL

Age = (13.797± 0.023)× 109 [year] Planck (TT TE EE + lensing). (I.338)

which is not very different from a rough estimation that we can obtain simply by ∼ 1/H0.

I.V.II BEYOND THE STANDARD COSMOLOGICAL MODEL

The ΛCDM model described so far has been hugely successful in describing most of the cosmological
observations of the last century. However it is also true that simplicity is not always a prerogative of nature
and this phenomenological model can be regarded as an approximation to a more accurate scenario that
still needs to be fully explored (or even understood) both theoretically and experimentally. Therefore it is
not guaranteed at all that the same model will fit more precise observations from widely different cosmic
epochs and scales from current and future cosmic observers.

As a matter of fact, in the last years several convincing evidences for a statistically significant tension
between early and late Universe [121–124] are undermining the stability of the scenario developed in the
past century. While these tensions could be explained in terms of systematic errors in the CMB and/or
astrophysical experiments currently unaccounted for, they can also suggest possible modifications to the
standard ΛCDM paradigm [121, 124]. In addition, the recent debate on the spatial curvature of the Uni-
verse [125] opens several other points of discussion.
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What is sure is that current and future improvements in the experimental measurements may open up
a unique observational window for testing extensions of this standard scenario with increasing precision.

Among all the possible extensions that may be considered, probably the most relevant are those con-
nected with fundamental interactions. In the following chapters of this work we consider different exten-
sions of the standard cosmological model that will allow us to constrain very different branches of funda-
mental physics, testing global theoretical scenarios beyond General Relativity and the Standard Model of
particle physics.

In particular in chapter II we focus on relic gravity waves from inflation that, being produced at ex-
tremely high energy scales, may carry unique information about the theory of gravity nearly the dawn of
time, soon after the Big Bang singularity. We study - both from a theoretical, phenomenological and data
analysis perspective - the way non standard physics beyond the slow roll paradigm with Einstein gravity
can be encapsulated into different cosmological observables.

Conversely, in chapter III we explore the possibility to constrain well motivated extensions of the Stan-
dard Model of particle physics with current and future cosmological data. In particular we focused on QCD
Axions produced in the Early Universe via thermal channels in realistic mixed hot dark matter scenarios
that consider also massive neutrinos as extra thermal species.
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CHAPTER II

PRIMORDIAL GRAVITATIONAL WAVES

The search for tensor modes, a stochastic background of gravitational waves sourced by a
super-adiabatic amplification of zero-point quantum fluctuations during inflation, is one of
the major goals of modern cosmology as they may both provide substantial evidence for
Primordial Inflation and shed light on its physical nature. In this chapter, after presenting an
extensive updated review of the cosmological constraints on slow roll Inflation, I study the way
non-standard high-energy physics may be encoded in the tensor two-point function, inferring
how the usual power-law parametrization can be broken by large surveys of mechanisms and
discussing the implications for large and small scale observations.
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II.I COSMOLOGICAL CONSTRAINTS ON SLOW ROLL INFLATION

In the previous chapter we reviewed how in the very Early Universe a phase of almost de Sitter expansion
known as Cosmological inflation is supposed to set the initial condition for Hot Big Bang Theory evolution,
driving the Universe towards homogeneity and flatness [79].

According to the standard paradigm of inflation, a dynamical scalar field φ, the inflaton, can easily
induce such an epoch of expansion provided that the inflationary potential V(φ) is sufficiently flat to allow
a phase of slow roll evolution [54, 77, 126, 127]. Furthermore, the quantum fluctuations of the field around
its classical trajectory, becoming classical on large scales, can induce energy-density fluctuations, sourcing
both rotational invariant scalar modes and, if the energy scale of inflation is sufficiently high, a satiable
background of Primordial Gravitational Waves (PGWs) [13, 14, 55, 126–132]. As we anticipated in the first
chapter, the search for primordial gravitational waves is one of the main goals of modern cosmology as they
can both provide a substantial evidence for primordial inflation and shed light on its physical nature [12–
14, 55, 79, 126–129, 133–142]. Being scalar and tensor perturbations decoupled at the linearized level, they
can be treated separately. After the end of inflation, scalar perturbations re-enter the observable Universe,
setting the seeds for the structure formation and providing a quite natural explanation for the observed
anisotropies in the Cosmic Microwave Background (CMB). On the other hand, PGWs may imprints the
CMB photon polarization, leading to a very distinctive signature in the B-modes spectrum on large angular
scales [12–14, 54, 79, 126–129, 143].

In the framework of single-field inflation with Einstein gravity, primordial scalar and tensor pertur-
bations are expected to be (nearly) Gaussian and hence they can be described in terms of their two-point
correlation functions and their primordial spectra. It is well known that the spectrum of the quantum fluc-
tuations of a (massless) scalar field in a de Sitter background is flat. Therefore, since both scalar and tensor
perturbations are sourced by the fluctuations of the inflaton field in an almost de Sitter background, we
expect nearly but not exactly flat primordial spectra. From Eqs (I.267) and (I.274) it follows that, in terms
of the inflationary parameters (I.232a) - (I.232d), the primordial spectra are [12–14, 55, 56, 144–159]

Ps =

(
1

8π2M2
pl

)(
H2

εV

)
=

(
1

12π2M̄6
p

)(
V3

V2
φ

)
, (II.1)

PT =

(
2

π2M̄2
p

)
H2 =

(
2

3π2M̄4
p

)
V. (II.2)

Notice that, by definition, the expansion rate is almost but not exactly constant during the slow-roll evolu-
tion (H2 � |Ḣ|). Since both the Hubble parameter and the Inflationary potential, slightly evolve with time
during Inflation, we evaluate the spectra at the time when the wave-number k exits the causal horizon,
namely at k = aH. As pointed out in subsection I.IV.II, after the horizon-exit, scalar and tensor modes
freeze-out and the spectra approach to a constant value. For this reason, the perturbations produced by
generic single-field models are typically well approximated by the following power-law form of the adia-
batic scalar and tensor components

logPs(k) = log As + (ns − 1) log (k/k∗) + . . . (II.3)

logPT(k) = log (r As) + (nT) log (k/k∗) + . . . (II.4)

where k∗ denotes an arbitrary scale known as pivot scale, As
.
= Ps(k∗) and AT

.
= PT(k∗) are the scalar and

tensor amplitudes computed at the pivot scale and r .
= AT/As is the so called tensor-to-scalar ratio. We

have also defined the scalar and tensor spectral index (or tilt) respectively as

ns − 1 .
=

[
d logPs(k)

d log k

]
k=k∗

, (II.5)
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nT
.
=

[
d logPT(k)

d log k

]
k=k∗

. (II.6)

The scalar and tensor tilts quantify the departure from the scale-invariant case and in this simplest scenario
we expect slightly tilted spectra because of the field evolution which breaks the de Sitter isometries, pro-
viding also a well define clock to measure the time to the end of inflation. Notice anyway that inflation
does not predict neither the precise values of the amplitudes nor those of the tilts, but they depend on the
details of the inflationary dynamics which is clearly related to the precise shape of the potential. Indeed,
using Eqs.(II.1) - (II.2), one can write the scalar and tensor tilt in terms of the slow-roll parameters as

ns − 1 = 2ηV − 6εV = −2ε1 − ε2, (II.7)

nT = −2εV = −r/8 (II.8)

from which we see that constraints on the spectral parameters can be translated into constraints on the
inflationary potential and the background dynamics (or vice-versa). Within the power-law parametriza-
tion, both ns and nT can be assumed to be scale-independent and the higher order terms in Eqs. (II.3)
and (II.4) negligible. However this is an approximation and further parametrizations that include also
higher-order corrections may be considered [2, 160, 161]. Furthermore, it is worth noting that today only
the scalar amplitude and tilt are measured with good precision [78] while a detection of primordial ten-
sor modes is still missing. Indeed, a combined analysis of the Planck measurements of the CMB polar-
ization and anisotropies [78] and the BICEP2/Keck array likelihood for B-modes polarization [162] con-
strains the amplitude of primordial gravitational waves on scales comparable to the current Hubble length
(a0 H0 = 2.248× 10−4 Mpc−1), placing only an upper bound on the tensor to scalar ratio at a pivot scale
k∗ = 0.002 Mpc−1 of r0.002 < 0.056 at 95% Confidence Level (CL hereafter).

Therefore, even though current observations show a general agreement with the standard slow-roll
predictions and many inflationary models proposed in literature can be ruled out, the missing evidence for
tensor modes and, in general, the present day accuracy in data places only generic constraints on inflation
that in many cases are obtained within specific assumptions (e.g. an exactly flat background geometry, a
vanishing scale dependence of the scalar - and tensor - tilt or even a negligible tensor amplitude).

In this section we provide an updated review of the cosmological constraints on slow roll inflation,
analyzing different extensions of the standard ΛCDM model. Because of the inflationary perspective of
this chapter, we are basically interested in exploring modifications in the primordial sector. By using the
slow-roll approximation we derive a set of consistency relations between higher-order scalar and tensor
parameters, generalizing the power-law expansion for the primordial spectra up to the third order and
constraining the additional parameters in light of the most recent cosmological observations. We also
relate the primordial perturbations to the dynamics of the Hubble parameter during inflation and the
derivatives of the inflationary potential, constraining these quantities and interpreting the results in terms
of the physics of the inflationary epoch.

II.I.I METHODOLOGY

In this subsection we outline the methodology used in our analysis. We highlight the modifications to
the primordial sector and discuss the additional parameters that we introduce in the cosmological model.
Then, we review our data-analysis techniques and the datasets used to derive our results.

Cosmological Model

We analyze the slow-roll paradigm of inflation considering different extensions of the standard ΛCDM
model. We consider the standard six-parameters of ΛCDM i.e., the baryon ωb

.
= Ωbh2 and cold dark

matter ωc
.
= Ωch2 energy densities, the angular size of the horizon at the last scattering surface θMC, the
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optical depth τ, the amplitude of primordial scalar perturbation log(1010AS) and the scalar spectral index
ns. Along with them, we consider also other different combinations of additional parameters that involve
modifications in the primordial sector. In particular we generalize Eqs.(II.3) to the following expansion

logPs(k) = ln As + (ns − 1) log (k/k∗) +
αs

2
log2 (k/k∗) +

βs

6
log3 (k/k∗) (II.9)

introducing a weak scale-dependence in the primordial spectrum modeled by the running of the scalar tilt
αs or also its running of running βs defined respectively as

αs
.
=

[
dns

d log k

]
k=k∗

βs
.
=

[
dαs

d log k

]
k=k∗

(II.10)

where the running αs quantifies the rate of change of ns per Hubble time (we recall that d/d log k =
1/H d/dt) while the running of running βs quantifies the rate of change of αs per Hubble time. These
quantities are related to the shape of the inflationary potential (or equivalently to the dynamics of the back-
ground evolution) and consequently to the underlying physics of inflation. Under the slow-roll assump-
tion, αs and βs can be both expressed in terms of the potential slow-roll parameters {εV , ηV , ξ2

V , v3
V} as

αs = +16εVηV − 24ε2
V − 2ξ2

V (II.11)

βs = −192ε3
V + 192ε2

VηV − 32εVη2
V − 24εVξ2

V + 2ηVξ2
V + 2v3

V

or, equivalently, in terms of the parameters {εi} as

αs = −2ε1ε2 − ε2ε3 (II.12)

βs = −2ε1ε2
2 − 2ε1ε2ε3 − ε2ε2

3 − ε2ε3ε4 (II.13)

with εV ' ε1 ' r/16 which is clearly related to the amplitude of the tensor spectrum.
Similarly, for the tensor spectrum we adopt the parameterization

logPT(k) = log (r As) + (nT) log (k/k∗) +
αT

2
log2 (k/k∗) +

βT

6
log3 (k/k∗) . (II.14)

Along this section we adopt the same pivot scale of k∗ = 0.05 Mpc−1 both for scalar and tensor perturba-
tions and we consider the tensor-to-scalar ratio r .

= AT/As a free parameter while we use the slow-roll
consistency relation nT = −r/8 for the tensor tilt. We also relate the higher order tensor runnings

αT
.
=

[
dnT

d log k

]
k=k∗

βT
.
=

[
dαT

d log k

]
k=k∗

(II.15)

to the scalar ones by a set of slow-roll consistency relations. Indeed, under the assumption of slow-roll
inflation, a set of consistency relations among scalar and tensor parameters can be derived at any order1 [1,
127]. In particular, the slow-roll consistency relations for the tensor running and running of running are [1]

αT =
r
8
(ns − 1) +

r2

64
, (II.16)

βT =
r
8

[
αs − (ns − 1)2

]
− 3 r2

64
(ns − 1)− r3

256
. (II.17)

1It should be noted that these relations can be violated in many non standard inflationary models, e.g. in presence of other
spectator (rolling) fields [2, 163–166] or in modified gravity theories [3, 4, 94, 167–171].
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Parameter Prior

Ωbh2 [0.005 , 0.1]

Ωch2 [0.001 , 0.99]

100 θMC [0.5 , 10]

τ [0.01 , 0.8]

log(1010 AS) [1.61 , 3.91]

ns [0.8 , 1.2]

αs [−1 , 1]

βs [−1 , 1]

r [0 , 3]

Ωk [−0.3 , 0.3]

TABLE II.1: List of the parameter priors.

Therefore given constraints on the scalar spectral index ns, its running αs and on the tensor-to-scalar ratio
r, constraints can be derived on the tensor spectral index nt, its running αt, its running of running βt.

Numerical Analyses and Datasets

We perform Monte Carlo Markov Chain (MCMC) analyses using the publicly available package CosmoMC [107,
108] and computing the theoretical model described in the previous subsection with the latest version of
the Boltzmann code CAMB [109, 110]. For all the different cosmological parameters we choose flat prior-
distributions (unless otherwise stated), varying them uniformly in the conservative ranges listed in Ta-
ble II.1. We explore the posteriors of our parameter space using the MCMC sampler developed for CosmoMC
and tailored for parameter spaces with a speed hierarchy which also implements the "fast dragging" pro-
cedure described in Ref. [111]. The convergence of the chains obtained with this procedure is tested using
the Gelman-Rubin criterion [112] and we choose as a threshold for chain convergence R− 1 . 0.02.

Our baseline data-set consists of:

• Planck 2018 temperature and polarization (TT TE EE) likelihood, which also includes low multipole
data (` < 30) [42, 113, 114]. We refer to this combination as "Planck".

• Planck 2018 lensing likelihood [115], constructed from measurements of the power spectrum of the
lensing potential. We refer to this dataset as "lensing".

• Baryon Acoustic Oscillations (BAO) measurements extracted from data from the 6dFGS [120], SDSS
MGS [117] and BOSS DR12 [118] surveys. We refer to this dataset combination as "BAO".

• CMB B-modes power spectrum likelihood cleaned from the foreground contamination as released by
Bicep2/Keck Array X Collaboration [162]. We refer to this dataset as "BK15".

• Atacama Cosmology Telescope DR4 likelihood, combined with WMAP 9-years observations data [172]
and a Gaussian prior on τ = 0.065± 0.015, as done in [173]. We refer to this dataset combination as
"ACTPol+WMAP".
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• South Pole Telescope polarization measurements SPT-3G [174] combined with WMAP 9-years obser-
vations data [172] and a Gaussian prior on τ = 0.065± 0.015. We refer to this dataset combination as
"SPT3G+WMAP".

As concerns the Planck (CMB and Lensing) data and the BAO measurements, we used the same
datasets described in subsection I.V.I. Instead, to improve also the constraints in the primordial tensor sec-
tor, we exploit the CMB B-modes power spectrum likelihood (cleaned from the foreground contamination)
as released by Bicep2/Keck Array X Collaboration [162]. As discussed in the previous chapter, a satiable
background of inflationary gravitational waves can produce B-modes polarization on large/intermediate
angular scales where the cosmic variance is not very significant and gravitational lensing is not yet domi-
nant. Notice however that the B-modes likelihood basically improves only the constraints on tensor modes.
Therefore we include this dataset only when we analyze the tensor spectrum because interested in models
with a satiable production of gravitational waves.

Along with these combinations of datasets involving the Planck CMB measurements, we analyze also
two other Planck-independent datasets. In particular we use the Atacama Cosmology Telescope DR4 like-
lihood and the South Pole Telescope polarization measurements. We combine both of them with WMAP
9-years observations data [172]. The reason is that the Atacama Cosmology Telescope has a minimum sen-
sitivity in multipole of 600 in TT, and 350 in TE and EE, and so it lacks data around the first two acoustic
peaks in the TT spectrum and the first full peak in TE and EE. Similarly, the South Pole Telescope measures
only the TE and EE spectra over a range of multipoles 300 ≤ ` ≤ 1400 for EE and 300 ≤ ` ≤ 1700 for TE.
Therefore, the only way to obtain competitive Planck-independent measurements for all the cosmological
parameters is to combine these two datasets with the public WMAP 9-year observations at intermediate
scales (2 < ` < 1200 for TT and ` < 800 for TE), as also done in [173, 174]. Notice also that we use a Gaus-
sian prior on τ = 0.065± 0.015 both for ACT+WMAP and for SPT3G+WMAP. Indeed, while our primary
goal is to obtain a measurement of the cosmological (inflationary) parameters that is Planck-independent,
neither ACT nor SPT-3G can constrain the optical depth at reionization τ. Furthermore there is evidence
that WMAP large-scale polarization data (2 < ` < 23 in TE spectrum) can be contaminated by dust, pos-
sibly affecting the WMAP bounds on τ. For this reason in our analysis we exclude this multipoles range,
using instead the conservative Gaussian prior on τ which is based on Planck measurements. This prior on
τ is not expected to affect the constraints on the other cosmological parameters [173, 174].

II.I.II COSMOLOGICAL CONSTRAINTS

In this section we present and discuss the updated observational constraints obtained by our MCMC anal-
ysis of the inflationary slow-roll paradigm in extended parameter spaces beyond the standard ΛCDM
cosmological model.

Scalar Spectrum: running the Running

We start analyzing an extended cosmological model which includes both the running of the scalar spectral
index αs and its running of running βs as additional free parameters. We refer to this model as ΛCDM +
αs + βs. Notice that here we focus exclusively on the adiabatic scalar modes, parametrizing the scalar
spectrum by Eq.(II.9) and assuming a negligible gravitational waves production during the slow roll phase.
Assuming a negligible tensor amplitude r = 16εV ' 16ε1 ∼ 0 in terms of the slow-roll parameter means to
consider εV ' ε1 ∼ 0; i.e., negligibly small in the relations for the scalar tilt and its runnings. We summarize
the results obtained wihtin this assumption in Table II.2, while in Figure II.1 we show the 68% and 95% CL
contour plots for different combinations of parameters.

Analyzing the Planck data we derive constraints on the scalar tilt ns = 0.9612 ± 0.0054, its running
αs = 0.001 ± 0.010, and on its running of running βs = 0.012 ± 0.013, all at 68% CL2. The inclusion of
the lensing spectrum and the BAO data does not change significantly these results and all these bounds

2Unless otherwise stated, we always provide 68% CL values for bounded parameters and 95% CL for upper/lower bounds.
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Parameter Planck18 Planck18 + lensing Planck18 + BAO ACTPol + WMAP SPT3G+WMAP

Ωbh2 0.02235± 0.00017 0.02237± 0.00016 0.02243± 0.00015 0.02195± 0.00025 0.02251± 0.00025

Ωch2 0.1207± 0.0015 0.1202± 0.0012 0.1195± 0.0010 0.1190± 0.0029 0.1139± 0.0032

100 θMC 1.04085± 0.00031 1.04089± 0.00030 1.04100± 0.00028 1.04174± 0.00066 1.03970± 0.00066

τ 0.0575± 0.0086 0.0564± 0.0080 0.0590± 0.0087 0.061± 0.013 0.063± 0.013

log(1010AS) 3.053± 0.018 3.049± 0.015 3.053± 0.018 3.051± 0.026 3.037± 0.026

ns 0.9612± 0.0054 0.9625± 0.0048 0.9645± 0.0045 0.9680± 0.0082 0.978± 0.011

αs 0.001± 0.010 0.002± 0.010 0.000± 0.010 0.035± 0.012 0.028± 0.017

βs 0.012± 0.013 0.010± 0.013 0.009± 0.013 0.035± 0.013 0.023± 0.016

ηV −0.0194+0.0027
−0.0026 −0.0187+0.0025

−0.0023 −0.0177+0.0021
−0.0022 −0.0160± 0.0041 −0.0111± 0.0053

ξ2
V −0.0005± 0.0050 −0.0008+0.0050

−0.0049 −0.0001± 0.0049 −0.0174± 0.0058 −0.0141± 0.0085

v3
V 0.0058+0.0063

−0.0061 0.0051+0.0062
−0.0061 0.0046+0.0062

−0.0061 0.0172± 0.0064 0.0115± 0.0078

ε2 0.0388+0.0053
−0.0054 0.0375+0.0047

−0.0049 0.0355+0.0044
−0.0043 0.0320± 0.0082 0.022± 0.011

ε3 −0.02± 0.26 −0.04+0.27
−0.26 0.00± 0.28 < −0.02 −

TABLE II.2: Results for ΛCDM + αs + βs. The constraints on parameters are at 68% CL, while
upper bounds are at 95% CL. The internal horizontal line divides the primary parameters of
the cosmological model (those we directly sample in our MCMC analysis) from the derived

parameters (those we obtain from the others by the relations described in the text).

are consistent with the case of vanishing runnings within one standard deviation, see also Figure II.1.
We then compare the Planck bounds with other independent measurements derived using the different
datasets listed in subsection II.I.I. Considering the SPT-3G data combined with WMAP 9-years observation
data, we get αs = 0.028± 0.017 and βs = 0.023± 0.016, both and consistent with zero within 1.6 and 1.4
standard deviations with Planck. On the other hand, considering the ACTPol+WMAP data, we obtain
a preference for non-vanishing running αs = 0.035± 0.012 and for a non-vanishing running of running
βs = 0.035 ± 0.013 at the level of 2.9σ and 2.7σ, respectively. Interestingly, in both the cases positive
values for the runnings are preferred with a statistical significance which ranges between about 1.7 σ (SPT-
3G+WMAP) and 2.9 σ (ACTPol+WMAP). While both the ground based telescope measurements are in
good agreement one with each other, it should be noted that they are instead in disagreement at more than
2σ with Planck regarding the value of the running αs, and in tension for the running of running βs (see
also Figure II.1). This tension indicates a difference from the high multipoles region that can be either an
indication of small systematic errors unaccounted for, or an hint for physics beyond the standard model. In
other words, the extended inflationary models considered in this section recast the global tension between
the datasets already present for a ΛCDM model analysis [175]

Under the assumption of a negligible tensor amplitude, we derive constraints also on the slow-roll
parameters {ηV , ξ2

V , v3
V} and {εi=2,3,4}. Due to the Planck data evidence for a tilted scalar spectrum,

we obtain non-zero slow-roll parameters ηV = −0.0194+0.0027
−0.0026 or equivalently ε2 = 0.0388+0.0053

−0.0054. On the
other hand, the missing evidence for scalar runnings only limits the parameter space allowed for higher-
order slow-roll parameters to ξ2

V = −0.0005± 0.0050 and v3
V = 0.0058+0.0063

−0.0061 both consistent with zero
within one standard deviation. Similarly, ε3 = −0.02± 0.26 while ε4 turns out to be unbounded for all
the datasets considered in this section. Considering also lensing or BAO in combination with Planck, these
constraints do not change significantly, see also Table II.2. Conversely, considering the Atacama Cosmology
Telescope DR4 likelihood combined with WMAP 9-years, while the bounds on ηV = −0.0160± 0.0041 and
ε2 = 0.0320 ± 0.0082 remain basically unchanged with respect to the other datasets, the preference for
non vanishing runnings is translated into the constraints on higher-order inflationary parameters ξ2

V =
−0.0174± 0.0058 and v3

V = 0.0172± 0.0064 (or equivalently ε3 < −0.02 at 95% CL) that are all different
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FIGURE II.1: Marginalized 2D and 1D posteriors distributions for the ΛCDM+ αs + βs cosmo-
logical model obtained for the different combinations of the datasets listed in subsection II.I.I.

The dashed lines represent the case of vanishing inflationary parameters.

from zero at more than 95% CL. Finally, regarding the SPT3G+WMAP case, we find more than 1σ shift
towards lower values of both ηV = −0.0111± 0.0053 and ε2 = 0.022± 0.011, while we find 1σ preference
for non-vanishing higher-order parameters ξ2

V = −0.0141± 0.0085 and v3
V = 0.0115± 0.0078.

Tensor Spectrum and slow-roll consistency relations

We now include as additional parameters the running of the scalar tilt αs and the tensor amplitude r, fixing
instead the scalar running of running to zero. We refer to this model as ΛCDM + αs + r. We summarize
the results obtained for this model in Table II.3 while in Figure II.2 we show the 68% and 95% CL contour
plots for different inflationary parameters.

As one can see, for the scalar parameters the constraints on ns and αs are slightly changed when we
replace the running of running with the tensor-to-scalar ratio. This is due to the fact that also the terms
∝ εV contribute in the slow roll relations (II.7) and (II.12), modifying the correlation among the inflationary
parameters. Furthermore, since αs and βs are strongly correlated for all the datasets, see Figure II.1, fixing
βs = 0 results into a shift of αs towards lower values. In particular, for the Planck data this shift is translated
into a preference for negative values of αs at the level of slightly more than 1σ even though the constraints
on the running are always consistent with zero within two standard deviations. When the lensing and
BAO measurements are considered together with Planck these results remain unchanged. Furthermore,
ACTPol+WMAP and SPT3G+WMAP shift αs towards lower values too. This produces a reduction of
αs = 0.0090± 0.0087 for ACTPol+WMAP, positive and larger than zero at slightly more than one standard
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Parameter Planck18 Planck18 + lensing Planck18 + BAO Planck18 + BK15 ACTPol + WMAP SPT3G+WMAP

Ωbh2 0.02241± 0.00016 0.02242± 0.00015 0.02247± 0.00014 0.02239± 0.00015 0.02234± 0.00022 0.02273± 0.00024

Ωch2 0.1202± 0.0014 0.1199± 0.0012 0.1193± 0.0010 0.1206± 0.0014 0.1179± 0.0030 0.1138± 0.0031

100 θMC 1.04091± 0.00032 1.04093± 0.00030 1.04101± 0.00030 1.04087± 0.00031 1.04186± 0.00065 1.03978± 0.00067

τ 0.0562± 0.0081 0.0560± 0.0076 0.0573± 0.0080 0.0570± 0.0083 0.058± 0.012 0.060± 0.013

log(1010As) 3.050± 0.017 3.049± 0.015 3.051± 0.017 3.053± 0.017 3.049± 0.025 3.037± 0.026

ns 0.9642± 0.0047 0.9647± 0.0044 0.9665± 0.0041 0.9629± 0.0046 0.9796± 0.0074 0.980± 0.010

αs −0.0094± 0.0074 −0.0084± 0.0073 −0.0091± 0.0075 −0.0080± 0.0069 0.0090± 0.0087 0.001± 0.012

r < 0.165 < 0.159 < 0.172 < 0.0658 < 0.176 < 0.260

nT > −0.0206 > −0.0198 > −0.0215 > −0.0082 > −0.022 > −0.032

αT

(
−18+12

−10

)
· 10−5 (−17± 10) · 10−5

(
−16.6+11

−9.5

)
· 10−5 (

−11.7+7.9
−5.9

)
· 10−5 (

−4.2+6.9
−10

)
· 10−5

(
3+13
−27

)
· 10−5

βT
(
11.4+6.9

−15

)
· 10−5

(
9.96+6.1

−14

)
· 10−5 (

11.8+7.2
−16

)
· 10−5 (

3.9+2.5
−4.8

)
· 10−5

(
−4.4+8.1

−6.9

)
· 10−5

(
5+12
−21

)
· 10−5

εV ' ε1 < 0.0103 < 0.0099 < 0.0108 < 0.0041 < 0.0110 < 0.0163

ηV −0.0058+0.0069
−0.012 −0.0061+0.0066

−0.011 −0.0039+0.0072
−0.012 −0.0130+0.0038

−0.0050 0.0015+0.0074
−0.013 0.010+0.012

−0.019

ξ2
V 0.0044± 0.0037 0.0040± 0.0036 0.0043± 0.0038 0.0038± 0.0034 −0.0045± 0.0044 −0.0001+0.0056

−0.0064

ε2 0.0277+0.0095
−0.0067 0.0276+0.0091

−0.0062 0.0250+0.0095
−0.0064 0.0334± 0.0054 0.0126+0.012

−0.0090 0.006+0.016
−0.013

ε3 − 0.37+0.26
−0.34 0.62+0.16

−0.56 0.24± 0.21 − −
V1/4

inf < 2.04× 1016 GeV < 2.01× 1016 GeV < 2.06× 1016 GeV < 1.62× 1016 GeV < 2.10× 1016 GeV < 2.31× 1016 GeV

TABLE II.3: Results for ΛCDM + r + αs. The constraints on parameters are at 68% CL, while
upper bounds are at 95% CL. The internal horizontal line divides the primary parameters of
the cosmological model (those we directly sample in our MCMC analysis) from the derived

parameters (those we obtain from the others by the relations described in the text).
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logical model obtained for different combinations of datasets listed in subsection II.I.I. The

dashed lines represent the case of vanishing inflationary parameters.
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deviation, and αs = 0.001± 0.012 for SPT3G+WMAP which is completely in agreement with the case of
a vanishing scalar running. It should be noticed anyway that while SPT3G+WMAP is in agreement with
Planck for the value of the running αs, ACTPol+WMAP is instead in disagreement at about 2σ and this
tension is still coming from the high multipole region.

As concerns the tensor spectrum, its amplitude is constrained to be r < 0.165 (at 95% CL) by the Planck
data while ACTPol+WMAP and SPT3G+WMAP give r < 0.176 and r < 0.260, respectively. A strong
improvement in this upper bound is obtained including also the BK15 likelihood that, combined with
Planck, gives r < 0.0658. Using the slow-roll relation between the tensor amplitude and the tensor tilt, nT =
−r/8, these upper bounds on the amplitude can be translated into a lower bounds on the (negative) tensor
tilt, see also Table II.3. Furthermore, in the slow-roll framework, any constraint to the tensor amplitude
places also a constraint to the energy scale of inflation:

V1/4
inf = M̄p

(
3
2

π2 As r
)1/4

GeV. (II.18)

In Table II.3 we show the upper bounds on the energy scale of inflation for the different datasets.
Reversing the slow-roll relations for the scalar and tensor parameters, we derive constraints on the

slow-roll parameters {εV , ηV , ξ2
V} that are related to the shape of the inflationary potential. In particular

from Planck, we get εV < 0.0103 while the improvement in the constraining power on the tensor amplitude
due to the BK15 data is translated into the more stringent upper bound εV < 0.0041. On the other hand,
for ηV and ξ2

V the Planck + BK15 data we get ηV = −0.0130+0.0038
−0.0050 and ξ2

V = 0.0038± 0.0034, respectively,
ruling out the null value at more than one standard deviation. On the contrary, ACTPol+WMAP finds
ηV = 0.0015+0.0074

−0.013 and ξ2
V = −0.0045± 0.0044, always showing 1σ indication different from zero, but with

an opposite sign with respect to Planck. In addition, SPT3G+WMAP prefer both the parameters ηV and
ξ2

V in agreement with the null value within the 68% CL. Equivalently, we can derive constraints on the
parameters {ε2 , ε3}. For Planck + BK15 we obtain ε2 = 0.0334± 0.0054 and ε3 = 0.24± 0.21. Instead, the
Atacama Cosmology Telescope and the South Pole Telescope data, even if they have larger experimental
errors and lead to less constraining bounds, prefer ε2 much lower than Planck, reducing the significance
for a value different from zero.

Under the assumption of slow-roll inflation, we see that the parameter space allowed for the (higher-
order) tensor parameters in the slow-roll paradigm is strongly reduced since constraints on r and the scalar
spectrum are translated into constraints on tensor spectrum, see also Figure II.2. In particular using the
Planck+BK15 data we see that the results for the scalar parameters and the upper bound on the tensor am-
plitude, are translated into constraints for the tensor running and its running of running that are consistent
with zero within less than two standard deviations and that, in any case, they are expected to be extremely
small and therefore negligible in the slow-roll hierarchy. Similar results can be obtained also exploiting the
Planck-independent measurements by ACTPol+WMAP and SPT3G+WMAP, see Table II.3. In particular,
for these datasets the bounds on αT and βT are less constraining with respect Planck(+BK15) because ACT-
Pol and SPT3G in combination with WMAP have a smaller sensitivity both on the tensor amplitude and
on scalar modes. However, given also the large error bars, these bounds are all consistent with each other
within 2 standard deviations, leading to predict a scale invariant tensor tilt, unless corrections of order
|dnT/d log k| . 10−5 for all the different datasets.

Implications for slow-roll inflationary models

Now, we shall focus on the constraints for a few selected models of slow-roll inflation. In particular, we
compute the slow-roll parameters and consequently we predict the values of ns, αs and r at leading order
in the slow-roll approximation. We include an uncertainty in the number of e-folds (before the end of
inflation) of 50 < N < 60 [78]. In Figure II.3 we compare the theoretical predictions with the observational
constraints obtained within the ΛCDM + r + ffs cosmological model for the different datasets listed in
subsection II.I.I.
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First, by noting that in a Universe dominated by the energy-density of the inflaton field during the slow-
roll regime we have Ḣ = −4πGφ̇2 = d2N/dt2, we can relate the field excursion to the tensor amplitude by
∆φ/M̄pl =

√
r/8 N and using N = 50 we set a lower bound

∆φ

M̄p
= 1.01

(
r

3.26× 10−3

) 1
2

(II.19)

that is shown in Figure II.3. Notice that both large and small field models are compatible with every
dataset. On the other hand, using Eq. (II.18), we get an approximate limit for potentials that work on GUT
scales finding that they are ruled out at 95% CL by the combination Planck+BK15 even though they are
still compatible with the other datasets, including ACTPol+WMAP and SPT3G+WMAP. This is again an
indication of a tension between the Planck satellite results and the ground based telescopes measurements,
that prefer a larger value for the scalar spectral index ns more consistent with a scale invariant spectrum
ns = 1. We would like to stress that this is not (only) a volume effect due to the different constraining
power of the experiments, but it is an actual shift of the ns coming from damping tails of the power spectra
whose nature needs to be further investigate. Finally, we demand whether the data are in agreement with
a convex or a concave potential, being r = −8/3 (ns − 1) the relation which defines the limit between the
two different cases. Due to the fact that B-modes polarization measurements are able to give more stringent
constraints on tensor modes, in particular on r that appears in the relation aforementioned, the BK15 data
indicates that the potential should be concave, excluding a convex shape, whereas the other datasets are
unable to give such a restriction.

We give below a concise review of some inflationary models studied in this work and the main results
obtained by our analysis.

• (Generalized) Natural Inflation: we start from the general natural inflation [176], which consider an
axion model where a global U(1) symmetry is spontaneously broken at scale f , with a soft explicit
symmetry breaking at a lower scale Λ. The inflaton field corresponds to the pseudo-Nambu-Goldstone
boson associated to the symmetry breaking [154] and the potential reads

V = 21−mΛ4
[

1 + cos
φ

f

]m

. (II.20)

Fixing m = 1 and recovering the natural inflation [177], the parameters are

ns = 1− 1
y

[
1 + 2y2(1 + e−x)

1 + 2y2(1− e−x)

]
, (II.21)

αs = −
4(2y2 + 1)ex

y2(−2y2 + (2y2 + 1)ex)2 , (II.22)

r =
16e−x

1 + 2y2(1− e−x)
, (II.23)

where x = N/y and y = f /Mpl. Plotting the above quantities as functions of f /Mpl (blue curves in
Figure II.3) we can see that this model in only compatible within one standard deviation for Planck and
within two standard deviation with Planck+BK15. Anyway, relaxing the assumption m = 1 and leaving
m a free parameter, the compatibility with Planck+BK15 increases as long as m < 1. Given the tension
present in the parameter space between the different experiments (as we can see from Figure II.2), the
model compatibility changes between the datasets. In fact, the South Pole Telescope data show only an
agreement at 95% CL for every N in the chosen interval, i.e., both blue lines are in the lighter region
of the dataset. Moreover, the shift towards high values of ns preferred by the Atacama Cosmology
Telescope data basically excludes the (generalized) natural inflation from the 95% CL contours. It should
be stressed that the ground experiments (ACTPol and SPT-3G) are the ones responsible for the shift of
the measurements and consequently changes the compatibility with the model, not WMAP 9-years [61,

PAGE 79 OF 200



W. GIARÈ PRIMORDIAL GRAVITATIONAL WAVES

178]. Actually, the shift of the ns bounds is due to the high multipole region accurately constrained by
the damping tail of the power spectra.

• (Non minimally coupled) Power-law inflation: by taking the limit f → ∞ in Eq.(II.20), we recover
the quadratic potential, a particular case of the general power-law inflation, represented as two yellow
straight lines in Figure II.3, and described by the dominant term λnφn. Values of the index n = 2/3, 1, 2
have been obtained in string theory [179–182]. The spectral index, the scalar running and r are simply

ns = 1− 2n + 4
n + 4N

, (II.24)

αs = −
8(n + 2)
(n + 4N)2 , (II.25)

r =
16n

n + 4N
(II.26)

and we can see that there is no agreement when the B-modes BK15 observations are included, whereas
we still have a consistency at 95% CL with Planck alone, or up to within 1σ for ACTPol+WMAP and
SPT3G+WMAP. Nevertheless, provided a non-minimal coupling with gravity, the simple power-law
potential acquires a compatibility up to 68% CL for some values of n as shown by the red lines in Fig-
ure II.3. The coupling constant ξ is chosen according to Ref. [183] where the authors have made an
analysis imposing this inflationary model at the beginning and using ξ as a free parameter. For sake of
completeness the values are listed below

– n = 4, with ξ ' 0.0016,

ns = 1− 1
N
(3− 8ξN), (II.27)

αs =
1

N2 (−3 + 96ξN − 64ξ2N2), (II.28)

r =
16
N
(1− 8ξN). (II.29)

– n = 2, with ξ ' 0.0015,

ns = 1− 2
N
(1 +

4
3

ξ2N2), (II.30)

αs =
2

N2 (−1 + 4ξαsN − 96ξ2N2), (II.31)

r =
8
N
(1− 8ξN). (II.32)

– n = 4
3 , with ξ ' 0.0011,

ns = 1− 1
3N

(5 + 8ξN), (II.33)

αs =
5

81N2 (−27 + 48ξN − 704ξ2N2), (II.34)

r =
16
9N

(3− 32ξN). (II.35)
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– n = 2/3, with ξ ' 0.0007,

ns = 1− 4
3N

(1 + 4ξN), (II.36)

αs =
4

81N2 (−27 + 84ξN + 464ξ2N2), (II.37)

r =
8

9N
(3− 40ξN). (II.38)

This model is consistent also with the ATCPol+WMAP and SPT3G+WMAP contours with the preference
for higher values of the tensor tilt translated into slightly preferences for lower values of n < 2, e.g., the
one with n = 2/3 acquires a compatibility of 68% CL.

• Quintessential inflation: in this scenario the early inflationary period and the late-time acceleration
are combined. The potential in this case should be shallow at early times, i.e., satisfying the slow-roll
conditions, and steep after. As the usual exponential model does not satisfy the observational constraints
[184] a new parameter n is added (II.39) which also influences the steepness of V(φ), whose form is

V = Λe
−λ

φn

Mn
pl , (II.39)

with n > 1. Imposing λ � 1 we end up with the large field inflation, called quintessential inflation
[185]. In this model, the parameters are

ns = 1− 2(n− 1)
(n− 2)N

− [n(n− 2)λN]−
2

n−1

(n− 2)2N2 , (II.40)

αs = −
2(n− 1)
(n− 2)N2 +

6(n− 1)[n(n− 2)λN]−
2

n−2

(n− 2)3N3 , (II.41)

r =
8[n(n− 2)λN]−

2
n−2

(n− 2)2N2 . (II.42)

Fixing λ = 10−10 and varying n, the purple curves in Figure II.3 are drawn, showing, for example as
reference, that n = 7 is compatible with 95% CL of Planck+BK15 with N = 60 whereas it is not for
N = 50. Lower values of λ move the curves to the right, increasing the inclination, whereas a higher
value makes ns independent of it, as shown in (II.40). Concerning the other datasets, this model is in
disagreement with ACTPol+WMAP data unless for significantly lower values of λ, and in tension with
SPT3G+WMAP. Also in this case the different agreement of the models with the data is affected by the
inconsistency between the datasets explored here.

• Starobinsky-like inflation: lastly, we analyze the R2 inflation [129, 186–189] which is characterized by
adding higher curvature corrections to the Einstein-Hilbert action of gravity (I.218). The potential is

V =
M2

pl

8
λ(1− e

−
√

2
3

φ
Mpl )2 (II.43)
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and the inflationary parameters are

ns = 1− 32N + 24
(4N − 3)2 ' 1− 2

N
, (II.44)

αs = −
64N(8N − 13)
(4N − 3)4 ' − 2

N2 , (II.45)

r =
192

(4N − 3)2 '
12
N2 . (II.46)

In this model the hierarchy of the parameters is ξ ∼ ε � η � 1 instead of the more common ξ � η �
ε � 1. Thus the value of r is expected to be extremely small. In fact, we can see from the cyan line in
Figure II.3 that its smallness results in a compatibility within one standard deviation for all the datasets.
Small deviation from this model, i.e. considering the term Rp with p ≈ 2 [190], worsen the agreement
with Planck+BK15 as shown by the dotted lines which represent terms with 2 + ∆p where ∆p = 0.01.
Considering also ACTPol+WMAP, we see that the model is excluded when p is decreased, whereas for
SPT3G+WMAP it is still consistent within the 95% CL contours. On the other hand, a bigger value of p
is completely in agreement with both datasets at 68% CL.

We would like to conclude this subsection pointing out that the constraints on the slow-roll inflationary
models remain basically stable when dns/d log k can freely vary in the sampling, see also the analogous
discussion in [78] and also [184, 191–194]. Anyway, the tension [175] among the different cosmological
datasets analyzed in this work (i.e., Planck, ACTPol+WMAP and SPT3G+WMAP) produces different con-
straints on the inflationary parameter and often different results regarding the model compatibility, see
also Figure II.3.
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FIGURE II.3: Marginalized joint 68% and 95% CL regions for (ns , r) , (ns , αs) and (r , αs) from
Planck(+BK15) (top panels), ACTPol+WMAP (middle panels) and SPT3G+WMAP (bottom
panels) data. The marginalized contours can be compared to the theoretical predictions of

some selected inflationary models opportunely described in the text.
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II.II INFLATIONARY GRAVITY WAVES FROM LARGE TO SMALL SCALES

In the previous section we discussed how the missing evidence of the B-modes in the Cosmic Microwave
Background (CMB) polarization originated from the inflationary tensor modes and, in general, a combined
analysis of the Planck and BICEP2/Keck array (BK15) data [162], allow us to set only an upper bound on
the amplitude3 of PGWs on the CMB scales r . 0.07 at 95% C.L. at the pivot scale k∗ = 0.05 Mpc−1 [78]. As
common practice in literature, in deriving such bounds we have assumed the slow roll consistency relation
nT = −r/8 to hold together with other higher-order slow-roll consistency relations among scalar and
tensor parameters, Eqs. (II.16) and (II.17). In this way we basically obtained slightly red tilted primordial
tensor spectrum Pt(k) and a scale invariant tensor tilt, unless corrections of order |dnT/d log k| . 10−5 for
all the different datasets analyzed.

However, the slow roll consistency relations can be violated in many non standard models of inflation
, e.g. in presence of other spectator (rolling) fields [163–166] or in modified gravity theories [94, 167–171,
201–203]. When they are relaxed, the Planck data only weakly constrain the tensor tilt to−0.55 < nT < 2.54
at 95% C.L. [78]. Always in Ref [78], it was shown that a significant improvement in the upper bound on the
tensor tilt can be obtained combining the CMB measurements with the LIGO/VIRGO data on the stochastic
background of gravitational waves ΩGW. Indeed, along with B-modes polarization, primordial tensor
fluctuations may have imprinted also the stochastic background of gravitational waves, the analogous of
CMB for gravitational waves [131]. While a direct detection of the stochastic background has not been
provided yet4, in the frequency range f ∈ (20− 85.8) Hz, which corresponds to the wave-number range
k ∈ (1.3− 5.5)× 1016 Mpc−1, the first and second observing runs of the LIGO/VIRGO collaboration set an
upper bound on the stochastic background

ΩGW(kLV) ≤ 1.7× 10−7 (II.47)

at 95 % C.L. [78, 209]. The Planck Collaboration, including the LIGO/VIRGO limit (II.47) as a half-gaussian
prior on the tensor tilt, under the assumption of scale independence (i.e., dnT/d log k = 0), derived the
improved upper bound nT < 0.53 at 95% C.L. [78]. Notice that this constraint is obtained marginalizing
over the probability distribution of r, that is typically sampled assuming a flat prior r ∈ [rmin , rmax] with
rmin . 10−3 ' 0. This makes the constraint on the tensor tilt subject to misunderstanding as if there is no
detection of r no reliable constraint can be derived. Moreover, another important assumption beyond this
analysis, is to consider the tensor tilt as scale independent extending the well known power law relation
(II.4) from the CMB scales (k ∼ 0.05 Mpc−1) all the way up to the small scales probed by the gravitational
interferometers (k ∼ 1016 Mpc−1). This is clearly an important approximation as Eq. (II.4) is just a leading
order expansion and, depending on the model of inflation, nT can acquire a (slight) scale dependence.
Therefore non-linearities may easily break the power-law relation on small scales. It is therefore timely
to investigate which is the impact of higher-order corrections on small scales and the implications for the
constraints that one can derive on inflation combining GW and CMB observations.

In this section for the first we show time that, due to the huge difference in the scales probed by CMB
and GW experiments, higher-order terms in the spectrum, parametrized through the so-called tensor run-
nings [1, 160], albeit negligibly small on the CMB scales, may give non-negligible contributions on the
ultrahigh k probed by direct gravitational observations, drastically changing the final predictions. We
point out the implications for the status of current observational constraints on PGWs and for future de-
tection prospects. In the subsequent sections we instead discuss how these model-dependent small-scale

3It is worth noting that in the upcoming decade, a new generation of CMB experiments such as BICEP3 [195], CLASS [196] ,
SPT-3G [197], Advanced ACTPol [198], LBIRD [199] and CMB-S4 [200] are expected to bring the sensitivity to the tensor amplitude
down to r ∼ 0.01− 0.001 possibly leading to its first detection.

4Notice that the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) found strong evidences for a
stochastic common-spectrum process [204]. Even if this will be confirmed as a first genuine detection of a stochastic background
of GWs, its inflationary interpretation will be in tension with BBN bounds [205, 206] unless we assume a very low reheating
temperature [207, 208].
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effects can be relevant to probe and constrain several non-standard realization of inflation, including the
rich phenomenology associated to modified theories for gravitational interactions.

II.II.I BREAKING THE POWER LAW EXPANSION

The energy density of the universe due to PGWs at the present time and at a given scale k = 2π f is given
by [78, 132, 210–212]

ΩGW(k) .
=

1
ρc

dρGW

d log k
' PT(k)

24zeq
(II.48)

where zeq ' 3400 is the redshift at the matter-radiation equivalence [78]. Using Eq. (II.4), it is easy to
see that, under the assumption of scale-independent tilt, a constraint on the amplitude of the stochastic
background ΩGW(k) can be translated into an upper bound on the tensor tilt

nT <
ln
(

24 zeq ΩGW(k)
r AS

)
ln
(

k
k∗

) . 0.39 + 0.025× log(1/r), (II.49)

where in the last inequality we considered the LIGO/VIRGO limit (II.47). Note that the constraint (II.49)
is derived without any assumption on the tensor amplitude5: if future measurements reveal evidence for
r 6= 0, its detection will immediately place a well defined upper bound on the tensor tilt that however,
because of its logarithmic dependence, will not be drastically sensitive to the precise value of the tensor
amplitude, see also Figure II.4. The physical reason beyond this weak dependence on the tensor amplitude
is that a large positive tilt strongly amplifies the GWs production on the ultrahigh k probed by gravitational
detectors, easily compensating a small (but of course not vanishing) tensor amplitude on the CMB scales.
On the other hand, it is also true that constraints on nT cannot be derived for a vanishing tensor amplitude,
and in fact we may see that taking the limit r → 0, the right side of Eq. (II.49) logarithmically diverges, as
expected.

The constraint (II.49) as well as the upper bound nT < 0.53 at 95% C.L. derived in [78] assume a constant
tilt over a range of about eighteen order of magnitude, namely k ∈ [0.05 , 1.3× 1016]Mpc−1. In order to
parametrize a possible scale dependence, we generalize the power law parametrization to the following
expansions:

logPT(k) = log (r As) + nT log (k/k∗) +
∞

∑
n=1

1
(n + 1)!

[
dnnT

d logn k

]
k=k∗

logn+1 (k/k∗) . (II.50)

and we define the n-order running of the tensor tilt6 as

αT
n(k∗)

.
=

[
dnnT

d logn k

]
k=k∗

(II.51)

Including the runnings, the upper bound (II.49) is modified to

nT .
ln
(

24 zeq ΩGW(k)
r AS

)
log
(

k
k∗

) −
∞

∑
n=1

αT
n(k∗)

(n + 1)!

[
log
(

k
k∗

)]n

. (II.52)

5This is a different approach with respect to those performed in [78] where the upper bound nT < 0.53 at 95% C.L. was derived
marginalizing over the distribution of r. Anyway we see that for r ∼ 10−2 − 10−3 we basically recover the same result, see also
Figure II.4.

6In what follows we will usually avoid to specify that the spectral tilt and the runnings are computed on the pivot scale k∗ and,
to simplify the notation, we will only write nT and αt

n.
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Clearly, in order to exactly compute the sum expansion and to check its convergence we need to estimate all
the derivatives {αt

n} and this is possible only fixing a specific model of inflation. Nevertheless we can ap-
preciate how the generic n-order running must at least satisfy the condition |αT

n/nT| � (n+ 1)!/ logn(k/k∗)
to give a negligible contribution at the generic scale k. This requirement should become highly non-trivial,
above all on the ultra-high k as those directly probed by GW ground-based interferometers.

FIGURE II.4: Constraints on the tensor tilt from the LIGO/VIRGO limit on the stochastic back-
ground (II.47). The yellow dots represent the upper bounds on nT for different values of r
when scale-dependence is ignored. When a scale dependence d log nT/d log k 6= 0 is consid-

ered the yellow dots move on the red lines at constant r.

To study how constraints on nT derived under the assumption of scale independence are modified in
presence of a (slight) scale dependence, we derive the upper bound on the tensor tilt by the LIGO/VIRGO
limit (II.47) for different values of the tensor to scalar ratio, varying the rate of change of the tensor tilt
with respect to the scale, d log nT/d log k, in a range d log nT/d log k ∈ [−0.04 , 0.04]. We find out that,
due to the huge distance between the scales probed by CMB and GW data, a small departure from scale
independence (. 4%) can significantly change the final results, see also Figure II.4. In particular, a small
negative (positive) running7, suppressing (amplifying) the amplitude of PGWs on small scales, can re-
markably worsen (improve) the upper bound derived under the assumption d log nT/d log k = 0 (yellow
dots in Figure II.4). This is clearly translated also into a strong degeneracy between scale-dependence and
the tensor amplitude (see Figure II.4) that can be broken only by an independent measurement of r from
future CMB experiments. Furthermore, it should be noted that Primordial tensor modes with wavelengths
corresponding to the high frequencies of direct GW detection, will exit the horizon very close to the end of
inflation which is precisely when the slow-roll approximation breaks down, see also Ref. [213]. Therefore,
it is not sure at all that a power-law expansion holds even approximately on ultra-high k. As a matter of
fact, near the end of inflation, the shape of the tensor spectrum will be strongly related to the shape of
the inflationary potential and large departures from the power-law parametrization are typically expected.
In the supplementary material, section A.3, we show different examples of negligible and non-negligible
gravitational wave production. We conclude that the small-scale constraints on nT may be very sensitive
to the assumption of scale independence. Non-negligible model-dependent contributions can arise from

7We recall that d log nT/d log k .
= αt

1/nT.

PAGE 86 OF 200



PRIMORDIAL GRAVITATIONAL WAVES W. GIARÈ

non-linear corrections and cannot be always ignored when constraints on the inflationary parameters are
derived combining CMB and GW data.

II.III PROPAGATING SPEED OF PRIMORDIAL GRAVITATIONAL WAVES

In the previous section we have seen that a simple power-law parametrization may be not enough to cap-
ture the behavior of primordial tensor modes with wavelengths corresponding to the high frequencies of
direct GW detection. The higher-order terms in the spectrum, parametrized through the so-called tensor
runnings, albeit negligibly small on the CMB frequencies, may give non-negligible contributions on scales
of direct GW observations. It should be noted that such terms carry information about the specific model
of inflation, possibly changing the small-scale behavior of tensor anisotropies in a model-dependent man-
ner. In this and the following section, we focus on the way non standard physics in the gravitational sector
may be encoded in the primordial tensor two-point function. The increased precision in the constraints
on the primordial tensor modes from the current (and above all future) small and large scale experiments
opens up the possibility of probing the physics of inflation with primordial gravitational waves, testing
deviations from the standard slow roll predictions as a hint for new physics. It is therefore timely to in-
vestigate which constraints one can obtain from current CMB and GW data on inflationary models that
can lead to deviations from the standard inflationary consistency relations. We will show how the afore-
mentioned model-dependent small-scale effects can play a crucial role in testing, constraining and possibly
discriminating a vast phenomenology, including modified theories for gravitational interactions. In partic-
ular, in this section we study the implications of a modified propagation of gravity for the tensor spectrum
and the inflationary observables while in the next section we focus on higher curvature gravity and on its
implications for the inflationary observables.

We start by noting that direct measurements of gravitational waves show good agreements with the
GR predictions on gravity propagation [214–217]. For example, the only multi-messenger event ever mea-
sured so far, GW170817 [214, 218], sets very constraining bounds |cT − 1| . 10−15. Anyway, it should be
noted also that these results refer to a precise range of frequencies (or equivalently to a precise range of
the wave-number k), namely the small scales probed by direct gravitational observations. Without specific
model-dependent assumptions, these limits should not be trivially extended to different frequencies. In-
deed, in many modified gravity theories beyond GR, such as the Horndeski theory of gravity [219–235],
the Gauss-Bonnet gravity [236–252] and also the low-energy effective string theory with higher-order cor-
rections [4, 94, 253–268] gravity can propagate differently from GR and both deviations from the speed of
light and frequency-dependencies often arise. For this reason, testing the condition cT = 1 (at different
frequencies) means to test the theory of gravity (at different energies) and so an independent test of the
gravity propagation on large scales would clearly provide an independent test of GR.

Here we shall focus on the propagation of relic inflationary gravitons [167–170, 266, 269–293]. Under
the assumption of slow-roll inflation, we derive for the first time a set of generalized consistency relations
for the spectral index and its higher-order runnings in presence of a non-trivial gravity propagation during
inflation. In this way we connect the CMB scales to the LIGO/Virgo band ( f ∼ 100 Hz), showing that a
running in frequency of the propagating speed of gravity can induce a scale-dependence of the tensor two-
point function, amplifying the PGWs production on small scales. We exploit these effects for constraining
both the speed of gravity and above all its frequency variation.

II.III.I THEORY

In what follows, we derive a set of equations that relate the propagating speed to the inflationary param-
eters and that generalize the usual slow roll consistency relations that are, in fact, recovered when the GR
prescription cT = 1 is restored. We start by generalizing the theory of the primordial tensor perturbations
during inflation [59, 76, 83, 144, 146, 149, 150, 155] allowing for non-trivial gravity propagation. The action
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for the single field inflation in the unitary gauge is [59, 76, 103, 294]:

S =
M̄2

p

2

∫
d4x
√
−g
[

R− c1(t)− c2(t)g00 −
(

1− 1
c2

T(t)

) (
δKµνδKµν − δK2)] (II.53)

where c1(t) = 2
(

Ḣ + 3H2), c2(t) = −2Ḣ and Kµν is the extrinsic curvature of the spatial slices. Here a dot
denotes the derivative with respect to the cosmic time ẋ ≡ dx/dt. Note that in the standard slow roll case
(cT = 1) the part of the action involving the extrinsic curvature vanishes and one recovers the standard GR
action in the unitary gauge. It should be noted also that a non-trivial propagating speed does not affect the
spectrum of the scalar perturbation and so we can consider only the tensor perturbations whose quadratic
action is

S(2)
γ =

M̄2
p

8

∫
dτ d3x

a2

c2
T(t)

[(
dγij

dτ

)2

− c2
T(t)

(
~∇γij

)2
]

(II.54)

where a(t) is the scale factor, dτ = dt/a(t) is the conformal time and γij is transverse and traceless: γii = 0
and ∂iγij = 0. We expand γij in the Fourier series:

γij(τ, x) =
∫ d3k

(2π)3 e−ik·x ∑
p=+,×

γp(τ, k)a(p)(k) λ
(p)
ij (k) + h.c. (II.55)

where the sum should be considered over the polarization states p = (+,×) while the polarization tensor
λ

p
ij(k) satisfies the usual conditions

k jλ
(p)
ij (k) = 0, (II.56)

λ
(p)
ii (k) = 0 (II.57)

λ
(p)
ij (k)λ∗ (p′)

ij (k) = δpp′ (II.58)

λ
∗ (p)
ij (k) = λ

∗ (p)
ij (−k), (II.59)

and the creation and annihilation operators satisfy[
a(p)(k) , a†

(p′)(k
′)
]
= δpp′ δ

3(k− k′). (II.60)

It is trivial to check that, defining the fields

u(τ, k) .
= γ(p)(τ, k)zT, zT

.
=

Mp

2

(
a

cT(t)

)
(II.61)

the equation of motion is
d2u
dτ2 +

(
c2

Tk2 − 1
zT

d2zT

dτ2

)
u = 0. (II.62)

In what follows we work under the following conditions:

• we fix a background slow roll dynamics requiring that |Ḣ| � H2,

• we assume the slow roll parameter 0 < ε1 � 1 in such a way that the Null Energy Condition (NEC) is
preserved as well as we consider |εi>1| � 1,

• we also assume the variation of the propagating speed per Hubble time to be small and we define similar
parameters

εT
1

.
=

ċT(t)
H cT(t)

, (II.63a)
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εT
i>1

.
=

d log εT
i−1

d log k
' ε̇T

i−1

HεT
i−1

, (II.63b)

with |εT
1 | � 1 and |εT

i>1| � 1.

In this way one can show that
1
zT

d2zT

dτ2 '
1
a

d2a
dτ2 '

2
τ2 (II.64)

at least of corrections of order ε, see the supplementary material, section A.4, for further details. It is also
easy to check that one can define a new wave vector k̃ .

= cT(t)k that can be regarded as constant in the
conformal time since its derivative is of order εT

1 . At the end of the game, unless corrections of order ε, we
can write our equation as

d2u
dτ2 +

(
k̃2 − 2

τ2

)
u = 0 (II.65)

with the solution (obtained fixing the Bunch-Davies vacuum)

u(τ, k̃) =
e−ik̃τ

√
2k̃

(
1− i

k̃τ

)
. (II.66)

A more detailed derivation of this solution is given in the supplementary material,section A.4. Interest-
ingly, this is exactly the standard solution with k → k̃ .

= cT(t) k therefore, in the presence of a non-trivial
propagating speed cT, the primordial tensor and scalar spectra at a given scale k are written as [76, 83, 276]

PT(k) =
2

M̄2
pπ2

H2

cT

(
cTk
aH

)−2ε1−εT
1

(II.67)

PS(k) =
1

8π2 M̄2
p

H2

ε1

(
k

aH

)−2ε1−ε2

(II.68)

Generalized Consistency Relations

Here we are going to generalize the inflationary consistency relations among the spectral parameters in
presence of a generic propagating speed cT. The effects of a non-trivial propagating speed during inflation
are encoded in the inflationary parameters and translated into different consistency relations with respect
to the standard case [1]. Future detection of the tensor spectrum and a consequent test of these consistency
relations can therefore be used to constrain the propagating speed cT testing possible deviations from GR
on the inflationary energy scales.

Because of the propagating speed cT, the scalar and tensor perturbations now exit the horizon at differ-
ent scales. In fact the tensor perturbation will cross the horizon at cTk = aH while the scalar perturbation
will cross the horizon8 at k = aH. Deriving the primordial spectra, we can compute the scalar and tensor
tilts:

nS − 1 .
=

d logPS

d log k

∣∣∣∣
k=k∗

= −2ε1 − ε2 + O(ε2) (II.69)

nT
.
=

d logPT

d log k

∣∣∣∣
k=k∗

= −2ε1 − εT
1 + O(ε2) (II.70)

where k∗ is the pivot scale and the expressions above hold both for k∗ = aH and for k∗ = aH
cT

at least of
corrections of order O(ε2) and therefore negligible. As concerns the scalar and tensor amplitudes, also in

8We are considering the case of a scalar speed cS = 1
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this case they do not depend drastically on the pivot scale

PT

∣∣∣∣
k∗= aH

cT

=
2

M̄2
pπ2

H2

cT
' 2 H2

M̄2
pπ2 (cT)

nT−1 = PT

∣∣∣∣
k∗=aH

(II.71)

PS

∣∣∣∣
k∗= aH

cT

=
(cT)

1−nS

8π2 M̄2
p

H2

ε1
' 1

8π2 M̄2
p

H2

ε1
= PS

∣∣∣∣
k∗=aH

(II.72)

and so does the tensor-to-scalar ratio

r
∣∣∣∣
k∗= aH

cT

= 16ε1 (cT)
nS−2 ' 16ε1

cT
' 16ε1 (cT)

nT−1 = r
∣∣∣∣
k∗=aH

(II.73)

In the equations above we have used the fact that we measure nS ' 0.96 [78] and we expect |nT| � 1. Note
also that we are not interested in a large deviation from the standard GR prescription cT/c = 1 and that
the same results should be obtained computing the scalar and tensor spectra at their respective (different)
exit scales. Since we proved that the choice of the pivot scale is not crucial, in what follows we adopt the
conventional pivot scale k∗ = aH = 0.05 Mpc−1.

A first obvious consequence of a non-trivial propagating speed is that the amplitude of the tensor
spectrum does not fix anymore the energy scale of inflation directly. Indeed in the standard case PT ∝
H2 ∝ ρinf while from Eq. (II.71) we see that PT ∝ H2

cT
.

A more interesting effect of a slightly time dependent propagating speed is that the expression for
the tensor tilt nT acquires a new term εT

1 with respect to the standard case. Therefore the sign of nT now
depends on the parameter εT

1 that quantifies the variation of cT in a Hubble time. If we consider Eq.(II.70)
we see that9 if during the inflation the propagating speed increases or remains constant in time (εT

1 ≥ 0)
the tensor tilt is necessarily red (nT < 0). Instead if the propagating speed reduces in time (εT

1 < 0), the
sign of nT depends on the magnitude of εT

1 . For −2ε1 < εT
1 < 0 the dismissing is small enough to ensure

a negative tensor tilt while for εT
1 < −2ε1 the dismissing is translated into a blue tensor tilt nT > 0. As

discussed so far, a positive tensor tilt would amplify the PGWs production on small scales and this is why
we can use small scale experiments (such as LIGO and VIRGO) to constrain the propagating speed.

Moreover, as one can see from (II.70) and (II.73), also the usual consistency relation r = −8nT is violated
in the presence of a non-trivial propagating speed. In practice, however, there are many ways to violate the
consistency relation between r and nT that do not imply a deviation form GR, see also the supplementary
material, section A.3. This means that, if a violation of the consistency relation r = −8nT is observed, we
need a way to recognize if such a violation is due to a non-trivial tensor propagating speed during inflation
or not.

As we are going to show we can derive a set of consistency relations among the inflationary parameters
and the propagating speed cT(t). For simplicity we suppose that, during inflation, cT increases or decreases
linearly with time, so that

c̈T(t) ' 0. (II.74)

In other words, we take into account only the linear term in the Taylor expansion of cT(t). This (reasonable)
approximation is not crucial for our results, but simplifies the relations we are going to derive. Anyway
we discuss scenarios beyond the assumption of linear time evolution for the tensor propagating speed in
the supplementary material, section A.5. To relate the propagating speed cT to the inflationary parameters
we make use of the scalar and tensor runnings

αS
.
=

d nS

d log k

∣∣∣∣
k=k∗

= −2ε1ε2 − ε2ε3 (II.75)

9Remember that ε1 > 0 to ensure the Null Energy Condition.
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αT
.
=

d nT

d log k

∣∣∣∣
k=k∗

= −2ε1ε2 − εT
1 εT

2 (II.76)

because of (II.74), εT
2 can be calculated from its definition (II.63b)

εT
2

.
=

ε̇T
1

HεT
1
=

1
HεT

1

d
dt

ċT

HcT
=

1
HεT

1

[
ε1

ċT

cT
− ċ2

T

Hc2
T

]
= ε1 − εT

1 (II.77)

that gives for αT

αT = −2ε1ε2 − εT
1

(
ε1 − εT

1

)
(II.78)

Equations (II.69) (II.70) (II.73) (II.75) and (II.78) can be reversed together to obtain

ε1 =
1

16
(r cT) (II.79)

εT
1 = −nT −

1
8
(r cT) (II.80)

ε2 = 1− nS −
1
8
(r cT) (II.81)

ε3 =
αS

nS − 1 + 1/8 (r cT)
− 1

8
(r cT) (II.82)

Using the above equations in αT one gets

αT = n2
T +

5
128

(r cT)
2 +

1
8
(r cT)

[
(nS − 1) +

5
2

nT

]
. (II.83)

Equation (II.83) is a consistency relation between nS, nT, αT and cT that generalizes the usual slow roll
relation. Note that we can obtain as many relations as we want; for example, considering also the running
of running βT

βT
.
=

dαT

d log k

∣∣∣∣
k=k∗

= −2ε1ε2
2 − 2ε1ε2ε3 − εT

1

[(
ε1 − εT

1

)2
+ ε1ε2 − εT

1

(
ε1 − εT

1

)]
(II.84)

it is easy to see that, using (II.79), (II.80), (II.81), (II.82) and solving Eq.(II.83) for cT one obtains a new
consistency relation βT = βT(nS , αS, r , nT , αT). This can be trivial generalized to all orders following the
procedure described in [1] for the standard case. It is, however, more interesting to study some limits of
Eq.(II.83). The limit εT

1 = 0 describes a constant propagating speed not necessarily equal to the speed of
light. Because of (II.80) we have

cT =
−8 nT

r
(II.85)

Using Eq. (II.85) in the consistency relations (II.83) we obtain

αT = n2
T − nT (nS − 1) (II.86)

That is the same consistency relation among nT, αT and nS than in the standard slow roll case [1]. Similarly
the equation for βT

βT = nT (αT − αS) +
α2

T
nT

(II.87)

is the same than the standard slow roll. This mean that if during inflation cT = const 6= 1, the consistency
relation between r and nT will be violated but all the other consistency relations will be preserved. If
together with εT

1 = 0 we fix also cT = 1 (recovering the standard GR prescriptions) the relation r = −8 nT

PAGE 91 OF 200



W. GIARÈ PRIMORDIAL GRAVITATIONAL WAVES

as well as all the other standard slow roll results will be restored.
For completeness we briefly discuss another interesting case in which at the horizon crossing the prop-

agating speed reaches the value cT ' 1 even with a non vanishing εT
1 6= 010. In this case we have to simply

put cT = 1 in the Eq. (II.83) obtaining

αT = n2
T +

5
128

r2 +
r
8

[
(nS − 1) +

5
2

nT

]
(II.88)

that is different from the standard slow roll relation (II.86). Indeed being εT
1 6= 0 because of Eq. (II.80)

also nT 6= −r
8 . This means that a time variation of cT can leave a trace even if at the horizon exit the usual

GR condition cT = c = 1 is restored. We conclude that, together with the propagating speed cT, another
interesting parameter to analyze is εT

1 .

II.III.II CONSTRAINTS

So far we derived a set of consistency relations that generalize the standard slow roll relations introducing
the effects of a non-trivial propagation of gravity during inflation. We have shown that the propagating
speed can be related to the inflationary parameters which means that they can be used to constrain the
propagating speed itself and to test possible deviations from GR at the high energy scales of inflation.

Here, we discuss the constraints coming from present cosmological data and imposing the general-
ized consistency relations that we have derived so far. The theoretical model is calculated using the latest
version of the Boltzmann code CAMB [109, 110] and we use the python sampler Cobaya [295] to extract cos-
mological constraints. The posteriors of our parameter space have been explored using the Monte Carlo
Markov-Chain (MCMC) sampler developed for CosmoMC [107, 108] and tailored for parameter spaces
with a speed hierarchy which also implements the "fast dragging" procedure described in [111]. The con-
vergence of the chains obtained with this procedure is tested using the Gelman-Rubin criterium [112] and
we choose as a threshold for chain convergence R− 1 . 0.01. To compare current data with our theoreti-
cal model, we employ the Planck’s 2018 temperature and polarization likelihood which also includes low
multipole data (` < 30) [113] combined with the lensing likelihood of Planck’s 2018 data release based on
temperature and polarization lensing reconstruction [115] and the CMB power spectrum likelihood of Bi-
cep2/Keck Array X (BK15) [162]. Then we focus on the constraints from the LIGO/VIRGO upper limit on
the stochastic gravitational waves background, that we denote with LV. Indeed, for a blue tilted spectrum,
the stochastic background of primordial gravitational waves ΩGW can be strongly amplified on small scales
and we can use the small scales experiment data on the stochastic background to constrain the propagating
speed and its time variation. Anyway, in light of the results discussed in the previous section, it is clear that
to derive constraints on the inflationary parameters by direct GW observations we need to consider also
the small-scale effects caused by higher-order corrections in the tensor spectrum. We do this relating the
CMB and GW scales trough several generalized higher-order consistency relations discussed so far and as-
suming that the effects of a non trivial propagating speed dominate the behavior of the tensor spectrum on
small scales. Finally, we combine the CMB data and the LIGO/VIRGO bound on the stochastic background
to improve the final results on the inflationary parameters.

Constraints from CMB

In this subsection we present the results of our MCMC analysis. Let us start by noting that the Boltmann
integrator CAMB [109, 110] employs the standard power law parametrization of the primordial scalar and

10This is possible if for example the initial propagating speed was smallest than the speed of light and, at some point, it starts
constantly increasing (εT

1 > 0) to reach the value cT ' 1 at the horizon exit.
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Parameter Prior
Ωbh2 [0.005 , 0.1]
Ωch2 [0.001 , 0.99]

100 θMC [0.5 , 10]
τ [0.01 , 0.8]

log(1010AS) [1.61 , 3.91]
nS [0.8 , 1.2]
cT [0.01 , 1]

16 ε1 [0 , 1]
εT

1 [−0.5 , 0.5]
ε3 [−0.5 , 1]

TABLE II.4: List of the parameters used in the MCMC sampling and their external flat pri-
ors assumed in section II.III.II. In section II.III.II we sampled the same parameters with the
same external priors except for εT

1 on which we also impose a Half-Gaussian prior to include
LIGO/VIRGO data on the stochastic background [296, 297]

P18+BK15 P18+BK15+LV

Ωbh2 0.02242± 0.00015 0.02241± 0.00015
Ωch2 0.1200± 0.0012 0.1200± 0.0012
τ 0.0566± 0.0076 0.0564± 0.0079
ln(1010AS) 3.051± 0.015 3.050± 0.016
r < 0.0961 < 0.0599
nS 0.9645± 0.0044 0.9646± 0.0044
αS −0.0067± 0.0067 −0.0069± 0.0069
nT 0.20+0.27

−0.13 −0.084+0.10
−0.047

αT 0.087+0.049
−0.098 0.0141+0.0035

−0.021
cT > 0.178 > 0.219
εT

1 < 0.203 0.082+0.047
−0.11

χ2 3530 3530

TABLE II.5: Constraints on parameters are at 1σ level (68% C.L.) while upper bounds are at 2σ
(95% C.L.) for the full Planck 2018 likelihood [113, 115] and Biceps/Keck 2015 B-mode [162]
likelihood with and without the inclusion of the prior on εT

1 coming from LIGO/VIRGO data
[209]
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FIGURE II.5: Marginalized 2D and 1D posteriors for the combination of Planck 2018 [113,
115] and Biceps/Keck 2015 [162] data for the parameters of the tensor spectrum and their
combination with the LIGO/VIRGO upper limit on the stochastic background amplitude [296,

297] (P18+BK15+LV).

tensor power spectra i.e. :

PCAMB
S (k) = ACAMB

S

(
k

k?,S

)nS−1+ 1
2 αS log(k/k?,S)

(II.89)

PCAMB
T (k) = ACAMB

T

(
k

k?,T

)nT+
1
2 αT log(k/k?,T)

(II.90)

where k?,T and k?,S are the tensor and scalar pivot scale and the tensor-to-scalar ratio is defined as rCAMB =
PCAMB

T (k?,T)/PCAMB
S (k?,S). While the inclusion of a non-trivial tensor propagating speed leaves unchanged

the scalar spectrum, it impacts the tensor spectrum by rescaling its amplitude of a factor cnT−1
T . We there-

fore modify CAMB in order to include this correction by rescaling rCAMB accordingly (i.e. r = r0.05 =

rCAMBcnT−1
T ) and calculating the amplitude of the spectra at the same pivot scale k?,T = k?,S = aH =

0.05 Mpc−1. This choice ensures that r is calculated to a well-defined scale and allows our constraints to
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FIGURE II.6: Marginalized 2D and 1D posterior for the combination of Planck 2018 [113, 115]
and Biceps/Keck 2015 [162] data (P18+BK15) for the first and second order slow parameters
and their combination with the LIGO/VIRGO upper limit on the stochastic background am-

plitude [296, 297] (P18+BK15+LV).

be directly compared with the results reported by the Planck Collaboration [78, 114]. In our MCMC anal-
ysis we consider the six parameters of the standard ΛCDM model i.e., the baryon ωb

.
= Ωb h2 and cold

dark matter ωc
.
= Ωc h2 energy densities, the angular size of the horizon at the last scattering surface θMC,

the optical depth τ, the amplitude of primordial scalar perturbation log(1010 AS) and the scalar spectral
index nS. As discussed before, the inclusion of (the tensor and scalar) runnings is mandatory to relate the
shape of the spectrum at different scales and so, along with the six standard ΛCDM parameters, we also
include in our analysis the scalar running αS, the tensor-to-scalar ratio r, the tensor spectral index nT, the
tensor running αT, the propagating speed cT and the parameter εT

1 that quantifies its time variation per
Hubble time. Instead of directly sampling these parameters (as it is commonly done, see e.g [78, 114]) we
choose to do the MCMC sampling using, along with the standard ΛCDM parameters, the following four
{cT, 16ε1, εT

1 , ε3} and to derive the value of the tensor and scalar runnings from the generalized consistency
relations introduced in section II.III.I. The flat priors11 on our parameter space are reported in Table II.4.

In Table II.5 we show the constraints on the parameters from the combination of Planck and Biceps/Keck
data while in Figure II.11 we report their 68% and 95% contour plots. A first aspect we would like to stress is
that our results confirm that a non-trivial time-dependent propagating speed does not alter the constraints
on the scalar parameters from the Planck data (which assume cT = 1) as expected from our theoretical
discussion.

As concerns the inflationary tensor parameters, the tensor propagating speed cT is only weakly con-
strained with the 95% C.L. contours showing a preference for cT & 0.18. This is expected since the CMB
data only constrain the amplitude of tensor perturbations AT = r AS = 16ε1 AS cnT−1

T . Then Planck data

11Note that in our MCMC sampling we are considering only the parameter space of subluminal velocities. We discuss superlu-
minal velocities in the supplementary material, section A.6
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are only able to bound the product ε1/cT and since they prefer a tensor amplitude consistent with zero
this leads to a weakly constrained propagating speed of tensor perturbations; only an upper bound can
be placed on the tensor-to-scalar ratio r < 0.096 at 95% C.L. Nevertheless we can derive the upper bound
εT

1 < 0.203 at 95% C.L. on the parameter that quantifies the time dependence of cT. The fact that the region
εT

1 < 0 is essentially unconstrained from the Planck data is translated into the fact that the tensor tilt can
assume large positive values as well as the tensor running αT.

We note that the bound we derive on the tensor-to-scalar ratio is∼ 60% worse with respect to the results
obtained from a combination of Planck and Biceps data without considering the runnings of the tensor
spectrum. Conversely, the bound on the tensor spectral index nT is significantly improved. In particular,
−0.23 ≤ nT ≤ 0.54 at 95% C.L. showing an improvement of a factor of 2 in the negative tail and a factor
of 5 improvement in the positive tail in place of the Planck results of −0.55 ≤ nT ≤ 2.54. This situation is
again a direct consequence of considering a non-vanishing tensor running and imposing the generalized
consistency relation (II.83). When αT is non-zero the tensor spectrum acquires a term ∼ αT log2 k leading
to a growth on small scales (high k). The freedom in nT is so partially transferred to αT that it results to be
almost the same order of magnitude as nT. Moreover, from Eq. (II.84) one can also derive a constraint on
the second-order tensor running βT that we found to be βT = 0.060+0.046

−0.093 at 68% C.L. (i.e. again of almost
the same order than nT and αT)12 This shows that also the results can be sensitive to the higher-order terms
in the primordial spectra, enforcing the importance of a proper parametrization to correctly connect and
describe the large and small scale behavior of the tensor spectrum.

For completeness we also report the bound on the standard slow roll parameters that can be derived
accordingly to the consistency relation derived in section II.III.I. We obtain the following constraints from
the combination P18+BK15:

ε1 < 0.0046 (95% C.L) (II.91)
ε2 = 0.0334± 0.0046 (68% C.L) (II.92)
ε3 = 0.22± 0.23 (68% C.L) (II.93)

in very good agreement with the results derived in section II.I within GR. We show the 2D marginalized
contour plots and 1D marginalized posterior distributions of these parameters in Figure II.6.

Constraints from small scale experiments on Gravitational Waves

If during inflation the propagating speed of gravitational waves decreases enough (i.e. if εT
1 is negative

enough), the tensor tilt can become blue amplifying the Primordial Gravitational Waves production on
small scales. Small scale experiments on gravitational waves such as LIGO/VIRGO and, in the future, LISA
and Einstein Telescope (ET), are sensitive to the stochastic background, ΩGW and can be used to improve
the constraints on the inflationary parameters. In particular Eq. (II.49) provides a rough estimation of the
upper bounds we can set on the blue tensor tilt from small scale experiments. However ground based
interferometers probe scales that are separated from the CMB by a factor of 1018 in k. We have already said
that on such small scales the higher-order corrections parametrized by the tensor runnings can be non-
negligible and that should be included in the analysis [2]. Therefore, as also done in the previous section,
we generalize the parametrization to Eq. (II.50)

In order to estimate the higher order contributions given by the sum (II.50), we work under the fol-
lowing important assumption: we consider the tensor parameters dominated by the time variation of the
propagation speed through the parameter εT

1 in such a way that:

nT = −2ε1 − εT
1 ' −εT

1 (II.94)

12These results are consistent with the relation βT ' 2 n3
T ' 2α3/2

T , discussed below.
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and consequently because of Eq. (II.77)

αT
n

.
=

(
d

d log k

)n

nT ' n!
(
−εT

1

)n+1
' n! (nT)

n+1 (II.95)

This approximation is in great accordance with the results derived in the previous section as it is possible
to see from Figure II.7. In the left panel we plot the constraints in the plane (nT , εT

1 ) while in the middle and
right panels of the same figure we plot the constraints on the first two runnings (i.e. αT

1 ≡ αT and αT
2 ≡ βT)

in the planes (nT , αT) and (nT , βT), respectively. As one can see from the left panel the linear relation (II.94)
between nT and εT

1 is confirmed and the impact of the parameter ε1 is indeed negligible. The middle and
right panels, instead validate the relation (II.95) between the runnings and the tensor tilt (or equivalently
between the runnings and εT

1 ). As one can see αT ' (nT)
2 '

(
εT

1

)2 while βT ' 2 (nT)
3 ' 2

(
−εT

1

)3: this is
exactly what we expect from Eq. (II.95). Therefore when εT

1 is negative, not only the tensor tilt is blue but
also the runnings are positive. This amplifies the PGWs production on small scales allowing us to improve
the constraints on the inflationary parameters. At the end of this section we will come back to further

0.5 0.0 0.5

nT

0.4
0.2
0.0
0.2
0.4

T 1

0.5 0.0 0.5

nT

0.0

0.1

0.2

T

0.5 0.0 0.5

nT

0.1

0.0

0.1

0.2

T

P18+BK15
P18+BK15+LV

FIGURE II.7: Marginalized 2D posterior in the planes (nT , r) and (αT , r). The blue contours are
derived from the combination of Planck 2018 [113, 115] and Biceps/Keck 2015 [162] data (see
section II.III.II) while the red contours include also the LIGO/VIRGO data on the stochastic
background [296, 297] (see section II.III.II). The yellow dashed lines represent the relations

(II.94) and (II.95) we used to derive the small scale constraints in section II.III.II.

discuss the validity of our approximation.
Since we are going to constrain the region of the parameter space εT

1 < 0 it is convenient to use −εT
1 =

|εT
1 |. Putting (II.94) and (II.95) into (II.50), we can estimate the sum

ΩGW(k) =
r AS

24zeq

(
k
k∗

)− log(1−|εT
1 | log( k

k∗ ))
log( k

k∗ ) . (II.96)

As one can see from Eq. (II.96), on the generic ultra-high k̃ � k∗ the spectrum is well defined if |εT
1 | .

1/ log(k̃/k∗). More precisely: if |εT
1 | � 1/ log(k̃/k∗) the spectrum is essentially flat ΩGW ' r As/24zeq

while if |εT
1 | ' 1/ log(k̃/k∗) the spectrum is still flat for k < k̃, but it exponentially grows at k ∼ k̃.

Here we derive a cutoff on εT
1 simply demanding the spectrum to be well defined at least from the CMB

scales all the way up to the ultra-high k probed by gravitational detectors and matching the LIGO/VIRGO
constraints. We recall that in the frequency range f ∈ (20− 85.8) Hz, which corresponds to the wave-
number range kLV ∈ (1.3− 5.5) × 1016 Mpc−1, the LIGO and VIRGO data set an upper bound on the
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stochastic background given by Eq.(II.47). Interestingly, reversing Eq. (II.96)

|εT
1 | =

1− r AS
24zeqΩGW(k)

log
(

k
k∗

) . (II.97)

the LIGO/VIRGO limit on the stochastic background can be translated into a lower bound on εT
1

εT
1 ≥ −

1− r AS
24zeq ΩGW(kLV)

log
(

kLV
k∗

) ' −0.0249 +
(
3.5× 10−9) r (II.98)

that is almost insensitive to the value of the tensor-to-scalar ratio r. Equivalently Eq. (II.98) puts a stringent
upper limit on the blue tensor tilt

nT . 0.025 (II.99)
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FIGURE II.8: Marginalized 2D posterior for the combination of Planck 2018 [113, 115] and Bi-
ceps/Keck 2015 [162] data in the plane (r, εT

1 ). The red region is excluded by the LIGO/VIRGO
data on the stochastic background of GWs (see section II.III.II).

We plotted the LIGO/VIRGO limit on εT
1 in Figure II.8. As one can see comparing the upper bound

(II.99) with that plotted in Figure II.10, once that higher order corrections (i.e. the tensor runnings) are
included in the analysis we can improve the final constraints of more than 1 order of magnitude.

Note also that the constraints on εT
1 can be translated into constraints on cT since εT

1 quantifies how
the propagating speed changes with respect to the scale. To see this, since here we are focusing only on
the linear terms assuming that c̈T ' 0, we can consider a simple toy model where the propagating speed
constantly decreases for almost all the e-fold of inflation in such a way that the equation of motion reads

cT(t)− cT(ti)
.
=
∫ t

ti

ċT dt = ċT (t− ti) = εT
1 cT(t)∆N (II.100)

where ∆N = H∆t is the total number of e-fold between the initial time ti (when cT starts to decrease) and
the time t. In this case cT is given by

cT =
cT(ti)

1− εT
1 ∆N

. (II.101)

PAGE 98 OF 200



PRIMORDIAL GRAVITATIONAL WAVES W. GIARÈ

Assuming cT(ti) = 1 and ∆N ' 60, the LIGO/VIRGO constraint on εT
1 implies13

cT & 0.4 (II.102)

that is consistent with the 2D marginalized posteriors shown in Figure II.11 where values of cT smaller than
0.4 times the speed of light seem to be disfavored, at least within the 68% C.L. contours.

As concerns the next generation of gravitational waves experiments, LISA and ET are expected to have
a sensitivity to the stochastic background ΩGW(kLisa) ' 1× 10−12 on scales kLisa ≈ 1× 1013 Mpc−1 [210]
and ΩGW(kET) ' 3× 10−13 on scales kET ≈ 5× 1015 Mpc−1 [298], respectively. Considering the higher-
order corrections in PT(k), we see that the improvement in sensitivity expected from LISA and ET is not
translated into constraining power on εT

1 and consequently on the tensor tilt at the CMB scales 14. This
result seems to contradict the common intuition but the key aspect here is scale-dependence. Assuming
the generalized tensor spectrum of Eq. (II.50), we can define a scale-dependent tensor tilt nT(k)

nT(k)
.
= nT(k∗) +

∞

∑
n=1

αT
n

(n + 1)!
[log(k/k∗)]

n

︸ ︷︷ ︸.
=S(k)

(II.103)

in such a way that we can always derive constraints by ΩGW, trivially generalizing Eq. (II.49) for the
scale-dependent case as

nT(k) <
ln
(

24 zeq ΩGW(k)
rPS(k∗)

)
ln
(

k
k∗

) (II.104)

with nT(k) given by (II.103). Notice that the improvement in the sensitivity expected by LISA and ET
is again translated into an improvement in the constraints on nT(k), but now these constraints must be
referred to the tensor tilt evaluated at different scales. Therefore the improvement in the constraints ex-
pected from LISA and ET is not trivially translated into an improvement in the constraints on the tensor
tilt on the CMB scales. In fact, the constraints on a given scale k are related to the constraints on the CMB
scales k∗ through the sum S(k) that carries information about the specific model 15. In the inflationary
model considered here, the constraints on nT(k∗) remain almost the same for the three experiments. In-
deed while nT(kET) . nT(kLISA) < nT(kLV) it is also true that S(kLV) > S(kET) > S(kLISA) and the two
terms in Eq. (II.103) compensate each other leaving almost the same freedom on the CMB scales for nT(k∗).
This is again an effect due to the result discussed in section II.II; i.e., on small scales the PGW production is
strongly model dependent and inflationary models that behave at the same way on the CMB scales (where
all the physics is well captured by a power-law parametrization) may instead behave differently on small
scales.

Before concluding this subsection, we want to briefly come back on the approximations (II.94) and
(II.95) on which our results are based. Even if we have already shown that the analysis performed in the
previous section confirms their validity, it is worthwhile to additionally prove their robustness. The shape
of the tensor tilt plotted in Figure II.7 and, in general, the validity of our approximation can be further
understood as follows: using Eq. (II.73), we see that the value of ε1 is fixed by the value of cT and r:

ε1 =
r

16
cT .

r
16

(II.105)

13We want to stress that this example is used to show that constraints on εT
1 can be translated into constraints on cT assuming

that we know how the tensor speed evolves during inflation. However to derive our final results (shown in Table II.5) we did not
assume any specific evolution. Notice also that in the supplementary material, section A.7, we discuss the consistency between
our final results and the current small scale measurement of cT.

14In this model, the constraints on nT(k∗) expected by future experiments are nT(k∗) . 0.032 for LISA and nT(k∗) . 0.025 for
ET.

15The scale-dependence is encoded in the runnings {αT
n} that define the shape of nT(k) relating its value on the CMB scales with

its value on the generic scale k by Eq. (II.103).
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where in the last inequality we have used that cT . 1. From the CMB data we know that r is constrained to
be very small, if for example we fix the tensor-to-scalar ratio to r ∼ 10−2, we immediately see that ε1 ∼ 10−4

and16 ε2 ∼ 10−2. So for |εT
1 | ∼ 10−2 (i.e. the order of the limit we derived from the LIGO and VIRGO data),

comparing the terms involved in the generic n order running,

|εT
1 | (ε1)

n ∼ ε2 (ε1)
n ∼ 10−2(2n+1) (II.106)

ε1 (ε2)
n ∼ ε1

(
|εT

1 |
)n
∼ 10−2(n+2) (II.107)(

|εT
1 |
)n+1

∼ 10−2(n+1) (II.108)

we find that αT
n ' n!

(
−εT

1

)n+1 unless corrections at least 2 order of magnitude smaller. The approximation
is even better for smaller r while it is trivial to see that it is still valid for the whole range of r explored in
our MCMC analysis as Figure II.7 confirms.

Combined constraints from CMB and Small scale experiments

The LIGO/VIRGO limit on the stochastic background amplitude reduces significantly the allowed param-
eter space for εT

1 (see also Figure II.8). Therefore, it is worth combining this small scale bound (II.98) with
CMB data. We include the LIGO/VIRGO upper bound as a half-Gaussian prior on εT

1 and we sample the
same parameter space using the same method and the same priors as those considered in section II.III.II.
In Table II.5 we give the constraints on the parameters from a combination of Planck and Biceps/Keck with
the LIGO/VIRGO constraints, while in Figure II.11 we report their 68% and 95% C.L. contour plots. As one
can see neither the inclusion of the small scale data is enough to derive precise constraints on the primor-
dial tensor speed that we found to be cT > 0.22 at 95% C.L.. Nevertheless, a proper parametrization of the
small scale behavior of the tensor spectrum allows us to set tight constraints on its time dependence pa-
rameter εT

1 = 0.082+0.047
−0.11 at 68% C.L. and consequently on the other inflationary parameters. In particular,

we constrain the tensor-to-scalar ratio r < 0.0599 at 95% C.L., which is in perfect agreement with the con-
straints derived by the Planck Collaboration [78]. We also constrain the tensor tilt to be nT = −0.084+0.10

−0.047
at 68% C.L. and its running αT = 0.0141+0.0035

−0.022 always at 68% C.L. These constraints show an improvement
of more than an order of magnitude with respect to those derived in section II.III.II only from the Planck
and Biceps/Keck data. Moreover using (II.84) we can obtain derived constraints on the second-order run-
ning βT, namely βT = −0.0061+0.011

−0.0027 at 68% C.L., again one order of magnitude better than our estimation
provided in section II.III.II. For completeness we report also the constraints on the other slow roll param-
eters that can be derived according to the consistency relation discussed in section II.III.I. We obtain the
following constraints from the combination P18+BK15+LV:

ε1 < 0.00276 (95% C.L) (II.109)
ε2 = 0.0347± 0.0046 (68% C.L) (II.110)
ε3 = 0.21± 0.22 (68% C.L) (II.111)

Our almost constraints on the inflationary parameters reduce significantly the parameter space allowed for
models of inflation with non-trivial tensor speed. Indeed the positive (negative) values of nT (αT) are now
very tightly constrained (see also Figure II.9). This means that a future detection of a large positive (neg-
ative) tensor tilt (running), allowed by the present bounds once the generalized consistency relations are
relaxed, cannot be brought back to a time variation of the primordial tensor speed, as our results proved.
Besides, thanks to the great improvement in the constraints derived combining the CMB and small scales
data, one can better test gravity on the inflationary energy scale. We would like to stress that the gener-
alized consistency relations obtained in section II.III.I and assumed in our MCMC analysis, generalize the
standard slow roll relations that we prove to be recovered when the GR prescriptions cT = 1 and εT

1 = 0

16Using Eq. (II.69) and the fact that ns ' 0.96 [78]
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are restored. Since any departure from these prescriptions would imply physics beyond GR on the infla-
tionary energy scales, it is important to check the consistency between the constraints and the standard
slow roll predictions in the GR framework. Let us start noting that the condition εT

1 = 0 that ensures a
constant propagating speed cT is consistent with our constraints within one standard deviation. Moreover
in Figure II.9 we plot the 2D marginalized contours at 68% and 95% C.L. in the planes (nT , r) and (αT , r).
The standard consistency relations, yellow dashed lines in the figure, are consistent with our constraints
and, above all when the small scale limit (II.47) is included, no significant deviations are observed.

We can, therefore, conclude that our results, even not strong enough to definitively exclude departures
from GR on the inflationary energy scales, set interesting constraints on the inflationary models with non-
trivial tensor speed, significantly reducing the allowed parameter space for such models. Moreover, they
show remarkable accordance between the current data and the standard predictions expected in a GR slow
roll scenario. In particular only deviations from GR of the order of ∼ ×10−1 are allowed to combine large
and small scale data for models with non-trivial tensor speed, see Figure II.9.
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FIGURE II.9: Marginalized 2D posterior in the planes (nT , r) and (αT , r). The blue contours
are derived from the combination of Planck 2018 [113, 115] and Biceps/Keck 2015 [162] data
(see section II.III.II) while the red contours take into account the LIGO/VIRGO data on the
stochastic background [296, 297] (see section II.III.II). The yellow dashed lines represent the

standard slow roll relations in the GR limit i.e. cT = 1 and d log cT/d log k = 0.

II.IV HIGHER CURVATURE CORRECTIONS AND TENSOR MODES

In the previous section we studied the effects of a non trivial gravity propagation during inflation with-
out assuming any underlying model of modified gravity, but introducing the propagating speed in the
framework of the effective field theory of inflation. In this section we instead focus on corrections from
higher-curvature tensors.

Several high-energy theoretical models, such as String Theory [299–302], predict higher-curvature cor-
rections to the gravitational effective action [76, 273, 303–305] and if the inflationary energy scale is suf-
ficiently high, such corrections can lead to testable features in the primordial perturbations [94, 95, 227,
240–242, 253–255, 273, 304–327]. Here we further investigate the effects of a coupling of the inflaton field
to higher-curvature tensors in models with a minimal breaking of conformal symmetry. In Ref. [94], it was
clearly shown that, at leading order in the breaking of conformal symmetry, a coupling to the squared Weyl
tensor can reproduce the most general higher-curvature corrections to the tensor spectrum. As we pointed
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out in the previous sections, introducing non-standard (gravitational) physics during inflation we basically
break the consistency relation between r and nT and the higher order parameters, possibly leading to blue
tensors. However these relations are violated in many other non standard models of inflation and even if
a deviation from standard inflation will be observed by future experiments, one may ask how we could
convince ourselves that it comes from the higher-curvature effects.

In this section we show for the first time that an observable violation of the tensor consistency relation(s)
from higher-curvature tensors implies also a relatively large running of the tensor tilt, enhanced even by
some order of magnitude with respect to the standard slow roll hierarchy [1, 127, 161]. This may affect the
small scale behavior of tensor perturbations [2, 160, 328–330] and leave signatures in the tensor two-point
function that we could test to recognize higher-curvature effects, above all if they are translated into a blue
tilted spectrum visible by future Gravitational Wave experiments. Exploiting current cosmic microwave
background and gravitational wave data we finally infer that large higher-curvature corrections seem to
be disfavored.

II.IV.I THEORY

The action that reproduces the most general high-curvature corrections to the tensor two-point function at
leading order in the breaking of conformal symmetry is [94, 331] 17

S = SEH + Sφ +
M̄2

p

2

∫
d4x

√
−g f (φ)

W2

M2 (II.112)

where SEH and Sφ are the Einstein-Hilbert action and the action for the inflaton field φ, respectively. W is
the Weyl tensor

Wµνρσ
.
=Rµνρσ

− 1
2
(

gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ

)
+

R
6
(

gµρgνσ − gνρgµσ

)
. (II.113)

involved in the inflaton-Weyl coupling f (φ)W2/M2 with

W2 ≡WµνρσWµνρσ = RµνρσRµνρσ − 2 RµνRµν +
1
3

R2 (II.114)

and M is the scale suppressing higher-curvature corrections. Starting from Eq. (II.112), the primordial
spectra can be computed to obtain the same results (II.67) and (II.68) derived in the previous section , with
the exception that in this case we can get a precise relation for tensor propagating speed [3, 167, 217, 271–
279] which reads

cT ' 1− 4
(

H2

M2

)
f (φ). (II.115)

Furthermore in principle here also the speed of scalar perturbations is not exactly unitary but the correc-
tions are suppressed in slow-roll expansion and we can ignore them: cS ' 1 + (ε1/3)(cT − 1) ' 1. Notice
also that we are considering the inflaton-Weyl coupling as a perturbative correction to the gravitational ac-
tion18 and so cT cannot deviate much from unity putting constraints on the function f (φ) and consequently
on its scale dependence. In what follows we consider a simple coupling d f (φ)/dφ ∼ ±1/Λ with Λ < Mp
and we assume negligible the higher-order derivatives: dn f (φ)/dφn ' 0. We postpone the discussion of a

17Note that a further term ∼ h(φ)WW̃/M2 can be considered basically violating parity of primordial tensor modes [94, 331–
335]. In our work we ignore such coupling.

18Note that in this way the theory is safe from ghost instabilities [59, 94].
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generic coupling-function f (φ) to the supplementary material, section A.8. Finally, we do not specify the
sign of the coupling. Indeed, while the sign could be constrained by requiring tensor to propagate sublim-
inally, as shown in Refs. [336, 337] (see also Ref. [338]) this is not always a safe assumption and, depending
on the model, it can be possible to perform a change of frame so that in the new frame the tensor speed is
c, but the speed of the other massless particles is greater than c leaving us with a situation where we have
actually constrained the speed of normal species to be superluminal, in tension with causality.

As we discussed on the previous section, the presence of a non trivial tensor speed breaks the infla-
tionary slow roll consistency relation between r ' 16ε1/cT ' 16ε1 and the tensor tilt nt ' −r/8− εT with
εT

.
= d log cT/d log k [3, 94]. From Eq. (II.115) it follows that [94]

nT = − r
8
+ λ r1/2 (II.116)

where we have ignored negligible terms ∝ (cS − 1) that are further suppressed by a factor ε1 and we have
defined the dimensionless parameter

λ
.
=
√

2M̄p

(
H2

M2

)
d f (φ)

dφ
∼ ±
√

2
(

M̄p

Λ

)(
H2

M2

)
(II.117)

that weights the size of high-curvature corrections to the inflationary parameters. As discussed in Ref. [94],
if the inflationary energy scale H2 is close to M2, these corrections can be the dominant effect as the param-
eter λ is also amplified by the factor Mp/Λ that can be large. Note also that for enough large positive λ,
higher-curvature corrections can end-up in a blue tensor spectrum, amplifying the PGWs production on
the small scales probed by gravitational detectors, as we discussed so far.

Along with the tensor tilt, also the other inflationary parameters can acquire non negligible corrections
from higher-curvature terms. In particular, by noting that19

dλ

d log k
= −2λ ε1 = − r

8
λ (II.118)

we derive the expression of the tensor running αT
.
= dnT/d log k, namely

αT = αSR
T + λ

[
− 3

16
r3/2 − 1

2
r1/2(nS − 1)

]
. (II.119)

where αSR
T represents the standard slow roll relation (II.16) and the terms in the square brackets are the

correction introduced by higher-curvature tensors. While in the standard slow roll scenario this relation is
O(ε2), implying an extremely small running αSR

T ' −5× 10−n−3 for r ' 10−n, higher-curvature corrections
may instead give a relatively large running αT/λ ' 2 × 10−n/2−2, see also Figure II.10. A large tensor
running can leave non trivial features in the shape of the tensor two-point function, affecting the small scale
behavior of tensor anisotropies and, if higher-curvature corrections are translated into blue tensors, further
enhancing the gravitational wave production on small scales as those probed by gravitational detectors.
Therefore if a violation of the consistency relation r = −8 nT is observed by future CMB and/or small
scales measurements, a combined analysis of the tilt and the running should in principle shed light on its
higher-curvature nature.

As concerns the other inflationary parameters, a computation for the running of running βT
.
= dαT/d log k

gives:

βT = βSR
T + λ

[
15
256

r5/2 +
3
8

r3/2 (nS − 1) +
1
4

r1/2 (nS − 1)2 − 1
2

r1/2 αS

]
(II.120)

19We recall the useful relation d/d log k =
√

2 Mp ε1/2
1 d/dφ.
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where βSR
T ∼ O(ε3) . 10−6 [1] represents the standard slow roll term given by Eq.(II.17). We see that

higher-curvature corrections still provide a dominant effect βT/λ ' 10−n/2−4, which is however extremely
small.

By taking higher order derivatives it is also easy to see that αT
j

.
= (d/d log k)j nT . 2j λ× 10−

n
2−2j from

which it follows that the running of order j + 1 is expected to be a factor ∼ 10−2 smaller than the running
of order j. Despite the fact that higher order runnings can be strongly amplified on ultrahigh k, it is easy to
see that in this case such terms still remain negligible even on the scales probed by GW interferometers20.
So, along with the tensor tilt, any relevant correction to the spectrum is captured only by the running αT
and eventually the running of running βT.

FIGURE II.10: Tensor spectrum expected by higher-curvature corrections. For each point in
the plane (r , nT) the tensor running αT is fixed by the equations (II.116) and (II.119). The
dashed region is excluded by the LIGO/VIRGO limit on the stochastic background (II.47); the
black solid (dashed) line represents the sensitivity expected by LISA (Einstein Telescope). The
blue contours are the 68% and 95% C.L. bounds for a combination of Planck 2018 [113, 115],

BICEP2/Keck 2015 [162] and the LIGO/VIRGO [296, 297] (P18+BK15+LV) data.

II.IV.II CONSTRAINTS

We first derive constraints on higher-curvature corrections using the small scale data on the stochastic back-
ground of GWs and then we combine such information with the current CMB data performing a Monte
Carlo Markov Chain (MCMC) analysis. We use the same methods, techniques and datasets discussed
previously in the subsection II.III.II

20We recall that the generic running of order j gives a correction to the tensor tilt that is weighted by a factor logj(k/k∗)/(j + 1)!
on the generic scale k.
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Parameter Prior/Derived Constraints (P18+BK15+LV)

Ωbh2 [0.005 , 0.1] 0.02240± 0.00015

Ωch2 [0.001 , 0.99] 0.1200± 0.0012

100 θMC [0.5 , 10] 1.04091± 0.00031

τ [0.01 , 0.8] 0.0564± 0.0078

log(1010AS) [1.61 , 3.91] 3.050± 0.015

nS [0.8 , 1.2] 0.9653± 0.0044

ε3 [−0.5 , 1] 0.12± 0.23

r [0 , 1] < 0.123

εT [−0.5 , 0.5] -

αS Derived −0.0041+0.0077
−0.0059

nT Derived 0.08+0.28
−0.19

αT Derived −0.0004+0.0031
−0.0020

βT Derived −0.00022+0.00084
−0.00042

λ Derived 0.1+2.0
−1.2

TABLE II.6: The external priors used in our MCMC sampling and the results obtained combin-
ing the full Planck 2018 likelihood [113, 115], the BICEP2/Keck 2015 B-mode [162] likelihood
and the LIGO/VIRGO data on the stochastic background [209]. The constraints on parame-
ters are at 1σ level (68% C.L.) while upper bounds are at 2σ (95% C.L.). We indicate as Derived

those parameters obtained by the others using the consistency relations.

Constraints from Gravitational Waves

In this case we parametrize the primordial tensor spectrum by Eq.(II.14) and we impose the relations
(II.116) and (II.119) for the inflationary parameters relating the LIGO/VIRGO limit (II.47) to higher-curvature
corrections. In Figure II.10 we plot the constraints in the plane (r , nT) showing that values nT & 0.4 are
excluded by the LIGO/VIRGO limit (II.47). Note also that these constraints can be easily translated into
constraints on the dimensionless parameter λ, i.e. on the size of the higher-curvature corrections. A large
positive tensor tilt implies a large positive running αT that is completely fixed by the values of nT and r
by equations (II.116) and (II.119). If a violation of the slow roll consistency relation is observed, a test of
(II.119) could in principle shed light on its higher-curvature nature. Testing this relation with current and
future CMB measurements could be extremely challenging as the tensor running, even enhanced by some
order of magnitude by higher-curvature corrections, clearly gives higher-order corrections to the tensor
spectrum on the CMB scales. Nevertheless, if higher-curvature corrections are translated into a sufficiently
large blue tilted spectrum, leading to an ΩGW visible by future GW experiments, combining the CMB and
GW data we might strongly improve the constraining power as proved in the previous section. Indeed
always in Figure II.10 we show the sensitivity curves of future gravitational wave experiments such as
LISA [339] and Einstein Telescope [340]. They are expected to bring the LIGO/VIRGO upper limits down
by a factor ∼ 2 leading to either a detection or to tighter constraints. Because of (II.116) and (II.119), a
detection of ΩGW at a given scale k will immediately fix the parameter λ to

λ =

ln
(

24 zeq ΩGW(k)
rPS(k∗)

)
ln(k/k∗)

+ r
8 −

αSR
T
2 ln(k/k∗)

r1/2 −
[ 3

16 r3/2 + 1
2 r1/2(nS − 1)

]
ln(k/k∗)

. (II.121)
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Supposing that future CMB experiments lead to a first detection of the tensor amplitude r, we can use
measurements of ΩGW(k) at different scales (e.g. the scales probed by LISA and ET) as a consistency check
for λ and so as a test of equations (II.116) and (II.119).

We conclude this subsection with a final remark: it is well known that the multi-messenger event
GW170817 [214, 218] sets strong bounds on modified gravity theories, constraining cT − 1 . 10−15. There-
fore one could consider the possibility of using this bound to derive constraints on this model. While it is
easy to see that adopting the GW170817 limit higher-curvature corrections will be severely suppressed21,
it is also worth noting that the event GW170817 only constrains the propagating speed of gravity in a
precise range of frequencies that is far away from the CMB scales. Because of the running in frequency
εT = d log cT/d log k, we may not simply use the GW170817 bound as it refers different scales, but we can
use constraints on λ to relate values of cT at different frequencies.

Constraints from Cosmic Microwave Background and Gravitational Waves

For our MCMC analysis, we consider the six parameters of the standard ΛCDM model, i.e. the baryon
ωb

.
= Ωb h2 and cold dark matter ωc

.
= Ωc h2 energy densities, the angular size of the horizon at the last

scattering surface θMC, the optical depth τ, the amplitude of primordial scalar perturbation log(1010 AS)
and the scalar spectral index nS. Along with the six standard ΛCDM parameters, we also considered the
scalar running αS, the tensor-to-scalar ratio r, the tensor spectral index nT, the tensor running αT, and the
running of running βT. However, instead of directly sampling all these parameters (as it is commonly
done, see e.g. [78, 114]), along with the standard ΛCDM parameters, we sample only {r , ε3 , εT} and we
use the relations derived in subsection II.IV.I to compute the others. More precisely we derive the tensor
tilt nT by Eq. (II.116), its running αT by Eq. (II.119) and its running of running βT by Eq. (II.120) with
αS = αSR

T + (1− nS − r/8) ε3. In this way we are also able to derive constraints on the dimensionless
parameters λ defined by Eq.(II.117), as we discuss below.

In Table II.6 we show both the priors used for the sampled parameters, denoting as "Derived" those
obtained by consistency relations, and the constraints from the combination of Planck (P18), BICEP2/Keck
(BK15) and LIGO/VIRGO (LV) limit on the stochastic background, Eq.(II.47). We include the LIGO/VIRGO
limit as an half-Gaussian prior on the amplitude of tensor spectrum at the smallest scale probed by those
gravitational wave interferometers. In Figure II.11 we instead report the 68% and 95% contour plots for the
tensor parameters.

Although our results do not exclude the possibility that observable departures from the slow roll con-
sistency relation can arise from higher-curvature tensors, see also Figure II.10, they strongly reduce the
parameter space allowed for such deviations. In particular our analysis shows a preference for a small
running of the tensor tilt αT = −0.0004+0.0031

−0.0020 at 68% C.L., consistent with zero as expected in the stan-
dard slow-roll hierarchy. The constraints on the tensor running can be translated into a constraint on the
dimensionless parameter λ that weighs the higher-curvature corrections to the inflationary parameters,
namely λ = 0.1+2

−1.2 at 68% C.L., see also Table II.6 and the discussion in section II.IV.II. Also in this case
a remarkable preference for values of λ consistent with zero is found, disfavoring large corrections from
higher curvature tensors, see also the posterior distribution of λ in Figure II.11. Notice also that future
experiments on GW such as LISA and ET, once combined with current and future CMB data, can further
constrain the parameter space allowed for this model. In Figure II.10, we can appreciate that the sensitivity
curves of future gravitational wave experiments intersect the current CMB constraints, which means that
a large range of the parameter space currently allowed can be probed by future measurements, leading to
either a detection or to tighter bounds on higher-curvature corrections.

21Assuming a coupling function f (φ) ∼ φ/Λ with φ . 1015GeV the GW170817 limit would imply |λ| ' 10−11 � 1.
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FIGURE II.11: Marginalized 2D and 1D posteriors for the combination of Planck 2018 [113,
115], BICEP2/Keck 2015 [162] and the LIGO/VIRGO upper limit on amplitude of the stochas-

tic background [296, 297] (P18+BK15+LV).
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CHAPTER III

HOT RELICS: AXIONS & NEUTRINOS

In this chapter I discuss well motivated extensions of the Standard Model of elementary parti-
cles that involve axions thermalized in the early Universe by scatterings with other particles as a
solution of the strong CP problem in quantum chromodynamics. After providing a brief review
of the axion theory, I analyze realistic mixed hot-dark-matter scenarios that include both axions
and massive neutrinos. In light of the most recent cosmological and astrophysical observations,
I present new robust bounds on hot relics able to constrain a significant range of the parameter
space, with important implications for direct axion and neutrino searches. Finally, I extend the
discussion to future cosmological observations.
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III.I THE STRONG CP PROBLEM AND AXIONS

The most elegant and promising solution of the strong CP problem in quantum chromodynamics was
provided by Peccei and Quinn in 1977 [341, 342]. They postulated that the full Lagrangian of the standard
model was invariant under an additional global U(1)PQ symmetry spontaneously broken at some energy
scale. The result is a new spineless particle named axion. In this section, we give a brief overview both of
the strong CP problem and the Peccei Quinn solution, pointing out the most important properties of axion
theory.

III.I.I ASPECTS OF QUANTUM CHROMODYNAMICS

We start our discussion from another problem known as UA(1) problem. It seems peculiar, but we will see
that the strong CP problem actually arises from the solution of the UA(1) problem. To understand the na-
ture of the UA(1) problem we need to briefly review the basic aspects of QCD and the chiral structure of the
Dirac spinor fields [343, 344]. As nuclei are formed from protons and neutrons, in the same way Hadrons
(i.e. particles that undergo strong interactions) are made of bound states of charged quarks. Quarks can
have three different colors (red, blue, green) and different flavors (i.e. up, down, strange, charm, bottom, top).
At the beginning , when quarks were first introduced, they were considered a convenient way to motivate
the appearance of particular representations of the approximate symmetry group SU(3) and for this reason
dynamical problems such as the absence of free quarks were neglected. Instead quarks can be described
as interacting particles by a fundamental quantum field theory. QCD (i.e. the quantum theory of strong
interactions) is a non abelian gauge field theory based on the gauge group SU(3). The particles linked to the
gauge field are said gluons, and their role is to bind Hadrons together. A non-abelian gauge theory in some
sense is similar to an abelian one and indeed quarks in QCD appear in a very similar way that electrons
in QED, while gluons are analogous to photons. Anyway there are some important differences such as the
fact that unlike electrons and photons, quarks and gluons never appear as physical particles. The fact that
quarks and gluons are never observed as free particles is solved by the so called confinement requirement
which asserts that the dynamics of QCD are such that only SU(3) singlet states are present in the space
of finite energy physical states. Furthermore in QCD there are no mass-less states (as photons in QED)
except the Pions and associated pseudo-scalar particles in the limit of vanishing quark masses. Note that a
crucial consequence of the confinement requirement is that QCD cannot be described in the conventional
perturbation theory since free particle states are the starting point of any perturbation theory. Anyway one
can show that for non abelian gauge theories, uniquely in four spacetime dimensions, perturbation theory
has the correct property of asymptotic freedom and this justifies the application of the perturbation theory
in order to calculate quantitatively measurable predictions.

The Lagrangian of a non abelian SU(3) gauge theory has 8 gauge fields Aa
µ (a = 1...8) corresponding to

8 different gluons. The strength tensor reads

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + g fabc Ab

µ Ac
ν (III.1)

where g is the coupling constant and the fabc are the totally antisymmetric structure constants of the SU(3)
group. In terms of the 3× 3 Gell-Mann matrices λa we have[

1
2

λa,
1
2

λb

]
= i fabc

1
2

λc (III.2)

The quark fields belong to the complex 3-dimensional representation of SU(3) defined by matrices λa. The
QCD Lagrangian therefore is

LQCD = −1
4

Gµν
a Ga

µν + ∑ q f
(
iγµDµ −m f

)
q f (III.3)
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where the sum is over the spinor indices (suppressed for brevity), the different quark color indices (sup-
pressed for brevity, as well) and over the different flavor indices f . Note that each flavor quark has a given
mass m f . Dµ is the covariant derivative defined in such a way that:

Dµq f = ∂µq f − igAa
µ

1
2

λaq f (III.4)

Local infinitesimal SU(3) gauge transformation reads:{
δAµa =

1
g

(
∂µξa + g fabc Aµbξc

)
δq f = iξa

1
2 λaq f

(III.5)

and it easy to show that the QCD Lagrangian (III.3) is invariant under (III.5). We do not want to investigate
further general details of the QCD Theory since this goes beyond our goals and we remand the interested
reader to the literature dedicated.

As a preliminary to describe the UA(1) problem we examine the chiral structure of the Dirac fields.
Such fields (that could be the electron or the quark field) satisfy the Dirac equation:(

iγµ∂µ −m
)

ψ(x) = 0, (III.6)

that is obtained from the Lagrangian

L(x) = ψ(x)
(
iγµ∂µ −m

)
ψ(x). (III.7)

where ψ = ψ†γ0 and the γµ matrices are defined by {γµ, γν} = 2gµν I and we introduce also the further
matrix γ5 ≡ γ0γ1γ2γ3 which by definition trivially satisfies (γ5)2 = 1 and γ5γµ = −γµγ5. At this point
we introduce the Left handed and Right handed Dirac fields respectively as

ψL =
1
2
(
1− γ5)ψ, ψL =

1
2
(1 + γ5)ψ (III.8)

ψR =
1
2
(
1 + γ5)ψ, ψR =

1
2
(1− γ5)ψ (III.9)

in such a way that ψ = ψL + ψR and ψ = ψL + ψR. In term of ψL and ψR, the Lagrangian reads

L(x) = ψRiγµ∂µψR + ψLiγµ∂µψL −m
[
ψRψL + ψLψR

]
(III.10)

and we see that the kinetic part is a sum of two terms involving the right and left chiral components sepa-
rately, while the mass term couples right to left and left to right. From this point of view the fermion mass
comes from an interaction that transforms left handed (or negative helicity) particles into right handed (or
positive helicity) ones; and vice versa. For example an (approximately) massless neutrino has no inter-
action inducing such a L-R flip so that it remains purely left-handed. Another interesting fact is that for
massless particles, since γ5γµ = −γµγ5, we have that γ5 (iγµ∂µψ

)
= 0 = −

(
iγµγ5ψ

)
and so both ψL and

ψR respect the Dirac equation: iγµ∂µψR = iγµ∂µψL = 0.
With this result in mind, we now come back to the QCD Lagrangian (III.3) and focusing on the quark

Dirac field term ∑ q f
(
iγµDµ −m f

)
q f we see that in the limit m f → 0, ∀ f , both the Right and the Left

handed Dirac fields respect the Dirac Equation and so for f flavors of quarks, we have a large global
symmetry

UR(f)×UL(f) (III.11)

which corresponds to the freedom of arbitrary chiral rotations of the f flavor of quarks into each other. We
can use the chirial rotation invariance in order to define the Vectorial component (V=R+L) and the Axial
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component (A=R-L) so that, in the quark vanishing masses, the exact symmetry of the theory is

UV(f)×UA(f) (III.12)

If we call ΛQCD the dynamical energy scale of the QCD, since the masses of the up and down quarks are
mu , md � ΛQCD we have that

UV(2)×UA(2) (III.13)

is a very good approximate symmetry of the theory that can be further decomposed as:

SUV(2)×UV(1)︸ ︷︷ ︸
UV(2)

× SUA(2)×UA(1)︸ ︷︷ ︸
UA(2)

(III.14)

Let us focus on the vectorial part and on the axial part separately.
The SUV(2) part is the symmetry group associated with the quark field transformations:

qi →
[
ei~α~τ2
]

ij
qj (III.15)

and the Noether current:
~Jµ

V = qγµ~τ

2
q (III.16)

This symmetry is exact if mu = md. However since mu , md � ΛQCD so SUV(2) must be a good approx-
imated symmetry. The conservation quantity associated with this symmetry is the Isospin. On the other
hand it is easy to show that UV(1) is always an exact symmetry of the theory (i.e., independently form the
value of the quark masses) corresponding to the quark field transformations:

qi → eiαqi (III.17)

and the Noether current
Jµ
V = qγµq. (III.18)

The conservation of the Noether current is nothing else but the Barion Number.

The situation is very different if we consider the Axial SUA(2)×UA(1) symmetry. The reason is that in
QCD the dynamical formation of quark and anti-quark condensation 〈q̄q〉 breaks both the global SUA(2)
and UA(1) symmetries.

The SUA(2) symmetry is associated with the quark field transformations

qi →
[
ei~α~τγ5

2

]
ij

qj (III.19)

and the Noether Axial current
~Jµ

A = qγµγ5
~τ

2
q. (III.20)

As to the broken symmetries correspond Goldstone bosons, the break of the SUA(2) symmetry is associated
with the π-triplet with masses mπ ≈ 0.
On the other hand the UA(1) symmetry corresponds to the quark field transformations

qi → eiαγ5/2qi (III.21)
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and it is associated with the Noether axial current

Jµ
5 =

1
2

qγµγ5q. (III.22)

The very interesting fact is that the broken UA(1) symmetry (in the limit of finite but small quark masses)
would imply a Goldstone boson essentially degenerate with the pions triplet that instead is not observed
in hadron spectrum. Why? This is what is known as the UA(1) problem. In order to solve this problem
we have to briefly review the structure of the vacuum state of the Gauge Theories and in particular the
structure of the QCD vacuum.

Chiral Anomaly

One can think that a possible solution of the UA(1) problem may be represented by the chiral anomaly of
the UA(1) Axial current Jµ

5 . In other words the divergence of Jµ
5 gets quantum correction

∂µ Jµ
5 = n f

g2
s

32π2 Gµν
a G̃a

µν (III.23)

where n f is the number of different flavors f and G̃a
µν is the dual strength energy tensor

G̃a
µν ≡

1
2

εµναβGαβ
a . (III.24)

In this way, even if the QCD is formally invariant under the UA(1) transformations, the chiral anomaly will
change the action introducing a term

δS ∝
∫

d4x∂µ jµ
5 ∝

∫
d4xGµν

a G̃a
µν (III.25)

so it seems that the UA(1) is no more a symmetry at the quantum level. Unfortunately the quantity Gµν
a G̃a

µν

can be expressed as a total divergence
Gµν

a G̃a
µν = ∂µKµ (III.26)

where
Kµ = εµαβγ Aaα

[
Gaβγ −

gs

3
fabc Abβ Acγ

]
. (III.27)

Therefore choosing the usual condition Aµ
a = 0 at the spatial infinity the chiral term (III.25) vanishes

δS ∝
∫

d4xGµν
a G̃a

µν ∝
∫

d4x∂µKµ ∝
∫

dΣµKµ = 0 (III.28)

and the UA(1) is a good symmetry of the theory again. The problem is not solved.

The structure of the QCD vacuum

The real solution of the UA(1) problem comes from the understanding of the structure of the QCD vacuum
state that implies different boundary conditions for the gauge field Aµ

a that must be a pure gauge field at
the spatial infinity. As a matter of fact, the vacuum state of non abelian gauge field theories (like QCD)
is more complex and structured than one may expect: in a gauge theory we have some freedom that we
use to require that the gauge fields (i.e. the gluon fields) Aµ

a respect the condition A0
a = 0. This is known

as Temporal Gauge. In this gauge the fields are time independent and, under a gauge transformation Ω(~r),
transform as

τa

2
Ai

a(~r) ≡ Ai(~r)→ Ω(~r)Ai(~r)Ω(~r)−1 +
i
g

Ω(~r)∇i.Ω−1(~r) (III.29)
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The vacuum state is of course defined to be the state where the vector potential is either zero or in a
gauge equivalent configuration to zero. From Eq. (III.29), one can see that in this case the vacuum gauge
equivalent configurations correspond to the term i

g Ω(~r)∇i.Ω−1(~r). If we require that at the spatial infinity
Ω(~r → ∞) → 1, we can classify all these gauge equivalent vacuum states by how Ω(~r) goes to unity at
spatial infinity. In other words

lim
~r→∞

Ω(~r)→ ei 2nπ (III.30)

where the integer number n is called winding number (or sometimes topological charge or even instanton
number) and it is related to the Jacobian of a S3 → S3 transformation that maps the physical space onto the
group space. It can be shown that [345]

n =
ig3

s
24π2

∫
d3r Tr εijk Ai

n(~r)Aj
n(~r)Ak

n(~r) (III.31)

where An is the transformed gauge field under the transformation Ωn. We can so use the winding number
n in order to classify the different vacuum states |n〉 corresponding to the different ways of how Ω(~r)→ 1
at the spatial infinity. Moreover we can note that, because of eq. (III.30), we can obtain the gauge transfor-
mation Ωn using n-times Ω1 and so that the vacuum states are not really gauge invariant since for example
the action of the gauge transformation Ω1 on n-vacuum state gives a different (n + 1)-vacuum state

Ω1|n〉 = |n + 1〉. (III.32)

However it is possible to show that superimposing n different vacuum states, one can obtain a gauge
invariant vacuum, the so called θ-vacuum [346]

|θ〉 ≡∑
n

e−inθ |n〉. (III.33)

This is of course a gauge invariant vacuum state, but the very interesting fact of the θ-vacuum is that the
vacuum to vacuum transition is non zero:

+〈θ|θ〉− = ∑
m,n

eimθe−inθ + 〈m|n〉− = ∑
ν

eiνθ

[
∑
n
+〈n + ν|n〉−

]
(III.34)

where ν = m− n is the difference in the winding number. One can show that ν is given by:

ν =
g2

s
32π2

∫
d4x GaµνG̃µν

a =
g2

s
32π2

∫
dΣµKµ 6= 0 (III.35)

Thus the complex structure of the QCD θ-vacuum provides a very interesting fact: the term that comes
from the chiral anomaly

∫
d4x GaµνG̃µν

a is not zero but it is equal to the difference in winding numbers ν.
Using the path integral formalism in order to describe the vacuum to vacuum transition, one finds:

+〈θ|θ〉− = ∑
ν

∫
δAµeiSeff[A]δ

[
ν− g2

s
32π2

∫
d4xGµν

a G̃aµν

]
(III.36)

where the effective action Seff is given by:

Seff = SQCD[A] + θ
g2

s
32π2

∫
d4x Gµν

a G̃aµν (III.37)

Therefore the θ-term that arises from the non trivial vacuum structure of the gauge theories can be inter-
preted as a further term in the action of the theory. This additional term violates both P and CP symmetries
(while of course it preserves the CPT symmetry). Recovering our analogy to the electromagnetic theory,
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we may say that this term roughly corresponds to the ~Ea · ~Ba interactions.
The solution to the UA(1) problem, should be clear now. We have to consider that the boundary condi-

tion to impose on the gauge transformation (i.e., their behavior at the spatial infinity) and the consequent
non trivial structure of the vacuum state connect the chiral anomaly with the sectors of vacuum to vacuum
transition with ν 6= 0. In other words we have to consider that there are sectors of the theory where ν 6= 0.
Since the QCD perturbation theory is connected to the ν = 0 sector where the GG̃ term vanishes, the ef-
fects of the ν 6= 0 sectors are necessarily non-perturbative but of course they must be considered. In these
sectors the chiral anomaly plays a crucial role since the charge Q5 associated with the Noether current Jµ

5 ,
eq.(III.22), becomes

∆Q5 =
∫

d4x∂µ Jµ
5 = n f

g2
s

32π2

∫
d4xGµν

a G̃aµν = n f ν (III.38)

and so it is never conserved if ν 6= 0. Thus, if we include the ν 6= 0 sectors in the QCD theory (as we have
to do), UA(1) is never a symmetry.

III.I.II THE STRONG CP PROBLEM

It is interesting and maybe singular that the solution of the UA(1) problem generates the so called strong
CP problem. Indeed if together with the QCD we consider also the weak interactions another term similar
to that obtained from the UA(1) problem solution appears. The origin of this additional term is due to
the mass matrix of quarks which emerges from the spontaneous breakdown of the electroweak gauge
symmetry. The mass matrix of quarks is neither Hermitian nor diagonal and in general it is complex so
that the respective terms in the Lagrangian are

L mass = −qRi
MijqLj − qLi

(
M†
)

ij
qRj (III.39)

If one wants to go to a physical basis then the matrix must be diagonalized by separate unitary transfor-
mations of the chiral quark fields that encompass also the UA(1) chiral rotations{

qR → ei α
2 qR

qL → e−i α
2 qL

(III.40)

where α = 1/n f Arg det M. With analogous considerations to those discussed in the previous section one
can show that such chiral rotation alters the vacuum angle in such a way that, if we define

Q̃5 ≡
∫

d3xJ̃o
5 (III.41)

the effect of a chiral rotation on the vacuum state is

eiαQ̃5 |θ〉 = |θ + n f α〉 (III.42)

Therefore, using again the path integral formalism to describe the vacuum to vacuum transition as in the
previous section, but considering also this effect coming from the electroweak interactions, one finds that
the full additional term to include in the Lagrangian (or equivalently in the action) is

LCP = (θ + Arg det M)
g2

s
32π2 GaµνG̃µν

a . (III.43)

It is so useful to define the parameter θ̄ ≡ θ + Arg det M so that we eventually have

LCP = θ̄
g2

s
32π2 GaµνG̃µν

a . (III.44)
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The Lagrangian (III.44) contains all the terms coming from QCD and EW interactions that violate the CP
symmetry. The parameter θ̄, that is a combination of QCD and electroweak parameters, gives us a measure
of the CP violation. This is a free parameter of the theory and so it can assume all the values with the same
probability. The parameter θ̄ is strongly constrained from the electric dipole momentum of the neutron dn
that reads [347–349]

dn ≈ θ̄

(
e mq

m2
N

)
< 3−26 [e cm] (III.45)

That implies θ̄ < 10−9. Why is it so small? How is it possible that completely different contributes of order
O(1), coming from completely different physics (QCD and EW) compensate each other within a precision
of one part over 109? Even if all the values of θ̄ have the same probability we would like to find a dynamical
mechanism able to explain a value of θ̄ so small. This is known as Strong CP problem. An easy solution to
the strong CP problem would be requiring a new additional chiral symmetry in such a way that we could
always rotate θ̄ to be zero. This could always be done whether the mass of one quark, say mu, is zero. In
this way, with a chiral rotation, one may choose θ = 0 and θ̄ ∝ det M ∝ mu = 0. Anyway, in general, both
from the theoretical and experimental side, quarks are regarded to be massive and this is not a good way
to solve the problem.

III.I.III THE PECCEI QUINN SOLUTION

To solve the strong CP problem, in 1977, Roberto Peccei and Helen Quinn postulate the full Lagrangian of the
standard model was invariant under an additional global chiral U(1) symmetry, known as UPQ(1) (Peccei-
Quinn) symmetry [341, 342]. If the UPQ(1) symmetry exists and is exact, so the strong CP problem would
be trivially solved by performing a chiral rotation and setting θ̄ = 0. However, such a symmetry cannot
be exact but it must be spontaneously broken at some energy scale fA. Indeed if UPQ(1) is spontaneously
broken, θ̄ is dynamically driven to zero. In this case there will be an associated pseudo Goldstone boson in
the theory, that is named axion [341, 342, 346, 350–362]. Axions are not mass-less since the chiral UPQ(1)
symmetry is anomalous and they get a mass of order ∼ Λ2

QCD/ fA.
Let us try to understand in more details which are the implications coming from the Peccei Quinn

UPQ(1) symmetry. First of all we notice that since the axion field φA is the filed of the Goldstone boson
associated with the spontaneously broken symmetry UPQ(1), this field translates under the UPQ(1) trans-
formations

φA(x) →
UPQ(1)

φA(x) + α fA (III.46)

where α is the phase parameter of the transformation ei α
2 and fA is again the breakdown symmetry scale.

Then if we want the Lagrangian that describes the full theory to be invariant under the UPQ(1) symmetry
we need to insert the axion field only derivatively coupled so that when φA transforms according to Eq.
(III.46) the term α fA vanishes being constant. Moreover we have to consider also the chirial anomaly
that forces us to introduce also a direct coupling between the axion field and the Gluon field. All these
considerations completely fix the form of the additional terms in the effective Lagrangian Leff which reads

Leff = LSM + θ
g2

s
32π2 Gµν

a G̃a
µν︸ ︷︷ ︸

CP violating

−1
2

∂µφA∂µφA +
φA

fA
ξ

g2
s

32π2 Gµν
a G̃a

µν︸ ︷︷ ︸
Free Axion Lagrangian LA

+Lint.

[
∂µφA

fA
; {ψ}

]
︸ ︷︷ ︸
interaction Lagrangian

(III.47)

where {ψ} are all the other fields in the theory and ξ is a model dependent parameter defined by the chiral
anomaly of the UPQ(1) current Jµ

PQ as

∂µ Jµ
PQ = ξ

g2
s

32π2 Gµν
a G̃a

µν (III.48)
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Let us focus on the free axion Lagrangian LA in (III.47):

LA = −1
2

∂µφA∂µφA +
φA

fA
ξ

g2
s

32π2 Gµν
a G̃a

µν (III.49)

we can recognize the axion potential

VA = −φA

fA
ξ

g2
s

32π2 Gµν
a G̃a

µν (III.50)

If we do not take into account the QCD effects, minimizing the vacuum expectation value (VEV) of the
potential 〈VA〉 = − ξ

fA

g2
s

32π2 〈Gµν
a G̃a

µν〉, one can see that all the values 0 ≤ 〈φA〉 ≤ 2π fA/ξ are allowed. On the
contrary, taking into account the CP violating term (III.47) (i.e., considering the QCD anomalies), because
of the periodicity of 〈Gµν

a G̃a
µν〉, we have en effective potential Veff

A in the effective θ̄ + 〈φA〉 ξ
fA

vacuum angle

Veff
A ∼ cos

(
θ̄ +

fA

ξ
〈φA〉

)
(III.51)

that can be minimized to obtain the axion VEV:

〈φA〉 = −
fA

ξ
θ̄ (III.52)

so that 〈
∂VA

∂φA

〉
= − ξ

fA

g2
s

32π2

〈
Gµν

a G̃a
µν

〉∣∣∣
〈φA〉=− fA

ξ θ̄
= 0. (III.53)

Note also that expanding the potential around the minimum, axions acquire a mass given by:

mφA =

〈
∂2VA

∂φ2
A

〉
= − ξ

fA

g2
s

32π2
∂

∂φA

〈
Gµν

a G̃aµν

〉∣∣
〈φA〉=− fA

ξ θ̄
(III.54)

So, being the axion field massive, the mass term must be introduced in the Lagrangian. We want to show
that, with all these efforts, the strong CP problem is automatically solved. Indeed if we define the physical
axion field φ

phys
A

φ
phys
A

.
= φA − 〈φA〉 = φA +

fA

ξ
θ̄ (III.55)

the Lagrangian (III.47) in terms of φ
phys
A (and the above mentioned mass term) eventually reads:

Leff = LSM −
1
2

∂µφ
phys
A ∂µφ

phys
A − 1

2
m2

φA
(φ

phys
A )2 +

ξ

fA
φ

phys
A

g2
s

32π2 Gµν
a G̃a

µν + Lint.

[
∂µφA

fA
; {ψ}

]
(III.56)

We see that the CP violating term with θ̄ is cancelled. The effect of the Peccei-Quinn UPQ(1) symmetry
must be clear now: the static free parameter θ̄ of the theory is replaced by dynamical scalar field, the axion
field, that is dynamically driven to zero. The strong CP problem is solved.

The original model of the axion was proposed by Weinberg and Wilczek, based on the idea of Peccei
and Quinn. This is called the Peccei-Quinn-Weinberg-Wilczek (PQWW) model, or the visible axion model.
In this model, the axion field is identified as a phase direction of the standard model Higgs field. It is
necessary to introduce two (or more) Higgs doublets, since the axion degree of freedom does not exist
in the theory with single Higgs doublet. Let us denote two Higgs doublets as φ1 and φ2. The PQWW
axion is visible, in the sense that it predicts observable signatures in the laboratory experiments. However,
the theoretical predictions of the PQWW axion contradict with experimental limits. The problem of the
original visible axion model can be avoided if the PQ symmetry is broken at some energy scale higher than
the electroweak scale since the couplings of axions with other particles are suppressed as ∝ 1

fA
. This fact
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motivates the “invisible” axion model. In this model, the axion is not the phase direction of the standard
model Higgs doublet. We must introduce a complex singlet scalar field, whose phase would be identified
as the axion. Such models are called invisible axion models.

The role of non perturbative physics is crucial for axions and it becomes important at some temperature
TNP � f providing a periodic potential for the axions. If we define ΛA the scale of non perturbative physics
the potential can therefore be put in the form

VA = Λ4
A U(x) (III.57)

where U(x) has at least one minimum and one maximum on the interval x ∈ [−π , π]. Indeed, even if for a
more detailed discussion on the structure of the QCD vacuum and its energy we remand to [363], we have
already explained that we expect a periodic contribute coming from the CP violating term. A particularly
simple choice for the potential is therefore

VA(φA) = Λ4
A

[
1− cos

(
NDWφA

fA

)]
(III.58)

where NDW is an integer number called Domain Wall number that, unless otherwise stated, here we set
to NDM = 1 1. It is important to remark that the potential (III.58) is not unique since we cannot predict
it exactly without a full knowledge of the non perturbative physics. For example in the potential one can
include the so called higher order instanton corrections that will add the terms∼ cosn

(
φA
fA

)
to the potential

(III.58). Anyway if φA � fA the potential can be expanded as

VA(φA) ≈
1
2

m2
Aφ2 (III.59)

with mA ≡ Λ4
A/ f 2

A. Since the symmetry breaking scale fA is typically rather high, while the non perturba-
tive scale λA is typically lower, the axion mass is expected to be small.

III.II NEW COSMOLOGICAL BOUNDS ON AXIONS AND NEUTRINOS

As we discussed so far, the most elegant solution at present to the strong CP problem in Quantum Chro-
modynamics (QCD) would require the Lagrangian of the Standard Model of elementary particles to be
invariant under an additional global U(1)PQ (Peccei-Quinn) symmetry, spontaneously broken at some en-
ergy scale fa [341, 342, 346, 350–360], with an associated Pseudo Nambu Goldestone Boson (PNGB), the
so-called axion [355–359, 361, 364–368]. A strong experimental effort has been devoted in different fields to
search for axions [369–377]. If these elusive particles exist, they can be copiously produced via both ther-
mal and non-thermal processes in the early universe. Axions produced via non-thermal processes, e.g. by
the vacuum realignment mechanism [378–384] and/or by topological defects decay [385–392], are natural
cold dark matter candidates2. Conversely, thermal axions, i.e. the population of axions created and anni-
hilated during interactions among particles in the primordial universe, contribute to the hot dark matter
component instead.

Here we shall focus on the thermal axion scenario [393–402]. While still relativistic, thermal axions, as
other hot relics, behave as extra dark radiation, contributing to the effective number of relativistic degrees
of freedom Neff, defined by the relation

ρrad =

[
1 +

7
8

(
4

11

)4/3

Neff

]
ργ , (III.60)

1See also Appendix B for a discussion on Domain Walls
2See also the brief review on axion Cold Dark Matter provided in the Appendix B
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with ργ the present Cosmic Microwave Background (CMB) energy-density. The reference value is Neff =
3.045 [403–407], and a departure from this standard scenario may leave different signatures in the cos-
mological observables, modifying the damping tail of the CMB temperature angular power spectrum and
changing two important scales at recombination: the sound horizon and the Silk damping scales. In ad-
dition, the primordial abundances of light elements predicted by the Big Bang Nucleosynthesis (BBN) are
also sensitive to extra light species, i.e. to a larger value of Neff. Indeed the expansion rate of the universe
during the BBN epoch strongly depends on the effective number of relativistic degrees of freedom and
extra light species, which will increase the expansion rate and lead to a higher freeze-out temperature for
weak interactions, implying a higher fraction of primordial helium.

When thermal axions become non-relativistic particles they leave identical signatures in the different
cosmological observables as massive neutrinos, increasing the amount of the (hot) dark matter mass-energy
density in our universe, suppressing structure formation at scales smaller than their free-streaming scale
and leaving an imprint on the CMB temperature anisotropies, via the early integrated Sachs-Wolfe effect.
This is why a large degeneracy between the axion and the total neutrino masses is expected [398, 400].

III.II.I THERMAL AXIONS

The thermal axion scenario can be described by two parameters: the axion coupling constant fa and the
axion mass ma, related as

ma =
fπmπ

fa

√
R

1 + R
' 0.6 eV× 107 GeV

fa
, (III.61)

where R .
= mu/md ' 0.553± 0.043 is the up-to-down quark mass ratio and fπ ' 93 MeV is the pion decay

constant [408]. The axion contribution to the effective number of relativistic degrees of freedom

∆Neff '
4
7

[
43

4 g? S(Td)

]4/3

, (III.62)

depends on the temperature Td at which axions decouple from the thermal bath via the number of entropic
degrees of freedom g? S(T). Axions decouple from the thermal bath when the reaction rate Γa falls below
the Hubble expansion rate

H(T) =

√
4π3

45
g?(T)

(
T2

Mpl

)
. (III.63)

with Mpl ' 1.22× 1019GeV the Planck Mass. Considering only the two-body processes with cross sections
σi = σ(pia ↔ pj pk) and with all the particles in thermal equilibrium, we can define the decay rate as [367,
393]

Γa ∝ ∑
i

ni 〈vσi〉 (III.64)

where ni is the number density of pi, v ' 1 the relativistic velocity and the brackets denote a thermal
average. Solving the usual freeze-out condition

Γa(Td) = H(Td) , (III.65)

one can estimate the decoupling temperature of a thermal axion population with mass ma, while the ax-
ion contribution to the relativistic degrees of freedom is simply given by g?(Td) = gSM

? (Td) + 1. After
decoupling (T < Td) axions maintain a thermal distribution which basically remains unaffected by other
phenomena occurring in the plasma. Therefore we can estimate the current axion number density simply
as

na =
g?S (T0)

g?S (Td)
× nγ

2
, (III.66)
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with nγ ' 411 cm−3 the present photon density and g?S(T0) ' 3.91 the current number of entropic degrees
of freedom.

In the early Universe, there are several different processes that can produce distinct population of ther-
mal axions. In this work we shall study a thermal axion population from axion-gluon and axion-pion
scatterings separately [409–414].

Axion-Gluon coupling

In any QCD axion model, axions couple with free gluons. The relevant processes for axion thermalisation
are [415]

• a + q↔ g + q and a + q̄↔ g + q̄;

• a + g↔ q + q̄;

• a + g↔ g + g.

Following Di Luzio et al. [367], the decoupling temperature for this population of thermal axions reads as

Td ' 12.5

√
g∗(T)
α3

s

f 2
a

Mpl
GeV. (III.67)

It is easy to see that for Td � Tc, we expect a contribution na ' 7.5 cm−3. It is also worth noting that the
decoupling temperature must be smaller than the PQ breaking scale (above which there is no axion) and
that if the scale of inflation and the reheating temperature are below Td, this thermal population gets in-
flated away. In this section, taking into account these caveats and exploiting current cosmological datasets,
we constrain the sub-eV axion mass range allowed for this process in realistic scenarios that include also
massive neutrinos.

Axion-Pion Coupling

After the QCD phase transition, T < Tc, axions can couple with hadrons. In practice, however, nucleons are
so rare in the early universe with respect to pions that the only relevant process is the axion-pion interaction
π + π ↔ π + a.

The leading order Lagrangian for axion-pion interaction reads

Laπ = Caπ
∂µa
fa fπ

(
π0π+∂µπ− + π0π−∂µπ+ − 2π+π−∂µ , π0) (III.68)

where the axion-pion coupling

Caπ =
1
3

(
md −mu

mu + md
+ c0

d − c0
u

)
, (III.69)

is a model-dependent quantity sensitive to the nature of axion-fermion interactions via the axion-quark
couplings c0

d and c0
u. Starting from Eq.(III.68), the leading order axion-pion interaction rate can be computed

to obtain [367, 415]

ΓLO
aπ ' 0.215C2

aπ

T5

f 2
a f 2

π

hLO

(mπ

T

)
, (III.70)

with h(x) a rapidly decreasing function of its arguments normalized to h(0) = 1. As usual, solving the
freeze out condition (III.65) we can estimate the decoupling temperature for an axion population with
mass ma, while by Eq. (III.66) we can derive its current number density.

However it should be noted that the thermal production of axions via pion scattering is strongly model-
dependent since the relation between the axion mass and the (decoupling) temperature changes accord-
ingly to the axion-pion interaction strength. Consequently, the thermal production of axions from pion
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scattering could range between relatively large thermal abundances to negligible ones, depending on the
precise value of Caπ. For example, in the KSVZ axion model [355, 356, 367] the coupling between axions
and fermions vanishes at tree level: c0

d = c0
u = 0 and Caπ = (1− R)/(3 + 3R) ' 0.12 leading to a sizable

amount of relic axions. On the other hand, in the DFSZ scenario [357, 367, 416] because of the presence of
extra Higgs doublets, QCD axions couple to SM fermions at tree level - c0

u = 1
3 cos2(β), c0

d = 1
3 sin2(β) with

tan β ∈ [0.25, 170] because of the unitary of tree-level fermion scatterings [367] - and the axion production
can be either enhanced or suppressed: Caπ = (1− R)/(3 + 3R)− 1/9 cos(2β), see the recent discussion by
Ferreira, Notari, and Rompineve [414].

Furthermore, the authors of Ref. [415] have recently shown that for temperatures Tχ & 62 MeV the
next-to-leading order term in the axion-pion interaction rate

ΓNLO
aπ ' −0.62C2

aπ

T7

f 2
a f 4

π

hNLO

(mπ

T

)
, (III.71)

becomes comparable with the leading order part, ΓNLO
aπ (Tχ) ' 0.5 ΓLO

aπ (Tχ), and the chiral perturbation
theory breaks down. Interestingly, for the KSVZ model these controversial values for the temperatures
precisely correspond to the sub-eV axion mass range of interest for current and future CMB experiments.
Therefore, it is mandatory to adopt a model-independent approach to be able to compute reliable thermal
axion mass limits from cosmology until a robust lattice QCD method provides the precise answer for a
given model in these temperature ranges.

In order to study the thermalisation from axion-pion scatterings in the most broad and reliable scenario,
we restrict ourselves to explore exclusively to the parameter space where the next-to-leading order term
ΓNLO

aπ (T) remains small with respect to leading order part ΓLO
aπ (T), which basically means to consider de-

coupling temperatures Td . Tχ ' 62MeV. In addition, we shall not assume in the following any specific
underlying theoretical model for the axion-pion interactions, leaving the axion-pion coupling Ca π as a free
parameter. In this way, we are not only able to explore different axion models beyond the usual KSVZ and
DSFZ scenarios 3, but also to derive well-defined constraints on the sub-eV axion mass range in realistic
scenarios which include also massive neutrinos.

III.II.II NUMERICAL ANALYSES

The final release of Planck 2018 temperature and polarization data [42], offers a unique opportunity to
derive updated bounds on the thermal axion mass, accounting also for the fact that neutrinos are mas-
sive particles, as robustly indicated by oscillation experiments [418, 419]. Cosmology provides the most
powerful mean to constrain their masses [419–426].

We therefore analyze an extension of the ΛCDM model which includes both axions and neutrinos as
hot thermal massive relics. We perform Monte Carlo Markov Chain (MCMC) analyses using a modified
version of the publicly available package CosmoMC [107, 108] and computing the theoretical model with the
latest version of the Boltzmann code CAMB [109, 110]. We consider the canonical ΛCDM model described
by the usual six-parameters, i.e., the baryon ωb ≡ Ωbh2 and cold dark matter ωc ≡ Ωch2 energy densities,
the angular size of the horizon at the last scattering surface θMC, the optical depth τ, the amplitude of
primordial scalar perturbation log(1010AS) and the scalar spectral index nS. Together with the standard
ΛCDM parameters, we add the thermal axion mass ma and the sum of three active neutrino masses ∑ mν

(both in eV). For the axion-pion thermalization channel we consider also the coupling Caπ and we restrict
our scan only to decoupling temperatures Td . 62 MeV where ΓNLO

aπ (T) remains small with respect to
ΓLO

aπ (T). In this case, for each sampled point (Td , Caπ) we compute the axion mass ma(Td , Caπ) by solving
Eq.(III.65). We vary these parameters in a range of external and conservative priors listed in Table III.1.

3While the KSVZ and DFSZ are widely considered as benchmark scenarios, there are other models in which both the new
heavy quarks and the Higgs doublets carry U(1)PQ charges, see e.g. Kim and Carosi [417] and Di Luzio et al. [367].
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Parameter Prior for axion-gluon Prior for axion-pion

Ωbh2 [0.005 , 0.1] [0.005 , 0.1]

Ωch2 [0.005 , 0.1] [0.005 , 0.1]

100 θMC [0.5 , 10] [0.5 , 10]

τ [0.01 , 0.8] [0.01 , 0.8]

log(1010AS) [1.61 , 3.91] [1.61 , 3.91]

nS [0.8 , 1.2] [0.8 , 1.2]

∑ mν [eV] [0.06 , 5] [0.06 , 5]

ma [eV] [0.1 , 10] -

Td [MeV] - < 62

Caπ - [0 , 0.5]

TABLE III.1: List of the parameter priors.

The posteriors of our parameter space have been explored using the MCMC sampler developed for
CosmoMC and tailored for parameter spaces with a speed hierarchy which also implements the "fast drag-
ging" procedure described in Ref. [111]. The convergence of the chains obtained with this procedure
is tested using the Gelman-Rubin criterion [112] and we choose as a threshold for chain convergence
R− 1 . 0.02. Our baseline data-set consists of:

• Planck 2018 temperature and polarization (TT TE EE) likelihood, which also includes low multipole
data (` < 30) [42, 113, 114]. We refer to this combination as "Planck".

• Planck 2018 lensing likelihood [115], constructed from measurements of the power spectrum of the
lensing potential. We refer to this dataset as "lensing".

• Baryon Acoustic Oscillations (BAO) measurements extracted from data from the 6dFGS [116], SDSS
MGS [117] and BOSS DR12 [118] surveys. We refer to this dataset as "BAO".

• Type Ia Supernovae (SNeIa) distance moduli measurements from the Pantheon sample [119]. We
refer to this dataset as "Pantheon".

• Galaxy clustering and cosmic shear measurements, as well as their cross-correlations, from the Dark
Energy Survey [427–429]. We refer to this dataset as "DES".

• The Hubble constant measurement from the SH0ES collaboration analysing type-Ia supernovae data
from the Hubble Space Telescope [430]. We refer to this dataset as "R20".

III.II.III COSMOLOGICAL BOUNDS

In this section we present the results obtained by our MCMC analysis of the mixed hot dark matter scenario
which includes axions and neutrinos as hot thermal massive relics. We consider both the axion-gluon and
the axion-pion thermalization channels.

Axion-Gluon scatterings

Table III.2 summarizes the results for the axion-gluon thermalization channel obtained from our MCMC
analyses of the ΛCDM + ∑ mν + ma model. Figure III.1 shows the 68% and 95% CL contour plots for
different cosmological parameters.
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DATASET
AXION-GLUON COUPLING

Ωbh2 Ωch2 100 θMC τ log(1010AS) nS ma [eV] ∑ mν [eV]

Planck 0.02236± 0.00016 0.1188+0.0033
−0.0014 1.0476± 0.00032 0.0546+0.0072

−0.0082 3.047+0.015
−0.017 0.9631± 0.0046 < 8.35 < 0.324

Planck

+lensing
0.02236± 0.00015 0.1191+0.0030

−0.0012 1.04076± 0.00031 0.0553± 0.0075 3.049± 0.015 0.9626± 0.0044 < 8.03 < 0.272

Planck

+BAO
0.02248± 0.00014 0.1176+0.0029

−0.00083 1.04099± 0.00029 0.0568+0.0072
−0.0083 3.048+0.015

−0.017 0.9672± 0.0040 < 8.14 < 0.158

Planck

+Pantheon
0.02242± 0.00014 0.1181+0.0034

−0.0011 1.04086± 0.00031 0.0554+0.0073
−0.0085 3.046+0.015

−0.017 0.9648± 0.0044 < 8.62 < 0.209

Planck

+DES
0.02248± 0.00015 0.1160+0.0028

−0.0016 1.04093± 0.00032 0.0549± 0.0079 3.043± 0.016 0.9661± 0.0044 < 8.40 < 0.346

Planck

+R20
0.02258± 0.00015 0.1168+0.0028

−0.00097 1.04113± 0.00030 0.0579+0.0073
−0.0082 3.048± 0.017 0.9697± 0.0043 < 7.92 < 0.129

Planck +lensing

+BAO +DES

+Pantheon

0.02255± 0.00013 0.1159+0.0029
−0.0012 1.04105± 0.00029 0.0594+0.0068

−0.0079 3.052+0.013
−0.016 0.9677± 0.0038 < 8.13 < 0.136

Planck +lensing

+BAO +DES

+Pantheon +R20

0.02265± 0.00013 0.1156+0.0026
−0.0010 1.04118± 0.00030 0.0624+0.0073

−0.0087 3.057+0.015
−0.017 0.9701± 0.0038 < 7.46 < 0.114

TABLE III.2: Results for the Axion-Gluon thermalization channel obtained for different com-
bination of the datasets listed in subsection III.II.II. The bounds on parameters are 1σ errors

(68% CL), while the upper bounds are 2σ (95% CL) constraints.

DATASET
AXION-PION COUPLING, Td < 62 MeV

Ωbh2 Ωch2 100 θMC τ log(1010AS) nS ma [eV] ∑ mν [eV]

Planck 0.02261± 0.00015 0.1252+0.0022
−0.0016 1.04012± 0.00032 0.0567+0.0072

−0.0083 3.064+0.015
−0.017 0.9703± 0.0058 < 2.41 < 0.269

Planck

+lensing
0.02257± 0.00015 0.1266+0.0016

−0.0014 1.04004± 0.00032 0.0592+0.0072
−0.0087 3.071+0.014

−0.017 0.9706+0.0056
−0.0049 < 1.96 < 0.221

Planck

+BAO
0.02279± 0.00014 0.1238± 0.0012 1.04043± 0.00029 0.0609+0.0075

−0.0091 3.066+0.015
−0.018 0.9819± 0.0040 < 1.04 < 0.134

Planck

+Pantheon
0.02268± 0.00015 0.1250+0.0017

−0.0015 1.04023± 0.00031 0.0582+0.0072
−0.0086 3.064+0.015

−0.017 0.9758+0.0052
−0.0046 < 1.78 < 0.169

Planck

+DES
0.02270± 0.00014 0.1239± 0.0013 1.04024± 0.00031 0.0568+0.0076

−0.0085 3.061+0.015
−0.017 0.9727± 0.0056 < 2.16 < 0.257

Planck

+R20
0.02281± 0.00014 0.1240± 0.0013 1.04041± 0.00030 0.0608+0.0077

−0.0092 3.067+0.016
−0.018 0.9811± 0.0043 < 1.17 < 0.124

Planck +lensing

+BAO +DES

+Pantheon

0.02286± 0.00013 0.1233+0.0010
−0.00090 1.04047± 0.00029 0.0683+0.0081

−0.0095 3.082+0.016
−0.018 0.9828± 0.0037 < 1.04 < 0.115

Planck +lensing

+BAO +DES

+Pantheon +R20

0.02292± 0.00013 0.12271± 0.00091 1.04059± 0.00028 0.0706+0.0084
−0.010 3.085+0.016

−0.019 0.9848± 0.0036 < 0.91 < 0.105

TABLE III.3: Results for the Axion-Pion thermalization channel obtained for different com-
bination of the datasets listed in subsection III.II.II. The bounds on parameters are 1σ errors

(68% CL), while the upper bounds are 2σ (95% CL) constraints.

PAGE 122 OF 200



HOT RELICS: AXIONS AND NEUTRINOS W. GIARÈ

0.28 0.32 0.36 0.40

m

2

4

6

8

m
a
[e

V]

60

62.5

65

67.5

70

H
0

0.72

0.76

0.8

0.84

0.88

S 8

0.2 0.4 0.6 0.8
m [eV]

0.28

0.32

0.36

0.4

m

2 4 6 8
ma [eV]

60.0 62.5 65.0 67.5 70.0
H0

0.72 0.76 0.80 0.84 0.88
S8

Planck
Planck+lensing
Planck+BAO
Planck+R20
Planck+Pantheon
Planck+DES
Planck+lensing+BAO+Pantheon+DES
Planck+lensing+BAO+Pantheon+DES+R20

FIGURE III.1: Axion-Gluon thermalization channel. Marginalized 2D and 1D posteriors for
different combinations of the datasets listed in subsection III.II.II.
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FIGURE III.2: Axion-Pion thermalization channel. Marginalized 2D and 1D posteriors in the
plane (ma , Caπ) with the prior Td < 62 MeV.

As discussed in the introduction, a large degeneracy is expected between the axion and neutrino
masses, see also Figure III.1, where a strong anticorrelation is clearly noticed from the allowed contours
in the (∑ mν, ma) plane. Furthermore, these two parameters show similar degeneracies with other cosmo-
logical parameters and quantities such as H0, S8 and Ωm.

Exploiting the last release of Planck’s temperature and polarization (TT,TE,EE+lowP) data, we derive
the 95% CL upper bounds ∑ mν < 0.324 eV and ma < 8.35 eV. Notice that due to the lower contribution
in Ωa h2 and ∆Neff expected by the axion-pion thermalization channel, the bounds on the axion mass are
much less tight than those presented for the axion-pion case in Ref. [400]. Indeed for the axion-gluon
thermalization channel, eV axion masses correspond to high decoupling temperatures Td � Tc and for
Td & 150 GeV all particles of the Standard Model are relativistic so that g? ' 107, 75. From Eq. (III.66)
one can notice that this will lead to a number density of relic axion na ' 7.5 cm−3 (that does not depend
on the decoupling temperature), giving a very small contribution ∆Neff ' 0.027 to the effective number of
relativistic degrees of freedom, which is well beyond the constraining power of Planck data.

As concerns the other datasets involved in our analyses, we notice that the axion mass bounds only
weakly change with the dataset. For example, the inclusion of CMB lensing measurements from the
Planck satellite only slightly improves the neutrino mass bound to ∑ mν < 0.272 eV at 95% CL, leaving
the constraints on the axion mass almost unchanged (ma < 8.03 eV at 95% CL). Instead, the combination
of Planck and DES data slightly worsens both the bounds on the axion mass (ma < 8.40 eV at 95% CL),
and the bounds on neutrinos (∑ mν < 0.346 eV at 95% CL). This is due to the lower value of the clustering
parameter σ8 preferred by DES measurements, which is translated into higher hot thermal relic masses.
Conversely, due to the smaller error in Ωm, the inclusion of Pantheon data leads to a significant improve-
ment in the constraints on the sum of neutrino masses (∑ mν < 0.209 eV at 95%CL), but not in those on the
axion mass ( ma < 8.62 eV, at 95% CL).

As expected, the largest impact on Planck bounds arises from the inclusion of the large-scale structure
information from BAO measurements. As also discussed by Di Valentino et al. [400], hot thermal particles
as axions and neutrinos suppress structure formation at small scales and therefore galaxy clustering infor-
mation becomes crucial to set bounds on the amount of dark matter in the form of these relics. Indeed,
combining Planck and BAO data we derive the upper bounds ma < 8.14 eV and ∑ mν < 0.158 eV, both at
95% CL. Combining together all the datasets, we obtain the robust 95% CL upper limits of ma < 8.13 eV

PAGE 124 OF 200



HOT RELICS: AXIONS AND NEUTRINOS W. GIARÈ

10 6 10 5 10 4 10 3 10 2 10 1 100 101

Axion mass (ma) [eV]
10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

Ax
io

n-
Ph

ot
on

 c
ou

pl
in

g 
(g

a
) [

Ge
V

1 ]

KSVZ

DFSZ II

CAST

IAXO

AD
M

X

ORGAN

MADMAX

Pl
as

m
a 

H
al

os
co

pe

BR
AS

S

Ax
io

n-
Pi

on
 (P

la
nc

k 
+ 

al
l,9

5%
 C

L)

CDM+m a+
m

+C a

Ax
io

n-
Gl

uo
n 

(P
la

nc
k 

+ 
al

l, 
95

%
 C

L)

Te
le

sc
op

es
 (M

US
E+

VI
M

OS
)

HB stars

Solar energy loss

FIGURE III.3: Axion limits in the plane (ma , gaγ). We quote our most constraining cosmo-
logical bounds (both at 95% CL) for the axion-pion and the axion-gluon thermalization chan-
nels. We also show current limits and future detection sensitivity forecasts for different experi-
ments: CAST [370], IAXO [371, 372], ORGAN [373], MADMAX [374], Plasma Haloscope [375],
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limits from the Sun and horizontal branch (HB) stars energy loss [433].
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and ∑ mν < 0.136 eV.
Despite the fact that there is a very large tension among CMB estimates and low redshift measurements

of the Hubble constant - with a statistical significance above 4σ [121, 122, 434] -, this tension is considerably
reduced in the presence of additional relativistic degrees of freedom. Sub-eV thermal axions are relativistic
at decoupling and therefore will ease the well-known Hubble constant tension. Consequently, the addition
of the prior on H0 as measured by the Hubble Space Telescope in our cosmological analyses is perfectly
justified and leads to a further strong improvement in the constraints on ∑ mν. The reason beyond this
improvement can be easily understood in terms of the large degeneracy between the neutrino masses and
the Hubble constant. It is well known that an increase on ∑ mν induces a shift in the distance to last
scattering that can be easily compensated by lowering H0, leading to a strong degeneracy between these
two parameters. Such a degeneracy can be broken by an independent measurement of H0 as that provided
by the SH0ES Collaboration. Combining R20 and Planck data leads to upper bounds on the thermal relic
masses of ∑ mν < 0.129 eV and ma < 7.92 eV, both at 95% CL. Including also Planck lensing measurements,
BAO, Pantheon and DES data, the upper bound on the neutrino mass becomes ∑ mν < 0.114 eV at 95% CL,
while the bound on the axion mass is slightly improved to ma < 7.46 eV at 95% CL. Notice that the former
upper limit on the total neutrino mass is very close to the inverted neutrino mass ordering prediction,
implying that a future measurement of the nature’s mass ordering could be translated into a limit on the
thermal axion parameter space.

Axion-Pion scatterings

We shall now focus on the axion-pion thermalization channel. In this case the chiral perturbation theory
adopted to compute the abundance of relic axions produced via pion scattering becomes unsafe for values
of the decoupling temperatures above Tχ ' 62 MeV [415]. For any axion model, this limit defines the
smallest mass which can be safely explored within a perturbative approach:

ma & ma(Tχ, Caπ) ' 1.2×
(

0.12
Caπ

)
eV. (III.72)

Notice that when ma . 1.2× (0.12/Caπ) eV any bound derived using effective field theory is not com-
pletely reliable. Until robust lattice QCD methods provide a definitive answer, we have basically two
choices: either we assume that when temperatures exceed 62 MeV perturbation theory still provides a rea-
sonable approximation of a more accurate non-perturbative result, or, more conservatively, we limit our
scan only to temperatures below 62 MeV. Here, we present and discuss the results obtained following the
latter more conservative approach. Table III.3 summarizes the constraints for the model ΛCDM + ∑ mν +
ma + Caπ for the different datasets listed in subsection III.II.II. Figure III.2 clearly illustrates the fact that
requiring Td < 62 MeV implies less constraining bounds on the axion mass. We estimate the upper bound
on the axion mass as the value which corresponds to the 95% of its integrated posterior distribution func-
tion. Therefore, we derive strong conservative bounds without extending the theory in a region beyond
its validity. Exploiting the last release of Planck temperature and polarization (TT,TE,EE+lowP) data, we
derive the upper bound ma < 2.41 eV at 95% CL on the axion mass and ∑ mν < 0.269 eV at 95% CL on
neutrinos. As concerns the other datasets considered in our analyses, in this case their impact on the axion-
mass bounds is relevant. Indeed, we may appreciate that the inclusion of CMB lensing measurements from
the Planck satellite improve both the neutrino mass bound (∑ mν < 0.221 eV at 95% CL) and the constraints
on the axion mass (ma < 1.96 eV at 95% CL). Due to the lower value of the clustering parameter σ8 pre-
ferred by DES measurements, in this case the combination of Planck and DES data gives ma < 2.16 eV and
∑ mν < 0.257 eV, both at 95% CL. On the other hand, the smaller error in Ωm of Pantheon data leads to
an improvement both in the constraints on the sum of neutrino masses (∑ mν < 0.169 eV at 95%CL), and
in the constraints on the axion mass ( ma < 1.78 eV, at 95% CL). Once again, the largest impact on Planck
bounds arises from the inclusion of large-scale structure information from BAO measurements. Indeed,
combining Planck and BAO data we derive the upper bounds ma < 1.04 eV and ∑ mν < 0.134 eV, both
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at 95% CL. Combining together all the aforementioned datasets, we obtain the very tight and robust 95%
CL upper limits of ma < 1.04 eV and ∑ mν < 0.115 eV. Considering also the prior on H0 as measured by
the Hubble Space Telescope and combining together the R20 and Planck data, we obtain the upper bounds
on the thermal relic masses ∑ mν < 0.124 eV and ma < 1.17 eV, both at 95% CL. Including also Planck
lensing measurements, BAO, Pantheon and DES data the upper bound on the neutrino mass is improved
to ∑ mν < 0.105 eV at 95% CL, while the bound on the axion mass is improved to ma < 1.04 eV at 95% CL.
In this axion-pion thermalization case, the most constraining upper limit on the total neutrino mass lies
extremely close to the inverted neutrino mass ordering prediction, enforcing our main message, that is, a
multi-messenger search of axion and neutrino properties and for a joint analysis of their expected sensitiv-
ities. Figure III.3 illustrates our cosmological constraints in the axion mass - axion-photon coupling plane
(ma, gaγ). We focus exclusively on the parameter space of interest for thermal axions4, covering a mass
range ma ∈ [10−6 , 10] eV and quoting our most constraining 95% CL bounds for the two thermalization
channels together with current experimental limits and future detection sensitivity forecasts. From the lim-
its depicted in Figure III.3 one can notice that a significant range of the parameter space can be probed by
cosmological data. Furthermore, a future cosmology-independent limit on the axion mass may provide an
important test of the cosmological constraint, and also can be translated into a limit on the hot dark matter
component in the form of massive neutrinos, strongly supporting multi-messenger searches of axions and
neutrino properties.

III.III COSMOLOGICAL FORECASTS ON AXIONS NEUTRINOS AND LIGHT EL-
EMENTS

While the bounds discussed in the previous section are able to probe a significant range of the parameter
space allowed by direct axion searches, see also Figure III.3, the current constraining power on the total
variation of the effective number of relativistic species due to extra dark radiation (∆Neff . 0.4 at 95% CL)
represents an important limitation as it is not accurate enough to reveal the presence of thermal axions
produced before the QCD transition. These axions would lead to ∆Neff . 0.1, which lies well below the
present sensitivity to ∆Neff. In this regard, the next generation of CMB experiments is expected to signifi-
cantly increase the constraints on Neff. Indeed one of the targets of future Cosmic Microwave Background
and Baryon Acoustic Oscillation measurements is to improve the current accuracy in the neutrino sector
and reach a much better sensitivity on extra dark radiation in the Early Universe. We conclude this thesis
studying how these improvements can be translated into constraining power for well motivated extensions
of the Standard Model of elementary particles that involve axions thermalized before the QCD phase tran-
sition by scatterings with gluons. Assuming a fiducial ΛCDM cosmological model, here we simulate future
data for CMB-S4-like and DESI-like surveys following the methodology discussed in Equation III.III.I and
analyze a mixed scenario of axion and neutrino hot dark matter. We further account also for the effects of
these QCD axions on the light element abundances predicted by Big Bang Nucleosynthesis.

III.III.I FORECAST METHODS

In this subsection we describe the method followed for our forecasted analyses, focusing on future CMB
and BAO observations. In particular, we simulate future data for a CMB-S4-like [200] observatory and for
a DESI-like [440, 441] BAO survey. These probes are expected to provide scientific results in the next few
years and have been carefully designed to improve the constraints on the neutrino sector and other forms
of dark radiation in a significant way [200, 440, 442, 443]. Finally, we also address the effect of additional
thermal species on the observational prediction of BBN on light element abundances up to Beryllium-7.

All our forecasted datasets make use of the COBAYA software [295]. The code allows to build syn-
thetic realization of cosmological data for both CMB and BAO observations and test them again a given

4For a review of the limits on axion-like particles covering larger ranges see O’Hare [435] and also O’Hare and Vitagliano [436],
O’Hare et al. [437], Dafni et al. [438], and Knirck et al. [439] for interesting discussions.
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cosmological model. The parameter posteriors have been sampled using the MCMC algorithm developed
for CosmoMC [107, 108]. The predictions of the theoretical observational probes are calculated using the
latest version of the cosmological Boltzmann integrator code CAMB [109, 110]. To include the effect of
the axion-gluon coupling as an additional form of dark radiation we have modified the CAMB package
accordingly to the detailed description in the previous section. The strength of the coupling and its effect
on the neutrino sector are functions only of the axion mass that we include as an additional cosmological
parameter in our analyses.

To complete this picture one needs to choose a fiducial cosmological model to build the forecasted
data. We perform our forecasts using values of the parameters that are in agreement with the latest Planck
2018 constraints for a ΛCDM scenario [114]. In particular we choose the following values for the standard
six cosmological parameters : ns = 0.965, ωb = 0.0224, ωc = 0.12, H0 = 67.4, τ = 0.055, As = 2.1 ×
10−9, Neff = 3.046, ∑ mν = 0.06 eV and ma = 0 eV. The above values are those commonly used in the
forecasts available in the literature, and, therefore, for the sake of comparison, are the most convenient and
useful ones, despite the fact that none of these previous works have considered ma as a parameter to be
constrained.

CMB-S4 forecasts

We build our forecast for future CMB observations using a well-established and robust method that is now
a common practice in cosmological analyses. Using the fiducial model introduced above, we compute the
angular power spectra of temperature CTT

` , E and B polarization CEE,BB
` and cross temperature-polarization

CTE
` anisotropies. Then, we consider an experimental noise for the temperature angular spectra of the form

[444]:
N` = w−1 exp(`(`+ 1)θ2/8 ln 2) , (III.73)

where θ is the FWHM angular resolution and w−1 is the experimental sensitivity in units of µK arcmin. The
polarization noise is derived assuming w−1

p = 2w−1 (one detector measures two polarization states). The
simulated spectra are compared with theoretical ones using the following likelihood L [132, 444]:

−2 lnLCMB = ∑
`

(2`+ 1) fsky

(
D`

|C`|
+ ln

|C`|
|Ĉ`|
− 3
)

, (III.74)

where Ĉ and C are the theoretical and simulated spectra (plus noise), respectively and are defined by :

|C`| = CTT
` CEE

` CBB
` −

(
CTE
`

)2
CBB
` ; (III.75)

|Ĉ`| = ĈTT
` ĈEE

` ĈBB
` −

(
ĈTE
`

)2
ĈBB
` , (III.76)

while D is :

D` = ĈTT
` CEE

` CBB
` + CTT

` ĈEE
` CBB

` + CTT
` CEE

` ĈBB
` − CTE

`

(
CTE
` ĈBB

` + 2CTE
` CBB

`

)
. (III.77)

In this study we construct synthetic realizations of CMB data for only one experimental configuration,
namely CMB-S4 (see e.g. [445]), using θ = 3′ and w = 1 ¯K arcmin. The range of multipoles is 5 ≤ ` ≤ 3000
and the sky coverage of the 40% ( fsky = 0.4). We do not include CMB lensing derived from trispectrum
data.
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DESI (BAO) forecasts

For the future BAO dataset we consider the DESI experiment [441]. As a tracer for BAO observations we
employ the volume average distance defined as:

DV(z) ≡
(
(1 + z)2DA(z)2cz

H(z)

) 1
3

, (III.78)

where DA is the angular diameter distance and H(z) the Hubble parameter. Assuming the fiducial model
described previously, we compute the theoretical values of the ratio DV/rs for several redshifts in the range
z = [0.15− 1.85], where rs is sound horizon at the photon-baryon decoupling epoch. The uncertainties on
DV/rs are calculated propagating those for DA/rs and H(z) reported in [440]. The simulated BAO data are
compared to the theoretical DV/rs values through a multivariate Gaussian likelihood :

−2 lnLBAO = ∑(µ− µ̂)C−1(µ− µ̂)T , (III.79)

where µ and µ̂ are the vectors containing the simulated and theoretical values of DV/rs at each redshift
and C their simulated covariance matrix.

It would also be possible to forecast BAO data considering DA/rs and H(z) as independent measure-
ments, allowing for stronger constraints. However some small tension (∼ 1 sigma) has been identified
between the current constraints from DA/rs and H(z) [446]. Given the difficulty of properly accounting
for this small tension between DA/rs and H(z) , we decided to follow the approach of [447] and employ
the volume average distance for our BAO forecasts. The resulting dataset is the same obtained in Ref. [448]
(see also their Table 2) while a plot representing the forecasted dataset is presented in Figure III.4.
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FIGURE III.4: The fiducial BAO datasets employed in our forecasts. Error bars refer to 3σ CL
uncertainties.

BBN primordial light element abundances

Big Bang Nucleosynthesis (BBN) is a cornerstone of the Hot Big Bang cosmology which explains the forma-
tion of the first light nuclei (from H up to 7Li) by a solid understanding of the nuclear interactions involved
in the production of elements.

The set of differential equations that regulate those interactions in the primordial plasma can be solved
numerically [449–452] after neutrino decoupling (T & 1 MeV) up the end of BBN (T ∼ 10 keV), yielding
the total abundance of primordial elements in terms of their ratio with respect to the hydrogen abundance.
BBN provides a natural laboratory to probe new physical scenarios of the early Universe and its predictions
can be compared to the primordial abundances of light elements inferred by astrophysical and cosmologi-
cal observations. Given current uncertainties, BBN predictions and primordial light element measurements
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show a good agreement [453–455] 5. Notice also that since the BBN epoch ends before recombination, its
outcome does not have any impact on the recombination epoch or else on the CMB power spectra. In other
words, recombination and BBN are two independent and complementary probes that can be combined to
check the consistency of particles interactions in the early universe. What is relevant for CMB is the BBN
prediction for the Helium abundance , that can be used to estimate the baryon density through a simple
formula:

Ωbh2 =
1− 0.007125 YBBN

p

273.279

(
TCMB

2.7255 K

)3

η10 , (III.80)

where η10
.
= 1010nb/nγ is the photon-baryon ratio today, TCMB is the CMB temperature at the present time

and YBBN
p

.
= 4nHe/nb is the helium nucleon fraction defined as the ratio of the 4-Helium to the baryon den-

sity one. Furthermore, BBN depends on the expansion rate H(z), which sets the value of the temperature
of the Universe during the radiation epoch via a function of the radiation density:

H(z) ' 8πG
3

ρrad '
7πG

3
Neff

(
4

11

)4/3

ργ , (III.81)

making BBN a very powerful tool to constrain the total number of relativistic species via H(z).
In this section, we made use of the code PARTHENOPE [452]. Using the values of Neff, τn (the neutron

lifetime 6) and η10 (or equivalently Ωbh2), the code computes the value of YBBN
P and other light element

abundances. To include the BBN code predictions in our MCMC analysis, we follow the same procedure
used by the Planck collaboration [114]. Namely, we fix the neutron life time and create an interpolation grid
varying Ωbh2 and ∆Neff = Neff − 3.045 within a given range. We choose these ranges to be ∆Neff ∈ [−3; 3]
and Ωbh2 ∈ [0.0073; 0.033]. The neutron lifetime is fixed to τn = 879.4 s, corresponding to the latest
measurement reported by the Particle Data Group (τn = 879.4± 0.6 s) [31] 7.

III.III.II FORECASTED RESULTS

We present the results obtained with the forecasting method discussed in the previous subsection. As a
baseline model, we employ an extension of the standard cosmological model that includes both neutrinos
and axions as thermal massive relics. We refer to it with ΛCDM + ∑ mν + ma. Within this model, we
study the improvement on the bounds of QCD axions achievable by future CMB and BAO experiments.
As aforementioned, thermal axions also contribute as additional relativistic species prior to recombination,
increasing the value of Neff thus leading to modifications of the standard BBN predictions. Therefore we
also take into account the effect of additional thermal species on the observational predictions of BBN light
element abundances. Finally, we shall also compare the constraints on the hot relics and on the Helium
nucleon fraction YBBN

p achievable with our simulated datasets without employing the BBN code, testing the
dependence of our results on the assumptions adopted for the BBN sector and proving their robustness.
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Parameter Fiducial value CMB-S4 CMB-S4 + DESI

Ωbh2 0.0224 0.022420± 0.000034 0.022422± 0.000034

Ωch2 0.12 0.12066± 0.00062 0.12019± 0.00032

H0 [Km/s/Mpc] 67.4 66.94+0.63
−0.57 67.39± 0.24

τ 0.05 0.0508± 0.0026 0.0508± 0.0025

log(1010AS) 3.044 3.0491± 0.0049 3.0478± 0.0047

ns 0.965 0.9647± 0.0021 0.9659± 0.0017

∑ mν [eV] 0.06 < 0.183 < 0.122

ma [eV] 0.0 < 1.60 < 0.924

YBBN
P 0.247 0.247268+0.000052

−0.000085 0.247244+0.000030
−0.000042

105 D/H 2.514 2.5211± 0.0065 2.5200± 0.0063

107 T/H 0.808 0.8104± 0.0022 0.8101± 0.0021

105 He3/H 1.032 1.03374± 0.00095 1.03358± 0.00094

1010 Li7/H 4.67 4.670± 0.015 4.671± 0.015

1010 Be7/H 4.40 4.396± 0.031 4.398± 0.015

TABLE III.4: Results for the ΛCDM + ma + ∑ mν cosmological model and on the primordial
light element adundances. The constraints on the parameters are at 68% CL, while upper
bounds are quoted at 95% CL. We make use of the PARTHENOPE package to compute the

BBN predictions.

Mixed Hot Dark Matter: Axions and Neutrinos

Table III.4 summarizes the results obtained from our forecasting methods for future CMB and BAO exper-
iments while Figure III.5 shows the 68% and 95% CL contour plots for different cosmological parameters.

Using our forecasting data for future CMB-S4 observations, we derive the 95% CL upper bounds on
thermal relics of ∑ mν < 0.183 eV and ma < 1.60 eV. These values should be compared with those derived
in [5] for the same cosmological model, exploiting the last CMB data release provided by the Planck Collab-
oration. In particular, one can appreciate that future CMB-S4 measurements are expected to improve the
current bounds on the axion-gluon interaction scenario by a factor of ∼ 5, while we estimate the improve-
ment in the constraining power on the neutrino sector to be ∼ 2. This enhancement in the constraining

5Nevertheless, there are some discrepancies in the observed abundance of 7Li (which is a factor of ∼ 2 smaller than those
measured from low-metallicity stars [456, 457]) and in that of the primordial deuterium (which exhibit a 1.8σ discrepancy with
the CMB+BAO value [453]).

6It is worth noting that, the interaction rates used in BBN codes assume a prior knowledge of τn, which sets the efficiency
of nuclear reactions. Therefore, BBN abundances are significantly affected even by a small change in the precise value of this
parameter.

7This estimate of the neutron life time is derived averaging over a large number of measurements. However, beam-only and
bottle-only experiments show a 4σ discrepancy in measuring the neutron lifetime, leading respectively to τn = 888.0± 2.0 s and
τn = 879.2± 0.6 s (see also the discussion in Ref. [458]). Interestingly, independent constraints can be derived by CMB data only,
but these limits are not accurate enough to disentangle between the two results (τn = 851 ± 60 s). Nevertheless, the neutron
lifetime discrepancy is beyond the scope of this work and we therefore fix its value to that of Ref. [31], even if this could produce
a systematic error in Neff [459].
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FIGURE III.5: Marginalized 2D and 1D posteriors for different cosmological parameters ob-
tained from the forecasting data and methods.

power on thermal relic masses is mostly due to the much higher sensitivity to the effective number or
relativistic degrees of freedom Neff expected from future CMB measurements 8.

Notice that, due to the degeneracy between the axion and the neutrino masses discussed in the in-
troductory section, the contours in the (∑ mν, ma) show a clear anti-correlation. Furthermore, these two
parameters show very similar degeneracies with other cosmological parameters such as H0, σ8 and Ωm. It
is well-known that hot thermal particles suppress structure formation at small scales and therefore galaxy
clustering information becomes crucial to set bounds on the amount of dark matter in the form of these
relics. As discussed in [5] the largest impact on CMB bounds on hot relics arises from the inclusion of
the large-scale structure information from BAO measurements. For this reason, here, together with the
likelihood for future CMB-S4 observations, we consider also a likelihood for future BAO measurements
from the DESI-like experiment. Combining our simulated CMB-S4 and DESI forecasts, we obtain a fur-
ther improvement in the cosmological constraining power for thermal relics, reaching the 95% CL limits
ma < 0.924 eV and ∑ mν < 0.122 eV. In this case these bounds can be compared with those obtained for
current Planck+BAO real data [5], observing an improvement of a factor ∼ 8 and ∼ 1.5 in the sensitivity

8We recall that, while the current Planck data lead to a 95% CL upper limit of ∆Neff . 0.4, future CMB-S4-like experiments are
expected to bring this upper limit down by a factor of∼ 10, resulting in a much more tighter limit on dark radiation, ∆Neff . 0.06.
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on the axion and neutrino masses, respectively.
Our results clearly state that future cosmological observations can substantially improve the current

constraints on ma, exploring a much larger range of the parameter space currently allowed for QCD ther-
mal axion and reaching the sub-eV mass range. Conversely, when axions are included in the picture as
additional thermal species, the possibility to detect the expected minimum neutrino mass of 0.06 eV is no
longer possible, and only upper bounds, close to the inverted mass ordering prediction, can be derived.

Parameter Fiducial value CMB-S4 CMB-S4 + DESI

Ωbh2 0.0224 0.022399± 0.000050 0.022406± 0.000050

Ωch2 0.12 0.12070± 0.00062 0.12020± 0.00031

H0 [Km/s/Mpc] 67.4 66.90+0.65
−0.57 67.37± 0.24

τ 0.05 0.0506± 0.0026 0.0507± 0.0025

log(1010AS) 3.044 3.0486± 0.0049 3.0474± 0.0047

ns 0.965 0.9635± 0.0034 0.9649± 0.0030

∑ mν [eV] 0.06 < 0.183 < 0.120

ma [eV] 0.0 < 1.63 < 0.991

YBBN
p 0.247 0.2458+0.0057

−0.0058 0.2460+0.0057
−0.0058

TABLE III.5: Results for ΛCDM + ma + ∑ mν + YBBN
p case (i.e. leaving the Helium nucleon

fraction as a free parameter of the model, without assuming the BBN theoretical predictions).
The constraints on parameters are at 68% CL, while the quoted upper bounds are at 95% CL.

Primordial abundances of light elements

Thermal axions contribute to the effective number of relativistic degrees of freedom, modifying the ex-
pansion rate at the radiation epoch and affecting, indirectly, the canonical BBN predictions. Even tough
the latest results of the Planck collaboration place tight bounds on both the baryon density (Ωbh2 =
0.0224± 0.0001) and Neff (limiting the amount of additional relativistic degrees of freedom to ∆Neff . 0.4),
the impact of axions on the Helium fraction is extremely small and the Planck uncertainties on Ωb h2 are
still too large to provide robust theoretical predictions on the Helium abundance in presence of the axion.
However, the next generation of CMB and BAO observations will substantially improve the bounds on the
baryon energy density by a factor of 2, strongly reducing the theoretical uncertainties on YBBN

p , and, possi-
bly, allowing to test signatures of the axion in the primordial abundances. Figure III.6 shows a comparison
between CMB-S4 and Planck in determining the Helium fraction. In particular, we show the theoretical He-
lium fraction predictions in the ΛCDM+ma +∑ mν cosmological model as a function of the axion mass (or,
equivalently, as a function of the axion contribution to ∆Neff) together with the 2D marginalized posterior
distribution obtained for the CMB-S4 and CMB-S4+DESI simulated data. Notice that the BBN predictions
introduce a strong correlation between the axion mass and the Helium fraction (YBBN

p ) that, combined with
the substantial improvement in the constraining power expected by CMB-S4 and DESI, suggests that the
BBN could be a useful tool to make predictions on hot axions and that astrophysical measurements of the
primordial fraction of Helium could be used as an independent test together with the cosmological ob-
servations. For this reason we included all the BBN light elements in our analysis. We provide the 68 %
CL results for the other light elements up to Beryllium-7 in Table III.4. It should be noticed however that
these results are derived without considering the experimental error in the measurement of the neutron
life-time τn. This error could dominate the total error budget, enlarging the theoretical uncertainties on
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are the 95% C.L. upper limits on ma from current cosmological data and from CMB and BAO

future experiments, together with the respective 68% and 95% CL contours.

the BBN predictions for YBBN
p by a factor of ∼ 3 (∆YBBN

p (∆τn) ' 0.00012), producing the same effect as an
extra dark radiation component [459]. Consequently a large degeneracy between the axion mass and the
neutron life-time is expected and this effect may change the correlations between the primordial Helium
fraction and the axion mass. For this reason, to prove the robustness of our results on hot massive relics,
it is mandatory to follow also a very conservative approach and study the impact of additional hot relics
on the abundances of primordial elements without assuming the BBN theoretical predictions but leaving
all the parameters varying in uninformative flat priors. We therefore analyze a cosmological model where,
together with axions and massive neutrinos, we also include the abundance of primordial Helium as an ad-
ditional free parameter. We refer to this model as ΛCDM+ma+∑ mν+YBBN

p and report the results obtained
with our CMB and BAO forecasting data in Table III.5. In this case, the 68% and 95% CL marginalized
contours in the plane (ma , YBBN

p ) are shown in Figure III.7.
Removing the BBN predictions the strong positive correlation between the axion mass and the Helium

fraction YBBN
p is relaxed as well. Furthermore the bounds on the Helium fraction are much less constraining,

with 68% CL bounds of YBBN
p = 0.2458+0.0057

−0.0058 and YBBN
p = 0.2460+0.0057

−0.0058 for CMB-S4 and CMB-S4+DESI,
respectively. On the other hand, the constraints on hot dark matter are basically unchanged. Exploiting our
forecasting data for future CMB-S4 observations we can still derive the 95% CL upper bounds ma < 1.63 eV
and ∑ mν < 0.183 eV for axions and neutrinos, respectively. The upper limit on the total neutrino mass is
exactly the same as that derived including the BBN code as well as the upper bound on the total axion mass.
Similarly, combining future CMB-S4 and BAO data the upper bound on neutrinos masses is unchanged
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(∑ mν < 0.120 eV at 95% CL) while the upper bound on axions is only slightly worsened to ma < 0.991 eV
at 95%CL. These results prove that the impact of the BBN uncertainties on axion and neutrino masses is
negligible and therefore the extraction of both ma and mν does not rely on the assumptions adopted for the
neutron-life time.

We conclude supporting and underlying again the relevance of multi-messengers searches of axions,
neutrinos and primordial light element measurements. Indeed, cosmology-independent limits on the axion
and neutrino masses, combined with precise astrophysical measurements of light elements, may provide
an important cosmological test for checking the BBN predictions. On the other hand, future cosmic ob-
servations should also be able to probe scenarios with hot axions with masses ma & 1 eV and a missing
evidence would constrain the axion mass at the sub-eV level, favoring the normal ordering as the one
governing the mass pattern of neutral fermions. In the same multi-messenger spirit, future cosmology-
independent probes of neutrino masses (i.e. future terrestrial double beta decay and/or long baseline
neutrino experiments) will play, even if indirectly, a crucial role on axion searches.
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In this thesis, working at the interface of cosmology, gravitation and (astro)particle physics, we studied,
characterized and constrained different global theoretical scenarios beyond General Relativity and the Stan-
dard Model of elementary particles in light of their implications for the physics of the Early Universe. In
particular, after providing in chapter I an exhaustive review of the major aspects of physical cosmology,
we focus on two different types of relics: gravitational waves from inflation and hot thermal relics from the
Early Universe.

GRAVITATIONAL WAVES FROM INFLATION

In chapter II, a particular attention is devoted to the inflationary background of gravitational waves sourced
by a super-adiabatic amplification of zero-point quantum fluctuations during inflation. We are entering in
an exciting decade for inflationary cosmology as the next generation of Cosmic Microwave Background
experiments (e.g. BICEP3, CLASS, SPT-3G, LBIRD and CMB-S4) are expected to reach a much better sen-
sitivity on B-modes polarization, possibly leading to a first detection of Primordial Gravitational Waves
(PGWs). Moreover, future Gravitational Wave experiments (e.g. LISA and Einstein Telescope) are expected
to strongly improve the current LIGO/VIRGO sensitivity to the stochastic background of Gravitational
Waves, as well. This could open up a unique observational window to probe physics at the extremely high
energy scales, allowing us to test a rich phenomenology, including modified gravity theories and/or signa-
tures from quantum-gravity models. Anyway a careful characterization of the underlying phenomenology
is needed because the standard inflationary predictions may be violated in many non-trivial realizations of
inflation as well as several different plausible mechanisms may lead to a stochastic background of gravita-
tional waves testable by future experiments, resulting into a large degeneracy of the theoretical predictions.
In this thesis we derive and discuss the following original results.

• In section II.I we start by providing an extensive updated review of the cosmological constraints on
slow roll inflation. We analyze different extended scenarios beyond the ΛCDM cosmological model that
involve modifications in the primordial sector. Imposing a set of consistency relations between higher-
order scalar and tensor parameters, we generalize the power-law expansion for the primordial scalar
and tensor spectra up to the third order and constrain the additional inflationary parameters in light of
the most recent cosmological observations.

We show that, under the assumption of slow-roll inflation with Einstein gravity, different combinations
of the Planck, lensing, BAO and BK15 data, do not give evidence for higher-order terms in the scalar
spectrum such as a running αs

.
= d ns/d log k or a running of running βs

.
= d αs/d log k. Conversely,

analyzing the ACTPol+WMAP data we find a preference for non-zero αs and βs at the level of 2.9σ and
2.7σ, respectively. Anyway, such a preference is reduced when the running of running is replaced by
tensor amplitude in the model.

We interpret the results in terms of the physics of the inflationary epoch showing that the shift towards
higher values of ns preferred by the ACTPol+WMAP data actually strongly disfavors some inflationary
models that are instead compatible with Planck bounds; in some cases leading to completely different
conclusions for the model selection. In other words, we prove that the extensions to the primordial
sector considered in this section recast the global tension between the datasets already present for a
ΛCDM model analysis on a difference among the inflationary parameters.

As concerns the spectrum of inflationary gravitational waves, we provide different updated upper
bounds on the tensor amplitude, with r < 0.0658 at 95% CL our most constraining bound for Planck+BK15
data at the pivot scale k? = 0.05Mpc−1. Furthermore, given the constraints on the tensor spectrum and
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the upper limits on the tensor amplitude, we show that the usual consistency relations strongly reduce
the parameter space allowed for the tensor spectrum, basically leading to predict a scale-independent
tensor tilt, unless corrections of order dnT/d log k . 10−5, for all the datasets analyzed.

• In section II.II, we instead study what happens relaxing the aforementioned inflationary slow-roll con-
sistency relations that, in fact, can be violated in many non standard inflationary models.

In particular, as shown by the Planck Collaboration in Ref. [78], when the slow-roll consistency relation
between the tensor amplitude and the tensor tilt is relaxed (nT 6= −r/8) the observations of the Cosmic
Microwave Background are no more able to place stringent constraints on the tensor tilt and the final
95%CL bound −0.55 < nT < 2.54 allows for the possibility of having a strongly blue tilted primordial
tensor spectrum (nT > 0). Always in Ref. [78], it was shown that an improvement in the constraining
power on blue tilted models can be achieved combining the Planck CMB observations with the LIGO-
Virgo data on the stochastic background of gravitational waves. The reason beyond this improvement
is that a blue tensor tilt can strongly amplify the power of PGWs on small scales, possibly producing a
signal testable by ground-based interferometers. The LIGO-Virgo upper limit on the stochastic gravita-
tional wave background is so translated into an upper bound on the tensor tilt of nT < 0.53 at 95%CL.

However, in preforming this analysis, the usual power-law parametrization was adopted for the tensor
spectrum, basically extending a leading-order expansion over a range of frequencies of about 18 order
of magnitude: from the microwave scales probed by the Planck satellite (k ∼ 0.01 Mpc−1) all the way
up to the scales of direct gravitational wave detection probed by LIGO and Virgo (k ∼ 1× 1016 Mpc−1).
In this section, we discuss for the first time the effects of non-linearities induced by higher-order terms
beyond the power-law expansion, parametrized through the so-called tensor runnings. We show that
such terms, albeit negligibly small on the CMB scales, may give non-negligible contributions on the
ultrahigh k probed by gravitational interferometers, possibly breaking the power-law assumption. We
point out that direct GW observations do not always constrain the tensor tilt on the CMB scales but, due
to the huge distance between the scales probed by CMB and GW data, even a small departure from scale
independence (. 4%) is enough to relax the final constraints, see also Figure II.4. Finally, we discuss the
implications for the status of current observational constraints and future detection prospects.

• In section II.III and section II.IV we study how non-standard high-energy physics may be encapsulated
in the tensor two-point function and in the inflationary observables, inferring that the usual power-law
parametrization can be broken by a large survey of different physical mechanisms. We also discuss
how the aforementioned non-linear effects can play an important role in discriminating among different
models beyond the standard slow roll paradigm with Einstein gravity. Indeed, affecting the small scale
behavior of tensor anisotropies in a model-dependent manner, they can break the degeneracy in the
large-scale predictions, helping us to shed light both on the physics of inflation and on the underlying
theory of gravitation. From a data analysis perspective, we instead outline a methodology to properly
combine small and large scale cosmological and astrophysical measurements in order to increase the
data constraining power on inflation within specific theories/models.

In particular, in section II.III we study non-standard cosmological models where gravity can propagate
differently from GR at early epochs.

In many modified gravity theories, such as Horndeski gravity, Gauss-Bonnet gravity and also low-
energy effective string theory, gravitational interactions can propagate differently from GR at high ener-
gies. Therefore testing the propagation of gravity at different frequencies means testing General Relativ-
ity at different energy scales.

Here, using a slow-roll effective field theory approach, we derive for the first time a set of generalized
consistency relations for the spectral index and its higher-order runnings that include the effects of non-
trivial gravity propagation on the spectrum of inflationary gravitational waves. We show that a running
in frequency of the propagating speed of gravity during inflation can induce a scale-dependence in the
tensor two-point function, amplifying or suppressing the PGWs production on small scales. Exploiting

PAGE 137 OF 200



W. GIARÈ CONCLUSION

the generalized relations, we connect the CMB scales to the LIGO/Virgo band ( f ∼ 100 Hz), constraining
both the speed of gravity and above all its frequency variation to d log cT/d log k = 0.082+0.047

−0.11 (68% CL)
at the pivot scale k? = 0.05Mpc−1. This places remarkable constrains on gravity propagation at the CMB
frequencies, providing, at the same time, an independent test of General Relativity on the inflationary
energy scales, see also Figure II.9.

In section II.IV we instead focus on higher-curvature tensors in the gravitational action.

It is well known that several high-energy theoretical models predict higher-curvature terms in the grav-
itational effective action and that, for sufficiently high-scale Inflation, such corrections can leave charac-
teristic signatures in the tensor spectrum, for instance breaking the usual slow-roll consistency relations.

In this section, for the first time, we generalize the slow-roll consistency relations to include the effects
of a coupling of the inflaton field to higher-curvature tensors, in models of inflation with a minimal
breaking of conformal symmetry. We point out that higher-curvature tensors can induce large non-
linear corrections, characterizing the different signatures in the tensor two-point function that we could
test to recognize them. For instance, we prove that an observable violation of the tensor consistency
relations due to higher-curvature tensors necessarily implies also a relatively large running of the tensor
tilt, enhanced even by some order of magnitude with respect to the standard slow roll hierarchy, see
also Figure II.10. Opportunely defying by Eq. (II.117) a new parameter λ that weighs the corrections
from higher curvature tensors (with λ = 0 corresponding to GR and |λ| & O(1) in higher-curvature
gravity) we exploit the most recent cosmological and astrophysical observations to derive constraints on
the inflationary parameters. We infer that large higher-curvature corrections appear to be disfavored by
current data (λ = 0.1+2.0

−1.2 at 68%CL), remarkably reducing the room allowed for higher-curvature effects,
see also Figure II.11.

HOT RELICS: AXIONS AND NEUTRINOS

In chapter III we focus on the possibility to use current and future cosmological and astrophysical obser-
vations to probe and constrain well motivated extensions of the Standard Model of particle physics that
involve spineless axions as a solution of the strong CP problem in Quantum Chromodynamics. In par-
ticular, we consider QCD Axions produced in the Early Universe via interactions with other particles of
the Standard Model in realistic mixed hot dark matter scenarios that include also massive neutrinos as
additional thermal species. Notice that cosmology and astrophysics provide powerful and elegant means
to test extension of the Standard Model. For instance, additional thermal species in the Early Universe,
behaving as extra dark radiation, may leave several signatures in the different cosmological observables,
modifying the damping tail of the CMB temperature angular power spectrum, changing the sound hori-
zon and the Silk damping scale at recombination and the abundances of light elements predicted by the Big
Bang Nucleosynthesis by increasing the expansion rate of the universe and leading to a higher freeze-out
temperature for weak interactions. Furthermore hot thermal particles beyond the SM suppress structure
formation at small scales and therefore astrophysical galaxy clustering measurements turn out to be crucial
to reveal the possible presence of additional relics in the form of dark matter. Exploiting the most recent
cosmological and astrophysical observations, we derive and discuss the following original results.

• In section III.II, in light of the most recent cosmological and astrophysical observations, we analyze a
mixed Hot Dark Matter scenario that includes both axions and massive neutrinos as additional thermal
relics. We distinguish between axions decoupled before or after the QCD phase transition. In the former
case we analyze the axion–gluon scattering constraining the axion and neutrino masses to ma < 7.46 eV
and ∑ mν < 0.114, both at 95% CL. In the latter case we study the axion–pion scattering and, without
assuming any specific model for the axion–pion interactions and remaining in the range of validity of
the chiral perturbation theory, we improve our bounds to ma < 0.91 eV and ∑ mν < 0.105 eV (always
at 95% CL). In both cases, the total neutrino mass lies very close to the inverted neutrino mass ordering
prediction. If future terrestrial double beta decay and/or long baseline neutrino experiments find that
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the nature mass ordering is the inverted one, this could rule out a wide region in the currently allowed
thermal axion window. Our results are summarized in Figure III.3 where we show that a significant
range of the parameter space can be probed by cosmological data. Furthermore, a future cosmology-
independent limit on the axion mass may provide an important test of the cosmological constraint, and
can also be translated into a limit on the hot dark matter component in the form of massive neutrinos,
strongly supporting multi-messenger searches of axions and neutrino properties.

• In section III.III, for the first time, we study how the declared improvements expected by the next gen-
eration cosmic microwave background and baryon acoustic oscillation measurements can be translated
into constraining power for well motivated extensions of the Standard Model of particle physics that
involve axions thermalized before the QCD phase transition by scatterings with gluons. Assuming a
fiducial ΛCDM cosmological model, we simulated future data for CMB-S4-like and DESI-like surveys
and analyze a mixed scenario of axion and neutrino hot dark matter. We further account for the ef-
fects of these QCD axions on the light element abundances predicted by Big Bang Nucleosynthesis. The
most constraining forecasted limits on the hot relic masses are ma . 0.92 eV and ∑ mν . 0.12 eV at
95%CL, showing that future cosmic observations can substantially improve the current bounds, sup-
porting multi-messenger analyses of axion and neutrino properties and possibly opening a window for
a combined analysis with primordial light element abundances, see also Figure III.6.

FUTURE DEVELOPMENTS

In future all the methods and techniques underlying this thesis can be employed and further developed
to study other non standard realizations of inflation and different extensions of the Standard Model to
characterize the different scenarios of the Early Universe that we may be able to test with current and
future cosmological and astrophysical observations, using cosmology as a laboratory to test and constrain
fundamental physics.
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Appendix A

SUPPLEMENTARY MATERIAL

In this Appendix I provide different secondary results that were always derived and discussed in the works
this thesis is based on, Refs [1–7]. While they are not essential to the comprehension of the main discussion,
this information is very useful because it enriches the overall presentation through a multitude of different
practical examples and detailed calculations. Furthermore, sometimes here I generalize the major results to
scenarios beyond the theoretical assumptions under which they were originally derived in the manuscript.

A.1 HIGHER-ORDER SLOW ROLL CONSISTENCY RELATIONS

We briefly review the standard slow roll consistency relations among the higher-order (scalar and tensor)
inflationary parameters. Using the parameters (I.233), we can prove a quite general result: in the single
field slow roll inflation, if we fix the scalar parameters up to the scalar running dn−1ns

d(log k)n−1 , we immediately

fix all the tensor spectral parameters up to the tensor running dnnt
d(log k)n proving that, for the single field slow

roll inflation, one can obtain as many relations as he wants. We recall that the scalar and tensor spectral
indices in terms of these parameters read

ns − 1 =
d logPs

d log k
=

d log H2

d log k
− d log ε1

d log k
= −2ε1 − ε2 (A.1)

nT =
d logPt

d log k
=

d log H2

d log k
= −2ε1 (A.2)

It is therefore easy to convince yourself that in the scalar case the first n scalar parameters will be (regular)
functions of the first n + 1 Hubble parameters:

ns − 1 = −2ε1 − ε2 ≡ f1(ε1, ε2)
dns

d log k ≡ αs = −2ε1ε2 − ε2ε3 ≡ f2(ε1, ε2, ε3)

d2ns
d(log k)2 ≡ βs = −2ε1ε2

2 − 2ε1ε2ε3 − ε2ε2
3 − ε2ε3ε4 ≡ f3(ε1, ε2, ε3, ε4)

...
dn−1ns

d(log k)n−1 = fn(ε1, ..., εn+1),

(A.3)



W. GIARÈ SUPPLEMENTARY MATERIAL

In the tensor case, the first n + 1 tensor parameters will be (regular) functions of the first n + 1 Hubble
parameters: 

nT = −2ε1 ≡ g1(ε1)
dnT

d log k ≡ αT = −2ε1ε2 ≡ g2(ε1, ε2)

d2nT
d(log k)2 ≡ βT = −2ε1ε2

2 − 2ε1ε2ε3 ≡ g3(ε1, ε2, ε3)

d3nT
d(log k)3 = dβT

d log(k) = −2ε1ε3
2 − 6ε1ε2

2ε3 − 2ε1ε2ε2
3 − 2ε1ε2ε3ε4 ≡ g4(ε1, ε2, ε3, ε4)

...
dnnT

d(log k)n = gn+1(ε1, ..., εn+1).

(A.4)

Note that the two sets of functions { f1, .., fn} and {g1, .., gn} are introduced only to render explicit the
dependency of the scalar and tensor parameters in terms of the Hubble parameters.
Because of the structure of the tensor runnings (A.4), it is easy to reverse the equations in such a way
that we can express the Hubble parameters {ε1, ..., εn+1} as functions {g̃1, .., g̃n} of the tensor parameters
{nT, αT, βT..., dnnT

d(log k)n }:

ε1 = − 1
2 nT ≡ g̃1(nt)

ε2 = αT
nT
≡ g̃2(nT, αT)

ε3 = βT
αT
− αT

nT
≡ g̃3(nT, αT, βT)

ε4 =
(

nT
nTβT−α2

T

) [
d3nT

d(log k)3 +
α3

T
n2

T
− αTβT

nT
− β2

T
αT

]
≡ g̃4(nT, αT, βT, d3nT

d(log k)3 )

...

εn+1 = g̃n+1(nT, αT, βT, d3nT
d(log k)3 , ..., dnnT

d(log k)n ).

(A.5)

Substituting in the scalar equations (A.3) we obtain the following n relations among scalar and tensor
parameters: 

ns − 1 = nT − αT
nT

dns
d log k ≡ αs = αT +

(
αT
nT

)2
− βT

nT
.

d2ns
d(log k)2 ≡ βs = βT − 2

(
α3

T
n3

T

)
+ 3

(
αTβT

n2
T

)
− 1

nT

(
d3nT

d(log k)3

)
...

dn−1ns
d(log k)n−1 = f̃n(nT, αT, βT, d3nT

d(log k)3 , ..., dnnT
d(log k)n ).

(A.6)

Note that here the tilded functions are nothing else that the un-tilded functions up to a variables redefini-
tion. However we also know that, for the single field slow roll inflation, r = −8nT and so the set of all the
n + 1 relations is: 

r = −8nT

ns − 1 = nT − αT
nT

dns
d log k ≡ αs = αT +

(
αT
nT

)2
− βT

nT
.

d2ns
d(log k)2 ≡ βs = βT − 2

(
α3

T
n3

T

)
+ 3

(
αTβT

n2
T

)
− 1

nT

(
d3nT

d(log k)3

)
...

dn−1ns
d(log k)n−1 = f̃n(nT, αT, βT, d3nT

d(log k)3 , ..., dnnT
d(log k)n ).

(A.7)
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Note that if all the left side members of (A.7) (i.e. r and all the n scalar parameters) are fixed, all the
n + 1 right side tensor parameters are fixed as well. Therefore by the system above, one can calculate
how many consistency relations he wants. The first three lines of (A.7) are nothing else that the three
consistency relations for the spectral index, its running and its running of running used in SecII.I derived
in the previous subsection, while the fourth line is another explicit consistency relation that can be put in
the form

dβT

d log k
≡ γT = nT (βT − βs)− 2

(
α3

T

n2
T

)
+ 3

(
αTβT

nT

)
. (A.8)

Therefore, in practice, if single field slow-roll inflation is valid, a determination of r and of the first n scalar
parameters immediately fixes also the first n+ 1 tensor parameters. An independent measurement of these
tensor parameters can be therefore used for testing the slow-roll condition.

A.2 INFLATION AND SPATIAL CURVATURE

Adopting the same framework and following the same methodology discussed in section II.I, we consider
the spatial curvature density parameter Ωk as an additional free parameter of the model, exploring the pos-
sibility of a non trivial background geometry as a consistency check of the standard slow-roll paradigm.
Indeed the vast majority of inflationary models predict flatness and constraints on the spatial curvature
are an important test of this standard scenario. Here we study two different extensions of the standard
cosmological model that both include the curvature parameter Ωk as an additional free parameter. In
particular we first analyze the case ΛCDM + r + Ωk and then we add also the running of the scalar tilt,
ΛCDM + r + αs + Ωk. For both the models, we adopt the common power-law parameterization for the
primordial spectra, assuming the usual slow-roll consistency relations to hold. Notice that, since the vast
majority of inflationary models predict flatness, the constraints on the spatial curvature provide an impor-
tant consistency check of this standard scenario [78].

In Table A.1 we summarize the constraints derived for the model ΛCDM+ r +Ωk and in Figure A.1 we
show the 68% and 95% CL marginalized contours for different inflationary parameters in the same model.
On the other hand, in Table A.2 we present the results for the ΛCDM + r + αs + Ωk model showing in
Figure A.2 the 68% and 95% CL contours.

For the inflationary parameters we see that in both the models, slightly higher values for scalar tilt are
preferred with respect to the flat case (with Ωk = 0). In particular the Planck data gives ns = 0.9720± 0.0052
(ns = 0.9728 ± 0.0052) when the running αs is included (excluded). We can also appreciate that these
constraints are 1σ shifted towards higher values for the different datasets, including ACTPol+WMAP and
SPT3G+WMAP. As concerns the scalar running, the bounds on αs are consistent with those derived without
considering Ωk, see also Table A.2.

For the tensor amplitude, we see that, ignoring the scalar running, Planck data gives r < 0.170 at 95%
CL while including αs this bound is less stringent: r < 0.250. Interestingly, for ACTPol+WMAP the upper
bound r < 0.210 becomes more stringent (r < 0.185) including αs. We also confirm that for the dataset
ACTPol+WMAP the preference observed for a non-vanishing scalar running is reduced when the tensor
amplitude can freely vary. A strong improvement in the constraining power is clearly obtained includ-
ing also the B-modes BK15 likelihood and, in fact, including (excluding) the running, the combination
Planck+BK15 gives r < 0.0637 (r < 0.0613). Also in this case the results appear to be stable and consistent
with the case in which Ωk is not varied.

Using the slow-roll consistency relations among the inflationary parameters, we can appreciate how
also in this case the parameter space allowed for the tensor spectrum is strongly constrained. On the other
hand reversing the slow-roll relations for the scalar and tensor parameters, we can derive constraints on
the slow-roll parameters {εV , ηV , ξ2

V}. Exploiting the Planck+BK15 data, for the ΛCDM + r + Ωk model
we obtain εV < 0.0038 and ηV = −0.0094+0.0038

−0.0049 such results remain similar even if we let the scalar running
αs free to vary, in this scenario, however, we have also the result for the slow-roll parameter of the third
order: ξ2

V = 0.0013± 0.0034. Considering the ACTPol+WMAP and SPT3G+WMAP datasets combination,
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FIGURE A.1: Marginalized 2D and 1D posteriors distributions for the ΛCDM + r + Ωk cos-
mological model obtained for different combinations of the datasets listed in subsection II.I.I.
The dashed lines represent the case of vanishing inflationary parameters and flat spacetime

geometry.
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Parameter Planck18 Planck18 + lensing Planck18 + BAO Planck18 + BK15 ACTPol + WMAP SPT3G+WMAP

Ωbh2 0.02263± 0.00018 0.02252± 0.00017 0.02241± 0.00015 0.02262± 0.00017 0.02245± 0.00022 0.02273± 0.00025

Ωch2 0.1177± 0.0016 0.1181± 0.0015 0.1196± 0.0014 0.1179± 0.0015 0.1184± 0.0030 0.1141± 0.0033

100 θMC 1.04120± 0.00033 1.04110± 0.00032 1.04097± 0.00031 1.04118± 0.00033 1.04181± 0.00065 1.03975± 0.00070

τ 0.0480+0.0087
−0.0072 0.0487+0.0085

−0.0075 0.0554± 0.0080 0.0477+0.0086
−0.0072 0.059± 0.013 0.060± 0.013

log(1010 As) 3.026+0.018
−0.015 3.027+0.018

−0.016 3.045+0.015
−0.017 3.026± 0.018 3.057± 0.027 3.039± 0.026

ns 0.9728± 0.0052 0.9707± 0.0049 0.9671± 0.0046 0.9715± 0.0048 0.9773± 0.0070 0.9793± 0.0091

r < 0.170 < 0.154 < 0.120 < 0.0613 < 0.210 < 0.259

Ωk −0.048+0.020
−0.016 −0.0123+0.0072

−0.0063 0.0007± 0.0020 −0.047+0.018
−0.015 −0.007+0.016

−0.012 0.0008+0.013
−0.0097

nT > −0.0212 > −0.0192 > −0.0150 > −0.0077 > −0.0262 > −0.0324

αT (−10.8± 8.5 ) · 10−5 (−12± 7.8) · 10−5 (
−12.7+9.5

−7.3

)
· 10−5 (

−7.5+5.6
−3.8

)
· 10−5 (

−3.7+8
−16

)
· 10−5

(
5+14
−31

)
· 10−5

εV ' ε1 < 0.0106 < 0.0097 < 0.0075 < 0.0038 < 0.0131 < 0.0162

ηV −0.0005+0.0081
−0.013 −0.0033+0.0069

−0.012 −0.0079+0.0053
−0.0091 −0.0094+0.0038

−0.0049 0.005+0.010
−0.016 0.0096+0.013

−0.021

ε2 0.0184+0.011
−0.0080 0.0217+0.0098

−0.0070 0.0272+0.0081
−0.0058 0.0252± 0.0055 0.012+0.015

−0.010 0.007+0.019
−0.013

V1/4
inf < 2.08× 1016 GeV < 2.03× 1016 GeV < 1.90× 1016 GeV < 1.61× 1016 GeV < 2.19× 1016 GeV < 2.31× 1016 GeV

∆Ntot 63.55+0.30
−0.21 − − 63.31+0.31

−0.23 − −
∆N(kexit) 1.55+0.30

−0.21 − − 1.31+0.31
−0.23 − −

TABLE A.1: Results for ΛCDM + r + Ωk. The constraints on parameters are at 68% CL, while
upper bounds are at 95% CL. The internal horizontal line divides the primary parameters of
the cosmological model (those we directly sample in our MCMC analysis) from the derived

parameters (those we obtain from the others by the relations described in the text).

we find instead both εV and ηV in agreement with zero within the 68% CL when the scalar running is
fixed to zero or free to vary, while it appears 1σ indication for a negative ξ2

V for ACTPol+WMAP in the
ΛCDM + r + αs + Ωk model. Equivalently, we can constrain the parameters {εi} obtaining ε2 = 0.0256±
0.0057 (ε2 = 0.0252± 0.0055) and ε3 = 0.10± 0.29 when αs is considered (excluded) for Planck+BK15. This
indication for the ε2 parameter different from zero is reduced to more than 1σ for ACTPol+WMAP and
disappears for SPT3G+WMAP. We would like to stress that all the results obtained analyzing the Planck
2018 data are in agreement with the ACTPol+WMAP and SPT3G+WMAP data within the 95% CL.

Interestingly, as concerns the spatial curvature, the Planck preference for a closed universe [114, 124,
125, 464] is confirmed in both the scenarios, and slightly enforced when the BK15 data are combined to-
gether with Planck Data. Indeed in the extended parameter space of ΛCDM + r + Ωk we obtain Ωk =
−0.048+0.020

−0.016 for Planck and Ωk = −0.047+0.018
−0.015 for Planck+BK15. Considering also the running of the scalar

tilt as an additional parameter, the results are essentially unchanged. In any case, Planck and Planck+BK15
data prefer Ωk < 0 at 2.4 σ and 2.6 σ, respectively. Anyway, considering the lensing spectrum as mea-
sured by the Planck Collaboration the evidence for Ωk 6= 0 is reduced to less than two standard deviations
(Ωk = −0.0123+0.0072

−0.0063 and Ωk = −0.0113 ± 0.0066 ignoring and considering αs, respectively). Finally,
we have the indication for a spatially flat universe using also the BAO data (Ωk = 0.0007 ± 0.0020, for
both the models), but this result should be considered with caution because these measurements are in
strong disagreement with Planck when the curvature parameter is free to vary [124, 125, 464], so they can-
not in principle be combined together. Similarly, exploiting the data from the Atacama Cosmology Tele-
scope and the South Pole Telescope we do not find any evidence for Ωk 6= 0, with the constraints reading
Ωk = −0.007+0.016

−0.012 (Ωk = −0.010+0.017
−0.011) for ACTPol+WMAP and Ωk = −0.0008+0.013

−0.0097 (Ωk = −0.000+0.015
−0.011)

for SPT3G+WMAP when the running is excluded (included). It is important to stress here, that also in these
extended scenario including a curvature free to vary the ACTPol+WMAP and SPT3G+WMAP dataset com-
binations show a tension with respect to the results obtained by Planck, as we can see in Figure A.1 and
Figure A.2, always driven by the same effect discussed before. So, albeit the Universe is spatially flat or
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Parameter Planck18 Planck18 + lensing Planck18 + BAO Planck18 + BK15 ACTPol + WMAP SPT3G+WMAP

Ωbh2 0.02268± 0.00018 0.02255± 0.00017 0.02245± 0.0016 0.02263± 0.00017 0.02236± 0.00022 0.02274± 0.00024

Ωch2 0.1176± 0.0016 0.1182± 0.0015 0.1197± 0.0015 0.1180± 0.0015 0.1171± 0.0032 0.1141± 0.0038

100 θMC 1.04121± 0.00033 1.04110± 0.00032 1.04097± 0.00032 1.04118± 0.00032 1.04189± 0.00067 1.03979± 0.00069

τ 0.0491± 0.0085 0.0514± 0.0083 0.0573+0.0077
−0.0086 0.0487± 0.0086 0.056+0.013

−0.012 0.060± 0.013

log(1010As) 3.029± 0.018 3.034± 0.018 3.052± 0.018 3.029± 0.018 3.043± 0.028 3.038± 0.029

ns 0.9720± 0.0052 0.9696± 0.0051 0.9655± 0.0048 0.9710 0.9810± 0.0077 0.980± 0.012

αs −0.0078± 0.0080 −0.0064+0.0078
−0.0070 −0.0097± 0.0076 −0.0029± 0.0068 0.0102± 0.0090 0.000± 0.013

r < 0.250 < 0.205 < 0.188 < 0.0637 < 0.185 < 0.282

Ωk −0.048+0.020
−0.016 −0.0113± 0.0066 0.0007± 0.0020 −0.046+0.017

−0.014 −0.010+0.017
−0.011 0.000+0.015

−0.011

nT > −0.0312 > −0.0256 > −0.0235 > −0.0080 > −0.0231 > −0.0352

αT

(
−9.6+8.4

−15

)
· 10−5 (

−13.6+8.8
−10

)
· 10−5 (−17± 11 ) · 10−5 (

−7.9+6.0
−3.9

)
· 10−5 (

−2.5+2.7
−8.8

)
· 10−5

(
5+16
−34

)
· 10−5

βT

(
16+11
−22

)
· 10−5 (

10.6+7.3
−16

)
· 10−5 (

13.4+8
−18

)
· 10−5 (

1.7+2.0
−3.4

)
· 10−5 (

−5.8+9.3
−7.3

)
· 10−5

(
6+16
−25

)
· 10−5

εV ' ε1 < 0.0156 < 0.0128 < 0.0118 < 0.0040 < 0.0116 < 0.0176

ηV 0.006+0.011
−0.018 0.0003+0.0089

−0.015 −0.0034+0.0079
−0.014 −0.0095+0.0037

−0.0049 0.0030+0.0079
−0.014 0.011+0.013

−0.021

ξ2
V 0.0040+0.0039

−0.0044 0.0031+0.0035
−0.0040 0.0046± 0.0038 0.0013± 0.0034 −0.0050± 0.0046 0.0004± 0.0066

ε2 0.0146+0.014
−0.0096 0.0201+0.012

−0.0082 0.0253+0.011
−0.0074 0.0256± 0.0057 0.0107+0.013

−0.0095 0.006+0.019
−0.016

ε3 − − − 0.10± 0.29 − −
V1/4

inf < 2.3× 1016 GeV < 2.2× 1016 GeV < 2.1× 1016 GeV < 1.6× 1016 GeV < 2.12× 1016 GeV < 2.35× 1016 GeV

∆Ntot 63.67+0.29
−0.21 − − 63.33+0.30

−0.22 − −
∆N(kexit) 1.67+0.29

−0.21 − − 1.34+0.30
−0.22 − −

TABLE A.2: Results for ΛCDM + r + αs + Ωk. The constraints on parameters are at 68% CL,
while upper bounds are at 95% CL.The internal horizontal line divides the primary parameters
of the cosmological model (those we directly sample in our MCMC analysis) from the derived

parameters (those we obtain from the others by the relations described in the text).

closed is still a very disputed issue, see also [465–470], in what follows we brief discuss about the inflation-
ary dynamics in a curved cosmological spacetime.

inflationary dynamics in a curved Universe

Here we take into account the Planck(+BK15) preference for a closed cosmological spacetime discussed at
the end of II.I, investigating the implication of curvature for the slow-roll background dynamics.

Inflation in a curved Universe has been largely discussed in literature, see e.g. Refs [471–483]. As a
matter of fact, during inflation the spatial curvature is exponentially driven to flatness and so the only way
to obtain an inflationary universe with Ωk 6= 0 is to assume that it inflated only by a finite (small) number
of e-folds ∆Ntot. Furthermore, in a curved inflationary background, the power-law relations adopted in
this work to compute the primordial spectra become disputed at low multipoles ` . 20 and more reliable
parameterizations should be considered [473–476]. Anyway the differences are typically limited to low
multipoles and the Planck estimation of cosmological parameters remains robust under the inclusion of
positive spatial curvature [474]. In what follows we therefore neglect these corrections and we provide
constraints on the e-fold of inflation compatible with Planck(+BK15) preference for a closed Universe. In-
deed, in the case of a positive curvature, Ωk < 0, assuming a slow-roll evolution and a reheating phase
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taking place just after the end of inflation (ρreh ' Vinf), the total of e-fold can be estimated as [478, 479]

∆Ntot '
1
2

log
(
(1 + δ0 −Ωrad)R+ ΩradR2

δ0

)
(A.9)

with δ0 = Ω0 − 1, Ωrad ' 4× 10−5 h−2 the radiation density parameter today [114] and

logR ' 66 + log

(
V1/4

inf
1016 GeV

)
. (A.10)

FIGURE A.3: Marginalized 2D and 1D posteriors for the total number of e-fold of inflation
∆Ntot in a closed cosmological spacetime (left panel) and for the number of e-fold before the

largest observable scale exits the horizon during inflation ∆N(kexit) (right panel).

In Fig. A.3, we show the 68% and 95% CL marginalized contours for the total number of e-fold of
inflation compatible with Planck(+BK15) preference for a closed Universe. Within the ΛCDM + r + Ωk
model, using only the Planck data, we obtain a maximum number of e-fold ∆Ntot = 63.55+0.30

−0.21 at 68%
CL while including also the B-modes likelihood, for Planck+BK15 we get ∆Ntot = 63.31+0.31

−0.23 at 68% CL.
Including the scalar running in the sampling, the results remain almost unchanged, see also Tab A.2 and
Fig. A.3. This means that if the Planck(+BK15) evidence for a closed Universe will be confirmed by future
measurements, one would need about 63 e-fold of expansion while the total number of e-folds in many
physical models of inflation is typically extremely large, e.g. in power-law inflation one expects ∆Ntot ∼
1012 [96, 484]. This would strongly constrains the background dynamics before the largest observable scale
exit the horizon, with important implications for the observed homogeneity in the Cosmic Microwave
Background. Indeed, assuming a standard slow-roll inflation followed by a canonical reheating phase
and supposing the Universe to be radiation-dominated from the end of reheating to the matter-radiation
equality, the number of e-folds between when the scale k crosses the horizon and the end of inflation can
be estimated as [479, 485, 486]

N(k) ' 128− logR− log
(

k
a0 H0

)
+ 2 log

(
V1/4

inf
1016 GeV

)
− log

(
H0

100 Km/s/Mpc

)
+O (log(Vk/Vinf))

(A.11)
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where, for a slow-roll dynamics, the effects of assuming Vk ' Vinf are expected to be small for the scales of
interest. By noting that the CMB roughly probes scales from 10 to 104 Mpc, one can estimate the number
of e-fold before the largest observable scale in the Universe exits the horizon ∆N(kexit) ' ∆Ntot − N(kmin).
By noting that for the parameter space explored in this work N(kmin) ' 61 − 62, see also [479], from
Planck(+BK15) data it follows that, within the ΛCDM + r + Ωk model, ∆N(kexit) = 1.55+0.30

−0.21 (∆N(kexit) =

1.31+0.31
−0.23), while including also αs we get ∆N(kexit) = 1.67+0.29

−0.21 (∆N(kexit) = 1.34+0.30
−0.22), see also Fig. A.3.

Although the allowed number of e-fold compatible with the constraints by structure formation (i.e., 50 -
60 e-folds between the horizon exit and the end of inflation [78]) are enough also to solve ‘flatness’ with
an accuracy represented by the precision in Ωk (a fine tuning of about 1% is typically enough [472]), it
should be also noted that the main difficulty for a successfully closed inflationary model is represented by
homogeneity and isotropy. Indeed, in most of the models proposed in the literature, when the universe
does not inflate long enough to become flat, the density perturbations on the horizon scale are typically
expected to be much larger than those observed, except for a specific class of models [472].

A.3 EXAMPLES OF SCALE-EFFECTS IN THE PGWS PRODUCTION

To further validate our discussion, in Sec.II.II we study two physical models of inflation. We first ana-
lyze the Starobinsky model that, being pure slow roll, by definition predicts an almost scale independent
slightly red tilted spectrum. It represents an example of models where higher order corrections are typically
negligible also on small scales. However this cannot be true in more elaborated scenarios: as a counterex-
ample we study a model of particle production where non linear corrections lead to a non negligible scale
dependence.

Starobinsky Inflation

In this subsection we want to estimate the impact of the scale dependence choosing a specific slow roll
model of inflation, namely the Starobinsky model [129] that predicts the following well known relations:

ns − 1 ' − 2
N

, r ' 12
N2 (A.12)

where N is the e-fold number of inflation that we can fix since we measure ns ' 0.96 with good precision
[78]. The tensor tilt and its runnings read

nT ' −
3
2

(
1
N

)2

; αT
n ' −

3
2
(n + 1)!

(
1
N

)n+2

(A.13)

The sum expansion that quantifies the scale dependence of the tensor tilt can be easily computed to be

∞

∑
n=1

αT
n(k∗)

(n + 1)!

[
log
(

k
k∗

)]n

' nT

(
1
N log( k

k∗ )

1− 1
N log( k

k∗ )

)
(A.14)

In Fig. A.4 we plot ΩGW(k) from the CMB scales all the way up to the GW scales both including (black
solid line) and neglecting (gray dashed line) the runnings. As one can see the runnings lead to negligible
corrections also on small scales. This is not surprising since by definitions the slow roll paradigm pre-
dicts an almost scale independent slightly red tilt. We actually study this model to provide an example of
negligible scale dependence and to show how the situation can be drastically different in more elaborated
scenarios as those discussed in the next subsection.
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FIGURE A.4: ΩGW(k) in the Starobinsky model both including (solid lines) and neglecting
(dashed lines) the runnings. The scale dependence is negligible.

Particle Production

In this subsection we want to provide a counterexample studying a different physical model of inflation
that employs a pseudo scalar axion naturally coupled to gauge fields. In this model a mechanism of par-
ticle production takes place during the rolling inflation and this can be translated into a blue spectrum of
gravitational waves. We will show that the tensor tilt can acquire a non trivial scale dependence as well. We
start giving a brief description of the model, more details can be found in [163–165, 487–489]. We consider
a simple theory of a Pseudo Nambo Goldstone Boson inflation. In this model the inflaton field φ and the
axion ψ are minimally coupled to gravity and the axion is also coupled with a U(1) gauge field in a way
consistent with symmetries1. The action of the theory is

S =
∫

d4x
√
−g

[
M2

p

2
R− 1

2
(∂φ)2 −V(φ)− 1

2
(∂ψ)2 −U(ψ)− 1

4
FµνFµν −

ψ

4 f
Fµν F̃µν

]
(A.15)

Fµν and F̃µν .
= 1

2 εµναβFαβ are the field-strength tensor of the gauge field and its dual, respectively; f is the
axion decay constant while V(φ) and U(ψ) are the inflation and axion potential. We also assume a flat
FRW metric and that both the inflaton and the axion take a homogeneous vacuum expectation value (vev)
while the gauge field carries no vev. Under this assumption the equations of motion for the inflaton and
the axion are

¨̄φ + 3H ˙̄φ + V ′(φ̄) = 0 (A.16)

¨̄ψ + 3H ˙̄ψ + U′(ψ̄) = 0 (A.17)

where the prime denotes the derivatives with respect to the argument and the over-dots denote the deriva-
tives with respect to time. We also assume that the contribution of the axion on the background evolution

1Note that the axion is not the inflaton itself but another distinct field.
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is negligible compared to that of the inflaton i.e |U| � V and ˙̄ψ2 � ˙̄φ2. We introduce the parameter

ξ ≡
˙̄ψ

2H f
(A.18)

that will play a crucial role in our future discussion. We assume ξ to be nearly but not exactly scale inde-
pendent:

ξ1
.
=

d log ξ

d log k
=

ξ̇

ξ H
� 1. (A.19)

We instead assume ξ1 to be constant i.e. d log ξ1/d log k ≈ 0. In our future discussion we restrict our atten-
tion to the case ξ > 1 that allows a blue tensor tilt. We are not going to discuss in details the peculiarities of
this model such as the gauge quanta production [487] that are reviewed also in [163, 165] and the references
within, but for our aim it is sufficient to observe that, in order to avoid a significant back-reaction of the
produced gauge quanta to the background dynamics, we have to require that

eπξ

ξ5/2 �
13.5√
ε1P0

f
Mp

(A.20)

where P0 =
(

1
8π2 M2

p

) (
H2

ε1

)
is the primordial scalar spectrum without source (i.e. as predicted by the slow

roll inflation). The scalar and tensor spectra for this model are [163, 490, 491]:

Ps ' P0

(
1 + cs ε2

1 P0
e4πξ

ξ6

) ∣∣∣∣
k=k∗

(A.21)

r '
16 ε1

(
1 + ct ε1 P0

e4πξ

ξ6

)
(

1 + cs ε2
1 P0

e4πξ

ξ6

) ∣∣∣∣
k=k∗

(A.22)

where cs = 2.5 · 10−6 and ct = 3.4 · 10−5 are constants. We compute the spectral tilts from the relation (A.21)
and (A.22) taking the logarithm derivatives:

ns − 1 .
=

d logPs

d log k

∣∣∣∣
k=k∗

=
d logP0

d log k
+

cs

1 + cs ε2
1

e4πξ

ξ6

d
d log k

(
ε2

1P0
e4πξ

ξ6

)
(A.23)

= −2(1 + fs)ε1 − (1− fs)ε2 + fs(4πξ − 6)ξ1 (A.24)
' −2ε1 − ε2 (A.25)

and

nT
.
=

d logPt

d log k

∣∣∣∣
k=k∗

=
d log ε1

d log k
+

d logP0

d log k
+

ct

1 + ct ε1
e4πξ

ξ6

d
d log k

(
ε1P0

e4πξ

ξ6

)
(A.26)

= −2(1 + ft)ε1 + ft(4πξ − 6)ξ1 (A.27)

where the functions

fs
.
=

cs P0 ε2
1

e4πξ

ξ6

1 + cs P0 ε2
1

e4πξ

ξ6

� 1 (A.28)

and

ft
.
=

ct P0 ε1
e4πξ

ξ6

1 + ct P0 ε1
e4πξ

ξ6

(A.29)
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weigh the corrections to the slow roll predictions for the scalar and tensor parameters respectively. In
what follows we fix Ps and ns to the observed values Ps ' 2.1 × 10−9 and ns ' 0.96 [78]. We also fix
the tensor to scalar ratio r to reference value r ' 10−2 and ξ1 ' 5× 10−3 � 1. Note that our results are
marginally sensitive to the value of r and ξ1 and that we are not interested into a parameter analysis for
this specific model: our task is simply to show that also in physical models of inflation scale dependence
can be non-negligible.

We use the Eqs. (A.21) and (A.22) in order to explicit ε1 and P0 as functions of ξ. This means that when
ξ changes, ε1(ξ) and P0(ξ) change in such a way that Ps and r remain constant. Moreover because of Eq.
(A.27) also nT is only a function of ξ. Being ns fixed by observations, we can also use the relation (A.25) in
order to find ε2 as a function of ξ so that when ξ changes, ε2(ξ) changes leaving ns fixed to its observed
value. So in this model all the inflationary parameters2 become known functions of ξ. We plot them in Fig.
A.5 letting ξ vary in the range ξ ∈ [1 , 7].
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FIGURE A.5: The parameters of the model as functions of ξ.

First of all we want to stress that we have carefully checked that the scalar spectrum (A.21) remains
essentially equal to P0 (that is what predicted by the single field slow roll inflation). As a matter of fact, if
we decompose the scalar spectrum Ps = P0 + Ps, sourced we find that the sourced term induces corrections

2The inflationary parameters are to be considered evaluated to the pivot scale k = k∗ = 0.05Mpc−1 which means that also the
parameter ξ in the equations above is computed on the CMB scales ξ = ξ(k = k∗).
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that are extremely small compared to the vacuum contribution Ps, sourced ∼ 10−4 P0 for all the values of ξ.
In other words, the corrections to the scalar spectrum are completely negligible ( fs ≈ 0), and the scalar pa-
rameters are essentially equal to that obtained in the simplest slow roll models. This can be understood by
noting that the scalar corrections are suppressed by a factor ε2

1 P0 and that ε1 exponentially decreases with
ξ in order to keep r fixed, see also Fig. A.5. The fact that the scalar spectrum is essentially indistinguish-
able from the single field slow roll models is crucial since in this way all the tight constraints on the scalar
perturbations (e.g. their high level of gaussianity) are respected as well [490, 492]. On the other hand the
corrections to the tensor spectrum can be dominant for an appreciable range of the parameter space, allow-
ing also a blue tensor tilt, see Fig. A.5. The sourced tensor modes could also leave a sizable non-gaussianity
of nearly equilateral shape on the CMB anisotropies and polarization. The amount of non-gaussianity is
controlled by the parameter fNL estimated as [163, 493]:

fNL ' 1.1× 10−14
(

ε1
e2πξ

ξ3

)3

(A.30)

and its shape given in Fig. A.5, as well. We estimate the scale dependence of the tensor tilt performing
a second order computation and deriving the expression for the tensor running αT

1
.
= dnT/d log k and the

running of the running αT
2

.
= dαT

1 /d log k:

αT
1

.
=

dnT

d log k

∣∣∣∣
k=k∗

= −2(1 + ft)ε1ε2 − 2 f ′t ε1 + f ′t (4πξ − 6)ξ1 + 4π ftξξ2
1 (A.31)

αT
2

.
=

dαT
1

d log k

∣∣∣∣
k=k∗

= −2(1 + ft)
(
ε1ε2

2 + ε1ε2ε3
)
− 4 f ′t ε1ε2 − 2 f ′′t ε1 + f ′′t (4πξ − 6)ξ1 + 8π f ′t ξξ2

1 + 4π ftξξ3
1

(A.32)
where we have defined:

f ′t
.
=

d ft

d log k

∣∣∣∣
k=k∗

=

−2ε1 + (4πξ − 6)ξ1

1 + ctP0ε1
e4πξ

ξ6

 ft (A.33)

and

f ′′t
.
=

d f ′t
d log k

∣∣∣∣
k=k∗

=

−2ε1 + (4πξ − 6)ξ1

1 + ctP0ε1
e4πξ

ξ6

2

ft+

+

 (1 + ctP0ε1
e4πξ

ξ6 )(−2ε1ε2 + 4πξξ2
1)− ctP0ε1

e4πξ

ξ6 [−2ε1 + (4πξ − 6)ξ1]
2(

1 + ctP0ε1
e4πξ

ξ6

)2

 ft

(A.34)

In this model the tensor tilt can acquire a non trivial scale dependence. In fact, depending on the
parameters, d log nT/d log k ' 0.1, see Fig. A.5. As we discussed in Sec. II.II.I, this can lead to non
negligible corrections on small scales.

As explained before all these quantities are known functions3 of ξ or equivalently nT. However, since
for large values ξ & 5 the backreaction becomes typically non negligible as well as the primordial non
gaussianity, we decide to restrict our attention to a safer region of the parameter space. We therefore fix
nT ' 0.1 (or equivalently ξ ' 3.5) in such a way that both backreaction and non gaussianity are still under
control, see Fig. A.5. In this way the running αT

1 ' 0.01 and the running of running αT
2 ' 3× 10−6 are

fixed as well. We let evolve ΩGW(k) from the CMB scales all the way up to the ultra high k probed by
the ground based interferometers both including and neglecting αT

1 and αT
2 , see Fig. A.6. The importance

3Note that we parametrized the slow parameter ε3 appearing in (A.32) as ε3 = γ ε2. Letting γ vary in a range γ ∈ [−1, 1] no
significant changes in αT

2 are observed. We therefore fixed ε3 ' 0.
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of scale dependence in this model is evident as ΩGW differs by many orders of magnitude when the non-
linear corrections are considered, possibly becoming visible to future gravitational wave experiments such
as LISA [339] and Einstein Telescope [340].

While we have shown that the impact of the second order running αT
2 is completely negligible, see also

Fig.A.6, one may ask if the higher order terms αT
n>2 can instead give an appreciable contribution possibly

changing the shape of ΩGW(k). For our aim it is sufficient to note that being the tensor tilt only a function of
ξ, the derivative with respect to the scale can be written as d/d log k = (dξ/d log k) d/dξ = (ξξ1) d/dξ and
that the overall factor ξξ1 ∼ 10−2 will further suppress the higher order derivatives. We therefore expect
such terms to be smaller and smaller at least in this range of the parameters space. We leave the detailed
analysis of the sum expansion convergence suitable for future works.

FIGURE A.6: ΩGW(k) in the particle production model both including and neglecting the first
two runnings. The scale dependence is not negligible.

A.4 A DETAILED DERIVATION OF THE TENSOR SPECTRUM

We review in more details the computation of the primordial tensor spectrum with a non-trivial time de-
pendent tensor speed cT, showing that under the assumptions |εT

1 | � 1, the solution of (II.62) is given by
Eq. (II.66). First of all, keeping in mind that

d a(t)
dτ

.
= a(t)

da(t)
dt

= a2(t) H (A.35)

d a2(t)
dτ

= 2 a3(t) H2 +O(ε1) (A.36)
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we see that for zT(t) defined in Eq. (II.61) we have

d zT(t)
dτ

=
Mp

2
a(t)

d
dt

[
a(t)c−1

T

]
(A.37)

=
Mp

2
a(t)

[
ȧ(t)c−1

T − a(t)ċT c−2
T

]
(A.38)

=
Mp

2
a(t)

[
a(t)Hc−1

T − a(t) H c−1
T

(
ċT

H cT

)]
(A.39)

=
Mp

2
a(t)2 Hc−1

T

[
1− εT

1

]
(A.40)

=
Mp

2
d a(t)

dτ
c−1

T

[
1− εT

1

]
(A.41)

' Mp

2
d a(t)

dτ
c−1

T (A.42)

and

d2 zT(t)
dτ2 ' Mp

2

[
d2 a(t)

dτ2 c−1
T +

d a(t)
dτ

a(t)
d
dt

c−1
T

]
(A.43)

' Mp

2

[
d2 a(t)

dτ2 c−1
T − εTa3(t) H2 c−1

T

]
(A.44)

' Mp

2
c−1

T
d2 a(t)

dτ2

[
1− εT

1
2

]
(A.45)

' Mp

2
c−1

T
d2 a(t)

dτ2 (A.46)

Therefore the equation of motion (II.62) is equivalent to (II.65) unless corrections of order |εT
1 | � 1. Now

we want to prove that u(τ, k̃) given by Eq. (II.66) correctly solves Eq. (II.65). First of all, remembering that
k̃(t) .

= cT(t) k, it is worth deriving the following relations:

d k̃
dτ

= −εT
1

k̃
τ

(A.47)

d (k̃ τ)

dτ
= k̃

(
1− εT

1

)
' k̃ (A.48)

d
dτ

(
e−i k̃ τ

√
2k̃

)
' e−i k̃ τ

√
2k̃

[
−i k̃ +

1
4

εT
1

τ

]
(A.49)

where in (A.47) we have used that in the de Sitter spacetime τ ' − (aH)−1. Now we take the following
derivatives:

du
dτ

=
e−i k̃ τ

√
2k̃

[
−i k̃− 1

τ

(
1− 1

4
εT

1

)
+

i
k̃τ2

(
1− 1

4
εT

1

)]
(A.50)

' e−i k̃ τ

√
2k̃

[
−i k̃− 1

τ
+

i
k̃τ2

]
(A.51)
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and finally

d2 u
dτ2 '

e−i k̃ τ

√
2k̃

[
−k̃2 +

ik̃
τ

(
1 +

3
4

εT
1

)
+

2
τ2

(
1− 1

8
εT

1

)
− 2 i

k̃τ3

(
1− 1

8
εT

1

)]
(A.52)

' e−i k̃ τ

√
2k̃

[
−k̃2 +

ik̃
τ
+

2
τ2 −

2 i
k̃τ3

]
(A.53)

' e−i k̃ τ

√
2k̃

(
1− i

k̃ τ

)
︸ ︷︷ ︸

u(τ,k̃)

(
2
τ2 − k̃2

)
(A.54)

' −
(

k̃2 − 2
τ2

)
u(τ, k̃) (A.55)

that is nothing but Eq. (II.65). Therefore, now that we have proved that (II.66) is the correct solution, the
derivation of the primordial spectra is trivial: it is sufficient to follow the standard procedure (see e.g. [76,
83]) with k→ k̃ that leads us to (II.71).

A.5 BEYOND THE LINEAR ORDER IN THE PROPAGATING SPEED

In Sec II.III we have derived some equations that relate the tensor propagating speed cT to the inflationary
parameters under the assumption that the second-order time derivative c̈T ' 0. In other words, expanding
the propagating speed cT(t) we have taken into account only the linear term. For completeness, we would
like to briefly discuss slightly more complicated scenarios in which we consider also the higher-order terms
in the Taylor expansion.

Let us see what happens including also the quadratic term c̈T: the relation (II.77) is modified as follows

εT
2

.
=

ε̇T
1

HεT
1
= ε1 − εT

1 + ηT (A.56)

where we have to introduce the new parameter

ηT
.
=

c̈T

H ċT
. (A.57)

Neglecting the third order time derivative
...
c T ' 0 we find

d ηT

d log k
=

1
H

d
dt

[
c̈T

H ċT

]
= ηT (ε1 − ηT) (A.58)

and αT and βT now will read
αT = −2ε1ε2 − εT

1

(
ε1 − εT

1 + ηT

)
(A.59)

βT = −2ε1ε2
2 − 2ε1ε2ε3 − εT

1

[(
ε1 − εT

1 + ηT

)2
+ ε1ε2 − εT

1

(
ε1 − εT

1 + ηT

)
+ ηT (ε1 − ηT)

]
(A.60)

Note that considering the second order derivative of cT with respect to time provides a correction only
to the runnings and not to the spectral tilt that in fact is always given by Eq. (II.70). Moreover even
considering the new term ηT a set of consistency relations can always be derived. Indeed reversing (A.59)

ηT =
(

ε1 − εT
1

)
+

αT + 2ε1ε2

εT
1

(A.61)
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and using the Eqs. (II.79), (II.80), (II.81), (II.82) and (A.61), it is easy to see that Eq. (A.60) still provides a
consistency relation for the propagating speed cT and the inflationary parameters. However in this case the
relation will be cubic in the slow roll parameters and will involve also the scalar running αs and the tensor
running of running βT that are not involved in the respective quadratic relation in the slow roll parameter
(II.83) derived under the linear order expansion of cT.

This procedure can be generalized at any order: if we expand cT(t) taking all the terms up to the

order n and assuming that
(

d
dt

)n+1
cT ' 0, we can always find a consistency relation between cT and the

inflationary parameters. This relation will include the scalar runnings up to αS
n−1 and the tensor runnings

up to αT
n .

Clearly, to test the time dependence of cT beyond the linear expansion, we need an accuracy that we do
not have at present. We conclude that the choice to adopt the simply linear approximation for cT(t) is rea-
sonable because it allows us to test its time dependence without complicating the equations or introducing
higher-order parameters that will be difficult to constrain with the current cosmological data.

A.6 SUPERLUMINAL GRAVITY PROPAGATION DURING INFLATION

In Sec. II.III, we have restricted our attention to the parameter space cT < 1 excluding the superluminal
propagation from the MCMC sampling. One may ask if such an artificial exclusion leads to a biased
conclusion and, in general, what happens including superluminal velocities. In this appendix we want to
clarify some aspects about superluminal velocities and motivate our decision to impose a prior cT < 1 in
our MCMC sampling.

First of all we want to stress that we have carefully checked that our constraints were not biased by
our choice of not exploring superluminal velocities. As a matter of fact, the constraints on cT are almost
uncorrelated with the constraints on the other parameters and, even extending our MCMC prior to cT > 1,
we will end up with almost the same results, see Fig. A.7.

We also would like to point out that our theoretical framework holds for both subluminal and super-
luminal velocities indifferently and that we excluded the superluminal propagation only in our MCMC
analysis. This is crucial since, from a theoretical point of view, imposing subluminal propagation is not as
safe an assumption as one may think. In fact, as shown in [336, 337], depending on the model, it can be
possible to perform a change of frame so that in the new frame the tensor speed is c, but the speed of the
other massless particles is greater than c ending up with a situation where we have actually constrained
the speed of normal species to be superluminal, in tension with causality.

However we decided to exclude superluminal velocities from our MCMC analysis for the following
reason: as one can see from Eq. (II.73), superluminal velocities will suppress the amplitude of tensor
perturbations leading to a completely different phenomenology with respect to subluminal velocities. In
fact when cT < 1 the amplitude of the tensor spectrum grows, eventually becoming greater than the Planck
experimental error and allowing us to provide a well defined lower bound on the tensor speed. Conversely
when cT > 1 the amplitude of the tensor spectrum decreases and the effect of cT on the primordial spectrum
is buried in the experimental error, preventing us from achieving a well defined upper bound. In other
words when the MCMC prior on cT is extended to superluminal velocities, since the Planck data prefer a
vanishing r, the posterior distribution of the propagating speed is pushed to cT � 1 and the upper bound
on cT is completely dominated by the a-priori imposed prior, see Fig. A.7.

Furthermore when the prior on the tensor speed is extended to cT > 1 most of the area of the posterior
distribution is found for values of cT close to the upper limit of the prior. Specifically enlarging the prior on
cT by a factor of 5 we now get a lower limit cT > 0.92c ( pushed forward by the same amount with respect
to the subluminal case) .

This is clearly a biased result which stems from the fact that we are unable to place an upper bound on
the propagating tensor speed with the theoretical framework presented in the work. The reason behind this
is that the MCMC samples accumulate at the higher edge of the imposed range for cT leading to exclude
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FIGURE A.7: Marginalized 2D and 1D posteriors for the combination of Planck 2018 [113,
115] and Biceps/Keck 2015 [162] data for the parameters of the tensor spectrum. The blue
contours are those obtained exploring only subluminal velocities while the green contours are
obtained extending the prior to superluminal velocities cT < 5. As one can see the choice
of exploring only subluminal velocities does not lead to significant bias on the inflationary
parameters. Nevertheless, once the superluminal velocities are considered, since the Planck
data prefer a vanishing tensor amplitude, the posterior of cT is pushed to cT � 1 leading to a

prior dependent upper (and lower) bound.
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values of cT much smaller than the upper limit at more than two standard deviation resulting in a biased
lower bound for the tensor speed. Note that this example is merely to show that even pushing the prior
on cT to cT � 1 only the posterior of the tensor speed is affected while all other parameters are almost
unaffected.

It is also worth noting that to correctly analyze the region cT > 1, along with the consistency relation
we found, one has to consider also the different phenomenology induced by superluminal propagation.
For example a tensor speed different from unity will generate non-gaussian features in the primordial
perturbations fNL ∼ 1 − c2

T [272, 278]. Of course this (and other) information can be used to place an
upper bound on cT > 1, but constraining the superluminal part of cT goes outside the aim of this work
since here we are mainly interested in constraining the shape and amplitude of the tensor spectrum in
non-standard theories of inflation with a scale dependent propagating speed. We plan to tackle down the
issue of superluminal velocities in a subsequent work.

A.7 MATCHING SMALL-SCALES CONSTRAINTS ON THE TENSOR SPEED

Even if the main goal of Sec. II.III was to constrain the shape and the amplitude of the tensor two-point
function in a non trivial theory of inflation, in Sec. II.III.II we have derived constraints on the propagat-
ing speed cT that clearly refer to its value on the CMB scales, with Eqs. (II.71) and (II.72) evaluated at the
horizon crossing. In this appendix, we want to discuss the accordance between our results and the current
measurement cT ' c provided by gravitational experiments. Let us stress that the current observed value
cT ∼ c refers to the propagating speed of the astrophysical gravitational waves measured by the gravi-
tational detectors on astrophysical scales k ∼ kLV and not to the propagating speed of primordial tensor
perturbations that are instead generated during the inflationary epoch at energies that can be extremely
larger. We have several observational pieces of evidence that Einstein’s theory of general relativity works
appropriately on the astrophysical energy scales, but theoretical arguments suggest that it may need to be
modified at high energies and some well motivated extended theories predict a non unitary propagating
speed [94, 219, 221–225, 236–242, 253–263]. In our work we have used an effective field theory approach
(that, by definition, provides an approximate description of an underlying physical theory at a specific en-
ergy scale) to show that if the inflationary energy scale is sufficiently high, high-energy deviations from GR
could leave signatures during the inflationary epoch and primordial tensor perturbations could provide a
unique observational window to probe gravity at those energy scales. However, in a consistent theory of
gravity, GR has to emerge in the low energies limit in such a way that all the observational evidences for
GR (including the observed value cT ∼ c on the astrophysical scales) can remain consistent through the
evolution of the universe. Therefore it is worth showing that, our constraints on cT(k∗) are not in conflict
with those derived by gravitational detectors.

Considering the expansion of log cT(k) we can write

cT(k) = cT(k∗)
(

k
k∗

)γ(k)

(A.62)

where

γ(k) =
∞

∑
n=0

[(
d

d log k

)n

εT
1

]
k=k∗

logn
(

k
k∗

)
(n + 1)!

(A.63)

Because of the discussion provided in sec II.III.II, we can estimate the derivatives of εT
1 as(

d
d log k

)n

εT
1 = (−1)nn!

(
εT

1

)n+1
(A.64)

PAGE 159 OF 200



W. GIARÈ SUPPLEMENTARY MATERIAL

100 102 104 106 108 1010 1012 1014 1016

k [Mpc−1 ]

0.2 c

0.4 c

0.6 c

0.8 c

c

c T

FIGURE A.8: Constraints on the propagating speed cT at the generic scale k extrapolated from
the constraints on the CMB scales fixing εT

1 = 0.082 and cT(k∗) > 0.2. Remarkably on the
LIGO/VIRGO scales we can extrapolate the lower limit cT(kLV) & 0.94, in perfect agreement

with the constraints on the astrophysics GWs.

that gives for γ

γ = −εT
1

log(1− f (k))
f (k)

(A.65)

where f (k) = −εT
1 log(k/k∗). As one can see, the value of the propagating speed at the generic scale k

depends on both cT(k∗) and εT
1 . Interestingly, using the value derived for εT

1 ' 0.082, the lower bound for
cT & 0.22 on the CMB scale is translated into the constraints plotted in Fig. A.8 at the generic scale k. Even
on ultra-high k the power low expansion (II.115) provides reasonable values remarkably close to cT = c.
In particular on the LIGO/VIRGO scales we have cT(kLV) & 0.94 c that is in very good agreement with the
constraints on the propagating speed of gravitational waves derived on astrophysical scales [214–216]. We
therefore conclude that our results are not in conflict with those of gravitational experiments.

A.8 INFLATON-WEYL COUPLING FUNCTION

In Sec II.IV, we studied the higher-curvature corrections to the inflationary parameters considering a cou-
pling between the Weyl tensor and the Inflaton of the form d f (φ)/dφ ∼ ±1/Λ, assuming negligible the
higher-order derivatives: dn f (φ)/dφn ' 0. In this appendix we want to generalize our computation for a
generic function f (φ). Introducing the dimensionless parameters

λn
.
=
(√

2Mp

)n
(

H2

M2

)(
d

dφ

)n

f (φ) (A.66)

that generalize Eq. (II.117) with λ1 ≡ λ, we see that Eq. (II.118) is generalized to

dλn

d log k
= −2λn ε1 + λn+1 ε1/2

1 (A.67)

= −1
8

λn r +
1
4

λn+1 r1/2 (A.68)
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So for a generic function f (φ), while the tensor tilt nT = −2ε1 − εT is always given by Eq. (II.116), the
tensor running becomes

αT = αSR
T +

[
−3λ1

16
r3/2 − λ1

2
r1/2(nS − 1) +

λ2

4
r
]

. (A.69)

It differs from Eq. (II.119) by a further term (λ2/4)r that can give appreciable contribution only if |λ2| '
|λ1|. Because of Eq. (A.66), this means a coupling function of the form f (φ) ∝ e±φ/MP . However in this case
we have a further enhancement of the running of tensor tilt, see also Fig. A.9. This scenario is even more
disfavored by our results that instead show a preference for small running, as we discussed in Sec. II.IV.II.

FIGURE A.9: Tensor running for a generic coupling f (φ). The dashed line represents the
model adopted in SecII.IV.
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Appendix B

AXION COLD DARK MATTER

Here we focus on non-thermally produced axions, natural candidates for the cold dark matter component
of the Universe. We give an overview of non thermal axion production, studying the evolution of the
cosmological Axion field from the moment when the U(1)PQ is spontaneously broken during the PQ phase
transition to the moment when axions acquire mass during the QCD phase transition. As we will see,
the phenomenology of non thermal axions is maybe larger than that of thermal axions since a lot of non
standard scenarios may happen such as the formation of topological defects like cosmic strings or domain
walls.

VACUUM REALIGNMENT

The equation of motion of the axion field φA can be derived assuming in the early universe the usual F.R.W.
flat metric

ds2 = −dt2 + a2(t)δijdxidxj (B.1)

and assuming that the axion field is minimal coupled to gravity. So we write the action:

S =
∫

d4x
√
−g

[
M̄2

p

2
R +

1
2

gµν∂µφA∂νφA −VA(φA)

]
. (B.2)

Minimizing the action with respect to the Axion field φA we can find the equation of motion that reads:[
∂2

t + 3H∂t −
1
a2∇

2
x

]
φA(x) + V ′A[φA(x)] = 0 (B.3)

where prime indicates a derivative with respect to φA and where VA is the effective periodic potential
for the axion field that, accounting for non-perturbative QCD effects associated with instantons, can be
qualitatively written as

VA = f 2
A m2

A(t)
[

1− cos
(

φA

fA

)]
(B.4)

The axion mass is a function of temperature and hence of time: mA(t) = mA[T(t)]. High temperature
effects (T ≈ 1 GeV) of QCD instantons give [362, 378–380]:

mA(T) ' 4× 10−9eV
(

1012GeV
fA

)(
GeV

T

)4

(B.5)

The axion mass is strongly suppressed at temperatures that are large compared to the QCD scale, but it
turns on when the temperature approaches ΛQCD. In practice, the axion mass becomes important when
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mA(t) ∝ t, so it is useful to define a time t∗ at which the axion mass turns on1:

mA(t∗)t∗ = 1 (B.6)

Putting the potential (B.4) into the equation of motion (B.3) we obtain:[
∂2

t + 3H∂t −
1
a2∇

2
x

]
φA(x) + m2

A(t) fA sin
(

φA(x)
fA

)
= 0 (B.7)

On the other hand, minimizing the action with respect to the metric tensor we can find the well known
relations for the axion energy density and pressure that are:

ρA =
1
2

φ̇2
A + VA (B.8)

pA =
1
2

φ̇2
A −VA (B.9)

and so:

ωA ≡
pA

ρA
=

1
2 φ̇2

A −VA
1
2 φ̇2

A + VA
(B.10)

The axion field evolves according to equation (B.7). So once we have solved it and computed φA(x) we
can also predict the axion energy density and pressure from the equations (B.8) and (B.10). However we
need to specify the axion field initial condition that are completely random. Moreover causal disconnected
region of spacetime in general have uncorrelated values of φA(x). Nevertheless it is well known that the
size of the causal horizon grows exponentially during inflation and so it can homogenize the axion field
over enormous distances. Therefore, before solving equation (B.7), we have to distinguish two different
cases. Let us call TRH the temperature of the reheating after the inflation, if:

1. TPQ > TRH so the inflation occurs after the PQ symmetry breaking and the axion field is homogenized
over enormous distances.

2. TPQ < TRH so the inflation occurs before the PQ symmetry breaking and the axion field has non-zero
modes and carries topological defects such as strings and domain walls.

The first possibility, inflation occurring after the PQ symmetry breaking, is of course the simplest since in
this way we do not have to worry about the topological defects production and the axion field is homoge-
nized over large distances. However in what follows we will study both the situations.

Case 1: TPQ > TRH

Focus our attention on the first case TPQ > TRH. Inflation homogenizes the axion field over very large
distances and so we can assume that the axion field does not depend on the space coordinate x̄ so that the
equation of motion (B.7) becomes:[

d2

dt2 +
3
2t

d
dt

]
φA(t) + m2

A(t) fA sin
(

φA(t)
fA

)
= 0 (B.11)

where we have used H = 1
2t . Because of our previous discussion about the time (or temperature) depen-

dence of the axion mass mA(t), we are allowed to distinguish two different regimes t� t∗ when the axion
mass can be neglected and t & t∗ when the axion mass turns on.

1for T ≈ 1 GeV, t∗ ' 2× 10−7s
(

fa
1012GeV

)1/3
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In the regime t� t∗ we can neglect the axion mass mA(t� t∗) ≈ 0 and the equation to solve becomes:[
d2

dt2 +
3
2t

d
dt

]
φA(t) = 0 (B.12)

We immediately see that the most general solution is

φA(t) = φ0 + φ1 t−
1
2 (B.13)

where φ0 and φ1 are constants. Therefore the expansion of the universe ( in a Radiation dominated era
a(t) ∝ t

1
2 ) freezes the axion field to a constant value. Therefore the axion field is overdamped and frozen

at its initial value by Hubble friction. The equation of state at early times is so ωA = −1 and the axion
behaves as a contribution to the vacuum energy: if axions were able to dominate the energy density of
the universe when still overdamped with equation of state ω < − 1

3 , they could even drive a period of
accelerated expansion.

When t approaches t∗, the axion field starts oscillating because of the axion mass contribution. Let us
suppose that φA(t) � fA so that we can expand fA sin

(
φA(t)

fA

)
≈ φA(t) in the equation of motion that so

becomes: [
d2

dt2 +
3
2t

d
dt

]
φA(t) + m2

A(t)φA(t) (B.14)

It is useful to study this equation performing the following substitution:

χ(t) = t
3
4 φ(t) (B.15)

So that the equation of motion becomes: [
d2

dt2 + ω2(t)
]

χ(t) = 0, (B.16)

where
ω2(t) = m2

A(t) +
3

16 t2 . (B.17)

In other words for t & t∗ the axion field is oscillating with frequency ω ≈ mA. The solution of equation
(B.16) is therefore given by:

χ(t) ' C√
mA(t)

cos
[∫

t
dt′ ω

(
t′
)]

(B.18)

where C = const. For φA(t) this translates into

φA(t) = φ0(t) cos
[∫

t
dt′ ω

(
t′
)]

(B.19)

with

φ0(t) =
C t−

3
4√

mA(t)
(B.20)

Putting the solution (B.19) into equation (B.8) one can check that

ρA ∝ mA(t)2φ0(t)2 ∝ t−
3
2 (B.21)
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remembering that a(t) ∝−
1
2 , we finally obtain the following very important result:

ρA ∝ a(t)−3. (B.22)

This is the same behavior of ordinary matter, and this is why misalignment axions are a valid candidate for
the cold dark matter. We can also estimate the late time number density of axions by saying that the axion
field has a random initial value φA(t∗) = fA θ∗ where θ∗ is said initial misalignment angle and it evolves
according to the equation of motion

θ̈∗ + 3 H θ̇∗ + mA(t)2θ∗ (B.23)

Since the potential is periodic with period 2π fA, the relevant range of θ∗ is [−π , π]. The number density
of axion at time t∗ is given by [378–380]

nvac
A (t∗) ∼

1
2

mA (t∗) φ2
A (t∗) =

f 2
A

2t∗
θ2
∗ (B.24)

The number of axions is an adiabatic invariant after t∗ and so, since they behave like matter, their number
density at any given time t > t∗ is:

nvac
A (t) ∼ f 2

A
2t∗

θ2
∗

(
a(t∗)
a(t)

)3

(B.25)

and so, today (t = t0):

nvac
A (t0) ∼

f 2
A

2t∗
θ2
∗

(
a(t∗)
a(t0)

)3

(B.26)

Note that from the axion number density we can obtain the axion energy density simply multiplying for
their mass:

ρvac
A (t) ∼ mA f 2

A
2t∗

θ2
∗

(
a(t∗)
a(t)

)3

(B.27)

This mechanism of axion production is called vacuum realignment or also misalignment mechanism.

Case 2: TPQ < TRH

So far we have studied in details the case when inflation homogenizes the axion field over large distances.
Now we want to study the vacuum realignment in the case in which no inflation occurs and the value of
the field depends on the spatial coordinates and the equation to solve is the eq. (B.7). As we will see the
only difference with the previous case is a contribution coming from the non zero momentum modes.

Let us start considering the regime t � t∗ when the axion mass is suppressed. In this case it is conve-
nient to expand the axion field in the Fourier space

φA(x, t) =
∫

d3k φ̃A(k, t) eik·x (B.28)

where the Fourier modes φ(k, t) satisfy the equation of motion in the Fourier space that reads:(
∂2

t +
3
2t

∂t +
k2

a(t)2

)
φ̃A(k, t) = 0. (B.29)

As well known, in an expanding universe, the wavelength λ(t) = 2π a(t)
k of each mode is stretched by the

expansion itself and so two further different regimes arise. The evolution is in fact different depending on
the larger or smaller wavelength than the causal horizon.
For the modes outside the horizon, k/a(t) � H(t), the third term on the left hand side of Eq. (B.29) is
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dropped, and the solution is given by:

φ̃A(k, t) = φ0(k) + φ1(k) t−
1
2 (B.30)

where φ0(k) and φ1(k) are some k-dependent constants. Therefore, for wavelengths larger than the causal
horizon, each mode goes to a constant and the axion field is frozen by causality.
On the other hand, for modes inside the horizon, k/a(t) � H(t), we cannot neglect the third term on the
left hand side of Eq. (B.29) that, performing the substitution

χ(k, t) = a(t)
3
2 φ̃A(k, t), (B.31)

can be rewritten as follows: [
∂2

t + ω2(t)
]

χ(k, t) = 0 (B.32)

where

ω2(t) =
k2

a2(t)
+

3
16 t2 '

k2

a2(t)
. (B.33)

The most general solution is

φ̃(k, t) =
C

a(t)
cos

[∫ t
dt′ω

(
t′
)]

(B.34)

where C = const. This is an oscillating solution with a frequency ω ' k/a(t) and whose amplitude de-
creases with time as 1

a(t) .

When t & t∗ the axion mass term becomes non-negligible. The modes outside the causal Horizon, k/a(t)�
H(t), start oscillating with frequency ω ' mA(t). In fact the equation of motion becomes exactly the same
than that studied in the previous scenario with TPQ > TRH: we call these modes zero modes. As concerns
the modes inside the Horizon, k/a(t)� H(t), they contribute to the higher momentum modes.
The axion number density in this case is therefore given by the sum of the contribution of the zero momen-
tum modes nvac,0

A (t) and the contribution of the higher momentum modes nvac,1
A (t):

nvac
A (t) = nvac,0

A (t) + nvac,1
A (t). (B.35)

The zero momentum modes contribution is given by equation (B.25), but since in this case the initial mis-
alignment angle is different from one QCD horizon to another and since the average of θ2

∗ is of order one
we have

nvac,0
A (t) ∼ f 2

A
2t∗

(
a(t∗)
a(t)

)3

. (B.36)

On the other hand, one can show [362, 494] that the higher momentum modes contribution at the time
t = t∗ is:

nvac,1
A (t∗) ∼

N2 f 2
A

2t∗
(B.37)

where the factor N is defined saying that the typically variation of the Axion field from one horizon to the
next is ∼ N fA. Since after t∗ almost all these axions are non-relativistic they behave like ordinary matter
and so:

nvac,1
A (t) ∼ N2 f 2

A
2t∗

(
a(t∗)
a(t)

)3

(B.38)
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TOPOLOGICAL DEFECTS

Since the physics of the early universe is described by guage theories which undergo spontaneous symme-
try breaking, the universe is expected to have gone through various phase transitions as it cooled after the
big bang. These phase transitions can give rise to topological defects. The Peccei Quinn phase transition
is one of the primordial phase transition that can produce such topological defects. If inflation occurs after
the PQ phase transition (TPQ > TRH ), then topological defects are exponentially diluted in such a way that
today it is extremely improbable to observe them in our universe. Otherwise, if inflation occurs before the
PQ phase transition, topological defects are not diluted and so their evolution can have left a trace in our
observable universe. So in this section we will focus on this scenario studying the different topological de-
fects and the Axion production from topological defects. We do not pretend to be mathematically precise.
For a more formal description the interested reader can see refs [385, 386, 390, 495]. Before studying the
Axion production from topological defects, we need to be accurate to classify the different type of defects.
The type of topological defects depends on the topology of the gauge theory and in particular on the topol-
ogy of the vacuum manifoldM. In what follows let us assume that the universe is correctly described by a
gauge theory which undergoes spontaneous symmetry breaking of its symmetry group G at some critical
temperature. The generic field φ (not necessary the axion field φA) undergoing spontaneous symmetry
breaking can be taken to have a minimum at φ = 0 in the high temperature phase while it takes a vacuum
expectation value 〈0|φ|0〉 = 〈φ〉 6= 0. Let us suppose that 〈φ〉 is invariant under sub-group transformations
H ∈ G. The vacuum manifoldM therefore is given byM = G

H the space of degenerate states which breaks
the original symmetry. During the phase transition, φ(x) will take a vacuum expectation value inM that
will be uncorrelated in causal disconnected regions of spaces. To say the truth, for energetic reasons (be-
cause in general a spatial derivative term appears in the Hamiltonian) a constant or slowly varying vacuum
expectation value is preferred but, depending on the topology ofM, some boundaries may survive among
domains where instead φ(x) = 0. These are nothing else that the topological defects: topologically stable
configurations of the higher-energy state.
We are basically interested in two different types of topological defects: Domain Walls and Cosmic strings.
Domain walls are two-dimensional topological defects, which are formed when the vacuum manifoldM
is disconnected. This happens for example when M is made up by only two points corresponding to two
different values of the vacuum expectation value 〈φ〉 = ±η. In each causal disconnected region 〈φ〉 can
be +η or −η randomly and then causal disconnected neighboring regions will tend to fall randomly into
the different states. The common boundary surface between these regions is what we call domain wall.
Since one cannot pass from 〈φ〉 = +η to 〈φ〉 = −η without passing through a region where 〈φ〉 = 0, so
the domain walls are such that 〈φ〉 = 0. Regions with 〈φ〉 = 0 are in a higher energy state and so high
energy walls are formed. The cosmological evolution of a domain wall is determined by its surface ten-
sion. The structures will grow with time until they are comparable to the Hubble scale, leading to large
inhomogeneities in the cosmic background radiation that are not observed [72, 386].

Cosmic strings are one dimensional topological defects which are formed when the vacuum manifold
M is not simply connected. Cosmic strings require a more complicated theory than Domain walls. Con-
sider a complex scalar field φ. Its vacuum state will have a U(1) symmetry: 〈φ〉 = η eiθ : at each point in
space the field can assume a phase θ ∈ [0 , 2π]. Since 〈φ〉 is single valued, the total change of θ around any
closed loop must be ∆θ = 2πn. If n 6= 0 the loop cannot be shrunk to a point and there will be at least
one point inside the loop where θ is undefined. If θ is undefined so it must be 〈φ〉 = 0. The loop can be
deformed in order to find another point of false vacuum. All these false vacuum points connect together
to form a tube of false vacuum that is what we call cosmic string.

Let us try to understand how topological defects may arise from the invisible axion model. This re-
quires a brief description of the model itself. Let us call TPQ the temperature at which the PQ symmetry is
spontaneously broken, we have that

TPQ ' vA (B.39)
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where vA is the vacuum expectation value of a complex field σ(x), named Peccei Quinn filed, whose La-
grangian is:

Lσ =
1
2

∂µσ†∂µσ− λ

4

(
σ†σ− v2

A

)2
+ Lint [σ(x) , ψi] (B.40)

where Lint [σ(x) , ψi] is the Lagrangian of interactions between σ(x) and the other fields in the theory.
When T > TPQ the minimum of energy is at σ(x) = 0 and the PQ symmetry is unbroken. However as the
universe cools down T < TPQ and the temperature of the universe becomes comparable to the QCD scale
ΛQCD ∼ 100MeV, so the non perturbative nature of QCD becomes relevant, the axions acquire mass and
the effective potential arises 2.

VA (φA) = m2
A f 2

a

[
1− cos

(
NDWφA

fA

)]
. (B.41)

The existence of the QCD potential explicitly breaks the U(1)PQ symmetry and the vacuum expectation
value of the field σ becomes a circle whose radius quickly approaches vA:

〈0|σ(x)|0〉 = vAei φA(x)
vA (B.42)

where φA(x) is the axion field. As we can see, now we have a non trivial vacuum manifoldM that is non
simply connected and we are in the situation described before and so cosmic strings are formed. Let us
consider the discrete subgroup ZNDW of the shift symmetry

φA → φA + 2 k π
fA

NDW
(B.43)

with k = {0, 1 ..., NDW− 1} that leaves the potential unchanged. Also this ZNDW symmetry is spontaneously
broken because of the vacuum expectation value (B.42) of the axion field. Therefore the vacuum manifold
M becomes more complicated since we have NDW degeneracy vacuums that are equidistant in the curve of
the minima. In other wordsM not only is not simply connected but it is also disconnected and so Domain
walls can be produced. Cosmic strings occur much earlier than the formation of domain walls: the domain
walls are formed when the Hubble parameter becomes comparable to the axion mass: H ∼ mA.

AXIONS FROM STRING DECAY

Let us consider the axion cosmic strings. Because they are strongly coupled to the axion field, the strings
decay very efficiently into axions. We want to estimate this process. For more details one can read [390,
494, 495].
The energy per unit length of an axion string is

µ = π v2
A ln (vAL) (B.44)

where L is an infra-red cutoff approximately equal to the distance of the nearest neighbor string. As we
have seen, since without inflation3 the size of the causal horizon is of order t, so φA(x) is completely
uncorrelated over distances larger than t. At a given time t, there is at least the order of one string per
horizon. At the beginning these strings are in the primordial plasma and they are stretched by the Hubble
expansion a(t) ∝ t−

1
2 . During this time the density of strings grows and they become much more than one

per horizon. However with the spacetime expansion, when the temperature of the universe becomes lower

than approximatively [496] Tfree ∼ 2× 107GeV
(

fA
1012GeV

)2
, they decouple from the primordial plasma and

2So far we have set NDW = 1, but now let us relax this assumption
3Remember that in this scenario inflation occurs before the PQ symmetry breaking, otherwise it will dilute the abundance of

topological defects in such a way that their contribution to the universe energy density will be negligible
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they make up a network of axion strings moving freely at relativistic speeds. Axions are expected to be
largely and efficiently produced by the string loops collapse. Moreover long strings (that by definition are
stretched across horizons) reconnect to form loops that then collapse freely in axions. The number density
of axions radiated by strings nstr

A is given by [362]

dnstr
A

dt
= −3Hnstr

A +
1

ω(t)
dρstr→A

dt
(B.45)

where ω(t) is the average energy of axions radiated in string-decay processes at a given time4

1
ω(t)

=

(
dρstr→A

dt

)−1 ∫ dk
k

d2ρstr→A

dtdk
(B.46)

while dρstr→A
dt is the rate at which energy density is converted from strings to axions

dρstr→A

dt
= −dρstr

dt
− 2Hρstr (B.47)

where ρstr is the long sting energy density [362] ρstr(t) = ξ
µ
t2 . The parameter ξ determines the density of

the string network, ξ = 1 corresponds to a density of one long string per horizon. If we want that global
strings can decay efficiently into axions we have to require that ξ ≈ 1. Numerical simulation of global
string networks in an expanding universe found that effectively ξ ' 1 [362, 497].
Combining all these equations, maintaining only the terms of order ln(vA t), one obtains

nstr
A (t) ' ξπ f 2

a N2

t3/2

∫ t

tPQ

dt′
ln (vat′)

t′3/2ω (t′)
(B.48)

To go further we need to know ω(t), the average energy of axions radiated at time t. Many analytic
approximations or computational techniques can be used in order to estimate ω(t), see for example [362]
and the reference within. What really interests us is that in the range t−1 . k . (tPQt)−1/2 the axions
coming from string decay have a spectrum ∝ k−2 and so, at the time t∗ they have a momentum ∝ 1

t∗ . This
means that when the axions acquire a mass they become non-relativistic soon after. Axions produced by
cosmic strings decay contribute to cold dark matter and we have that, after t∗

ρstr
A (t) = mA nstr

A (t∗)
(

a(t∗)
a(t)

)3

(B.49)

and so today (t = t0)

ρstr
A (t0) = mA nstr

A (t∗)
(

a(t∗)
a(t0)

)3

(B.50)

AXION FROM DOMAIN WALLS

When the axion mass turns on, at time t∗, each axion string becomes the edge of NDW domain walls. The
domain walls produce a cosmological disaster unless there is inflation after the PQ phase-transition (case
1) or unless NDW = 1. Basically what happens is that, when the axion mass turns on, each axion string
becomes the edge of NDW domain walls. Let us consider that NDW ≥ 2, since there are two or more exactly
degenerate vacuum states so there is at least the order of one domain wall per causal horizon. The energy
density in domain walls is then

ρDW(t) &
σ

t
(B.51)

4Note that d2ρstr→A
dtdk figuring in the equation (B.46) is nothing else that the spectrum of the axions produced.
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where σ is the wall energy per unit surface [362]

σ ' 9 f 2
AmA ' 5.5× 1010GeV3

(
fA

1012GeV

)
(B.52)

Therefore we estimate the domain wall energy density today t = t0 ' 14 Gyr obtaining:

ρDW (t0) &
σ

t0
' 2× 10−14g cm−3

(
fA

1012GeV

)
(B.53)

The critical density today (i.e. the energy density required in order to have a flat universe) is

ρc(t0) ≡
3H2

0
8πG

' 10−29g cm−3. (B.54)

We immediately see that the domain wall contribution to the energy density exceeds alone by many orders
the magnitude of the critical energy density for closing the universe. Domain Walls would over-close the
universe. There are at least two options to avoid the axion domain-wall problem5: the first trivial option
is to have inflation with tRH < TPQ so that the axion field is then homogenized over large distances, and
there are no strings or domain walls. The second option is to postulate NDW = 1. In this way, when
the axion mass turns on, each string becomes the boundary of a single domain wall. In this case what
typically happens is that each string accelerates to relativistic speeds, in the direction of the wall to which
it is attached, in less than a Hubble time unzipping the wall and releasing the stored energy in the form
of barely relativistic axions [362]. The part of the domain walls that does not decay in axions can decay in
gravitational waves. For example this is the case when one considers small symmetry breaking. Domain
walls are gravitationally repulsive, a detailed description of their behavior can be found in [392, 498, 499].
Here we just summarize the following results. Domain walls accelerate away from each other with an
acceleration 2 π G σ and, after a time of order (2 π G σ)−1, they recede at the speed of light. By averaging
over volumes containing many cells separated by walls, the equation of state of a wall dominated universe
is pDW = − 2

3 ρDW. This implies that the energy density of domain walls scales as

ρDW ∝
1

a(t)
. (B.55)

This, combined with the Freedman equations, implies that a domain-wall-dominated universe expands as
a(t) ∝ t2. A domain-wall-dominated universe has an accelerated expansion and so one could be tempted
to say that the present-day accelerated expansion of the universe is due to the domain walls. However a
domain wall dominated universe would have some proprieties that are far away from what we observe
today [362] and we are forced to reject this option.

TOTAL COLD AXION ENERGY DENSITY

The total amount of the cold axion energy density ΩA can be computed taking into account the different
cold dark matter contribution described before. Ignoring the contribution of domain walls and assuming
that the contribution of cosmic strings is

ρstr
A (t) ∼ 2

f 2
A

t∗

(
a(t∗)
a(t)

)3

mA (B.56)

5The domain problem NDW > 1 can also be avoided if one assumes a small symmetry breaking in such a way that the true
vacuum takes over before the walls dominate the energy density. On the other hand, it must be small enough so that the PQ
mechanism still works and so there is a very small portion in the parameter space in which such option works and some fine
tuning problems arise.
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for the two different cases described above one obtains

ΩA ∼
(

fA

1012GeV

)7/6 (0.7
h

)2

×
{

0.15 θ2
∗ for TPQ > TRH

0.7 for TPQ < TRH
(B.57)

where h is defined by H0 = h 100kms−1Mpc−1 and ΩA = ρA
ρc

. Note that if we want axions to be (part of)
Cold Dark Matter of course the total amount of cold axions cannot exceed the total amount of cold dark
matter estimated in the universe ΩCDM ≈ 0.22:

ΩA ≤ ΩCDM ≈ 0.22. (B.58)

If we are in the situation in which inflation occurs before the PQ symmetry breaking (so that the axion
energy density does not depend on the initial misalignment angle θ∗ ) this translates into a direct constraint
on the PQ symmetry breaking scale

fA < 0.37 1012GeV for TPQ < TRH (B.59)

while if we are in the situation of a broken PQ symmetry during inflation this translates into a relation
between the initial misalignment angle and the PQ symmetry breaking scale∣∣∣∣ θ∗π

∣∣∣∣ < 0.4
(

1012GeV
fA

)7/12

for TPQ > TRH. (B.60)

An initial misalignment angle of order one corresponds to fA ∼ 1012 GeV while, in order to allow regions
with fA � 1012 (such as fA ∼ 1013 − 1014) we need to require a very fined tuned value of θ∗ ≈ 0. Clearly
being θ∗ an angle it can assume all the value between −π and π with the same probability, but to avoid a
fine tuning problem (again), we prefer regions of the parameter space with fA . 1012 GeV corresponding
to mA & 10−5. Another interesting characteristic is that more the axion mass is small more the axion energy
density is big. This because axions are bosons and so, if the decoupling is non thermal, their momentum is
very slow and they behave as a condensate. This is an important difference between axions and other cold
dark matter candidates such as WIMPs. Let us conclude this section saying that the axion mass window
mA ∈ [1 , 100] µeV is the most promising in order to have axion cold dark matter and most of the present
experimental efforts on axions are focused on searching axions in this range.

AXION ISOCURVATURE PERTURBATIONS

We now turn to isocurvature perturbations of the axion field produced by quantum fluctuation during the
inflation. As pointed out in the previous section, we basically have two possibilities: inflation can occur
before or later the Peccei Quinn phase transition. If the reheating temperature after inflation is less than the
Peccei Quinn temperature TPQ, the axion field is present during inflation and it is subjected to quantum-
mechanical fluctuations, just like the inflaton field. Since in this case the axion field is massless and weakly
coupled as well as the the inflaton field, so the two fields have the same spectrum of fluctuation [76]. So
the spectrum of the axion field perturbation [362] is given by:

PA(k) =
∫ d3x

(2π)3

〈
δφA(x, t)δφA

(
x′, t
)〉

e−ik·(x−x′) =

(
HI

2π

)2 2π2

k3 (B.61)

At the start of the QCD phase-transition, the local value of the axion field φA(x) determines the local
number density of cold axions produced by the vacuum realignment mechanism

nA (x, t∗) =
f 2
A

2t∗
θ2 (x, t∗) (B.62)
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where θ (x, t∗) ≡ φA(x,t∗)
fA

is the initial misalignment angle. Therefore it is clear that the axion field perturba-
tion generates perturbations in the number density of cold axions, in such a way that:

δniso
A

nA
=

2δφA

φA(x, t∗)
=

HI

π fAθ∗
(B.63)

Where φA(x, t∗) is the value of the axion field at the start of the QCD phase-transition that, because of
inflation, is common to our entire visible universe. Since the vacuum-realignment mechanism converts the
quark - gluon plasma energy into axion rest mass energy, the energy density of these perturbations obeys
to:

δρiso
A (t∗) = −δρiso

rad (t∗) (B.64)

while, as known, the density perturbations produced by the fluctuations of the inflaton field satisfy the adi-
abatic condition. Therefore the perturbations produced by the axion field fluctuations are not adiabatic (as
those produced by the inflaton field fluctuations) but they are isocurvature perturbations. However note that
in this case the density perturbations in the cold axion fluid have both adiabatic and isocurvature com-
ponents: the adiabatic component is given by the quantum mechanical fluctuations of the inflaton field
during inflation, while the isocurvature perturbations are produced by the quantum mechanical fluctua-
tions of the axion field during that same epoch. The adiabatic and axion isocurvature components are of
course uncorrelated. The isocurvature perturbations leave a different trace in the cosmic microwave back-
ground with respect to adiabatic perturbations. In order to constrain the kind of perturbation observed
in the CMB, in general one uses the primordial isocurvature fraction βiso defined as the ratio between the
isocurvature perturbation spectrum over the sum of the isocurvature and adiabatic perturbation spectrum:

βiso =
Piso

Piso + Pad
. 0.04. (B.65)

This limit can be used to exclude regions in the parameter space of the PQ scale and the scale of inflation
HI , since they are related via [500]

HI ' 0.96× 107GeV
(

βiso

0.04

)1/2 ( ΩA

0.120

)1/2 ( fA

1011GeV

)0.408

(B.66)

If we consider the limit (B.65) and if we assume all the cold dark matter made of axions, we have:

HI ≤ 0.87× 107GeV
(

fA

1011GeV

)0.408

(B.67)

Note that another independent estimator of the energy scale of the inflation is the amplitude of the primor-
dial gravitational waves or, equivalently, the tensor to scalar ratio. It is so clear that a future measurement
of the primordial gravitational waves would constrain the PQ scale.

PAGE 172 OF 200



REFERENCES

[1] Giarè, William, Eleonora Di Valentino, and Alessandro Melchiorri. “Testing the inflationary slow-
roll condition with tensor modes”. In: Phys. Rev. D 99.12 (2019), p. 123522. DOI: 10.1103/PhysRevD.
99.123522.

[2] Giarè, William and Alessandro Melchiorri. “Probing the inflationary background of gravitational
waves from large to small scales”. In: Phys. Lett. B 815 (2021), p. 136137. DOI: 10.1016/j.physletb.
2021.136137. arXiv: 2003.04783 [astro-ph.CO].

[3] Giarè, William and Fabrizio Renzi. “Propagating speed of primordial gravitational waves”. In:
Phys. Rev. D 102.8 (2020), p. 083530. DOI: 10 . 1103 / PhysRevD . 102 . 083530. arXiv: 2007 . 04256
[astro-ph.CO].

[4] Giarè, William, Fabrizio Renzi, and Alessandro Melchiorri. “Higher-Curvature Corrections and
Tensor Modes”. In: Phys. Rev. D 103.4 (2021), p. 043515. DOI: 10.1103/PhysRevD.103.043515. arXiv:
2012.00527 [astro-ph.CO].

[5] Giarè, William et al. “New cosmological bounds on hot relics: axions and neutrinos”. In: Mon. Not.
Roy. Astron. Soc. 505.2 (2021), pp. 2703–2711. DOI: 10.1093/mnras/stab1442. arXiv: 2011.14704
[astro-ph.CO].

[6] Matteo Forconi, Giarè, William, and et al. “Cosmological constraints on slow roll inflation: An
update”. In: Phys. Rev. D 104.10 (2021), p. 103528. DOI: 10.1103/PhysRevD.104.103528. arXiv:
2110.01695 [astro-ph.CO].

[7] Giarè, William et al. “Cosmological forecasts on thermal axions, relic neutrinos and light elements”.
In: (Oct. 2021). arXiv: 2110.00340 [astro-ph.CO].

[8] Albert Einstein. “The Foundation of the General Theory of Relativity”. In: Annalen Phys. 49.7 (1916).
Ed. by Jong-Ping Hsu and D. Fine, pp. 769–822. DOI: 10.1002/andp.19163540702.

[9] Charles W. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. San Francisco: W. H. Freeman, 1973.

[10] Sean M. Carroll. Spacetime and Geometry. Cambridge University Press, July 2019.

[11] S. W. Hawking and G. F. R. Ellis. The Large Scale Structure of Space-Time. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, Feb. 2011. DOI: 10.1017/CBO9780511524646.

[12] Scott Dodelson. Modern Cosmology. Amsterdam: Academic Press, 2003. ISBN: 978-0-12-219141-1.

[13] V. Mukhanov. Physical Foundations of Cosmology. Oxford: Cambridge University Press, 2005. ISBN:
978-0-521-56398-7.

[14] Steven Weinberg. Cosmology. 2008. ISBN: 978-0-19-852682-7.

[15] Dmitry S. Gorbunov and Valery A. Rubakov. Introduction to the theory of the early universe: Cosmolog-
ical perturbations and inflationary theory. DOI: 10.1142/7874.

[16] Valery A. Rubakov and Dmitry S. Gorbunov. Introduction to the Theory of the Early Universe: Hot big
bang theory. Singapore: World Scientific, 2017. DOI: 10.1142/10447.

[17] Dominik J. Schwarz. “The first second of the universe”. In: Annalen Phys. 12 (2003), pp. 220–270.
DOI: 10.1002/andp.200310010. arXiv: astro-ph/0303574.

[18] K. A. Olive et al. “Review of Particle Physics”. In: Chin. Phys. C 38 (2014), p. 090001. DOI: 10.1088/
1674-1137/38/9/090001.

https://doi.org/10.1103/PhysRevD.99.123522
https://doi.org/10.1103/PhysRevD.99.123522
https://doi.org/10.1016/j.physletb.2021.136137
https://doi.org/10.1016/j.physletb.2021.136137
https://arxiv.org/abs/2003.04783
https://doi.org/10.1103/PhysRevD.102.083530
https://arxiv.org/abs/2007.04256
https://arxiv.org/abs/2007.04256
https://doi.org/10.1103/PhysRevD.103.043515
https://arxiv.org/abs/2012.00527
https://doi.org/10.1093/mnras/stab1442
https://arxiv.org/abs/2011.14704
https://arxiv.org/abs/2011.14704
https://doi.org/10.1103/PhysRevD.104.103528
https://arxiv.org/abs/2110.01695
https://arxiv.org/abs/2110.00340
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1142/7874
https://doi.org/10.1142/10447
https://doi.org/10.1002/andp.200310010
https://arxiv.org/abs/astro-ph/0303574
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001


W. GIARÈ REFERENCES

[19] S. W. Hawking and I. G. Moss. “Supercooled Phase Transitions in the Very Early Universe”. In: Phys.
Lett. B 110 (), pp. 35–38. DOI: 10.1016/0370-2693(82)90946-7.

[20] Alan H. Guth and S. H. H. Tye. “Phase Transitions and Magnetic Monopole Production in the Very
Early Universe”. In: Phys. Rev. Lett. 44 (1980). [Erratum: Phys.Rev.Lett. 44, 963 (1980)], p. 631. DOI:
10.1103/PhysRevLett.44.631.

[21] D. Boyanovsky, H. J. de Vega, and D. J. Schwarz. “Phase transitions in the early and the present
universe”. In: Ann. Rev. Nucl. Part. Sci. 56 (2006), pp. 441–500. DOI: 10.1146/annurev.nucl.56.
080805.140539. arXiv: hep-ph/0602002.

[22] T. W. B. Kibble. “Phase Transitions in the Early Universe”. In: Acta Phys. Polon. B 13 (1982), p. 723.

[23] Mark B. Hindmarsh et al. “Phase transitions in the early universe”. In: SciPost Phys. Lect. Notes 24
(2021), p. 1. DOI: 10.21468/SciPostPhysLectNotes.24. arXiv: 2008.09136 [astro-ph.CO].

[24] Andreas Albrecht and Paul J. Steinhardt. “Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking”. In: Phys. Rev. Lett. 48 (1982). Ed. by Li-Zhi Fang and R. Ruffini,
pp. 1220–1223. DOI: 10.1103/PhysRevLett.48.1220.

[25] William J. Marciano and Goran Senjanovic. “Predictions of Supersymmetric Grand Unified Theo-
ries”. In: Phys. Rev. D 25 (1982), p. 3092. DOI: 10.1103/PhysRevD.25.3092.

[26] W. de Boer. “Grand unified theories and supersymmetry in particle physics and cosmology”. In:
Prog. Part. Nucl. Phys. 33 (1994), pp. 201–302. DOI: 10.1016/0146-6410(94)90045-0. arXiv: hep-
ph/9402266.

[27] Howard Georgi. “Towards a Grand Unified Theory of Flavor”. In: Nucl. Phys. B 156 (1979), pp. 126–
134. DOI: 10.1016/0550-3213(79)90497-8.

[28] Peter W. Higgs. “Broken Symmetries and the Masses of Gauge Bosons”. In: Phys. Rev. Lett. 13 (1964).
Ed. by J. C. Taylor, pp. 508–509. DOI: 10.1103/PhysRevLett.13.508.

[29] Peter W. Higgs. “Broken symmetries, massless particles and gauge fields”. In: Phys. Lett. 12 (1964),
pp. 132–133. DOI: 10.1016/0031-9163(64)91136-9.

[30] Peter W. Higgs. “Spontaneous Symmetry Breakdown without Massless Bosons”. In: Phys. Rev. 145
(1966), pp. 1156–1163. DOI: 10.1103/PhysRev.145.1156.

[31] P. A. Zyla et al. “Review of Particle Physics”. In: PTEP 2020.8 (2020), p. 083C01. DOI: 10.1093/ptep/
ptaa104.

[32] C. R. Allton et al. “The QCD thermal phase transition in the presence of a small chemical potential”.
In: Phys. Rev. D 66 (2002), p. 074507. DOI: 10.1103/PhysRevD.66.074507. arXiv: hep-lat/0204010.

[33] F. Karsch, E. Laermann, and A. Peikert. “Quark mass and flavor dependence of the QCD phase
transition”. In: Nucl. Phys. B 605 (), pp. 579–599. DOI: 10.1016/S0550-3213(01)00200-0. arXiv:
hep-lat/0012023.

[34] Krishna Rajagopal and Frank Wilczek. “Static and dynamic critical phenomena at a second order
QCD phase transition”. In: Nucl. Phys. B 399 (1993), pp. 395–425. DOI: 10.1016/0550- 3213(93)
90502-G. arXiv: hep-ph/9210253.

[35] Frank R. Brown et al. “On the existence of a phase transition for QCD with three light quarks”. In:
Phys. Rev. Lett. 65 (1990), pp. 2491–2494. DOI: 10.1103/PhysRevLett.65.2491.

[36] R. A. Alpher, H. Bethe, and G. Gamow. “The Origin of Chemical Elements”. In: Phys. Rev. 73 (7 Apr.
1948), pp. 803–804. DOI: 10.1103/PhysRev.73.803. URL: https://link.aps.org/doi/10.1103/
PhysRev.73.803.

[37] Karim A. Malik and David R. Matravers. “A Concise Introduction to Perturbation Theory in Cos-
mology”. In: Class. Quant. Grav. 25 (2008), p. 193001. DOI: 10.1088/0264-9381/25/19/193001. arXiv:
0804.3276 [astro-ph].

PAGE 174 OF 200

https://doi.org/10.1016/0370-2693(82)90946-7
https://doi.org/10.1103/PhysRevLett.44.631
https://doi.org/10.1146/annurev.nucl.56.080805.140539
https://doi.org/10.1146/annurev.nucl.56.080805.140539
https://arxiv.org/abs/hep-ph/0602002
https://doi.org/10.21468/SciPostPhysLectNotes.24
https://arxiv.org/abs/2008.09136
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1103/PhysRevD.25.3092
https://doi.org/10.1016/0146-6410(94)90045-0
https://arxiv.org/abs/hep-ph/9402266
https://arxiv.org/abs/hep-ph/9402266
https://doi.org/10.1016/0550-3213(79)90497-8
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRev.145.1156
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.66.074507
https://arxiv.org/abs/hep-lat/0204010
https://doi.org/10.1016/S0550-3213(01)00200-0
https://arxiv.org/abs/hep-lat/0012023
https://doi.org/10.1016/0550-3213(93)90502-G
https://doi.org/10.1016/0550-3213(93)90502-G
https://arxiv.org/abs/hep-ph/9210253
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRev.73.803
https://link.aps.org/doi/10.1103/PhysRev.73.803
https://link.aps.org/doi/10.1103/PhysRev.73.803
https://doi.org/10.1088/0264-9381/25/19/193001
https://arxiv.org/abs/0804.3276


REFERENCES W. GIARÈ

[38] Robert H. Brandenberger. “Introduction to Early Universe Cosmology”. In: PoS ICFI2010 (2010),
p. 001. DOI: 10.22323/1.124.0001. arXiv: 1103.2271 [astro-ph.CO].

[39] Mark Trodden and Sean M. Carroll. “TASI lectures: Introduction to cosmology”. In: Theoretical Ad-
vanced Study Institute in Elementary Particle Physics (TASI 2002): Particle Physics and Cosmology: The
Quest for Physics Beyond the Standard Model(s). Jan. 2004, pp. 703–793. arXiv: astro-ph/0401547.

[40] Gabriele Veneziano. “A Simple / short introduction to pre - big bang physics / cosmology”. In:
International School of Subnuclear Physics, 35th Course: Highlights: 50 Years Later. Aug. 1997, pp. 364–
380. arXiv: hep-th/9802057.

[41] David L. Wiltshire. “An Introduction to quantum cosmology”. In: 8th Physics Summer School on
Cosmology: The Physics of the Universe. Jan. 1995, pp. 473–531. arXiv: gr-qc/0101003.

[42] N. Aghanim et al. “Planck 2018 results. I. Overview and the cosmological legacy of Planck”. In: As-
tron. Astrophys. 641 (2020), A1. DOI: 10.1051/0004-6361/201833880. arXiv: 1807.06205 [astro-ph.CO].

[43] Subir Sarkar. “Big bang nucleosynthesis and physics beyond the standard model”. In: Rept. Prog.
Phys. 59 (1996), pp. 1493–1610. DOI: 10.1088/0034-4885/59/12/001. arXiv: hep-ph/9602260.

[44] Scott Burles, Kenneth M. Nollett, and Michael S. Turner. “Big bang nucleosynthesis predictions for
precision cosmology”. In: Astrophys. J. Lett. 552 (2001), pp. L1–L6. DOI: 10.1086/320251. arXiv:
astro-ph/0010171.

[45] Ann Merchant Boesgaard and Gary Steigman. “Big Bang Nucleosynthesis: Theories and Observa-
tions”. In: Ann. Rev. Astron. Astrophys. 23 (1985), pp. 319–378. DOI: 10.1146/annurev.aa.23.090185.
001535.

[46] Hideo Kodama and Misao Sasaki. “Cosmological Perturbation Theory”. In: Prog. Theor. Phys. Suppl.
78 (1984), pp. 1–166. DOI: 10.1143/PTPS.78.1.

[47] F. Bernardeau et al. “Large scale structure of the universe and cosmological perturbation theory”. In:
Phys. Rept. 367 (2002), pp. 1–248. DOI: 10.1016/S0370-1573(02)00135-7. arXiv: astro-ph/0112551.

[48] Martin Crocce and Roman Scoccimarro. “Renormalized cosmological perturbation theory”. In: Phys.
Rev. D 73 (2006), p. 063519. DOI: 10.1103/PhysRevD.73.063519. arXiv: astro-ph/0509418.

[49] Ruth Durrer. “Gauge invariant cosmological perturbation theory: A General study and its applica-
tion to the texture scenario of structure formation”. In: Fund. Cosmic Phys. 15 (1994), pp. 209–339.
arXiv: astro-ph/9311041.

[50] Kouji Nakamura. “Second-order gauge invariant cosmological perturbation theory: Einstein equa-
tions in terms of gauge invariant variables”. In: Prog. Theor. Phys. 117 (2007), pp. 17–74. DOI: 10.
1143/PTP.117.17. arXiv: gr-qc/0605108.

[51] Massimo Pietroni et al. “Coarse-Grained Cosmological Perturbation Theory”. In: JCAP 01 (2012),
p. 019. DOI: 10.1088/1475-7516/2012/01/019. arXiv: 1108.5203 [astro-ph.CO].

[52] Ruth Durrer. “Cosmological perturbation theory”. In: Lect. Notes Phys. 653 (2004). Ed. by E. Pa-
pantonopoulos, pp. 31–70. DOI: 10.1007/978-3-540-31535-3_2. arXiv: astro-ph/0402129.

[53] B. Losic and W. G. Unruh. “Cosmological Perturbation Theory in Slow-Roll Spacetimes”. In: Phys.
Rev. Lett. 101 (2008), p. 111101. DOI: 10.1103/PhysRevLett.101.111101. arXiv: 0804.4296 [gr-qc].

[54] Daniel Baumann. “Inflation”. In: Theoretical Advanced Study Institute in Elementary Particle Physics:
Physics of the Large and the Small. July 2009. DOI: 10.1142/9789814327183_0010. arXiv: 0907.5424
[hep-th].

[55] David H. Lyth and Andrew R. Liddle. The primordial density perturbation: Cosmology, inflation and the
origin of structure. 2009.

[56] Christopher Gordon et al. “Adiabatic and entropy perturbations from inflation”. In: Phys. Rev. D 63
(2000), p. 023506. DOI: 10.1103/PhysRevD.63.023506. arXiv: astro-ph/0009131.

PAGE 175 OF 200

https://doi.org/10.22323/1.124.0001
https://arxiv.org/abs/1103.2271
https://arxiv.org/abs/astro-ph/0401547
https://arxiv.org/abs/hep-th/9802057
https://arxiv.org/abs/gr-qc/0101003
https://doi.org/10.1051/0004-6361/201833880
https://arxiv.org/abs/1807.06205
https://doi.org/10.1088/0034-4885/59/12/001
https://arxiv.org/abs/hep-ph/9602260
https://doi.org/10.1086/320251
https://arxiv.org/abs/astro-ph/0010171
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1146/annurev.aa.23.090185.001535
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1016/S0370-1573(02)00135-7
https://arxiv.org/abs/astro-ph/0112551
https://doi.org/10.1103/PhysRevD.73.063519
https://arxiv.org/abs/astro-ph/0509418
https://arxiv.org/abs/astro-ph/9311041
https://doi.org/10.1143/PTP.117.17
https://doi.org/10.1143/PTP.117.17
https://arxiv.org/abs/gr-qc/0605108
https://doi.org/10.1088/1475-7516/2012/01/019
https://arxiv.org/abs/1108.5203
https://doi.org/10.1007/978-3-540-31535-3_2
https://arxiv.org/abs/astro-ph/0402129
https://doi.org/10.1103/PhysRevLett.101.111101
https://arxiv.org/abs/0804.4296
https://doi.org/10.1142/9789814327183_0010
https://arxiv.org/abs/0907.5424
https://arxiv.org/abs/0907.5424
https://doi.org/10.1103/PhysRevD.63.023506
https://arxiv.org/abs/astro-ph/0009131


W. GIARÈ REFERENCES

[57] N. Aghanim et al. “Planck 2018 results. V. CMB power spectra and likelihoods”. In: Astron. Astro-
phys. 641 (2020), A5. DOI: 10.1051/0004-6361/201936386. arXiv: 1907.12875 [astro-ph.CO].

[58] Y. Akrami et al. “Planck 2018 results. VII. Isotropy and Statistics of the CMB”. In: Astron. Astrophys.
641 (2020), A7. DOI: 10.1051/0004-6361/201935201. arXiv: 1906.02552 [astro-ph.CO].

[59] Steven Weinberg. “Effective Field Theory for Inflation”. In: Phys. Rev. D 77 (2008), p. 123541. DOI:
10.1103/PhysRevD.77.123541. arXiv: 0804.4291 [hep-th].

[60] Wayne Hu and Scott Dodelson. “Cosmic Microwave Background Anisotropies”. In: Ann. Rev. As-
tron. Astrophys. 40 (2002), pp. 171–216. DOI: 10.1146/annurev.astro.40.060401.093926. arXiv:
astro-ph/0110414.

[61] N. Aghanim et al. “Planck 2018 results. I. Overview and the cosmological legacy of Planck”. In: As-
tron. Astrophys. 641 (2020), A1. DOI: 10.1051/0004-6361/201833880. arXiv: 1807.06205 [astro-ph.CO].

[62] Albert Stebbins. “The CMBR spectrum: A Theoretical introduction”. In: NATO Advanced Study In-
stitute: The Cosmic Background Radiation (CBR 96). May 1996. arXiv: astro-ph/9705178.

[63] Douglas Scott and George F. Smoot. “Cosmic Microwave Background Mini-review”. In: (May 2010).
arXiv: 1005.0555 [astro-ph.CO].

[64] Dorothea Samtleben, Suzanne Staggs, and Bruce Winstein. “The Cosmic microwave background for
pedestrians: A Review for particle and nuclear physicists”. In: Ann. Rev. Nucl. Part. Sci. 57 (2007),
pp. 245–283. DOI: 10.1146/annurev.nucl.54.070103.181232. arXiv: 0803.0834 [astro-ph].

[65] Antony Lewis and Anthony Challinor. “Weak gravitational lensing of the CMB”. In: Phys. Rept. 429
(2006), pp. 1–65. DOI: 10.1016/j.physrep.2006.03.002. arXiv: astro-ph/0601594.

[66] D. J. Fixsen. “The Temperature of the Cosmic Microwave Background”. In: Astrophys. J. 707 (2009),
pp. 916–920. DOI: 10.1088/0004-637X/707/2/916. arXiv: 0911.1955 [astro-ph.CO].

[67] Ruth Durrer. “The theory of CMB anisotropies”. In: J. Phys. Stud. 5 (2001), pp. 177–215. arXiv: astro-
ph/0109522.

[68] R. K. Sachs and A. M. Wolfe. “Perturbations of a cosmological model and angular variations of the
microwave background”. In: Astrophys. J. 147 (1967), pp. 73–90. DOI: 10.1007/s10714-007-0448-9.

[69] Joseph Silk. “Cosmic black body radiation and galaxy formation”. In: Astrophys. J. 151 (1968), pp. 459–
471. DOI: 10.1086/149449.

[70] Ya. B. Zeldovich and R. A. Sunyaev. “The Interaction of Matter and Radiation in a Hot-Model Uni-
verse”. In: Astrophys. Space Sci. 4 (1969), pp. 301–316. DOI: 10.1007/BF00661821.

[71] Takemi Okamoto and Wayne Hu. “CMB lensing reconstruction on the full sky”. In: Phys. Rev. D 67
(2003), p. 083002. DOI: 10.1103/PhysRevD.67.083002. arXiv: astro-ph/0301031.

[72] Ya. B. Zeldovich, I. Yu. Kobzarev, and L. B. Okun. “Cosmological Consequences of the Spontaneous
Breakdown of Discrete Symmetry”. In: Zh. Eksp. Teor. Fiz. 67 (1974), pp. 3–11.

[73] Marc Kamionkowski, Arthur Kosowsky, and Albert Stebbins. “Statistics of cosmic microwave back-
ground polarization”. In: Phys. Rev. D 55 (1997), pp. 7368–7388. DOI: 10.1103/PhysRevD.55.7368.
arXiv: astro-ph/9611125.

[74] Paolo Cabella and Marc Kamionkowski. “Theory of cosmic microwave background polarization”.
In: International School of Gravitation and Cosmology: The Polarization of the Cosmic Microwave Back-
ground. Mar. 2004. arXiv: astro-ph/0403392.

[75] Wayne Hu and Martin J. White. “CMB anisotropies: Total angular momentum method”. In: Phys.
Rev. D 56 (1997), pp. 596–615. DOI: 10.1103/PhysRevD.56.596. arXiv: astro-ph/9702170.

[76] Daniel Baumann and Liam McAllister. Inflation and String Theory. Cambridge Monographs on Math-
ematical Physics. Cambridge University Press, May 2015. ISBN: 978-1-107-08969-3. DOI: 10.1017/
CBO9781316105733. arXiv: 1404.2601 [hep-th].

PAGE 176 OF 200

https://doi.org/10.1051/0004-6361/201936386
https://arxiv.org/abs/1907.12875
https://doi.org/10.1051/0004-6361/201935201
https://arxiv.org/abs/1906.02552
https://doi.org/10.1103/PhysRevD.77.123541
https://arxiv.org/abs/0804.4291
https://doi.org/10.1146/annurev.astro.40.060401.093926
https://arxiv.org/abs/astro-ph/0110414
https://doi.org/10.1051/0004-6361/201833880
https://arxiv.org/abs/1807.06205
https://arxiv.org/abs/astro-ph/9705178
https://arxiv.org/abs/1005.0555
https://doi.org/10.1146/annurev.nucl.54.070103.181232
https://arxiv.org/abs/0803.0834
https://doi.org/10.1016/j.physrep.2006.03.002
https://arxiv.org/abs/astro-ph/0601594
https://doi.org/10.1088/0004-637X/707/2/916
https://arxiv.org/abs/0911.1955
https://arxiv.org/abs/astro-ph/0109522
https://arxiv.org/abs/astro-ph/0109522
https://doi.org/10.1007/s10714-007-0448-9
https://doi.org/10.1086/149449
https://doi.org/10.1007/BF00661821
https://doi.org/10.1103/PhysRevD.67.083002
https://arxiv.org/abs/astro-ph/0301031
https://doi.org/10.1103/PhysRevD.55.7368
https://arxiv.org/abs/astro-ph/9611125
https://arxiv.org/abs/astro-ph/0403392
https://doi.org/10.1103/PhysRevD.56.596
https://arxiv.org/abs/astro-ph/9702170
https://doi.org/10.1017/CBO9781316105733
https://doi.org/10.1017/CBO9781316105733
https://arxiv.org/abs/1404.2601


REFERENCES W. GIARÈ

[77] William H. Kinney. “TASI Lectures on Inflation”. In: (Feb. 2009). arXiv: 0902.1529 [astro-ph.CO].

[78] Y. Akrami et al. “Planck 2018 results. X. Constraints on inflation”. In: Astron. Astrophys. 641 (2020),
A10. DOI: 10.1051/0004-6361/201833887. arXiv: 1807.06211 [astro-ph.CO].

[79] Alan H. Guth. “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Prob-
lems”. In: Phys. Rev. D 23 (1981). Ed. by Li-Zhi Fang and R. Ruffini, pp. 347–356. DOI: 10.1103/
PhysRevD.23.347.

[80] Leonardo Senatore. “Lectures on Inflation”. In: Theoretical Advanced Study Institute in Elementary
Particle Physics: New Frontiers in Fields and Strings. 2017, pp. 447–543. DOI: 10.1142/9789813149441_
0008. arXiv: 1609.00716 [hep-th].

[81] Andrew R. Liddle. “An Introduction to cosmological inflation”. In: ICTP Summer School in High-
Energy Physics and Cosmology. Jan. 1999, pp. 260–295. arXiv: astro-ph/9901124.

[82] D. Langlois. “Lectures on inflation and cosmological perturbations”. In: Lect. Notes Phys. 800 (2010),
pp. 1–57. DOI: 10.1007/978-3-642-10598-2_1. arXiv: 1001.5259 [astro-ph.CO].

[83] A. Riotto. “Inflation and the Theory of Cosmological Perturbations”. In: 2018.

[84] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. “Towards the theory of reheating after
inflation”. In: Phys. Rev. D 56 (1997), pp. 3258–3295. DOI: 10.1103/PhysRevD.56.3258. arXiv: hep-
ph/9704452.

[85] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. “Reheating after inflation”. In: Phys. Rev.
Lett. 73 (1994), pp. 3195–3198. DOI: 10.1103/PhysRevLett.73.3195. arXiv: hep-th/9405187.

[86] Bruce A. Bassett, Shinji Tsujikawa, and David Wands. “Inflation dynamics and reheating”. In: Rev.
Mod. Phys. 78 (2006), pp. 537–589. DOI: 10.1103/RevModPhys.78.537. arXiv: astro-ph/0507632.

[87] Y. Shtanov, Jennie H. Traschen, and Robert H. Brandenberger. “Universe reheating after inflation”.
In: Phys. Rev. D 51 (1995), pp. 5438–5455. DOI: 10.1103/PhysRevD.51.5438. arXiv: hep-ph/9407247.

[88] Andreas Albrecht et al. “Reheating an Inflationary Universe”. In: Phys. Rev. Lett. 48 (1982), p. 1437.
DOI: 10.1103/PhysRevLett.48.1437.

[89] Rouzbeh Allahverdi et al. “Reheating in Inflationary Cosmology: Theory and Applications”. In:
Ann. Rev. Nucl. Part. Sci. 60 (2010), pp. 27–51. DOI: 10.1146/annurev.nucl.012809.104511. arXiv:
1001.2600 [hep-th].

[90] Daniel J. H. Chung, Edward W. Kolb, and Antonio Riotto. “Production of massive particles during
reheating”. In: Phys. Rev. D 60 (1999), p. 063504. DOI: 10.1103/PhysRevD.60.063504. arXiv: hep-
ph/9809453.

[91] Mustafa A. Amin et al. “Nonperturbative Dynamics Of Reheating After Inflation: A Review”. In:
Int. J. Mod. Phys. D 24 (2014), p. 1530003. DOI: 10.1142/S0218271815300037. arXiv: 1410.3808
[hep-ph].

[92] Jerome Martin and Christophe Ringeval. “First CMB Constraints on the Inflationary Reheating
Temperature”. In: Phys. Rev. D 82 (2010), p. 023511. DOI: 10.1103/PhysRevD.82.023511. arXiv:
1004.5525 [astro-ph.CO].

[93] Rouzbeh Allahverdi et al. “MSSM flat direction inflation: Slow roll, stability, fine tunning and re-
heating”. In: JCAP 06 (2007), p. 019. DOI: 10.1088/1475-7516/2007/06/019. arXiv: hep-ph/0610134.

[94] Daniel Baumann, Hayden Lee, and Guilherme L. Pimentel. “High-Scale Inflation and the Tensor
Tilt”. In: JHEP 01 (2016), p. 101. DOI: 10.1007/JHEP01(2016)101. arXiv: 1507.07250 [hep-th].

[95] S. W. Hawking and I. G. Moss. “Fluctuations in the Inflationary Universe”. In: Nucl. Phys. B 224
(1983), p. 180. DOI: 10.1016/0550-3213(83)90319-X.

[96] David H. Lyth and Antonio Riotto. “Particle physics models of inflation and the cosmological den-
sity perturbation”. In: Phys. Rept. 314 (1999), pp. 1–146. DOI: 10.1016/S0370-1573(98)00128-8.
arXiv: hep-ph/9807278.

PAGE 177 OF 200

https://arxiv.org/abs/0902.1529
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1142/9789813149441_0008
https://doi.org/10.1142/9789813149441_0008
https://arxiv.org/abs/1609.00716
https://arxiv.org/abs/astro-ph/9901124
https://doi.org/10.1007/978-3-642-10598-2_1
https://arxiv.org/abs/1001.5259
https://doi.org/10.1103/PhysRevD.56.3258
https://arxiv.org/abs/hep-ph/9704452
https://arxiv.org/abs/hep-ph/9704452
https://doi.org/10.1103/PhysRevLett.73.3195
https://arxiv.org/abs/hep-th/9405187
https://doi.org/10.1103/RevModPhys.78.537
https://arxiv.org/abs/astro-ph/0507632
https://doi.org/10.1103/PhysRevD.51.5438
https://arxiv.org/abs/hep-ph/9407247
https://doi.org/10.1103/PhysRevLett.48.1437
https://doi.org/10.1146/annurev.nucl.012809.104511
https://arxiv.org/abs/1001.2600
https://doi.org/10.1103/PhysRevD.60.063504
https://arxiv.org/abs/hep-ph/9809453
https://arxiv.org/abs/hep-ph/9809453
https://doi.org/10.1142/S0218271815300037
https://arxiv.org/abs/1410.3808
https://arxiv.org/abs/1410.3808
https://doi.org/10.1103/PhysRevD.82.023511
https://arxiv.org/abs/1004.5525
https://doi.org/10.1088/1475-7516/2007/06/019
https://arxiv.org/abs/hep-ph/0610134
https://doi.org/10.1007/JHEP01(2016)101
https://arxiv.org/abs/1507.07250
https://doi.org/10.1016/0550-3213(83)90319-X
https://doi.org/10.1016/S0370-1573(98)00128-8
https://arxiv.org/abs/hep-ph/9807278


W. GIARÈ REFERENCES

[97] Pietro Dona and Antonino Marciano. “Non Bunch Davies group coherent states, and their quantum
signatures in CMB observables”. In: (). arXiv: 1612.00760 [gr-qc].

[98] Amjad Ashoorioon et al. “Non-Bunch–Davis initial state reconciles chaotic models with BICEP and
Planck”. In: Phys. Lett. B 737 (2014), pp. 98–102. DOI: 10.1016/j.physletb.2014.08.038. arXiv:
1403.6099 [hep-th].

[99] Dionysios Anninos et al. “Late-time Structure of the Bunch-Davies De Sitter Wavefunction”. In:
JCAP 11 (2015), p. 048. DOI: 10.1088/1475-7516/2015/11/048. arXiv: 1406.5490 [hep-th].

[100] E. Yusofi and M. Mohsenzadeh. “Scale-dependent power spectrum from initial excited-de Sitter
modes”. In: JHEP 09 (2014), p. 020. DOI: 10.1007/JHEP09(2014)020. arXiv: 1402.6968 [astro-ph.CO].

[101] Rose Baunach et al. “Does Planck actually “see” the Bunch-Davies state?” In: JCAP 07 (2021), p. 050.
DOI: 10.1088/1475-7516/2021/07/050. arXiv: 2104.13410 [hep-th].

[102] Michał Wrochna. “Conformal extension of the Bunch-Davies state across the de Sitter boundary”.
In: J. Math. Phys. 60.2 (2019), p. 022301. DOI: 10.1063/1.5023646.

[103] Clifford Cheung et al. “The Effective Field Theory of Inflation”. In: JHEP 03 (2008), p. 014. DOI:
10.1088/1126-6708/2008/03/014. arXiv: 0709.0293 [hep-th].

[104] Leonardo Senatore and Matias Zaldarriaga. “The Effective Field Theory of Multifield Inflation”. In:
JHEP 04 (2012), p. 024. DOI: 10.1007/JHEP04(2012)024. arXiv: 1009.2093 [hep-th].

[105] Shinji Tsujikawa. “The effective field theory of inflation/dark energy and the Horndeski theory”.
In: Lect. Notes Phys. 892 (2015). Ed. by Eleftherios Papantonopoulos, pp. 97–136. DOI: 10.1007/978-
3-319-10070-8_4. arXiv: 1404.2684 [gr-qc].

[106] Amjad Ashoorioon et al. “Extended Effective Field Theory of Inflation”. In: JHEP 02 (2018), p. 172.
DOI: 10.1007/JHEP02(2018)172. arXiv: 1802.03040 [hep-th].

[107] Antony Lewis and Sarah Bridle. “Cosmological parameters from CMB and other data: A Monte
Carlo approach”. In: Phys. Rev. D 66 (2002), p. 103511. DOI: 10.1103/PhysRevD.66.103511. arXiv:
astro-ph/0205436.

[108] Antony Lewis. “Efficient sampling of fast and slow cosmological parameters”. In: Phys. Rev. D 87.10
(2013), p. 103529. DOI: 10.1103/PhysRevD.87.103529. arXiv: 1304.4473 [astro-ph.CO].

[109] Antony Lewis, Anthony Challinor, and Anthony Lasenby. “Efficient computation of CMB anisotropies
in closed FRW models”. In: Astrophys. J. 538 (2000), pp. 473–476. DOI: 10.1086/309179. arXiv: astro-
ph/9911177.

[110] Cullan Howlett et al. “CMB power spectrum parameter degeneracies in the era of precision cos-
mology”. In: JCAP 04 (2012), p. 027. DOI: 10.1088/1475-7516/2012/04/027. arXiv: 1201.3654
[astro-ph.CO].

[111] Radford M. Neal. “Taking Bigger Metropolis Steps by Dragging Fast Variables”. In: arXiv Mathemat-
ics e-prints, math/0502099 (Feb. 2005), math/0502099. arXiv: math/0502099 [math.ST].

[112] Andrew Gelman and Donald B. Rubin. “Inference from Iterative Simulation Using Multiple Se-
quences”. In: Statist. Sci. 7 (1992), pp. 457–472. DOI: 10.1214/ss/1177011136.

[113] N. Aghanim et al. “Planck 2018 results. V. CMB power spectra and likelihoods”. In: Astron. Astro-
phys. 641 (2020), A5. DOI: 10.1051/0004-6361/201936386. arXiv: 1907.12875 [astro-ph.CO].

[114] N. Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”. In: Astron. Astrophys. 641
(2020), A6. DOI: 10.1051/0004-6361/201833910. arXiv: 1807.06209 [astro-ph.CO].

[115] N. Aghanim et al. “Planck 2018 results. VIII. Gravitational lensing”. In: Astron. Astrophys. 641 (2020),
A8. DOI: 10.1051/0004-6361/201833886. arXiv: 1807.06210 [astro-ph.CO].

[116] Florian Beutler et al. “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble
Constant”. In: Mon. Not. Roy. Astron. Soc. 416 (2011), pp. 3017–3032. DOI: 10.1111/j.1365-2966.
2011.19250.x. arXiv: 1106.3366 [astro-ph.CO].

PAGE 178 OF 200

https://arxiv.org/abs/1612.00760
https://doi.org/10.1016/j.physletb.2014.08.038
https://arxiv.org/abs/1403.6099
https://doi.org/10.1088/1475-7516/2015/11/048
https://arxiv.org/abs/1406.5490
https://doi.org/10.1007/JHEP09(2014)020
https://arxiv.org/abs/1402.6968
https://doi.org/10.1088/1475-7516/2021/07/050
https://arxiv.org/abs/2104.13410
https://doi.org/10.1063/1.5023646
https://doi.org/10.1088/1126-6708/2008/03/014
https://arxiv.org/abs/0709.0293
https://doi.org/10.1007/JHEP04(2012)024
https://arxiv.org/abs/1009.2093
https://doi.org/10.1007/978-3-319-10070-8_4
https://doi.org/10.1007/978-3-319-10070-8_4
https://arxiv.org/abs/1404.2684
https://doi.org/10.1007/JHEP02(2018)172
https://arxiv.org/abs/1802.03040
https://doi.org/10.1103/PhysRevD.66.103511
https://arxiv.org/abs/astro-ph/0205436
https://doi.org/10.1103/PhysRevD.87.103529
https://arxiv.org/abs/1304.4473
https://doi.org/10.1086/309179
https://arxiv.org/abs/astro-ph/9911177
https://arxiv.org/abs/astro-ph/9911177
https://doi.org/10.1088/1475-7516/2012/04/027
https://arxiv.org/abs/1201.3654
https://arxiv.org/abs/1201.3654
https://arxiv.org/abs/math/0502099
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1051/0004-6361/201936386
https://arxiv.org/abs/1907.12875
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.1051/0004-6361/201833886
https://arxiv.org/abs/1807.06210
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://arxiv.org/abs/1106.3366


REFERENCES W. GIARÈ

[117] Ashley J. Ross et al. “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance
measure at z = 0.15”. In: Mon. Not. Roy. Astron. Soc. 449.1 (2015), pp. 835–847. DOI: 10.1093/mnras/
stv154. arXiv: 1409.3242 [astro-ph.CO].

[118] Shadab Alam et al. “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spec-
troscopic Survey: cosmological analysis of the DR12 galaxy sample”. In: Mon. Not. Roy. Astron. Soc.
470.3 (2017), pp. 2617–2652. DOI: 10.1093/mnras/stx721. arXiv: 1607.03155 [astro-ph.CO].

[119] D. M. Scolnic et al. “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from
Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample”. In: Astrophys.
J. 859.2 (2018), p. 101. DOI: 10.3847/1538-4357/aab9bb. arXiv: 1710.00845 [astro-ph.CO].

[120] Florian Beutler et al. “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble
Constant”. In: Mon. Not. Roy. Astron. Soc. 416 (2011), pp. 3017–3032. DOI: 10.1111/j.1365-2966.
2011.19250.x. arXiv: 1106.3366 [astro-ph.CO].

[121] Eleonora Di Valentino et al. “In the Realm of the Hubble tension − a Review of Solutions”. In: (Mar.
2021). DOI: 10.1088/1361-6382/ac086d. arXiv: 2103.01183 [astro-ph.CO].

[122] L. Verde, T. Treu, and A. G. Riess. “Tensions between the Early and the Late Universe”. In: Nature
Astron. 3 (July 2019), p. 891. DOI: 10.1038/s41550-019-0902-0. arXiv: 1907.10625 [astro-ph.CO].

[123] Jose Luis Bernal, Licia Verde, and Adam G. Riess. “The trouble with H0”. In: JCAP 10 (2016), p. 019.
DOI: 10.1088/1475-7516/2016/10/019. arXiv: 1607.05617 [astro-ph.CO].

[124] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph Silk. “Investigating Cosmic Discordance”.
In: Astrophys. J. Lett. 908.1 (2021), p. L9. DOI: 10.3847/2041- 8213/abe1c4. arXiv: 2003.04935
[astro-ph.CO].

[125] Eleonora Di Valentino, Alessandro Melchiorri, and Joseph Silk. “Planck evidence for a closed Uni-
verse and a possible crisis for cosmology”. In: Nature Astron. 4.2 (2019), pp. 196–203. DOI: 10.1038/
s41550-019-0906-9. arXiv: 1911.02087 [astro-ph.CO].

[126] Andrei D. Linde. “A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flat-
ness, Homogeneity, Isotropy and Primordial Monopole Problems”. In: Phys. Lett. B 108 (1982). Ed.
by Li-Zhi Fang and R. Ruffini, pp. 389–393. DOI: 10.1016/0370-2693(82)91219-9.

[127] Jerome Martin, Christophe Ringeval, and Vincent Vennin. “Encyclopædia Inflationaris”. In: Phys.
Dark Univ. 5-6 (2014), pp. 75–235. DOI: 10.1016/j.dark.2014.01.003. arXiv: 1303.3787 [astro-ph.CO].

[128] Alexander Vilenkin. “The Birth of Inflationary Universes”. In: Phys. Rev. D 27 (1983), p. 2848. DOI:
10.1103/PhysRevD.27.2848.

[129] Alexei A. Starobinsky. “A New Type of Isotropic Cosmological Models Without Singularity”. In:
Phys. Lett. B 91 (1980). Ed. by I. M. Khalatnikov and V. P. Mineev, pp. 99–102. DOI: 10.1016/0370-
2693(80)90670-X.

[130] Antonio Riotto. “Inflation and the theory of cosmological perturbations”. In: ICTP Lect. Notes Ser. 14
(2003). Ed. by G. Dvali et al., pp. 317–413. arXiv: hep-ph/0210162.

[131] Chiara Caprini and Daniel G Figueroa. “Cosmological backgrounds of gravitational waves”. In:
CQG 35.16 (July 2018), p. 163001. DOI: 10.1088/1361-6382/aac608. URL: https://doi.org/10.
1088%2F1361-6382%2Faac608.

[132] Giovanni Cabass et al. “Updated Constraints and Forecasts on Primordial Tensor Modes”. In: Phys.
Rev. D 93.6 (2016), p. 063508. DOI: 10.1103/PhysRevD.93.063508. arXiv: 1511.05146 [astro-ph.CO].

[133] Marc Kamionkowski and Ely D. Kovetz. “The Quest for B Modes from Inflationary Gravitational
Waves”. In: Ann. Rev. Astron. Astrophys. 54 (2016), pp. 227–269. DOI: 10.1146/annurev- astro-
081915-023433. arXiv: 1510.06042 [astro-ph.CO].

[134] Daniel Baumann, Daniel Green, and Rafael A. Porto. “B-modes and the Nature of Inflation”. In:
JCAP 01 (2015), p. 016. DOI: 10.1088/1475-7516/2015/01/016. arXiv: 1407.2621 [hep-th].

PAGE 179 OF 200

https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1093/mnras/stv154
https://arxiv.org/abs/1409.3242
https://doi.org/10.1093/mnras/stx721
https://arxiv.org/abs/1607.03155
https://doi.org/10.3847/1538-4357/aab9bb
https://arxiv.org/abs/1710.00845
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://arxiv.org/abs/1106.3366
https://doi.org/10.1088/1361-6382/ac086d
https://arxiv.org/abs/2103.01183
https://doi.org/10.1038/s41550-019-0902-0
https://arxiv.org/abs/1907.10625
https://doi.org/10.1088/1475-7516/2016/10/019
https://arxiv.org/abs/1607.05617
https://doi.org/10.3847/2041-8213/abe1c4
https://arxiv.org/abs/2003.04935
https://arxiv.org/abs/2003.04935
https://doi.org/10.1038/s41550-019-0906-9
https://doi.org/10.1038/s41550-019-0906-9
https://arxiv.org/abs/1911.02087
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/j.dark.2014.01.003
https://arxiv.org/abs/1303.3787
https://doi.org/10.1103/PhysRevD.27.2848
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://arxiv.org/abs/hep-ph/0210162
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088%2F1361-6382%2Faac608
https://doi.org/10.1088%2F1361-6382%2Faac608
https://doi.org/10.1103/PhysRevD.93.063508
https://arxiv.org/abs/1511.05146
https://doi.org/10.1146/annurev-astro-081915-023433
https://doi.org/10.1146/annurev-astro-081915-023433
https://arxiv.org/abs/1510.06042
https://doi.org/10.1088/1475-7516/2015/01/016
https://arxiv.org/abs/1407.2621


W. GIARÈ REFERENCES

[135] Robert R. Caldwell, Tristan L. Smith, and Devin G. E. Walker. “Using a Primordial Gravitational
Wave Background to Illuminate New Physics”. In: Phys. Rev. D 100.4 (2019), p. 043513. DOI: 10.
1103/PhysRevD.100.043513. arXiv: 1812.07577 [astro-ph.CO].

[136] G. Franciolini et al. “Implications of the detection of primordial gravitational waves for the Standard
Model”. In: JCAP 05 (2019), p. 022. DOI: 10.1088/1475-7516/2019/05/022. arXiv: 1811.08118
[hep-ph].

[137] Varun Sahni. “The Energy Density of Relic Gravity Waves From Inflation”. In: Phys. Rev. D 42 (1990),
pp. 453–463. DOI: 10.1103/PhysRevD.42.453.

[138] Mehrdad Mirbabayi et al. “Gravitational Waves and the Scale of Inflation”. In: Phys. Rev. D 91 (2015),
p. 063518. DOI: 10.1103/PhysRevD.91.063518. arXiv: 1412.0665 [hep-th].

[139] Ogan Özsoy, Kuver Sinha, and Scott Watson. “How Well Can We Really Determine the Scale of
Inflation?” In: Phys. Rev. D 91.10 (2015), p. 103509. DOI: 10.1103/PhysRevD.91.103509. arXiv:
1410.0016 [hep-th].

[140] William H. Kinney. “Inflation: Flow, fixed points and observables to arbitrary order in slow roll”.
In: Phys. Rev. D 66 (2002), p. 083508. DOI: 10.1103/PhysRevD.66.083508. arXiv: astro-ph/0206032.

[141] Richard Easther et al. “Imprints of short distance physics on inflationary cosmology”. In: Phys. Rev.
D 67 (2003), p. 063508. DOI: 10.1103/PhysRevD.67.063508. arXiv: hep-th/0110226.

[142] E. Komatsu et al. “Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the
Astrophysics of the Low Redshift Universe”. In: (Feb. 2009). arXiv: 0902.4759 [astro-ph.CO].

[143] Thomas J. Clarke, Edmund J. Copeland, and Adam Moss. “Constraints on primordial gravitational
waves from the Cosmic Microwave Background”. In: JCAP 10 (2020), p. 002. DOI: 10.1088/1475-
7516/2020/10/002. arXiv: 2004.11396 [astro-ph.CO].

[144] Alan H. Guth and So-Young Pi. “The Quantum Mechanics of the Scalar Field in the New Inflationary
Universe”. In: Phys. Rev. D 32 (1985), pp. 1899–1920. DOI: 10.1103/PhysRevD.32.1899.

[145] Alexei A. Starobinsky. “Spectrum of adiabatic perturbations in the universe when there are singu-
larities in the inflation potential”. In: JETP Lett. 55 (1992), pp. 489–494.

[146] Alexei A. Starobinsky. “Spectrum of relict gravitational radiation and the early state of the uni-
verse”. In: JETP Lett. 30 (1979). Ed. by I. M. Khalatnikov and V. P. Mineev, pp. 682–685.

[147] A. A. Starobinsky. “The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitter
Cosmology and the Microwave Background Anisotropy”. In: Sov. Astron. Lett. 9 (1983), p. 302.

[148] Viatcheslav F. Mukhanov and G. V. Chibisov. “Quantum Fluctuations and a Nonsingular Universe”.
In: JETP Lett. 33 (1981), pp. 532–535.

[149] Viatcheslav F. Mukhanov, H. A. Feldman, and Robert H. Brandenberger. “Theory of cosmologi-
cal perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3.
Extensions”. In: Phys. Rept. 215 (1992), pp. 203–333. DOI: 10.1016/0370-1573(92)90044-Z.

[150] Viatcheslav Mukhanov. “Quantum Cosmological Perturbations: Predictions and Observations”. In:
Eur. Phys. J. C 73 (2013), p. 2486. DOI: 10.1140/epjc/s10052- 013- 2486- 7. arXiv: 1303.3925
[astro-ph.CO].

[151] Viatcheslav F. Mukhanov and G. V. Chibisov. “The Vacuum energy and large scale structure of the
universe”. In: Sov. Phys. JETP 56 (1982), pp. 258–265.

[152] James M. Bardeen. “Gauge Invariant Cosmological Perturbations”. In: Phys. Rev. D 22 (1980), pp. 1882–
1905. DOI: 10.1103/PhysRevD.22.1882.

[153] James M. Bardeen, Paul J. Steinhardt, and Michael S. Turner. “Spontaneous Creation of Almost
Scale - Free Density Perturbations in an Inflationary Universe”. In: Phys. Rev. D 28 (1983), p. 679.
DOI: 10.1103/PhysRevD.28.679.

PAGE 180 OF 200

https://doi.org/10.1103/PhysRevD.100.043513
https://doi.org/10.1103/PhysRevD.100.043513
https://arxiv.org/abs/1812.07577
https://doi.org/10.1088/1475-7516/2019/05/022
https://arxiv.org/abs/1811.08118
https://arxiv.org/abs/1811.08118
https://doi.org/10.1103/PhysRevD.42.453
https://doi.org/10.1103/PhysRevD.91.063518
https://arxiv.org/abs/1412.0665
https://doi.org/10.1103/PhysRevD.91.103509
https://arxiv.org/abs/1410.0016
https://doi.org/10.1103/PhysRevD.66.083508
https://arxiv.org/abs/astro-ph/0206032
https://doi.org/10.1103/PhysRevD.67.063508
https://arxiv.org/abs/hep-th/0110226
https://arxiv.org/abs/0902.4759
https://doi.org/10.1088/1475-7516/2020/10/002
https://doi.org/10.1088/1475-7516/2020/10/002
https://arxiv.org/abs/2004.11396
https://doi.org/10.1103/PhysRevD.32.1899
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1140/epjc/s10052-013-2486-7
https://arxiv.org/abs/1303.3925
https://arxiv.org/abs/1303.3925
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1103/PhysRevD.28.679


REFERENCES W. GIARÈ

[154] Fred C. Adams et al. “Natural inflation: Particle physics models, power law spectra for large scale
structure, and constraints from COBE”. In: Phys. Rev. D 47 (1993), pp. 426–455. DOI: 10 . 1103 /
PhysRevD.47.426. arXiv: hep-ph/9207245.

[155] N. Bartolo, S. Matarrese, and A. Riotto. “Adiabatic and isocurvature perturbations from inflation:
Power spectra and consistency relations”. In: Phys. Rev. D 64 (2001), p. 123504. DOI: 10 . 1103 /
PhysRevD.64.123504. arXiv: astro-ph/0107502.

[156] Jeongyeol Choe, Jinn-Ouk Gong, and Ewan D. Stewart. “Second order general slow-roll power spec-
trum”. In: JCAP 07 (2004), p. 012. DOI: 10.1088/1475-7516/2004/07/012. arXiv: hep-ph/0405155.

[157] Mark G. Jackson and Gary Shiu. “Study of the consistency relation for single-field inflation with
power spectrum oscillations”. In: Phys. Rev. D 88.12 (2013), p. 123511. DOI: 10.1103/PhysRevD.88.
123511. arXiv: 1303.4973 [hep-th].

[158] Jerome Martin and Dominik J. Schwarz. “WKB approximation for inflationary cosmological pertur-
bations”. In: Phys. Rev. D 67 (2003), p. 083512. DOI: 10.1103/PhysRevD.67.083512. arXiv: astro-
ph/0210090.

[159] Jennifer A. Adams, Bevan Cresswell, and Richard Easther. “Inflationary perturbations from a po-
tential with a step”. In: Phys. Rev. D 64 (2001), p. 123514. DOI: 10.1103/PhysRevD.64.123514. arXiv:
astro-ph/0102236.

[160] Sachiko Kuroyanagi and Tomo Takahashi. “Higher Order Corrections to the Primordial Gravita-
tional Wave Spectrum and its Impact on Parameter Estimates for Inflation”. In: JCAP 10 (2011),
p. 006. DOI: 10.1088/1475-7516/2011/10/006. arXiv: 1106.3437 [astro-ph.CO].

[161] Moslem Zarei. “On the running of the spectral index to all orders: a new model dependent approach
to constrain inflationary models”. In: Class. Quant. Grav. 33.11 (2016), p. 115008. DOI: 10.1088/0264-
9381/33/11/115008. arXiv: 1408.6467 [astro-ph.CO].

[162] P. A. R. Ade et al. “BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using
Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season”. In: Phys. Rev. Lett.
121 (2018), p. 221301. DOI: 10.1103/PhysRevLett.121.221301. arXiv: 1810.05216 [astro-ph.CO].

[163] Shinji Mukohyama et al. “Blue Tensor Spectrum from Particle Production during Inflation”. In:
JCAP 08 (2014), p. 036. DOI: 10.1088/1475-7516/2014/08/036. arXiv: 1405.0346 [astro-ph.CO].

[164] Ryo Namba et al. “Scale-dependent gravitational waves from a rolling axion”. In: JCAP 01 (2016),
p. 041. DOI: 10.1088/1475-7516/2016/01/041. arXiv: 1509.07521 [astro-ph.CO].

[165] Marco Peloso, Lorenzo Sorbo, and Caner Unal. “Rolling axions during inflation: perturbativity and
signatures”. In: JCAP 09 (2016), p. 001. DOI: 10.1088/1475-7516/2016/09/001. arXiv: 1606.00459
[astro-ph.CO].

[166] Ogan Özsoy. “Synthetic Gravitational Waves from a Rolling Axion Monodromy”. In: JCAP 04 (2021),
p. 040. DOI: 10.1088/1475-7516/2021/04/040. arXiv: 2005.10280 [astro-ph.CO].

[167] Massimo Giovannini. “The refractive index of relic gravitons”. In: Class. Quant. Grav. 33.12 (2016),
p. 125002. DOI: 10.1088/0264-9381/33/12/125002. arXiv: 1507.03456 [astro-ph.CO].

[168] Massimo Giovannini. “Post-inflationary thermal histories and the refractive index of relic gravi-
tons”. In: Phys. Rev. D 98.10 (2018), p. 103509. DOI: 10.1103/PhysRevD.98.103509. arXiv: 1806.01937
[gr-qc].

[169] Massimo Giovannini. “Blue and violet graviton spectra from a dynamical refractive index”. In:
Phys. Lett. B 789 (2019), pp. 502–507. DOI: 10.1016/j.physletb.2018.12.068. arXiv: 1805.08142
[astro-ph.CO].

[170] Massimo Giovannini. “The propagating speed of relic gravitational waves and their refractive index
during inflation”. In: Eur. Phys. J. C 78.6 (2018), p. 442. DOI: 10.1140/epjc/s10052-018-5931-9.
arXiv: 1803.05203 [gr-qc].

PAGE 181 OF 200

https://doi.org/10.1103/PhysRevD.47.426
https://doi.org/10.1103/PhysRevD.47.426
https://arxiv.org/abs/hep-ph/9207245
https://doi.org/10.1103/PhysRevD.64.123504
https://doi.org/10.1103/PhysRevD.64.123504
https://arxiv.org/abs/astro-ph/0107502
https://doi.org/10.1088/1475-7516/2004/07/012
https://arxiv.org/abs/hep-ph/0405155
https://doi.org/10.1103/PhysRevD.88.123511
https://doi.org/10.1103/PhysRevD.88.123511
https://arxiv.org/abs/1303.4973
https://doi.org/10.1103/PhysRevD.67.083512
https://arxiv.org/abs/astro-ph/0210090
https://arxiv.org/abs/astro-ph/0210090
https://doi.org/10.1103/PhysRevD.64.123514
https://arxiv.org/abs/astro-ph/0102236
https://doi.org/10.1088/1475-7516/2011/10/006
https://arxiv.org/abs/1106.3437
https://doi.org/10.1088/0264-9381/33/11/115008
https://doi.org/10.1088/0264-9381/33/11/115008
https://arxiv.org/abs/1408.6467
https://doi.org/10.1103/PhysRevLett.121.221301
https://arxiv.org/abs/1810.05216
https://doi.org/10.1088/1475-7516/2014/08/036
https://arxiv.org/abs/1405.0346
https://doi.org/10.1088/1475-7516/2016/01/041
https://arxiv.org/abs/1509.07521
https://doi.org/10.1088/1475-7516/2016/09/001
https://arxiv.org/abs/1606.00459
https://arxiv.org/abs/1606.00459
https://doi.org/10.1088/1475-7516/2021/04/040
https://arxiv.org/abs/2005.10280
https://doi.org/10.1088/0264-9381/33/12/125002
https://arxiv.org/abs/1507.03456
https://doi.org/10.1103/PhysRevD.98.103509
https://arxiv.org/abs/1806.01937
https://arxiv.org/abs/1806.01937
https://doi.org/10.1016/j.physletb.2018.12.068
https://arxiv.org/abs/1805.08142
https://arxiv.org/abs/1805.08142
https://doi.org/10.1140/epjc/s10052-018-5931-9
https://arxiv.org/abs/1803.05203


W. GIARÈ REFERENCES

[171] Michele Cicoli and Eleonora Di Valentino. “Fitting string inflation to real cosmological data: The
fiber inflation case”. In: Phys. Rev. D 102.4 (2020), p. 043521. DOI: 10.1103/PhysRevD.102.043521.
arXiv: 2004.01210 [astro-ph.CO].

[172] G. Hinshaw et al. “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cos-
mological Parameter Results”. In: Astrophys. J. Suppl. 208 (2013), p. 19. DOI: 10.1088/0067-0049/
208/2/19. arXiv: 1212.5226 [astro-ph.CO].

[173] Simone Aiola et al. “The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parame-
ters”. In: JCAP 12 (2020), p. 047. DOI: 10 . 1088 / 1475 - 7516 / 2020 / 12 / 047. arXiv: 2007 . 07288
[astro-ph.CO].

[174] D. Dutcher et al. “Measurements of the E-Mode Polarization and Temperature-E-Mode Correlation
of the CMB from SPT-3G 2018 Data”. In: (Jan. 2021). arXiv: 2101.01684 [astro-ph.CO].

[175] Will Handley and Pablo Lemos. “Quantifying the global parameter tensions between ACT, SPT
and Planck”. In: Phys. Rev. D 103.6 (2021), p. 063529. DOI: 10.1103/PhysRevD.103.063529. arXiv:
2007.08496 [astro-ph.CO].

[176] Julian B. Munoz and Marc Kamionkowski. “Equation-of-State Parameter for Reheating”. In: Phys.
Rev. D 91.4 (2015), p. 043521. DOI: 10.1103/PhysRevD.91.043521. arXiv: 1412.0656 [astro-ph.CO].

[177] Katherine Freese, Joshua A. Frieman, and Angela V. Olinto. “Natural inflation with pseudo - Nambu-
Goldstone bosons”. In: Phys. Rev. Lett. 65 (1990), pp. 3233–3236. DOI: 10.1103/PhysRevLett.65.
3233.

[178] G. Hinshaw et al. “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cos-
mological Parameter Results”. In: ApJS 208.2 (2013), p. 19. DOI: 10.1088/0067-0049/208/2/19.
arXiv: 1212.5226 [astro-ph.CO].

[179] Eva Silverstein and Alexander Westphal. “Monodromy in the CMB: Gravity Waves and String In-
flation”. In: Phys. Rev. D 78 (2008), p. 106003. DOI: 10.1103/PhysRevD.78.106003. arXiv: 0803.3085
[hep-th].

[180] Liam McAllister, Eva Silverstein, and Alexander Westphal. “Gravity Waves and Linear Inflation
from Axion Monodromy”. In: Phys. Rev. D 82 (2010), p. 046003. DOI: 10.1103/PhysRevD.82.046003.
arXiv: 0808.0706 [hep-th].

[181] S. Dimopoulos et al. “N-flation”. In: JCAP 08 (2008), p. 003. DOI: 10.1088/1475-7516/2008/08/003.
arXiv: hep-th/0507205.

[182] F. Lucchin and S. Matarrese. “Power Law Inflation”. In: Phys. Rev. D 32 (1985), p. 1316. DOI: 10.
1103/PhysRevD.32.1316.

[183] Mehdi Shokri, Fabrizio Renzi, and Alessandro Melchiorri. “Cosmic Microwave Background con-
straints on non-minimal couplings in inflationary models with power law potentials”. In: Phys. Dark
Univ. 24 (2019), p. 100297. DOI: 10.1016/j.dark.2019.100297. arXiv: 1905.00649 [astro-ph.CO].

[184] Chao-Qiang Geng et al. “Observational constraints on successful model of quintessential Inflation”.
In: JCAP 06 (2017), p. 011. DOI: 10.1088/1475-7516/2017/06/011. arXiv: 1705.01329 [gr-qc].

[185] P. J. E. Peebles and A. Vilenkin. “Quintessential inflation”. In: Phys. Rev. D 59 (1999), p. 063505. DOI:
10.1103/PhysRevD.59.063505. arXiv: astro-ph/9810509.

[186] Fedor L. Bezrukov and Mikhail Shaposhnikov. “The Standard Model Higgs boson as the inflaton”.
In: Phys. Lett. B 659 (2008), pp. 703–706. DOI: 10.1016/j.physletb.2007.11.072. arXiv: 0710.3755
[hep-th].

[187] Renata Kallosh, Andrei Linde, and Diederik Roest. “Universal Attractor for Inflation at Strong Cou-
pling”. In: Phys. Rev. Lett. 112.1 (2014), p. 011303. DOI: 10.1103/PhysRevLett.112.011303. arXiv:
1310.3950 [hep-th].

PAGE 182 OF 200

https://doi.org/10.1103/PhysRevD.102.043521
https://arxiv.org/abs/2004.01210
https://doi.org/10.1088/0067-0049/208/2/19
https://doi.org/10.1088/0067-0049/208/2/19
https://arxiv.org/abs/1212.5226
https://doi.org/10.1088/1475-7516/2020/12/047
https://arxiv.org/abs/2007.07288
https://arxiv.org/abs/2007.07288
https://arxiv.org/abs/2101.01684
https://doi.org/10.1103/PhysRevD.103.063529
https://arxiv.org/abs/2007.08496
https://doi.org/10.1103/PhysRevD.91.043521
https://arxiv.org/abs/1412.0656
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1088/0067-0049/208/2/19
https://arxiv.org/abs/1212.5226
https://doi.org/10.1103/PhysRevD.78.106003
https://arxiv.org/abs/0803.3085
https://arxiv.org/abs/0803.3085
https://doi.org/10.1103/PhysRevD.82.046003
https://arxiv.org/abs/0808.0706
https://doi.org/10.1088/1475-7516/2008/08/003
https://arxiv.org/abs/hep-th/0507205
https://doi.org/10.1103/PhysRevD.32.1316
https://doi.org/10.1103/PhysRevD.32.1316
https://doi.org/10.1016/j.dark.2019.100297
https://arxiv.org/abs/1905.00649
https://doi.org/10.1088/1475-7516/2017/06/011
https://arxiv.org/abs/1705.01329
https://doi.org/10.1103/PhysRevD.59.063505
https://arxiv.org/abs/astro-ph/9810509
https://doi.org/10.1016/j.physletb.2007.11.072
https://arxiv.org/abs/0710.3755
https://arxiv.org/abs/0710.3755
https://doi.org/10.1103/PhysRevLett.112.011303
https://arxiv.org/abs/1310.3950


REFERENCES W. GIARÈ

[188] Renata Kallosh and Andrei Linde. “Superconformal generalizations of the Starobinsky model”. In:
JCAP 06 (2013), p. 028. DOI: 10.1088/1475-7516/2013/06/028. arXiv: 1306.3214 [hep-th].

[189] Alex Kehagias, Azadeh Moradinezhad Dizgah, and Antonio Riotto. “Remarks on the Starobinsky
model of inflation and its descendants”. In: Phys. Rev. D 89.4 (2014), p. 043527. DOI: 10 . 1103 /
PhysRevD.89.043527. arXiv: 1312.1155 [hep-th].

[190] Hayato Motohashi. “Consistency relation for Rp inflation”. In: Phys. Rev. D 91 (2015), p. 064016. DOI:
10.1103/PhysRevD.91.064016. arXiv: 1411.2972 [astro-ph.CO].

[191] Nan Zhang et al. “Constraints on the generalized natural inflation after Planck 2018”. In: Chin. Phys.
C 44.9 (2020), p. 095107. DOI: 10.1088/1674-1137/44/9/095107. arXiv: 1807.03596 [astro-ph.CO].

[192] Fabrizio Renzi, Mehdi Shokri, and Alessandro Melchiorri. “What is the amplitude of the gravi-
tational waves background expected in the Starobinski model?” In: Phys. Dark Univ. 27 (2020),
p. 100450. DOI: 10.1016/j.dark.2019.100450. arXiv: 1909.08014 [astro-ph.CO].

[193] Matthew Civiletti and Brandon Delacruz. “Natural inflation with natural number of e-foldings”.
In: Phys. Rev. D 101.4 (2020), p. 043534. DOI: 10.1103/PhysRevD.101.043534. arXiv: 2004.05238
[astro-ph.CO].

[194] Stefano Meza et al. “Numerical analysis of the generalized Starobinsky inflationary model”. In:
(Apr. 2021). arXiv: 2104.01139 [gr-qc].

[195] J. A. Grayson et al. “BICEP3 performance overview and planned Keck Array upgrade”. In: Proc.
SPIE Int. Soc. Opt. Eng. 9914 (2016), 99140S. DOI: 10.1117/12.2233894. arXiv: 1607.04668 [astro-ph.IM].

[196] Thomas Essinger-Hileman et al. “CLASS: The Cosmology Large Angular Scale Surveyor”. In: Proc.
SPIE Int. Soc. Opt. Eng. 9153 (2014), p. 91531I. DOI: 10 . 1117 / 12 . 2056701. arXiv: 1408 . 4788
[astro-ph.IM].

[197] B. A. Benson et al. “SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Ex-
periment on the South Pole Telescope”. In: Proc. SPIE Int. Soc. Opt. Eng. 9153 (2014), 91531P. DOI:
10.1117/12.2057305. arXiv: 1407.2973 [astro-ph.IM].

[198] S. W. Henderson et al. “Advanced ACTPol Cryogenic Detector Arrays and Readout”. In: J. Low.
Temp. Phys. 184.3-4 (2016), pp. 772–779. DOI: 10.1007/s10909- 016- 1575- z. arXiv: 1510.02809
[astro-ph.IM].

[199] A. Suzuki et al. “The LiteBIRD Satellite Mission: Sub-Kelvin Instrument”. In: Journal of Low Temper-
ature Physics 193.5 (Dec. 2018), pp. 1048–1056.

[200] Kevork N. Abazajian et al. “CMB-S4 Science Book, First Edition”. In: (2016). arXiv: 1610.02743
[astro-ph.CO].

[201] Giulia Capurri et al. “Let Effective Field Theory of Inflation flow: stochastic generation of models
with red/blue tensor tilt”. In: JCAP 11 (2020), p. 037. DOI: 10.1088/1475-7516/2020/11/037. arXiv:
2006.10781 [astro-ph.CO].

[202] Nicola Bartolo et al. “Characterizing the cosmological gravitational wave background: Anisotropies
and non-Gaussianity”. In: Phys. Rev. D 102.2 (2020), p. 023527. DOI: 10.1103/PhysRevD.102.023527.
arXiv: 1912.09433 [astro-ph.CO].

[203] M. C. Guzzetti et al. “Gravitational waves from inflation”. In: Riv. Nuovo Cim. 39.9 (2016), pp. 399–
495. DOI: 10.1393/ncr/i2016-10127-1. arXiv: 1605.01615 [astro-ph.CO].

[204] Zaven Arzoumanian et al. “The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic
Gravitational-wave Background”. In: Astrophys. J. Lett. 905.2 (2020), p. L34. DOI: 10.3847/2041-
8213/abd401. arXiv: 2009.04496 [astro-ph.HE].

[205] Sunny Vagnozzi. “Implications of the NANOGrav results for inflation”. In: Mon. Not. Roy. Astron.
Soc. 502.1 (2021), pp. L11–L15. DOI: 10.1093/mnrasl/slaa203. arXiv: 2009.13432 [astro-ph.CO].

PAGE 183 OF 200

https://doi.org/10.1088/1475-7516/2013/06/028
https://arxiv.org/abs/1306.3214
https://doi.org/10.1103/PhysRevD.89.043527
https://doi.org/10.1103/PhysRevD.89.043527
https://arxiv.org/abs/1312.1155
https://doi.org/10.1103/PhysRevD.91.064016
https://arxiv.org/abs/1411.2972
https://doi.org/10.1088/1674-1137/44/9/095107
https://arxiv.org/abs/1807.03596
https://doi.org/10.1016/j.dark.2019.100450
https://arxiv.org/abs/1909.08014
https://doi.org/10.1103/PhysRevD.101.043534
https://arxiv.org/abs/2004.05238
https://arxiv.org/abs/2004.05238
https://arxiv.org/abs/2104.01139
https://doi.org/10.1117/12.2233894
https://arxiv.org/abs/1607.04668
https://doi.org/10.1117/12.2056701
https://arxiv.org/abs/1408.4788
https://arxiv.org/abs/1408.4788
https://doi.org/10.1117/12.2057305
https://arxiv.org/abs/1407.2973
https://doi.org/10.1007/s10909-016-1575-z
https://arxiv.org/abs/1510.02809
https://arxiv.org/abs/1510.02809
https://arxiv.org/abs/1610.02743
https://arxiv.org/abs/1610.02743
https://doi.org/10.1088/1475-7516/2020/11/037
https://arxiv.org/abs/2006.10781
https://doi.org/10.1103/PhysRevD.102.023527
https://arxiv.org/abs/1912.09433
https://doi.org/10.1393/ncr/i2016-10127-1
https://arxiv.org/abs/1605.01615
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.3847/2041-8213/abd401
https://arxiv.org/abs/2009.04496
https://doi.org/10.1093/mnrasl/slaa203
https://arxiv.org/abs/2009.13432


W. GIARÈ REFERENCES

[206] Micol Benetti, Leila Lobato Graef, and Sunny Vagnozzi. “Primordial gravitational waves from NANOGrav:
a broken power-law approach”. In: (Nov. 2021). arXiv: 2111.04758 [astro-ph.CO].

[207] Sukannya Bhattacharya, Subhendra Mohanty, and Priyank Parashari. “Implications of the NANOGrav
result on primordial gravitational waves in nonstandard cosmologies”. In: Phys. Rev. D 103.6 (2021),
p. 063532. DOI: 10.1103/PhysRevD.103.063532. arXiv: 2010.05071 [astro-ph.CO].

[208] Sachiko Kuroyanagi, Tomo Takahashi, and Shuichiro Yokoyama. “Blue-tilted inflationary tensor
spectrum and reheating in the light of NANOGrav results”. In: JCAP 01 (2021), p. 071. DOI: 10.
1088/1475-7516/2021/01/071. arXiv: 2011.03323 [astro-ph.CO].

[209] Benjamin P. Abbott et al. “Upper Limits on the Stochastic Gravitational-Wave Background from
Advanced LIGO’s First Observing Run”. In: Phys. Rev. Lett. 118.12 (2017). [Erratum: Phys.Rev.Lett.
119, 029901 (2017)], p. 121101. DOI: 10.1103/PhysRevLett.118.121101. arXiv: 1612.02029 [gr-qc].

[210] Nicola Bartolo et al. “Science with the space-based interferometer LISA. IV: Probing inflation with
gravitational waves”. In: JCAP 12 (2016), p. 026. DOI: 10.1088/1475-7516/2016/12/026. arXiv:
1610.06481 [astro-ph.CO].

[211] Andrew Stewart and Robert Brandenberger. “Observational Constraints on Theories with a Blue
Spectrum of Tensor Modes”. In: JCAP 08 (2008), p. 012. DOI: 10.1088/1475-7516/2008/08/012.
arXiv: 0711.4602 [astro-ph].

[212] Leila L. Graef, Micol Benetti, and Jailson S. Alcaniz. “Primordial gravitational waves and the H0-
tension problem”. In: Phys. Rev. D 99.4 (2019), p. 043519. DOI: 10.1103/PhysRevD.99.043519. arXiv:
1809.04501 [astro-ph.CO].

[213] William H. Kinney. “Gravitational Wave Direct Detection does not Constrain the Tensor Spectral
Index at CMB Scales”. In: (Feb. 2021). DOI: 10 . 21105 / astro . 2103 . 00281. arXiv: 2103 . 00281
[astro-ph.CO].

[214] B. P. Abbott et al. “Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger:
GW170817 and GRB 170817A”. In: Astrophys. J. Lett. 848.2 (2017), p. L13. DOI: 10 . 3847 / 2041 -
8213/aa920c. arXiv: 1710.05834 [astro-ph.HE].

[215] Neil Cornish, Diego Blas, and Germano Nardini. “Bounding the speed of gravity with gravitational
wave observations”. In: Phys. Rev. Lett. 119.16 (2017), p. 161102. DOI: 10.1103/PhysRevLett.119.
161102. arXiv: 1707.06101 [gr-qc].

[216] Xiaoshu Liu et al. “Measuring the speed of gravitational waves from the first and second observing
run of Advanced LIGO and Advanced Virgo”. In: Phys. Rev. D 102.2 (2020), p. 024028. DOI: 10.1103/
PhysRevD.102.024028. arXiv: 2005.03121 [gr-qc].

[217] Alexander Bonilla et al. “Forecasts on the speed of gravitational waves at high z”. In: JCAP 03 (2020),
p. 015. DOI: 10.1088/1475-7516/2020/03/015. arXiv: 1910.05631 [gr-qc].

[218] B. P. Abbott et al. “Multi-messenger Observations of a Binary Neutron Star Merger”. In: Astrophys.
J. Lett. 848.2 (2017), p. L12. DOI: 10.3847/2041-8213/aa91c9. arXiv: 1710.05833 [astro-ph.HE].

[219] Gregory Walter Horndeski. “Second-order scalar-tensor field equations in a four-dimensional space”.
In: Int. J. Theor. Phys. 10 (1974), pp. 363–384. DOI: 10.1007/BF01807638.

[220] Tsutomu Kobayashi. “Horndeski theory and beyond: a review”. In: Rept. Prog. Phys. 82.8 (2019),
p. 086901. DOI: 10.1088/1361-6633/ab2429. arXiv: 1901.07183 [gr-qc].

[221] C. Deffayet et al. “From k-essence to generalised Galileons”. In: Phys. Rev. D 84 (2011), p. 064039.
DOI: 10.1103/PhysRevD.84.064039. arXiv: 1103.3260 [hep-th].

[222] Tsutomu Kobayashi, Masahide Yamaguchi, and Jun’ichi Yokoyama. “Generalized G-inflation: Infla-
tion with the most general second-order field equations”. In: Prog. Theor. Phys. 126 (2011), pp. 511–
529. DOI: 10.1143/PTP.126.511. arXiv: 1105.5723 [hep-th].

PAGE 184 OF 200

https://arxiv.org/abs/2111.04758
https://doi.org/10.1103/PhysRevD.103.063532
https://arxiv.org/abs/2010.05071
https://doi.org/10.1088/1475-7516/2021/01/071
https://doi.org/10.1088/1475-7516/2021/01/071
https://arxiv.org/abs/2011.03323
https://doi.org/10.1103/PhysRevLett.118.121101
https://arxiv.org/abs/1612.02029
https://doi.org/10.1088/1475-7516/2016/12/026
https://arxiv.org/abs/1610.06481
https://doi.org/10.1088/1475-7516/2008/08/012
https://arxiv.org/abs/0711.4602
https://doi.org/10.1103/PhysRevD.99.043519
https://arxiv.org/abs/1809.04501
https://doi.org/10.21105/astro.2103.00281
https://arxiv.org/abs/2103.00281
https://arxiv.org/abs/2103.00281
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://arxiv.org/abs/1710.05834
https://doi.org/10.1103/PhysRevLett.119.161102
https://doi.org/10.1103/PhysRevLett.119.161102
https://arxiv.org/abs/1707.06101
https://doi.org/10.1103/PhysRevD.102.024028
https://doi.org/10.1103/PhysRevD.102.024028
https://arxiv.org/abs/2005.03121
https://doi.org/10.1088/1475-7516/2020/03/015
https://arxiv.org/abs/1910.05631
https://doi.org/10.3847/2041-8213/aa91c9
https://arxiv.org/abs/1710.05833
https://doi.org/10.1007/BF01807638
https://doi.org/10.1088/1361-6633/ab2429
https://arxiv.org/abs/1901.07183
https://doi.org/10.1103/PhysRevD.84.064039
https://arxiv.org/abs/1103.3260
https://doi.org/10.1143/PTP.126.511
https://arxiv.org/abs/1105.5723


REFERENCES W. GIARÈ

[223] Xian Gao. “Unifying framework for scalar-tensor theories of gravity”. In: Phys. Rev. D 90 (2014),
p. 081501. DOI: 10.1103/PhysRevD.90.081501. arXiv: 1406.0822 [gr-qc].

[224] Xian Gao. “Hamiltonian analysis of spatially covariant gravity”. In: Phys. Rev. D 90 (2014), p. 104033.
DOI: 10.1103/PhysRevD.90.104033. arXiv: 1409.6708 [gr-qc].

[225] Jérôme Gleyzes et al. “Exploring gravitational theories beyond Horndeski”. In: JCAP 02 (2015),
p. 018. DOI: 10.1088/1475-7516/2015/02/018. arXiv: 1408.1952 [astro-ph.CO].

[226] Frederico Arroja et al. “Large-scale structure in mimetic Horndeski gravity”. In: JCAP 05 (2018),
p. 050. DOI: 10.1088/1475-7516/2018/05/050. arXiv: 1708.01850 [astro-ph.CO].

[227] Frederico Arroja et al. “Cosmological perturbations in mimetic Horndeski gravity”. In: JCAP 04
(2016), p. 042. DOI: 10.1088/1475-7516/2016/04/042. arXiv: 1512.09374 [gr-qc].

[228] Frederico Arroja et al. “The two faces of mimetic Horndeski gravity: disformal transformations and
Lagrange multiplier”. In: JCAP 09 (2015), p. 051. DOI: 10.1088/1475-7516/2015/09/051. arXiv:
1506.08575 [gr-qc].

[229] Jérôme Gleyzes et al. “Healthy theories beyond Horndeski”. In: Phys. Rev. Lett. 114.21 (2015), p. 211101.
DOI: 10.1103/PhysRevLett.114.211101. arXiv: 1404.6495 [hep-th].

[230] Kazuya Koyama. “Cosmological Tests of Modified Gravity”. In: Rept. Prog. Phys. 79.4 (2016), p. 046902.
DOI: 10.1088/0034-4885/79/4/046902. arXiv: 1504.04623 [astro-ph.CO].

[231] David Langlois and Karim Noui. “Degenerate higher derivative theories beyond Horndeski: evad-
ing the Ostrogradski instability”. In: JCAP 02 (2016), p. 034. DOI: 10.1088/1475-7516/2016/02/034.
arXiv: 1510.06930 [gr-qc].

[232] Jibril Ben Achour et al. “Degenerate higher order scalar-tensor theories beyond Horndeski up to cu-
bic order”. In: JHEP 12 (2016), p. 100. DOI: 10.1007/JHEP12(2016)100. arXiv: 1608.08135 [hep-th].

[233] Marco Crisostomi, Kazuya Koyama, and Gianmassimo Tasinato. “Extended Scalar-Tensor Theories
of Gravity”. In: JCAP 04 (2016), p. 044. DOI: 10.1088/1475-7516/2016/04/044. arXiv: 1602.03119
[hep-th].

[234] Jibril Ben Achour, David Langlois, and Karim Noui. “Degenerate higher order scalar-tensor theories
beyond Horndeski and disformal transformations”. In: Phys. Rev. D 93.12 (2016), p. 124005. DOI:
10.1103/PhysRevD.93.124005. arXiv: 1602.08398 [gr-qc].

[235] Simone Peirone et al. “Large-scale structure phenomenology of viable Horndeski theories”. In: Phys.
Rev. D 97.4 (2018), p. 043519. DOI: 10.1103/PhysRevD.97.043519. arXiv: 1712.00444 [astro-ph.CO].

[236] Shin’ichi Nojiri and Sergei D. Odintsov. “Modified Gauss-Bonnet theory as gravitational alternative
for dark energy”. In: Phys. Lett. B 631 (2005), pp. 1–6. DOI: 10.1016/j.physletb.2005.10.010. arXiv:
hep-th/0508049.

[237] Andrey N. Makarenko and Alexander N. Myagky. “The asymptotic behavior of bouncing cosmo-
logical models in F(G) gravity theory”. In: Int. J. Geom. Meth. Mod. Phys. 14.10 (2017), p. 1750148.
DOI: 10.1142/S0219887817501481. arXiv: 1708.03592 [gr-qc].

[238] Kazuharu Bamba et al. “Bounce universe from string-inspired Gauss-Bonnet gravity”. In: JCAP 04
(2015), p. 001. DOI: 10.1088/1475-7516/2015/04/001. arXiv: 1411.3852 [hep-th].

[239] Jia-Xi Feng, Bao-Min Gu, and Fu-Wen Shu. “Theoretical and observational constraints on regu-
larized 4D Einstein-Gauss-Bonnet gravity”. In: Phys. Rev. D 103 (2021), p. 064002. DOI: 10.1103/
PhysRevD.103.064002. arXiv: 2006.16751 [gr-qc].

[240] S. D. Odintsov, V. K. Oikonomou, and F. P. Fronimos. “Non-minimally coupled Einstein–Gauss–Bonnet
inflation phenomenology in view of GW170817”. In: Annals Phys. 420 (2020), p. 168250. DOI: 10.
1016/j.aop.2020.168250. arXiv: 2007.02309 [gr-qc].

PAGE 185 OF 200

https://doi.org/10.1103/PhysRevD.90.081501
https://arxiv.org/abs/1406.0822
https://doi.org/10.1103/PhysRevD.90.104033
https://arxiv.org/abs/1409.6708
https://doi.org/10.1088/1475-7516/2015/02/018
https://arxiv.org/abs/1408.1952
https://doi.org/10.1088/1475-7516/2018/05/050
https://arxiv.org/abs/1708.01850
https://doi.org/10.1088/1475-7516/2016/04/042
https://arxiv.org/abs/1512.09374
https://doi.org/10.1088/1475-7516/2015/09/051
https://arxiv.org/abs/1506.08575
https://doi.org/10.1103/PhysRevLett.114.211101
https://arxiv.org/abs/1404.6495
https://doi.org/10.1088/0034-4885/79/4/046902
https://arxiv.org/abs/1504.04623
https://doi.org/10.1088/1475-7516/2016/02/034
https://arxiv.org/abs/1510.06930
https://doi.org/10.1007/JHEP12(2016)100
https://arxiv.org/abs/1608.08135
https://doi.org/10.1088/1475-7516/2016/04/044
https://arxiv.org/abs/1602.03119
https://arxiv.org/abs/1602.03119
https://doi.org/10.1103/PhysRevD.93.124005
https://arxiv.org/abs/1602.08398
https://doi.org/10.1103/PhysRevD.97.043519
https://arxiv.org/abs/1712.00444
https://doi.org/10.1016/j.physletb.2005.10.010
https://arxiv.org/abs/hep-th/0508049
https://doi.org/10.1142/S0219887817501481
https://arxiv.org/abs/1708.03592
https://doi.org/10.1088/1475-7516/2015/04/001
https://arxiv.org/abs/1411.3852
https://doi.org/10.1103/PhysRevD.103.064002
https://doi.org/10.1103/PhysRevD.103.064002
https://arxiv.org/abs/2006.16751
https://doi.org/10.1016/j.aop.2020.168250
https://doi.org/10.1016/j.aop.2020.168250
https://arxiv.org/abs/2007.02309


W. GIARÈ REFERENCES

[241] V. K. Oikonomou and F. P. Fronimos. “Reviving non-minimal Horndeski-like theories after GW170817:
kinetic coupling corrected Einstein–Gauss–Bonnet inflation”. In: Class. Quant. Grav. 38.3 (2021),
p. 035013. DOI: 10.1088/1361-6382/abce47. arXiv: 2006.05512 [gr-qc].

[242] S. D. Odintsov and V. K. Oikonomou. “Swampland Implications of GW170817-compatible Einstein-
Gauss-Bonnet Gravity”. In: Phys. Lett. B 805 (2020), p. 135437. DOI: 10.1016/j.physletb.2020.
135437. arXiv: 2004.00479 [gr-qc].

[243] Christos Charmousis and Jean-Francois Dufaux. “General Gauss-Bonnet brane cosmology”. In:
Class. Quant. Grav. 19 (2002), pp. 4671–4682. DOI: 10.1088/0264- 9381/19/18/304. arXiv: hep-
th/0202107.

[244] Rong-Gen Cai. “Gauss-Bonnet black holes in AdS spaces”. In: Phys. Rev. D 65 (2002), p. 084014. DOI:
10.1103/PhysRevD.65.084014. arXiv: hep-th/0109133.

[245] Guido Cognola et al. “Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and
the hierarchy problem”. In: Phys. Rev. D 73 (2006), p. 084007. DOI: 10.1103/PhysRevD.73.084007.
arXiv: hep-th/0601008.

[246] James T. Wheeler. “Symmetric Solutions to the Gauss-Bonnet Extended Einstein Equations”. In:
Nucl. Phys. B 268 (1986), pp. 737–746. DOI: 10.1016/0550-3213(86)90268-3.

[247] Baojiu Li, John D. Barrow, and David F. Mota. “The Cosmology of Modified Gauss-Bonnet Gravity”.
In: Phys. Rev. D 76 (2007), p. 044027. DOI: 10.1103/PhysRevD.76.044027. arXiv: 0705.3795 [gr-qc].

[248] Tomi Koivisto and David F. Mota. “Cosmology and Astrophysical Constraints of Gauss-Bonnet
Dark Energy”. In: Phys. Lett. B 644 (2007), pp. 104–108. DOI: 10.1016/j.physletb.2006.11.048.
arXiv: astro-ph/0606078.

[249] Tomi Koivisto and David F. Mota. “Gauss-Bonnet Quintessence: Background Evolution, Large Scale
Structure and Cosmological Constraints”. In: Phys. Rev. D 75 (2007), p. 023518. DOI: 10 . 1103 /
PhysRevD.75.023518. arXiv: hep-th/0609155.

[250] Georgios Kofinas and Emmanuel N. Saridakis. “Teleparallel equivalent of Gauss-Bonnet gravity
and its modifications”. In: Phys. Rev. D 90 (2014), p. 084044. DOI: 10.1103/PhysRevD.90.084044.
arXiv: 1404.2249 [gr-qc].

[251] Sourav Bhattacharya and Sumanta Chakraborty. “Constraining some Horndeski gravity theories”.
In: Phys. Rev. D 95.4 (2017), p. 044037. DOI: 10.1103/PhysRevD.95.044037. arXiv: 1607.03693
[gr-qc].

[252] John D. Barrow, Mikjel Thorsrud, and Kei Yamamoto. “Cosmologies in Horndeski’s second-order
vector-tensor theory”. In: JHEP 02 (2013), p. 146. DOI: 10.1007/JHEP02(2013)146. arXiv: 1211.5403
[gr-qc].

[253] Masaki Satoh and Jiro Soda. “Higher Curvature Corrections to Primordial Fluctuations in Slow-roll
Inflation”. In: JCAP 09 (2008), p. 019. DOI: 10.1088/1475-7516/2008/09/019. arXiv: 0806.4594
[astro-ph].

[254] V. K. Oikonomou. “Singular Bouncing Cosmology from Gauss-Bonnet Modified Gravity”. In: Phys.
Rev. D 92.12 (2015), p. 124027. DOI: 10.1103/PhysRevD.92.124027. arXiv: 1509.05827 [gr-qc].

[255] J. Haro et al. “Bouncing loop quantum cosmology in Gauss-Bonnet gravity”. In: Phys. Rev. D 92.12
(2015), p. 124026. DOI: 10.1103/PhysRevD.92.124026. arXiv: 1506.08273 [gr-qc].

[256] Guillermo Ballesteros. “The effective theory of fluids at NLO and implications for dark energy”. In:
JCAP 03 (2015), p. 001. DOI: 10.1088/1475-7516/2015/03/001. arXiv: 1410.2793 [hep-th].

[257] Ignatios Antoniadis, J. Rizos, and K. Tamvakis. “Singularity - free cosmological solutions of the
superstring effective action”. In: Nucl. Phys. B 415 (1994), pp. 497–514. DOI: 10.1016/0550-3213(94)
90120-1. arXiv: hep-th/9305025.

PAGE 186 OF 200

https://doi.org/10.1088/1361-6382/abce47
https://arxiv.org/abs/2006.05512
https://doi.org/10.1016/j.physletb.2020.135437
https://doi.org/10.1016/j.physletb.2020.135437
https://arxiv.org/abs/2004.00479
https://doi.org/10.1088/0264-9381/19/18/304
https://arxiv.org/abs/hep-th/0202107
https://arxiv.org/abs/hep-th/0202107
https://doi.org/10.1103/PhysRevD.65.084014
https://arxiv.org/abs/hep-th/0109133
https://doi.org/10.1103/PhysRevD.73.084007
https://arxiv.org/abs/hep-th/0601008
https://doi.org/10.1016/0550-3213(86)90268-3
https://doi.org/10.1103/PhysRevD.76.044027
https://arxiv.org/abs/0705.3795
https://doi.org/10.1016/j.physletb.2006.11.048
https://arxiv.org/abs/astro-ph/0606078
https://doi.org/10.1103/PhysRevD.75.023518
https://doi.org/10.1103/PhysRevD.75.023518
https://arxiv.org/abs/hep-th/0609155
https://doi.org/10.1103/PhysRevD.90.084044
https://arxiv.org/abs/1404.2249
https://doi.org/10.1103/PhysRevD.95.044037
https://arxiv.org/abs/1607.03693
https://arxiv.org/abs/1607.03693
https://doi.org/10.1007/JHEP02(2013)146
https://arxiv.org/abs/1211.5403
https://arxiv.org/abs/1211.5403
https://doi.org/10.1088/1475-7516/2008/09/019
https://arxiv.org/abs/0806.4594
https://arxiv.org/abs/0806.4594
https://doi.org/10.1103/PhysRevD.92.124027
https://arxiv.org/abs/1509.05827
https://doi.org/10.1103/PhysRevD.92.124026
https://arxiv.org/abs/1506.08273
https://doi.org/10.1088/1475-7516/2015/03/001
https://arxiv.org/abs/1410.2793
https://doi.org/10.1016/0550-3213(94)90120-1
https://doi.org/10.1016/0550-3213(94)90120-1
https://arxiv.org/abs/hep-th/9305025


REFERENCES W. GIARÈ

[258] Shinsuke Kawai, Masa-aki Sakagami, and Jiro Soda. “Instability of one loop superstring cosmol-
ogy”. In: Phys. Lett. B 437 (1998), pp. 284–290. DOI: 10.1016/S0370- 2693(98)00925- 3. arXiv:
gr-qc/9802033.

[259] Jiro Soda, Masa-aki Sakagami, and Shinsuke Kawai. “Novel instability in superstring cosmology”.
In: International Seminar on Mathematical Cosmology (ISMC 98). Mar. 1998. arXiv: gr-qc/9807056.

[260] Shinsuke Kawai and Jiro Soda. “Evolution of fluctuations during graceful exit in string cosmology”.
In: Phys. Lett. B 460 (1999), pp. 41–46. DOI: 10.1016/S0370-2693(99)00736-4. arXiv: gr-qc/9903017.

[261] C. Cartier, Edmund J. Copeland, and R. Madden. “The Graceful exit in string cosmology”. In: JHEP
01 (2000), p. 035. DOI: 10.1088/1126-6708/2000/01/035. arXiv: hep-th/9910169.

[262] Cyril Cartier, Jai-chan Hwang, and Edmund J. Copeland. “Evolution of cosmological perturbations
in nonsingular string cosmologies”. In: Phys. Rev. D 64 (2001), p. 103504. DOI: 10.1103/PhysRevD.
64.103504. arXiv: astro-ph/0106197.

[263] Yun-Song Piao, Shinji Tsujikawa, and Xin-min Zhang. “Inflation in string inspired cosmology and
suppression of CMB low multipoles”. In: Class. Quant. Grav. 21 (2004), pp. 4455–4461. DOI: 10.1088/
0264-9381/21/18/011. arXiv: hep-th/0312139.

[264] Guido Cognola et al. “String-inspired Gauss-Bonnet gravity reconstructed from the universe expan-
sion history and yielding the transition from matter dominance to dark energy”. In: Phys. Rev. D 75
(2007), p. 086002. DOI: 10.1103/PhysRevD.75.086002. arXiv: hep-th/0611198.

[265] Mustapha Ishak. “Testing General Relativity in Cosmology”. In: Living Rev. Rel. 22.1 (2019), p. 1.
DOI: 10.1007/s41114-018-0017-4. arXiv: 1806.10122 [astro-ph.CO].

[266] Steven Weinberg. “Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation
and Equality of Gravitational and Inertial Mass”. In: Phys. Rev. 135 (1964), B1049–B1056. DOI: 10.
1103/PhysRev.135.B1049.

[267] R. Penrose. “Nonlinear Gravitons and Curved Twistor Theory”. In: Gen. Rel. Grav. 7 (1976), pp. 31–
52. DOI: 10.1007/BF00762011.

[268] L. P. Grishchuk and Yu. V. Sidorov. “Squeezed quantum states of relic gravitons and primordial
density fluctuations”. In: Phys. Rev. D 42 (1990), pp. 3413–3421. DOI: 10.1103/PhysRevD.42.3413.

[269] Steven Weinberg. “Infrared photons and gravitons”. In: Phys. Rev. 140 (1965), B516–B524. DOI: 10.
1103/PhysRev.140.B516.

[270] Nima Arkani-Hamed, Howard Georgi, and Matthew D. Schwartz. “Effective field theory for mas-
sive gravitons and gravity in theory space”. In: Annals Phys. 305 (2003), pp. 96–118. DOI: 10.1016/
S0003-4916(03)00068-X. arXiv: hep-th/0210184.

[271] Marco Raveri et al. “Measuring the speed of cosmological gravitational waves”. In: Phys. Rev. D 91.6
(2015), p. 061501. DOI: 10.1103/PhysRevD.91.061501. arXiv: 1405.7974 [astro-ph.CO].

[272] Paolo Creminelli et al. “Resilience of the standard predictions for primordial tensor modes”. In:
Phys. Rev. Lett. 113.23 (2014), p. 231301. DOI: 10.1103/PhysRevLett.113.231301. arXiv: 1407.8439
[astro-ph.CO].

[273] Yong Cai, Yu-Tong Wang, and Yun-Song Piao. “Oscillation in power spectrum of primordial grav-
itational wave as a signature of higher-order stringy corrections”. In: JHEP 02 (2016), p. 059. DOI:
10.1007/JHEP02(2016)059. arXiv: 1508.07114 [hep-th].

[274] Yong Cai, Yu-Tong Wang, and Yun-Song Piao. “Is there an effect of a nontrivial cT during inflation?”
In: Phys. Rev. D 93.6 (2016), p. 063005. DOI: 10.1103/PhysRevD.93.063005. arXiv: 1510.08716
[astro-ph.CO].

[275] Yong Cai, Yu-Tong Wang, and Yun-Song Piao. “Propagating speed of primordial gravitational waves
and inflation”. In: Phys. Rev. D 94.4 (2016), p. 043002. DOI: 10.1103/PhysRevD.94.043002. arXiv:
1602.05431 [astro-ph.CO].

PAGE 187 OF 200

https://doi.org/10.1016/S0370-2693(98)00925-3
https://arxiv.org/abs/gr-qc/9802033
https://arxiv.org/abs/gr-qc/9807056
https://doi.org/10.1016/S0370-2693(99)00736-4
https://arxiv.org/abs/gr-qc/9903017
https://doi.org/10.1088/1126-6708/2000/01/035
https://arxiv.org/abs/hep-th/9910169
https://doi.org/10.1103/PhysRevD.64.103504
https://doi.org/10.1103/PhysRevD.64.103504
https://arxiv.org/abs/astro-ph/0106197
https://doi.org/10.1088/0264-9381/21/18/011
https://doi.org/10.1088/0264-9381/21/18/011
https://arxiv.org/abs/hep-th/0312139
https://doi.org/10.1103/PhysRevD.75.086002
https://arxiv.org/abs/hep-th/0611198
https://doi.org/10.1007/s41114-018-0017-4
https://arxiv.org/abs/1806.10122
https://doi.org/10.1103/PhysRev.135.B1049
https://doi.org/10.1103/PhysRev.135.B1049
https://doi.org/10.1007/BF00762011
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1016/S0003-4916(03)00068-X
https://doi.org/10.1016/S0003-4916(03)00068-X
https://arxiv.org/abs/hep-th/0210184
https://doi.org/10.1103/PhysRevD.91.061501
https://arxiv.org/abs/1405.7974
https://doi.org/10.1103/PhysRevLett.113.231301
https://arxiv.org/abs/1407.8439
https://arxiv.org/abs/1407.8439
https://doi.org/10.1007/JHEP02(2016)059
https://arxiv.org/abs/1508.07114
https://doi.org/10.1103/PhysRevD.93.063005
https://arxiv.org/abs/1510.08716
https://arxiv.org/abs/1510.08716
https://doi.org/10.1103/PhysRevD.94.043002
https://arxiv.org/abs/1602.05431


W. GIARÈ REFERENCES

[276] Jacopo Fumagalli, Sander Mooij, and Marieke Postma. “Disformal transformations as a change of
units”. In: (Oct. 2016). arXiv: 1610.08460 [gr-qc].

[277] Xian Gao and Xun-Yang Hong. “Propagation of gravitational waves in a cosmological background”.
In: Phys. Rev. D 101.6 (2020), p. 064057. DOI: 10.1103/PhysRevD.101.064057. arXiv: 1906.07131
[gr-qc].

[278] Toshifumi Noumi and Masahide Yamaguchi. “Non-Gaussianities of primordial perturbations and
tensor sound speed”. In: (Mar. 2014). arXiv: 1403.6065 [hep-th].

[279] Lorenzo Bordin et al. “Simplifying the EFT of Inflation: generalized disformal transformations and
redundant couplings”. In: JCAP 09 (2017), p. 043. DOI: 10.1088/1475-7516/2017/09/043. arXiv:
1706.03758 [astro-ph.CO].

[280] John McGreevy, Leonard Susskind, and Nicolaos Toumbas. “Invasion of the giant gravitons from
Anti-de Sitter space”. In: JHEP 06 (2000), p. 008. DOI: 10.1088/1126-6708/2000/06/008. arXiv:
hep-th/0003075.

[281] Freddy Cachazo, Song He, and Ellis Ye Yuan. “Scattering of Massless Particles: Scalars, Gluons and
Gravitons”. In: JHEP 07 (2014), p. 033. DOI: 10.1007/JHEP07(2014)033. arXiv: 1309.0885 [hep-th].

[282] G. R. Dvali, G. Gabadadze, and M. Porrati. “Metastable gravitons and infinite volume extra dimen-
sions”. In: Phys. Lett. B 484 (2000), pp. 112–118. DOI: 10.1016/S0370- 2693(00)00631- 6. arXiv:
hep-th/0002190.

[283] R. Fabbri and M. d. Pollock. “The Effect of Primordially Produced Gravitons upon the Anisotropy
of the Cosmological Microwave Background Radiation”. In: Phys. Lett. B 125 (1983), pp. 445–448.
DOI: 10.1016/0370-2693(83)91322-9.

[284] Vijay Balasubramanian et al. “Giant gravitons in conformal field theory”. In: JHEP 04 (2002), p. 034.
DOI: 10.1088/1126-6708/2002/04/034. arXiv: hep-th/0107119.

[285] V. A. Rubakov and P. G. Tinyakov. “Infrared-modified gravities and massive gravitons”. In: Phys.
Usp. 51 (2008), pp. 759–792. DOI: 10.1070/PU2008v051n08ABEH006600. arXiv: 0802.4379 [hep-th].

[286] Mikhail S. Volkov. “Cosmological solutions with massive gravitons in the bigravity theory”. In:
JHEP 01 (2012), p. 035. DOI: 10.1007/JHEP01(2012)035. arXiv: 1110.6153 [hep-th].

[287] Massimo Giovannini. “Production and detection of relic gravitons in quintessential inflationary
models”. In: Phys. Rev. D 60 (1999), p. 123511. DOI: 10.1103/PhysRevD.60.123511. arXiv: astro-
ph/9903004.

[288] Stanley Deser and A. Waldron. “Stability of massive cosmological gravitons”. In: Phys. Lett. B 508
(2001), pp. 347–353. DOI: 10.1016/S0370-2693(01)00523-8. arXiv: hep-th/0103255.

[289] Steven Carlip et al. “Cosmological Topologically Massive Gravitons and Photons”. In: Class. Quant.
Grav. 26 (2009), p. 075008. DOI: 10.1088/0264-9381/26/7/075008. arXiv: 0803.3998 [hep-th].

[290] Robert de Mello Koch, Jelena Smolic, and Milena Smolic. “Giant Gravitons - with Strings Attached
(I)”. In: JHEP 06 (2007), p. 074. DOI: 10.1088/1126-6708/2007/06/074. arXiv: hep-th/0701066.

[291] L. P. Grishchuk and M. Solokhin. “Spectra of relic gravitons and the early history of the Hubble
parameter”. In: Phys. Rev. D 43 (1991), pp. 2566–2571. DOI: 10.1103/PhysRevD.43.2566.

[292] S. P. Miao and R. P. Woodard. “Gravitons Enhance Fermions during Inflation”. In: Phys. Rev. D 74
(2006), p. 024021. DOI: 10.1103/PhysRevD.74.024021. arXiv: gr-qc/0603135.

[293] Elias Kiritsis. “Product CFTs, gravitational cloning, massive gravitons and the space of gravitational
duals”. In: JHEP 11 (2006), p. 049. DOI: 10.1088/1126-6708/2006/11/049. arXiv: hep-th/0608088.

[294] C. P. Burgess. “Intro to Effective Field Theories and Inflation”. In: (Nov. 2017). arXiv: 1711.10592
[hep-th].

PAGE 188 OF 200

https://arxiv.org/abs/1610.08460
https://doi.org/10.1103/PhysRevD.101.064057
https://arxiv.org/abs/1906.07131
https://arxiv.org/abs/1906.07131
https://arxiv.org/abs/1403.6065
https://doi.org/10.1088/1475-7516/2017/09/043
https://arxiv.org/abs/1706.03758
https://doi.org/10.1088/1126-6708/2000/06/008
https://arxiv.org/abs/hep-th/0003075
https://doi.org/10.1007/JHEP07(2014)033
https://arxiv.org/abs/1309.0885
https://doi.org/10.1016/S0370-2693(00)00631-6
https://arxiv.org/abs/hep-th/0002190
https://doi.org/10.1016/0370-2693(83)91322-9
https://doi.org/10.1088/1126-6708/2002/04/034
https://arxiv.org/abs/hep-th/0107119
https://doi.org/10.1070/PU2008v051n08ABEH006600
https://arxiv.org/abs/0802.4379
https://doi.org/10.1007/JHEP01(2012)035
https://arxiv.org/abs/1110.6153
https://doi.org/10.1103/PhysRevD.60.123511
https://arxiv.org/abs/astro-ph/9903004
https://arxiv.org/abs/astro-ph/9903004
https://doi.org/10.1016/S0370-2693(01)00523-8
https://arxiv.org/abs/hep-th/0103255
https://doi.org/10.1088/0264-9381/26/7/075008
https://arxiv.org/abs/0803.3998
https://doi.org/10.1088/1126-6708/2007/06/074
https://arxiv.org/abs/hep-th/0701066
https://doi.org/10.1103/PhysRevD.43.2566
https://doi.org/10.1103/PhysRevD.74.024021
https://arxiv.org/abs/gr-qc/0603135
https://doi.org/10.1088/1126-6708/2006/11/049
https://arxiv.org/abs/hep-th/0608088
https://arxiv.org/abs/1711.10592
https://arxiv.org/abs/1711.10592


REFERENCES W. GIARÈ

[295] Jesus Torrado and Antony Lewis. “Cobaya: Code for Bayesian Analysis of hierarchical physical
models”. In: (May 2020). arXiv: 2005.05290 [astro-ph.IM].

[296] B. P. Abbott et al. “Upper Limits on the Stochastic Gravitational-Wave Background from Advanced
LIGO’s First Observing Run”. In: Phys. Rev. Lett. 118 (12 Mar. 2017), p. 121101. DOI: 10 . 1103 /
PhysRevLett.118.121101. URL: https://link.aps.org/doi/10.1103/PhysRevLett.118.121101.

[297] B. P. Abbott et al. “A search for the isotropic stochastic background using data from Advanced
LIGO’s second observing run”. In: arXiv (Mar. 2019). arXiv: 1903.02886 [gr-qc].

[298] Michele Maggiore et al. “Science Case for the Einstein Telescope”. In: JCAP 03 (2020), p. 050. DOI:
10.1088/1475-7516/2020/03/050. arXiv: 1912.02622 [astro-ph.CO].

[299] J. Polchinski. String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on
Mathematical Physics. Cambridge University Press, Dec. 2007. DOI: 10.1017/CBO9780511816079.

[300] Michael E. Peskin. “INTRODUCTION TO STRING AND SUPERSTRING THEORY. 2.” In: Theoreti-
cal Advanced Study Institute in Particle Physics - TASI 86. Mar. 1987.

[301] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory. Reading, USA:
Addison-Wesley, 1995. ISBN: 978-0-201-50397-5.

[302] C. P. Burgess. “Lectures on Cosmic Inflation and its Potential Stringy Realizations”. In: PoS P 2GC
(2006). Ed. by Jean Orloff, Geraldine Servant, and Gerard Smadja, p. 008. DOI: 10.1088/0264-
9381/24/21/S04. arXiv: 0708.2865 [hep-th].

[303] Barton Zwiebach. “Curvature Squared Terms and String Theories”. In: Phys. Lett. B 156 (1985),
pp. 315–317. DOI: 10.1016/0370-2693(85)91616-8.

[304] M. Gasperini. “Tensor perturbations in high curvature string backgrounds”. In: Phys. Rev. D 56
(1997), pp. 4815–4823. DOI: 10.1103/PhysRevD.56.4815. arXiv: gr-qc/9704045.

[305] M. Gasperini and G. Veneziano. “String Theory and Pre-big bang Cosmology”. In: Nuovo Cim. C
38.5 (2016), p. 160. DOI: 10.1393/ncc/i2015-15160-8. arXiv: hep-th/0703055.

[306] Enrico Pajer, Guilherme L. Pimentel, and Jaap V. S. Van Wijck. “The Conformal Limit of Inflation in
the Era of CMB Polarimetry”. In: JCAP 06 (2017), p. 009. DOI: 10.1088/1475-7516/2017/06/009.
arXiv: 1609.06993 [hep-th].

[307] Paolo Creminelli. “Conformal invariance of scalar perturbations in inflation”. In: Phys. Rev. D 85
(2012), p. 041302. DOI: 10.1103/PhysRevD.85.041302. arXiv: 1108.0874 [hep-th].

[308] Yosuke Mishima and Tsutomu Kobayashi. “Revisiting slow-roll dynamics and the tensor tilt in gen-
eral single-field inflation”. In: Phys. Rev. D 101.4 (2020), p. 043536. DOI: 10.1103/PhysRevD.101.
043536. arXiv: 1911.02143 [gr-qc].

[309] Zhu Yi, Yungui Gong, and Mudassar Sabir. “Inflation with Gauss-Bonnet coupling”. In: Phys. Rev.
D 98.8 (2018), p. 083521. DOI: 10.1103/PhysRevD.98.083521. arXiv: 1804.09116 [gr-qc].

[310] Qiang Wu, Tao Zhu, and Anzhong Wang. “Primordial Spectra of slow-roll inflation at second-order
with the Gauss-Bonnet correction”. In: Phys. Rev. D 97.10 (2018), p. 103502. DOI: 10.1103/PhysRevD.
97.103502. arXiv: 1707.08020 [gr-qc].

[311] Seoktae Koh, Bum-Hoon Lee, and Gansukh Tumurtushaa. “Reconstruction of the Scalar Field Po-
tential in Inflationary Models with a Gauss-Bonnet term”. In: Phys. Rev. D 95.12 (2017), p. 123509.
DOI: 10.1103/PhysRevD.95.123509. arXiv: 1610.04360 [gr-qc].

[312] Getbogi Hikmawan et al. “Comment on “Gauss-Bonnet inflation””. In: Phys. Rev. D 93.6 (2016),
p. 068301. DOI: 10.1103/PhysRevD.93.068301. arXiv: 1512.00222 [hep-th].

[313] Peng-Xu Jiang, Jian-Wei Hu, and Zong-Kuan Guo. “Inflation coupled to a Gauss-Bonnet term”. In:
Phys. Rev. D 88 (2013), p. 123508. DOI: 10.1103/PhysRevD.88.123508. arXiv: 1310.5579 [hep-th].

PAGE 189 OF 200

https://arxiv.org/abs/2005.05290
https://doi.org/10.1103/PhysRevLett.118.121101
https://doi.org/10.1103/PhysRevLett.118.121101
https://link.aps.org/doi/10.1103/PhysRevLett.118.121101
https://arxiv.org/abs/1903.02886
https://doi.org/10.1088/1475-7516/2020/03/050
https://arxiv.org/abs/1912.02622
https://doi.org/10.1017/CBO9780511816079
https://doi.org/10.1088/0264-9381/24/21/S04
https://doi.org/10.1088/0264-9381/24/21/S04
https://arxiv.org/abs/0708.2865
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1103/PhysRevD.56.4815
https://arxiv.org/abs/gr-qc/9704045
https://doi.org/10.1393/ncc/i2015-15160-8
https://arxiv.org/abs/hep-th/0703055
https://doi.org/10.1088/1475-7516/2017/06/009
https://arxiv.org/abs/1609.06993
https://doi.org/10.1103/PhysRevD.85.041302
https://arxiv.org/abs/1108.0874
https://doi.org/10.1103/PhysRevD.101.043536
https://doi.org/10.1103/PhysRevD.101.043536
https://arxiv.org/abs/1911.02143
https://doi.org/10.1103/PhysRevD.98.083521
https://arxiv.org/abs/1804.09116
https://doi.org/10.1103/PhysRevD.97.103502
https://doi.org/10.1103/PhysRevD.97.103502
https://arxiv.org/abs/1707.08020
https://doi.org/10.1103/PhysRevD.95.123509
https://arxiv.org/abs/1610.04360
https://doi.org/10.1103/PhysRevD.93.068301
https://arxiv.org/abs/1512.00222
https://doi.org/10.1103/PhysRevD.88.123508
https://arxiv.org/abs/1310.5579


W. GIARÈ REFERENCES

[314] Masa-aki Watanabe, Sugumi Kanno, and Jiro Soda. “The Nature of Primordial Fluctuations from
Anisotropic Inflation”. In: Prog. Theor. Phys. 123 (2010), pp. 1041–1068. DOI: 10.1143/PTP.123.1041.
arXiv: 1003.0056 [astro-ph.CO].

[315] Zong-Kuan Guo and Dominik J. Schwarz. “Power spectra from an inflaton coupled to the Gauss-
Bonnet term”. In: Phys. Rev. D 80 (2009), p. 063523. DOI: 10.1103/PhysRevD.80.063523. arXiv:
0907.0427 [hep-th].

[316] José D. Edelstein et al. “Small free field inflation in higher curvature gravity”. In: JHEP 01 (2021),
p. 029. DOI: 10.1007/JHEP01(2021)029. arXiv: 2007.07651 [hep-th].

[317] Luis Alvarez-Gaume et al. “Aspects of Quadratic Gravity”. In: Fortsch. Phys. 64.2-3 (2016), pp. 176–
189. DOI: 10.1002/prop.201500100. arXiv: 1505.07657 [hep-th].

[318] I. Dalianis et al. “Supersymmetry Breaking and Inflation from Higher Curvature Supergravity”. In:
JHEP 01 (2015), p. 043. DOI: 10.1007/JHEP01(2015)043. arXiv: 1409.8299 [hep-th].

[319] V. K. Oikonomou and F. P. Fronimos. “Non-minimally coupled Einstein–Gauss–Bonnet gravity with
massless gravitons: the constant-roll case”. In: Eur. Phys. J. Plus 135.11 (2020), p. 917. DOI: 10.1140/
epjp/s13360-020-00926-3. arXiv: 2011.03828 [gr-qc].

[320] S. D. Odintsov et al. “GW170817-compatible constant-roll Einstein–Gauss–Bonnet inflation and
non-Gaussianities”. In: Phys. Dark Univ. 30 (2020), p. 100718. DOI: 10.1016/j.dark.2020.100718.
arXiv: 2009.06113 [gr-qc].

[321] V. K. Oikonomou and F. P. Fronimos. “A Nearly Massless Graviton in Einstein-Gauss-Bonnet Infla-
tion with Linear Coupling Implies Constant-roll for the Scalar Field”. In: EPL 131.3 (2020), p. 30001.
DOI: 10.1209/0295-5075/131/30001. arXiv: 2007.11915 [gr-qc].

[322] S. D. Odintsov, V. K. Oikonomou, and F. P. Fronimos. “Rectifying Einstein-Gauss-Bonnet Inflation
in View of GW170817”. In: Nucl. Phys. B 958 (2020), p. 115135. DOI: 10.1016/j.nuclphysb.2020.
115135. arXiv: 2003.13724 [gr-qc].

[323] S. D. Odintsov, V. K. Oikonomou, and F. P. Fronimos. “Canonical scalar field inflation with string
and R2 -corrections”. In: Annals Phys. 424 (2021), p. 168359. DOI: 10.1016/j.aop.2020.168359.
arXiv: 2011.08680 [gr-qc].

[324] D. Anninos et al. “Cosmological Shapes of Higher-Spin Gravity”. In: JCAP 04 (2019), p. 045. DOI:
10.1088/1475-7516/2019/04/045. arXiv: 1902.01251 [hep-th].

[325] N. Bartolo et al. “Anisotropies and non-Gaussianity of the Cosmological Gravitational Wave Back-
ground”. In: Phys. Rev. D 100.12 (2019), p. 121501. DOI: 10.1103/PhysRevD.100.121501. arXiv:
1908.00527 [astro-ph.CO].

[326] Nicola Bartolo et al. “Cosmic structures and gravitational waves in ghost-free scalar-tensor theories
of gravity”. In: JCAP 05 (2018), p. 048. DOI: 10.1088/1475-7516/2018/05/048. arXiv: 1712.04002
[gr-qc].
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