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OPE of Green functions in the odd sector of QCD
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Abstract. A review of familiar results of the three-point Green functions of currents in
the odd-intrinsic parity sector of QCD is presented. Such Green functions include very
well-known examples of VVP, VAS or AAP correlators. We also present new results for
VVA and AAA Green functions that have not yet been studied extensively in the literature
before, more importantly with a phenomenological study and a discussion of the high-
energy behaviour and its relation to the QCD condensates.

1 Introduction

The Green functions are defined as the vacuum expectation values of the time ordered products of the
composite operators O;(x;). In the momentum representation, the standard definition of the three-point
Green functions reads

fd4x1 d*x, e/ P1H1+p2%2) <0|T[01(Xl)()z(xz)03(0)]|0> . 6]

In our case, the composite operators O;(x;) stand either for chiral vector V** = gy"T“%q and axial-
vector A¥? = gytysTg currents, or scalar S¢ = ¢qT%g and pseudoscalar P* = igysT“q densities,
where g stands for the quark triplet that contains the light quarks (u,d, s), T¢ is a SU(3) generator,
T?=2%/2,and a = 1...8 are the group indices. Obviously, all the group and Lorentz indices in the
definition (I)) above are suppresed for simplicity.

As we mentioned above, there exist only five nontrivial three-point Green functions in the odd
parity sector of QCD. The nonvanishing combinations of currents and densities are the following:
VVP, VAS, AAP, VVA and AAA. There are two regimes where the QCD dynamics of the current
correlators is well understood.

The first one is that of low external momenta where the dynamics is governed by the approximate
chiral symmetry of low-energy QCD. In detail, the spontaneous breaking of the chiral SU(3);,xSU(3)x
symmetry down to SU(3)y in QCD leads to the presence of Goldstone bosons. By identifying them
with the octet of pseudoscalar mesons (r, K,77) as the lightest hadronic observable states, we can
construct chiral perturbation theory (yPT) as an effective theory of QCD for energies E < M,,, where
M,, is the mass of p meson [[1]], [2]], [3]. For energies M, < E < 2GeV the effective theory is resonance
chiral theory (RyT) [4]. Such theory increases the number of degrees of freedom of yPT by including
massive U(3) multiplets of vector V(177), axial-vector A(1**), scalar §(0**) and pseudoscalar P(0~")
resonances.
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The second regime corresponds to the high energies where the asymptotic freedom allows us to
use the perturbative approach in terms of the strong coupling a; and where the asymptotics of the
correlators for large euclidean momenta is given by the operator product expansion (OPE). Within the
OPE framework, short-distance behaviour of the Green functions can be studied. For example, let us
consider a product of two operators A(x) and B(y). Then, the OPE is equivalent to an assumption that
at large external momentum p, the two-point Green function of the operators above can be rewritten
in the form

i f dhxPO[T[AWBW)I|0) = ), CLP(p*)0I0,10). )

where (0|0, |0) are the vacuum averages of composite gauge-invariant local operators, made of quark
and gluon fields. Note that only the spin-zero operators contribute to the vacuum expectation value.
Such vacuum averages are usually called the QCD condensates. Considering the dimension of such
condensates to be D < 6, their complete set in massless theory is as follows:

the unit operator: Oy =1, 3)

quark condensate: 05 = {0]qql0), C)
gluon condensate: 04 =(01G,»,G"|0), (&)
quark-gluon condensate: Os = (0lgo.,,G"" 10y, 6)
four-quark condensate: Og =(0lgT" gqT q|0y, @)
three-gluon condensate: Og = <0|GZVG€GG3H|0> e, ®)

where I stands for any combination of the 4 x4 matrices of a set {1, ys, ¥*, ysy", 0"} together with the
3 x 3 matrices {1,7%},a = 1...8, that is Lorentz invariant. In the following sections we will see that
such QCD condensates play an important role in evaluation of the OPE of the corresponding Green
functions.

It seems that the three-point OPE has been known only for three out of five nontrivial Green
functions in the odd-intrinsic parity sector of QCD, specifically for VV P, VAS and AAP. Therefore,
the study of the OPE for VVA and AAA correlators is thus given by our contribution.

1.1 Notation

In this article, we consider all momenta p, g, r as ingoing to the vertices, i.e. the law of momentum
conservation can be written in the form

p+q+r=0. )
Also, a notation for the contractions of Levi-Civita tensor with the four-momenta is defined as

Epvalp) = EHWEPE ’ Epv(p)g) = Sﬂvaﬁpaqﬁ' (10)

2 Review of familiar results

As we have already mentioned, the Green functions that have been already studied extensively in the
literature are VV P, VAS and AAP. All three of them can be written in the simple forms

(Myve(p.q: )’ = Myyp(p?, 4% ) gy - (11
(IMyas(p, g; 7 ))Zic = Tlyas (P2 % ) F vy » (12)
(HAAP(P, q.r ))Z};C = HAAP(pZ, 612; r 2)ambct‘?w(p)(q) : (13)
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The high-energy behaviour within the OPE framework can be written down as follows. If we consider
all individual external momenta of all the three currents or densities to be high, it is easy to realize
that the leading order contribution corresponds to two contractions of the quark fields contained in
the respective currents and densities. The three contractions are already equal to zero, whilst one and
none contractions are subleading. Then, the LO contribution to the OPE is generated only by the
quark condensate and it can be illustrated as (the crossed circle stands either for the current or the
density of respective type)

(0] —®—R—&— 0y #0. (14)

The explicit calculations lead to the results [, [6]:

BoF? p* + ¢* + 17 1

Hyve((p), (0% () = =75 rer +0(), (15)
2 2. ByF? p*—q’ =1’ L

Myas (Ap)*, ()% (1) = - P2+ (%) (16)
2 2. 2 _BOFZPZ"'CIZ—V2 1

Masr (Y (Aa’s ar) = S P +0()- (17)

A detailed explanation of calculations within the OPE framework can be found in [7]], [8].

So far, our discussion was rather of a mathematical nature. Hence, let us introduce the tools we use
in our analysis. Dispersion representation of the Green functions which are order parameters of the
chiral symmetry breaking enables us to make use of an information on the asymptotics both at the low
and high energies and allows us to relate the unknown low energy constants (LECs) to the properties
of the corresponding spectral functions in terms of the chiral sum rules. These are usually assumed
to be saturated by the resonant states at low energies. This assumption connects the LECs to the
phenomenology of resonances in the intermediate energy region, i.e. for energies M, < E < 2GeV.
The next-to-leading order resonance Lagrangian, relevant in the odd-intrinsic parity sector of QCD,
was formulated for the first time in [9]] and is of the form

£0 = Z Z KX, g (18)

where X stands for the single-resonance fields V, A, S, P, double-resonance fields VV, AA, SA, SV,
VA, PA, PV and triple-resonance fields VVP, VAS, AAP. This Lagrangian contains 67 operators
5fﬂmﬁ in total and the same number of corresponding unknown coupling constants Y. We try to de-
termine the couplings using the following constraints: high-energy behavior (OPE), Brodsky-Lepage
behavior of the transition formfactor, matching calculations in RyT with yPT or suitable inputs from

experiments.

3 OPE for VVA Green function with two large momenta

Before we make the same attempt for the remaining VVA and AAA correlators, let us make use of
an already known result of the two-point OPE for the VVA, where only two external momenta are
large. In the standard definition of the VVA Green function, i.e. the correlator of two vector and one
axial-vector current, one can factorize the symmetric tensor that comes from the traces over flavor
space and the Lorentz part, which is restricted by the Ward identities into four terms, i.e.

. bc _ jabc Dy(1 )11 (2 3) (3
(Myya(p. g: 1)) = d™ [WrEmpgro + Wi TIY), + wP TR+ w TG ], (19)
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where H(’Vp (i = 1,2,3) are transversal tensors deﬁned in [10]]. The longitudinal part proportional to

form factor wy, is fixed by the anomaly, whilst wT are transversal form factors. In order to identify
the unknown form factors wy,, w(T’) we have calculated all possible Feynman diagrams at tree level that
contribute to the VVA Green function and that are generated by the resonance Lagrangian (I8). Our

calculations [[11] lead to the results

Ne

wr = m > (20)
w(l) _ _2\/§FV[K¥7(p2 + 612 - 2M\2/) - \/EFVK:‘;/V] (21)
! (P* = M)(g* = M3)
w? = _2 V2Fy(p? - qz)(2K¥2 + KYs ~ Ki7) 22)
! (P2 = M)(q* = M)

®_ 2V2Fv(p* - ¢P) A V2F (" 73
Wr = — N2 T\ K 2Ky =Ky . (23)

(P _Mv)(q _Mv) _MA

A comment is in order here. Unlike in our case of the VVA correlator, where we have vertices with
two resonances at most, one could also have large-N, diagrams contributing to the three-point Green
functions with three resonances. This may seem to be the case, considering the expression (23)),
where one can find a term made of three resonance propagators. However, this observation is just
a coincidence due to algebraical manipulations. One can rewrite the term (p? — ¢?) in front of the
brackets in (23] simply as (p*- M‘z,) . — M%,) which leads to the original structure of w(T3) consisted
of two resonance propagators, as one should expect from the form of the operator contributing with
the coupling constant KSA (see [IL1] for details).

Let us make a use of some known relations concerning the OPE for the VVA Green function,
when only two out of three momenta are large. Then, we construct the formactor [10]

wr(Q%) = —167%[w}(-0%,0,-0%) + wi (- 0,0, -0%)]. (24)

Be aware of the different notation here and in [10], although the definition (24)) is defined here in order
to be the same. An important fact is that the result for (24)) up to O(1/ 0%) was obtained from the OPE
framework in AdS/QCD [12,13]], in which the outcome reads

3 — \2
Nc 1287 asx(qq) +O(L)

wr(Q%) = ot 505 o)

(25)
where y is the magnetic susceptibility of the quark condensate - a detailed introduction and definition

of this quantity can be found in [13]]. Using (1)) and (23), we simply obtain the formfactor (24) in the
form

N, 6412 F Faxd*
or(@) =+ V(Q’Z—V[QZ(W (k) + 4 + QATKSMi) - Fu’. (26)

where we have already made a use of the known expression for the coupling constant /< from the
" { +- for VVP Green function (see [9] for details). Now, we expand @D into a
\4

series in terms of Q? up to O(1/Q%) and compare the coefficients of the given order with (23). This

constraint K17
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leads to the system of four equations, which can be easily solved:

N,
T 2k, + kYy) = 27
ka FAKVA N,
—2 5 LN k) = e, 28
M 206+ K) =~ (28)
kavv - FAKVA 1‘42
# + V20, + &) — Faxt M{j =0, (29)
ka Fax¥4 M2 M; 27TasX<ZIQ>2
o e - (e )= SRR @
v v v vty

From the first equation (27) we obtain the solution in the form (31). By using this solution in (Z8),
we get a simple relation between the couplings 3" and «{* in the form «}* = 7«y". From @29)
we eventually obtain a specific form for both of these couplings, (32) and @ The results are
summarized here:

N,
\% Vv ¢
K+ iy = ———— 31)
TR eaNaneFy
N.M?
Vv _ v
S T Tz G2
ATV
N-M}
VA _ v
Wh=-—o T 33
: 64m2 M2 Fy Fy G

Having known the constraints above, we can substitute them in (30), which on the left side of the
equation gives an expression —NL.Mi M%, which obviously can not be matched to the right side of the
equation. Therefore, the system of equations (27)-(30) can not be solved in order to satisfy all the
equations at once. Hence, the obtained constraints @-@ need not to be taken seriously, but more
likely as a close approximation to reality.

Also, using the constraint for K YV from the OPE for VV P Green function together with our result
(32), we can extract relations for K Vand K5 PV (see [9] for details):

vV _ F? Nch, 4
Ky o TSRV (34)
TGRS FM?
2 2 2
- L)
: 32V2d, Fyl  8m2F2\ M2

By the determination of we can also obtain a relation for the deviation dg;, from the form of K:I; v
if we take the Brodsky-Lepage behaviour [9}114,15]] of the ¥0,, formfactor into account. Hence, the
prediction is

N.M3, (Mé

e ——1)=—1.342. 36
812 F? Mi (36)

oL =

Now, a discussion involving the parameter g is in order. Knowing the value (36)), one can apply

it to study a particular example that could be verified either by other theoretical consequences or
experiments. In our case, a 7'yy form factor is a suitable tool, because the experimentally measured
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object
FRT0,-0%0) =

N.M},
T ) (37)

2
6 = T A 9
(Q BL T 4n2p2

3ME(Q? + M})

is sensitive to the value of 6g;.. The form factor is depicted in ﬁgureE]for our value dgp. = —1.342

and for two other values, based on [9]. The figure also contains experimentally obtained values of
FRT(0, —02%; 0) from experiments BABAR [16], BELLE [17] and CLEO [18].
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Figure 1. A plot of BABAR (green), BELLE (red) and CLEO (blue) data fitted with the form factor
T]E);Z(O, -0%,0) using the modified Brodsky-Lepage condition. The full black line represents the form

factor with dg. = —1.342, the dashed line corresponds to g = —0.055 (see [9]) and the dot-dashed line to
gt = 0. The full brown line stands for the LMD form factor (38).

We can clearly see that the form factor does not agree with the experimental data. To get
a full notion, one should discuss first if we even have a sufficiently consistent theoretical model to
describe such behaviour. In other words, is it sufficient not to add any other resonance fields and still
have an agreement with the experiments? Obviously, not. The reason is that our form factor for
the value 6g; = —1.342 is very close to the behaviour of the form factor F-MP(p?, ¢°; ?) describing
the lowest meson dominance (LMD) [[19], [20]:

N, M ( An? 2

LMD 2.
0, 0
F0-2n0) = C8mF 0 + M}, N.M;,

). (38)
This means that it is not obviously sufficient to take only the lightest resonances into account and

one thus needs to add heavier fields in order to get closer to the experimantal data. To support our
explanation, the LMD form factor (38) is also depicted in figure[I]
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4 OPE for VVA and AAA Green functions with three large momenta

As we have seen above, the predicted value for dg; is not consistent with the experimental data. Let
us remind ourselves that such a prediction is based on the OPE with two large momenta. However,
there is no physical argument that would prefer such a type of the OPE. Hence, one can try to cal-
culate the OPE with all three momenta large and find out if the agreement between the results and
experiment improves. However, such an approach is not that easy in the case of the VVA and AAA
Green functions, because neither of these correlators have the leading order contribution to the OPE,
ie.

(0] —@—&—&—10) =o0. 39)

Therefore, one is required to include the contributions to higher orders by means of diagrams with
gluons coupled to the quark fields. Such diagrams naturally lead to contributions of the higher QCD
condensates. The scheme below illustrates the contributions of the quark condensate (D = 3) in higher
orders as well as the gluon condensate (D = 4), the quark-gluon condensate (D = 5), the four-quark
condensate and the three-gluon condensate (both D = 6) [21]]:

D=3: < (40)

+ L00XXX

10.0.9,0.0°70.0.0.0.0)]

43)

It is very important to mention that not all diagrams necessarily represent nontrivial contributions
both for the VVA and AAA Green functions - some loops vanish due to the Furry theorem or due to a
necessity to have the contributions Lorentz invariant. This study is now in progress [21]].

5 Conclusion

In this article, we summarized the known results for the high-energy behaviour of Green functions
within the OPE framework, relevant in the odd-intrinsic parity sector. We also presented our approach
in order to evaluate the OPE for the VVA and AAA correlators for all momenta large.
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