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Abstract. A review of familiar results of the three-point Green functions of currents in
the odd-intrinsic parity sector of QCD is presented. Such Green functions include very
well-known examples of VVP, VAS or AAP correlators. We also present new results for
VVA and AAA Green functions that have not yet been studied extensively in the literature
before, more importantly with a phenomenological study and a discussion of the high-
energy behaviour and its relation to the QCD condensates.

1 Introduction

The Green functions are defined as the vacuum expectation values of the time ordered products of the
composite operatorsOi(xi). In the momentum representation, the standard definition of the three-point
Green functions reads ∫

d4x1 d4x2 ei(p1 x1+p2 x2) 〈0∣∣∣T[
O1(x1)O2(x2)O3(0)

]∣∣∣0〉 . (1)

In our case, the composite operators Oi(xi) stand either for chiral vector Vµ,a = qγµT aq and axial-
vector Aµ,a = qγµγ5T aq currents, or scalar S a = qT aq and pseudoscalar Pa = iqγ5T aq densities,
where q stands for the quark triplet that contains the light quarks (u, d, s), T a is a SU(3) generator,
T a = λa/2, and a = 1 . . . 8 are the group indices. Obviously, all the group and Lorentz indices in the
definition (1) above are suppresed for simplicity.

As we mentioned above, there exist only five nontrivial three-point Green functions in the odd
parity sector of QCD. The nonvanishing combinations of currents and densities are the following:
VVP, VAS , AAP, VVA and AAA. There are two regimes where the QCD dynamics of the current
correlators is well understood.

The first one is that of low external momenta where the dynamics is governed by the approximate
chiral symmetry of low-energy QCD. In detail, the spontaneous breaking of the chiral SU(3)L×SU(3)R

symmetry down to SU(3)V in QCD leads to the presence of Goldstone bosons. By identifying them
with the octet of pseudoscalar mesons (π,K, η) as the lightest hadronic observable states, we can
construct chiral perturbation theory (χPT) as an effective theory of QCD for energies E ≤ Mρ, where
Mρ is the mass of ρmeson [1], [2], [3]. For energies Mρ ≤ E ≤ 2 GeV the effective theory is resonance
chiral theory (RχT) [4]. Such theory increases the number of degrees of freedom of χPT by including
massive U(3) multiplets of vector V(1−−), axial-vector A(1++), scalar S (0++) and pseudoscalar P(0−+)
resonances.

ae-mail: kadavy@ipnp.troja.mff.cuni.cz

    
 

DOI: 10.1051/, 05009 (2017) 713705009137EPJ Web of Conferences epjconf/201
XIIth  Quark Confinement & the Hadron Spectrum

 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
 Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



The second regime corresponds to the high energies where the asymptotic freedom allows us to
use the perturbative approach in terms of the strong coupling αs and where the asymptotics of the
correlators for large euclidean momenta is given by the operator product expansion (OPE). Within the
OPE framework, short-distance behaviour of the Green functions can be studied. For example, let us
consider a product of two operators A(x) and B(y). Then, the OPE is equivalent to an assumption that
at large external momentum p, the two-point Green function of the operators above can be rewritten
in the form

i
∫

d4x eipx〈0∣∣∣T[
A(x)B(y)

]∣∣∣0〉 =
∑

n

CAB
n (p2)〈0|On|0〉 , (2)

where 〈0|On|0〉 are the vacuum averages of composite gauge-invariant local operators, made of quark
and gluon fields. Note that only the spin-zero operators contribute to the vacuum expectation value.
Such vacuum averages are usually called the QCD condensates. Considering the dimension of such
condensates to be D ≤ 6, their complete set in massless theory is as follows:

the unit operator: O0 = 1 , (3)
quark condensate: O3 = 〈0|qq|0〉 , (4)
gluon condensate: O4 = 〈0|GµνGµν|0〉 , (5)

quark-gluon condensate: O5 = 〈0|qσµνGµνq|0〉 , (6)
four-quark condensate: O

q
6 = 〈0|q Γ qq Γ q|0〉 , (7)

three-gluon condensate: OG
6 = 〈0|Ga

µνG
b
νσGc

σµ|0〉 f
abc , (8)

where Γ stands for any combination of the 4×4 matrices of a set {1, γ5, γ
µ, γ5γ

µ, σµν} together with the
3 × 3 matrices {1,T a}, a = 1 . . . 8, that is Lorentz invariant. In the following sections we will see that
such QCD condensates play an important role in evaluation of the OPE of the corresponding Green
functions.

It seems that the three-point OPE has been known only for three out of five nontrivial Green
functions in the odd-intrinsic parity sector of QCD, specifically for VVP, VAS and AAP. Therefore,
the study of the OPE for VVA and AAA correlators is thus given by our contribution.

1.1 Notation

In this article, we consider all momenta p, q, r as ingoing to the vertices, i.e. the law of momentum
conservation can be written in the form

p + q + r = 0 . (9)

Also, a notation for the contractions of Levi-Civita tensor with the four-momenta is defined as

εµνα(p) ≡ εµναβpβ , εµν(p)(q) ≡ εµναβpαqβ . (10)

2 Review of familiar results
As we have already mentioned, the Green functions that have been already studied extensively in the
literature are VVP,VAS and AAP. All three of them can be written in the simple forms(

ΠVVP(p, q; r)
)abc
µν = ΠVVP(p2, q2; r2)dabcεµν(p)(q) , (11)(

ΠVAS (p, q; r)
)abc
µν = ΠVAS (p2, q2; r2) f abcεµν(p)(q) , (12)(

ΠAAP(p, q; r)
)abc
µν = ΠAAP(p2, q2; r2)dabcεµν(p)(q) . (13)
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The high-energy behaviour within the OPE framework can be written down as follows. If we consider
all individual external momenta of all the three currents or densities to be high, it is easy to realize
that the leading order contribution corresponds to two contractions of the quark fields contained in
the respective currents and densities. The three contractions are already equal to zero, whilst one and
none contractions are subleading. Then, the LO contribution to the OPE is generated only by the
quark condensate and it can be illustrated as (the crossed circle stands either for the current or the
density of respective type) 〈

0
∣∣∣ ∣∣∣0〉 , 0 . (14)

The explicit calculations lead to the results [5], [6]:

ΠVVP
(
(λp)2, (λq)2; (λr)2) =

B0F2

2λ4

p2 + q2 + r2

p2q2r2 + O

( 1
λ6

)
, (15)

ΠVAS
(
(λp)2, (λq)2; (λr)2) =

B0F2

2λ4

p2 − q2 − r2

p2q2r2 + O

( 1
λ6

)
, (16)

ΠAAP
(
(λp)2, (λq)2; (λr)2) =

B0F2

2λ4

p2 + q2 − r2

p2q2r2 + O

( 1
λ6

)
. (17)

A detailed explanation of calculations within the OPE framework can be found in [7], [8].
So far, our discussion was rather of a mathematical nature. Hence, let us introduce the tools we use

in our analysis. Dispersion representation of the Green functions which are order parameters of the
chiral symmetry breaking enables us to make use of an information on the asymptotics both at the low
and high energies and allows us to relate the unknown low energy constants (LECs) to the properties
of the corresponding spectral functions in terms of the chiral sum rules. These are usually assumed
to be saturated by the resonant states at low energies. This assumption connects the LECs to the
phenomenology of resonances in the intermediate energy region, i.e. for energies Mρ ≤ E ≤ 2 GeV.
The next-to-leading order resonance Lagrangian, relevant in the odd-intrinsic parity sector of QCD,
was formulated for the first time in [9] and is of the form

L
(6)
R =

∑
X

∑
i

κX
i Ô

X
i µναβε

µναβ , (18)

where X stands for the single-resonance fields V , A, S , P, double-resonance fields VV , AA, S A, S V ,
VA, PA, PV and triple-resonance fields VVP, VAS , AAP. This Lagrangian contains 67 operators
ÔX

i µναβ in total and the same number of corresponding unknown coupling constants κX
i . We try to de-

termine the couplings using the following constraints: high-energy behavior (OPE), Brodsky-Lepage
behavior of the transition formfactor, matching calculations in RχT with χPT or suitable inputs from
experiments.

3 OPE for VVA Green function with two large momenta

Before we make the same attempt for the remaining VVA and AAA correlators, let us make use of
an already known result of the two-point OPE for the VVA, where only two external momenta are
large. In the standard definition of the VVA Green function, i.e. the correlator of two vector and one
axial-vector current, one can factorize the symmetric tensor that comes from the traces over flavor
space and the Lorentz part, which is restricted by the Ward identities into four terms, i.e.(

ΠVVA(p, q; r)
)abc
µνρ = dabc[wLεµν(p)(q)rρ + w(1)

T Π(1)
µνρ + w(2)

T Π(2)
µνρ + w(3)

T Π(3)
µνρ

]
, (19)
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where Π
(i)
µνρ (i = 1, 2, 3) are transversal tensors defined in [10]. The longitudinal part proportional to

form factor wL is fixed by the anomaly, whilst w(i)
T are transversal form factors. In order to identify

the unknown form factors wL, w
(i)
T we have calculated all possible Feynman diagrams at tree level that

contribute to the VVA Green function and that are generated by the resonance Lagrangian (18). Our
calculations [11] lead to the results

wL =
Nc

8π2r2 , (20)

w(1)
T = −

2
√

2FV
[
κV

17(p2 + q2 − 2M2
V ) −

√
2FVκ

VV
3

]
(p2 − M2

V )(q2 − M2
V )

, (21)

w(2)
T = −

2
√

2FV (p2 − q2)(2κV
12 + κV

16 − κ
V
17)

(p2 − M2
V )(q2 − M2

V )
, (22)

w(3)
T =

2
√

2FV (p2 − q2)
(p2 − M2

V )(q2 − M2
V )

(
2κV

11 + 2κV
12 − κ

V
17 −

√
2FAκ

VA
5

r2 − M2
A

)
. (23)

A comment is in order here. Unlike in our case of the VVA correlator, where we have vertices with
two resonances at most, one could also have large-Nc diagrams contributing to the three-point Green
functions with three resonances. This may seem to be the case, considering the expression (23),
where one can find a term made of three resonance propagators. However, this observation is just
a coincidence due to algebraical manipulations. One can rewrite the term (p2 − q2) in front of the
brackets in (23) simply as (p2−M2

V )− (q2−M2
V ) which leads to the original structure of w(3)

T consisted
of two resonance propagators, as one should expect from the form of the operator contributing with
the coupling constant κVA

5 (see [11] for details).
Let us make a use of some known relations concerning the OPE for the VVA Green function,

when only two out of three momenta are large. Then, we construct the formactor [10]

wT (Q2) = −16π2[w(1)
T (−Q2, 0,−Q2) + w(3)

T (−Q2, 0,−Q2)
]
. (24)

Be aware of the different notation here and in [10], although the definition (24) is defined here in order
to be the same. An important fact is that the result for (24) up to O(1/Q8) was obtained from the OPE
framework in AdS/QCD [12, 13], in which the outcome reads

wT (Q2) =
Nc

Q2 +
128π3αsχ〈qq〉2

9Q6 + O

( 1
Q8

)
, (25)

where χ is the magnetic susceptibility of the quark condensate - a detailed introduction and definition
of this quantity can be found in [13]. Using (21) and (23), we simply obtain the formfactor (24) in the
form

wT (Q2) =
Nc

M2
V

+
64π2FV

M2
V (Q2 + M2

V )

[
Q2

(√
2(κV

11 + κV
12) +

FAκ
VA
5

Q2 + M2
A

)
− FVκ

VV
3

]
, (26)

where we have already made a use of the known expression for the coupling constant κV
17 from the

constraint κV
17 = − Nc

64
√

2π2FV
for VVP Green function (see [9] for details). Now, we expand (26) into a

series in terms of Q2 up to O(1/Q8) and compare the coefficients of the given order with (25). This
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leads to the system of four equations, which can be easily solved:

Nc

64π2FV
+
√

2(κV
11 + κV

12) = 0 , (27)

FVκ
VV
3 − FAκ

VA
5

M2
V

+
√

2(κV
11 + κV

12) = −
Nc

64π2FV
, (28)

FVκ
VV
3 − FAκ

VA
5

M2
V

+
√

2(κV
11 + κV

12) − FAκ
VA
5

M2
A

M4
V

= 0 , (29)

FVκ
VV
3 − FAκ

VA
5

M2
V

+
√

2(κV
11 + κV

12) − FAκ
VA
5

M2
A

M4
V

(
1 +

M2
A

M2
V

)
= −

2παsχ〈qq〉2

9FV M4
V

. (30)

From the first equation (27) we obtain the solution in the form (31). By using this solution in (28),
we get a simple relation between the couplings κVV

3 and κVA
5 in the form κVA

5 =
FV
FA
κVV

3 . From (29)
we eventually obtain a specific form for both of these couplings, (32) and (33). The results are
summarized here:

κV
11 + κV

12 = −
Nc

64
√

2π2FV
, (31)

κVV
3 = −

NcM4
V

64π2M2
AF2

V

, (32)

κVA
5 = −

NcM4
V

64π2M2
AFV FA

. (33)

Having known the constraints above, we can substitute them in (30), which on the left side of the
equation gives an expression −NcM2

AM2
V which obviously can not be matched to the right side of the

equation. Therefore, the system of equations (27)-(30) can not be solved in order to satisfy all the
equations at once. Hence, the obtained constraints (31)-(33) need not to be taken seriously, but more
likely as a close approximation to reality.

Also, using the constraint for κVV
3 from the OPE for VVP Green function together with our result

(32), we can extract relations for κVV
2 and κPV

3 (see [9] for details):

κVV
2 =

F2

64F2
V

−
NcM4

V

512π2F2
V M2

A

, (34)

κPV
3 = −

F2

32
√

2dmFV

[
1 +

NcM2
V

8π2F2

( M2
V

M2
A

− 1
)]
. (35)

By the determination of (35) we can also obtain a relation for the deviation δBL from the form of κPV
3

if we take the Brodsky-Lepage behaviour [9, 14, 15] of the Fπ0γγ formfactor into account. Hence, the
prediction is

δBL =
NcM2

V

8π2F2

( M2
V

M2
A

− 1
)

= −1.342 . (36)

Now, a discussion involving the parameter δBL is in order. Knowing the value (36), one can apply
it to study a particular example that could be verified either by other theoretical consequences or
experiments. In our case, a π0γγ form factor is a suitable tool, because the experimentally measured
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object

F
RχT
π0γγ

(0,−Q2; 0) =
F

3M2
V (Q2 + M2

V )

(
Q2δBL −

NcM4
V

4π2F2

)
, (37)

is sensitive to the value of δBL. The form factor (37) is depicted in figure 1 for our value δBL = −1.342
and for two other values, based on [9]. The figure also contains experimentally obtained values of
F

RχT
π0γγ

(0,−Q2; 0) from experiments BABAR [16], BELLE [17] and CLEO [18].
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Figure 1. A plot of BABAR (green), BELLE (red) and CLEO (blue) data fitted with the form factor
F

RχT
π0γγ

(0,−Q2; 0) (37) using the modified Brodsky-Lepage condition. The full black line represents the form
factor with δBL = −1.342, the dashed line corresponds to δBL = −0.055 (see [9]) and the dot-dashed line to
δBL = 0. The full brown line stands for the LMD form factor (38).

We can clearly see that the form factor (37) does not agree with the experimental data. To get
a full notion, one should discuss first if we even have a sufficiently consistent theoretical model to
describe such behaviour. In other words, is it sufficient not to add any other resonance fields and still
have an agreement with the experiments? Obviously, not. The reason is that our form factor (37) for
the value δBL = −1.342 is very close to the behaviour of the form factor F LMD(p2, q2; r2) describing
the lowest meson dominance (LMD) [19], [20]:

F LMD(0,−Q2; 0) = −
Nc

8π2F
M2

V

Q2 + M2
V

(
1 +

4π2F2

NcM4
V

Q2
)
. (38)

This means that it is not obviously sufficient to take only the lightest resonances into account and
one thus needs to add heavier fields in order to get closer to the experimantal data. To support our
explanation, the LMD form factor (38) is also depicted in figure 1.
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4 OPE for VVA and AAA Green functions with three large momenta

As we have seen above, the predicted value for δBL is not consistent with the experimental data. Let
us remind ourselves that such a prediction is based on the OPE with two large momenta. However,
there is no physical argument that would prefer such a type of the OPE. Hence, one can try to cal-
culate the OPE with all three momenta large and find out if the agreement between the results and
experiment improves. However, such an approach is not that easy in the case of the VVA and AAA
Green functions, because neither of these correlators have the leading order contribution to the OPE,
i.e. 〈

0
∣∣∣ ∣∣∣0〉 = 0 . (39)

Therefore, one is required to include the contributions to higher orders by means of diagrams with
gluons coupled to the quark fields. Such diagrams naturally lead to contributions of the higher QCD
condensates. The scheme below illustrates the contributions of the quark condensate (D = 3) in higher
orders as well as the gluon condensate (D = 4), the quark-gluon condensate (D = 5), the four-quark
condensate and the three-gluon condensate (both D = 6) [21]:

D = 3 : + + + (40)

D = 4 : + (41)

D = 5 : (42)

D = 6 : + + +

(43)

It is very important to mention that not all diagrams necessarily represent nontrivial contributions
both for the VVA and AAA Green functions - some loops vanish due to the Furry theorem or due to a
necessity to have the contributions Lorentz invariant. This study is now in progress [21].

5 Conclusion

In this article, we summarized the known results for the high-energy behaviour of Green functions
within the OPE framework, relevant in the odd-intrinsic parity sector. We also presented our approach
in order to evaluate the OPE for the VVA and AAA correlators for all momenta large.
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