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Abstract: Einstein’s equation is rewritten in an equivalent form, which remains valid at the singularities in some ma-
jor cases. These cases include the Schwarzschild singularity, the Friedmann-Lemaître-Robertson-Walker
Big Bang singularity, isotropic singularities, and a class of warped product singularities. This equation is
constructed in terms of the Ricci part of the Riemann curvature (as the Kulkarni-Nomizu product between
Einstein’s equation and the metric tensor).
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Introduction

The singularities in General Relativity can be avoidedonly if the stress-energy tensor in the right hand side ofEinstein’s equation satisfies some particular conditions.One way to avoid them was proposed by the authors of[1], who have shown that the singularities can be removedby constructing the stress-energy tensor with non-linearelectrodynamics. On the other hand, Einstein’s equationleads to singularities in general conditions [2–7], and therethe time evolution breaks down. Is this a problem of thetheory itself or of the way it is formulated?
This paper proposes a version of Einstein’s equation whichis equivalent to the standard version at the points ofspacetime where the metric is non-singular. But unlikeEinstein’s equation, in many cases it can be extended atand beyond the singular points.
∗E-mail: holotronix@gmail.com

Let (M,g) be a Riemannian or a semi-Riemannian man-ifold of dimension n. It is useful to recall the definitionof the Kulkarni-Nomizu product of two symmetric bilinearforms h and k ,
(h ◦ k)abcd := hackbd − hadkbc + hbdkac − hbckad. (1)

The Riemann curvature tensor can be decomposed alge-braically as
Rabcd = Sabcd + Eabcd + Cabcd, (2)

where
Sabcd = 12n(n − 1)R (g ◦ g)abcd (3)

is the scalar part of the Riemann curvature and
Eabcd = 1

n − 2 (S ◦ g)abcd (4)
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Einstein equation at singularities

is the semi-traceless part of the Riemann curvature. Here
Sab := Rab −

1
nRgab (5)

is the traceless part of the Ricci curvature.The Weyl curvature tensor is defined as the traceless partof the Riemann curvature
Cabcd = Rabcd − Sabcd − Eabcd. (6)

The Einstein equation is
Gab + Λgab = κTab, (7)

where Tab is the stress-energy tensor of the matter, theconstant κ is defined as κ := 8πG
c4 , where G and c are thegravitational constant and the speed of light, and Λ is the

cosmological constant. The term
Gab := Rab −

12Rgab (8)
is the Einstein tensor, constructed from the Ricci curvature
Rab := gstRasbt and the scalar curvature R := gstRst .As it is understood, the Einstein equation establishes theconnection between curvature and stress-energy. The cur-vature contributes to the equation in the form of the Riccitensor Rab and the scalar curvature. In the proposed equa-tion, the curvature contributes in the form of the semi-traceless and scalar parts of the Riemann tensor, Eabcd(4) and Sabcd (3), which are tensors of the same order andhave the same symmetries as Rabcd.The Ricci tensor Rab is obtained by contracting the tensor
Eabcd+Sabcd, and has the same information (if the metric isnon-degenerate). One can move from the fourth-order ten-sors Eabcd+Sabcd to Rab by contraction, and one can moveback to them by taking the Kulkarni-Nomizu product (1),but they are equivalent. Yet, if the metric gab is degener-ate, then gab and the contraction Rab = gst(Easbt +Sasbt)become divergent, even if gab, Eabcd, and Sabcd are smooth.This suggests the possibility that Eabcd and Sabcd are morefundamental that the Ricci and scalar curvatures.This suggestion is in agreement with the following obser-vation. In the case of electrovac solutions, where Fab isthe electromagnetic tensor,

Tab = 14π
(14gabFstF st − FasFbs

)
= − 18π (FacFbc + ∗Fac∗Fbc) , (9)

where ∗ is the Hodge duality operation. It can be obtainedby contracting the semi-traceless part of the Riemann ten-sor
Eabcd = − κ8π (FabFcd + ∗Fab∗Fcd) . (10)

Therefore it is natural to at least consider an equation interms of these fourth-order tensors, rather than the Ricciand scalar curvatures.The main advantage of this method is that there are sin-gularities in which the new formulation of the Einsteinequation is not singular (although the original Einsteinequation exhibits singularities, obtained when contract-ing with the singular tensor gab). The expanded Einsteinequation is written in terms of the smooth geometric ob-jects Eabcd and Sabcd. Because of this the solutions canbe extended at singularities where the original Einsteinequation diverges. This doesn’t mean that the singular-ities are removed; for example the Kretschmann scalar
RabcdRabcd is still divergent at some of these singularities.But this is not a problem, since the Kretschmann scalaris not part of the evolution equation. It is normally usedas an indicator that there is a singularity, for example toprove that the Schwarzschild singularity at r = 0 cannotbe removed by coordinate changes, as the event horizonsingularity can. While a singularity of the Kretschmannscalar indicates the presence of a singularity of the cur-vature, it doesn’t have implications on whether the singu-larity can be resolved or not. In the proposed equationwe use Rabcd which is smooth at the studied singularities,and we don’t use Rabcd which is singular and causes thesingularity of the Kretschmann scalar.A second reason to consider the expanded version of theEinstein equation and the quasi-regular singularities atwhich it is smooth is that at these singularities the Weylcurvature tensor vanishes. The implications of this featurewill be explored in [8].It will be seen that there are some important examples ofsingularities which turn out to be quasi-regular. Whilesingularities still exist, our approach provides a descrip-tion in terms of smooth geometric objects which remainfinite at singularities. By this we hope to improve ourunderstanding of singularities and to distinguish those towhich our resolution applies.The expanded Einstein equations and the quasi-regularspacetimes on which they hold are introduced in section 1.They are obtained by taking the Kulkarni-Nomizu prod-uct between Einstein’s equation and the metric tensor. Ina quasi-regular spacetime the metric tensor becomes de-generate at singularities in a way which cancels them andmakes the equations smooth.The situations when the new version of Einstein’s equa-tion extends at singularities include isotropic singularities(section 2.1) and a class of warped product singularities
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(section 2.2). It also contains the Schwarzschild singu-larity (section 2.4) and the FLRW Big Bang singularity(section 2.3).
1. Expanded Einstein equation and
quasi-regular spacetimes
1.1. The expanded Einstein equation
An equation which is equivalent to Einstein’s equationwhenever the metric tensor gab is non-degenerate, butis valid also in a class of situations when gab becomesdegenerate and Einstein’s tensor is not defined will bediscussed in this section. Later it will be shown that theproposed version of Einstein’s equation remains smooth invarious important situations such as the FLRW Big-Bangsingularity, isotropic singularities, and at the singularityof the Schwarzschild black hole.We introduce the expanded Einstein equation

(G ◦ g)abcd + Λ(g ◦ g)abcd = κ(T ◦ g)abcd. (11)
If the metric is non-degenerate then the Einstein equa-tion and its expanded version are equivalent. This can beseen by contracting the expanded Einstein equation, forinstance in the indices b and d. From (1) the contractionin b and d of a Kulkarni-Nomizu product (h ◦ g)abcd is
ĥac : = (h ◦ g)asctgst = hacgss − hatδtc + hssgac − hscδsa= 2hac + hssgac. (12)

From ĥac the original tensor hac can be obtained againby
hac = 12 ĥac − 112 ĥssgac. (13)

By this procedure the terms Gab, Tab, and Λgab can berecovered from the equation (11), thus obtaining the Ein-stein equation (7) . Hence, the Einstein equation andits expanded version are equivalent for a non-degeneratemetric.If the metric becomes degenerate its inverse becomes sin-gular, and in general the Riemann, Ricci, and scalar cur-vatures, and consequently the Einstein tensor Gab, di-verge. For certain cases the metric term from the Kulkarni-Nomizu product G◦g tends to 0 fast enough to cancel thedivergence of the Einstein tensor. The quasi-regular sin-gularities satisfy the condition that the divergence of Gis compensated by the degeneracy of the metric, so that
G ◦ g is smooth.

This cancellation allows us to weaken the condition thatthe metric tensor is non-degenerate, to some cases whenit can be degenerate. It will be seen that these casesinclude some important singularities.
1.2. A more explicit form of the expanded Ein-
stein equation
To give a more explicit form of the expanded Einsteinequation, the Ricci decomposition of the Riemann curva-ture tensor is used (see e.g. [9–11]).By using the equations (8) and (5) in dimension n = 4,the Einstein tensor in terms of the traceless part of theRicci tensor and the scalar curvature can be written:

Gab = Sab −
14Rgab. (14)

This equation can be used to calculate the expanded Ein-
stein tensor :

Gabcd := (G ◦ g)abcd= (S ◦ g)abcd − 14R (g ◦ g)abcd= 2Eabcd − 6Sabcd. (15)
The expanded Einstein equation now takes the form

2Eabcd − 6Sabcd + Λ(g ◦ g)abcd = κ(T ◦ g)abcd. (16)
1.3. Quasi-regular spacetimes
We are interested in singular spacetimes on which theexpanded Einstein equation (11) can be written and issmooth. From (16) it can be seen that this requires thesmoothness of the tensors Eabcd and Sabcd.In addition we are interested to have the nice properties ofthe semi-regular spacetimes. As showed in [12], the semi-regular manifolds are a class of singular semi-Riemannianmanifolds which are nice for several reasons, one of thembeing that the Riemann tensor Rabcd is smooth.First, a contraction between covariant indices is needed.This is in general prohibited by the fact that when themetric tensor gab becomes degenerate it doesn’t admit areciprocal gab. Although the metric gab can’t induce aninvariant inner product on the cotangent space T ∗pM , it in-duces one on its subspace [(TpM), where [ : TpM → T ∗pMis the vector space morphism defined by X [(Y ) := 〈X, Y 〉,for any X, Y ∈ TpM . Equivalently, [(TpM) is the spaceof 1-forms ω on TpM so that ω|ker [ = 0. The morphism
[ is isomorphism if and only if g is non-degenerate; inthis case its inverse is denoted by ]. The inner prod-uct on [(TpM) is then defined by g•(X [, Y [) := 〈X, Y 〉
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Einstein equation at singularities

and it is invariant. This allows us to define a contrac-tion between covariant slots of a tensor T , which vanisheswhen vectors from ker [ are plugged in those slots. Thiswill turn out to be enough for our needs. We denote thecontractions between covariant indices of a tensor T by
T (ω1, . . . , ωr , v1, . . . , •, . . . , •, . . . , vs).A degenerate metric also prohibits in general the con-struction of a Levi-Civita connection. For vector fields weuse instead of ∇XY , the Koszul form, defined as:

K : X(M)3 → R,

K(X, Y , Z ) :=12{X〈Y , Z〉+ Y 〈Z , X〉 − Z〈X, Y 〉

− 〈X, [Y , Z ]〉+ 〈Y , [Z, X ]〉+ 〈Z , [X, Y ]〉}(17)
which defines the Levi-Civita connection by ∇XY =
K(X, Y , _)] for a non-degenerate metric, but not when themetric becomes degenerate. We define now semi-regularmanifolds, on which we can define covariant derivativesfor a large class of differential forms and tensors. Wecan also define a generalization of the Riemann curvature
Rabcd, which turns out to be smooth and non-singular.
Definition 1.A singular semi-Riemannian manifold satisfying the con-dition that K(X, Y , _) ∈ [(TpM), and that the contraction
K(X, Y , •)K(Z, T , •) is smooth for any local vector fields
X, Y , Z , T , is named semi-regular manifold, and its met-ric is called semi-regular metric. A 4-dimensional semi-regular manifold with metric having the signature at eachpoint (r, s, t), s ≤ 3, t ≤ 1, but which is non-degenerateon a dense subset, is called semi-regular spacetime [12].
In [12] we defined the Riemann curvature Rabcd for semi-regular metrics, even for non-degenerate metrics, in a waywhich avoids the undefined∇XY , but relies on the definedand smooth K(X, Y , Z ), by
Rabcd = ∂aΓbcd − ∂bΓacd + Γac•Γbd• − Γbc•Γad• , (18)

where Γabc = K(∂a, ∂b, ∂c) are the Christoffel’s symbols ofthe first kind. From Definition 1, Rabcd is smooth. Moredetails on the semi-regular manifolds can be found in [12–14].In a semi-regular spacetime, since Rabcd is smooth, thedensitized Einstein tensor Gab detg is smooth [12], and adensitized version of the Einstein equation can be written,

which is equivalent to the usual version when the metricis non-degenerate:
Gab
√
−gW + Λgab√−gW = κTab

√
−gW , (19)

where it is enough to take the weight W ≤ 2. Althoughthe semi-regular approach is more general, here is ex-plored the quasi-regular one, which is more strict. Con-sequently, these results are stronger.
Definition 2.We say that a semi-regular manifold (M,gab) is quasi-
regular, and that gab is a quasi-regular metric, if:

1. gab is non-degenerate on a subset dense in M
2. the tensors Sabcd and Eabcd defined at thepoints where the metric is non-degenerate extendsmoothly to the entire manifold M .

If the quasi-regular manifold M is a semi-regular space-time, we call it quasi-regular spacetime. Singularities ofquasi-regular manifolds are called quasi-regular.
It can be seen that on an quasi-regular spacetime theexpanded Einstein tensor can be extended at the pointswhere the metric is degenerate, and the extension issmooth. This is in fact the motivation of Definition 2.
2. Examples of quasi-regular space-
times
The quasi-regular spacetimes are more general than theregular ones (those with non-degenerate metric), contain-ing them as a particular case. The question is, are theygeneral enough to cover the singularities which plaguedGeneral Relativity? In the following it will be seen thatat least for some relevant cases the answer is positive.It will be seen that the class of quasi-regular singular-ities contain isotropic singularities 2.1, singularities ob-tained as warped products 2.2 (including the Friedmann-Lemaître-Robertson-Walker spacetime 2.3), and even theSchwarzschild singularity 2.4. The existence of theseexamples which are extensively researched justifies thestudy of the more general quasi-regular singularities andof the extended Einstein equations.
2.1. Isotropic singularities
Isotropic singularities occur in conformal rescalings ofnon-degenerate metrics, when the scaling function can-cels. They were extensively studied by Tod [15–20],
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Claudel & Newman [21], Anguige & Tod [22, 23], in con-nection with cosmological models. The following theoremshows that the isotropic singularities are quasi-regular.
Theorem 3 (Isotropic singularities).
Let (M,gab) be a regular spacetime (we assume therefore
that the metric gab is non-degenerate). Then, if Ω : M →
R is a smooth function which is non-zero on a dense subset
of M, the spacetime (M, g̃ab := Ω2gab) is quasi-regular.

Proof. From [12] is known that (M, g̃ab) is semi-regu-lar.The Ricci and the scalar curvatures take the followingforms ([7], p. 42.):
R̃a

b = Ω−2Ra
b + 2Ω−1(Ω−1);bsgas − 12Ω−4(Ω2);stgstδab(20)
R̃ = Ω−2R − 6Ω−3Ω;stgst (21)

where the covariant derivatives correspond to the metric
g. From equation (20) follows that
R̃ab = Ω2gasR̃s

b = Rab+2Ω(Ω−1);ab− 12Ω−2(Ω2);stgstgab,(22)which tends to infinity when Ω→ 0. But we are interestedto prove the smoothness of the Kulkarni-Nomizu productR̃ic◦g̃. We notice that the term g̃ contributes with a factorΩ2, and it is enough to prove the smoothness of
Ω2R̃ab = Ω2Rab + 2Ω3(Ω−1);ab − 12 (Ω2);stgstgab, (23)

which follows from
Ω3(Ω−1);ab = Ω3 ((Ω−1);a);b = Ω3 (−Ω−2Ω;a);b= Ω3 (2Ω−3Ω;bΩ;a −Ω−2Ω;ab)= 2Ω;aΩ;b −ΩΩ;ab

(24)

Hence, the tensor R̃ic◦g̃ is smooth. The fact that R̃g̃◦g̃ issmooth follows from the observation that g̃ ◦ g̃ contributeswith Ω4, and the least power in which Ω appears in theexpression (21) of R̃ is −3.From the above follows that Ẽabcd and S̃abcd are smooth.Hence the spacetime (M, g̃ab) is quasi-regular.

2.2. Quasi-regular warped products
Another example useful in cosmology is the following,which is a generalization of the warped products. Warpedproducts are extensively researched, since they allow theconstruction of semi-Riemannian spacetimes, having ap-plications to GR. But when the warping function becomes0, singularities occur (see e.g. [24] 204). Fortunately,in the cases of interest for General Relativity, these sin-gularities are quasi-regular. We will allow the warpedfunction f to become 0 (generalizing the standard defini-tion [24], where it is not allowed to vanish because it leadsto degenerate metrics), and prove that what the resultingsingularities are quasi-regular.
Definition 4.Let (B, ds2

B) and (F, ds2
F ) be two semi-Riemannian mani-folds, and f : B → R a smooth function on B. The degen-

erate warped product of B and F with warping function fis the manifold B×f F := (B × F, ds2
B×F
), with the metric

ds2
B×F = ds2

B + f2ds2
F (25)

Theorem 5 (Quasi-regular warped product).
A degenerate warped product B ×f F with dimB = 1 is
quasi-regular.

Proof. From [13], B ×f F is semi-regular.Let’s denote by gB , gF and g the metrics on B, F and
B ×f F . It is known ([24], p. 211) that for horizontalvector fields X, Y ∈ L(B×F,B) and vertical vector fields
V ,W ∈ L(B × F, F ),

1. Ric(X, Y ) = RicB(X, Y ) + dimF
f Hf (X, Y )

2. Ric(X, V ) = 0
3. Ric(V ,W ) = RicF (V ,W ) +(f∆f + (dimF − 1)gB(grad f , grad f ))gF (V ,W )

where ∆f is the Laplacian, Hf the Hessian, and grad fthe gradient. It follows that Ric(X, V ) and Ric(V ,W )are smooth, but Ric(X, Y ) in general is not, because ofthe term containing f−1. But since dimB = 1, the onlyterms in the Kulkarni-Nomizu product Ric ◦ g containingRic(X, Y ) are of the form
Ric(X, Y )g(V ,W ) = f2Ric(X, Y )gF (V ,W ).

Hence, Ric ◦ g is smooth.
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From the expression of the scalar curvature
R =RB + RF

f2 + 2 dimF ∆f
f+ dimF (dimF − 1)gB(grad f , grad f )

f2 (26)
can be concluded that Sabcd is smooth too, because g ◦ gcontains at least one factor of f2. Hence, B×f F is quasi-regular.
The following example important in cosmology is a directapplication of this result.
Proposition 6 (Semi-regular manifold which is
not quasi-regular).
Let B = Rk , k > 1, be an Euclidean space, with the
canonical metric gB , and f : B → R a linear function
f 6= 0. Let F = Rl, l > 1, with the canonical metric
gF . Then the degenerate warped product B ×f F is semi-
regular, but it isn’t quasi-regular.

Proof. Because f is linear but not constant, grad f 6=0 is constant, and ∆f = 0. The scalar curvature (26) be-comes R = l(l−1)gB(grad f , grad f )
f2 , which is singular at0. Because k > 1, gB ◦gB doesn’t vanish, hence it doesn’tcancel the denominator f2 of R in the term RgB ◦gB . Also,the term RgB ◦ gB is not canceled by other terms com-posing Sabcd, because they are all smooth, containing atleast one gF . Hence, Sabcd is singular, and the degen-erate warped product B ×f F isn’t quasi-regular. On theother hand, according to [13], because B and F are non-degenerate, B ×f F is semi-regular.

2.3. The Friedmann-Lemaître-Robertson-
Walker spacetime
The Friedmann-Lemaître-Robertson-Walker (FLRW)spacetime is defined as the warped product I ×a Σ, where

1. I ⊆ R is an interval representing the time, which isviewed as a semi-Riemannian space with the neg-ative definite metric −c2dt2.
2. (Σ, dΣ2) is a three-dimensional Riemannian space,usually one of the homogeneous spaces S3, R3, and
H3 (to model the homogeneity and isotropy condi-tions at large scale). Then the metric on Σ is, inspherical coordinates (r, θ, φ),

dΣ2 = dr21− kr2 + r2 (dθ2 + sin2 θdφ2) , (27)

where k = 1, 0, −1, for the 3-sphere S3, the Eu-clidean space R3, or hyperbolic space H3 respec-tively.
3. a : I → R is a function of time.

The FLRW metric is
ds2 = −c2dt2 + a2(t)dΣ2. (28)

At any moment of time t ∈ I the space is Σt = (Σ, a2(t)gΣ).For a FLRW universe filled with a fluid with mass density
ρ(t) and pressure density p(t), the stress-energy tensor isdefined as

T ab = (ρ + p
c2
)
uaub + pgab, (29)

where g(u, u) = −c2.From Einstein’s equation with the stress-energy tensor(29) follow the Friedmann equation

ρ = κ−1 (3 ȧ2 + kc2
c2a2 − Λ) , (30)

which gives the mass density ρ(t) in terms of a(t), and the
acceleration equation

p
c2 = 2

κc2
(Λ3 − 1

c2 äa
)
− ρ3 , (31)

giving the pressure density p(t).A question that may arise is what happens with the den-sities ρ and p. Equations (30) and (31) show that ρ and pmay diverge in most cases for a → 0. As explained in [31],
ρ and p are calculated considering orthonormal frames. Ifthe frame is not necessarily orthonormal (because thereis no orthonormal frame at the point where the metric isdegenerate), then the volume element is not necessarilyequal to 1, and it has to be included in the equations.The scalars ρ and p are replaced by the differential 4-forms which have the components ρ√−g and p√−g. Itcan be seen by calculation that these forms are smooth.If the metric on the manifold Σ is denoted by gΣ, then theFriedmann equation (30) becomes

ρ
√
−g = 3

κ a
(
ȧ2 + k

)√gΣ, (32)
and the acceleration equation (31) becomes

ρ
√
−g+ 3p√−g = − 6

κ a
2ä√gΣ, (33)
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hence ρ√−g and p√−g are smooth.As a → 0, the metric becomes degenerate, ρ and pdiverge, and therefore the stress-energy tensor (29) di-verges too. Because of this, the Ricci tensor also diverges.But, from Theorem 5, Rabcd, Eabcd, and Sabcd are smooth.What can be said about the expanded stress-energy tensor(T ◦g)abcd? The following corollary shows that the metricis quasi-regular, hence the expanded stress-energy tensoris smooth.
Corollary 7.
The FLRW spacetime with smooth a : I → R is quasi-
regular.

Proof. Since the FLRW spacetime is a warped productbetween a 1-dimensional and a 3-dimensional manifoldwith warping function a, this is a direct consequence ofTheorem 5.
Remark 8.Corollary 7 applies not only to a FLRW universe filledwith a fluid, but to more general ones. For this particularcase a direct proof was given in [25], showing explicitlyhow the expected infinities of the physical fields cancelout.
While the expanded Einstein equation for the FLRWspacetime with smooth a is written in terms of smoothobjects like Eabcd, Sabcd, and Tabcd := (T ◦g)abcd, a ques-tion arises, as to why use these objects, instead of Rab,
S, and Tab? It is true that the expanded objects remainsmooth, while the standard ones don’t, but is there other,more fundamental reason? It can be said that Eabcd and
Sabcd are more fundamental, since Rab and R are obtainedfrom them by contractions. But for Tabcd, unfortunately, atthis time we don’t know an interpretation. The stress-energy tensor Tab can be obtained from a Lagrangian, butwe don’t know yet a way to obtain directly Tabcd from aLagrangian. One hint that, at least for some fields, Tabcdseems more fundamental is that, for electrovac solutions, itis given by Tabcd = − 18π (FabFcd + ∗Fab∗Fcd) (10), while
Tab by contracting it (9). Similar form has the stress-energy tensor for Yang-Mills fields.Another question that may appear is what is obtained,given that the solution can be extended beyond the mo-ment when a(t) = 0? Say that a(0) = 0. The extendedsolution will describe two universes, both originating fromthe same Big-Bang at the same moment t = 0, one ofthem expanding toward the direction in which t increasesand the other one toward the direction in which t de-creases. The parameter t is just a coordinate, and the

physical laws are symmetric with respect to time reversalin General Relativity (if one wants to consider quantumfields, the combined symmetry CPT should be consideredinstead of T alone).
2.4. Schwarzschild black hole
The Schwarzschild solution describing a black hole ofmass m is given in the Schwarzschild coordinates by themetric tensor:
ds2 = −(1− 2m

r

)dt2+(1− 2m
r

)−1 dr2+r2dσ 2, (34)
where dσ 2 = dθ2 + sin2 θdφ2 (35)
is the metric of the unit sphere S2. The units were chosenso that c = 1 and G = 1 (see e.g. [7]149).Apparently the metric is singular at r = 2m, on the eventhorizon. As it is known from the work of Eddington [26] andFinkelstein [27] appropriate coordinate changes make themetric non-degenerate on the event horizon, showing thatthe singularity is apparent, being due to the coordinates.The coordinate change is singular, but it can be said thatthe proper coordinates around the event horizon are thoseof Eddington and Finkelstein, and the Schwarzschild co-ordinates are the singular coordinates.Can we apply a similar method for the singularity at
r = 0? It can be checked that the Kretschmann scalar
RabcdRabcd is singular at r = 0, and since scalars are in-variant at any coordinate changes (including the singularones), it is usually correctly concluded that the singularityat r = 0 cannot be removed. Although it cannot be re-moved, it can be improved by finding coordinates makingthe metric analytic at r = 0. As shown in [28] the singular-ity r = 0 in the Schwarzschild metric (34) has two origins– it is a combination of degenerate metric and singularcoordinates. Firstly, the Schwarzschild coordinates aresingular at r = 0, but they can be desingularized by ap-plying the coordinate transformations from equation (37)which necessarily have the Jacobian equal to zero at r = 0.It is not possible to desingularize a coordinate system, byusing transformations that have non-vanishing Jacobian atthe singularity, because such transformations preserve theregularity of the metric. Secondly, after the transforma-tion the singularity is not completely removed, becausethe metric remains degenerate. However, the metric re-mains semi-regular, as shown in [28]. Here will be shownthat it is also quasi-regular.In [28] we showed that the Schwarzschild solution can bemade analytic at the singularity by a coordinate transfor-
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mation of the form {
r = τS
t = ξτT (36)

As it turns out, {
r = τ2
t = ξτ4 (37)

is the only choice which makes analytic at the singularitynot only the metric, but also the Riemann curvature Rabcd.In the new coordinates the metric has the form
ds2 = − 4τ42m− τ2 dτ2+(2m−τ2)τ4 (4ξdτ + τdξ)2+τ4dσ 2.(38)
Corollary 9.
The Schwarzschild spacetime is quasi-regular (in any at-
las compatible with the coordinates (37)).
Proof. We know from [28] that the Schwarzschildspacetime is semi-regular. Since it is also Ricci flat, i.e.
Rab = 0, it follows that Sab = 1 and R = 0, hence
Sabcd = 124R (g ◦ g)abcd = 0, and Eabcd 12 (S ◦ g)abcd = 0.Therefore, Sabcd and Eabcd are smooth. Consequently, theonly non-vanishing part of the curvature in the Ricci de-composition (2) is the Weyl tensor Cabcd, which in thiscase is equal to Rabcd, so it is smooth too.
Remark 10.It has been seen that even if the Schwarzschild metric gabis singular at r = 0 there is a coordinate system in whichit becomes quasi-regular. Because the metric becomesquasi-regular at r = 0, the expanded Einstein equationsare valid at r = 0 too. But also Einstein’s equation canbe extended at r = 0, because in this special case itbecomes Gab = 0, the Schwarzschild solution being avacuum solution. Hence, in this case we can just usethe standard Einstein equations, of course in coordinatescompatible with the coordinates (37). Corollary 9 showsthat the Schwarzschild singularity is quasi-regular in anysuch coordinates. Since Sabcd = Eabcd = 0, the onlynon-vanishing part of Rabcd is the Weyl curvature Cabcd =
Rabcd, which is smooth because Rabcd is smooth.
Remark 11.In the limit m = 0, the Schwarzschild solution (34) co-incides with the Minkowski metric, which is regular at
r = 0. The event horizon singularity r = 2m merges withthe r = 0 singularity, and cancel one another. Becausethe Schwarzschild radius becomes 0, the false singularity

r = 0 is not spacelike as in the case m > 0, but time-like. In the case m = 0, because there is no singularity at
r = 0, our coordinates (37), rather than removing a (non-existent) singularity, introduce one. The new coordinatesprovide a double covering for the Minkowski spacetime,because τ extends beyond r = 0 to negative values, in away similar to the case described in [29].
Open Problem 12.What can be said about the other stationary black hole so-lutions? In [29] and [30] we showed that there are coordi-nate transformations which make the Reissner-Nordströmmetric and the Kerr-Newman metric analytic at the sin-gularity. This is already a big step, because it allows usto foliate with Cauchy hypersurfaces these spacetimes. Isit possible to find coordinate transformations which makethem quasi-regular too?
3. Conclusions
An important problem in General Relativity is that of sin-gularities. At singularities some of the quantities involvedin the Einstein equation become infinite. But there areother quantities which are also invariant and in additionremain finite at a large class of singularities. In this paperit has been seen that translating the Einstein equation interms of such quantities allows it to be extended at suchsingularities.The Riemann tensor is, from geometric and linear-algebraic viewpoints, more fundamental than the Riccitensor Rab, which is just its trace. This suggests thatthe scalar part Sabcd (3) and the Ricci part Eabcd (4) ofthe Riemann curvature may be more fundamental than theRicci tensor. Consequently, this justifies the study of anequation equivalent to Einstein’s, but in terms of Eabcd and
Sabcd, instead of Rab and R . This is the expanded Einsteinequation (11). The idea that Eabcd is more fundamentalthan Rab seems to be suggested also by the electrovacsolution, with the expanded Einstein equation (10), andfrom which the electrovac Einstein equation is obtainedby contraction.To go from Einstein’s equation to its expanded versionwe use the Kulkarni-Nomizu product (1). To go back, weuse contraction (13). When the metric is non-degener-ate, these operations establish an equivalence betweenthe standard and the expanded Einstein equations.The question of whether the Ricci part of the Riemanntensor is more fundamental than the Ricci tensor may beirrelevant, or the answer may be debatable. But an impor-tant feature is that Eabcd and Sabcd can be defined in moregeneral situations than Rab and R . Hence, the expandedEinstein equation is more general than the Einstein equa-
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tion – it makes sense even when the metric is degenerate,at least for a class of singularities named quasi-regular.A brief investigation revealed that the class of quasi-regu-lar singularities is rich enough to contain some known sin-gularities, which were already considered by researchers,but now can be understood in a unified framework. Amongthese there are the isotropic singularities, which are ob-tained by multiplying a regular metric with a scaling fac-tor which is allowed to vanish. Another class is givenby the Friedmann-Lemaître-Robertson-Walker singulari-ties [25], and other warped product singularities. Even theSchwarzschild singularity (in proper coordinates whichmake the metric analytic [28]) turns out to be quasi-regu-lar.The fact that these apparently unrelated types of singu-larities turn out to be quasi-regular suggests the followingopen question:
Open Problem 13.Are quasi-regular singularities general enough to coverall possible singularities of General Relativity?
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