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|ntr0ducti0n Let (M, g) be a Riemannian or a semi-Riemannian man-
ifold of dimension n. It is useful to recall the definition

of the Kulkarni-Nomizu product of two symmetric bilinear
The singularities in General Relativity can be avoided forms h and k,

only if the stress-energy tensor in the right hand side of
Einstein’s equation satisfies some particular conditions.
One way to avoid them was proposed by the authors of
[1], who have shown that the singularities can be removed
by constructing the stress-energy tensor with non-linear The Riemann curvature tensor can be decomposed alge-
electrodynamics. On the other hand, Einstein’s equation braically as
leads to singularities in general conditions [2-7], and there

the time evolution breaks down. Is this a problem of the

(h © k)abcd = huckbd - hadkbc + hbdkac - hbckad- (1)

Rabed = Saved + Eabed + Cabed. 2
theory itself or of the way it is formulated? bed bed bed bed @)
This paper proposes a version of Einstein’s equation which where
is equivalent to the standard version at the points of 5 1

abcd = R(g o abe 3
spacetime where the metric is non-singular. But unlike bed 2n(n —1) (9© lovea (3)

Einstein's equation, in many cases it can be extended at . .
. - is the scalar part of the Riemann curvature and
and beyond the sinqular points.

*E-mail: holotronix@gmail.com Eabed = m(s © G)abed (4)
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is the semi-traceless part of the Riemann curvature. Here
1
Sub = Rnb - HRgab (5)

is the traceless part of the Ricci curvature.
The Weyl curvature tensor is defined as the traceless part
of the Riemann curvature

Cubcd = Rabcd - Sabcd - Eubcd~ (6)
The Einstein equation is
Gab + /\gub = KTabr (7)

where T, is the stress-energy tensor of the matter, the

8
constant « is defined as « := g where G and c are the

o
gravitational constant and the speed of light, and A is the
cosmological constant. The term

1

Cub = Rab - 2

Rgab (8)

is the Einstein tensor, constructed from the Ricci curvature
Rub = g°'Rusp: and the scalar curvature R := g*'Ry;.

As it is understood, the Einstein equation establishes the
connection between curvature and stress-energy. The cur-
vature contributes to the equation in the form of the Ricci
tensor R, and the scalar curvature. In the proposed equa-
tion, the curvature contributes in the form of the semi-
traceless and scalar parts of the Riemann tensor, Egpcq
(4) and Sgpeq (3), which are tensors of the same order and
have the same symmetries as Rypcq-

The Ricci tensor R, is obtained by contracting the tensor
Eabed+Sabcd, and has the same information (if the metric is
non-degenerate). One can move from the fourth-order ten-
sors Egped + Sabed 10 Rap by contraction, and one can move
back to them by taking the Kulkarni-Nomizu product (1),
but they are equivalent. Yet, if the metric g, is degener-
ate, then g and the contraction R,y = g'(Eqspt + Sashr)
become divergent, even if g5, Eqpcd, and Sqpeq are smooth.
This suggests the possibility that E,pcq @and Sgpcq are more
fundamental that the Ricci and scalar curvatures.

This suggestion is in agreement with the following obser-
vation. In the case of electrovac solutions, where F,, is
the electromagnetic tensor,

1 (1
Tab = E ZgubFstFSt - Fast5

1
= _g ('L_uchC + *Far*be)r (9)

where * is the Hodge duality operation. It can be obtained
by contracting the semi-traceless part of the Riemann ten-
sor

K
Eabcd = _ﬁ (Fachd +*Fab*ch)- (10)

Therefore it is natural to at least consider an equation in
terms of these fourth-order tensors, rather than the Ricci
and scalar curvatures.

The main advantage of this method is that there are sin-
gularities in which the new formulation of the Einstein
equation is not singular (although the original Einstein
equation exhibits sinqularities, obtained when contract-
ing with the singular tensor g°®). The expanded Einstein
equation is written in terms of the smooth geometric ob-
jects Egpeqg and Sypeq. Because of this the solutions can
be extended at singularities where the original Einstein
equation diverges. This doesn’t mean that the sinqular-
ities are removed; for example the Kretschmann scalar
RapcaR<? is still divergent at some of these singularities.
But this is not a problem, since the Kretschmann scalar
is not part of the evolution equation. It is normally used
as an indicator that there is a singularity, for example to
prove that the Schwarzschild singularity at r = 0 cannot
be removed by coordinate changes, as the event horizon
singularity can. While a singularity of the Kretschmann
scalar indicates the presence of a singularity of the cur-
vature, it doesn’t have implications on whether the sinqu-
larity can be resolved or not. In the proposed equation
we use Rgypcq which is smooth at the studied singularities,
and we don't use R which is sinqular and causes the
singularity of the Kretschmann scalar.

A second reason to consider the expanded version of the
Einstein equation and the quasi-reqular singularities at
which it is smooth is that at these sinqularities the Weyl
curvature tensor vanishes. The implications of this feature
will be explored in [8].

It will be seen that there are some important examples of
singularities which turn out to be quasi-reqular. While
singularities still exist, our approach provides a descrip-
tion in terms of smooth geometric objects which remain
finite at singularities. By this we hope to improve our
understanding of singularities and to distinguish those to
which our resolution applies.

The expanded Einstein equations and the quasi-regular
spacetimes on which they hold are introduced in section 1.
They are obtained by taking the Kulkarni-Nomizu prod-
uct between Einstein’s equation and the metric tensor. In
a quasi-regular spacetime the metric tensor becomes de-
generate at sinqularities in a way which cancels them and
makes the equations smooth.

The situations when the new version of Einstein’s equa-
tion extends at singularities include isotropic singularities
(section 2.1) and a class of warped product sinqularities
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(section 2.2). It also contains the Schwarzschild sinqu-
larity (section 2.4) and the FLRW Big Bang singularity
(section 2.3).

1. Expanded Einstein equation and
quasi-regular spacetimes

1.1. The expanded Einstein equation

An equation which is equivalent to Einstein’s equation
whenever the metric tensor g, is non-degenerate, but
is valid also in a class of situations when g,, becomes
degenerate and Einstein's tensor is not defined will be
discussed in this section. Later it will be shown that the
proposed version of Einstein’s equation remains smooth in
various important situations such as the FLRW Big-Bang
singularity, isotropic singularities, and at the singularity
of the Schwarzschild black hole.

We introduce the expanded Einstein equation

(Gog)abcd+/\(gog)abcd :K(Tog)abcd~ (11)

If the metric is non-degenerate then the Einstein equa-
tion and its expanded version are equivalent. This can be
seen by contracting the expanded Einstein equation, for
instance in the indices b and d. From (1) the contraction
in b and d of a Kulkarni-Nomizu product (h o g)apcq is

I,:lac L= (h o g)asct95t = hucgz - hatéct + hzgac - hscaz
= 2hac + higac. (12)

From f)uc the original tensor h,. can be obtained again
by
1, 1 5

hac = ihac - ﬁhsgao (13)
By this procedure the terms Ggp, Tap, and Agqp can be
recovered from the equation (11), thus obtaining the Ein-
stein equation (7) . Hence, the Einstein equation and
its expanded version are equivalent for a non-degenerate
metric.
If the metric becomes degenerate its inverse becomes sin-
gular, and in general the Riemann, Ricci, and scalar cur-
vatures, and consequently the Einstein tensor G,p, di-
verge. For certain cases the metric term from the Kulkarni-
Nomizu product Gog tends to 0 fast enough to cancel the
divergence of the Einstein tensor. The quasi-regular sin-
gularities satisfy the condition that the divergence of G
is compensated by the degeneracy of the metric, so that
G o g is smooth.

This cancellation allows us to weaken the condition that
the metric tensor is non-degenerate, to some cases when
it can be degenerate. It will be seen that these cases
include some important singularities.

1.2. A more explicit form of the expanded Ein-
stein equation

To give a more explicit form of the expanded Einstein
equation, the Ricci decomposition of the Riemann curva-
ture tensor is used (see e.g. [9-11]).

By using the equations (8) and (5) in dimension n = 4,
the Einstein tensor in terms of the traceless part of the
Ricci tensor and the scalar curvature can be written:

1
Gab = Sab - ZRgub~ (14)

This equation can be used to calculate the expanded Ein-
stein tensor:

Cubcd = (Gog)abcd

1
= (S o g)abcd - ER(g o g)abcd (15)

2Eub::d - 6sabcd~

The expanded Einstein equation now takes the form
2Eabcd - 6Sabcd + /\(g o g)abcd = K(T © g)abcd~ (16)

1.3. Quasi-regular spacetimes

We are interested in singular spacetimes on which the
expanded Einstein equation (11) can be written and is
smooth. From (16) it can be seen that this requires the
smoothness of the tensors Egpcq and Sgped-

In addition we are interested to have the nice properties of
the semi-reqular spacetimes. As showed in [12], the semi-
regular manifolds are a class of singular semi-Riemannian
manifolds which are nice for several reasons, one of them
being that the Riemann tensor Ryscq is smooth.

First, a contraction between covariant indices is needed.
This is in general prohibited by the fact that when the
metric tensor g,, becomes degenerate it doesn’t admit a
reciprocal g°®. Although the metric g, can’t induce an
invariant inner product on the cotangent space TyM, it in-
duces one on its subspace b(T,M), where b : T,M — T*M
is the vector space morphism defined by X*(Y) := (X, Y),
for any X, Y e T,M. Equivalently, b(T,M) is the space
of 1-forms w on T,M so that w|ker, = 0. The morphism
b is isomorphism if and only if g is non-degenerate; in
this case its inverse is denoted by #. The inner prod-
uct on b(T,M) is then defined by g.(X*, Y*) := (X, V)
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and it is invariant. This allows us to define a contrac-
tion between covariant slots of a tensor T, which vanishes
when vectors from kerb are plugged in those slots. This
will turn out to be enough for our needs. We denote the
contractions between covariant indices of a tensor T by
T (Wi, ooy W Ve e yaree ey ee ey Vs)e

A degenerate metric also prohibits in general the con-
struction of a Levi-Civita connection. For vector fields we
use instead of VY, the Koszul form, defined as:

K:%M) >R,

K(X,Y,Z2) ::%{X(Y, 7Y+ Y(Z,X) = Z(X,Y)

(XY 2D+ (V2 XD+ (21X YD)
(17)

which defines the Levi-Civita connection by VY =
KC(X, Y, _)* for a non-degenerate metric, but not when the
metric becomes degenerate. We define now semi-regular
manifolds, on which we can define covariant derivatives
for a large class of differential forms and tensors. We
can also define a generalization of the Riemann curvature
Rabed, which turns out to be smooth and non-singular.

Definition 1.

A singular semi-Riemannian manifold satisfying the con-
dition that (X, Y,_) € b(T,M), and that the contraction
K(X,Y,dK(Z, T,.) is smooth for any local vector fields
X,Y,Z, T, is named semi-reqular manifold, and its met-
ric is called semi-regular metric. A 4-dimensional semi-
regular manifold with metric having the signature at each
point (r,s, t), s < 3, t < 1, but which is non-degenerate
on a dense subset, is called semi-regular spacetime [12].

In [12] we defined the Riemann curvature R,pcq4 for semi-
regular metrics, even for non-degenerate metrics, in a way
which avoids the undefined V x Y, but relies on the defined
and smooth (X, Y, Z), by

Rabcd = aarbcd - abracd + ruc. rbd. - rbc. I7ad.r (18)

where [ 45 = K(04, 0p, 0.) are the Christoffel's symbols of
the first kind. From Definition 1, Rypcq is smooth. More
details on the semi-regular manifolds can be found in [12—
14].

In a semi-reqular spacetime, since Rypcq is smooth, the
densitized Einstein tensor G, det g is smooth [12], and a
densitized version of the Einstein equation can be written,

which is equivalent to the usual version when the metric
is non-degenerate:

Garv/=9" + Agapv=0" = kTop/=¢", (19

where it is enough to take the weight W < 2. Although
the semi-reqular approach is more general, here is ex-
plored the quasi-reqular one, which is more strict. Con-
sequently, these results are stronger.

Definition 2.
We say that a semi-reqular manifold (M, gqp) is quasi-
regular, and that g, is a quasi-regular metric, if:

1. g4 is non-degenerate on a subset dense in M

2. the tensors S,pg and Egpeg defined at the
points where the metric is non-degenerate extend
smoothly to the entire manifold M.

If the quasi-regular manifold M is a semi-regular space-
time, we call it quasi-regular spacetime. Singularities of
quasi-regular manifolds are called quasi-regular.

It can be seen that on an quasi-reqgular spacetime the
expanded Einstein tensor can be extended at the points
where the metric is degenerate, and the extension is
smooth. This is in fact the motivation of Definition 2.

2. Examples of quasi-regular space-
times

The quasi-regular spacetimes are more general than the
regular ones (those with non-degenerate metric), contain-
ing them as a particular case. The question is, are they
general enough to cover the singularities which plagued
General Relativity? In the following it will be seen that
at least for some relevant cases the answer is positive.
It will be seen that the class of quasi-regular singular-
ities contain isotropic singularities 2.1, sinqularities ob-
tained as warped products 2.2 (including the Friedmann-
Lemattre-Robertson-Walker spacetime 2.3), and even the
Schwarzschild singularity 2.4. The existence of these
examples which are extensively researched justifies the
study of the more general quasi-regular singularities and
of the extended Einstein equations.

2.1. Isotropic singularities

Isotropic singularities occur in conformal rescalings of
non-degenerate metrics, when the scaling function can-
cels. They were extensively studied by Tod [15-20]
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Claudel & Newman [21], Anguige & Tod [22, 23], in con-
nection with cosmological models. The following theorem
shows that the isotropic sinqularities are quasi-regular.

Theorem 3 (Isotropic singularities).

Let (M, gq) be a reqular spacetime (we assume therefore
that the metric g, is non-degenerate). Then, if Q: M —
R is a smooth function which is non-zero on a dense subset
of M, the spacetime (M, Gop := Q?gas) is quasi-reqular.

Proof.
lar.

From [12] is known that (M, G,) is semi-requ-

The Ricci and the scalar curvatures take the following
forms ([7], p. 42.):

~ 1
Rab — Q—ZRub + 20—1 (0—1 );bsgas _ 50_4(02);“9“60[,
(20)
R=072R-6Q0730.,g" (21)

where the covariant derivatives correspond to the metric
g. From equation (20) follows that

1

5072(02);st95t90br
(22)

which tends to infinity when Q — 0. But we are interested

Rop = 02gasR% = Rap +20Q(Q )05 —

to prove the smoothness of the Kulkarni-Nomizu product
Ricog. We notice that the term g contributes with a factor
Q?, and it is enough to prove the smoothness of

1
*(QZ);stg“gabr (23)

Ry = OPRyp + 2Q0°(Q 7 ").0p — 5

which follows from

PO = O ((QN)a), =0 (—0720Q),
= 0% (207°0,0, — Q7?Q,) (24)
= 20.,Q, — 00

Hence, the tensor F?i/coﬁ is smooth. The fact that ﬁﬁo'gv is
smooth follows from the observation that gog contributes
with Q*, and the least power in which Q appears in the
expression (21) of Ris —3.

From the above follows that Eubcd and §ubcd are smooth.
Hence the spacetime (M, g,;) is quasi-reqular. O

2.2. Quasi-regular warped products

Another example useful in cosmology is the following,
which is a generalization of the warped products. Warped
products are extensively researched, since they allow the
construction of semi-Riemannian spacetimes, having ap-
plications to GR. But when the warping function becomes
0, singularities occur (see e.g. [24] 204). Fortunately,
in the cases of interest for General Relativity, these sin-
gularities are quasi-regular. We will allow the warped
function f to become 0 (generalizing the standard defini-
tion [24], where it is not allowed to vanish because it leads
to degenerate metrics), and prove that what the resulting
singularities are quasi-reqular.

Definition 4.

Let (B, ds3) and (F,ds%) be two semi-Riemannian mani-
folds, and f : B — R a smooth function on B. The degen-
erate warped product of B and F with warping function f
is the manifold B x( F := (B x F, dsZBXF), with the metric

dsg, r = dsg + f2ds? (25)

Theorem 5 (Quasi-regular warped product).
A degenerate warped product B x; F with dimB =1 is
quasi-regular.

Proof.
Let's denote by g, gr and g the metrics on B, F and
B xs F. It is known ([24], p. 211) that for horizontal
vector fields X, Y € £(B x F, B) and vertical vector fields
V.Weg(BxF,F),

From [13], B x¢ F is semi-reqular.

1. Ric(X, ¥) = Rics(X, V) + 3 1r(x, v
2. Ric(X, V) = 0
3. Ric(V, W) - Ricr(V, W)  +

(FAf + (dim F — 1)gg(grad f, grad f)) gr(V, W)

where Af is the Laplacian, H" the Hessian, and grad f
the gradient. It follows that Ric(X, V) and Ric(V, W)
are smooth, but Ric(X, Y) in general is not, because of
the term containing f~'. But since dim B = 1, the only
terms in the Kulkarni-Nomizu product Ric o g containing
Ric(X, Y) are of the form

Ric(X, Y)g(V, W) = £2Ric(X, Y)gr(V, W).

Hence, Rico g is smooth.
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From the expression of the scalar curvature

Rr ) Af
R:R3+ﬁ+2dlmFT

grad f, grad f)

+ dim F(dim F — 1) 98¢ fz (26)

can be concluded that S,pcq is smooth too, because g o g
contains at least one factor of f2. Hence, B x; F is quasi-
regular. O

The following example important in cosmology is a direct
application of this result.

Proposition 6 (Semi-regular manifold which is
not quasi-regular).

Let B = R, k > 1, be an Euclidean space, with the
canonical metric gg, and f : B — R a linear function
f+0 Let F =R, [ >1, with the canonical metric
gr. Then the degenerate warped product B x¢ F is semi-
regular, but it isn’t quasi-reqular.

Proof.

0 is constant, and Af = 0. The scalar curvature (26) be-

df,grad f
comes R = ,(,_1)M
0. Because k > 1, ggogp doesn’t vanish, hence it doesn't

Because f is linear but not constant, grad f #

, which is singular at

cancel the denominator f2 of R in the term Rggogg. Also,
the term Rgp o g is not canceled by other terms com-
posing Sgpcq, because they are all smooth, containing at
least one gr. Hence, Sypcq is singular, and the degen-
erate warped product B x¢ F isn’t quasi-regular. On the
other hand, according to [13], because B and F are non-
degenerate, B x; F is semi-reqular. O

2.3. The Friedmann-Lemaitre-Robertson-
Walker spacetime

The  Friedmann-Lemattre-Robertson-Walker  (FLRW)
spacetime is defined as the warped product / x, £, where

1. I C R is an interval representing the time, which is
viewed as a semi-Riemannian space with the neg-
ative definite metric —c2dt?.

2. (X,dZ?) is a three-dimensional Riemannian space,
usually one of the homogeneous spaces S3, R3, and
H? (to model the homogeneity and isotropy condi-
tions at large scale). Then the metric on L is, in
spherical coordinates (r, 6, ¢),

dr?

5=
d 1—kr?

+r?(d6? +sin*0d¢?),  (27)

where k = 1,0, —1, for the 3-sphere S3, the Eu-
clidean space R?, or hyperbolic space H?> respec-
tively.

3. a:/— Ris a function of time.

The FLRW metric is
ds? = —c%dt® + a?(t)dz>. (28)

At any moment of time t € / the space is ; = (I, a*(t)gx).
For a FLRW universe filled with a fluid with mass density
p(t) and pressure density p(t), the stress-energy tensor is
defined as

a p a a
Tb:(p—l—;)u u® + pg®, (29)
where g(u, u) = —c?.

From Einstein’s equation with the stress-energy tensor
(29) follow the Friedmann equation

B a? + kc?
p:K1(3W_A), (30)

which gives the mass density p(t) in terms of a(t), and the
acceleration equation

p 2 (N 1a P
LA 31
c? KCZ(?) cza) 3 1)

giving the pressure density p(t).

A question that may arise is what happens with the den-
sities p and p. Equations (30) and (31) show that p and p
may diverge in most cases for a — 0. As explained in [31],
p and p are calculated considering orthonormal frames. If
the frame is not necessarily orthonormal (because there
is no orthonormal frame at the point where the metric is
degenerate), then the volume element is not necessarily
equal to 1, and it has to be included in the equations.
The scalars p and p are replaced by the differential 4-
forms which have the components p\/—g and p\/—g. It
can be seen by calculation that these forms are smooth.
If the metric on the manifold £ is denoted by g5, then the
Friedmann equation (30) becomes

V=G = a(a +k) Vi, (32)

and the acceleration equation (31) becomes

6 ,.
PV=g+3pV=g = ——a’a\/gs, (33)
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hence p /=g and p /=g are smooth.
As a — 0, the metric becomes degenerate, p and p

diverge, and therefore the stress-energy tensor (29) di-
verges too. Because of this, the Ricci tensor also diverges.
But, from Theorem 5, Rypcd, Eaped, and Sgpeq are smooth.
What can be said about the expanded stress-energy tensor
(T 0 g)abca? The following corollary shows that the metric
is quasi-regular, hence the expanded stress-energy tensor
is smooth.

Corollary 7.
The FLRW spacetime with smooth a : | — R is quasi-
regular.

Proof.  Since the FLRW spacetime is a warped product
between a 1-dimensional and a 3-dimensional manifold
with warping function a, this is a direct consequence of
Theorem 5. O

Remark 8.

Corollary 7 applies not only to a FLRW universe filled
with a fluid, but to more general ones. For this particular
case a direct proof was given in [25], showing explicitly
how the expected infinities of the physical fields cancel
out.

While the expanded Einstein equation for the FLRW
spacetime with smooth @ is written in terms of smooth
objects like Egpeas Sabcd, and Taped := (T © G)aped, @ ques-
tion arises, as to why use these objects, instead of Ry,
S, and T,,? It is true that the expanded objects remain
smooth, while the standard ones don’t, but is there other,
more fundamental reason? It can be said that E,pcqs and
Sabead are more fundamental, since R,;, and R are obtained
from them by contractions. But for T,pc4, unfortunately, at
this time we don’t know an interpretation. The stress-
energy tensor T, can be obtained from a Lagrangian, but
we don’t know yet a way to obtain directly T,pcq from a
Lagrangian. One hint that, at least for some fields, Typcq
seems more fundamental is that, for electrovac solutions, it
is given by Tapea = —5= (FanFed + *Fap”Fea) (10), while
Tap by contracting it (9). Similar form has the stress-
energy tensor for Yang-Mills fields.

Another question that may appear is what is obtained,
given that the solution can be extended beyond the mo-
ment when a(t) = 0?7 Say that a(0) = 0. The extended
solution will describe two universes, both originating from
the same Big-Bang at the same moment t = 0, one of
them expanding toward the direction in which t increases
and the other one toward the direction in which t de-
creases. The parameter t is just a coordinate, and the

physical laws are symmetric with respect to time reversal
in General Relativity (if one wants to consider quantum
fields, the combined symmetry CPT should be considered
instead of T alone).

2.4. Schwarzschild black hole

The Schwarzschild solution describing a black hole of
mass m is given in the Schwarzschild coordinates by the
metric tensor:

—1
ds® = — (1 - 27’") dt*+ (1 - 27’") dr*+r’do®, (34)

where
do? = d6? + sin® Od¢* (35)

is the metric of the unit sphere S2. The units were chosen
so that c =1 and G =1 (see e.g. [7]149).

Apparently the metric is sinqular at r = 2m, on the event
horizon. As it is known from the work of Eddington [26] and
Finkelstein [27] appropriate coordinate changes make the
metric non-degenerate on the event horizon, showing that
the sinqularity is apparent, being due to the coordinates.
The coordinate change is sinqular, but it can be said that
the proper coordinates around the event horizon are those
of Eddington and Finkelstein, and the Schwarzschild co-
ordinates are the singular coordinates.

Can we apply a similar method for the sinqularity at
r = 07 It can be checked that the Kretschmann scalar
RapcaR?<? is singular at r = 0, and since scalars are in-
variant at any coordinate changes (including the singular
ones), it is usually correctly concluded that the singularity
at r = 0 cannot be removed. Although it cannot be re-
moved, it can be improved by finding coordinates making
the metric analytic at r = 0. As shown in [28] the sinqular-
ity r = 0 in the Schwarzschild metric (34) has two origins
— it is a combination of degenerate metric and singular
coordinates. Firstly, the Schwarzschild coordinates are
singular at r = 0, but they can be desingularized by ap-
plying the coordinate transformations from equation (37)
which necessarily have the Jacobian equal to zero at r = 0.
It is not possible to desingularize a coordinate system, by
using transformations that have non-vanishing Jacobian at
the singularity, because such transformations preserve the
reqularity of the metric. Secondly, after the transforma-
tion the singularity is not completely removed, because
the metric remains degenerate. However, the metric re-
mains semi-reqular, as shown in [28]. Here will be shown
that it is also quasi-regular.

In [28] we showed that the Schwarzschild solution can be
made analytic at the singularity by a coordinate transfor-
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mation of the form

S
r T
{ e (36)
As it turns out,
r=12
{ t =& 7

is the only choice which makes analytic at the singularity
not only the metric, but also the Riemann curvature Rgpcq-
In the new coordinates the metric has the form

4
ds? = —4¥dr2+(2m—1’2)r4 (4&dt + 1d&)*+r*do?.
2m — 72
(38)
Corollary 9.

The Schwarzschild spacetime is quasi-reqular (in any at-
las compatible with the coordinates (37)).

Proof. ~ We know from [28] that the Schwarzschild
spacetime is semi-regular. Since it is also Ricci flat, ie.
R,y = 0, it follows that S,, = 1 and R = 0, hence

Sues = 23R(G © Ghoses = 0. and Eqpe3(5 0 ghanes = 0.
Therefore, Sypeqs and Egpcq are smooth. Consequently, the
only non-vanishing part of the curvature in the Ricci de-
composition (2) is the Weyl tensor Cypcq, Which in this
case is equal to R,pcq, SO it is smooth too. O

Remark 10.

It has been seen that even if the Schwarzschild metric g,
is sinqular at r = 0 there is a coordinate system in which
it becomes quasi-reqular. Because the metric becomes
quasi-regular at r = 0, the expanded Einstein equations
are valid at r = 0 too. But also Einstein's equation can
be extended at r = 0, because in this special case it
becomes G,, = 0, the Schwarzschild solution being a
vacuum solution. Hence, in this case we can just use
the standard Einstein equations, of course in coordinates
compatible with the coordinates (37). Corollary 9 shows
that the Schwarzschild singularity is quasi-reqular in any
such coordinates. Since Sgped = Egped = 0, the only
non-vanishing part of Rypcq is the Weyl curvature Cypeq =
Ryped, which is smooth because R;pq4 is smooth.

Remark 11.

In the limit m = 0, the Schwarzschild solution (34) co-
incides with the Minkowski metric, which is reqular at
r = 0. The event horizon singularity r = 2m merges with
the r = 0 singularity, and cancel one another. Because
the Schwarzschild radius becomes 0, the false singularity

r = 0 is not spacelike as in the case m > 0, but time-
like. In the case m = 0, because there is no singularity at
r =0, our coordinates (37), rather than removing a (non-
existent) singularity, introduce one. The new coordinates
provide a double covering for the Minkowski spacetime,
because 7 extends beyond r = 0 to negative values, in a
way similar to the case described in [29].

Open Problem 12.

What can be said about the other stationary black hole so-
lutions? In [29] and [30] we showed that there are coordi-
nate transformations which make the Reissner-Nordstrom
metric and the Kerr-Newman metric analytic at the sin-
qularity. This is already a big step, because it allows us
to foliate with Cauchy hypersurfaces these spacetimes. Is
it possible to find coordinate transformations which make
them quasi-reqular too?

3. Conclusions

An important problem in General Relativity is that of sin-
gularities. At sinqularities some of the quantities involved
in the Einstein equation become infinite. But there are
other quantities which are also invariant and in addition
remain finite at a large class of singularities. In this paper
it has been seen that translating the Einstein equation in
terms of such quantities allows it to be extended at such
singularities.

The Riemann tensor is, from geometric and linear-
algebraic viewpoints, more fundamental than the Ricci
tensor Ry, which is just its trace. This suggests that
the scalar part Sgpeq (3) and the Ricci part Egpeq (4) of
the Riemann curvature may be more fundamental than the
Ricci tensor. Consequently, this justifies the study of an
equation equivalent to Einstein’s, but in terms of E,,.4 and
Sabed, instead of R, and R. This is the expanded Einstein
equation (11). The idea that E,p.q is more fundamental
than R,, seems to be suggested also by the electrovac
solution, with the expanded Einstein equation (10), and
from which the electrovac Einstein equation is obtained
by contraction.

To go from Einstein’s equation to its expanded version
we use the Kulkarni-Nomizu product (1). To go back, we
use contraction (13). When the metric is non-degener-
ate, these operations establish an equivalence between
the standard and the expanded Einstein equations.

The question of whether the Ricci part of the Riemann
tensor is more fundamental than the Ricci tensor may be
irrelevant, or the answer may be debatable. But an impor-
tant feature is that E,p.y and Sypeq can be defined in more
general situations than R,;, and R. Hence, the expanded
Einstein equation is more general than the Einstein equa-

Brought to you by | CERN library
Authenticated
Download Date | 10/4/17 1:56 PM



Ovidiu-Cristinel Stoica

tion — it makes sense even when the metric is degenerate,
at least for a class of singularities named quasi-regular.
A brief investigation revealed that the class of quasi-regu-
lar singularities is rich enough to contain some known sin-
gularities, which were already considered by researchers,
but now can be understood in a unified framework. Among
these there are the isotropic singularities, which are ob-
tained by multiplying a regular metric with a scaling fac-
tor which is allowed to vanish. Another class is given
by the Friedmann-Lemattre-Robertson-Walker singulari-
ties [25], and other warped product singularities. Even the
Schwarzschild singularity (in proper coordinates which
make the metric analytic [28]) turns out to be quasi-requ-
lar.

The fact that these apparently unrelated types of singu-
larities turn out to be quasi-regular suggests the following
open question:

Open Problem 13.
Are quasi-regular sinqularities general enough to cover
all possible singularities of General Relativity?
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