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Abstract: Gerbes and higher gerbes are geometric cocycles representing higher degree cohomology

classes, and are attracting considerable interest in differential geometry and mathematical physics. We

prove that a 2-gerbe has a torsion Dixmier–Douady class if and only if the gerbe has locally constant

cocycle data. As an application, we give an alternative description of flat twisted vector bundles

in terms of locally constant transition maps. These results generalize to n-gerbes for n = 1 and

n ≥ 3, providing insights into the structure of higher gerbes and their applications to the geometry of

twisted vector bundles.
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1. Introduction

In modern differential geometry, the study of higher categorical structures has led to
significant advancements in our understanding of manifolds and their invariants. Gerbes
and higher gerbes, as geometric realizations of such structures, play a crucial role in this
landscape, connecting diverse areas such as algebraic topology, complex geometry, and
mathematical physics.

U(1)-gerbes are geometric objects representing degree 3 integral cohomology classes,
just as line bundles represent degree 2 integral cohomology classes. Gerbes were originally
introduced by Giraud [1], and began to be used more often in the context of algebraic
topology and differential geometry after Brylinski [2]. In particular, Murray [3] conceived
and constructed an explicit and geometric model of a gerbe, called a bundle gerbe, as
opposed to a description as a certain sheaf of groupoids. This model by Murray has been
further developed by several authors. Most notably, Stevenson has developed a geometric
model of a 2-gerbe, and the 2-stack structure of gerbes was considered [4,5], which was
further studied by Waldorf [6], and equivariant refinements were studied in [7,8]. Gerbes
and higher gerbes have been applied to several problems in mathematics and physics.
For example, twisted K-theory and Ramond–Ramond field classifications [9–12], local
formulas for 2d Wess–Zumino (WZ) action [13] and its Feynman amplitude interpreted as
a bundle gerbe holonomy [14,15], geometric string structures [16], and even topological
insulators [17–19].

As mentioned above, there are several models for higher gerbes with connection. To list
a few, there are bundle n-gerbes with connection, sheaves of higher groupoids, and a map
into a classifying ∞-stack B

n+2
∇ . However, one of the most classical and elementary models

would be the Deligne cocycle model, consisting of Čech cocycles and local differential form
data. Indeed, the Deligne complex is the natural home for studying differential geometric
cocycles such as line bundles with connections and (higher) gerbes with connection.

This article is a brief technical report on differential geometry of torsion gerbes.
Namely, we prove that a necessary and sufficient condition for the Dixmier–Douady
class of a 2-gerbe to be torsion is that its cocycle data consist of locally constant maps, and
its proof essentially generalizes for the case of n-gerbes with n = 1 or n ≥ 3. The idea comes
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from a well-known fact on flat vector bundles, i.e., a necessary and sufficient condition for
a vector bundle to admit a flat connection is that the Čech-cocycle data of the underlying
vector bundle consists of locally constant maps. Using our results on torsion 2-gerbes, we
also prove a generalization of this fact to flat twisted vector bundles.

As is well-known, a gerbe being torsion or not is crucial in studying geometric cocycles
of twisted K-theory. Indeed, if a geometric cocycle admits a nontorsion twist, it has to be
an infinite dimensional construction (see [9,12]). Therefore, we expect that our results will
be useful in studying finite-dimensional constructions such as twisted vector bundles or
bundle gerbe modules with finite-dimensional fibers.

This paper is organized as follows. In Section 2, we review the U(1)-gerbe with
connections and its higher analogues. This section also serves the purpose of setting up
notations and terminologies we will be using throughout this paper. In Section 3, we prove
that a 2-gerbe is torsion if and only if its cocycle data consists of locally constant functions.
In Section 4, we apply our main theorem to prove a twisted analogue of a classical fact that
a vector bundle is flat if and only if there exist local trivializations whose transition maps
are locally constant.

2. Preliminaries

In this section, we review (higher) gerbes with connection. Throughout this paper,
all of our manifolds are smooth manifolds, and all of our maps are smooth maps, unless
specified otherwise. In particular, X always denotes a manifold. By gerbes, we will
always mean U(1)-gerbes. We will use the notation Ui1···in to denote an n-fold intersection
Ui1 ∩ · · · ∩ Uin . If an open cover is locally finite and every n-fold intersection is contractible
for all n ∈ Z+, we will call it a good cover. On a smooth manifold, a good cover always
exists. A Čech cocycle ζ = (ζi1···in) is said to be completely normalized if ζi1···in ≡ 1 whenever

there is a repeated index, and ζσ(i1)···σ(in) = (ζi1···in)
sign(σ) for any σ ∈ Sn, where Sn is the

symmetric group on n letters.

2.1. gerbes with connection

In this subsection, we shall review a Čech cocycle description of a gerbe with connec-
tions. See Gawędzki and Reis [15] and Hitchin [20] for a broader account.

Definition 1. Let X be a manifold and U := {Ui}i∈Λ an open cover of X. A gerbe over X subor-
dinate to U is a U(1)-valued completely normalized Čech 2-cocycle {λkji} ∈ Ž2(U , U(1)). A con-

nection on a gerbe {λkji} on U is a pair ({Aji}, {Bi}) consisting of a family of differential 1-forms

{Aji ∈ Ω
1(Uij;

√
−1R)}i,j∈Λ, and a family of differential 2-forms {Bi ∈ Ω

2(Ui;
√
−1R)}i∈Λ,

satisfying the following relations:

• λkjiλ
−1
l ji λlkiλ

−1
lkj = 1;

• d log λkji = Aji + Aik + Akj;

• Bj − Bi = dAji.

From dBi = dBj for all i, j ∈ Λ, the family of exact 3-forms {dBi}i∈Λ defines a global closed
differential 3-form H. The differential form H is called the curvature of the gerbe, or the Neveu–

Schwarz 3-form.

A gerbe with connections on U is therefore a Deligne cocycle of degree 2. Notice that
our total differential is D = d + (−1)qδ on Čp(U , Ω

q). Throughout the rest of this paper,
λ̂ = ({λkji}, {Aji}, {Bi}) always denotes a gerbe with connections defined on an open

cover U = {Ui}i∈Λ of X, and H denotes the 3-curvature form of λ̂.

Definition 2. Two gerbes with connections λ̂ and λ̂′ are isomorphic if λ̂′ is obtained by adding a
total degree 2 Deligne coboundary to λ̂, i.e., λ̂′ = λ̂ + Dµ̂ for some µ̂ ∈ Č1(U , Ω

0)⊕ Č0(U , Ω
1).
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Remark 1. Let {λkji} ∈ Ž2(U , U(1)) be a gerbe, and δ : Ȟ2(U , U(1)) → H3(X; 2πiZ) be the

connecting map. The image in H3
dR(X;

√
−1R) of the cohomology class δ([λ]) ∈ H3(X; 2πiZ)

coincides with the cohomology class of H ∈ H3
dR(X;

√
−1R) (see Brylinski ([2] p. 175) Corollary

4.2.8.). Here, the cohomology class δ([λ]) is a topological invariant of a gerbe, called the Dixmier–
Douady class.

2.2. Higher gerbes with connection

In the previous subsection, we have seen that a gerbe with connections is a degree 2
Deligne cocycle. It is possible to generalize it to higher degrees for a cocycle definition of
an n-gerbe with connections. Compare Stevenson [4,5] and Gajer [21].

Definition 3. Let X be a manifold, and U := {Ui}i∈Λ be an open cover of X. An n-gerbe over
X subordinate to U is a U(1)-valued completely normalized Čech (n + 1)-cocycle {λin+2···i1} ∈
Žn+1(U , U(1)). A connection on an n-gerbe {λin+2···i1} on U is an (n + 1)-tuple ({A

(1)
in+1···i1},

{A
(2)
in···i1}, · · · , {A

(n+1)
i1

}), consisting of a family of differential k-forms {A
(k)
in+k−2···i1 ∈

Ω
k(Uin+k−2···i1 ;

√
−1R)}in+k−2,··· ,i1∈Λ, satisfying that the (n+2)-tuple λ̂ = (λ, A(1), · · · , A(n+1))

is a degree (n + 1)-Deligne cocycle, i.e., Dλ̂ = 0. The differential (n + 1)-forms {A
(n+1)
i } defined

on each open set satisfy dA
(n+1)
i = dA

(n+1)
j for all i, j ∈ Λ; the family of exact (n + 2)-forms

{dA
(n+1)
i }i∈Λ defines a global closed differential (n + 2)-form H. The differential form H is called

the curvature of the n-gerbe.

Definition 4. Two n-gerbes with connection λ̂ and λ̂′ are isomorphic if λ̂′ is obtained by adding
a total degree n + 1 Deligne coboundary to λ̂, i.e., λ̂′ = λ̂ + Dµ̂ for some µ̂ ∈ Čn(U , Ω

0) ⊕
Čn−1(U , Ω

1)⊕ · · · ⊕ Č0(U , Ω
n)

Similarly for gerbes, an n-gerbe λ ∈ Žn+1(U , U(1)) has an higher analogue of
the Dixmier–Douady class in Hn+2(X; 2πiZ) as its topological invariant. Its image in
Hn+2

dR (X;
√
−1R) coincides with the curvature H of n-gerbe (Cf. Stevenson [4], Chapter 11).

Remark 2. For later use, we give explicit formula of the cocycle condition for a 2-gerbe with
connection ({λlkji}, {Akji}, {Bji}, {Ci}).
C1. λkjiλ

−1
l ji λlkiλ

−1
lkj = 1;

C2. d log λlkji = Akji − Al ji + Alki − Alkj;

C3. dAkji = −Bji + Bki − Bkj;

C4. dBji = Ci − Cj.

3. Main Theorems

In this section, we shall state and prove our main theorems on a necessary and
sufficient condition for a 2-gerbe having a torsion Dixmier–Douady class. We state and
prove the sufficiency and then the necessity.

Theorem 1. Let X be a manifold, U = {Ui}i∈Λ be an open cover of X, and λ = {λlkji} be a
2-gerbe on X. If each λlkji is a locally constant map, then this 2-gerbe determines a torsion class

δ([λ]) in H4(X; 2πiZ).

Proof. Suppose that ({Akji}, {Bji}, {Ci}) is a connection on the given 2-gerbe λ. Since

λlkji are locally constant maps, it follows that Akji − Al ji + Alki − Alkj = λ−1
lkjidλlkji = 0.

Accordingly, we could have chosen a connection with Akji ≡ 0, Bji ≡ 0, and Ci := ζ|Ui
for

some ζ ∈ Ω
3(X;

√
−1R), since the quadruple ({λkji}, {0}, {0}, {ζ|Ui

}) satisfies the cocycle
conditions C1 to C4 in Remark 2. Moreover, since the curvature 4-form of this 2-gerbe with
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connections is exact, it follows that δ([λ])⊗R = [dζ] = 0, i.e., δ([λ]) is a torsion class in
H4(X, 2πiZ). Here, δ : Ȟ3(U , U(1)) → H4(X; 2πiZ) is the connecting map.

Proceeding similarly as in the above proof, a similar theorem also holds for n-gerbes
for n = 1 or ≥ 3, as stated in the following corollary.

Corollary 1. Let X be a manifold, U = {Ui}i∈Λ be an open cover of X, and λ = {λin+2···i1} be an
n-gerbe on X. If each λin+2···i1 is a locally constant map, then this n-gerbe determines a torsion class

δ([λ]) in Hn+2(X; 2πiZ).

Theorem 2. Let X and λ be as above. Suppose that the 2-gerbe λ is defined on a good cover
U = {Ui}i∈Λ, and also that λ determines a torsion class δ([λ]) in H4(X; 2πiZ). Then, given any
connection ({Akji}, {Bji}, {Ci}) on this 2-gerbe, there exists a 2-gerbe with connection (λ̃, Ã, B̃, C̃)

that has an underlying 2-gerbe consisting of a family of locally constant maps λ̃lkji : Uijkl → U(1),

such that the difference between (λ, A, B, C) and (λ̃, Ã, B̃, C̃) is a Deligne coboundary of degree 3.

Proof. Suppose a 2-gerbe λ determines a torsion class δ([λ]) in H4(X; 2πiZ). We first
choose an arbitrary connection ({Akji}, {Bji}, {Ci}) on the 2-gerbe λ. For the curvature H
of the 2-gerbe, δ([λ])⊗R = [H] is satisfied, and since the 2-gerbe is a torsion, [H] has a
representative dζ, where ζ is a differential 3-form on X. Now, from dCi = H|Ui

= dζ|Ui
, we

have d(ζ|Ui
− Ci) = 0, and since Ui is contractible, by Poincaré’s Lemma, ζ|Ui

− Ci = dΠi

for some Πi ∈ Ω
2(Ui; iR). We define

C̃i := Ci + dΠi = ζ|Ui
.

Applying C4, we see that d(Bji + Πi − Πj) = 0. Again by Poincaré’s Lemma, there

exists ξ ji ∈ Ω
1(Uij;

√
−1R), such that

Bji + Πi − Πj = dξ ji. (1)

We set
B̃ji := Bji + Πi − Πj − dξ ji = 0.

Applying C3 and Equation (1), we have d(Akji + ξ ji − ξki + ξkj) = 0. Again, there

exists χkji ∈ Ω
0(Uijk; U(1)) such that Akji + ξ ji − ξki + ξkj = d log χkji, so we define

Ãkji := Akji + ξ ji − ξki + ξkj − d log χkji = 0

λ̃lkji := λlkjiχ
−1
kji χl jiχ

−1
lki χlkj.

It can be readily seen that ̂̃λ = ({λ̃lkji}, {Ãkji}, {B̃ji}, {C̃i}) satisfies conditions from

C1 to C4, where Ãkji ≡ 0 ≡ B̃ji and C̃i is a restriction of a global 3-form ζ to Ui. The 2-gerbe

cocycles being locally constant follows from the cocycle condition C2 for ̂̃
λ. In addition,

λ̂ = ({λlkji}, {Akji}, {Bji}, {Ci}) satisfies ̂̃
λ = λ̂ + Dχ̂ where χ̂ = ({χ−1

kji }, {−ξ ji}, {Πi}).

Proceeding similarly as in the above proof, a similar theorem also holds for torsion
n-gerbes for n = 1 or ≥ 3, as stated in the following corollary.

Corollary 2. Let X and λ be as above. Suppose that the n-gerbe λ is defined on a good cover
U = {Ui}i∈Λ, and also that λ determines a torsion class δ([λ]) in Hn+2(X; 2πiZ). Then,

given any connection ({A
(1)
in+1···i1}, {A

(2)
in ···i1}, · · · , {A

(n+1)
i1

}) on this n-gerbe, there exists an

n-gerbe with connection (λ̃, Ã(1), · · · , Ã(n+1)) that has an underlying n-gerbe consisting of a
family of locally constant maps λ̃in+2···i1 : Uin+2···i1 → U(1), such that the difference between

(λ, A(1), · · · , A(n+1)) and (λ̃, Ã(1), · · · , Ã(n+1)) is a Deligne coboundary of degree n + 1.
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4. Application: Flatness of Twisted Vector Bundle

In this section, we briefly review what a twisted vector bundle with connections
is. After that, we recall an alternative characterization of a flat vector bundle via locally
constant transition maps. We apply Corollary 2 to state and prove its twisted analogue.

Definition 5. Let U = {Ui}i∈Λ be an open cover of X, and λ be a U(1)-valued completely
normalized Čech 2-cocycle. A λ-twisted vector bundle E of rank n over X consists of a family of
product bundles {Ui ×Cn : Ui ∈ U}i∈Λ together with transition maps

gji : Uij → U(n)

satisfying
gii = 1, gji = g−1

ij , gkjgji = gkiλkji.

The gerbe λ in this definition is also called a twist. A λ-twisted vector bundle is smooth
if all transition maps and gerbe cocycle data are smooth maps. We shall write a λ-twisted
vector bundle E over X of rank n as a triple (U , {gji}, {λkji}).

Definition 6. Let λ̂ = ({λkji}, {Aji}, {Bi}) be a gerbe with connections, and E = (U , {gji}, {λkji})
be a smooth λ-twisted vector bundle of rank n. A connection on E compatible with λ̂ is a family
Γ = {Γi ∈ Ω

1(Ui; u(n))}i∈Λ satisfying

Γi − g−1
ji Γjgji − g−1

ji dgji = −Aji · 1, (2)

where Aji ∈ Ω
1(Uij; iR). Here, u(n) denotes the Lie algebra of U(n), and 1 the identity matrix.

It is easy to see that Equation (2) is compatible with the cocycle condition of gerbes
with connection, i.e., δ(A)kji · 1 = d log λkji · 1. A standard argument using partitions
of unity shows that, for any λ-twisted vector bundle E, there exists a connection on E
compatible with λ̂.

Definition 7. Let λ̂ = ({λkji}, {Aji}, {Bi}) be as above, and (E, Γ) be a λ-twisted vector bundle

(U , {gji}, {λkji}) of rank n with a connection Γ compatible with λ̂. The curvature form of Γ is the

family R = {Ri ∈ Ω
2(Ui; u(n))}i∈Λ, where Ri := dΓi + Γi ∧ Γi.

The following proposition is a well-known characterization of a flat vector bundle.

Proposition 1. If a vector bundle E over X admits a flat connection ∇, then there exists a cocycle
consisting of locally constant transition maps. Conversely, if a cocycle (gji) of a vector bundle E
over X defined on an open cover U = {Ui}i∈Λ consists of locally constant maps, then E admits a
flat connection.

Proof. Since ∇ is a flat connection, there exists a locally trivial open cover U = {Ui}i∈Λ

such that the connection form ωi on Ui is identically zero. Let {gji} be a cocycle of the vector
bundle E over X defined on the open cover U . Connection forms satisfy the following
gauge transformation formula:

ωi = g−1
ji ωjgji + g−1

ji dgji.

It follows that dgji = 0, and hence each gji is a locally constant map. Conversely, if
each gji is locally constant, then dgji = 0. So, we can take ω ≡ 0 for each i ∈ Λ.

A λ-twisted vector bundle admits only torsion twists. By Corollary 2, a torsion gerbe
with connections is always isomorphic to a gerbe with connection λ̂ = ({λkji}, {Aji}, {Bi})
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where all λkji are locally constant, Aji ≡ 0, and Bi = ζ|Ui
for a globally defined differential

form ζ ∈ Ω
2(X; iR).

Theorem 3. Let λ̂ = ({λkji}, {Aji}, {Bi}) be a gerbe with connections, provided that every λkji is
locally constant, and Aji = 0 for all i, j ∈ Λ. E = (U , {gji}, {λkji}) is a λ-twisted vector bundle

that admits a connection Γ = {Γi}i∈Λ compatible with the connection of λ̂ such that Ri ≡ 0 for
each i ∈ Λ, if and only if each gji is locally constant.

Proof. Suppose a λ-twisted vector bundle with connection (E, Γ) is flat, i.e., Ri ≡ 0. Then,
over each Ui ∈ U , it admits a parallel framing such that the connection form Γi ≡ 0. By
Equation (2), we obtain dgji = 0 and, hence, gji is locally constant. Suppose each gji is
locally constant. The family Γi i∈Λ with Γi ≡ 0 is a connection on E. The corresponding
curvature form Ri ≡ 0.

5. Discussion

In this paper, we have investigated the differential geometry of torsion gerbes, focusing
on providing a necessary and sufficient condition for the Dixmier–Douady class of a 2-gerbe
to be torsion. Our primary result demonstrates that a 2-gerbe is torsion if and only if its
cocycle data consists of locally constant functions. This insight extends to n-gerbes for
n = 1 and n ≥ 3, offering a generalized perspective on the structure of higher gerbes.

We drew upon the well-established understanding of flat vector bundles, wherein
the existence of a flat connection is characterized by locally constant Čech cocycles. This
analogy underscored the significance of locally constant cocycle data in the context of gerbes.
We extended this result for the case of flat twisted vector bundles, thereby broadening the
applicability of our findings.

In summary, this paper contributes to the deeper understanding of the geometry and
topology of torsion gerbes and their higher analogues, offering new tools and perspectives
for future research in both mathematics and theoretical physics. For example, our results
can be applied to investigating the role of locally constant cocycle data in the differential
geometry of twisted vector bundles over orbifolds, and more general stratified spaces.
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