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RESUMO

Neste estudo, investigamos o buraco negro regular de Dymnikova em N dimensdes, analisando
sua regularidade, propriedades termodinamicas e estabilidade. Nosso objetivo € verificar a
auséncia de singularidades, avaliar as condi¢Oes de energia e verificar a estabilidade do bu-
raco negro. Utilizamos o invariante de curvatura e os tensores para testar a regularidade, além
do método WKB para os modos quase normais. Os resultados mostram que a solugao € re-
gular, mas viola certas condi¢des de energia em uma regido proxima ao nicleo. Além disso,
a andlise termodinamica indica que em certas regides do espaco o buraco negro possui esta-
bilidade térmica. Enquanto os modos quase normais revelam a estabilidade da solucdo contra
perturbacdes escalares. Como a solu¢do de Dymnikova € uma solucido de vdcuo que contém a
solucdo de Schwarzschild-De Sitter, os resultados fornecem subsidios para futuras investigacoes

em gravitacdo modificada e reforcam a viabilidade da solugdo.

Palavras-chave: buraco negro regular; termodinamica; relatividade geral; Dymnikova.



ABSTRACT

In this study, we investigate the regular Dymnikova black hole in N dimensions, analyzing its
regularity, thermodynamic properties, and stability. Our objective is to verify the absence of sin-
gularities, evaluate the energy conditions, and assess the stability of the black hole. We use the
curvature invariant and tensors to test regularity, as well as the WKB method for quasi-normal
modes. The results show that the solution is regular, but violates certain energy conditions in a
region close to the core. Additionally, the thermodynamic analysis indicates that the black hole
exhibits thermal stability in certain regions of space. Meanwhile, the quasi-normal modes re-
veal the stability of the solution against scalar perturbations. Since the Dymnikova solution is a
vacuum solution that includes the Schwarzschild—de Sitter metric, our findings provide insights

for future investigations in modified gravity and reinforce the viability of this solution.

Keywords: regular blackhole; thermodynamics; general relativity; Dymnikova.
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1 INTRODUCAO

A ideia moderna de um buraco negro, isto €, uma regido do espago da qual nada
pode escapar, remonta a publicacdo de Finkelstein [1], na qual ele afirma que o horizonte de
eventos € uma membrana unidirecional através da qual os eventos causais s6 podem ocorrer em
uma direcdo. Essa solucdo é de grande importancia na Relatividade, pois pode determinar o
tipo de geometria que surge quando um corpo, como uma estrela ou um aglomerado de estrelas,
entra em colapso. Em 2019, a primeira imagem direta de um buraco negro foi capturada pelo
Telescopio do Horizonte de Eventos [2]. Este feito representou um evento significativo na
astrofisica, fornecendo evidéncias visuais concretas da existéncia de buracos negros, que ha
muito tempo eram teorizados, mas nunca observados diretamente.

No entanto, na Teoria da Relatividade Geral (TRG), todas as solu¢des exatas conhe-
cidas para buracos negros apresentam singularidades, sendo algo inerente as solucdes basicas
das equacdes de Einstein, o que cria um sério problema a ser abordado [3]. A singularidade
essencial na gravidade de Einstein pode ser evitada se a condi¢do de energia forte for quebrada
nas proximidades do centro de um buraco negro. Buracos negros sem singularidades essenciais,
mas com singularidades de coordenadas, sdo chamados de buracos negros regulares (BNR) [4].

A investigacdo dos Buracos Negros Regulares tem suas origens nos trabalhos de
Sakharov e Gliner [5, 6], que propuseram que singularidades essenciais poderiam ser contor-
nadas substituindo o vacuo por um meio semelhante ao vacuo com uma métrica de de Sitter.
Posteriormente, Bardeen [7] propds um modelo de buraco negro regular promovendo a massa
do buraco negro de Schwarzschild para uma fun¢ao dependente da posicao. Desde entdo, varios
buracos negros regulares foram propostos na literatura em diferentes contextos, como buracos
negros quase-topoldgicos [8], gravidade ndo local [9], BTZ bounce [10], gravidade cubica de
Einstein [11], entre outros. Tais solugdes proporcionam insights sobre o processo de colapso
gravitacional em seus estdgios finais, algo que nao € vidvel quando ha uma singularidade na
origem ja que a curvatura do espago-tempo se torna infinita e as leis da fisica ndo podem ser
aplicadas. Além disso, surge uma questdo intrigante: para que essas solucdes sejam possiveis
necessita-se de fontes exéticas, assim sendo ndo ha fontes fisicamente plausiveis associadas a
elas.

Bekenstein postulou que os buracos negros possuem uma entropia correlacionada
com a area do horizonte de eventos e, além disso, que a energia esta relacionada com a massa
do buraco negro [12—-14]. Hawking revelou que os buracos negros emitem radiacdo térmica, e a
temperatura dessa radiacao tem semelhanga com a gravidade superficial do buraco negro [15].

Uma solugao regular muito interessante para buracos negros foi proposta por Dym-
nikova [16] nas quatro dimensdes usuais da teoria da relatividade geral. E assumida uma forma
especifica para o tensor de momento-energia e derivada a métrica do buraco negro ndo singular

no vdcuo; tal solucdo reduz-se a solugdo de de Sitter para valores pequenos de r e, para valores
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grandes de r, comporta-se como a solucdo de Schwarzschild. A métrica possui um horizonte
de Cauchy e um horizonte externo, mas ambos sdo removiveis e a solucdo € regular em r = 0.
A solucdo de Dymnikova exibe regularidade em toda parte, como evidenciado pelo compor-
tamento dos invariantes escalares e do invariante de Kretschmann. Esses invariantes mantém
um bom comportamento em todas as regides, inclusive em r = 0. Consequentemente, o buraco
negro ndo leva a uma singularidade.

Existem distin¢Oes notdveis entre buracos negros que exibem singularidades e aque-
les considerados regulares [4]. Algumas dessas distin¢des surgem diretamente da auséncia de
singularidade, enquanto outras sdo intrinsecas ao proprio modelo. Tais discrepancias tém reper-
cussoes que se manifestam de varias maneiras na observacgao, incluindo efeitos notaveis como
ondas gravitacionais, sombras, propriedades termodinamicas e outros.

Como ¢é impossivel observar diretamente o interior de um buraco negro, a pesquisa
deve se concentrar nos eventos dinamicos e termodinamicos que ocorrem além dos horizon-
tes de eventos. Especificamente, busca-se entender as variacdes desses fendmenos quando as
singularidades estao presentes em comparacdo com quando nao estao.

Nos altimos anos, vérios estudos sobre buracos negros e objetos relacionados em di-
mensoes superiores foram conduzidos, algumas teorias da gravidade, como a teoria de Randall-
Sundrum e a de Kaluza-Klein, assumem a existéncia de dimensdes maiores que 4 [17, 18]. Por
esse motivo, é pertinente estudar a generalizacdo N-dimensional dos buracos negros de Dymni-
kova, feita recentemente por Paul [19], e discutir suas propriedades termodinamicas. O buraco
negro de Dymnikova tem recebido atenc¢do significativa no passado recente; por exemplo, a
estabilidade do buraco negro de Dymnikova foi estudada por Nashed e Dymnikova [20, 21],
o estudo dos modos quasinormais em buracos negros de Dymnikova foi discutido em [22] e
quantidades termodinamicas foram calculadas em [23]. Mais recentemente, a regularizacao se-
melhante a de Dymnikova foi estudada no contexto de buracos de minhoca atravessaveis [24] e
do principio da incerteza generalizado [25].

Os modos quasinormais sdo uma caracteristica essencial dos buracos negros [26,
27], e esses modos sdo definidos por propriedades fundamentais dos buracos negros, em vez de
perturbacdes externas. Eles sdo detectaveis por meio de interferdmetros gravitacionais [28].
Nos tltimos anos, o calculo dos modos quasinormais (QNMs) para buracos negros em di-
mensodes superiores tem recebido significativa aten¢do por vdrias razdes convincentes. Por
exemplo, o entendimento das propriedades da relatividade geral em N dimensdes [29] e ca-
racteristicas termodinamicas [30]. Até o momento, ndo existia nenhum trabalho na literatura
que calculou as propriedades termodinamicas e os modos quasinormais para o buraco negro de
Dymnikova em N dimensdes. Portanto, o intuito deste trabalho € fazer tais calculos e discutir
os resultados.

O trabalho esta organizado em cinco capitulos. O capitulo inicial apresenta uma re-
visdo basica da Teoria da Relatividade Geral (TRG), cobrindo os principais conceitos e equagdes

matematicas relacionadas a tensores, matéria, energia e termodinamica, além de introduzir as
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solucdes de vacuo. Apds essa exposicao, no capitulo seguinte, sdo discutidos os principais con-
ceitos de buracos negros regulares e suas diferencas em relacdo aos buracos negros singulares.
Em seguida, apresentamos a solu¢do de Dymnikova, cuja anélise € realizada por meio do es-
tudo da métrica, dos tensores e invariantes de curvatura, das condi¢cdes de energia do sistema,
da termodinamica e das 6rbitas. Por fim, generalizamos a solucdo para dimensdes mais altas
e realizamos andlises similares as feitas em quatro dimensdes. Aqui serd utilizada a assinatura

positiva da métrica (—,+,+,+), a notagdo de Einstein para a soma e as unidades naturais.
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2 FUNDAMENTACAO TEORICA

Antes de introduzir o conceito de buracos negros regulares e a solu¢cao de Dymni-
kova para quatro e N dimensdes, buscando os seus resultados matematicos e analisando suas
principais propriedades, é necessdrio fazer uma revisao dos principais conceitos de Relatividade
Geral (RG) que serdo uteis para essas analises.

Neste capitulo, serdo revistos principalmente os conceitos fundamentais que propor-
cionardo uma compreensao de como a gravitacao funciona e que estabelecerao os fundamentos
matematicos da Teoria da Relatividade Geral (TRG), como as defini¢des do tensor métrico,
Riemann, Ricci e Energia-Momento. Serd feita uma discussdo sobre as condigdes de energia,

termodindmica de buracos negros e equacdes de campo.
2.1 Tensores Essenciais da RG

A Teoria da Relatividade Geral se constrdi sobre as fundacdes estabelecidas pela
Relatividade Especial, incluindo a equivaléncia de referenciais inerciais e a constancia da ve-
locidade da luz. Além disso, a TRG repousa sobre dois principios fundamentais equivalentes:
o Principio da Equivaléncia e o Principio da Covariancia Geral. Embora nao detalhemos es-
ses conceitos aqui, os interessados podem consultar [31]. Os principais tensores utilizados no

estudo de buracos negros serdo apresentados ao longo da se¢do.

2.1.1 Tensor Métrico

O tensor métrico g,y define a estrutura geométrica do espago-tempo, determinando

a distancia entre dois pontos e a forma como vetores se transformam ao longo dele [32]:
ds* = guydxtdx". 2.1

Note que o tensor de Minkowski 7,y € um caso especial do tensor métrico, onde g5 =
diag(—1,1,1,1) = ngg. Ademais, uma vez que a métrica ds®> é um escalar, é fcil ver que
0 tensor métrico € simétrico, guy = gvu-

Na TRG, um dos tipos mais simples de solu¢des das equacdes de Einstein sdo as
esfericamente simétricas. Tais solu¢des representam campos gravitacionais nos quais possuem
a mesma forma em todas as direcdes espaciais a partir de um ponto central, o que funciona tanto
para estrelas, planetas, onde nesse caso € procurado solucdes externas a superficie dos mesmos,
quanto para buracos negros.

Suponha um campo gravitacional esfericamente simétrico e que fora do corpo res-
ponsdvel pelo campo sé exista vacuo. Devido a simétrica esférica serdo utilizadas coordenadas
esféricas (ct,r,0,¢). Também é assumido que o espago-tempo € estdtico, ou seja todas as

componentes da métrica sao independentes de ¢ e a geometria € invariante por uma reversao



17

temporal, ou seja, uma gravacao da situagdo iria ser a mesma quando vista de trds pra frente.
Assim, a métrica deve ser simétrica sob as transformagdes 0 — —60, ¢ — —¢@ et — —t. Conse-

quentemente,
goodt2 ~+ goidt dx' + giodxi dt+ gijdxidxj = good(—t)2 + goid( —t)dxi + giodxid(—t) + gijdxidxj,

tal igualdade s6 serd valida se gjo = go; = 0. De forma analoga, ou seja utilizando o argumento
da reversdo da coordenada, encontra-se que gyy = 0 para 4 # V. Assim, a métrica possui a
seguinte forma
2 _ 2 2 2 2
ds” = goodt™+ g11dr°+ g20d0° + g33d 9~

Assim,
ds* = —f(r)dt* + g(r)dr* +r*(d6* + sin”> 0d¢?), (22)

onde r2dQ? = r?(d6? +sin® 0d¢?) = grod 6> + g33d >, pode-se também utilizar
w(r)=1Inf(r), v(r) =1Ing(r) (2.3)

de modo que
ds® = —etdi® + eV dr* + r*dQ2. (2.4)

Ademais, note que para uma métrica diagonal deve-se ter que

1
D u=v
gtV =1 8uv (2.5)
0, n#v
pois gaﬁgm = 6%, implica que para o = 0:
g g =98

Mas 30110 =1le 30;#0 = 0, entdo para A = 0, temos que

1
g =1=¢"=—
200

eparaA =i
g"gvi=0=g"g;i=0=g"=0

se fizermos a = i, chegaremos ao resultado (2.5). Por fim, falarei sobre as trés formas de
classificacdo de um 4-vetor: Dado um 4-vetor arbitrario, A*, pode-se classificid-lo como:

e Um 4-vetor é do tipo-espago se g,vAHAY > 0.

e Um 4-vetor ¢ tipo-luz ou nulo se g,yA*AY = 0.

e Um 4-vetor é tipo-tempo se g,vA*AY < 0.
Como ja mencionado na introdug@o, a assinatura da métrica € do tipo (—,+,+,+). Tal conceito

serd importante na defini¢do das condicdes de energia.
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2.1.2 Tensor de Riemann

Na relatividade especial, a acdo de uma particula livre relativistica é

dxt dx
— . 2.6
§= / ds = / v do dcr (2.6)

A equacdo de movimento resultante a0 minimizar a acdo com respeito a quadrivelocidade é

igual a:
d’xH
dt?
pois pela equagdo de Euler-Lagrange temos que

d| 9 [ alar| 9 [ aFar
do a(@) v s do oV T s de ~

=0 2.7

do

o segundo termo € nulo, uma vez que 1),y € constante, consequentemente,

d 1 2 dxP _o
do 2 dx* dx¥ Mege )| =
- Wio do
Pode-se utilizar a relacao d = dt d = - dx” dx” 1/2 e escrever a relacao anterior
006 Tdodr \ M5 do dt ¢

como
o ditdx\'? d P\ _
Wvis do ar\"e g ) T 2

Em um referencial sob a acdo de um campo gravitacional, tal equacdo ird ser alterada, ja que

agora as derivadas do tensor métrico nao serdo mais nulas, assim

dx? dxv 2
— ——do = Ld 2.8
8uviic 4o °° /1 ° 2.8)

segue que
d L _d (1 A\ d(
dcra(%) T do \L%V o ) T Far \5PVar
dzxv 1 Qg,)u agpv dx* dxV
— L -
[g’” a2 ( o oxt ) dt dr
JL 1 dguv dx* dx¥ B LIguy dx* dx¥

dxP 2L dxP do do 2 dxP dt drt
entdo, das equagdes de Euler-Lagrange segue que

d*x¥ 1 (dgpu  9dgpv\ dx*dx¥] LIguydx* dx’
dt 2\ Jdx ox# ) dt drt 2 dxP dt drt
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o que produz a conhecida equagdo da geodésica

d*xP Ry dxM dxV B
dt? Wodar dt

2.9

Em que Fﬁv € o simbolo de Christoffel de primeira espécie e que € definido como

1 e 98y I8uv
P _ 2 pA H Av  Ysu
Fav= 2% ( oxV * dxt  oxt ) (10

Observe que quando Fﬁv — 0, a Eq.(2.9) tende a Eq.(2.7), ou seja se reduz as equagdes da
relatividade especial. Note que o simbolo de Christoffel € simétrico nos indices inferiores (o
que so € verdade em espacos-tempos livres de tor¢ao [33])

pA (aglv 98 agvu)

==

oxt T IxY  oxt

pA ag/lu n gy _ aguv
dxV oxk dxt

1
2
1
28
F
Em geral, diz-se que o simbolo de Christoffel nada mais € do que a pseudo forca sentida por
uma particula livre, uma vez que o mesmo age como um termo corretivo que ajusta o movi-
mento da particula conforme ela experimenta a curvatura do espaco-tempo, semelhante ao que

a aceleracao faria em um referencial ndo inercial. Agora, pode-se introduzir a derivada covari-

ante: quando a componente de um vetor € diferenciada parcialmente, encontra-se que a mesma

oV'A _dx* 9 8x”lvﬁ
dx'M  IxM Ix® \ 9xB
ox% ox* gvB  ox® 92y B
— + 1%
OxX'M 9xB Ix®  Ix'M Ix%JxP

Obviamente a derivada parcial da componente de um vetor nao se transforma como um tensor,
@ 92y IA

8x’ K oxe Ix*IxB

um objeto que se reduza a derivada parcial na auséncia de campos e que se transforma como um

se transforma como:

(2.11)

visto que existe a presenca adicional do termo —— ——— VB Todavia, ¢ possivel construir

tensor, antes de mais nada € necessario saber como os simbolos de Christofell se transformam.

Com o uso da Eq.(2.10) encontra-se que

Xt oxP oxe ,  oxt 9%

IA
Vv = 550 gk g Be T 95 axig 12
ou, s ; X
/ p o 2.1
' :ax dx” dx e _ 0x% dx" Jx 2.13)
HY T 0x® gx'H 9x'V PP 9x!V 9x/H 9x®9xB



oX* Jxt
oxt ox'P

segundo termo do lado direito da Eq.(2.12). Assim, segue que

tal equacdo pode ser obtida ao se derivar a relacdao

Ay Ix'* oxP oxP ,  IOx IxP 9% 8x'vvy
BV T Ox® X'l ox'V BT X!V 9xt 9x%9xB | dxY
N F,IL%VV/V _ ox'* oxP re ye oxP 9%x* o«
dx% Jx/u” Bp dx™M 9x*9xB

Somando a Eq.(2.11) com a Eq.(2.14) obtém-se

ox'* 9xP [ ove
dx'M vl T X g <8xﬁ +ngvp) '
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em relagdo a X'* e reescrever o

(2.14)

(2.15)

Ou seja, o termo entre parénteses € um tensor misto de segunda ordem. Define-se este tensor

como sendo a derivada covariante que atua em um vetor contravariante, sendo representada por

Vu e definido como sendo:
VAt =Vt +Th, VY.

Em que a notagdo dy, = % foi utilizada. Para o vetor covariante, temos que
— A
V/JVV = &qu - l—“quA.
de forma geral, para um tensor

A A A A
VuT" = 9TV 4 T}, T + T2, TV
V,U—TVA, — a’uTvl _FZVTG/’L _Ffl-/lTGv

A A A A
VuT?, = a#T v +Fu0'TGv _ngT c

O comutador da derivada covariante atuando em um vetor contravariante € igual a:

[V, ViV =R, VO,

Onde
R}y = 0ulbs — W The + Tk The — T Ths

€ o tensor de curvatura de Riemann. A demonstracio da relagcdo (2.19) segue de (2.16):

VuVyVA =V, (a,VA +T%,v0)
=V (V) +V, (TEVO)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

= oV + rﬁcavv“ - rgva(,v’L + (Vo) + rﬁ TV — rﬁvrﬁcv“

o que implica
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Vi, VolV* = 0,95V * +Th 50V —T5,06V* + 9u(TheVO) +Th, Th6Ve — T, TA.VE
— 3yOgV* — T30V +T5,06V* = 0y (ThoVO) —Th ThoVO +Th,[hVC
= Dhooi Vo — 5,06V + (0ulh)VC + Dogon% + T Th6 Vo — T, T, VE
—Th50pVo +15,06V* — (A Tho)V — DhetyV® — T ThoVO +T0,IA,VE
= (ulte — WL he + Tk The — T3, Ths)VO.

Da defini¢ao do tensor de Riemann, encontra-se que

Rlpuv = _R/Ipvua R/lpuv = Ruvlp (2.21)

e a identidade de Bianchi € dada por
R/lpuv +R)vau +R/II~WP =0. (2.22)

Note que Ry ;v = g;mRGp uv- Uma contragdo de indices nos possibilita definir o tensor de
Ricci:

Ruv =R’ v
’ ug o P 10 P 1o (2.23)
Repare que este tensor € simétrico, R,y = Ry. Também € possivel construir um escalar, co-

nhecido como escalar de Ricci, com a contracdo do tensor de Ricci:
Outro escalar bastante importante € o escalar de Kretschmann

K = RMVAPR (2.25)

uvAp:

que sera bastante importante no estudo de singularidades.

2.1.3 Tensor Energia-Momento

Até o presente momento objetos essenciais para o estudo das propriedades geométricas
do espaco-tempo foram definidos, contudo, por motivos que ficardo claros posteriormente, € ne-
cessario procurar uma ferramenta que permita quantificar quanta matéria existe em um volume,
tal ferramenta € o tensor energia-momento.

Suponha que um fluxo de particulas percorre o espaco-tempo. Cada particula per-
corre 0 espago-tempo em sua propria linha de mundo carregando o seu 4-vetor momentum
consigo, tais particulas quando vistas espalhadas produzem um fluxo continuo, um fluxo de
4-momentum. A forma de se quantificar esse fluxo é através do tensor energia-momento [34].

O tensor energia-momento € definido em termos de suas componentes, em algum



22

referencial arbitrario, como [35]:

fluxo da a-ésima componente do 4-momentum

Top = (2.26)

através de uma superficie xB constante.
A partir desta definicdo pode-se derivar as componentes do tensor energia-momento. Observe
que Tpy € o fluxo da componente zero do 4-vetor momentum ou seja, a energia através da
superficie x’ =  constante. Analogamente, Tp; é o fluxo de energia através de uma superficie x’
constante. Similarmente, T;y € o fluxo do i-ésimo momentum através da superficie ¢ constante:

a densidade do i-€simo momentum. Por fim, 7;; € 0 j-€simo fluxo do i-ésimo momentum. Em

resumo:
Too = densidade de energia;
To; = fluxo de energia através da superficie x' constante; 227)
T;o = densidade do i-€simo momentum;
T;; = fluxo do i-ésimo momentum através da superficie x/ constante.
Ou seja,
S .
T,=|P > (2.28)
u
N j

em que p € a densidade de massa energia do sistema, S; € o fluxo de energia e 7;; sd0 0s termos

de tensdo. No caso de um fluido perfeito, reescreve-se o tensor Energia-Momento como:

Tuv = (p +p)UnUy + pguv (2.29)

onde p € a pressdo do fluido no seu referencial e U,, a sua 4-velocidade. No referencial local
do fluido de matéria, temos que Uy = (—1,0) uma vez que a matéria estd em repouso. O indice

com “barra” indica que as componentes do tensor estdo escritas no referencial local. Portanto,
Tay = (p+ p)UaUs + pnpy. (2.30)

De modo que
Too =P T5; =0, T;; = pd;. (2.31)

Assim sendo, pode-se escrever o tensor energia-momento como Ty = diag(p,p, p,p). Uma
importante lei de conservacao para esse tensor pode ser obtida com o uso do Teorema de No-
ether. Todavia devido ao escopo do trabalho, ndo faz-sentido fazer tal demonstragdo. Através
das translagdes espaco-temporais que mantém a densidade Lagrangiana do sistema invariante,

obtém-se a Lei de conservagdo a seguir:
nv _
uTH =0.

A demonstracdo de tal teorema pode ser consultada em [36]. Embora tal resultado s6 tenha vali-

dade na teoria da relatividade restrita, sabemos que pelo teorema da covariancia geral que existe



23

uma equacao na relatividade geral que deve se reduzir a essa para campos fracos, para obter tal

equagdo um caminho simples € apenas substituir a derivada parcial pela derivada covariante:
VuTH =0. (2.32)

E ficil ver que tal equagdo produz a conservacio da energia e do 4-momentum do sistema [37].

Alguns caminhos da relatividade geral envolvem buscar solu¢des das equacdes de
campo de Einstein, que serdo apresentadas em breve, mesmo sem ter conhecimento prévio sobre
a matéria envolvida no sistema em questdo. O que nesse caso produz uma situagdo bastante
peculiar, na qual os componentes do tensor energia-momento7y, podem assumir uma ampla
gama de valores, dependendo da escolha da métrica para o sistema, que por sua vez pode ser
bastante variada.

Normalmente, quando se lida com fontes conhecidas, como as de um campo elétrico,
nao hd muito com o que se preocupar. Todavia, é igualmente importante explorar as carac-
teristicas das equacdes de Einstein para fontes mais gerais. Assim, torna-se necessirio esta-
belecer certas condigdes de energia para o tensor Ty, com isso espera-se reduzir a incerteza
dessa escolha. Isso porque precisamos de fontes “realistas”, que correspondam aos fendmenos
encontrados na natureza. As condi¢Oes de energia para o tensor Energia-Momento sdo:

e Condicdo fraca: para qualquer vetor tipo-tempo de componentes VH, a seguinte
desigualdade deve ser satisfeita:

TuwVHVY > 0. (2.33)

Essa condi¢do implica que a densidade de energia medida por qualquer observador em movi-
mento ao longo de uma trajetéria permitida (isto €, uma trajetéria que nao viola as restri¢oes
causais) deve ser sempre nao negativa. Assim, no caso do fluido perfeito, p + p; > 0.

e Condigdo nula: para qualquer vetor tipo-luz (ou nulo) de componentes k", a se-

guinte desigualdade deve ser satisfeita:
Tuvk*k" > 0. (2.34)

Tal condi¢ao induz menos restri¢des que a condi¢do fraca, ja que nenhuma condicdo é imposta
a densidade de energia. Analogamente, p + p; > 0.

e Condicao forte: a seguinte restri¢cao deve ser satisfeita:
1
T VIV > ST, *VPVp (2.35)

isso produz que
3
p+pi>0 e p+Y pi>0. (2.36)
i=1
Observa-se que esta condi¢ao € mais restritiva do que a condi¢ao nula, implicando que, se esta

for valida, entdo a condi¢c@o nula também serd. Assim, solucdes que violam essas condicoes nao
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estdo em conformidade com a fisica atual e podem ser consideradas ndo realistas ou pertencer

a alguma classe de matéria ainda nao descoberta.

2.1.4 Tensor de Einstein

Uma forma de se derivar as equacdes de campo de Einstein € através da acao de
Einstein-Hilbert [36,38]. Como espaco-tempo generalizados serdo abordados ao longo deste
trabalho, faz sentido explicitar alguns argumentos aqui. E esperado que todas as propriedades
dindmicas do espaco-tempo possam ser obtidas através do tensor métrico. Tal hipétese se ba-
seia no fato de que o tensor métrico € uma entidade matemadtica que captura as propriedades
geométricas do espago-tempo, como a distancia entre pontos e a estrutura causal. No entanto,
tal afirmacao s6 pode ser feita desde que exista um Lagrangiano escalar construido com o tensor

meétrico e suas derivadas:

L(x) = L(guv,968uv,959%&uv,"*)- 2.37)

Para assegurar a covariancia geral da teoria, € necessario criar uma integral de a¢do invariante.
Assim, a afirmacdo 6S[g| = 0 serd geralmente covariante, e também o serd a dinimica derivada

dessa afirmagdo. Note contudo que [d*xL(x) ndo serd invariante se £(x) for uma quantidade

/d4x L(x) = /d“x <§—;) L(z) # /d“x L)

. . . X . L. .
onde é assumido que o Jacobiano —— # 1. Assim é necessério uma quantidade a(x) tal que
X

)

escalar, visto que

/ d*x a(x)L(x) = / 4*% a(¥) L (%)

de modo que

a(x) = %a(x). (2.38)

Do tensor métrico € claro que
__ ox” oxB
8uv = g o B

consequentemente, o determinante serd igual a:

_ ox\ 2
g (a_x) 2. (2.39)

devido a assinatura utilizada ser (—, +,+,+), teremos que g = det(gyy) < 0, assim faz sentido

dizer que

NETES a—X\/—_g- (2.40)
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a forma dessa equagdo permite concluir que a(x) na Eq.(2.38) deve ser igual a \/—g, de modo

que a acdo invariante pode ser escrita como
S = / d*x\/—gL(x). (2.41)
Pelo principio da covariancia geral temos que
Nop — 8aps do — V. (2.42)

Segue entdo que Vguv = 0 pois no referencial local tal equacdo se reduz para dg 1y =0. A

derivada covariante atuando no tensor métrico € escrita como

Vaguv = aaguv - Fgugcv - nggou (2.43)

Como quase todas as equacdes diferenciais da fisica sdo de segunda ordem, faz sentido assumir
que o tensor métrico satisfaz uma equacao diferencial parcial de segunda ordem. O tensor
mais simples que pode ser construido a partir do tensor métrico e suas derivadas é o tensor de
Riemann [36]. Logo, faz sentido tomar a densidade Lagrangiana como sendo igual ao escalar
de Ricci [39]

L=— (2.44)

ou seja,

1
SEH = F/d“x R\/ g
7 (2.45)
—— [ d*x MR —
o / 418 R 8
Antes de mais nada note que
0(g%gox) =6(6%)=0. (2.46)

aplicando a regra do produto no lado esquerdo, podemos reescrever a equagao anterior como
gox08%% = _gocc(s(go_’() = gGKgKﬁ 6g%° = _gaogkﬁé(gmc)
isto &,
58%F = —g%gP 5 (g5p). (2.47)

Pela férmula de Jacobi, para uma matriz M invertivel é valido que 8 (detM) = (detM) tr(M~'5M),

para derivar tal formula basta ver que

O(detM) = det(M + 6M) — det(M)
— det[M(I+M~'6M)] — det(M)

= §(detM) = det(M)det(I +M ' 5M) — det(M)
= det(M)[1 +tr(M'6M)+---] — detM (2.48)
= det(M)tr(M~18M)
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desde que 8M se torne infinitesimalmente pequeno. Logo, para M = tensor métrico:

1
5g = g(g"" dguv) = 8v/=g = 5 v/=88"" gy (2.49)
pois,
g(guv&guv) =0g
= 5(v8/"2)
1
=288\ =g = 5y =g = 5v/ 88" Sguv.
Por fim, |
31—‘215[3 = Egﬂv(&x(s(gﬁv +aﬁ6gav — avgaﬁ) —8“p5gpcrgﬁ
mas pela Eq.(2.43)

aa58uv = Voc5guv +Fgu5g[3v ‘f’rgvsguﬁ

de modo que
1
8Tp = quv(vagﬁv +Vg8av = Vvgap)- (2.50)

Portanto, a variagc@o do tensor de Riemann

5R“avﬁ = 9,61 5% STh, + (6rgﬁ)rg‘v + rgﬁér‘;v —org, rt, —rg ot

o o
mas
Oy = V8T, —Tyedlgs + 10,01 5 + 1558 00
= 8R" | 5 =Vl — Vol

contraindo o indice i com V, encontra-se que

8Rup = Vi8I . — V8T, (2.51)

B

Portanto, a variacdo do escalar de curvatura € igual a:

SR = 8(g"PRyp)
= —R*P8gap +8*P (VudTh 5 — VT (2.52)

A variacdo da acao,

O0Spy = ﬁ/d“x [6/—8R+/—gR]
= 16% /d4x B\/__gguvR5g“v —V—gR" Sguy + \/—_ggaﬁg“v(vavu5gpv —VaVpSguy)
= ﬁ /d4x [—\/—_8G“V5guv +Va (V=58P g" (Vubgpy — Vpdguv))

1
= e / d*xG"¥ § g,y + termos de superficie
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onde G*B = R*B _ 2 “ﬁ R € o tensor de Einstein. Podemos descartar tais termos e obter que

1
SSgy = T / d*xy/—gGyy8gH" (2.53)

a acdo total contém a parte responsavel pela fonte:

Sy = / Lv/—gd*x (2.54)

sua variacdo em relacdo a métrica resulta em

1
4
6SM /d X/ — |:a w ELg/JV:| 5g/~W
definindo oL . 2 8 L)
vV —8
Tuv =2 {W - ELguv] = T 5
8 vV—8 8
entao, |
Sy = —§5d4x\/—gTuv5g“V (2.55)
combinando com
1
OSEn = 1 / V—gd*x(Gyuy —8nTy,y) 55" = 0. (2.56)

O que produz a conhecida equacao de Einstein:
1

Um resultado bastante famoso € o caso especifico em que ndo ha a presenga de 7}y, ou seja 0
vacuo. Assim sendo, .

Ruv - Eg'u_vR — 0. (2.58)

Multiplicando esta equagdo por gPH:
pLep

contraindo p com V:

1
R= 5(4)R:>R:O:>RW =0. (2.59)

Este resultado sera bastante importante na derivacdo da métrica de Schwarzschild.
2.2 Termodinamica de Buracos Negros

Aparentemente, ndo deveria fazer sentido falar sobre termodinamica quando o as-
sunto € buracos negros, de acordo com os principios fundamentais da termodinamica, corpos
com temperatura emitem um espectro térmico de radiacdo que reflete sua temperatura. No en-

tanto, pela propria natureza dos buracos negros, nada pode escapar de seu interior, tornando a
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atribuicdo de uma temperatura fisica significativa uma tarefa impossivel. Em outras palavras,
a temperatura de um buraco negro € teoricamente zero logo do ponto de vista cldssico ndo faz
sentido aplicar os conceitos tradicionais da termodinamica a esses objetos cosmicos [40].

Por outro lado, ao examinar o comportamento dos buracos negros através da lente da
relatividade geral, € notdrio que as leis que regem esses corpos possuem uma estrutura similar
a termodinamica. As quatro leis derivadas nesse contexto apresentam uma similaridade tdao
marcante com os principios termodinamicos que foram denominadas como sendo as “quatro
leis da termodindmica de buracos negros”. Assim, ao invés de serem excluidos do dominio
da termodindmica, os buracos negros emergem como objetos de estudo fundamentais para a
compreensao das leis universais que regem o comportamento da matéria e da energia em escalas
extremas.

Nesta secdo, apresentaremos uma introdugdo aos vetores de Killing, preparando o

contexto para a exposicao das leis da mecanica dos buracos negros.

2.2.1 Vetores de Killing

Considere um espago-tempo (M, g,v), onde M é uma variedade, queremos saber
quais transformagdes do espago-tempo preservam a forma da métrica, isto €, produzem sime-
trias. Os vetores de Killing surgem justamente da necessidade de se descrever simetrias em
espacos-tempos, assim se hd uma quantidade conservada associada a métrica do espago-tempo,
como energia, momento linear ou momento angular, entdo também hd um vetor de Killing
associado.

A métrica de Minkowski, 1,y = diag(—1,+1,41,+41), ndo depende das coordena-
das x,y,z e ¢, 0 que implica na invariancia da métrica sob translacdes no espago-tempo. Outra
simetria é associada com as transformacdes de Lorentz, x* = A* xV que também ndo alteram
o tensor métrico. Assim, de forma geral, suponha que as componentes do tensor métrico gy
530 tais que dg,guy = 0, entdo x% = x% 4-a%, onde a® é um escalar, € uma simetria.

O campo vetorial

d
K =05 = 2.60
Ok axc* ( )
¢ um vetor de Killing. Em termos de componentes, temos que
K=K"9, = 05, = K"y = K" = 85, . (2.61)

Pela equacgdo da geodésica, temos que

d?xH " dx® dxP
0=—"7+Ih ="
dt? of dt dr

~drt dt op dt ) dt
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ou seja,

de forma que
P*VoP"* =0. (2.62)

Similarmente, temos que P, = gyuvP", assim

dP, B dxY dx* 5 n d*xv
dr "\ gt dg Ceswy TERYT
dx" dx* dx® dxP
= (E%aagﬂv ‘gﬂvréﬁﬁﬁ>

multiplicando ambos os lados por m e utilizando a expressdo para I}, p €m termos do tensor

métrico, obtém-se que

dp,

1
m—tt = PYP*Ouguy PPPgy, [ig”“ (9ergap +Ip&ro — algaﬁ)}

1 1 1
= PPP*9yg,5 — EPO‘PB&XgW; - EP“Pﬁaﬁgua + EP“PB8ugaﬁ

podemos trocar os indices & e 3 no terceiro termo do lado direito, de modo que

dp I 1 1
m—t = PPP*9ygup — 5 P*PPdagup — S P*PPdagup + 5 P PP dugap

os trés primeiros termos do lado direito se anulam, o que por sua vez produz o seguinte resul-
tado:

ap, 1
m—t = P PPOugap (2.63)
assim, se o tensor métrico ndo depende de uma dada coordenada 1 = Oy, entdo dg,gqp = 0 =
djg* =0, ou seja P5, € uma quantidade conservada ao longo da geodésica. Podemos obter uma

expressao para os vetores de Killing através dessa informacao, note que
Ps, = 6", Py =K"P,.
Pela Eq.(2.62) temos entao
0=PHV,(Ps,) =PV, (KvPY)

— PquVqu +K\/W
= PquV’qu.

0
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Vamos dividir o tensor V, Ky em sua parte simétrica e antissimétrica:
V“Kv - S”v +Auv

onde Syy = %(VMKV +VyKy) e Ayy = %(Vqu — VyK,). Substituindo na expressdo obtida
anteriormente, acha-se que
0 - P'UPVSMV +PquAuv

tendo em vista que P*PYA,, = —P*PYAyy = —PYP*A,y = P*PYAyy =0, onde a troca de

indices mudos foi utilizada. Assim, podemos concluir que
O - P'uPVS’uv.

Essa expressao deve ser valida para qualquer P#. A {inica maneira de isso acontecer € se a parte
simétrica Sy, for identicamente nula, ou seja se %(VMKv +VyK,) = 0. Portanto, dado um vetor

K% em um espaco-tempo de métrica gy, ele é chamado de vetor de Killing se satisfizer
chamada de equacao de Killing.

2.2.2 LeiZero

Um buraco negro em processo de formacdo emite ondas gravitacionais, que carre-
gam consigo energia e momento angular o que faz o sistema perder gradualmente essas quanti-
dades, até atingir o limite estaciondrio. Assim, o buraco negro tende a um estado estaciondrio,
no qual as flutuagdes dindmicas cessam e o sistema alcanga um equilibrio. Tal processo €
bastante semelhante ao de termalizacdo em sistemas termodinamicos, no qual o equilibrio €
atingido quando nao h4 mais trocas liquidas de energia com o ambiente.

No horizonte de eventos (superficie nula) existe um 4-vetor y* normal ao horizonte
tal que y*xu = 0. De forma que VV(x*x,) é normal ao horizonte de eventos. Assim, no

horizonte de eventos € vélido a seguinte equacao:
VY (xH ) = —2xx" (2.65)

onde x € chamado de gravidade superficial e conforme veremos representa a forga realizada
por um observador no infinito para manter um corpo de massa unitdria estatico no horizonte
de eventos, que equivale a aceleragdo gravitacional gerada na superficie do buraco negro [41].

Desenvolvendo essa expressao

XuVVaH + M VVx = —2xx".
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Pela Eq.(2.64) temos que
—2uV* 2 + 8" 1oV (guax’) = —2xx"
como VVg,; =0, segue que
—2uV*xY + 8P o VY xt = —2kx"
utilizando novamente a equacao de Killing, encontramos finalmente que

—XuV* XY — xuVH XY = —2xx”

ou seja,
xwVHx' =xx". (2.66)

Dado a importancia de k no horizonte de eventos, é fundamental compreender como o mesmo
varia no horizonte. A métrica no horizonte é degenerada, ou seja ndo possui inversibilidade, o
que por sua vez impede a aplicacdo direta do operador projetado b*VV,, onde b,y é a métrica
no horizonte. Para descrever variacdes ao longo do horizonte de eventos, precisamos de uma
estrutura matematica que seja tangente ao horizonte (isto €, ndo introduza componentes fora
da superficie) e que ndo seja degenerada. A solugdo € usar o tensor de volume €,,,,, que
¢ totalmente antissimétrico. Quando contraido com o vetor gerador do horizonte y* produz-
se 0 tensor €,y X que € tangente ao horizonte de eventos pois Tyvp = €,ypa x> é tal que
2 Tuvp = XM €uvpa x* = 0 devido a antissimetria. Assim, o tensor ndo possui componentes
normais ao horizonte, ou seja, ele vive inteiramente dentro do subespaco tridimensional do
horizonte. Por argumentos andlogos, para um dado vetor arbitrdrio v¥, temos que Tyvpv¥ # 0.
Desse modo, podemos construir qualquer vetor tangente ao horizonte. Como es-
tamos interessados na variagdo de k ao longo do horizonte calculemos €y, x’le k. Uma
notagdo bastante utilizada para antissimetrizagdo ¢ definida a seguir, dado dois vetores x e &y,

entdo !
X[uév] = E(X,uév — Xvéu)-
Da equagao (2.66) segue que

XpVa (k) = xp V) (X" Vuv)

onde o operador antissimétrico foi utilizado devido ao fato de que apenas variagdes intrinsecas
ao horizonte de eventos devem ser levadas em consideracdo. Desenvolvendo ambos os lados da

relacdo, acha-se que

KXp Vi xv + v XpVa K = VuxvXpVagxH + x 2oV Vuxy
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isolando o segundo termo do lado esquerdo

v Xp VK = VuxvXpVaxt —xkxpVaxv + 2 oV Vuv- (2.67)

Agora serd necessdrio apresentar um teoremal41] que ird simplificar mais ainda a relacdo ante-

rior,

Teorema 2.2.1. (Teorema de Frobenius): Um vetor " é ortogonal a uma dada superficie se, e

somente se, satisfaz a condi¢do C[MVV Cp} = 0 na superficie.

Assim, no horizonte de eventos tal relacdo, em conjunto com a equagdo de Killing

Vyvxa = —VXv, se reduz no horizonte para:

.Vpxv==2XpVvXp (2.68)
Aplicando a Eq.(2.68) no primeiro e segundo termo do lado direito da Eq.(2.67), acha-se que

XXV Vuxv — X4 XAV Vuly

1 K
v xpVark = —5 (Vux) 2" Voxa+ 520V +

2
KXv
os dois primeiros termos do lado direito se anulam. Assim,
XX VaVury — 2" 0. Vo Vux
A (2:69)

Observe que pela defini¢do do tensor de Riemann, temos que

VaVudy —VuVaty =R, 1 (2.70)
que pela equacao de Killing pode ser reescrita como

VaViutv+VaVvtan =R, xc- @.71)
Analogamente, as permutacdes de tal equacdao produzem

YV + Vo Vax = RCMX,;, (2.72)

VoVadu+VaVuxy =R, xc. 2.73)

Adicionando as Egs.(2.71) e (2.72) e subtraindo a Eq.(2.73) do resultado, acha-se que
VaVuxv +2VuVvin +VoVaxu = VvVoxu —VaVuxv = (RCMW +RC”M —RCV;L#)XC

simplificando os termos semelhantes e utilizando a propriedade Rg[ = 0, encontra-se

Auv]
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ou seja, para qualquer vetor de Killing, obtém-se que

VuVoia = —R°;  Xc- (2.74)
Substituindo tal relacdo no lado direito da Eq.(2.69)

X~ 1R® o 2 + X0 R pvp )
>

XvXpVa K=

ou seja,
vXp VK= —X”Rguv[l%p]?@“- (2.75)
Pela equagdo (2.68) temos que
X Vo Vuxv) = 22V o) (=21 Vv 22)
=X Vo) (v Vuxa — 2uVvxa),
expandindo o lado esquerdo,
0.X0.V o1 Vudv +VuxvXp Vo1 Xa = v X Vo VuXa +VuXa X Vo) Xv
—XuXpp Vo) Vvxa — Vvxaxin Vo Xu-

Pela equacido (2.68) e expandindo os termos antissimétricos, acha-se que:

=VuxvXaVpXo+ X2 XpVoVuXv—XaXeVpVulv =VvioXuVpXe — XuXpVeVvXa
+2XxuXoVpVvia +xvXpVeVuXa
—XvXsVpVuXo —VuXaxvVpXo,

rearranjando termos VX, obtém-se que

~VoxoXaVuxv+2xuVvia — xvVuxa) = —XaXpVoVulv+ XX VpVuXv
—XuXpVoVvXa+ XuXsVpVvia
+xvXpVaVula —XvXsVpVuXa,

o termo do lado esquerdo € nulo devido ao teorema de Frobenius. Aplicando a Eq.(2.74) na

relacdo anterior, encontramos que
0= R* — xR R* — XuXoR®
(AXp R uvo Xy = XX R wvp X + XuXpR™ j 6 Xg — XuXoR® 5 K¢
— Ao R® o e + I KR 15 X0,

(%UCpngvc —XUCGRCuvp)ZC = (_XuXpRgv;m +XLLXGRCW1p ‘HCVXPRgu?Lo _XVXGRC“M))XQ
(2.76)

¢ _ ¢ ¢
200 R 16 Xp) X = 2XuR  p X\ Xe — 200 R 5 15 X)X



ou,
¢ _ ¢
KR 16 Xp) X = 2X[uR ) p Kol Xg

multiplicando ambos os lados por g, acha-se que

2Ry p X180 2 = 8P XAR wvo XX — 238 PR pup o

= 1R pvottade — AR Kok

0 0
:M Rg,uvcrlg_ Ay uvAl Xo

=0.

Assim, temos que
_ ¢ A
0= 2[Ry p X1 2¢

_ ¢ A ¢ A

= Xk o8 P Ao X = AR 1208 Ao X
_ AL ¢ A
=Ry " XoXg = AR\ po X" X

isolando os termos de y e tendo em vista que R, /IM = —RVC, segue que
ARy Xo = — ARy 60 2"
¢ )
O que pela equacdo (2.75) implica em
¢

Utilizando a equacdo de Einstein produz-se:

_ ¢
Xy Vuk = —8mxp T, " %
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(2.77)

(2.78)

(2.79)

a condi¢do de energia dominante produzem entdo que, no horizonte de evento, temos a seguinte

relacdo:
x[vV“] Kk =0.

Ou seja, a gravidade superficial de um buraco negro estaciondrio é uniforme por todo o horizonte

de eventos, desde que o espaco-tempo seja estaciondrio e que a matéria obedega a condi¢ao de

energia dominante. Esta € a lei zero da termodindmica de buracos negros.

2.2.3 Primeira, Segunda e Terceira Leis

A Eq.(274) ViVy, = —RM“C}(C pode ser simplificada ao se contrair o indice v

com [:
VuVHxY = —R"“x“

(2.80)



35

tal equacdo possui uma similaridade com as equagdes de Maxwell V, F*Y = —JY, em que F*Y é
o tensor eletromagnético e J € a densidade de corrente. Note que para um tensor antissimétrico
K"V é vilido que

VuVyK'H = -V, V, K"

— —VvVqu“ .

O que implica
2V\/V“K”v — (VvV“ — V“VV)KI'LV

_ Hppv vV lp
= —Ryup"KPY —Ry,,"K
- _ Kgpv _ V lp
= —Ryup"KPY — Ry, 'K

=0

vup

vup

ou seja, Vy(VK*Y) = 0, pode-se entdo definir uma corrente dada por
tal que
V=0 (2.81)

que € a equacdo da continuidade, logo existe uma quantidade g conservada igual a:

q= oc/ﬁe“v;tpjp (2.82)

onde @ € uma constante, €y, € a forma do volume e &' € a regido no espago-tempo (do tipo

espaco) no qual € feita a integracdo. A equagdo anterior pode ser reescrita da seguinte forma:

g=o /ﬁ £avip VoK OP. (2.83)

Pelo teorema de Stokes:
A
=a [ €K 2.84
4 /aﬁ uvip ( )

mas como K*P = VA yP_ pode-se afirmar que os vetores de Killing produzem quantidades con-

servadas iguais a.
= S lep. 2.85
q /8 UvVAp ( )

Na mecanica usual, a conservacao da energia € uma consequéncia da simetria sob translacao
temporal. Na relatividade geral, devido a equivaléncia entre a massa e a energia, existe um vetor
de Killing £* = (9,)% associado a conservagdo da massa M. De acordo com a Eq.(2.85), temos

que
|
M— _S_E/()ﬁempv’%jp (2.86)

¢ a massa conservada. Similarmente, existe uma quantidade conservada associada a simetria

de rotagdes, ou seja existe um vetor de Killing ¥* = (d¢)* que implica na conservagdo do
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momento angular:
1
= /Meﬂv,tpva. (2.87)

O mesmo acontece para a conservagdo da carga:

1
0= H/MgMpVMP. (2.88)

Para unir tais quantidades conservadas, basta utilizar o vetor de Killing y* formado pelos veto-
res de Killing E* W% A%*. A primeira lei dos buracos negros descreve como um buraco negro
interage em termos de trocas de energia com a matéria circundante. Para ilustrar esse conceito,
consideremos dois buracos negros estaciondrios muito semelhantes: o buraco negro A e o bu-
raco negro B. A distin¢do entre eles é que o buraco negro B é o resultado da absor¢do de uma
particula com massa, momento angular e carga pelo buraco negro A. Uma vez que o buraco
negro € descrito por apenas trés parametros, a sua massa M, a carga Q e o momento angular J
[42], a diferenca entre os buracos negros serd dada pela diferenca de tais parametros. Portanto,

a diferenca de massa é dada por [43]:
SM = %&4 +Q8J + 50, (2.89)

em que kK é a gravidade superficial, A é a area de superficie do horizonte de eventos, £ é
a frequéncia de rotacdo e ® € o potencial elétrico, todos esses parametros sdao calculados no
horizonte de eventos do buraco negro A. Logo, se algo cair no buraco negro, a drea do mesmo
serd alterada de acordo com a primeira lei.

A segunda lei afirma que a area da superficie de um buraco negro, medida no ho-
rizonte de eventos, nunca diminui com o tempo, 6A > 0. A demonstragio dessa afirmagao foi
feita por Hawking em [44], ela basicamente se baseia nos trabalhos de Penrose sobre a conjec-
tura da censura cosmica fraca e na estrutura causal do espaco-tempo [45]. A demonstragdo esté
fora do escopo deste trabalho e, portanto, ndo serd apresentada.

Bekenstein fez a hipétese de que buracos negros devem ter entropia [12], represen-
tada por S, e que esta € proporcional a drea do horizonte de eventos. Uma boa ideia que sugere

isto € que pela primeira lei da termodinamica, temos que
dE =TdS — pdV + udN, (2.90)

e a primeira lei da mecénica de buracos negros afirma que 6M = £5A +Q06J +PoQ. Aqui,
Q &J representa o trabalho feito ao adicionar ou remover momento angular do buraco negro,
similar ao trabalho —p dV na termodinamica cldssica. Analogamente, ® 8Q corresponde ao
trabalho realizado ao adicionar ou remover a carga elétrica, semelhante ao termo (t dN. Assim,

€ natural supor, devido a analogia direta entre a primeira lei da termodinamica e a primeira lei
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da mecanica dos buracos negros, que
K
TdS = —0A, (2.91)
&

outra semelhanga provém da segunda lei: a segunda lei da termodinamica afirma que a entropia
de um sistema € sempre maior ou igual a zero. Similarmente, a segunda lei da mecanica de
buracos negros diz que a drea de superficie de um buraco negro nunca diminui. Logo, faz
sentido afirmar que a entropia de um buraco negro dependa da drea do horizonte de eventos.

E bastante vidvel explorar campos quénticos livres em espagos-tempo curvos [46],
revelando insights sobre o comportamento desses campos na presenca de gravidade. Note que
uma vez que ndo existe uma coordenada temporal que seja preferivel, a no¢do de particulas se
torna imprecisa. De forma que, de acordo com Unruh [47], dois observadores, um acelerado
e outro em repouso, devem discordar sobre o estado de um campo quantico. O observador em
repouso ird afirmar que o campo quantico estd em seu estado de vicuo, ou seja com auséncia
de quanta, o outro observador, acelerado, ird afirmar que o campo possui um espectro de quanta
andlogo ao de um corpo negro, onde a temperatura da radiacdo estd diretamente relacionada a
aceleracao do observador.

Em 1975, Hawking examinou um campo escalar quintico ndo massivo em um
espaco-tempo resultante do colapso de uma estrela esférica. O mesmo visava determinar o
estado final desse campo escalar, partindo do pressuposto de que o estado inicial era o vacuo,
ou seja, sem quanta. Hawking concluiu que, em estdgios muito avangados do tempo, o estado
final do campo escalar correspondia a um espectro de quanta que era andlogo ao de um corpo

negro, com uma temperatura 7y dada por:

_ hx
N 2775](3’

Ty (2.92)

onde Kk € a gravidade superficial, /i € a constante de Planck e kp a constante de Boltzmann. Este
foi um dos primeiros resultados que juntava a gravidade com a mecanica quantica e que de-
monstrava que buracos negros sdo corpos que emitem radiacdo, a radiagao Hawking. Inserindo
a expressao para Ty acima na Eq.(2.91), acha-se que

hx K

kg
dS=—dA=dS=—dA
2rtkp 8 4h

integrando ambos os lados obtém-se que

Y

S = . 2.93
4n (2.93)

Assim, a medida que o buraco negro emite radiacdo Hawking, o mesmo perde energia ou massa,
logo o buraco negro evapora com o tempo e perde tamanho, consequentemente todo buraco
negro € instavel. Vale lembrar que o buraco negro deve estar em equilibrio com a radiag¢do de

corpo negro de Hawking.
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Por fim, a terceira lei afirma que mesmo que um buraco negro esteja evaporando
devido a radiacao Hawking, a sua gravidade superficial nunca serd nula em um dado tempo
posterior, afinal caso isso acontecesse a energia que define 0 mesmo seria também nula, vio-

lando assim um principio fundamental da fisica.
2.3 Solucoes de Vacuo

O tensor energia-momento 7y € a ferramenta responsavel por descrever as proprie-
dades da matéria e sua influéncia sobre a métrica do espaco-tempo. Todavia, a forma especifica
que tal tensor deve assumir para diferentes formas de matéria nao €é determinada pela TRG, mas
sim por outros ramos da fisica. Conforme constatado por Einstein [48], esse aspecto faz com
que a teoria da relatividade geral seja uma teoria aberta, de forma que a formula¢do completa
da teoria requer a defini¢do do tensor energia-momento para cada tipo de matéria ou campo
estudado.

Petrov amenizou essa lacuna tedrica com a sua classificacao algébrica [49], que
organiza as diferentes formas de matéria associadas ao tensor energia-momento. Nesta se¢do,
a nocao de vacuo e as suas duas principais solucdes esfericamente simétricas: a descoberta por

Schwarzschild em 1916 [50] e a descoberta por De Sitter em 1917 [51], serdao apresentadas.

2.3.1 A Classificacao Algébrica de Petrov

O vécuo € definido como um tipo de matéria que ndo permite nenhum referencial
preferencial associado a ele. Em outras palavras, ndo hd nada dentro do vacuo para servir como
ponto de referéncia absoluto. Assim, qualquer referencial em movimento € igualmente véalido
em relacdo ao véacuo, pois nao ha nada dentro dele que possa fornecer um ponto de referéncia
preferencial. Isso significa que ndo hd um “repouso absoluto” em relacdo ao vacuo, pois nao
ha nada dentro dele para estar em repouso em relacao a ele. Portanto, qualquer referencial esta
em movimento conjunto com o vacuo, pois nao ha nada dentro dele que possa ser usado para
distinguir entre diferentes referenciais de movimento. Quando hd matéria presente, hd pontos
de referéncia que podem ser utilizados para definir um referencial preferencial. Por exemplo, se
houver um objeto ou um conjunto de particulas presentes em um sistema, € possivel usar esse
objeto como um ponto de referéncia para medir o movimento de outras coisas em relacao a ele.
No entanto, quando estamos lidando com o vicuo, ndo hd matéria presente para servir como
ponto de referéncia. Nao ha nada dentro do vacuo que possa ser usado como um referencial
preferencial para definir movimento. Essa propriedade se mantém ndo apenas para o vacuo
padrdo Ty = 0, mas também para outras possibilidades.

Conforme demonstrado em [6], a relacdo entre os referenciais comdveis (ou proprios),
aqueles nos quais a matéria ou o sistema fisico estd em repouso, € a estrutura do tensor energia-
momento sdo fundamentalmente relacionadas. A unicidade de tal referencial, segundo a teoria

cldssica, implica em uma direcdo privilegiada que pode ser identificada como a velocidade do
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meio em relacdo a um observador externo e caracteriza a existéncia de um meio material.

No caso de um campo eletromagnético livre, ndo hd um tunico referencial onde
todo o campo possa ser considerado em repouso, que € a defini¢do clédssica de vicuo, toda-
via a exigéncia de um tunico referencial comével ndo € necessaria para definir um meio fisico
para certos tipos de sistemas, o que contrasta com a matéria ordindria. Portanto, trés casos
sdo possiveis: o sistema fisico ndo possui nenhum referencial préprio (vacuo cléssico), o sis-
tema fisico possui um unico referencial comdvel (matéria cldssica), e o sistema fisico possui
multiplos referenciais comdveis (um tipo de matéria que apresenta propriedades de vacuo, mas
nao € vazio).

Uma das estruturas possiveis para o tensor Tpf’ € ter dois pares de autovalores iguais,
que serd representado por [(11)(11)], ou seja T = T\! e T = T3}, enquanto que [1(111)] indica
que trés autovalores sdo iguais (espaciais) e um € distinto (temporal). Essa notacdo oferece
uma maneira compacta de classificar o tipo de simetria do tensor, facilitando a interpretagdo
das propriedades fisicas associadas [6].

Se nenhum dos autovalores associados as componentes temporais e espaciais forem
iguais, entdo o sistema de referéncia comével € tnico. Assim, as classificagdes [1111],[11(11)]
e [1(111)] correspondem a formas de matéria que possuem um tnico referencial préprio, en-
quanto que [(11)11],[(11)(11)],[(111)1] e [(1111)] representam formas de matéria que ndo
possuem a unicidade.

Para sistemas fisicos formados por particulas sem massas (como no caso de um
campo eletromagnético livre do tipo (E-H = 0, E*> — H?> = 0), nio existe um sistema de re-
feréncia comével bem definido, assim niao ha um meio fisico tradicional que se mova com uma
velocidade definida inferior a da luz. O comportamento do campo eletromagnético em um
vacuo ideal é independente de qualquer sistema de referéncia comdvel, tornando desnecessario
e impossivel, de acordo com a teoria da relatividade especial, definir um sistema com essas
propriedades.

Se todos os autovalores do tensor energia-momentum sdo iguais, i.e. [(1111)].
Entdo, qualquer referencial inercial pode ser considerado comdvel com a matéria descrita por
esse tensor, porque nao existe uma direcao espacial preferida - o sistema € isotropico. Isso cria
um cendrio onde o meio fisico se comporta como se fosse um “vacuo”, no sentido de que nao ha
uma direc¢do espacial especifica associada a0 movimento da matéria. A propriedade do vacuo
mencionada aqui refere-se a isotropia e homogeneidade do espago vazio: o vidcuo nao tem uma
direcdo preferencial, e as propriedades fisicas sdo as mesmas em qualquer direcao.

Do ponto de vista macroscépico, essa matéria com tais caracteristicas pode ser con-
siderada como um “meio tipo vadcuo” porque suas interacdes com outras particulas ndo depen-
dem da velocidade relativa. Em qualquer referencial, as interagdes seriam as mesmas, o que
reflete a propriedade de isotropia e a auséncia de direcao espacial preferida.

Existe a possibilidade de um “meio termo” que sdo os tensores energia-momento

com as caracteristicas [(11)11],[(11)(11)]. Tais estados de matéria sdo caracterizados por uma
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direcdo de vacuo, pois ao longo de uma dada direcao as interagdes desse tipo de matéria com
a ordindria ndo dependem da componente da velocidade. Assim, o vicuo ndo € unicamente
caracterizado pelo tensor energia-momentum do tipo 7,y = 0, mas também conforme veremos
por solucdes do tipo 70 = Tl1 , T22 = T33.

Para os tensores energia-momentum que caracterizam o vdcuo classico, Ty = 0,
duas solugdes esfericamente simétricas se destacam devido a sua relevancia tanto em cenarios
astrofisicos quanto cosmologicos. A primeira foi a descoberta por Schwarzschild em 1916 [50]
e representa o campo gravitacional externo a um corpo esfericamente simétrico e estitico no
vacuo, sendo uma das primeiras solucdes exatas das equacdes de Einstein.

Enquanto que a outra solu¢do de bastante interesse foi a proposta por Willem De
Sitter em 1917 [51]. Tal solug@o representa um universo em expansao com constante cos-
moldgica e esfericamente simétrico. Essa métrica é fundamental no entendimento do universo

em grandes escalas, essencialmente no caso de um universo em expansao acelerada.

2.3.2 A Solugdo de Schwarzschild

A solucao esfericamente simétrica mais conhecida das equacdes de campo de Eins-
tein € a métrica de Schwarzschild

dr?
1= (rg/r)

onde rg = 2M e M € a massa da fonte medida por um observador distante. A geometria de

ds2z_<1_r_g> dr® + +r2(d92+sin29 d(P2>, (2.94)

r

Schwarzschild descreve o campo gravitacional gerado por uma massa esférica no espaco vazio
fora da massa. Nessa situagdo, o tensor energia-momento que influencia a geometria € nulo em
todas as regides, exceto em um ponto singular em r = 0, onde a densidade de energia € infinita.

Para obter a métrica (2.94), considere a métrica esfericamente simétrica da Eq.(2.2),

as componentes ndo nulas do simbolo de Christoffel, Eq.(2.10), sdo:

r :g—/ r:L/ ]‘—‘,ée:—I r :—rSinze

T g e (2.95)
ro o 1 I _f % — _sinOcosO % —cotf

or =1mr =" = o p 0o — ; 06 = .

Aqui a linha indica uma derivada em relagdo a r. Com as componentes do simbolo de Christoffel

obtidas, facilmente se calcula as componentes nao nulas do tensor de Ricci

VAR NS Y A
" 2g 4g<f+g)+rg’
f// f/ f/ gl g/
Rrr:__ — | =T — —,
2f+4f(f+g)+rg (2.96)

R‘P‘P = SiIl2 0 Rg@.
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Como Ty = 0, entdo pela equagdo (2.59) segue que Ry, = 0, assim

RN AN A Y i
WL e
R A G A

R"_?[ 2+4<f+g)+rg]_0 (299
como f, g # 0, segue que
OZgRtt‘i‘err:f_g‘}'L
rg r
1
=—(f¢'+f'g) (2.99)
rg
1 d
:Ed_r(fg)

ou seja, o produto fg € constante em todo o espaco-tempo. Como o espaco-tempo € Min-
kowskiano no infinito, entdao f — 1 e g — 1 quando r — . Logo, a constante fg € unitaria.

Consequentemente,

g(r)=——. (2.100)

Para se obter a forma explicita de tais fungdes basta usar a equagdo Rgg = 0 com g = 1/f,

obtendo assim c
Ozl—f(r)—rf’:>f(r):1—|——. (2.101)
r

Longe da fonte € esperado que no limite cldssico a gravitacao seja Newtoniana. De fato, para
campos fracos temos que gop ~ — (14 2¢) (Para uma discussio acerca desse topico em detalhes,
consulte a se¢do 3.4 de [36]). O potencial Newtoniano ¢ é igual a —M /r, de modo que C =
—2M. Portanto, a métrica do buraco negro de Schwarzschild € igual a:

ds® = — (1 - 2%/[) dr* + % +1?(d6* +sin® 6 do?).
Tal solucdo tem dois problemas aparentes: em r = 0, a métrica € indefinida e em r = 2M a parte
radial cresce indefinidamente enquanto a parte temporal desaparece. Essas sdo as singularidades
da métrica, todavia a singularidade em r = 2M (horizonte de eventos) pode ser removida por
uma transformacao de coordenada e portanto trata-se de uma singularidade aparente [32]. Por
outro lado, a singularidade em r = 0O trata-se de uma singularidade real, uma vez que o escalar
de Kretschmann € igual a:

12r;  48M2

_ uvop _

(2.102)

e diverge para r = O (singularidade). As condi¢Oes de energia sdo obviamente satisfeitas uma

vez que Ty = 0 e a temperatura de Hawking € igual a:

1
Ty = .
H 4rrg

(2.103)
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Conforme serd mostrado ao longo deste trabalho, a solu¢ao de Dymnikova para o vacuo esferi-
camente simétrico retira a singularidade em r = 0 e portanto oferece uma descri¢c@o alternativa
dos buracos negros, especialmente em contextos onde o comportamento quantico e a auséncia

de singularidades assumem um papel fundamental.

2.3.3 A Solucdo de De Sitter

Em 1922, o fisico Alexander Friedmann ao considerar o universo como sendo ho-
mogéneo e isotropico, o que € uma afirmacdo razodvel em grandes escalas, encontrou uma
solucdo para as equagdes de Einstein que mostravam que o fator de escala do universo, uma
funcdo que descreve o tamanho relativo do universo ao longo do tempo, deveria variar com o
tempo [52]. Assim, contrariando a visao cientifica da época o universo deveria ser dindmico ao
invés de estatico.

Em uma tentativa de resolver essa questdo, Einstein introduziu uma constante a suas
equagdes em uma tentativa ndo muito frutifera de contrabalancear a tendéncia do universo de
expandir ou contrair [53]. Posteriormente, tal constante adquiriu um novo significado, sendo
responsdvel pela expansdo acelerada do universo e fundamentada em observacdes de superno-

vas [54]. Assim, as equacdes de Einstein podem ser reescritas como:

Se novamente assumirmos uma solucao de vacuo para a métrica esfericamente simétrica da
Eq.(2.2) acha-se as mesmas componentes nao nulas do tensor de Ricci dadas pela Eq.(2.96),

porém agora T,y = 0 implica que
Guv = —Aguy = 87Ty, (2.105)

onde agora Tﬁ\v =— % guv € o tensor energia-momentum do véacuo. A constante deve ser tal que
s6 adquira um significado importante em escalas cosmoldgicas, por isso a mesma € denominada

de constante cosmoldgica. Para resolver a equacao (2.105) note que
contraindo p com V

R:(g—A)(4):>R:4A

assim, a Eq.(2.105) pode ser reescrita como

Ruv = Aguv (2.106)

as componentes ndo nulas do tensor de Ricci foram calculadas na Eq.(2.96), desse modo

L[S () ]
el 5 () ] =
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L f f’(f’ g’) fg’]

Ry=—|-F%F+>(5+=|+—| =A¢g
f{ 2 4\f g rg

de modo que

gRtt +err =0

ou seja,
/ / 1 d
]i—i-f—g =0= ——(fg) = 0= fg = constante
r o rg rdr
pelos mesmos argumentos dados no caso de Schwarzschild, obtemos novamente que g(r) =

1/£(r). Para se obter a forma explicita de tais fun¢des basta usar a equagio Rgg = Aggg = Ar?,

ou seja
d
AP =1—f—rf'=A?=1 = (f7)
r
integrando,
Ar Ar? C
N e friCs o=
3 3 r
C AP
14—
f) =142 =5
novamente, para campos fracos temos que goo ~ —(1 +2¢) e A — 0, assim C = —2M e final-
mente, temos que
2M P
fr)=1—-—-= (2.107)
roor

onde r% = 3/A é o raio de De Sitter. Portanto, a métrica de De Sitter € igual a:

ds2:_(1_2—r—z>dr2+ a4 b0 dgY),  (2.108)
rong 1= (rg/r) = (r*/r5)

para o caso rg = 0 (espago-tempo vazio) temos que

2 r? 2 dr? 2 2, 2 2
ds” = — 1——2 dt +———+r (dO6 +sin” 0 do~). (2.109)
)

o

A solucdo de De Sitter descreve um universo com uma curvatura positiva constante, R = 4A, e
um vacuo com uma energia escura dominante. A solucido de Schwarzschild € recuperada para
A = 0 e as diferencas entre as solugdes s6 se tornam evidentes para valores radiais maiores
[55], uma vez que para valores de r préximos de zero o termo 72/ r% da solugdo € insignificante
perante r,/r. Todavia, a medida que r cresce tal termo passa a contribuir significativamente.
Contudo, a métrica nio é assintoticamente plana no infinito devido a divergéncia de r?/ r(z). O

escalar de Kretschmann da solugdo € igual a:
24

K — R”VGPRMVGP —
"o
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e diverge para ryp = 0. Por fim, a temperatura de Hawking € igual a:

1 /2 1
- <_§>’ — _ (2.110)
4r o r=ro 27rg

1L odf
CAxm o dr

Ty

r=ry

O horizonte cosmoldgico no espaco de De Sitter age como uma barreira para os observadores
internos, e a gravidade superficial pode ser definida com um sinal oposto ao usual, sendo esse o
motivo do sinal negativo. Em um buraco negro, para um observador externo, qualquer particula
que cruzar o horizonte nunca mais poderd sair. Ja para o caso de De Sitter um objeto que se
afasta de um observador localizado em uma regido central pode cruzar o horizonte cosmolégico,
e depois disso, a luz que ele emite nunca mais conseguird alcangar o observador. Assim, o
horizonte cosmoldgico ndo atrai objetos para um centro, mas sim define uma regido além da
qual um observador nao pode receber informacdes.

No préximo capitulo veremos que a temperatura de Hawking do buraco negro de

Dymnikova tende para a temperatura acima em algumas condi¢des.
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3 BURACO NEGRO REGULAR DE DYMNIKOVA

Antes de investigar a extensdo para dimensdes superiores do buraco negro de Dym-
nikova e explorar suas aplicacdes correspondentes, faz-se necessario compreender previamente
o conceito de um buraco negro regular e a solucao de Dymnikova para quatro dimensdes.

Para explorar um buraco negro regular, € essencial primeiro compreender o conceito
de um buraco negro e suas propriedades fundamentais. Em seguida, abordaremos a questio da
regularidade, que estd intimamente ligada a presencga de singularidades na curvatura do espago-
tempo. Apds essa contextualizagdo inicial, nos concentraremos na solucio proposta por Dym-
nikova, examinando sua formulacio matematica. Isso envolverd a determina¢do das grandezas
de curvatura, andlise do tensor momento-energia, resolu¢io das equacdes de Einstein, estudo

de geodésicas e discussao das condicdes de energia.
3.1 Buracos Negros Regulares

Buracos negros regulares sdo uma classe de buracos negros caracterizados por terem
singularidades nas coordenadas (horizontes), mas ndo possuem singularidades essenciais em
todo o espaco-tempo. Em diversos trabalhos [3, 56-58], a identificacio de um buraco negro
regular frequentemente envolve considerar um espago-tempo onde os invariantes de curvatura
permanecem finitos em todos os pontos, especialmente no centro do buraco negro. Isso esta
ligado a conjectura de restricdo de curvatura de Markov, que postula que os invariantes de
curvatura devem ser uniformemente limitados por um valor universal especifico.

A conjectura de restri¢do de curvatura de Markov [59-61], postula que os invarian-
tes de curvatura devem ser uniformemente limitados por um valor universal especifico. Todavia,
tal abordagem ndo é bem sucedida no buraco negro de Taub-NUT [58], tendo em vista que as
geodésicas tipo-tempo e nula sdo incompletas no horizonte. Uma alternativa seria utilizar a
completude da geodésica para determinar a regularidade do espaco-tempo, onde um espago-
tempo seria regular caso as geodésicas do tipo-tempo ou nula fossem completas [41], contudo
até mesmo esse caminho sofre de complicacdes [62], em que encontra-se geodésicas completas
porém os seus invariantes de curvatura divergem, o que por sua vez contraria a conjectura de
Markov. Tal discussdo sugere que tais estratégias devem ser utilizadas em conjunto na anélise
da regularidade de um buraco negro.

Sakharov e Gliner [5,6] foram alguns dos primeiros a afirmar que singularidades es-
senciais poderiam ser eliminadas, desde que o vacuo fosse substituido por um meio semelhante
ao vacuo imbuido com uma métrica de De Sitter. Os trabalhos de Dymnikova, Gurevich e Stra-
borinsky avancaram tal ideia [63—65] e o primeiro modelo de buraco negro regular foi desen-
volvido por Bardeen [7], onde o mesmo substituiu a massa do buraco negro de Schwarzcshild

por uma func¢do radial, isto por sua vez faz com que a singularidade essencial do escalar de
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Kretschmann seja removida e a curvatura de Ricci seja positiva nas vizinhangas do centro do
buraco negro.

A primeira interpretacao do buraco negro de Bardeen foi apresentada 32 anos apds
sua descoberta [66]. Eles propuseram uma fonte, se baseando em um monopolo magnético no
contexto da eletrodindmica ndo linear, que produz a solucdo de Bardeen. Esta abordagem difere
do método usual de encontrar solu¢des para buracos negros resolvendo as equacdes de campo
de Einstein. Neste método, comega-se por especificar as solugdes desejadas para buracos negros
regulares e monopolo magnético, logo apds obtém-se a acao correspondente da eletrodinamica
nao-linear.

Existem duas formas de se construir um buraco negro regular: uma bastante usual
¢ a de resolver as equagdes de Einstein que sdo obtidas com certos tipos de fontes especi-
ais, enquanto que a outra abordagem € assumir que os buracos negros regulares sdo correcoes
quanticas dos buracos negros classicos com singularidades [67, 68], assim os buracos negros
regulares serviriam para se estudar o limite classico de buracos negros quanticos.

As pesquisas mais recentes nesse campo visam demonstrar as diferencas entre os
buracos negros regulares e os singulares, o que por sua vez pode orientar futuras investigacoes
em gravidade quantica. O estudo vai além de questOes relativas a singularidades e pode ser
estendido para a termodinamica, modos quasi-normais, shadows, etc. Nessa secdo, serd feita
uma breve discussdo sobre a termodinamica, as condi¢des de energia e alguns exemplos de

buracos negros regulares serdao apresentados.

3.1.1 Termodindamica de Buracos Negros Regulares

A termodinamica dos buracos negros regulares € dificil de ser definida devido a ter-
mos adicionais na primeira lei da termodindmica, o que por sua vez produz certas complicacoes
no estabelecimento de correspondéncias entre quantidades mecanicas e termodinamicas [69].
Especificamente, aparecem termos adicionais nas leis dos buracos negros regulares, em que
o ndmero de termos adicionais é relacionado com o nimero de parametros da Lagrangiana
da matéria. Além disso, alguns buracos negros regulares nao obedecem a lei da area, isto é,

S # A /4. Por exemplo, o buraco negro de Hayward [70] com

2M =

== e G-

onde ¢ é um pardmetro de regularizacdo. A condi¢@o de horizonte f(r;,) = O fornece a massa

do buraco negro em termos do raio do horizonte de eventos:

3

M=__'h (3.2)
2(;% —(2)
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a expressao para a temperatura de Hawking € dada por:

1 2Mr?
Ty d(l A )

“amar\! Frme)|,
. Y (3.3)
- 47ry, a 47z7r2

onde apoés a derivada o valor obtido para M na Eq.(3.2) é substituido. O que produz a seguinte

entropia de acordo com a primeira lei da termodinamica,
"+ dM
S:/ — =Sy +AS (3.4)
T
onde Spy € a entropia de Bekenstein-Hawking

Spr = w(rl —r2) (3.5)

64 2 .2 2—62
Ag— O o) +27r£21n(r+ )>0 (3.6)

(r2 =) (r2 — 1?) r: — 02
pois ry > r_ > (. Ou seja, se utilizarmos dS = dM /T alei da drea ndo serd mais valida. Agora,
um exemplo contrdrio, a lei da drea é obedecida pelo buraco negro regular, mas dS # dM/T. A
Lagrangiana do buraco negro de Bardeen contém dois pardmetros, a massa M e carga magnética

q [66]. Consequentemente, a primeira lei se escreve como [69]:
K
dM = gdA+‘Pqu+KMdM+quq 3.7

em que Kk e Wy sdo a gravidade superficial e o potencial magnético, respectivamente. Os
parametros extras dificultam a construc@o de possiveis relacdes entre varidveis termodinamicas
e mecanicas. Visando corrigir isso, Fan and Wang adicionaram um pardmetro & na acao, o que

por sua vez produz a seguinte lei:
dE =TdS+YudQp,+11do (3.8)

em que as varidveis E = M, Q,, = \/Mq/2 e o = ¢* /M nio sio independentes. As demais cor-

respondéncias entre varidveis termodindmicas e mecanicas sdo: T — k /27w e § — A/4, todavia

A dM

—=3S — 3.9

54T 69)
pois se dQ,, = 0 = da, entdo M é uma constante, logo [dM /T = 0, lembre-se que a integral
acima deve ser calculada sob as condicoes de Q e & serem constantes. Se somente um parametro
fosse fixado, como dQ,,, = 0, entdo

A [dM 320011 dM
z—/T(”‘Ms)#/F‘ G-10
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a quebra de tal relacdo fez com que varios fisicos abandonassem a lei da drea-entropia [71,72],

/dE a (3.11)

Em estudos relacionados aos buracos negros regulares dentro do contexto da gravidade de Eins-
tein, é importante que a lei da drea continue sendo vdlida, isto é, S = A/4. Também é essencial
que cada varidvel termodinamica seja independente da primeira lei termodinamica, o que sig-
nifica que a mesma deve ser determinada independentemente dela, contudo a férmula termo-

dindmica S = [dE/T deve ser vilida. Uma excelente discussdo sobre esse topico € feita em

[4].
3.1.2 Condigoes de Energia para Buracos Negros Regulares

As condicdes de energia desempenham um papel fundamental no estudo dos bura-
cos negros regulares, uma vez que tanto podem ser utilizadas como um parametro para determi-
nar se um buraco negro regular € realistico, quanto estdo intimamente ligadas a formacao deles.
Acreditava-se que os buracos negros regulares poderiam ser formados com a substituicdo da
singularidade em seus centros por um ntcleo de De Sitter, contudo isso produz uma violagao
da condig¢do forte de energia.

A condicdo de energia forte [73] nos diz que
Rapv®vP >0 (3.12)

ou,

1 1
(Taﬁ - ETgaﬁ) V4P > 0= Taﬁv‘)‘vl3 > _ET

em que v* é a 4-velocidade. Para colocarmos a condi¢do de energia em uma forma mais con-

creta, assumamos que o tensor energia-momentum possa ser decomposto como
7B — peg‘eg + p1€] e[f + p2é5 eg +p3e§)‘eé3 (3.13)

pois g%B = nitve O‘ee em que N*Y =diag(—1,1,1,1). De forma similar, o 4-vetor velocidade

pode ser escrito como
v = y(ef +aéf +be§ +cé¥), y=(-a—b"—c*)""/? (3.14)

em que a, b, ¢ sdo fungdes das coordenadas tais que a® + b”> 4 ¢> < 1. Consequentemente,

(p—p1—p2—p3) (3.15)

N =

1
Topv®vP > —5T= Y(p +a*p1+b*py+c?ps) >

paraa = b = c =0, obtém-se Y = 1, e a relacdo acima se reduz para

3
p+Y pi>0. (3.16)
i=1
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Qual seria a interpretacgao fisica da equacdo acima? Lembre-se que da equacdo de Raychaudhuri
[74]

i —RuyvHvY (3.17)

onde 7 é o tempo préprio e O representa a expansdo da congruéncia geodésica. Aqui, termos de
ordem maior associados com expansdo podem ser ignorados, rotacdo e cisalhamento, uma vez
que estamos interessados apenas no papel da curvatura e das condi¢cdes de energia e os demais
termos, em geral, sdo pequenos em métricas esfericamente simétricas. Fazendo novamente

vi = (1,0,0,0), encontra-se que

d®

1
i —Ryy*vY = 81 (Taﬁ — ETgaﬁ) voyP

3 (3.18)
= —Rop = —4rn (p -+ Zpi> .

i=1

A violagdo da condicao forte de energia, p + Z?:l pi <0, significa que ® aumenta com o tempo

proprio, ou seja, a interacao € repulsiva.

3.1.3 Exemplos de Buracos Negros Regulares

A solugdo de Bardeen para um buraco negro regular € reconhecida como a primeira
solucdo regular desenvolvida, tornando-se crucial para esse campo de estudo. Tal solucdo é
caracterizada por uma métrica esfericamente simétrica com uma massa varidvel, recentemente
essa métrica foi interpretada como sendo uma solugdo exata das equagdes de Einstein acopladas

a eletrodinamica nao linear [75] e é dada conforme expresso a seguir:

-1
ds? = — (1 - Zm—r(”)> dr* + (1 — Zm—r(”)) dr® 4 r*(sin® 0d @* + d6?), (3.19)
onde 3
Mr
m(r) = m (3.20)

em que b € um parametro de comprimento e M € a massa do sistema. Aqui G = ¢ = 1. Observe
que quando b — 0 temos que m(r) — M e a solugdo se reduz a de Schwarzschild. Para a andlise

de regularidade, calculemos os seus invariantes de curvatura

_ 6MD*(4b* —r?)

(r2+b2)7/2 ’ (3.2D)
18M?b*(8b* — 4b%r? + 131)
RuyR* = Sy , (3.22)
2 8 6.2 4.4 2.6 8
o puvap _ 12M2(86° —4b0r 4 47b4r — 126710 + 4r%) 3.23)

uvap (,,2 —{—b2)7
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Observe que para r — 0, temos que

24M av  144M2
R - b—3, R”\;R -

(3.24)

que sdo regulares desde que b # 0. Todavia, as condi¢cdes de energia ndo sdo respeitadas para
essa solucdo, pois pelas equacdes de Einstein, temos que as componentes nao nulas do tensor

de Einstein sdo iguais a:

6Mb?
0 _ _ 1
0= _(r2+b2)5/2 =G (3.25)
Mb*(3r* —2b*
2, = M Cr—20) _ 3, (3.26)

2T (24p2)2
assim, para o tensor energia-momentum 7%, = diag(—p, p,, pe, pr), as equagdes de Einstein

implicam que

3Mb? 3Mb?(3r* —2b?)
= — = — rs — . 327
P=tnrpr 7P © PE= (2 1 b2)772 G.27)
Consequentemente,
6Mb*(3r? — 2b?
p+prtpi+pe= ( ) (3.28)

87(r> 4 b?)7/2
note que todos os termos com excecio de (37> — 2b?) sdo definidamente positivos, porém se
r< @b, entdo tal soma serd negativa, pois nesse caso 3r> —2b*> < 0. Analogamente, a condicdo

de energia nula também € violada:

Mb*(9r* — 4b?)

3.29
87r(r2+b2)7/2 ( )

p+pe=

ser < %, entdo p + py < 0, o que viola a condicao de energia nula. A existéncia do niicleo De

Sitter resulta na quebra das condicdes de energia.
3.2 A Solucao de Dymnikova

A solucao de Dymnikova [16] adota uma distribuicdo de energia esfericamente
simétrica que decai de maneira suave em dire¢do ao centro do buraco negro, evitando a sin-
gularidade e proporcionando um nucleo central com uma densidade finita. Isso é alcancado
ao considerar uma métrica do tipo De Sitter no centro, que € combinada com uma métrica de
Schwarzschild na regido externa. A vantagem de tal solu¢cdo é que ao contrario daquela apre-
sentada por Bardeen [7], a mesma se trata de uma solucio de vicuo esfericamente simétrica.

Iniciaremos nossa abordagem ao definir a métrica proposta por Dymnikova [16].
A partir dessa formulagdo, examinaremos suas propriedades, realizando uma andlise da geo-
metria por meio dos tensores e invariantes de curvatura para verificar sua regularidade e se a

mesma satisfaz as condi¢des de energia. Além disso, conduziremos aplica¢des que incluem a
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avaliacdo de grandezas termodinamicas, tais como a temperatura de Hawking e a capacidade
térmica. Adicionalmente, empreenderemos uma anélise das Orbitas de particulas proximas ao
buraco negro, proporcionando uma visdo abrangente e aprofundada do modelo proposto por

Dymnikova.

3.2.1 Efeito Schwinger e a Métrica de Dymnikova

Muitos efeitos quanticos surgem do fato do vacuo apresentar flutuacdes, como o
efeito Casimir [76], que é um efeito perturbativo onde as interagdes sdao fracas o suficientes
para serem consideradas como pequenas perturbagdes da solugdo base, e o efeito Schwinger
[77], que é um efeito ndo perturbativo em que a taxa de criagdo de pares nao pode ser descrita
por uma expansdo em série de poténcias da constante de acoplamento, ao invés disso, ela é

exponencialmente suprimida para campos fracos e torna-se significativa apenas para campos
mhm2c3
eE

O efeito Schwinger € caracterizado pela aplicacdo de um campo elétrico E intenso,

muito intensos, seguindo uma forma como exp (—

da ordem de 10" V/m, que extrai pares de elétrons e pésitrons diretamente do vacuo. O cor-
respondente gravitacional € derivado de maneira heuristica [25] ao relacionar o campo elétrico

com a tensdo gravitacional, que € caracterizada por um termo de curvatura, dado por

E 3
E~rd, 6= (3.30)
E 0's

onde E. = whm? /e é o campo elétrico critico necessario para a produgio abundante do par, rg=
2M ¢ o raio de Schwarzschild e r( € relacionado a curvatura do nicleo de De Sitter. Em quatro
dimensdes, o perfil de densidade de Dymnikova pode ser visto como um anélogo gravitacional
do efeito Schwinger [78]:
3
r
p(r) = poexp (——2) (3.31)
relh
No caso esfericamente simétrico, temos

n2=T° e TL,°=1,' (3.32)

com as demais componentes sendo nulas. De acordo com a classificagdo algébrica de Petrov
este tensor energia-momentum possui um conjunto infinito de referenciais co-moveis. Portanto,
pode ser interpretado como sendo o tensor energia-momentum que descreve o vacuo esferica-
mente simétrico. Em geral este vacuo € anisotrépico. A seguir serd mostrado que o vacuo
esfericamente simétrico pode gerar uma solucao de buraco negro que é regular em » =0 e em
qualquer outro lugar.

A métrica esfericamente simétrica mais geral possui a seguinte forma

ds*> = —e'di® + *dr? + r*(d6” +sin 0 d?), (3.33)
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onde v(r) e A(r) sao fungdes radiais. Tal métrica produz as seguintes componentes nao nulas
do tensor de Einstein
e—l+v<_1 —l—el —i—rl’)
%)

1—e*+rv/

r (3.34)

1

Gy = Ze*lr(2v/ +rv?2 A2+ rv)+2rv")

Goo =

G =

G33 = G22 Sin2 0.

Pelas equacdes de Einstein segue que

T‘uv — (3.35)

devido a (3.32) € necessdrio calcular o tensor misto, logo basta usar o fato de que 7}, V=

Tuago“’ = G“éx?fav, assim
Goag™  Ggog™ 1 a1 A 1
7.0 _ N — )= 3.36
0 87 87 8 ¢ ror r? (3.36)
© al 11 /
Giag Gig 1 (1 v 1
Tl — _ N ==, 3.37
! 8T 81 81 ¢ r2 + r r? ( )

Uma vez que T, 0— T, 1 obtém-se

(@1 ¢)-3-b () -

A +Vv' =0= A+ v = constante (3.38)

i.e.

sem perca de generalidade, pode-se fazer A +v =0= A = —v. Devido a (3.31) podemos fazer

a seguinte hipotese

3

r
p(r)=—T,° = poexp (—2—) (3.39)

rore
onde rg € conectado com py através da relacao de De Sitter:
3
2

=—. 3.40
o 8700 ( )

Por (3.36) segue que (3.39) pode ser escrita como:

_ PN (N[ oAN 1
Poexp r(%rg -\ 87 ¢ r2 r r2
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multiplicando ambos os lados por 8772 e integrando tal equacdo em relagio a r, acha-se que:

r /3 r r r
—A/ exp <—2—) 72 dr’ :/ e_ldr'—/ r/e_ll/dr/—/ dr’
0 rare 0 0 0

na integral a esquerda 1> /r3r, = u = r'> dr = (r}ry /3)du e que para a terceira integral na direita

et — % <r’e‘l) = e *A, assim

Ar2 P/ r r
— (ﬂ) rg/ e “du= / ey —/ e My Lret —r
3 0 0 0

a primeira integral a direita se cancela com a terceira, de modo que

Ar(z) —r3/r3 o —A
—(T)rg[l—e }——r(l—e )

dividindo ambos os lados por —r e notando que %\ = % : %’r . % = 1, encontramos que
3/.3
Yo [l—e” /r*] N
=1—e
’
resolvendo para et
3
rg|l1—e™" /r*]
4 [ 1
eh=1- = ——=e '
r rg [l—e*’ /’*]
1—

Consequentemente, a métrica (3.33) se torna

Ry(r) dr? .
ds? = — (1 _ 8 ) dr® + —+r2(d62+sm9 d(pz),

r 1 —(Rq(r)/7)

onde
7’3

Re(r) =rg |1 —exp —3 )|

em que
ri :r(z)rg.

(3.41)

(3.42)

(3.43)

(3.44)

Observe que (3.42) praticamente coincide com a solu¢do de Schwarzschild para r > r,, pois

3 - . e -
exp (— %) — 0, e para r < r, a solugo esfericamente simétrica se comporta como uma solugio
*

de De Sitter, uma vez que

3 3 3 3 3 3
r r r rgr r
() =1t e R L <
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Consequentemente, a métrica se reduz para:

ds> (1 “Napy 47 2(d0% +sin§ dg?)
~—(1—= ————+r
r3 1—r2/r3 ¢

que € a solucdo de De Sitter. Ademais, quando r — o a métrica se reduz para a de Minkowski.

Obtemos que as componentes nao nulas do tensor de Einstein para a métrica dada em (3.42) sao

iguais a:
o P RIR()
00 = 3
Gy = _M
r[r—Rg(r)] (3.45)
1
Gy = —Erng/(r)
1
G333 = —EI’Sin2 0 Rg(r).
Portanto, X
G Gigg™! r
1 b1 _ Gle8” "N _ 4o
T, = ST - 81 poexp< rz) =T (3.46)

G 2 G2 g(XZ 3’,.3 1"3
T 2 — 2 = @ = — 1 - Y 5
2 8 8 Po 2r3 P )’

pois por (3.44) sabemos que r,/r? = 1/r§ = 871py/3. Similarmente,

3
1,3 = G; _ G3a8™ __13r (1 3r3)exp (_f)

8 87 87 r3 213

que € justamente 7, 2. Assim,

373 r
T, =Ty = —po (1 — ﬁ> exp (‘73) (3.47)

* *

conforme esperado.

3.2.2 Anadilise da Solugdo

Vale apenas discutir as principais propriedades da métrica (3.85). Primeiro, irei
analisar as curvas radiais nulas nessa métrica, ou seja, curvas realizadas pela luz ds* = 0 onde
dp =dO = 0. Assim, da Eq.(3.42) segue que

dr_

4 l1=
dt

(3.48)

r

re(1 _e—r3/r§)]
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para r — oo, essa expressao se reduz em dr/dt = 1, conforme esperado, uma vez que a métrica

(3.42) € assintoticamente plana. Assim, pode-se afirmar que

dt
T4 1= (3.49)
dr

r

rg(l—er3/ri)] !

Se r — oo, entéo dt/dr — +1. Similarmente, quando r — 0, encontramos que dt/dr — +1,

re(1—e /)

enquanto que para — 1, dt/dr diverge que € a assinatura de um horizonte de

37,3
Crg(1—e i
eventos. Note também que quanto mais M se aproxima de 1, menor serd o termo
r
entre colchetes e maior serd dt/dr. Por fim, dentro do horizonte de eventos note que o termo
entre colchetes aumenta e dt/dr diminui, contudo agora dt/dr ird trocar de sinal e o cone de

luz tende a se fechar ao redor da origem. A diferenca entre Ry(r,) e g €

3
Ry(ry) =1y [1 —exp (;—i)] = Ry(rg) — rg = €xp (r_> . (3.50)
0"e 0

Observe também que

S
NI "SI\

M

rgc2 P
M — l—exp(———
M —m(r) G rore

M M ’

de modo que a diferenca entre m(r) e a massa de Schwarzschild M é

M—m(r) r

A métrica (3.42) possui dois horizontes de eventos, quando r, > ro, localizados aproximada-
mente em
re & rg [1-O(exp(—rg/rp))] r_ = ro[l — O(ro /4rg)). (3.52)

Aqui r4 € o horizonte de eventos externo e r— € o horizonte de eventos interno, tais singulari-

dades podem ser removidas através de uma transformacao do tipo

/R R\ !
dt = dt + —g(l——g) dr
r r
R 71
dp:dt+‘/L(l——g> dr
Rg r

R R R\ ™
—dt* + ngp2 —_ (1 — Tg) dr’ + (1 — 7”’) dr? (3.54)

(3.53)

pois
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e (3.42) pode ser reescrita como

R
ds? = —d12+@dr2+r2(d92+sin9 d([)z). (3.55)
Note que
R
1im e (3.56)
r—0 r

a forma de Lemaitre da Eq.(3.55) € regular tanto em r quanto r_, assim como em r — 0, mas
nao é completa. Para encontrar a sua extensao analitica médxima introduz-se as coordenadas

isotropicas de Eddington-Finkelstein, o que produz

du dv —r*(d6* +sin® 0 d?). (3.57)

dS2: ‘1 _Rg(l")
r

O escalar de curvatura e o escalar de Kretschmann dessa solu¢do sao, respectivamente, iguais

a:
3/.3
3 —r’/r; 4 3_3 3
R = e (6 r; —3r’) (3.58)
r*
4R2(l”) 3 3, Re(r) 2 2R, (r) 93 3,3 2
K=ROVAPR, = 52 a4 Ser/m 2 (D T i) (3159
LvAp /6 ”(% € 3 r3 ré' re ¢ (-39
Para r — 0, note que
12 24
rg T

Logo, essas quantidades sdo finitas uma vez que ry # 0. Parar — oo, temos R=0e K =0¢e
portanto a solucdo é regular. Para uma andlise completa, é necessdrio verificar se as condi¢cdes
de energia sdo infringidas por esta solug¢do. O tensor energia-momentum € dado por 7, V=

diag(—p, pr, pr, pr)- Por (3.32), (3.39) e (3.47), segue que a condicdo forte da energia produz

3 3},3 }"3
p+;p,~:—2p0 (1—2—r£> exp <_E) (3.61)

que é menor que zero para r < i/gr*, ou seja existe uma regido onde as condicdes de energia

forte sdo violadas. Similarmente, 0 mesmo ocorre para a condicdo nula de energia:

3 3 3
p+pr=—2po (1 - L) exp (—%) (3.62)

4r2 3

o que implica que para r < i/g r. acondi¢c@o nula de energia € violada. A regularidade geométrica
de um buraco negro significa que sua curvatura permanece finita em toda a sua extensao, evi-
tando singularidades. No entanto, isso pode ocorrer as custas da violagdo das condi¢des de

energia, fazendo com que a matéria envolvida seja considerada exotica.
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3.3 Termodinamica

Agora iremos calcular as quantidades termodinamicas associadas com o buraco negro regular
de Dymnikova. A massa M do buraco negro pode ser escrita em termos do raio do horizonte de

eventos r4 ao se resolver a equacao gy = 0:
ry=rg|ll—e = |. (3.63)

Multiplicando ambos os lados por ri /r3 para obter:

3
3 2 2 %
Y T
o= 2 2¢
rorg ro ro

3
. . ., r . ~ .
introduzindo a varidvel y = ﬁ, 0 que permite reescrever a relagdo anterior como
0'8

2 2
r+_ r+_y

s
o o

RT 27,2
multiplicando ambos os lados por ’~"+/"3, acha-se que:

2 2
T r

) e = e, (3.64)
o o

Tal equagao pode ser resolvida para y com o uso da fun¢do de Lambert, representada por W
[79]. O logaritmo natural responde a pergunta: qual poténcia de e produz o nimero u? ou seja,
o logaritmo é a solugdo da equagio: e = u. Analogamente, a fungiio de Lambert responde a
pergunta: qual poténcia de e, multiplicada por si mesma, produz o numero u? isto €, a fungdo
de Lambert € a solucdo da equagao eW(“)W(u) = u. Para resolver equacdes com a fun¢do de
Lambert basta prosseguir de maneira similar ao que € feito com a funcao logaritmica, em que se
uma equacdo € escrita como e“ = v, logo por definicdo temos que u# = Inv. Igualmente, se uma
equagao € colocada na forma ue" = v, entdo a definicao da fun¢io de Lambert permite escrever

W (v) = u, desde que x > e~ !. Assim sendo, a equagio (3.64) possui como solugio:

2 2
r reo 22
y——g:W<——42_e ’+/ro> (3.65)
"o "o
desde que
2
r
__;eiri/r(z) Z —eil.
"o
Consequentemente, temos que
2 2
s 1+ 3w (~Se /1)
r re 2R 1 2 r
ST o TW e =
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resolvendo para ry:
rg=——r T : (3.66)
1+ 23w <_%eri/r3>
+ n

0 que nos leva para a seguinte massa do buraco negro

2 2

= () [H’"—gw (—’—;e—ri/f%ﬂ . (3.67)
2 ri s

O buraco negro possui uma temperatura de Hawking, que por sua vez pode ser derivada através

da gravidade superficial:
o 19V—8"8n

5 5, (3.68)

r=rp

Portanto, a temperatura de Hawking do buraco negro de Dymnikova € igual a

3 2 3 2
l—e*r+/rgro 3r+e*r+/rgr0

T K Ig
t T 5 T Arx 2 - 2
2r 4m re 5
contudo, por (3.64) temos que
3 2 2

e e N A ULy S S

rr, 12 r2 r

o's o 0 8

assim obtém-se a temperatura encontrada em [78]:

1 ro 3ry ry
_ _ — . 3.6
* 4rry Lur ro ( re )] (3.69)

Todavia, pela equacdo (3.66) obtém-se que

Ty = 1+3W | ——e o ||. (3.70)
ro o

A temperatura de Hawking do buraco negro de Dymnikova para diferentes valores de rg é
representada na Figura 1:

O grafico indica que existe um valor critico de r onde a temperatura atinge seu
maximo e que um ry maior suprime a temperatura maxima do buraco negro e desloca o pico
para valores cada vez maiores de r. A existéncia de uma temperatura mixima e sua poste-
rior queda sugere um resfriamento natural que pode estar relacionado com a possibilidade de
remanescentes para os buracos negros.

A “possibilidade de remanescente” refere-se ao cendrio em que a temperatura de
Hawking se anula impedindo a evaporacdo completa, ou seja a emissdo de radiacao de Hawking
cessa antes que a massa do buraco negro evapore completamente. O remanescente do buraco
negro poderia servir como um candidato potencial a matéria escura, pois pois seria compacto,

ndo interagiria significativamente com a luz e ndo desaparece do universo com o tempo [80-
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Figura 1: Gréfico da temperatura de Hawking (TD como funcdo do raio do horizonte de
eventos (r4 ) para diferentes valores de ry.

82]. Matematicamente, isso ocorre quando o raio do horizonte satisfaz a condi¢do para uma

temperatura de Hawking nula, 7 = 0, e é determinado por

2
2 i
e 1
wl-Se % =— 3.71)
o

inserindo esse resultado na Eq.(3.67) encontra-se a massa remanescente:

31*?r
M= m. (3.72)
A determinacao das transicoes de fase no buraco negro depende do critério para uma
mudanca no sinal da capacidade térmica. Uma capacidade térmica positiva (C > 0) € um sinal
de estabilidade local contra flutuacdes térmicas, enquanto uma capacidade térmica negativa

(C < 0) indica instabilidade local [83]. A expressdo para a capacidade térmica € a seguinte:

_ (M (drn
o- () (2 a7

Pela Eq.(3.67) e sabendo que a derivada da funcdo de Lambert W € igual a:

2 2 27,2
5 2(1-5\w (= ri/70
W'(x) _ W(x) )) - W <_r_—£-e—ri/rg> _ ( r%) ( 5 > (3.74)
X

x(1+W( re [1 W (_rr_%e*ri/rg)}

0

o

encontra-se que a capacidade térmica € igual a:

2
drry |1+

2 ) 222 2(1_%)
4148w (<Sert/m) [ { —1-3w (< Ser/n) |1 - 0
1+W

+ 0
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Figura 2: Grafico da Capacidade Térmica (C) como func¢do do raio do horizonte de eventos
(r4).

A Figura 2 exibe graficos da capacidade térmica (3.75) para diferentes valores de
ro. A capacidade térmica possui um ponto de Davies [84], sendo esse ponto relacionado ao
maximo da temperatura de Hawking. Portanto, o ponto de Davies define o valor de r;, no qual
o buraco negro de Dymnikova exibe uma transi¢do de fase, e como podemos ver, o ponto de

Davies depende de ry.
3.4 Equacoes Gerais do Movimento

Um resultado significativo que podemos derivar é o potencial dessa solucdao. O
procedimento padrao adotado nesse caso se baseia no cdlculo das geodésicas de uma particula
em movimento proximo ao buraco negro. Uma vez que as equagdes nao podem ser resolvidas
analiticamente, nao serdo calculadas as oOrbitas circulares para uma particula em torno do buraco

negro. A métrica de Dymnikova possui a seguinte forma

d 2

ds* = — f(r)di* + Frr) +72(d62 +5in% 0 do?) (3.76)

onde »

1—e /"
fry=1- =) (3.77)

r
A equagdo da geodésica nos diz que
2. A U g,V

d“x 4 dxtdx’ (3.78)

dp? vy dp dp

onde p é um parametro afim para geodésicas nulas e é o tempo proprio para geodésicas tipo-

tempo. Assim, a forma mais direta de encontrar a equacdo do movimento de uma particula é
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através da resolucdo da equacdo geodésica, sendo uma abordagem bastante adotada [41]. As

componentes nao nulas dos simbolos de Christoffel sdo:

/
l—\tr — l—\i. — f (r)
' T2f(r)
/ /
o070, o S0)
2 2f(r)
Tho = —rf(r); T, =sin>0 Ty G-79)
1
6 6
rr@ = r@r o F;P(P - Fgr
ng, = —cos9 sin 0; Fgw = er =cot0
que produz as seguintes equagdes ao serem substituidas na geodésica:
dt d
flrdrdr_ (3.80)

f(rydpdp
Z—;’;Jrf’ér) [f(r) (52)2—% ] [ )2+Sin29 (%)1 =0 (3.81)

dr
d_
2 2
de 2( )( >—cos@sm0(d(p) ~0 (3.82)
dp

d2<p 2drde de\ [de
+2cot O =0. 3.83
ap? Trapap T (d )(dp (5:83)
Devido a simetria esférica, vamos confinar a 6rbita da nossa particula ao plano equatorial, ou
seja,
T
6 == 3.84
> (3.84)

que automaticamente satisfaz (3.82). Dividindo (3.80) e (3.83) por dt/dp e d¢/dp, respectiva-

mente, encontramos que

1 d [dt 1 df(r) dr d [ dt

S 4 (at —0= — |m< 4 3.85

gedp (dp)+f(r) dr dp dp [nd thnslr )1 G5
1 d (do\ 2dr d [ do 5
Y e T =0=— |[In——+1 =0 3.86
fl—ﬁdp(dp)Jrrdp :dp[ndp+nr} (350

o que produz duas constantes de movimento. Uma delas € a energia por unidade de massa

dt

flr)—

=E. 3.87
dp (3.87)

Enquanto a outra constante do movimento € derivada de (3.86), atuando como 0o momento

angular por unidade de massa:

L (3.88)
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Inserindo (3.84), (3.87) e (3.88) em (3.81) obtemos outra equagdo do movimento:

_ & f0) [Ez_ (d)] 10

~dpr ' 2f(r) dp P
multiplicando essa equagao por %r) j—;, encontra-se que
d [ 1 {[far\* | J?
O0=—<——1||—) —E — ¢ 3.89
dp{f(r) [(dp) ]+,,2 G5
Portanto, a constante de movimento restante é
1| [/dr\? J?
m [(d_r) —E? |+ — = € = constante (3.90)
r p r

resolvendo para (dr/dp)?* encontra-se que

dr\? J
(d—;> = E2 4 f(r) (e—r—z). (3.91)

Inserindo as Eqs.(3.84), (3.87), (3.88) e (3.91) na Eq.(3.76)

L) s (5 o () o

Para particulas massivas é valido que ds*> = —d 12, consequentemente
2 _ 2
dt=—¢edp”. (3.92)
De modo que € = —1 para particulas com massa, uma vez que o parametro afim nesse caso € o

préprio tempo préprio. Ja para a luz, € = 0, pois ds®> = 0. A Eq.(3.91) pode ser reescrita como

dr\? 2
o =E*—V, (1) (3.93)
onde i
re(l—e " /m) | (T2
Verp(r) = [1—%1 (r—2—8> (3.94)

¢ o potencial efetivo.
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4 BURACO NEGRO DE DYMNIKOVA GENERALIZADO

De forma similar ao que foi feito para quatro dimensdes, considere a acdo gravita-

cional generalizada
:_—ﬂ/de\/—_gR+SM (4.1)

em que R € o escalar de Ricci, N € o nimero de dimensdes do espaco-tempo e Sy, representa a

acdo da matéria. As equacdes de campo de Einstein N dimensionais sdo entdo dadas por

1
onde u,v=0,1,...,N — 1. A constante gravitacional de Newton N dimensional é tal que
Gy=c=1eT" = (-p,P.,P,...), sendo p a densidade de energia, P, a pressdo radial e F; a
pressdo transversal. Nosso objetivo € estudar as solu¢des que representam buracos negros, assim

procuramos solucdes esfericamente simétricas, de forma que faz sentido fazermos o seguinte

Ansatz:
ds® = —f(r)dr* + ar +r2dQ3%, (4.3)
f(r) B
em que f(r) é uma fungdo radial determinada pela solugéo e
N=2[ i
dQy_»=dof+ Y. |[]sin®6,-1 | 46} (4.4)
i=2 | j=2

¢ o elemento de linha de uma esfera unitaria (N — 2) dimensional [83]. Note que Qy_» é igual
a [85]:

27'L'N_]
Q2= =75 45)
r'(%5)
Utilizando a métrica dada por (4.3), encontra-se que
N-2 N-3 1 N-3
7O =77 = —= — 4.
0 r D) |:f(r)( %) +rf(r)> 2 :|7 ( 6)
o _S)[f" 2N=3)f"  (N-3)(N-4)] (N-3)(N-4)
76 S\ — 4.7
61 2 {f + rf(r) + r2 272 ’ S
] ) Oy
T191:T292:"':TN29N,2- (4.8)

De forma similar ao que foi feito em (3.39), podemos tomar a seguinte densidade:

N1
AN T

p(r) =Ty =poe *". (4.9)
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Aqui r, € uma constante dimensional. Utilizando a expressao de 7, 0 da Eq.(4.6) na Eq.(4.9),
obtém-se que

200 -1 fir) f (N=3)

Por fim, basta multiplicar ambos os lados por V=2
2p0rN 2 ﬁ :

w=2)°

= (V=3P ) (N3
= L (M) =),

e integrar ambos os lados da equacdo para determinar o potencial métrico:

N3 M
f(r)=1- rfv_3 (1—e 41) (4.10)

em que
3 _ 2po -1
s (N—l)(N—Z)riv 1D

€ o raio de dimensdes maiores. Portanto, a métrica de Dymnikova para dimensdes maiores €

igual a:

R dr?
ds? = — ( rjf_?) dr* + W +r7dQy . (4.12)
N3

Onde alguns termos foram acoplados de tal modo que

Ry(r)=r)7> [1—exp (—%)} (4.13)

Por uma questio de analogia, temos que

N—1)(N-2 _ -
r%:( 2)/)(() ) . A =g (4.14)

Essa solucdo exata esfericamente simétrica das equacdes de campo de Einstein produz a solu¢ao

de De Sitter para r < ry € a solu¢ao de Schwarzschild para r > r,. Os componentes do tensor

rN 1
energia-momentum sio 7,0 = T1 —pPoe A e
N—1 N1
92 N_ 1 r 1 _']Vfl
=|—— — e 4.15
% N-2 (rﬁk Po (4.15)
~ ( N_2\1/N-1 .
a pressdo transversal é nula (P, = 0) quando r = ( N 1) r« € a densidade se torna p =
N7
poe” N1, note contudo que no centro do buraco negro temos que /, = —pp e P, = —po = —p, 0

N—2y\1/N—1
N1
a condicao € respeitada. Os resultados anteriores se reduzem aos ja encontrados no capitulo

que implica em uma violac¢ao da condi¢do forte de energia, todavia a partir de r = ( X

anterior quando € feito N = 4. Os horizontes de eventos da métrica sdo os zeros de g, = 0.
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Temos entdo dois horizontes distintos, um horizonte de Cauchy r_ e um horizonte de eventos

externo r4, localizados em [19]

ro r§
re=ry|l1=-0(exp|—— , ry=rg|1-01exp —= . (4.16)
0

Ig ¥,

Eles podem ser eliminados através de uma transformagao apropriada de coordenadas. Em coor-

denadas conectadas com particulas livres em queda a métrica toma uma forma do tipo Lemaitre:

R
a5’ = —av + ) 4 Pagy . @.17)

Uma vez que (lim,_ (Rs(r)/r¥=3) = 0), a métrica é regular tanto em r, quanto r_, toda-
via ndo é completa. Para encontrar sua extensdo analitica maxima introduz-se as coordenadas

isotropicas de Eddington-Finkelstein, nas quais produzem:

R
i = — ‘1 RO g av - Pagn s, (4.18)

yN—3

de forma que a solucdo apresentada € regular em todo o espaco.
4.1 Termodinamica

Ao longo da secdo, algumas quantidades termodindmicas como a temperatura e
capacidade térmica serdo obtidas, além disso serd determinado qual € a condi¢@o analitica para
que a solu¢do de Dymnikova possua um remanescente, i.e., 7y = 0. Este ultimo € bastante
importante, uma vez que na presenca de um remanescente, o buraco negro nunca evaporaria
completamente. A massa do buraco negro pode ser determinada através do raio do horizonte de
eventos r, para isso basta resolver a equagdo f(r;) = 0, de forma andloga ao caso de quatro

dimensoes, temos que

_Al
rg_3(l—e ’J*V*l)
fr)=1- S (4.19)
fazendo f(r;) =0, acha-se
A
o (1w

2
multiplicando ambos os lados por ﬁ reescrevendo r, com o uso da relacdo (4.14) e intro-
0

8
-1

. o Y ‘
duzindo a varidvel y = # obtém-se que
2N
0’8

2 2

T T

v _ 5 -
Yoy =—e”
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T _ 27,2
multiplicando ambos os lados por ’~"+/"0, encontra-se que
2 2
r 2 /.2 r 2 /.2
(y_ _J2r> ey—r+/”o — __sze_r+/”o
"o "o

esta equacdo pode ser resolvida para y com o uso da funcdo W de Lambert:

2 2
r r 22
y—F= (——36‘”/ ) : (4.20)
o o
I’%_ _ 272 ~1
desde que ——e i/ > —e~'. Portanto,
o
-3
Y

2 2 ’
2 /.2
1+ 3w (——eri/n
e o
e a massa do buraco negro € entdao dada por

(N — Z)QN_erX_S

M= ! _ 4.21)
2
167 {1 1w <_’”_;e—ri/r%)}
ry o
Onde L6xM
BT 4.22)

§ (N=2)Qn_2"
Os passos para se obter tais equacdes sdo andlogos aos feitos na demonstracao da Eq.(3.67) e
Qpy_2 € dado pela Eq.(4.5). O buraco negro possui uma temperatura de Hawking que pode ser

obtida através da sua gravidade superficial dada por

o Ldf)

=3 | (4.23)
r=ry4
Ao passo que a temperatura de Hawking é dada por
K
=—. 4.24
=9 (4.24)

Para o buraco negro de Dymnikova temos entao [86]:

. 1[(N—3)r0_(zv—1)r+<1_r’1_3>] 425)

- 47ry re 70 rg’*f‘
ou,
Ty = —— |(N=3)+(N—1)W £ _% (4.26)
= — - ——=ée . .
* 4mry r%

Quando r4 > ry, obtém-se a temperatura de Hawking do buraco negro esfericamente simétrico

em N dimensdes [87]. Para N = 4, a expressdo acima se reduz para aquela encontrada na
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Eq.(3.67). Abaixo, o grifico para o comportamento da temperatura de Hawking para o buraco
negro de N dimensdes foi desenhado. O gréfico da esquerda indica que, para cada dimensao,
existe um valor critico de r onde a temperatura atinge seu maximo e em dimensoes mais altas, o
buraco negro pode atingir temperaturas maiores antes de comecar a esfriar. O gréfico da direita
sugere que um rp maior suprime a temperatura maxima do buraco negro e desloca o pico para

valores cada vez maiores de r. Portanto, massas de remanescentes surgem como resultado.
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Figura 3: Grafico da temperatura de Hawking (7)) como fun¢ao do raio do horizonte de
eventos (7).

A determinacido das possiveis transi¢des de fase no buraco negro depende do critério
para uma mudanca no sinal da capacidade térmica. Uma capacidade térmica positiva (C > 0)
€ um sinal de estabilidade local contra flutuacdes térmicas, enquanto uma capacidade térmica
negativa (C < 0) indica instabilidade local. A expressao para a capacidade térmica é a seguinte:

)
2W( — ’ie*r%r /r(z)
:

2 2,2
1+W (—%eﬁ/%)
"0

("F2) Quarf ™2 | (V=3) +

C= 5
2 2 22 222 2( _%r)
[1+—3W (——ge—u/’o)] ~(N=3)—(N—1)W (—%e"+/’0> - L
re I g 1+W<7%67r+/r0)
"0

4.27)

A Figura 4 exibe o gréfico da capacidade térmica (4.27) para um valor fixo de ry em
diferentes dimensdes. A capacidade térmica possui um ponto de Davies [84], sendo tal ponto
relacionado a0 maximo da temperatura de Hawking. Portanto, o ponto de Davies estabelece o
valor de r4 no qual o buraco negro de Dymnikova com N dimensdes exibe uma transi¢do de
fase, e como podemos ver, o ponto de Davies depende da dimensdo. A medida que aumentamos
o valor da dimensao, a posicao do ponto de Davies € deslocada para a esquerda, de modo que a

transi¢do de fase ocorre para valores menores de r .
Por fim, observe que um remanescente ocorre para valores nos quais 7y = 0, o que
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Figura 4: Griéfico da capacidade térmica (C) como fung¢@o do raio do horizonte de eventos ()
para o buraco negro de Dymnikova para diferentes dimensoes com ry fixo.

pela Eq.(4.26) implica em
2
2 3
- N-3
w-Se 1| = _N=3) (4.28)
g (N—1)

Inserindo este resultado na Eq.(4.21) encontra-se a massa remanescente como sendo igual a:

_ (N=2)(D-1)Qy o
16 [(N—- 1)k —(N=3)r3]

(4.29)

Note que todas as quantidades encontradas nesta se¢do se reduzem as do capitulo anterior
quando N = 4.

4.2 Modos Quasi-normais

Inicialmente, sera feita uma breve introducdo das ferramentas necessdrias para o
calculo dos modos quase-normais para perturbacdes escalares. Suponha a existéncia de um
campo escalar real, eletricamente neutro e massivo, ®, que estd acoplado de forma canoénica a
gravidade. Agora, considere sua propagacao em um background gravitacional fixo. A equacgdo

de Klein-Gordon é expressa da seguinte forma:

1
\/—__ga”(—\/_—g g9y )P = m* P, (4.30)
em que m € a massa do campo escalar. Introduzindo uma separacdo de varidveis para ¢ =

®(t,r,01,...,0p_2), pode-se escrever 0 mesmo como:

d(1,1,01,...,0v_2) = e“"‘”ﬂf/,(ﬂ) 4.31)
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em que ® é a frequéncia e ¥; é a generalizagio dos harménicos esféricos [88]. Assim, as

equacgoes em (4.30) assumem a forma do tipo onda de Schrédinger [89]:

>y
5 +Ur o)y =0, (4.32)

onde U (x,®) é o potencial efetivo que dependa da frequéncia da onda e da “coordenada de

tortoise” denotada por x e definida como:

dx= ——— (4.33)

quando x se aproxima de —oo,temos a presenca do horizonte de eventos, enquanto o limite de

£ 6

quando x se aproxima de +oo corresponde ao infinito espacial. Por defini¢do, a onda € “ingoing”

quando
e~k @ >0;
Win(x — too) o { itex, ©<0; (4.34)
e “outgoing” quando
ekt o > 0;
Your (x — +o0) { ik <0 (433)

O ndmero de onda k4 (@), que € maior que zero, satisfaz as relacdes de dispersdo. Tipicamente,

o potencial efetivo assume a forma
Ulx,0) =V(x) — o’ (4.36)

O potencial V (x) para a equagdo de Klein-Gordon possui a forma [90]:

Vi) = (1_1:;(_2)) {m2+£(€+g_3) _Nz—rz%<1:;<_r3?)+(N_24)r(iv—4) (1—152@)}
4.37)

onde ¢ > 0 é o momento angular orbital. A barreira de potencial para diferentes dimensdes foi

desenhada na Figura 5.

Para {rg,r,/} fixos e diferentes valores da dimensao N (gréfico superior esquerdo),
¢ evidente que o aumento na dimensao N implica em um aumento no miximo do potencial. Para
{N,rg,ro} fixos e diferentes valores do momento angular orbital ¢ (grafico superior direito), é
evidente que um aumento em ¢ também implica em um aumento no maximo do potencial, con-
tudo agora o grafico se move consistentemente para a direita. Para {N,r,,(} fixos e diferentes
valores de ry (grafico inferior esquerdo), um aumento em r( ndo interfere no maximo do poten-
cial. Por fim, para {N, ro,¢} fixos e diferentes valores do raio de Schwarzschild (gréfico inferior
direito), € notério que um aumento em r, produz uma diminui¢do no maximo do potencial e
que este se move para a direita.

Quando ondas puramente outgoing e ingoing sdo impostas em ambos os infinitos

espaciais na equagao fundamental de ondas, isso d4 origem aos modos quase-normais denotados
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Figura 5: Barreira de potencial efetivo para perturbacdes escalares por coordenada radial para
os parametros mostrados nas legendas.

por @ em buracos negros assintoticamente planos. A férmula WKB fornece uma forma fechada

para os modos quase-normais, como:

w?> = Vo —l—Az(ICZ) —I—A4(/C2) +A6(IC2) +...

(4.38)
iy —2VI (1 + A3(K2) + As(K2) + A7(K2) + ..

onde A, (K?) sdo polindmios das derivadas U”,U"", ... que podem ser encontrados em [91] e K

€ para os modos QN (quasi-normais) iguais a

+n+ 1, Re(w) > 0;
K= 4.39)
—n—1, Re(w) < 0;
emquen=0,1,2,3,...,e Vp,V),Vy’,... sdo, respectivamente, o valor e as derivadas de ordem

mais alta do potencial V(x) no seu ponto maximo.

Aumentar a ordem do método WKB ndo necessariamente resulta em uma aproximagao

mais precisa da frequéncia. Tipicamente, o erro da aproximac¢do da féormula WKB € avaliado

comparando duas ordens consecutivas. Para estimar o erro para @ obtido através da férmula



WKB de ordem k, empregamos a quantidade

Ay = |01 — 1| . (4.40)
2
Para aumentar a precisdo da férmula WKB, basta seguir o procedimento de Matyjasek e Opala
[92]. Além disso, serd utilizado o uso dos aproximadores de Padé. FormulacOes analiticas
precisas para o espectro quase-normal de buracos negros sao alcancaveis apenas em casos es-
peciais, como quando a equacao diferencial correspondente a componente radial da funcdo de
onda pode ser transformada na fun¢do hipergeométrica de Gauss e em casos de potenciais com
formato Poschl-Teller. Para o buraco negro de Dymnikova, devido as caracteristicas nao triviais
da equacdo (4.30), torna-se imperativo recorrer a métodos numéricos para calcular os modos

QN correspondentes. Devido a forma do potencial, que se assemelha ao grifico do efeito de
tunelamento, sera utilizado o método WKB.

Em geral, a férmula WKB tende a ser mais precisa quando ¢ aumenta e tanto n
quanto N sdao menores. Na Figura 6, podemos observar que, para encontrar o modo fundamental

com precisdo suficientemente alta, o mais alto nivel de precisdo € alcancado ao empregar altas
ordens de WKB em conjunto com a aproximacao de Padé
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107 ¢ Im(w)
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Figura 6: wg, (esquerda) e wy,, (direita) como fungdes da ordem W KB onde
n=0,N=35r,= 1,r(2) =0,2, / =1 (superior) and ¢ = 2 (inferior).

Na Tabela 1, é mostrado a precisdo da formula WKB para ¢ = 1,n = 0 em diferentes
dimensdes. Observa-se que o erro pode ser muito bem estimado ao comparar as frequéncias
com 0 menor erro em conjunto com a de sexta ordem. Assim, dentro da faixa de parametros
considerada, o buraco negro permanece estdvel contra perturbacdes escalares com base nos

cdlculos dos modos quase-normais. Isso se mantém verdadeiro devido a Im(w) negativo, pois
a perturbagio desaparece com o tempo, ou seja e '?" = ¢!’ ®" desaparece. Buracos negros
instaveis possuem @y > 0, em outras palavras a perturbagdo cresce exponencialmente. O sinal
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da parte real € uma mera questao de convencgio para se definir a direcdo da propagacao da onda.

r(% \ 0] Sixth order WKB
I=1,n=0,D=4
0.20 | 0.583422 - 0.1953651 | 0.579949 - 0.2018391
0.25 1 0.580694 - 0.1939591 | 0.574068 - 0.1901871
0.30 | 0.575456 - 0.1947471 | 0.571264 - 0.1950781
0.35 ] 0.566952 - 0.1918971 | 0.555443 - 0.2001961
0.40 | 0.562671 - 0.1799311 | 0.547077 - 0.1848251
0.45 [ 0.547112-0.1760651 | 0.555613 - 0.1803241
I=1,n=0,D=5
0.20 [ 1.01299-0.3702591 | 1.00626 - 0.3725031
0.25 | 1.00921 -0.3669181 | 1.01385-0.3679131
0.30 | 1.00237-0.3584661 | 1.00814 - 0.3680511
0.35 | 1.00033 -0.3505681 | 1.00719 - 0.3632881
0.40 | 0.981471 - 0.3565041 | 0.980692 - 0.3660121
0.45 | 0.982178 -0.334421 | 0.964823 - 0.3626661
{=1,n=0,D=6
0.20 | 1.44322-0.5175531 | 1.44063 - 0.5257541
0.25 | 1.43482-0.5050171 1.4427 - 0.520961
0.30 | 1.42936-0.5101231 | 1.44053 - 0.5206561
0.35 | 1.41782-0.4807491 1.42884 - 0.52211
0.40 1.4067 - 0.500021 1.42285 - 0.5209191
0.45 1.39392 - 0.481671 1.38135 - 0.5195231

Tabela 1: Modos Quasi-normais do campo escalar ndo massivo para diferentes dimensoes e r(z),
re =1 e ¢ =1, calculados usando a férmula WKB de diversas ordens.
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5 CONCLUSAO

Explorar a relatividade geral em dimensdes superiores promete insights valiosos
sobre a natureza da teoria, especialmente no contexto dos buracos negros. Neste trabalho, apre-
sentamos um buraco negro Dymnikova estatico e esfericamente simétrico exato que € regular
dentro de um espaco-tempo N-dimensional arbitrdrio. Analisamos a solu¢do, identificando ho-
rizontes potenciais. Além disso, verificamos a estrutura regular do espaco-tempo e conduzimos
uma andlise termodindmica. Investigamos o comportamento da temperatura de Hawking vari-
ando as dimensodes. Todas as dimensdes exibem uma transicdo de fase de ordem zero na qual
a temperatura se anula e a evaporacdo do buraco negro se interrompe em raios de horizonte
finitos. Portanto, massas de remanescente aparecem como resultado dessas transi¢des de fase.

Podemos observar que, ao aumentar a dimensao, o valor de 1 no qual a tempera-
tura de Hawking se anula torna-se menor. Portanto, a massa de remanescente € afetada pela
dimensdo. Também estudamos a capacidade térmica, ja que a determinacdo das potenciais
transi¢des de fase no buraco negro depende do critério para uma mudanca no sinal da capaci-
dade térmica. Uma capacidade térmica positiva (C > 0) é um sinal de estabilidade local contra
flutuacdes térmicas, enquanto uma capacidade térmica negativa (C < 0) indica instabilidade
local. Mostramos que a capacidade térmica possui um ponto de Davies, sendo tal ponto relacio-
nado ao maximo da temperatura de Hawking. Portanto, o ponto de Davies estabelece o valor de
r4+ no qual o buraco negro Dymnikova N-dimensional exibe uma transi¢do de fase, e também
demonstramos que o ponto de Davies depende da dimensdo. A medida que aumentamos o va-
lor da dimensao, a posi¢do do ponto de Davies é deslocada para a esquerda, de modo que a
transi¢cdo de fase ocorra para valores menores de 7.

O estudo dos modos quase-normais de um buraco negro de Dymnikova oferece
uma janela unica para suas propriedades fundamentais e comportamento gravitacional. Neste
trabalho, ilustramos representagcdes graficas da barreira de potencial efetivo em relacdo a coor-
denada radial, r, variando individualmente o conjunto de pardmetros N,r,,79,{. Em seguida,
calculamos numericamente os modos quase-normais usando o método WKB. Nossas descober-
tas indicam que, dentro da faixa de parametros considerada, o buraco negro permanece estavel
contra perturbagdes escalares com base nos calculos dos modos quase-normais. Isso se mantém
verdadeiro devido a Im(®) negativo. Os resultados apresentados neste trabalho ampliam o bu-
raco negro de Dymnikova, implicando relevancia potencial dentro do contexto da teoria das

corda.
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