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RESUMO

Neste estudo, investigamos o buraco negro regular de Dymnikova em N dimensões, analisando

sua regularidade, propriedades termodinâmicas e estabilidade. Nosso objetivo é verificar a

ausência de singularidades, avaliar as condições de energia e verificar a estabilidade do bu-

raco negro. Utilizamos o invariante de curvatura e os tensores para testar a regularidade, além

do método WKB para os modos quase normais. Os resultados mostram que a solução é re-

gular, mas viola certas condições de energia em uma região próxima ao núcleo. Além disso,

a análise termodinâmica indica que em certas regiões do espaço o buraco negro possui esta-

bilidade térmica. Enquanto os modos quase normais revelam a estabilidade da solução contra

perturbações escalares. Como a solução de Dymnikova é uma solução de vácuo que contém a

solução de Schwarzschild-De Sitter, os resultados fornecem subsı́dios para futuras investigações

em gravitação modificada e reforçam a viabilidade da solução.

Palavras-chave: buraco negro regular; termodinâmica; relatividade geral; Dymnikova.



ABSTRACT

In this study, we investigate the regular Dymnikova black hole in N dimensions, analyzing its

regularity, thermodynamic properties, and stability. Our objective is to verify the absence of sin-

gularities, evaluate the energy conditions, and assess the stability of the black hole. We use the

curvature invariant and tensors to test regularity, as well as the WKB method for quasi-normal

modes. The results show that the solution is regular, but violates certain energy conditions in a

region close to the core. Additionally, the thermodynamic analysis indicates that the black hole

exhibits thermal stability in certain regions of space. Meanwhile, the quasi-normal modes re-

veal the stability of the solution against scalar perturbations. Since the Dymnikova solution is a

vacuum solution that includes the Schwarzschild–de Sitter metric, our findings provide insights

for future investigations in modified gravity and reinforce the viability of this solution.

Keywords: regular blackhole; thermodynamics; general relativity; Dymnikova.



LISTA DE FIGURAS

Figura 1 – Gráfico da temperatura de Hawking (T+) como função do raio do horizonte

de eventos (r+) para diferentes valores de r0. . . . . . . . . . . . . . . . . . . 59
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1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 FUNDAMENTAÇÃO TEÓRICA . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Tensores Essenciais da RG . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Tensor Métrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Tensor de Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Tensor Energia-Momento . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Tensor de Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2.3.1 A Classificação Algébrica de Petrov . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 A Solução de Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 A Solução de De Sitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 BURACO NEGRO REGULAR DE DYMNIKOVA . . . . . . . . . . . . . 45

3.1 Buracos Negros Regulares . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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1 INTRODUÇÃO

A ideia moderna de um buraco negro, isto é, uma região do espaço da qual nada

pode escapar, remonta à publicação de Finkelstein [1], na qual ele afirma que o horizonte de

eventos é uma membrana unidirecional através da qual os eventos causais só podem ocorrer em

uma direção. Essa solução é de grande importância na Relatividade, pois pode determinar o

tipo de geometria que surge quando um corpo, como uma estrela ou um aglomerado de estrelas,

entra em colapso. Em 2019, a primeira imagem direta de um buraco negro foi capturada pelo

Telescópio do Horizonte de Eventos [2]. Este feito representou um evento significativo na

astrofı́sica, fornecendo evidências visuais concretas da existência de buracos negros, que há

muito tempo eram teorizados, mas nunca observados diretamente.

No entanto, na Teoria da Relatividade Geral (TRG), todas as soluções exatas conhe-

cidas para buracos negros apresentam singularidades, sendo algo inerente às soluções básicas

das equações de Einstein, o que cria um sério problema a ser abordado [3]. A singularidade

essencial na gravidade de Einstein pode ser evitada se a condição de energia forte for quebrada

nas proximidades do centro de um buraco negro. Buracos negros sem singularidades essenciais,

mas com singularidades de coordenadas, são chamados de buracos negros regulares (BNR) [4].

A investigação dos Buracos Negros Regulares tem suas origens nos trabalhos de

Sakharov e Gliner [5, 6], que propuseram que singularidades essenciais poderiam ser contor-

nadas substituindo o vácuo por um meio semelhante ao vácuo com uma métrica de de Sitter.

Posteriormente, Bardeen [7] propôs um modelo de buraco negro regular promovendo a massa

do buraco negro de Schwarzschild para uma função dependente da posição. Desde então, vários

buracos negros regulares foram propostos na literatura em diferentes contextos, como buracos

negros quase-topológicos [8], gravidade não local [9], BTZ bounce [10], gravidade cúbica de

Einstein [11], entre outros. Tais soluções proporcionam insights sobre o processo de colapso

gravitacional em seus estágios finais, algo que não é viável quando há uma singularidade na

origem já que a curvatura do espaço-tempo se torna infinita e as leis da fı́sica não podem ser

aplicadas. Além disso, surge uma questão intrigante: para que essas soluções sejam possı́veis

necessita-se de fontes exóticas, assim sendo não há fontes fisicamente plausı́veis associadas a

elas.

Bekenstein postulou que os buracos negros possuem uma entropia correlacionada

com a área do horizonte de eventos e, além disso, que a energia está relacionada com a massa

do buraco negro [12–14]. Hawking revelou que os buracos negros emitem radiação térmica, e a

temperatura dessa radiação tem semelhança com a gravidade superficial do buraco negro [15].

Uma solução regular muito interessante para buracos negros foi proposta por Dym-

nikova [16] nas quatro dimensões usuais da teoria da relatividade geral. É assumida uma forma

especı́fica para o tensor de momento-energia e derivada a métrica do buraco negro não singular

no vácuo; tal solução reduz-se à solução de de Sitter para valores pequenos de r e, para valores
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grandes de r, comporta-se como a solução de Schwarzschild. A métrica possui um horizonte

de Cauchy e um horizonte externo, mas ambos são removı́veis e a solução é regular em r = 0.

A solução de Dymnikova exibe regularidade em toda parte, como evidenciado pelo compor-

tamento dos invariantes escalares e do invariante de Kretschmann. Esses invariantes mantêm

um bom comportamento em todas as regiões, inclusive em r = 0. Consequentemente, o buraco

negro não leva a uma singularidade.

Existem distinções notáveis entre buracos negros que exibem singularidades e aque-

les considerados regulares [4]. Algumas dessas distinções surgem diretamente da ausência de

singularidade, enquanto outras são intrı́nsecas ao próprio modelo. Tais discrepâncias têm reper-

cussões que se manifestam de várias maneiras na observação, incluindo efeitos notáveis como

ondas gravitacionais, sombras, propriedades termodinâmicas e outros.

Como é impossı́vel observar diretamente o interior de um buraco negro, a pesquisa

deve se concentrar nos eventos dinâmicos e termodinâmicos que ocorrem além dos horizon-

tes de eventos. Especificamente, busca-se entender as variações desses fenômenos quando as

singularidades estão presentes em comparação com quando não estão.

Nos últimos anos, vários estudos sobre buracos negros e objetos relacionados em di-

mensões superiores foram conduzidos, algumas teorias da gravidade, como a teoria de Randall-

Sundrum e a de Kaluza-Klein, assumem a existência de dimensões maiores que 4 [17, 18]. Por

esse motivo, é pertinente estudar a generalização N-dimensional dos buracos negros de Dymni-

kova, feita recentemente por Paul [19], e discutir suas propriedades termodinâmicas. O buraco

negro de Dymnikova tem recebido atenção significativa no passado recente; por exemplo, a

estabilidade do buraco negro de Dymnikova foi estudada por Nashed e Dymnikova [20, 21],

o estudo dos modos quasinormais em buracos negros de Dymnikova foi discutido em [22] e

quantidades termodinâmicas foram calculadas em [23]. Mais recentemente, a regularização se-

melhante à de Dymnikova foi estudada no contexto de buracos de minhoca atravessáveis [24] e

do princı́pio da incerteza generalizado [25].

Os modos quasinormais são uma caracterı́stica essencial dos buracos negros [26,

27], e esses modos são definidos por propriedades fundamentais dos buracos negros, em vez de

perturbações externas. Eles são detectáveis por meio de interferômetros gravitacionais [28].

Nos últimos anos, o cálculo dos modos quasinormais (QNMs) para buracos negros em di-

mensões superiores tem recebido significativa atenção por várias razões convincentes. Por

exemplo, o entendimento das propriedades da relatividade geral em N dimensões [29] e ca-

racterı́sticas termodinâmicas [30]. Até o momento, não existia nenhum trabalho na literatura

que calculou as propriedades termodinâmicas e os modos quasinormais para o buraco negro de

Dymnikova em N dimensões. Portanto, o intuito deste trabalho é fazer tais cálculos e discutir

os resultados.

O trabalho está organizado em cinco capı́tulos. O capı́tulo inicial apresenta uma re-

visão básica da Teoria da Relatividade Geral (TRG), cobrindo os principais conceitos e equações

matemáticas relacionadas a tensores, matéria, energia e termodinâmica, além de introduzir as
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soluções de vácuo. Após essa exposição, no capı́tulo seguinte, são discutidos os principais con-

ceitos de buracos negros regulares e suas diferenças em relação aos buracos negros singulares.

Em seguida, apresentamos a solução de Dymnikova, cuja análise é realizada por meio do es-

tudo da métrica, dos tensores e invariantes de curvatura, das condições de energia do sistema,

da termodinâmica e das órbitas. Por fim, generalizamos a solução para dimensões mais altas

e realizamos análises similares às feitas em quatro dimensões. Aqui será utilizada a assinatura

positiva da métrica (2,+,+,+), a notação de Einstein para a soma e as unidades naturais.
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2 FUNDAMENTAÇÃO TEÓRICA

Antes de introduzir o conceito de buracos negros regulares e a solução de Dymni-

kova para quatro e N dimensões, buscando os seus resultados matemáticos e analisando suas

principais propriedades, é necessário fazer uma revisão dos principais conceitos de Relatividade

Geral (RG) que serão úteis para essas análises.

Neste capı́tulo, serão revistos principalmente os conceitos fundamentais que propor-

cionarão uma compreensão de como a gravitação funciona e que estabelecerão os fundamentos

matemáticos da Teoria da Relatividade Geral (TRG), como as definições do tensor métrico,

Riemann, Ricci e Energia-Momento. Será feita uma discussão sobre as condições de energia,

termodinâmica de buracos negros e equações de campo.

2.1 Tensores Essenciais da RG

A Teoria da Relatividade Geral se constrói sobre as fundações estabelecidas pela

Relatividade Especial, incluindo a equivalência de referenciais inerciais e a constância da ve-

locidade da luz. Além disso, a TRG repousa sobre dois princı́pios fundamentais equivalentes:

o Princı́pio da Equivalência e o Princı́pio da Covariância Geral. Embora não detalhemos es-

ses conceitos aqui, os interessados podem consultar [31]. Os principais tensores utilizados no

estudo de buracos negros serão apresentados ao longo da seção.

2.1.1 Tensor Métrico

O tensor métrico gµν define a estrutura geométrica do espaço-tempo, determinando

a distância entre dois pontos e a forma como vetores se transformam ao longo dele [32]:

ds2 = gµνdxµdxν . (2.1)

Note que o tensor de Minkowski ηµν é um caso especial do tensor métrico, onde gαβ =

diag(21,1,1,1) = ηαβ . Ademais, uma vez que a métrica ds2 é um escalar, é fácil ver que

o tensor métrico é simétrico, gµν = gνµ .

Na TRG, um dos tipos mais simples de soluções das equações de Einstein são as

esfericamente simétricas. Tais soluções representam campos gravitacionais nos quais possuem

a mesma forma em todas as direções espaciais a partir de um ponto central, o que funciona tanto

para estrelas, planetas, onde nesse caso é procurado soluções externas a superfı́cie dos mesmos,

quanto para buracos negros.

Suponha um campo gravitacional esfericamente simétrico e que fora do corpo res-

ponsável pelo campo só exista vácuo. Devido a simétrica esférica serão utilizadas coordenadas

esféricas (ct,r,θ ,ϕ). Também é assumido que o espaço-tempo é estático, ou seja todas as

componentes da métrica são independentes de t e a geometria é invariante por uma reversão
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temporal, ou seja, uma gravação da situação iria ser a mesma quando vista de trás pra frente.

Assim, a métrica deve ser simétrica sob as transformações θ ³2θ , φ ³2φ e t ³2t. Conse-

quentemente,

g00dt2+g0idt dxi+gi0dxi dt+gi jdxidx j = g00d(2t)2+g0id(2t)dxi+gi0dxid(2t)+gi jdxidx j,

tal igualdade só será válida se gi0 = g0i = 0. De forma análoga, ou seja utilizando o argumento

da reversão da coordenada, encontra-se que gµν = 0 para µ ;= ν . Assim, a métrica possui a

seguinte forma

ds2 = g00dt2 +g11dr2 +g22dθ 2 +g33dφ 2.

Assim,

ds2 =2 f (r)dt2 +g(r)dr2 + r2(dθ 2 + sin2 θdφ 2), (2.2)

onde r2dΩ2 = r2(dθ 2 + sin2 θdφ 2) = g22dθ 2 +g33dφ 2, pode-se também utilizar

µ(r) = ln f (r), ν(r) = lng(r) (2.3)

de modo que

ds2 =2eµdt2 + eνdr2 + r2dΩ2. (2.4)

Ademais, note que para uma métrica diagonal deve-se ter que

gµν =

ù

ú

û

1

gµν
, µ = ν

0, µ ;= ν
(2.5)

pois gαβ gβλ = δ α
λ implica que para α = 0:

g0νgνλ = δ 0
λ .

Mas δ 0
λ=0

= 1 e δ 0
λ ;=0

= 0, então para λ = 0, temos que

g0νgν0 = 1 ó g00 =
1

g00

e para λ = i

g0νgν i = 0 ó g0 jg ji = 0 ó g0i = 0

se fizermos α = i, chegaremos ao resultado (2.5). Por fim, falarei sobre as três formas de

classificação de um 4-vetor: Dado um 4-vetor arbitrário, Aµ , pode-se classificá-lo como:

" Um 4-vetor é do tipo-espaço se gµνAµAν > 0.

" Um 4-vetor é tipo-luz ou nulo se gµνAµAν = 0.

" Um 4-vetor é tipo-tempo se gµνAµAν < 0.

Como já mencionado na introdução, a assinatura da métrica é do tipo (2,+,+,+). Tal conceito

será importante na definição das condições de energia.
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2.1.2 Tensor de Riemann

Na relatividade especial, a ação de uma partı́cula livre relativı́stica é

S =
∫ B

A
ds =

∫ 2

1

√

2ηµν
dxµ

dσ

dxν

dσ
dσ . (2.6)

A equação de movimento resultante ao minimizar a ação com respeito a quadrivelocidade é

igual a:

d2xµ

dτ2
= 0 (2.7)

pois pela equação de Euler-Lagrange temos que

d

dσ

þ

ø
∂

∂
(

dxλ

dσ

)

√

2ηµν
dxµ

dσ

dxν

dσ

ù

û2 ∂

∂xλ

√

2ηµν
dxµ

dσ

dxν

dσ
= 0

o segundo termo é nulo, uma vez que ηµν é constante, consequentemente,

d

dσ

þ

ÿ
ÿ
ø

1

��2

√

2ηµν
dxµ

dσ

dxν

dσ

(

��2ηλρ
dxρ

dσ

)

ù

ú
ú
û
= 0.

Pode-se utilizar a relação
d

dσ
=

dτ

dσ

d

dτ
=

(

2ηµν
dxµ

dσ

dxν

dσ

)1/2
d

dτ
e escrever a relação anterior

como
(

2ηµν
dxµ

dσ

dxν

dσ

)1/2
d

dτ

(

ηλρ
dxρ

dτ

)

= 0 ó d2xµ

dτ2
= 0.

Em um referencial sob a ação de um campo gravitacional, tal equação irá ser alterada, já que

agora as derivadas do tensor métrico não serão mais nulas, assim

S =
∫ 2

1

√

2gµν
dxµ

dσ

dxν

dσ
dσ =

∫ 2

1
L dσ (2.8)

segue que

2 d

dσ

∂L

∂
(

dxρ

dσ

) =
d

dσ

(
1

L
gρν

dxν

dσ

)

= L
d

dτ

(

gρν
dxν

dτ

)

= L

[

gρν
d2xν

dτ2
+

1

2

(
∂gρµ

∂xν
+

∂gρν

∂xµ

)
dxµ

dτ

dxν

dτ

]

e
∂L

∂xρ
=2 1

2L

∂gµν

∂xρ

dxµ

dσ

dxν

dσ
=2L

2

∂gµν

∂xρ

dxµ

dτ

dxν

dτ

então, das equações de Euler-Lagrange segue que

2L

[

gρν
d2xν

dτ2
+

1

2

(
∂gρµ

∂xν
+

∂gρν

∂xµ

)
dxµ

dτ

dxν

dτ

]

+
L

2

∂gµν

∂xρ

dxµ

dτ

dxν

dτ
= 0
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o que produz a conhecida equação da geodésica

d2xρ

dτ2
+Γ

ρ
µν

dxµ

dτ

dxν

dτ
= 0. (2.9)

Em que Γ
ρ
µν é o sı́mbolo de Christoffel de primeira espécie e que é definido como

Γ
ρ
µν =

1

2
gρλ

(
∂gλ µ

∂xν
+

∂gλν

∂xµ
2 ∂gµν

∂xλ

)

. (2.10)

Observe que quando Γ
ρ
µν ³ 0, a Eq.(2.9) tende a Eq.(2.7), ou seja se reduz as equações da

relatividade especial. Note que o sı́mbolo de Christoffel é simétrico nos ı́ndices inferiores (o

que só é verdade em espaços-tempos livres de torção [33])

Γ
ρ
νµ =

1

2
gρλ

(
∂gλν

∂xµ
+

∂gλ µ

∂xν
2 ∂gνµ

∂xλ

)

=
1

2
gρλ

(
∂gλ µ

∂xν
+

∂gλν

∂xµ
2 ∂gµν

∂xλ

)

= Γ
ρ
µν .

Em geral, diz-se que o sı́mbolo de Christoffel nada mais é do que a pseudo força sentida por

uma partı́cula livre, uma vez que o mesmo age como um termo corretivo que ajusta o movi-

mento da partı́cula conforme ela experimenta a curvatura do espaço-tempo, semelhante ao que

a aceleração faria em um referencial não inercial. Agora, pode-se introduzir a derivada covari-

ante: quando a componente de um vetor é diferenciada parcialmente, encontra-se que a mesma

se transforma como:

∂V 2λ

∂x2µ
=

∂xα

∂x2µ
∂

∂xα

(

∂x2λ

∂xβ
V β

)

=
∂xα

∂x2µ
∂x2λ

∂xβ

∂V β

∂xα
+

∂xα

∂x2µ
∂ 2x2λ

∂xα∂xβ
V β

(2.11)

Obviamente a derivada parcial da componente de um vetor não se transforma como um tensor,

visto que existe a presença adicional do termo
∂xα

∂x2µ
∂ 2x2λ

∂xα∂xβ
V β . Todavia, é possı́vel construir

um objeto que se reduza a derivada parcial na ausência de campos e que se transforma como um

tensor, antes de mais nada é necessário saber como os sı́mbolos de Christofell se transformam.

Com o uso da Eq.(2.10) encontra-se que

Γ2λ
µν =

∂x2λ

∂xα

∂xβ

∂x2µ
∂xρ

∂x2ν
Γα

βρ +
∂x2λ

∂xα

∂ 2xα

∂x2µ∂x2ν
(2.12)

ou,

Γ2λ
µν =

∂x2λ

∂xα

∂xβ

∂x2µ
∂xρ

∂x2ν
Γα

βρ 2
∂xα

∂x2ν
∂xβ

∂x2µ
∂ 2x2λ

∂xα∂xβ
(2.13)
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tal equação pode ser obtida ao se derivar a relação ∂x2λ
∂xµ

∂xµ

∂x2ρ em relação a x2α e reescrever o

segundo termo do lado direito da Eq.(2.12). Assim, segue que

Γ2λ
µνV 2ν =

[

∂x2λ

∂xα

∂xβ

∂x2µ
∂xρ

∂x2ν
Γα

βγ 2
∂xα

∂x2ν
∂xβ

∂x2µ
∂ 2x2λ

∂xα∂xβ

]

∂x2ν

∂xγ
V γ

ó Γ2λ
µνV 2ν =

∂x2λ

∂xα

∂xβ

∂x2µ
Γα

βρV ρ 2 ∂xβ

∂x2µ
∂ 2x2λ

∂xα∂xβ
V α . (2.14)

Somando a Eq.(2.11) com a Eq.(2.14) obtém-se

∂V 2λ

∂x2µ
+Γ2λ

µνV 2ν =
∂x2λ

∂xα

∂xβ

∂x2µ

(
∂V α

∂xβ
+Γα

βρV ρ

)

. (2.15)

Ou seja, o termo entre parênteses é um tensor misto de segunda ordem. Define-se este tensor

como sendo a derivada covariante que atua em um vetor contravariante, sendo representada por

∇µ e definido como sendo:

∇µV λ c ∂µV λ +Γλ
µνV ν . (2.16)

Em que a notação ∂µ = ∂
∂xµ foi utilizada. Para o vetor covariante, temos que

∇µVν c ∂µVν 2Γλ
µνVλ . (2.17)

de forma geral, para um tensor

∇µT νλ c ∂µT νλ +Γν
µσ T σλ +Γλ

µσ T νσ

∇µTνλ = ∂µTνλ 2Γσ
µνTσλ 2Γσ

µλ Tσν

∇µT λ
ν = ∂µT λ

ν +Γλ
µσ T σ

ν 2Γσ
µνT λ

σ

(2.18)

O comutador da derivada covariante atuando em um vetor contravariante é igual a:

[∇µ ,∇ν ]V
λ = Rλ

σ µνV σ . (2.19)

Onde

Rλ
σ µν = ∂µΓλ

νσ 2∂νΓλ
µσ +Γλ

µρΓ
ρ
νσ 2Γλ

νρΓ
ρ
µσ (2.20)

é o tensor de curvatura de Riemann. A demonstração da relação (2.19) segue de (2.16):

∇µ∇νV λ = ∇µ(∂νV λ +Γλ
νσV σ )

= ∇µ(∂νV λ )+∇µ(Γ
λ
νσV σ )

= ∂µ∂νV λ +Γλ
µσ ∂νV σ 2Γσ

µν∂σV λ +∂µ(Γ
λ
νσV σ )+Γλ

µρΓ
ρ
νσV σ 2Γ

ρ
µνΓλ

ρσV σ

o que implica
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[∇µ ,∇ν ]V
λ =�����

∂µ∂νV λ +Γλ
µσ ∂νV σ 2Γσ

µν∂σV λ +∂µ(Γ
λ
νσV σ )+Γλ

µρΓ
ρ
νσV σ 2Γ

ρ
µνΓλ

ρσV σ

2�����
∂ν∂µV λ 2Γλ

νσ ∂µV σ +Γσ
µν∂σV λ 2∂ν(Γ

λ
µσV σ )2Γλ

νρΓ
ρ
µσV σ +Γ

ρ
µνΓλ

ρσV σ

=�����
Γλ

µσ ∂νV σ 2Γσ
µν∂σV λ +(∂µΓλ

νσ )V
σ +

XXXXXΓλ
νσ ∂µV σ +Γλ

µρΓ
ρ
νσV σ 2Γ

ρ
µνΓλ

ρσV σ

2XXXXXΓλ
νσ ∂µV σ +Γσ

µν∂σV λ 2 (∂νΓλ
µσ )V

σ 2�����
Γλ

µσ ∂νV σ 2Γλ
νρΓ

ρ
µσV σ +Γ

ρ
µνΓλ

ρσV σ

= (∂µΓλ
νσ 2∂νΓλ

µσ +Γλ
µρΓ

ρ
νσ 2Γλ

νρΓ
ρ
µσ )V

σ .

Da definição do tensor de Riemann, encontra-se que

Rλρµν =2Rλρνµ , Rλρµν = Rµνλρ (2.21)

e a identidade de Bianchi é dada por

Rλρµν +Rλνρµ +Rλ µνρ = 0. (2.22)

Note que Rλρµν = gλσ Rσ
ρµν . Uma contração de ı́ndices nos possibilita definir o tensor de

Ricci:

Rµν c R
ρ

µρν

= ∂ρΓ
ρ
µν 2∂νΓ

ρ
µρ +Γ

ρ
σρΓσ

µν 2Γ
ρ
σνΓσ

µρ

(2.23)

Repare que este tensor é simétrico, Rµν = Rνµ . Também é possı́vel construir um escalar, co-

nhecido como escalar de Ricci, com a contração do tensor de Ricci:

R = gµνRµν . (2.24)

Outro escalar bastante importante é o escalar de Kretschmann

K = RµνλρRµνλρ . (2.25)

que será bastante importante no estudo de singularidades.

2.1.3 Tensor Energia-Momento

Até o presente momento objetos essenciais para o estudo das propriedades geométricas

do espaço-tempo foram definidos, contudo, por motivos que ficarão claros posteriormente, é ne-

cessário procurar uma ferramenta que permita quantificar quanta matéria existe em um volume,

tal ferramenta é o tensor energia-momento.

Suponha que um fluxo de partı́culas percorre o espaço-tempo. Cada partı́cula per-

corre o espaço-tempo em sua própria linha de mundo carregando o seu 4-vetor momentum

consigo, tais partı́culas quando vistas espalhadas produzem um fluxo contı́nuo, um fluxo de

4-momentum. A forma de se quantificar esse fluxo é através do tensor energia-momento [34].

O tensor energia-momento é definido em termos de suas componentes, em algum
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referencial arbitrário, como [35]:

Tαβ :=

{

fluxo da α-ésima componente do 4-momentum

através de uma superfı́cie xβ constante.

}

(2.26)

A partir desta definição pode-se derivar as componentes do tensor energia-momento. Observe

que T00 é o fluxo da componente zero do 4-vetor momentum ou seja, a energia através da

superfı́cie x0 = t constante. Analogamente, T0i é o fluxo de energia através de uma superfı́cie xi

constante. Similarmente, Ti0 é o fluxo do i-ésimo momentum através da superfı́cie t constante:

a densidade do i-ésimo momentum. Por fim, Ti j é o j-ésimo fluxo do i-ésimo momentum. Em

resumo:

T00 = densidade de energia;

T0i = fluxo de energia através da superfı́cie xi constante;

Ti0 = densidade do i-ésimo momentum;

Ti j = fluxo do i-ésimo momentum através da superfı́cie x j constante.

(2.27)

Ou seja,

Tµν c
(

ρ S j

Si πi j

)

(2.28)

em que ρ é a densidade de massa energia do sistema, Si é o fluxo de energia e πi j são os termos

de tensão. No caso de um fluido perfeito, reescreve-se o tensor Energia-Momento como:

Tµν = (ρ + p)UµUν + pgµν (2.29)

onde p é a pressão do fluido no seu referencial e Uµ a sua 4-velocidade. No referencial local

do fluido de matéria, temos que Uµ̄ = (21,0) uma vez que a matéria está em repouso. O ı́ndice

com “barra” indica que as componentes do tensor estão escritas no referencial local. Portanto,

Tµ̄ ν̄ = (ρ + p)Uµ̄Uν̄ + pηµ̄ ν̄ . (2.30)

De modo que

T0̄0̄ = ρ, T0̄ī = 0, Tī j̄ = pδī j̄. (2.31)

Assim sendo, pode-se escrever o tensor energia-momento como Tµ̄ ν̄ = diag(ρ, p, p, p). Uma

importante lei de conservação para esse tensor pode ser obtida com o uso do Teorema de No-

ether. Todavia devido ao escopo do trabalho, não faz-sentido fazer tal demonstração. Através

das translações espaço-temporais que mantém a densidade Lagrangiana do sistema invariante,

obtém-se a Lei de conservação a seguir:

∂µT µν = 0.

A demonstração de tal teorema pode ser consultada em [36]. Embora tal resultado só tenha vali-

dade na teoria da relatividade restrita, sabemos que pelo teorema da covariância geral que existe
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uma equação na relatividade geral que deve se reduzir a essa para campos fracos, para obter tal

equação um caminho simples é apenas substituir a derivada parcial pela derivada covariante:

∇µT µν = 0. (2.32)

É fácil ver que tal equação produz a conservação da energia e do 4-momentum do sistema [37].

Alguns caminhos da relatividade geral envolvem buscar soluções das equações de

campo de Einstein, que serão apresentadas em breve, mesmo sem ter conhecimento prévio sobre

a matéria envolvida no sistema em questão. O que nesse caso produz uma situação bastante

peculiar, na qual os componentes do tensor energia-momentoTµν podem assumir uma ampla

gama de valores, dependendo da escolha da métrica para o sistema, que por sua vez pode ser

bastante variada.

Normalmente, quando se lida com fontes conhecidas, como as de um campo elétrico,

não há muito com o que se preocupar. Todavia, é igualmente importante explorar as carac-

terı́sticas das equações de Einstein para fontes mais gerais. Assim, torna-se necessário esta-

belecer certas condições de energia para o tensor Tµν , com isso espera-se reduzir a incerteza

dessa escolha. Isso porque precisamos de fontes “realistas”, que correspondam aos fenômenos

encontrados na natureza. As condições de energia para o tensor Energia-Momento são:

" Condição fraca: para qualquer vetor tipo-tempo de componentes V µ , a seguinte

desigualdade deve ser satisfeita:

TµνV µV ν g 0. (2.33)

Essa condição implica que a densidade de energia medida por qualquer observador em movi-

mento ao longo de uma trajetória permitida (isto é, uma trajetória que não viola as restrições

causais) deve ser sempre não negativa. Assim, no caso do fluido perfeito, ρ + pi g 0.

" Condição nula: para qualquer vetor tipo-luz (ou nulo) de componentes kµ , a se-

guinte desigualdade deve ser satisfeita:

Tµνkµkν g 0. (2.34)

Tal condição induz menos restrições que a condição fraca, já que nenhuma condição é imposta

a densidade de energia. Analogamente, ρ + pi g 0.

" Condição forte: a seguinte restrição deve ser satisfeita:

TµνV µV ν g 1

2
T α

α V βVβ (2.35)

isso produz que

ρ + pi g 0 e ρ +
3

∑
i=1

pi g 0. (2.36)

Observa-se que esta condição é mais restritiva do que a condição nula, implicando que, se esta

for válida, então a condição nula também será. Assim, soluções que violam essas condições não
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estão em conformidade com a fı́sica atual e podem ser consideradas não realistas ou pertencer

a alguma classe de matéria ainda não descoberta.

2.1.4 Tensor de Einstein

Uma forma de se derivar as equações de campo de Einstein é através da ação de

Einstein-Hilbert [36, 38]. Como espaço-tempo generalizados serão abordados ao longo deste

trabalho, faz sentido explicitar alguns argumentos aqui. É esperado que todas as propriedades

dinâmicas do espaço-tempo possam ser obtidas através do tensor métrico. Tal hipótese se ba-

seia no fato de que o tensor métrico é uma entidade matemática que captura as propriedades

geométricas do espaço-tempo, como a distância entre pontos e a estrutura causal. No entanto,

tal afirmação só pode ser feita desde que exista um Lagrangiano escalar construı́do com o tensor

métrico e suas derivadas:

L(x) = L(gµν ,∂σ gµν ,∂σ ∂ρgµν , · · ·). (2.37)

Para assegurar a covariância geral da teoria, é necessário criar uma integral de ação invariante.

Assim, a afirmação δS[g] = 0 será geralmente covariante, e também o será a dinâmica derivada

dessa afirmação. Note contudo que
∫

d4xL(x) não será invariante se L(x) for uma quantidade

escalar, visto que
∫

d4x L(x) =
∫

d4x̄

(
∂x

∂ x̄

)

L(x̄) ;=
∫

d4x̄ L(x̄)

onde é assumido que o Jacobiano
∂x

∂ x̄
;= 1. Assim é necessário uma quantidade a(x) tal que

∫

d4x a(x)L(x) =
∫

d4x̄ ā(x̄)L(x̄)

de modo que

ā(x̄) =
∂x

∂ x̄
a(x). (2.38)

Do tensor métrico é claro que

ḡµν =
∂xα

∂ x̄µ

∂xβ

∂ x̄ν
gαβ

consequentemente, o determinante será igual a:

ḡ =

(
∂x

∂ x̄

)2

g. (2.39)

devido a assinatura utilizada ser (2,+,+,+), teremos que g = det(gµν)< 0, assim faz sentido

dizer que
:
2ḡ =

∂x

∂ x̄

:2g. (2.40)
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a forma dessa equação permite concluir que a(x) na Eq.(2.38) deve ser igual a
:2g, de modo

que a ação invariante pode ser escrita como

S =
∫

d4x
:2gL(x). (2.41)

Pelo principio da covariância geral temos que

ηαβ ³ gαβ , ∂α ³ ∇α . (2.42)

Segue então que ∇αgµν = 0 pois no referencial local tal equação se reduz para ∂αηµν = 0. A

derivada covariante atuando no tensor métrico é escrita como

∇αgµν = ∂αgµν 2Γσ
αµgσν 2Γσ

ανgσ µ (2.43)

Como quase todas as equações diferenciais da fı́sica são de segunda ordem, faz sentido assumir

que o tensor métrico satisfaz uma equação diferencial parcial de segunda ordem. O tensor

mais simples que pode ser construı́do a partir do tensor métrico e suas derivadas é o tensor de

Riemann [36]. Logo, faz sentido tomar a densidade Lagrangiana como sendo igual ao escalar

de Ricci [39]

L =
R

16π
(2.44)

ou seja,

SEH =
1

16π

∫

d4x R
:2g

=
1

16π

∫

d4x gµνRµν
:2g.

(2.45)

Antes de mais nada note que

δ (gασ gσκ) = δ (δ α
κ ) = 0. (2.46)

aplicando a regra do produto no lado esquerdo, podemos reescrever a equação anterior como

gσκδgασ =2gασ δ (gσκ)ó gσκgκβ δgασ =2gασ gκβ δ (gσκ)

isto é,

δgακ =2gασ gβκδ (gσβ ). (2.47)

Pela fórmula de Jacobi, para uma matriz M invertı́vel é válido que δ (detM)= (detM) tr(M21δM),

para derivar tal fórmula basta ver que

δ (detM) = det(M+δM)2det(M)

= det[M(I +M21δM)]2det(M)

ó δ (detM) = det(M)det(I +M21δM)2det(M)

= det(M)[1+ tr(M21δM)+ · · · ]2detM

= det(M) tr(M21δM)

(2.48)
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desde que δM se torne infinitesimalmente pequeno. Logo, para M = tensor métrico:

δg = g(gµνδgµν)ó δ
:2g =

1

2

:2ggµνδgµν (2.49)

pois,

g(gµνδgµν) = δg

= δ (
:2g

:2g)

= 2
:2gδ

:2g ó δ
:2g =

1

2

:2ggµνδgµν .

Por fim,

δΓ
µ
αβ =

1

2
gµν(∂αδgβν +∂β δgαν 2∂νgαβ )2gµρδgρσ Γσ

αβ

mas pela Eq.(2.43)

∂αδgµν = ∇∇∇αδgµν +Γ
β
αµδgβν +Γ

β
ανδgµβ

de modo que

δΓ
µ
αβ =

1

2
gµν(∇αgβν +∇β gαν 2∇νgαβ ). (2.50)

Portanto, a variação do tensor de Riemann

δR
µ

ανβ = ∂νδΓ
µ
αβ 2∂β δΓ

µ
αν +(δΓσ

αβ )Γ
µ
σν +Γσ

αβ δΓ
µ
σν 2δΓσ

ανΓ
µ
σβ 2Γσ

ανδΓ
µ
σβ

mas

∂νδΓ
µ
αβ = ∇νδΓ

µ
αβ 2Γ

µ
νσ δΓσ

αβ +Γσ
ναδΓ

µ
σβ +Γσ

νβ δΓ
µ
ασ

ó δR
µ

ανβ = ∇νδΓ
µ
αβ 2∇β δΓ

µ
αν

contraindo o ı́ndice µ com ν , encontra-se que

δRαβ = ∇µδΓ
µ
αβ 2∇β δΓ

µ
αµ . (2.51)

Portanto, a variação do escalar de curvatura é igual a:

δR = δ (gαβ Rαβ )

=2Rαβ δgαβ +gαβ (∇µδΓ
µ
αβ 2∇β δΓ

µ
αµ)

=2Rαβ δgαβ +gαβ gµν(∇α∇µδgβν 2∇α∇β δgµν).

(2.52)

A variação da ação,

δSEH =
1

16π

∫

d4x
[
δ
:2gR+

:2gδR
]

=
1

16π

∫

d4x

[
1

2

:2ggµνRδgµν 2
:2gRµνδgµν +

:2ggαβ gµν(∇α∇µδgβν 2∇α∇β δgµν)

]

=
1

16π

∫

d4x
[

2:2gGµνδgµν +∇α(
:2ggαβ gµν(∇µδgβν 2∇β δgµν))

]

=
1

16π

∫

d4xGµνδgµν + termos de superfı́cie
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onde Gαβ = Rαβ 2 1

2
gαβ R é o tensor de Einstein. Podemos descartar tais termos e obter que

δSEH =
1

16π

∫

d4x
:2gGµνδgµν (2.53)

a ação total contém a parte responsável pela fonte:

SM =
∫

L
:2gd4x (2.54)

sua variação em relação a métrica resulta em

δSM =
∫

d4x
:2g

[
∂L

∂gµν
2 1

2
Lgµν

]

δgµν

definindo

Tµν =22

[
∂L

∂gµν
2 1

2
Lgµν

]

=2 2:2g

δ (
:2gL)

δgµν

então,

δSM =21

2
δd4x

:2gTµνδgµν (2.55)

combinando com

δSEH =
1

16π

∫ :2gd4x
(
Gµν 28πTµν

)
δgµν = 0. (2.56)

O que produz a conhecida equação de Einstein:

Gµν = Rµν 2
1

2
Rgµν = 8πTµν . (2.57)

Um resultado bastante famoso é o caso especı́fico em que não há a presença de Tµν , ou seja o

vácuo. Assim sendo,

Rµν 2
1

2
gµνR = 0. (2.58)

Multiplicando esta equação por gρµ :

R
ρ

ν 2
1

2
δ

ρ
ν R = 0

contraindo ρ com ν :

R =
1

2
(4)R ó R = 0 ó Rµν = 0. (2.59)

Este resultado será bastante importante na derivação da métrica de Schwarzschild.

2.2 Termodinâmica de Buracos Negros

Aparentemente, não deveria fazer sentido falar sobre termodinâmica quando o as-

sunto é buracos negros, de acordo com os princı́pios fundamentais da termodinâmica, corpos

com temperatura emitem um espectro térmico de radiação que reflete sua temperatura. No en-

tanto, pela própria natureza dos buracos negros, nada pode escapar de seu interior, tornando a
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atribuição de uma temperatura fı́sica significativa uma tarefa impossı́vel. Em outras palavras,

a temperatura de um buraco negro é teoricamente zero logo do ponto de vista clássico não faz

sentido aplicar os conceitos tradicionais da termodinâmica a esses objetos cósmicos [40].

Por outro lado, ao examinar o comportamento dos buracos negros através da lente da

relatividade geral, é notório que as leis que regem esses corpos possuem uma estrutura similar

à termodinâmica. As quatro leis derivadas nesse contexto apresentam uma similaridade tão

marcante com os princı́pios termodinâmicos que foram denominadas como sendo as “quatro

leis da termodinâmica de buracos negros”. Assim, ao invés de serem excluı́dos do domı́nio

da termodinâmica, os buracos negros emergem como objetos de estudo fundamentais para a

compreensão das leis universais que regem o comportamento da matéria e da energia em escalas

extremas.

Nesta seção, apresentaremos uma introdução aos vetores de Killing, preparando o

contexto para a exposição das leis da mecânica dos buracos negros.

2.2.1 Vetores de Killing

Considere um espaço-tempo (M,gµν), onde M é uma variedade, queremos saber

quais transformações do espaço-tempo preservam a forma da métrica, isto é, produzem sime-

trias. Os vetores de Killing surgem justamente da necessidade de se descrever simetrias em

espaços-tempos, assim se há uma quantidade conservada associada à métrica do espaço-tempo,

como energia, momento linear ou momento angular, então também há um vetor de Killing

associado.

A métrica de Minkowski, ηµν = diag(21,+1,+1,+1), não depende das coordena-

das x,y,z e t, o que implica na invariância da métrica sob translações no espaço-tempo. Outra

simetria é associada com as transformações de Lorentz, x2µ = Λ
µ

νxν que também não alteram

o tensor métrico. Assim, de forma geral, suponha que as componentes do tensor métrico gµν

são tais que ∂σ7gµν = 0, então xσ7 = xσ7 +aσ7 , onde aσ é um escalar, é uma simetria.

O campo vetorial

K c ∂σ7 =
∂

∂xσ7
(2.60)

é um vetor de Killing. Em termos de componentes, temos que

K = Kµ∂µ ó ∂σ7 = Kµ∂µ ó Kµ = δ
µ
σ7 . (2.61)

Pela equação da geodésica, temos que

0 =
d2xµ

dτ2
+Γ

µ
αβ

dxα

dτ

dxβ

dτ

=
d

dτ

(

m
dxµ

dτ

)

+Γ
µ
αβ

(

m
dxα

dτ

)
dxβ

dτ

=
dPµ

dτ
+Γ

µ
αβ Pα dxβ

dτ
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ou seja,

0 = m
dxα

dτ

∂Pµ

∂xα
+Γ

µ
αβ Pα

(

m
dxβ

dτ

)

= Pα ∂Pµ

∂xα
+Γ

µ
αβ PαPβ

= Pα

(
∂Pµ

∂xα
+Γ

µ
αβ Pβ

)

de forma que

Pα∇αPµ = 0. (2.62)

Similarmente, temos que Pµ = gµνPν , assim

dPµ

dτ
= m

(
dxν

dτ

dxα

dτ
∂αgµν +gµν

d2xν

dτ2

)

= m

(

dxν

dτ

dxα

dτ
∂αgµν 2gµνΓν

αβ

dxα

dτ

dxβ

dτ

)

multiplicando ambos os lados por m e utilizando a expressão para Γν
αβ em termos do tensor

métrico, obtém-se que

m
dPµ

dτ
= PνPα∂αgµν 2PαPβ gµν

[
1

2
gνλ (∂αgλβ +∂β gλα 2∂λ gαβ )

]

= Pβ Pα∂αgµβ 2 1

2
PαPβ ∂αgµβ 2 1

2
PαPβ ∂β gµα +

1

2
PαPβ ∂µgαβ

podemos trocar os ı́ndices α e β no terceiro termo do lado direito, de modo que

m
dPµ

dτ
= Pβ Pα∂αgµβ 2 1

2
PαPβ ∂αgµβ 2 1

2
PαPβ ∂αgµβ +

1

2
PαPβ ∂µgαβ

os três primeiros termos do lado direito se anulam, o que por sua vez produz o seguinte resul-

tado:

m
dPµ

dτ
=

1

2
PαPβ ∂µgαβ (2.63)

assim, se o tensor métrico não depende de uma dada coordenada µ = σ7, então ∂σ7gαβ = 0 ó
dPσ7
dτ = 0, ou seja Pσ7 é uma quantidade conservada ao longo da geodésica. Podemos obter uma

expressão para os vetores de Killing através dessa informação, note que

Pσ7 = δ
µ
σ7 Pµ = KµPµ .

Pela Eq.(2.62) temos então

0 = Pµ∇µ(Pσ7) = Pµ∇µ(KνPν)

= PµPν∇µKν +Kν�����:0
Pµ∇µPν

= PµPν∇µKν .
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Vamos dividir o tensor ∇µKν em sua parte simétrica e antissimétrica:

∇µKν = Sµν +Aµν

onde Sµν = 1
2
(∇µKν +∇νKµ) e Aµν = 1

2
(∇µKν 2∇νKµ). Substituindo na expressão obtida

anteriormente, acha-se que

0 = PµPνSµν +PµPνAµν

tendo em vista que PµPνAµν = 2PµPνAνµ = 2PνPµAµν ó PµPνAµν = 0, onde a troca de

ı́ndices mudos foi utilizada. Assim, podemos concluir que

0 = PµPνSµν .

Essa expressão deve ser válida para qualquer Pµ . A única maneira de isso acontecer é se a parte

simétrica Sµν for identicamente nula, ou seja se 1
2
(∇µKν +∇νKµ) = 0. Portanto, dado um vetor

Kα em um espaço-tempo de métrica gµν , ele é chamado de vetor de Killing se satisfizer

∇µKν +∇νKµ = 0 (2.64)

chamada de equação de Killing.

2.2.2 Lei Zero

Um buraco negro em processo de formação emite ondas gravitacionais, que carre-

gam consigo energia e momento angular o que faz o sistema perder gradualmente essas quanti-

dades, até atingir o limite estacionário. Assim, o buraco negro tende a um estado estacionário,

no qual as flutuações dinâmicas cessam e o sistema alcança um equilı́brio. Tal processo é

bastante semelhante ao de termalização em sistemas termodinâmicos, no qual o equilı́brio é

atingido quando não há mais trocas lı́quidas de energia com o ambiente.

No horizonte de eventos (superfı́cie nula) existe um 4-vetor χµ normal ao horizonte

tal que χµ χµ = 0. De forma que ∇ν(χµ χµ) é normal ao horizonte de eventos. Assim, no

horizonte de eventos é válido a seguinte equação:

∇ν(χµ χµ) =22κχν (2.65)

onde κ é chamado de gravidade superficial e conforme veremos representa a força realizada

por um observador no infinito para manter um corpo de massa unitária estático no horizonte

de eventos, que equivale à aceleração gravitacional gerada na superfı́cie do buraco negro [41].

Desenvolvendo essa expressão

χµ∇ν χµ +χµ∇ν χµ =22κχν .
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Pela Eq.(2.64) temos que

2χµ∇µ χν +gµρ χρ∇ν(gµλ χλ ) =22κχν

como ∇νgµλ = 0, segue que

2χµ∇µ χν +gρµgµλ χρ∇ν χλ =22κχν

utilizando novamente a equação de Killing, encontramos finalmente que

2χµ∇µ χν 2χµ∇µ χν =22κχν

ou seja,

χµ∇µ χν = κχν . (2.66)

Dado a importância de κ no horizonte de eventos, é fundamental compreender como o mesmo

varia no horizonte. A métrica no horizonte é degenerada, ou seja não possui inversibilidade, o

que por sua vez impede a aplicação direta do operador projetado bµν∇ν , onde bµν é a métrica

no horizonte. Para descrever variações ao longo do horizonte de eventos, precisamos de uma

estrutura matemática que seja tangente ao horizonte (isto é, não introduza componentes fora

da superfı́cie) e que não seja degenerada. A solução é usar o tensor de volume εµνρλ , que

é totalmente antissimétrico. Quando contraı́do com o vetor gerador do horizonte χµ produz-

se o tensor εµνρλ χλ , que é tangente ao horizonte de eventos pois Tµνρ = εµνρλ χλ é tal que

χµTµνρ = χµεµνρλ χλ = 0 devido a antissimetria. Assim, o tensor não possui componentes

normais ao horizonte, ou seja, ele vive inteiramente dentro do subespaço tridimensional do

horizonte. Por argumentos análogos, para um dado vetor arbitrário vν , temos que Tµνρvν ;= 0.

Desse modo, podemos construir qualquer vetor tangente ao horizonte. Como es-

tamos interessados na variação de κ ao longo do horizonte calculemos εµνρλ χλ ∇ρκ . Uma

notação bastante utilizada para antissimetrização é definida a seguir, dado dois vetores χµ e ξν ,

então

χ[µξν ] =
1

2
(χµξν 2χνξµ).

Da equação (2.66) segue que

χ[ρ∇λ ](κχν) = χ[ρ∇λ ](χ
µ∇µ χν)

onde o operador antissimétrico foi utilizado devido ao fato de que apenas variações intrı́nsecas

ao horizonte de eventos devem ser levadas em consideração. Desenvolvendo ambos os lados da

relação, acha-se que

κχ[ρ∇λ ]χν +χν χ[ρ∇λ ]κ = ∇µ χν χ[ρ∇λ ]χ
µ +χµ χ[ρ∇λ ]∇µ χν
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isolando o segundo termo do lado esquerdo

χν χ[ρ∇λ ]κ = ∇µ χν χ[ρ∇λ ]χ
µ 2κχ[ρ∇λ ]χν +χµ χ[ρ∇λ ]∇µ χν . (2.67)

Agora será necessário apresentar um teorema[41] que irá simplificar mais ainda a relação ante-

rior,

Teorema 2.2.1. (Teorema de Frobenius): Um vetor ζ µ é ortogonal a uma dada superfı́cie se, e

somente se, satisfaz a condição ζ[µ∇νζρ] = 0 na superfı́cie.

Assim, no horizonte de eventos tal relação, em conjunto com a equação de Killing

∇ν χλ =2∇λ χν , se reduz no horizonte para:

χλ ∇ρ χν =22χ[ρ∇ν ]χλ . (2.68)

Aplicando a Eq.(2.68) no primeiro e segundo termo do lado direito da Eq.(2.67), acha-se que

χν χ[ρ∇λ ]κ =21

2
(∇µ χν)χ

µ

︸ ︷︷ ︸
κχν

∇ρ χλ +
κ

2
χν∇ρ χλ +

χµ χρ∇λ ∇µ χν 2χµ χλ ∇ρ∇µ χν

2

os dois primeiros termos do lado direito se anulam. Assim,

χν χ[ρ∇λ ]κ =
χµ χρ∇λ ∇µ χν 2χµ χλ ∇ρ∇µ χν

2
. (2.69)

Observe que pela definição do tensor de Riemann, temos que

∇λ ∇µ χν 2∇µ∇λ χν = R
ζ

λ µν χζ (2.70)

que pela equação de Killing pode ser reescrita como

∇λ ∇µ χν +∇µ∇ν χλ = R
ζ

λ µν χζ . (2.71)

Analogamente, as permutações de tal equação produzem

∇µ∇ν χλ +∇ν∇λ χµ = R
ζ

µνλ χζ , (2.72)

∇ν∇λ χµ +∇λ ∇µ χν = R
ζ

νλ µ χζ . (2.73)

Adicionando as Eqs.(2.71) e (2.72) e subtraindo a Eq.(2.73) do resultado, acha-se que

∇λ ∇µ χν +2∇µ∇ν χλ +∇ν∇λ χµ 2∇ν∇λ χµ 2∇λ ∇µ χν = (R
ζ

λ µν +R
ζ

µνλ 2R
ζ

νλ µ)χζ

simplificando os termos semelhantes e utilizando a propriedade R
ζ
[λ µν ]

= 0, encontra-se

2∇µ∇ν χλ =22R
ζ

νλ µ χζ
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ou seja, para qualquer vetor de Killing, obtém-se que

∇µ∇ν χλ =2R
ζ

νλ µ χζ . (2.74)

Substituindo tal relação no lado direito da Eq.(2.69)

χν χ[ρ∇λ ]κ =
χµ(2χρR

ζ
µνλ χζ +χλ R

ζ
µνρ χζ )

2

ou seja,

χν χ[ρ∇λ ]κ =2χµR
ζ

µν [λ
χρ]χζ . (2.75)

Pela equação (2.68) temos que

χ[λ ∇ρ](χλ ∇µ χν) = χ[λ ∇ρ](22χ[µ∇ν ]χλ )

= χ[λ ∇ρ](χν∇µ χλ 2χµ∇ν χλ ),

expandindo o lado esquerdo,

χλ χ[λ ∇ρ]∇µ χν +∇µ χν χ[λ ∇ρ]χλ = χν χ[λ ∇ρ]∇µ χλ +∇µ χλ χ[λ ∇ρ]χν

2χµ χ[λ ∇ρ]∇ν χλ 2∇ν χλ χ[λ ∇ρ]χµ .

Pela equação (2.68) e expandindo os termos antissimétricos, acha-se que:

2∇µ χν χλ ∇ρ χσ +χλ χρ∇σ ∇µ χν 2χλ χσ ∇ρ∇µ χν = ∇ν χλ χµ∇ρ χσ 2χµ χρ∇σ ∇ν χλ

+χµ χσ ∇ρ∇ν χλ +χν χρ∇σ ∇µ χλ

2χν χσ ∇ρ∇µ χλ 2∇µ χλ χν∇ρ χσ ,

rearranjando termos ∇ρ χσ , obtém-se que

2∇ρ χσ (χλ ∇µ χν +χµ∇ν χλ 2χν∇µ χλ ) =2χλ χρ∇σ ∇µ χν +χλ χσ ∇ρ∇µ χν

2χµ χρ∇σ ∇ν χλ +χµ χσ ∇ρ∇ν χλ

+χν χρ∇σ ∇µ χλ 2χν χσ ∇ρ∇µ χλ ,

o termo do lado esquerdo é nulo devido ao teorema de Frobenius. Aplicando a Eq.(2.74) na

relação anterior, encontramos que

0 = (χλ χρR
ζ

µνσ χζ 2χλ χσ R
ζ

µνρ χζ +χµ χρR
ζ

νλσ χζ 2χµ χσ R
ζ

νλρ χζ

2χν χρR
ζ

µλσ χζ +χν χσ R
ζ

µλρ χζ ),

(χλ χρR
ζ

µνσ 2χλ χσ R
ζ

µνρ)χζ =(2χµ χρR
ζ

νλσ +χµ χσ R
ζ

νλρ +χν χρR
ζ

µλσ 2χν χσ R
ζ

µλρ)χζ .

(2.76)

2χλ R
ζ

µν [σ
χρ]χζ = 2χµR

ζ
νλ [ρ

χσ ]χζ 22χνR
ζ

µλ [ρ
χσ ]χζ
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ou,

χλ R
ζ

µν [σ
χρ]χζ = 2χ[µR

ζ
ν ]λ [ρ

χσ ]χζ (2.77)

multiplicando ambos os lados por gλρ , acha-se que

2χ[µR
ζ

ν ]λ [ρ
χσ ]g

λρ χζ = gλρ χλ R
ζ

µνσ χρ χζ 2χλ gλρR
ζ

µνρ χσ χζ

= χλ R
ζ

µνσ χλ χζ 2χλ R
ζ

µνλ χσ χζ

=�����:0
(χλ χλ ) R

ζ
µνσ χζ 2�������:0

χλ χζ Rµνλζ χσ

= 0.

Assim, temos que

0 = χ[µR
ζ

ν ]λ [ρ
χσ ]g

λρ χζ

= χ[µR
ζ

ν ]λρ
gλρ χσ χζ 2χ[µR

ζ
ν ]λσ

gλρ χρ χζ

= χ[µR
λζ

ν ]λ
χσ χζ 2χ[µR

ζ
ν ]λσ

χλ χζ ,

isolando os termos de χζ e tendo em vista que R
λζ

νλ =2R
ζ

ν , segue que

χ[νR
ζ

µ]
χσ =2χ[νR

ζ
µ]λσ

χλ

= R
ζ

λσ [µ
χν ]χ

λ .

O que pela equação (2.75) implica em

χ[ν∇µ]κ =2χ[νR
ζ

µ]
χζ . (2.78)

Utilizando a equação de Einstein produz-se:

χ[ν∇µ ]κ =28πχ[νT
ζ

µ]
χζ (2.79)

a condição de energia dominante produzem então que, no horizonte de evento, temos a seguinte

relação:

χ[ν∇µ]κ = 0.

Ou seja, a gravidade superficial de um buraco negro estacionário é uniforme por todo o horizonte

de eventos, desde que o espaço-tempo seja estacionário e que a matéria obedeça a condição de

energia dominante. Esta é a lei zero da termodinâmica de buracos negros.

2.2.3 Primeira, Segunda e Terceira Leis

A Eq.(2.74) ∇µ∇ν χλ = 2R
ζ

νλ µ χζ pode ser simplificada ao se contrair o ı́ndice ν

com µ:

∇µ∇µ χν =2Rν
µ χµ (2.80)
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tal equação possui uma similaridade com as equações de Maxwell ∇µFµν =2Jν , em que Fµν é

o tensor eletromagnético e Jν é a densidade de corrente. Note que para um tensor antissimétrico

Kµν é válido que

∇µ∇νKνµ =2∇µ∇νKµν

=2∇ν∇µKνµ .

O que implica

2∇ν∇µKµν = (∇ν∇µ 2∇µ∇ν)K
µν

=2R
µ

νµρ Kρν 2R ν
νµρ Kµρ

=2R
µ

νµρ Kρν 2R ν
ρµν Kµρ

= 0

ou seja, ∇ν(∇µKµν) = 0, pode-se então definir uma corrente dada por

∇µKµν =2Jν

tal que

∇µJµ = 0 (2.81)

que é a equação da continuidade, logo existe uma quantidade q conservada igual a:

q = α
∫

O

εµνλρJρ (2.82)

onde α é uma constante, εµνλρ é a forma do volume e O é a região no espaço-tempo (do tipo

espaço) no qual é feita a integração. A equação anterior pode ser reescrita da seguinte forma:

q = α
∫

O

εµνλρ∇σ Kσρ . (2.83)

Pelo teorema de Stokes:

q = α
∫

∂O

εµνλρKλρ (2.84)

mas como Kλρ = ∇λ χρ , pode-se afirmar que os vetores de Killing produzem quantidades con-

servadas iguais a:

q = α
∫

∂O

εµνλρ∇λ Kρ . (2.85)

Na mecânica usual, a conservação da energia é uma consequência da simetria sob translação

temporal. Na relatividade geral, devido a equivalência entre a massa e a energia, existe um vetor

de Killing ξ α = (∂t)
α associado a conservação da massa M. De acordo com a Eq.(2.85), temos

que

M =2 1

8π

∫

∂O

εµνλρ∇λ ξ ρ (2.86)

é a massa conservada. Similarmente, existe uma quantidade conservada associada a simetria

de rotações, ou seja existe um vetor de Killing Ψα = (∂φ)α que implica na conservação do
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momento angular:

J =
1

16π

∫

∂O

εµνλρ∇λ Ψρ . (2.87)

O mesmo acontece para a conservação da carga:

Q =
1

4π

∫

∂O

εµνλρ∇λ Aρ . (2.88)

Para unir tais quantidades conservadas, basta utilizar o vetor de Killing χα formado pelos veto-

res de Killing ξ α ,Ψα ,Aα . A primeira lei dos buracos negros descreve como um buraco negro

interage em termos de trocas de energia com a matéria circundante. Para ilustrar esse conceito,

consideremos dois buracos negros estacionários muito semelhantes: o buraco negro A e o bu-

raco negro B. A distinção entre eles é que o buraco negro B é o resultado da absorção de uma

partı́cula com massa, momento angular e carga pelo buraco negro A. Uma vez que o buraco

negro é descrito por apenas três parâmetros, a sua massa M, a carga Q e o momento angular J

[42], a diferença entre os buracos negros será dada pela diferença de tais parâmetros. Portanto,

a diferença de massa é dada por [43]:

δM =
κ

8π
δA+ΩδJ+ΦδQ, (2.89)

em que κ é a gravidade superficial, A é a área de superfı́cie do horizonte de eventos, Ω é

a frequência de rotação e Φ é o potencial elétrico, todos esses parâmetros são calculados no

horizonte de eventos do buraco negro A. Logo, se algo cair no buraco negro, a área do mesmo

será alterada de acordo com a primeira lei.

A segunda lei afirma que a área da superfı́cie de um buraco negro, medida no ho-

rizonte de eventos, nunca diminui com o tempo, δA g 0. A demonstração dessa afirmação foi

feita por Hawking em [44], ela basicamente se baseia nos trabalhos de Penrose sobre a conjec-

tura da censura cósmica fraca e na estrutura causal do espaço-tempo [45]. A demonstração está

fora do escopo deste trabalho e, portanto, não será apresentada.

Bekenstein fez a hipótese de que buracos negros devem ter entropia [12], represen-

tada por S, e que esta é proporcional à área do horizonte de eventos. Uma boa ideia que sugere

isto é que pela primeira lei da termodinâmica, temos que

dE = T dS2 pdV +µdN, (2.90)

e a primeira lei da mecânica de buracos negros afirma que δM =
κ

8π
δA+ΩδJ +ΦδQ. Aqui,

Ω δJ representa o trabalho feito ao adicionar ou remover momento angular do buraco negro,

similar ao trabalho 2p dV na termodinâmica clássica. Analogamente, Φ δQ corresponde ao

trabalho realizado ao adicionar ou remover a carga elétrica, semelhante ao termo µ dN. Assim,

é natural supor, devido a analogia direta entre a primeira lei da termodinâmica e a primeira lei
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da mecânica dos buracos negros, que

T dS =
κ

8π
δA, (2.91)

outra semelhança provém da segunda lei: a segunda lei da termodinâmica afirma que a entropia

de um sistema é sempre maior ou igual a zero. Similarmente, a segunda lei da mecânica de

buracos negros diz que a área de superfı́cie de um buraco negro nunca diminui. Logo, faz

sentido afirmar que a entropia de um buraco negro dependa da área do horizonte de eventos.

É bastante viável explorar campos quânticos livres em espaços-tempo curvos [46],

revelando insights sobre o comportamento desses campos na presença de gravidade. Note que

uma vez que não existe uma coordenada temporal que seja preferı́vel, a noção de partı́culas se

torna imprecisa. De forma que, de acordo com Unruh [47], dois observadores, um acelerado

e outro em repouso, devem discordar sobre o estado de um campo quântico. O observador em

repouso irá afirmar que o campo quântico está em seu estado de vácuo, ou seja com ausência

de quanta, o outro observador, acelerado, irá afirmar que o campo possui um espectro de quanta

análogo ao de um corpo negro, onde a temperatura da radiação está diretamente relacionada à

aceleração do observador.

Em 1975, Hawking examinou um campo escalar quântico não massivo em um

espaço-tempo resultante do colapso de uma estrela esférica. O mesmo visava determinar o

estado final desse campo escalar, partindo do pressuposto de que o estado inicial era o vácuo,

ou seja, sem quanta. Hawking concluiu que, em estágios muito avançados do tempo, o estado

final do campo escalar correspondia a um espectro de quanta que era análogo ao de um corpo

negro, com uma temperatura TH dada por:

TH =
h̄κ

2πkB
, (2.92)

onde κ é a gravidade superficial, h̄ é a constante de Planck e kB a constante de Boltzmann. Este

foi um dos primeiros resultados que juntava a gravidade com a mecânica quântica e que de-

monstrava que buracos negros são corpos que emitem radiação, a radiação Hawking. Inserindo

a expressão para TH acima na Eq.(2.91), acha-se que

h̄κ

2πkB
dS =

κ

8π
dA ó dS =

kB

4h̄
dA

integrando ambos os lados obtém-se que

S =
kbA

4h̄
. (2.93)

Assim, a medida que o buraco negro emite radiação Hawking, o mesmo perde energia ou massa,

logo o buraco negro evapora com o tempo e perde tamanho, consequentemente todo buraco

negro é instável. Vale lembrar que o buraco negro deve estar em equilı́brio com a radiação de

corpo negro de Hawking.
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Por fim, a terceira lei afirma que mesmo que um buraco negro esteja evaporando

devido a radiação Hawking, a sua gravidade superficial nunca será nula em um dado tempo

posterior, afinal caso isso acontecesse a energia que define o mesmo seria também nula, vio-

lando assim um princı́pio fundamental da fı́sica.

2.3 Soluções de Vácuo

O tensor energia-momento Tµν é a ferramenta responsável por descrever as proprie-

dades da matéria e sua influência sobre a métrica do espaço-tempo. Todavia, a forma especı́fica

que tal tensor deve assumir para diferentes formas de matéria não é determinada pela TRG, mas

sim por outros ramos da fı́sica. Conforme constatado por Einstein [48], esse aspecto faz com

que a teoria da relatividade geral seja uma teoria aberta, de forma que a formulação completa

da teoria requer a definição do tensor energia-momento para cada tipo de matéria ou campo

estudado.

Petrov amenizou essa lacuna teórica com a sua classificação algébrica [49], que

organiza as diferentes formas de matéria associadas ao tensor energia-momento. Nesta seção,

a noção de vácuo e as suas duas principais soluções esfericamente simétricas: a descoberta por

Schwarzschild em 1916 [50] e a descoberta por De Sitter em 1917 [51], serão apresentadas.

2.3.1 A Classificação Algébrica de Petrov

O vácuo é definido como um tipo de matéria que não permite nenhum referencial

preferencial associado a ele. Em outras palavras, não há nada dentro do vácuo para servir como

ponto de referência absoluto. Assim, qualquer referencial em movimento é igualmente válido

em relação ao vácuo, pois não há nada dentro dele que possa fornecer um ponto de referência

preferencial. Isso significa que não há um “repouso absoluto” em relação ao vácuo, pois não

há nada dentro dele para estar em repouso em relação a ele. Portanto, qualquer referencial está

em movimento conjunto com o vácuo, pois não há nada dentro dele que possa ser usado para

distinguir entre diferentes referenciais de movimento. Quando há matéria presente, há pontos

de referência que podem ser utilizados para definir um referencial preferencial. Por exemplo, se

houver um objeto ou um conjunto de partı́culas presentes em um sistema, é possı́vel usar esse

objeto como um ponto de referência para medir o movimento de outras coisas em relação a ele.

No entanto, quando estamos lidando com o vácuo, não há matéria presente para servir como

ponto de referência. Não há nada dentro do vácuo que possa ser usado como um referencial

preferencial para definir movimento. Essa propriedade se mantém não apenas para o vácuo

padrão Tµν = 0, mas também para outras possibilidades.

Conforme demonstrado em [6], a relação entre os referenciais comóveis (ou próprios),

aqueles nos quais a matéria ou o sistema fı́sico está em repouso, e a estrutura do tensor energia-

momento são fundamentalmente relacionadas. A unicidade de tal referencial, segundo a teoria

clássica, implica em uma direção privilegiada que pode ser identificada como a velocidade do
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meio em relação a um observador externo e caracteriza a existência de um meio material.

No caso de um campo eletromagnético livre, não há um único referencial onde

todo o campo possa ser considerado em repouso, que é a definição clássica de vácuo, toda-

via a exigência de um único referencial comóvel não é necessária para definir um meio fı́sico

para certos tipos de sistemas, o que contrasta com a matéria ordinária. Portanto, três casos

são possı́veis: o sistema fı́sico não possui nenhum referencial próprio (vácuo clássico), o sis-

tema fı́sico possui um único referencial comóvel (matéria clássica), e o sistema fı́sico possui

múltiplos referenciais comóveis (um tipo de matéria que apresenta propriedades de vácuo, mas

não é vazio).

Uma das estruturas possı́veis para o tensor T ν
µ é ter dois pares de autovalores iguais,

que será representado por [(11)(11)], ou seja T 0
0 = T 1

1 e T 2
2 = T 3

3 , enquanto que [1(111)] indica

que três autovalores são iguais (espaciais) e um é distinto (temporal). Essa notação oferece

uma maneira compacta de classificar o tipo de simetria do tensor, facilitando a interpretação

das propriedades fı́sicas associadas [6].

Se nenhum dos autovalores associados às componentes temporais e espaciais forem

iguais, então o sistema de referência comóvel é único. Assim, as classificações [1111], [11(11)]

e [1(111)] correspondem a formas de matéria que possuem um único referencial próprio, en-

quanto que [(11)11], [(11)(11)], [(111)1] e [(1111)] representam formas de matéria que não

possuem a unicidade.

Para sistemas fı́sicos formados por partı́culas sem massas (como no caso de um

campo eletromagnético livre do tipo (E ·H = 0, E2 2H2 = 0), não existe um sistema de re-

ferência comóvel bem definido, assim não há um meio fı́sico tradicional que se mova com uma

velocidade definida inferior à da luz. O comportamento do campo eletromagnético em um

vácuo ideal é independente de qualquer sistema de referência comóvel, tornando desnecessário

e impossı́vel, de acordo com a teoria da relatividade especial, definir um sistema com essas

propriedades.

Se todos os autovalores do tensor energia-momentum são iguais, i.e. [(1111)].

Então, qualquer referencial inercial pode ser considerado comóvel com a matéria descrita por

esse tensor, porque não existe uma direção espacial preferida - o sistema é isotrópico. Isso cria

um cenário onde o meio fı́sico se comporta como se fosse um “vácuo”, no sentido de que não há

uma direção espacial especı́fica associada ao movimento da matéria. A propriedade do vácuo

mencionada aqui refere-se à isotropia e homogeneidade do espaço vazio: o vácuo não tem uma

direção preferencial, e as propriedades fı́sicas são as mesmas em qualquer direção.

Do ponto de vista macroscópico, essa matéria com tais caracterı́sticas pode ser con-

siderada como um “meio tipo vácuo” porque suas interações com outras partı́culas não depen-

dem da velocidade relativa. Em qualquer referencial, as interações seriam as mesmas, o que

reflete a propriedade de isotropia e a ausência de direção espacial preferida.

Existe a possibilidade de um “meio termo” que são os tensores energia-momento

com as caracterı́sticas [(11)11], [(11)(11)]. Tais estados de matéria são caracterizados por uma
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direção de vácuo, pois ao longo de uma dada direção as interações desse tipo de matéria com

a ordinária não dependem da componente da velocidade. Assim, o vácuo não é unicamente

caracterizado pelo tensor energia-momentum do tipo Tµν = 0, mas também conforme veremos

por soluções do tipo T 0
0 = T 1

1 ,T
2

2 = T 3
3 .

Para os tensores energia-momentum que caracterizam o vácuo clássico, Tµν = 0,

duas soluções esfericamente simétricas se destacam devido à sua relevância tanto em cenários

astrofı́sicos quanto cosmológicos. A primeira foi a descoberta por Schwarzschild em 1916 [50]

e representa o campo gravitacional externo a um corpo esfericamente simétrico e estático no

vácuo, sendo uma das primeiras soluções exatas das equações de Einstein.

Enquanto que a outra solução de bastante interesse foi a proposta por Willem De

Sitter em 1917 [51]. Tal solução representa um universo em expansão com constante cos-

mológica e esfericamente simétrico. Essa métrica é fundamental no entendimento do universo

em grandes escalas, essencialmente no caso de um universo em expansão acelerada.

2.3.2 A Solução de Schwarzschild

A solução esfericamente simétrica mais conhecida das equações de campo de Eins-

tein é a métrica de Schwarzschild

ds2 =2
(

12 rg

r

)

dt2 +
dr2

12 (rg/r)
+ r2(dθ 2 + sin2 θ dϕ2), (2.94)

onde rg = 2M e M é a massa da fonte medida por um observador distante. A geometria de

Schwarzschild descreve o campo gravitacional gerado por uma massa esférica no espaço vazio

fora da massa. Nessa situação, o tensor energia-momento que influencia a geometria é nulo em

todas as regiões, exceto em um ponto singular em r = 0, onde a densidade de energia é infinita.

Para obter a métrica (2.94), considere a métrica esfericamente simétrica da Eq.(2.2),

as componentes não nulas do sı́mbolo de Christoffel, Eq.(2.10), são:

Γr
rr =

g2

2g
, Γr

tt =
f 2

2g
, Γr

θθ =2 r

g
, Γr

φφ =2r sin2 θ

g
,

Γθ
θr = Γ

φ
πr =

1

r
, Γt

tr =
f 2

2 f
, Γθ

φφ =2sinθ cosθ , Γ
φ
φθ = cotθ .

(2.95)

Aqui a linha indica uma derivada em relação a r. Com as componentes do sı́mbolo de Christoffel

obtidas, facilmente se calcula as componentes não nulas do tensor de Ricci

Rtt =
f 22

2g
2 f 2

4g

(
f 2

f
+

g2

g

)

+
f 2

rg
,

Rrr =2 f 22

2 f
+

f 2

4 f

(
f 2

f
+

g2

g

)

+
g2

rg
,

Rθθ = 12 1

g
2 r

2g

(
f 2

f
2 g2

g

)

,

Rφφ = sin2 θ Rθθ .

(2.96)
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Como Tµν = 0, então pela equação (2.59) segue que Rµν = 0, assim

Rtt =
1

g

[
f 22

2
2 f 2

4

(
f 2

f
+

g2

g

)

+
f 2

r

]

= 0 (2.97)

Rrr =
1

f

[

2 f 22

2
+

f 2

4

(
f 2

f
+

g2

g

)

+
f g2

rg

]

= 0 (2.98)

como f ,g ;= 0, segue que

0 = gRtt + f Rrr =
f g2

rg
+

f 2

r

=
1

rg
( f g2+ f 2g)

=
1

rg

d

dr
( f g)

(2.99)

ou seja, o produto f g é constante em todo o espaço-tempo. Como o espaço-tempo é Min-

kowskiano no infinito, então f ³ 1 e g ³ 1 quando r ³ ∞. Logo, a constante f g é unitária.

Consequentemente,

g(r) =
1

f (r)
. (2.100)

Para se obter a forma explicita de tais funções basta usar a equação Rθθ = 0 com g = 1/ f ,

obtendo assim

0 = 12 f (r)2 r f 2 ó f (r) = 1+
C

r
. (2.101)

Longe da fonte é esperado que no limite clássico a gravitação seja Newtoniana. De fato, para

campos fracos temos que g00 c2(1+2φ) (Para uma discussão acerca desse tópico em detalhes,

consulte a seção 3.4 de [36]). O potencial Newtoniano φ é igual a 2M/r, de modo que C =

22M. Portanto, a métrica do buraco negro de Schwarzschild é igual a:

ds2 =2
(

12 2M

r

)

dt2 +
dr2

12 (2M/r)
+ r2(dθ 2 + sin2 θ dϕ2).

Tal solução tem dois problemas aparentes: em r = 0, a métrica é indefinida e em r = 2M a parte

radial cresce indefinidamente enquanto a parte temporal desaparece. Essas são as singularidades

da métrica, todavia a singularidade em r = 2M (horizonte de eventos) pode ser removida por

uma transformação de coordenada e portanto trata-se de uma singularidade aparente [32]. Por

outro lado, a singularidade em r = 0 trata-se de uma singularidade real, uma vez que o escalar

de Kretschmann é igual a:

K = RµνσρRµνσρ =
12r2

g

r6
=

48M2

r6
(2.102)

e diverge para r = 0 (singularidade). As condições de energia são obviamente satisfeitas uma

vez que Tµν = 0 e a temperatura de Hawking é igual a:

TH =
1

4πrg
. (2.103)
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Conforme será mostrado ao longo deste trabalho, a solução de Dymnikova para o vácuo esferi-

camente simétrico retira a singularidade em r = 0 e portanto oferece uma descrição alternativa

dos buracos negros, especialmente em contextos onde o comportamento quântico e a ausência

de singularidades assumem um papel fundamental.

2.3.3 A Solução de De Sitter

Em 1922, o fı́sico Alexander Friedmann ao considerar o universo como sendo ho-

mogêneo e isotrópico, o que é uma afirmação razoável em grandes escalas, encontrou uma

solução para as equações de Einstein que mostravam que o fator de escala do universo, uma

função que descreve o tamanho relativo do universo ao longo do tempo, deveria variar com o

tempo [52]. Assim, contrariando a visão cientı́fica da época o universo deveria ser dinâmico ao

invés de estático.

Em uma tentativa de resolver essa questão, Einstein introduziu uma constante a suas

equações em uma tentativa não muito frutı́fera de contrabalancear a tendência do universo de

expandir ou contrair [53]. Posteriormente, tal constante adquiriu um novo significado, sendo

responsável pela expansão acelerada do universo e fundamentada em observações de superno-

vas [54]. Assim, as equações de Einstein podem ser reescritas como:

Gµν +Λgµν = 8πTµν . (2.104)

Se novamente assumirmos uma solução de vácuo para a métrica esfericamente simétrica da

Eq.(2.2) acha-se as mesmas componentes não nulas do tensor de Ricci dadas pela Eq.(2.96),

porém agora Tµν = 0 implica que

Gµν =2Λgµν = 8πT Λ
µν . (2.105)

onde agora T Λ
µν =2 Λ

8π gµν é o tensor energia-momentum do vácuo. A constante deve ser tal que

só adquira um significado importante em escalas cosmológicas, por isso a mesma é denominada

de constante cosmológica. Para resolver a equação (2.105) note que

Rµν = (R/22Λ)gµν ó R
ρ

ν = (R/22Λ)δ
ρ
ν

contraindo ρ com ν

R =

(
R

2
2Λ

)

(4)ó R = 4Λ

assim, a Eq.(2.105) pode ser reescrita como

Rµν = Λgµν (2.106)

as componentes não nulas do tensor de Ricci foram calculadas na Eq.(2.96), desse modo

Rtt =
1

g

[
f 22

2
2 f 2

4

(
f 2

f
+

g2

g

)

+
f 2

r

]

=2Λ f
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Rrr =
1

f

[

2 f 22

2
+

f 2

4

(
f 2

f
+

g2

g

)

+
f g2

rg

]

= Λg

de modo que

gRtt + f Rrr = 0

ou seja,
f 2

r
+

f g2

rg
= 0 ó 1

r

d

dr
( f g) = 0 ó f g = constante

pelos mesmos argumentos dados no caso de Schwarzschild, obtemos novamente que g(r) =

1/ f (r). Para se obter a forma explicita de tais funções basta usar a equação Rθθ = Λgθθ = Λr2,

ou seja

Λr2 = 12 f 2 r f 2 ó Λr2 = 12 d

dr
( f r)

integrando,

Λr3

3
= r2 f r+C ó Λr2

3
= 12 f +

C

r

f (r) = 1+
C

r
2 Λr2

3

novamente, para campos fracos temos que g00 c 2(1+2φ) e Λ ³ 0, assim C = 22M e final-

mente, temos que

f (r) = 12 2M

r
2 r2

r2
0

(2.107)

onde r2
0 = 3/Λ é o raio de De Sitter. Portanto, a métrica de De Sitter é igual a:

ds2 =2
(

12 rg

r
2 r2

r2
0

)

dt2 +
dr2

12 (rg/r)2 (r2/r2
0)

+ r2(dθ 2 + sin2 θ dϕ2), (2.108)

para o caso rg = 0 (espaço-tempo vazio) temos que

ds2 =2
(

12 r2

r2
0

)

dt2 +
dr2

(

12 r2

r2
0

) + r2(dθ 2 + sin2 θ dϕ2). (2.109)

A solução de De Sitter descreve um universo com uma curvatura positiva constante, R = 4Λ, e

um vácuo com uma energia escura dominante. A solução de Schwarzschild é recuperada para

Λ = 0 e as diferenças entre as soluções só se tornam evidentes para valores radiais maiores

[55], uma vez que para valores de r próximos de zero o termo r2/r2
0 da solução é insignificante

perante rg/r. Todavia, à medida que r cresce tal termo passa a contribuir significativamente.

Contudo, a métrica não é assintoticamente plana no infinito devido a divergência de r2/r2
0. O

escalar de Kretschmann da solução é igual a:

K = RµνσρRµνσρ =
24

r4
0
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e diverge para r0 = 0. Por fim, a temperatura de Hawking é igual a:

TH =
1

4π

d f

dr

∣
∣
∣
∣
r=r0

=2 1

4π

(
2r

r2
0

)∣
∣
∣
∣
r=r0

=2 1

2πr0
. (2.110)

O horizonte cosmológico no espaço de De Sitter age como uma barreira para os observadores

internos, e a gravidade superficial pode ser definida com um sinal oposto ao usual, sendo esse o

motivo do sinal negativo. Em um buraco negro, para um observador externo, qualquer partı́cula

que cruzar o horizonte nunca mais poderá sair. Já para o caso de De Sitter um objeto que se

afasta de um observador localizado em uma região central pode cruzar o horizonte cosmológico,

e depois disso, a luz que ele emite nunca mais conseguirá alcançar o observador. Assim, o

horizonte cosmológico não atrai objetos para um centro, mas sim define uma região além da

qual um observador não pode receber informações.

No próximo capı́tulo veremos que a temperatura de Hawking do buraco negro de

Dymnikova tende para a temperatura acima em algumas condições.
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3 BURACO NEGRO REGULAR DE DYMNIKOVA

Antes de investigar a extensão para dimensões superiores do buraco negro de Dym-

nikova e explorar suas aplicações correspondentes, faz-se necessário compreender previamente

o conceito de um buraco negro regular e a solução de Dymnikova para quatro dimensões.

Para explorar um buraco negro regular, é essencial primeiro compreender o conceito

de um buraco negro e suas propriedades fundamentais. Em seguida, abordaremos a questão da

regularidade, que está intimamente ligada à presença de singularidades na curvatura do espaço-

tempo. Após essa contextualização inicial, nos concentraremos na solução proposta por Dym-

nikova, examinando sua formulação matemática. Isso envolverá a determinação das grandezas

de curvatura, análise do tensor momento-energia, resolução das equações de Einstein, estudo

de geodésicas e discussão das condições de energia.

3.1 Buracos Negros Regulares

Buracos negros regulares são uma classe de buracos negros caracterizados por terem

singularidades nas coordenadas (horizontes), mas não possuem singularidades essenciais em

todo o espaço-tempo. Em diversos trabalhos [3, 56–58], a identificação de um buraco negro

regular frequentemente envolve considerar um espaço-tempo onde os invariantes de curvatura

permanecem finitos em todos os pontos, especialmente no centro do buraco negro. Isso está

ligado à conjectura de restrição de curvatura de Markov, que postula que os invariantes de

curvatura devem ser uniformemente limitados por um valor universal especı́fico.

A conjectura de restrição de curvatura de Markov [59–61], postula que os invarian-

tes de curvatura devem ser uniformemente limitados por um valor universal especı́fico. Todavia,

tal abordagem não é bem sucedida no buraco negro de Taub-NUT [58], tendo em vista que as

geodésicas tipo-tempo e nula são incompletas no horizonte. Uma alternativa seria utilizar a

completude da geodésica para determinar a regularidade do espaço-tempo, onde um espaço-

tempo seria regular caso as geodésicas do tipo-tempo ou nula fossem completas [41], contudo

até mesmo esse caminho sofre de complicações [62], em que encontra-se geodésicas completas

porém os seus invariantes de curvatura divergem, o que por sua vez contraria a conjectura de

Markov. Tal discussão sugere que tais estratégias devem ser utilizadas em conjunto na análise

da regularidade de um buraco negro.

Sakharov e Gliner [5,6] foram alguns dos primeiros a afirmar que singularidades es-

senciais poderiam ser eliminadas, desde que o vácuo fosse substituı́do por um meio semelhante

ao vácuo imbuı́do com uma métrica de De Sitter. Os trabalhos de Dymnikova, Gurevich e Stra-

borinsky avançaram tal ideia [63–65] e o primeiro modelo de buraco negro regular foi desen-

volvido por Bardeen [7], onde o mesmo substituiu a massa do buraco negro de Schwarzcshild

por uma função radial, isto por sua vez faz com que a singularidade essencial do escalar de
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Kretschmann seja removida e a curvatura de Ricci seja positiva nas vizinhanças do centro do

buraco negro.

A primeira interpretação do buraco negro de Bardeen foi apresentada 32 anos após

sua descoberta [66]. Eles propuseram uma fonte, se baseando em um monopolo magnético no

contexto da eletrodinâmica não linear, que produz a solução de Bardeen. Esta abordagem difere

do método usual de encontrar soluções para buracos negros resolvendo as equações de campo

de Einstein. Neste método, começa-se por especificar as soluções desejadas para buracos negros

regulares e monopolo magnético, logo após obtém-se a ação correspondente da eletrodinâmica

não-linear.

Existem duas formas de se construir um buraco negro regular: uma bastante usual

é a de resolver as equações de Einstein que são obtidas com certos tipos de fontes especi-

ais, enquanto que a outra abordagem é assumir que os buracos negros regulares são correções

quânticas dos buracos negros clássicos com singularidades [67, 68], assim os buracos negros

regulares serviriam para se estudar o limite clássico de buracos negros quânticos.

As pesquisas mais recentes nesse campo visam demonstrar as diferenças entre os

buracos negros regulares e os singulares, o que por sua vez pode orientar futuras investigações

em gravidade quântica. O estudo vai além de questões relativas a singularidades e pode ser

estendido para a termodinâmica, modos quasi-normais, shadows, etc. Nessa seção, será feita

uma breve discussão sobre a termodinâmica, as condições de energia e alguns exemplos de

buracos negros regulares serão apresentados.

3.1.1 Termodinâmica de Buracos Negros Regulares

A termodinâmica dos buracos negros regulares é difı́cil de ser definida devido a ter-

mos adicionais na primeira lei da termodinâmica, o que por sua vez produz certas complicações

no estabelecimento de correspondências entre quantidades mecânicas e termodinâmicas [69].

Especificamente, aparecem termos adicionais nas leis dos buracos negros regulares, em que

o número de termos adicionais é relacionado com o número de parâmetros da Lagrangiana

da matéria. Além disso, alguns buracos negros regulares não obedecem a lei da área, isto é,

S ;= A/4. Por exemplo, o buraco negro de Hayward [70] com

f (r) = 12 2M

r

r3

r3 +2M32
(3.1)

onde 3 é um parâmetro de regularização. A condição de horizonte f (rh) = 0 fornece a massa

do buraco negro em termos do raio do horizonte de eventos:

M =
r3

h

2(r2
h 2 32)

(3.2)
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a expressão para a temperatura de Hawking é dada por:

TH =
1

4π

d

dr

(

12 2Mr2

r3 +2M32

)∣
∣
∣
∣
r=rh

=
1

4πrh

2 332

4πr3
h

(3.3)

onde após a derivada o valor obtido para M na Eq.(3.2) é substituı́do. O que produz a seguinte

entropia de acordo com a primeira lei da termodinâmica,

S =
∫ r+

r2

dM

T
= SBH +∆S (3.4)

onde SBH é a entropia de Bekenstein-Hawking

SBH = π(r2
+2 r2

2) (3.5)

e

∆S =
π34(r2

+2 r2
2)

(r2
22 32)(r2

+2 32)
+2π32 ln

(
r2
+2 32

r2
22 32

)

> 0 (3.6)

pois r+ > r2 > 3. Ou seja, se utilizarmos dS = dM/T a lei da área não será mais válida. Agora,

um exemplo contrário, a lei da área é obedecida pelo buraco negro regular, mas dS ;= dM/T . A

Lagrangiana do buraco negro de Bardeen contém dois parâmetros, a massa M e carga magnética

q [66]. Consequentemente, a primeira lei se escreve como [69]:

dM =
κ

8π
dA+ΨHdq+KMdM+Kqdq (3.7)

em que κ e ΨH são a gravidade superficial e o potencial magnético, respectivamente. Os

parâmetros extras dificultam a construção de possı́veis relações entre variáveis termodinâmicas

e mecânicas. Visando corrigir isso, Fan and Wang adicionaram um parâmetro α na ação, o que

por sua vez produz a seguinte lei:

dE = T dS+ΨHdQm +Π dα (3.8)

em que as variáveis E = M, Qm =
√

Mq/2 e α = q3/M não são independentes. As demais cor-

respondências entre variáveis termodinâmicas e mecânicas são: T ³ κ/2π e S ³ A/4, todavia

A

4
= S ;=

∫
dM

T
(3.9)

pois se dQm = 0 = dα , então M é uma constante, logo
∫

dM/T = 0, lembre-se que a integral

acima deve ser calculada sob as condições de Q e α serem constantes. Se somente um parâmetro

fosse fixado, como dQm = 0, então

A

4
=
∫

dM

T

(

1+
32Q6

mΠ

M5

)

;=
∫

dM

T
(3.10)
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a quebra de tal relação fez com que vários fı́sicos abandonassem a lei da área-entropia [71, 72],

S =
∫

dE

T
;= A

4
. (3.11)

Em estudos relacionados aos buracos negros regulares dentro do contexto da gravidade de Eins-

tein, é importante que a lei da área continue sendo válida, isto é, S = A/4. Também é essencial

que cada variável termodinâmica seja independente da primeira lei termodinâmica, o que sig-

nifica que a mesma deve ser determinada independentemente dela, contudo a fórmula termo-

dinâmica S =
∫

dE/T deve ser válida. Uma excelente discussão sobre esse tópico é feita em

[4].

3.1.2 Condições de Energia para Buracos Negros Regulares

As condições de energia desempenham um papel fundamental no estudo dos bura-

cos negros regulares, uma vez que tanto podem ser utilizadas como um parâmetro para determi-

nar se um buraco negro regular é realı́stico, quanto estão intimamente ligadas à formação deles.

Acreditava-se que os buracos negros regulares poderiam ser formados com a substituição da

singularidade em seus centros por um núcleo de De Sitter, contudo isso produz uma violação

da condição forte de energia.

A condição de energia forte [73] nos diz que

Rαβ vαvβ g 0 (3.12)

ou, (

Tαβ 2 1

2
T gαβ

)

vαvβ g 0 ó Tαβ vαvβ g21

2
T

em que vα é a 4-velocidade. Para colocarmos a condição de energia em uma forma mais con-

creta, assumamos que o tensor energia-momentum possa ser decomposto como

T αβ = ρ êα
0 ê

β
0 + p1êα

1 ê
β
1 + p2êα

2 ê
β
2 + p3êα

3 ê
β
3 (3.13)

pois gαβ = ηµν êα
µ ê

β
ν , em que ηµν = diag(21,1,1,1). De forma similar, o 4-vetor velocidade

pode ser escrito como

vα = γ(êα
0 +aêα

1 +bêα
2 + cêα

3 ), γ = (12a2 2b2 2 c2)21/2 (3.14)

em que a,b,c são funções das coordenadas tais que a2 +b2 + c2 < 1. Consequentemente,

Tαβ vαvβ g21

2
T ó γ2(ρ +a2 p1 +b2 p2 + c2 p3)g

1

2
(ρ 2 p1 2 p2 2 p3) (3.15)

para a = b = c = 0, obtém-se γ = 1, e a relação acima se reduz para

ρ +
3

∑
i=1

pi g 0. (3.16)
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Qual seria a interpretação fı́sica da equação acima? Lembre-se que da equação de Raychaudhuri

[74]
dΘ

dτ
=2Rµνvµvν (3.17)

onde τ é o tempo próprio e Θ representa a expansão da congruência geodésica. Aqui, termos de

ordem maior associados com expansão podem ser ignorados, rotação e cisalhamento, uma vez

que estamos interessados apenas no papel da curvatura e das condições de energia e os demais

termos, em geral, são pequenos em métricas esfericamente simétricas. Fazendo novamente

vµ = (1,0,0,0), encontra-se que

dΘ

dτ
=2Rµνvµvν =28π

(

Tαβ 2 1

2
T gαβ

)

vαvβ

ó2R00 =24π

(

ρ +
3

∑
i=1

pi

)

.

(3.18)

A violação da condição forte de energia, ρ +∑
3
i=1 pi < 0, significa que Θ aumenta com o tempo

próprio, ou seja, a interação é repulsiva.

3.1.3 Exemplos de Buracos Negros Regulares

A solução de Bardeen para um buraco negro regular é reconhecida como a primeira

solução regular desenvolvida, tornando-se crucial para esse campo de estudo. Tal solução é

caracterizada por uma métrica esfericamente simétrica com uma massa variável, recentemente

essa métrica foi interpretada como sendo uma solução exata das equações de Einstein acopladas

a eletrodinâmica não linear [75] e é dada conforme expresso a seguir:

ds2 =2
(

12 2m(r)

r

)

dt2 +

(

12 2m(r)

r

)21

dr2 + r2(sin2 θdϕ2 +dθ 2), (3.19)

onde

m(r) =
Mr3

(r2 +b2)3/2
; (3.20)

em que b é um parâmetro de comprimento e M é a massa do sistema. Aqui G = c = 1. Observe

que quando b ³ 0 temos que m(r)³ M e a solução se reduz a de Schwarzschild. Para a análise

de regularidade, calculemos os seus invariantes de curvatura

R =
6Mb2(4b2 2 r2)

(r2 +b2)7/2
, (3.21)

RµνRµν =
18M2b4(8b4 24b2r2 +13r4)

(r2 +b2)7
, (3.22)

Rµναβ Rµναβ =
12M2(8b8 24b6r2 +47b4r4 212b2r6 +4r8)

(r2 +b2)7
. (3.23)
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Observe que para r ³ 0, temos que

R =
24M

b3
, RµνRµν =

144M2

b6
, Rµναβ Rµναβ =

96M2

b6
(3.24)

que são regulares desde que b ;= 0. Todavia, as condições de energia não são respeitadas para

essa solução, pois pelas equações de Einstein, temos que as componentes não nulas do tensor

de Einstein são iguais a:

G0
0 =2 6Mb2

(r2 +b2)5/2
= G1

1 (3.25)

G2
2 =

3Mb2(3r2 22b2)

(r2 +b2)7/2
= G3

3 (3.26)

assim, para o tensor energia-momentum T
µ
ν = diag(2ρ, pr, p3, p3), as equações de Einstein

implicam que

ρ =
3Mb2

4π(r2 +b2)5/2
=2pr, e p3 =

3Mb2(3r2 22b2)

8π(r2 +b2)7/2
. (3.27)

Consequentemente,

ρ + pr + p3+ p3 =
6Mb2(3r2 22b2)

8π(r2 +b2)7/2
(3.28)

note que todos os termos com exceção de (3r2 2 2b2) são definidamente positivos, porém se

r <
:

6
3

b, então tal soma será negativa, pois nesse caso 3r222b2 < 0. Analogamente, a condição

de energia nula também é violada:

ρ + p3 =
Mb2(9r2 24b2)

8π(r2 +b2)7/2
(3.29)

se r < 2b
3

, então ρ + p3 < 0, o que viola a condição de energia nula. A existência do núcleo De

Sitter resulta na quebra das condições de energia.

3.2 A Solução de Dymnikova

A solução de Dymnikova [16] adota uma distribuição de energia esfericamente

simétrica que decai de maneira suave em direção ao centro do buraco negro, evitando a sin-

gularidade e proporcionando um núcleo central com uma densidade finita. Isso é alcançado

ao considerar uma métrica do tipo De Sitter no centro, que é combinada com uma métrica de

Schwarzschild na região externa. A vantagem de tal solução é que ao contrário daquela apre-

sentada por Bardeen [7], a mesma se trata de uma solução de vácuo esfericamente simétrica.

Iniciaremos nossa abordagem ao definir a métrica proposta por Dymnikova [16].

A partir dessa formulação, examinaremos suas propriedades, realizando uma análise da geo-

metria por meio dos tensores e invariantes de curvatura para verificar sua regularidade e se a

mesma satisfaz as condições de energia. Além disso, conduziremos aplicações que incluem a
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avaliação de grandezas termodinâmicas, tais como a temperatura de Hawking e a capacidade

térmica. Adicionalmente, empreenderemos uma análise das órbitas de partı́culas próximas ao

buraco negro, proporcionando uma visão abrangente e aprofundada do modelo proposto por

Dymnikova.

3.2.1 Efeito Schwinger e a Métrica de Dymnikova

Muitos efeitos quânticos surgem do fato do vácuo apresentar flutuações, como o

efeito Casimir [76], que é um efeito perturbativo onde as interações são fracas o suficientes

para serem consideradas como pequenas perturbações da solução base, e o efeito Schwinger

[77], que é um efeito não perturbativo em que a taxa de criação de pares não pode ser descrita

por uma expansão em série de potências da constante de acoplamento, ao invés disso, ela é

exponencialmente suprimida para campos fracos e torna-se significativa apenas para campos

muito intensos, seguindo uma forma como exp
(

2π h̄m2
ec3

eE

)

.

O efeito Schwinger é caracterizado pela aplicação de um campo elétrico E intenso,

da ordem de 1018 V/m, que extrai pares de elétrons e pósitrons diretamente do vácuo. O cor-

respondente gravitacional é derivado de maneira heurı́stica [25] ao relacionar o campo elétrico

com a tensão gravitacional, que é caracterizada por um termo de curvatura, dado por

E > r23,
Ec

E
=

r3

r2
0rg

(3.30)

onde Ec = π h̄m2
e/e é o campo elétrico crı́tico necessário para a produção abundante do par, rg =

2M é o raio de Schwarzschild e r0 é relacionado a curvatura do núcleo de De Sitter. Em quatro

dimensões, o perfil de densidade de Dymnikova pode ser visto como um análogo gravitacional

do efeito Schwinger [78]:

ρ(r) = ρ0 exp

(

2 r3

rgr2
0

)

. (3.31)

No caso esfericamente simétrico, temos

T 2
2 = T 3

3 e T 0
0 = T 1

1 (3.32)

com as demais componentes sendo nulas. De acordo com a classificação algébrica de Petrov

este tensor energia-momentum possui um conjunto infinito de referenciais co-móveis. Portanto,

pode ser interpretado como sendo o tensor energia-momentum que descreve o vácuo esferica-

mente simétrico. Em geral este vácuo é anisotrópico. A seguir será mostrado que o vácuo

esfericamente simétrico pode gerar uma solução de buraco negro que é regular em r = 0 e em

qualquer outro lugar.

A métrica esfericamente simétrica mais geral possui a seguinte forma

ds2 =2eνdt2 + eλ dr2 + r2(dθ 2 + sin2 θ dϕ2), (3.33)
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onde ν(r) e λ (r) são funções radiais. Tal métrica produz as seguintes componentes não nulas

do tensor de Einstein

G00 =
e2λ+ν(21+ eλ + rλ 2)

r2

G11 =
12 eλ + rν 2

r2

G22 =
1

4
e2λ r(2ν 2+ rν 22 2λ 2(2+ rν 2)+2rν 22)

G33 = G22 sin2 θ .

(3.34)

Pelas equações de Einstein segue que

Tµν =
Gµν

8π
(3.35)

devido a (3.32) é necessário calcular o tensor misto, logo basta usar o fato de que T ν
µ =

Tµαgαν =
Gµα gαν

8π , assim

T 0
0 =

G0αgα0

8π
=

G00g00

8π
=

(
1

8π

)[

e2λ

(
1

r2
2 λ 2

r

)

2 1

r2

]

(3.36)

e

T 1
1 =

G1αgα1

8π
=

G11g11

8π
=

(
1

8π

)[

e2λ

(
1

r2
+

ν 2

r

)

2 1

r2

]

. (3.37)

Uma vez que T 0
0 = T 1

1 , obtém-se

�
�
�
�

(
1

8π

) [

e2λ

(
1

r2
2 λ 2

r

)

2 1

r2

]

=
�
�
�
�

(
1

8π

) [

e2λ

(
1

r2
+

ν 2

r

)

2 1

r2

]

i.e.

λ 2+ν 2 = 0 ó λ +ν = constante (3.38)

sem perca de generalidade, pode-se fazer λ +ν = 0 ó λ =2ν . Devido a (3.31) podemos fazer

a seguinte hipótese

ρ(r) =2T 0
0 = ρ0 exp

(

2 r3

r2
0rg

)

(3.39)

onde r0 é conectado com ρ0 através da relação de De Sitter:

r2
0 =

3

8πρ0
. (3.40)

Por (3.36) segue que (3.39) pode ser escrita como:

2ρ0 exp

(

2 r3

r2
0rg

)

=

(
1

8π

)[

e2λ

(
1

r2
2 λ 2

r

)

2 1

r2

]
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multiplicando ambos os lados por 8πr2 e integrando tal equação em relação a r, acha-se que:

2Λ

∫ r

0
exp

(

2 r23

r2
0rg

)

r22 dr2 =
∫ r

0
e2λ dr22

∫ r

0
r2e2λ λ 2dr22

∫ r

0
dr2

na integral a esquerda r23/r2
0rg = uó r22 dr = (r2

0rg/3)du e que para a terceira integral na direita

e2λ 2 d
dr2

(

r2e2λ
)

= r2e2λ λ 2, assim

2
(

Λr2
0

3

)

rg

∫ r3/r3
7

0
e2udu =

∫ r

0
e2λ dr22

∫ r

0
e2λ dr2+ re2λ 2 r

a primeira integral a direita se cancela com a terceira, de modo que

2
(

Λr2
0

3

)

rg

[

12 e2r3/r3
7
]

=2r(12 e2λ )

dividindo ambos os lados por 2r e notando que r0Λ
3

= 3
8π · 8π

Λ
· Λ

3
= 1, encontramos que

rg

[

12 e2r3/r3
7
]

r
= 12 e2λ

resolvendo para eλ :

e2λ = 12
rg

[

12 e2r3/r3
7
]

r
ó eλ =

1

12
rg

[

12e2r3/r37
]

r

= e2ν . (3.41)

Consequentemente, a métrica (3.33) se torna

ds2 =2
(

12 Rg(r)

r

)

dt2 +
dr2

12 (Rg(r)/r)
+ r2(dθ 2 + sinθ dϕ2), (3.42)

onde

Rg(r) = rg

[

12 exp

(

2r3

r37

)]

, (3.43)

em que

r3
7 = r2

0rg. (3.44)

Observe que (3.42) praticamente coincide com a solução de Schwarzschild para r k r7, pois

exp
(

2 r3

r37

)

³ 0, e para r j r7 a solução esfericamente simétrica se comporta como uma solução

de De Sitter, uma vez que

exp

(

2r3

r37

)

= 12 r3

r37
+ · · · c 12 r3

r37
ó Rg(r)c rg

[

121+
r3

r37

]

=
rgr3

r37
=

r3

r2
0
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Consequentemente, a métrica se reduz para:

ds2 c2
(

12 r2

r2
0

)

dt2 +
dr2

12 r2/r2
0

+ r2(dθ 2 + sinθ dϕ2)

que é a solução de De Sitter. Ademais, quando r ³ ∞ a métrica se reduz para a de Minkowski.

Obtemos que as componentes não nulas do tensor de Einstein para a métrica dada em (3.42) são

iguais a:

G00 =
[r2Rg(r)]R

2
g(r)

r3

G11 =2
R2

g(r)

r[r2Rg(r)]

G22 =21

2
rR22

g(r)

G33 =21

2
r sin2 θ R22

g(r).

(3.45)

Portanto,

T 1
1 =

G 1
1

8π
=

G1αgα1

8π
=2ρ0 exp

(

2r3

r37

)

= T 0
0 (3.46)

T 2
2 =

G 2
2

8π
=

G2αgα2

8π
=2ρ0

(

12 3r3

2r37

)

exp

(

2r3

r37

)

;

pois por (3.44) sabemos que rg/r3
7 = 1/r2

0 = 8πρ0/3. Similarmente,

T 3
3 =

G 3
3

8π
=

G3αgα3

8π
=2 1

8π

3rg

r37

(

12 3r3

2r37

)

exp

(

2r3

r37

)

que é justamente T 2
2 . Assim,

T 2
2 = T 3

3 =2ρ0

(

12 3r3

2r37

)

exp

(

2r3

r37

)

(3.47)

conforme esperado.

3.2.2 Análise da Solução

Vale apenas discutir as principais propriedades da métrica (3.85). Primeiro, irei

analisar as curvas radiais nulas nessa métrica, ou seja, curvas realizadas pela luz ds2 = 0 onde

dφ = dθ = 0. Assim, da Eq.(3.42) segue que

dr

dt
=±

[

12 rg(12 e2r3/r3
7)

r

]

(3.48)
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para r ³∞, essa expressão se reduz em dr/dt =±1, conforme esperado, uma vez que a métrica

(3.42) é assintoticamente plana. Assim, pode-se afirmar que

dt

dr
=±

[

12 rg(12 e2r3/r3
7)

r

]21

. (3.49)

Se r ³ ∞, então dt/dr ³ ±1. Similarmente, quando r ³ 0, encontramos que dt/dr ³ ±1,

enquanto que para
rg(12 e2r3/r3

7)

r
³ 1, dt/dr diverge que é a assinatura de um horizonte de

eventos. Note também que quanto mais
rg(12 e2r3/r3

7)

r
se aproxima de 1, menor será o termo

entre colchetes e maior será dt/dr. Por fim, dentro do horizonte de eventos note que o termo

entre colchetes aumenta e dt/dr diminui, contudo agora dt/dr irá trocar de sinal e o cone de

luz tende a se fechar ao redor da origem. A diferença entre Rg(rg) e rg é

Rg(rg) = rg

[

12 exp

(

r3
g

r2
0rg

)]

ó Rg(rg)2 rg = exp

(

r2
g

r2
0

)

. (3.50)

Observe também que

M2m(r)

M
=

M2
�
�
�
��>

M(
rgc2

2G

) [

12 exp

(

2 r3

r2
0rg

)]

M
,

de modo que a diferença entre m(r) e a massa de Schwarzschild M é

M2m(r)

M
= exp

(

2 r3

r2
0rg

)

. (3.51)

A métrica (3.42) possui dois horizontes de eventos, quando rg k r0, localizados aproximada-

mente em

r+ j rg

[
12O(exp(2r2

g/r2
0))
]

r2 j r0[12O(r0/4rg)]. (3.52)

Aqui r+ é o horizonte de eventos externo e r2 é o horizonte de eventos interno, tais singulari-

dades podem ser removidas através de uma transformação do tipo

dτ = dt +

√

Rg

r

(

12 Rg

r

)21

dr

dρ = dt +

√
r

Rg

(

12 Rg

r

)21

dr

(3.53)

pois

2dτ2 +
Rg

r
dρ2 =2

(

12 Rg

r

)

dt2 +

(

12 Rg

r

)21

dr2 (3.54)
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e (3.42) pode ser reescrita como

ds2 =2dτ2 +
Rg(r)

r
dr2 + r2(dθ 2 + sinθ dϕ2). (3.55)

Note que

lim
r³0

Rg(r)

r
= 0 (3.56)

a forma de Lemaitre da Eq.(3.55) é regular tanto em r+ quanto r2, assim como em r ³ 0, mas

não é completa. Para encontrar a sua extensão analı́tica máxima introduz-se as coordenadas

isotropicas de Eddington-Finkelstein, o que produz

ds2 =

∣
∣
∣
∣
12 Rg(r)

r

∣
∣
∣
∣
du dv2 r2(dθ 2 + sin2 θ dϕ2). (3.57)

O escalar de curvatura e o escalar de Kretschmann dessa solução são, respectivamente, iguais

a:

R =
3rge2r3/r3

7(4r3
723r3)

r67
(3.58)

K = RµνλρRµνλρ =
4R2

g(r)

r6
+4

(
3

r2
0

e2r3/r3
7 2 Rg(r)

r3

)2

+

(
2Rg(r)

r3
2 9r3

r4
0rg

e2r3/r3
7

)2

. (3.59)

Para r ³ 0, note que

R =
12

r2
0

, K =
24

r4
0

. (3.60)

Logo, essas quantidades são finitas uma vez que r0 ;= 0. Para r ³ ∞, temos R = 0 e K = 0 e

portanto a solução é regular. Para uma análise completa, é necessário verificar se as condições

de energia são infringidas por esta solução. O tensor energia-momentum é dado por T ν
µ =

diag(2ρ, pr, pt , pt). Por (3.32), (3.39) e (3.47), segue que a condição forte da energia produz

ρ +
3

∑
i=1

pi =22ρ0

(

12 3r3

2r37

)

exp

(

2r3

r37

)

(3.61)

que é menor que zero para r < 3

√
2
3
r7, ou seja existe uma região onde as condições de energia

forte são violadas. Similarmente, o mesmo ocorre para a condição nula de energia:

ρ + p3 =22ρ0

(

12 3r3

4r37

)

exp

(

2r3

r37

)

(3.62)

o que implica que para r < 3

√
4
3
r7 a condição nula de energia é violada. A regularidade geométrica

de um buraco negro significa que sua curvatura permanece finita em toda a sua extensão, evi-

tando singularidades. No entanto, isso pode ocorrer as custas da violação das condições de

energia, fazendo com que a matéria envolvida seja considerada exótica.
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3.3 Termodinâmica

Agora iremos calcular as quantidades termodinâmicas associadas com o buraco negro regular

de Dymnikova. A massa M do buraco negro pode ser escrita em termos do raio do horizonte de

eventos r+ ao se resolver a equação gtt = 0:

r+ = rg

(

12 e
2 r3

+

r37

)

. (3.63)

Multiplicando ambos os lados por r2
+/r3

7 para obter:

r3
+

r2
0rg

=
r2
+

r2
0

2 r2
+

r2
0

e
2 r3

+
r2
0

rg

introduzindo a variável y =
r3
+

r2
0rg

, o que permite reescrever a relação anterior como

y2 r2
+

r2
0

=2r2
+

r2
0

e2y

multiplicando ambos os lados por ey2r2
+/r2

0 , acha-se que:

(

y2 r2
+

r2
0

)

ey2r2
+/r2

0 =2r2
+

r2
0

e2r2
+/r2

0 . (3.64)

Tal equação pode ser resolvida para y com o uso da função de Lambert, representada por W

[79]. O logaritmo natural responde a pergunta: qual potência de e produz o número u? ou seja,

o logaritmo é a solução da equação: elnu = u. Analogamente, a função de Lambert responde a

pergunta: qual potência de e, multiplicada por si mesma, produz o número u? isto é, a função

de Lambert é a solução da equação eW (u)W (u) = u. Para resolver equações com a função de

Lambert basta prosseguir de maneira similar ao que é feito com a função logarı́tmica, em que se

uma equação é escrita como eu = v, logo por definição temos que u = lnv. Igualmente, se uma

equação é colocada na forma ueu = v, então a definição da função de Lambert permite escrever

W (v) = u, desde que x g e21. Assim sendo, a equação (3.64) possui como solução:

y2 r2
+

r2
0

=W

(

2r2
+

r2
0

e2r2
+/r2

0

)

(3.65)

desde que

2r2
+

r2
0

e2r2
+/r2

0 g2e21.

Consequentemente, temos que

r3
+

r2
0rg

=
r2
+

r2
0

+W

(

2r2
+

r2
0

e2r2
+/r2

0

)

ó 1

rg
=

1+
r2

0

r2
+

W
(

2 r2
+

r2
0

e2r2
+/r2

0

)

r+
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resolvendo para rg:

rg =
r+

1+
r2

0

r2
+

W

(

2r2
+

r2
0

e2r2
+/r2

0

) . (3.66)

o que nos leva para a seguinte massa do buraco negro

M =
(r+

2

)[

1+
r2

0

r2
+

W

(

2r2
+

r2
0

e2r2
+/r2

0

)]21

. (3.67)

O buraco negro possui uma temperatura de Hawking, que por sua vez pode ser derivada através

da gravidade superficial:

κ =
1

2

∂
:2grrgtt

∂ r

∣
∣
∣
∣
r=rh

. (3.68)

Portanto, a temperatura de Hawking do buraco negro de Dymnikova é igual a

T+ =
κ

2π
=

rg

4π

(

12 e2r3
+/rgr2

0

r2
+

2 3r+e2r3
+/rgr2

0

r2
0

)

contudo, por (3.64) temos que

r3
+

r2
0rg

2 r2
+

r2
0

=2r2
+

r2
0

e2r3
+/rgr2

0 ó2e2r3
+/rgr2

0 =
r+

rg
21

assim obtém-se a temperatura encontrada em [78]:

T+ =
1

4πr0

[
r0

r+
2 3r+

r0

(

12 r+

rg

)]

. (3.69)

Todavia, pela equação (3.66) obtém-se que

T+ =
1

4πr+

þ

ø1+3W

û

ý2r2
+

r2
0

e
2 r2

+
r2
0

þ

ø

ù

û . (3.70)

A temperatura de Hawking do buraco negro de Dymnikova para diferentes valores de r0 é

representada na Figura 1:

O gráfico indica que existe um valor crı́tico de r onde a temperatura atinge seu

máximo e que um r0 maior suprime a temperatura máxima do buraco negro e desloca o pico

para valores cada vez maiores de r. A existência de uma temperatura máxima e sua poste-

rior queda sugere um resfriamento natural que pode estar relacionado com a possibilidade de

remanescentes para os buracos negros.

A “possibilidade de remanescente” refere-se ao cenário em que a temperatura de

Hawking se anula impedindo a evaporação completa, ou seja a emissão de radiação de Hawking

cessa antes que a massa do buraco negro evapore completamente. O remanescente do buraco

negro poderia servir como um candidato potencial à matéria escura, pois pois seria compacto,

não interagiria significativamente com a luz e não desaparece do universo com o tempo [80–
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Figura 1: Gráfico da temperatura de Hawking (T+) como função do raio do horizonte de
eventos (r+) para diferentes valores de r0.

82]. Matematicamente, isso ocorre quando o raio do horizonte satisfaz a condição para uma

temperatura de Hawking nula, T+ = 0, e é determinado por

W

û

ý2r2
+

r2
0

e
2 r2

+
r2
0

þ

ø=21

3
(3.71)

inserindo esse resultado na Eq.(3.67) encontra-se a massa remanescente:

M =
3r3

+

2(3r2
+2 r2

0)
. (3.72)

A determinação das transições de fase no buraco negro depende do critério para uma

mudança no sinal da capacidade térmica. Uma capacidade térmica positiva (C > 0) é um sinal

de estabilidade local contra flutuações térmicas, enquanto uma capacidade térmica negativa

(C < 0) indica instabilidade local [83]. A expressão para a capacidade térmica é a seguinte:

C =

(
dM

drh

)(
drh

dTH

)

. (3.73)

Pela Eq.(3.67) e sabendo que a derivada da função de Lambert W é igual a:

W 2(x) =
W (x)

x(1+W (x))
óW 2

(

2r2
+

r2
0

e2r2
+/r2

0

)

=
2
(

12 r2
+

r2
0

)

W
(

2 r2
+

r2
0

e2r2
+/r2

0

)

r+

[

1+W
(

2 r2
+

r2
0

e2r2
+/r2

0

)] (3.74)

encontra-se que a capacidade térmica é igual a:

C =

4πr2
+

þ

ø1+
2W

(

2 r2
+

r2
0

e
2r2

+/r2
0

)

1+W

(

2 r2
+

r2
0

e
2r2

+/r2
0

)

ù

û

4
[

1+
r2

0

r2
+

W
(

2 r2
+

r2
0

e2r2
+/r2

0

)]

ù

ú

û
2123W

(

2 r2
+

r2
0

e2r2
+/r2

0

)

þ

ø12
2

(

12 r2
+

r2
0

)

1+W

(

2 r2
+

r2
0

e
2r2

+/r2
0

)

ù

û

ü

ý

þ

.

(3.75)
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Figura 2: Gráfico da Capacidade Térmica (C) como função do raio do horizonte de eventos
(r+).

A Figura 2 exibe gráficos da capacidade térmica (3.75) para diferentes valores de

r0. A capacidade térmica possui um ponto de Davies [84], sendo esse ponto relacionado ao

máximo da temperatura de Hawking. Portanto, o ponto de Davies define o valor de rh no qual

o buraco negro de Dymnikova exibe uma transição de fase, e como podemos ver, o ponto de

Davies depende de r0.

3.4 Equações Gerais do Movimento

Um resultado significativo que podemos derivar é o potencial dessa solução. O

procedimento padrão adotado nesse caso se baseia no cálculo das geodésicas de uma partı́cula

em movimento próximo ao buraco negro. Uma vez que as equações não podem ser resolvidas

analiticamente, não serão calculadas as órbitas circulares para uma partı́cula em torno do buraco

negro. A métrica de Dymnikova possui a seguinte forma

ds2 =2 f (r)dt2 +
dr2

f (r)
+ r2(dθ 2 + sin2 θ dϕ2) (3.76)

onde

f (r) = 12 rg(12 e2r3/r3
7)

r
. (3.77)

A equação da geodésica nos diz que

d2xλ

d p2
+Γλ

µν
dxµ

d p

dxν

d p
= 0, (3.78)

onde p é um parâmetro afim para geodésicas nulas e é o tempo próprio para geodésicas tipo-

tempo. Assim, a forma mais direta de encontrar a equação do movimento de uma partı́cula é
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através da resolução da equação geodésica, sendo uma abordagem bastante adotada [41]. As

componentes não nulas dos sı́mbolos de Christoffel são:

Γt
tr = Γt

rt =
f 2(r)

2 f (r)

Γr
tt =

f (r) f 2(r)
2

; Γr
rr =2 f 2(r)

2 f (r)

Γr
θθ =2r f (r); Γr

ϕϕ = sin2 θ Γr
θθ

Γθ
rθ = Γθ

θr =
1

r
= Γ

ϕ
rϕ = Γ

ϕ
ϕr

Γθ
ϕϕ =2cosθ sinθ ; Γ

ϕ
θϕ = Γ

ϕ
ϕθ = cotθ

(3.79)

que produz as seguintes equações ao serem substituı́das na geodésica:

d2t

d p2
+

f 2(r)
f (r)

dt

d p

dr

d p
= 0 (3.80)

d2r

d p2
+

f 2(r)
2

[

f (r)

(
dt

d p

)2

2 1

f (r)

(
dr

d p

)2
]

2 r f (r)

[(
dθ

d p

)2

+ sin2 θ

(
dϕ

d p

)2
]

= 0 (3.81)

d2θ

d p2
+

2

r

(
dr

d p

)(
dθ

d p

)

2 cosθ sinθ

(
dϕ

d p

)2

= 0 (3.82)

d2ϕ

d p2
+

2

r

dr

d p

dϕ

d p
+2cotθ

(
dθ

d p

)(
dϕ

d p

)

= 0. (3.83)

Devido a simetria esférica, vamos confinar a órbita da nossa partı́cula ao plano equatorial, ou

seja,

θ =
π

2
(3.84)

que automaticamente satisfaz (3.82). Dividindo (3.80) e (3.83) por dt/d p e dϕ/d p, respectiva-

mente, encontramos que

1
dt
d p

d

d p

(
dt

d p

)

+
1

f (r)

d f (r)

dr

dr

d p
= 0 ó d

d p

[

ln
dt

d p
+ ln f (r)

]

= 0 (3.85)

1
dϕ
d p

d

d p

(
dϕ

d p

)

+
2

r

dr

d p
= 0 ó d

d p

[

ln
dϕ

d p
+ lnr2

]

= 0 (3.86)

o que produz duas constantes de movimento. Uma delas é a energia por unidade de massa

f (r)
dt

d p
= E. (3.87)

Enquanto a outra constante do movimento é derivada de (3.86), atuando como o momento

angular por unidade de massa:

r2 dϕ

d p
= J. (3.88)



62

Inserindo (3.84), (3.87) e (3.88) em (3.81) obtemos outra equação do movimento:

0 =
d2r

d p2
+

f 2(r)
2 f (r)

[

E2 2
(

dr

d p

)2
]

2 J2 f (r)

r3
,

multiplicando essa equação por 2
f (r)

dr
d p

, encontra-se que

0 =
d

d p

{

1

f (r)

[(
dr

d p

)2

2E2

]

+
J2

r2

}

. (3.89)

Portanto, a constante de movimento restante é

1

f (r)

[(
dr

d p

)2

2E2

]

+
J2

r2
= ε = constante (3.90)

resolvendo para (dr/d p)2 encontra-se que

(
dr

d p

)2

= E2 + f (r)

(

ε 2 J2

r2

)

. (3.91)

Inserindo as Eqs.(3.84), (3.87), (3.88) e (3.91) na Eq.(3.76)

ds2 =

[

2 f (r)

(
dt

d p

)2

+
1

f (r)

(
dr

d p

)2

+ r2

(
dϕ

d p

)2
]

d p2 = ε d p2.

Para partı́culas massivas é válido que ds2 =2dτ2, consequentemente

dτ2 =2ε d p2. (3.92)

De modo que ε =21 para partı́culas com massa, uma vez que o parâmetro afim nesse caso é o

próprio tempo próprio. Já para a luz, ε = 0, pois ds2 = 0. A Eq.(3.91) pode ser reescrita como

(
dr

dτ

)2

= E2 2Ve f f (r) (3.93)

onde

Ve f f (r) =

[

12 rg(12 e2r3/r3
7)

r

](
J2

r2
2 ε

)

(3.94)

é o potencial efetivo.
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4 BURACO NEGRO DE DYMNIKOVA GENERALIZADO

De forma similar ao que foi feito para quatro dimensões, considere a ação gravita-

cional generalizada

S =2 1

16π

∫

dNx
:2g R+SM (4.1)

em que R é o escalar de Ricci, N é o número de dimensões do espaço-tempo e SM representa a

ação da matéria. As equações de campo de Einstein N dimensionais são então dadas por

Rµν 2
1

2
Rgµν = 8πTµν , (4.2)

onde µ,ν = 0,1, . . . ,N 2 1. A constante gravitacional de Newton N dimensional é tal que

GN = c = 1 e T
µ
ν = (2ρ,Pr,Pt , . . .), sendo ρ a densidade de energia, Pr a pressão radial e Pt a

pressão transversal. Nosso objetivo é estudar as soluções que representam buracos negros, assim

procuramos soluções esfericamente simétricas, de forma que faz sentido fazermos o seguinte

Ansatz:

ds2 =2 f (r)dt2 +
dr2

f (r)
+ r2dΩ2

N22 (4.3)

em que f (r) é uma função radial determinada pela solução e

dΩ2
N22 = dθ 2

1 +
N22

∑
i=2

[
i

∏
j=2

sin2 θ j21

]

dθ 2
i (4.4)

é o elemento de linha de uma esfera unitária (N 22) dimensional [83]. Note que ΩN22 é igual

a [85]:

ΩN22 =
2πN21

Γ
(

N21
2

) (4.5)

Utilizando a métrica dada por (4.3), encontra-se que

T 0
0 = T r

r =
N 22

2

[

f (r)

(
N 23

r2
+

f 2

r f (r)

)

2 N 23

r2

]

, (4.6)

T
θ1

θ1
=

f (r)

2

[
f 22

f
+

2(N 23) f 2

r f (r)
+

(N 23)(N 24)

r2

]

2 (N 23)(N 24)

2r2
, (4.7)

T
θ1

θ1
= T

θ2

θ2
= · · ·= T

θN22

θN22
. (4.8)

De forma similar ao que foi feito em (3.39), podemos tomar a seguinte densidade:

ρ(r) =2T 0
0 = ρ0e

2 rN21

rN217 . (4.9)
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Aqui r7 é uma constante dimensional. Utilizando a expressão de T 0
0 da Eq.(4.6) na Eq.(4.9),

obtém-se que

2 2ρ0

(N 22)
e
2 rN21

rN217 = (N 23)
f (r)

r2
+

f 2

r
2 (N 23)

r2
.

Por fim, basta multiplicar ambos os lados por rN22

22ρ0rN22

(N 22)
e
2 rN21

rN217 = (N 23)rN24 f (r)+ f 2rN23 2 (N 23)rN24

=
d

dr

(
rN23 f (r)2 rN23

)
,

e integrar ambos os lados da equação para determinar o potencial métrico:

f (r) = 12
rN23

g

rN23

(

12 e
2 rN21

rN217

)

(4.10)

em que

rN23
g =

2ρ0

(N 21)(N 22)
rN21
7 (4.11)

é o raio de dimensões maiores. Portanto, a métrica de Dymnikova para dimensões maiores é

igual a:

ds2 =2
(

12 Rs(r)

rN23

)

dt2 +
dr2

(

12 Rs(r)
rN23

) + r2dΩ2
N22. (4.12)

Onde alguns termos foram acoplados de tal modo que

Rs(r) = rN23
g

[

12 exp

(

2rN21

rN21
7

)]

. (4.13)

Por uma questão de analogia, temos que

r2
0 =

(N 21)(N 22)

2ρ0
e rN21

7 = r2
0rN23

g . (4.14)

Essa solução exata esfericamente simétrica das equações de campo de Einstein produz a solução

de De Sitter para r j r7 e a solução de Schwarzschild para r k r7. Os componentes do tensor

energia-momentum são T 0
0 = T 1

1 =2ρ0e
2 rN21

rN217 e

T
θ2

θ2
=

[

N 21

N 22

(
r

r7

)N21

21

]

ρ0e
2 rN21

rN217 (4.15)

a pressão transversal é nula (Pt = 0) quando r =
(

N22
N21

)1/N21
r7 e a densidade se torna ρ =

ρ0e2
N22
N21 , note contudo que no centro do buraco negro temos que Pt =2ρ0 e Pr =2ρ0 =2ρ , o

que implica em uma violação da condição forte de energia, todavia a partir de r =
(

N22
N21

)1/N21
r7

a condição é respeitada. Os resultados anteriores se reduzem aos já encontrados no capı́tulo

anterior quando é feito N = 4. Os horizontes de eventos da métrica são os zeros de gtt = 0.
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Temos então dois horizontes distintos, um horizonte de Cauchy r2 e um horizonte de eventos

externo r+, localizados em [19]

r2 = r0

[

12O

(

exp

(

2r0

rg

))]

, r+ = rg

[

12O

(

exp

(

2
r2

g

r2
0

))]

. (4.16)

Eles podem ser eliminados através de uma transformação apropriada de coordenadas. Em coor-

denadas conectadas com partı́culas livres em queda a métrica toma uma forma do tipo Lemaitre:

ds2 =2dτ2 +
Rs(r)

rN23
dr2 + r2dΩN22. (4.17)

Uma vez que (limr³0 (Rs(r)/rN23) = 0), a métrica é regular tanto em r+ quanto r2, toda-

via não é completa. Para encontrar sua extensão analı́tica máxima introduz-se as coordenadas

isotrópicas de Eddington-Finkelstein, nas quais produzem:

ds2 =2
∣
∣
∣
∣
12 Rs(r)

rN23

∣
∣
∣
∣
du dv+ r2dΩN22, (4.18)

de forma que a solução apresentada é regular em todo o espaço.

4.1 Termodinâmica

Ao longo da seção, algumas quantidades termodinâmicas como a temperatura e

capacidade térmica serão obtidas, além disso será determinado qual é a condição analı́tica para

que a solução de Dymnikova possua um remanescente, i.e., T+ = 0. Este último é bastante

importante, uma vez que na presença de um remanescente, o buraco negro nunca evaporaria

completamente. A massa do buraco negro pode ser determinada através do raio do horizonte de

eventos r+, para isso basta resolver a equação f (r+) = 0, de forma análoga ao caso de quatro

dimensões, temos que

f (r) = 12
rN23

g (12 e
2 rN21

rN217 )

rN23
(4.19)

fazendo f (r+) = 0, acha-se

rN23
+ = rN23

g

û

ý12 e
2 rN21

+

rN217

þ

ø ,

multiplicando ambos os lados por
r2
+

rN23
g r2

0

, reescrevendo r7 com o uso da relação (4.14) e intro-

duzindo a variável y =
rN21
+

r2
0rN23

g
, obtém-se que

y2 r2
+

r2
0

=2r2
+

r2
0

e2y
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multiplicando ambos os lados por ey2r2
+/r2

0 , encontra-se que

(

y2 r2
+

r2
0

)

ey2r2
+/r2

0 =2r2
+

r2
0

e2r2
+/r2

0

esta equação pode ser resolvida para y com o uso da função W de Lambert:

y2 r2
+

r2
0

=W

(

2r2
+

r2
0

e2r2
+/r2

0

)

, (4.20)

desde que 2r2
+

r2
0

e2r2
+/r2

0 g2e21. Portanto,

rN23
g =

rN23
+

1+
r2

0

r2
+

W

(

2r2
+

r2
0

e2r2
+/r2

0

) ,

e a massa do buraco negro é então dada por

M =
(N 22)ΩN22rN23

+

16π

[

1+
r2

0

r2
+

W

(

2r2
+

r2
0

e2r2
+/r2

0

)] . (4.21)

Onde

rN23
g =

16πM

(N 22)ΩN22
. (4.22)

Os passos para se obter tais equações são análogos aos feitos na demonstração da Eq.(3.67) e

ΩN22 é dado pela Eq.(4.5). O buraco negro possui uma temperatura de Hawking que pode ser

obtida através da sua gravidade superficial dada por

κ =
1

2

d f (r)

dr

∣
∣
∣
∣
r=r+

. (4.23)

Ao passo que a temperatura de Hawking é dada por

T+ =
κ

2π
. (4.24)

Para o buraco negro de Dymnikova temos então [86]:

T+ =
1

4πr0

[

(N 23)r0

r+
2 (N 21)r+

r0

(

12 rN23
+

rN23
g

)]

(4.25)

ou,

T+ =
1

4πr+

þ

ø(N 23)+(N 21)W

û

ý2r2
+

r2
0

e
2 r2

+
r2
0

þ

ø

ù

û . (4.26)

Quando r+ k r0, obtém-se a temperatura de Hawking do buraco negro esfericamente simétrico

em N dimensões [87]. Para N = 4, a expressão acima se reduz para aquela encontrada na
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Eq.(3.67). Abaixo, o gráfico para o comportamento da temperatura de Hawking para o buraco

negro de N dimensões foi desenhado. O gráfico da esquerda indica que, para cada dimensão,

existe um valor crı́tico de r onde a temperatura atinge seu máximo e em dimensões mais altas, o

buraco negro pode atingir temperaturas maiores antes de começar a esfriar. O gráfico da direita

sugere que um r0 maior suprime a temperatura máxima do buraco negro e desloca o pico para

valores cada vez maiores de r. Portanto, massas de remanescentes surgem como resultado.

N = 4

N = 5

N = 6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.1
0.0

0.1
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+
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r0 = 0.5

r0 = 0.9

r0 = 1.5

1 2 3 4 5 6
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0.10
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T
+

N = 5

Figura 3: Gráfico da temperatura de Hawking (T+) como função do raio do horizonte de
eventos (r+).

A determinação das possı́veis transições de fase no buraco negro depende do critério

para uma mudança no sinal da capacidade térmica. Uma capacidade térmica positiva (C > 0)

é um sinal de estabilidade local contra flutuações térmicas, enquanto uma capacidade térmica

negativa (C < 0) indica instabilidade local. A expressão para a capacidade térmica é a seguinte:

C =

(
N22

4

)
ΩN22rN22

+

þ

ø(N 23)+
2W

(

2 r2
+

r2
0

e
2r2

+/r2
0

)

1+W

(

2 r2
+

r2
0

e
2r2

+/r2
0

)

ù

û

[

1+
r2
0

r2
+

W
(

2 r2
+

r2
0

e2r2
+/r2

0

)]

ù

ú

û
2(N 23)2 (N 21)W

(

2 r2
+

r2
0

e2r2
+/r2

0

)

þ

ø12
2

(

12 r2
+

r2
0

)

1+W

(

2 r2
+

r2
0

e
2r2

+/r2
0

)

ù

û

ü

ý

þ

(4.27)

A Figura 4 exibe o gráfico da capacidade térmica (4.27) para um valor fixo de r0 em

diferentes dimensões. A capacidade térmica possui um ponto de Davies [84], sendo tal ponto

relacionado ao máximo da temperatura de Hawking. Portanto, o ponto de Davies estabelece o

valor de r+ no qual o buraco negro de Dymnikova com N dimensões exibe uma transição de

fase, e como podemos ver, o ponto de Davies depende da dimensão. À medida que aumentamos

o valor da dimensão, a posição do ponto de Davies é deslocada para a esquerda, de modo que a

transição de fase ocorre para valores menores de r+.

Por fim, observe que um remanescente ocorre para valores nos quais TH = 0, o que
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N = 4
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N = 6

0.4 0.6 0.8 1.0 1.2 1.4 1.6

-100
-50

0

50

r+

C

r0 = 0.3

Figura 4: Gráfico da capacidade térmica (C) como função do raio do horizonte de eventos (r+)
para o buraco negro de Dymnikova para diferentes dimensões com r0 fixo.

pela Eq.(4.26) implica em

W

û

ý2r2
+

r2
0

e
2 r2

+
r2
0

þ

ø=2(N 23)

(N 21)
. (4.28)

Inserindo este resultado na Eq.(4.21) encontra-se a massa remanescente como sendo igual a:

M =
(N 22)(D21)ΩN22rN21

+

16π
[
(N 21)r2

+2 (N 23)r2
0

] . (4.29)

Note que todas as quantidades encontradas nesta seção se reduzem às do capı́tulo anterior

quando N = 4.

4.2 Modos Quasi-normais

Inicialmente, será feita uma breve introdução das ferramentas necessárias para o

cálculo dos modos quase-normais para perturbações escalares. Suponha a existência de um

campo escalar real, eletricamente neutro e massivo, Φ, que está acoplado de forma canônica à

gravidade. Agora, considere sua propagação em um background gravitacional fixo. A equação

de Klein-Gordon é expressa da seguinte forma:

1:2g
∂µ(2

:2g gµν∂ν)Φ = m2Φ, (4.30)

em que m é a massa do campo escalar. Introduzindo uma separação de variáveis para Φ =

Φ(t,r,θ1, . . . ,θD22), pode-se escrever o mesmo como:

Φ(t,r,θ1, . . . ,θN22) = e2iωt ψ(r)

r(N22)/2
Ỹl(Ω) (4.31)
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em que ω é a frequência e Ỹl é a generalização dos harmônicos esféricos [88]. Assim, as

equações em (4.30) assumem a forma do tipo onda de Schrödinger [89]:

d2ψ

dx2
+U(x,ω)ψ = 0, (4.32)

onde U(x,ω) é o potencial efetivo que dependa da frequência da onda e da “coordenada de

tortoise” denotada por x e definida como:

dx c dr

12 Rs(r)
rN23

(4.33)

quando x se aproxima de 2∞,temos a presença do horizonte de eventos, enquanto o limite de

quando x se aproxima de +∞ corresponde ao infinito espacial. Por definição, a onda é “ingoing”

quando

ψin(x ³±∞) ∝

{

e2ik±z, ω > 0;

eik±x, ω < 0;
(4.34)

e “outgoing” quando

ψout(x ³±∞) ∝

{

eik±z, ω > 0;

e2ik±x, ω < 0
(4.35)

O número de onda k±(ω), que é maior que zero, satisfaz as relações de dispersão. Tipicamente,

o potencial efetivo assume a forma

U(x,ω) =V (x)2ω2. (4.36)

O potencial V (x) para a equação de Klein-Gordon possui a forma [90]:

V (r) =

(

12 Rs(r)

rN23

)[

m2 +
3(3+N 23)

r2
2 N 22

2r

d

dr

(
Rs(r)

rN23

)

+
(N 22)(N 24)

4r2

(

12 Rs(r)

rN23

)]

(4.37)

onde 3g 0 é o momento angular orbital. A barreira de potencial para diferentes dimensões foi

desenhada na Figura 5.

Para {rg,r0, 3} fixos e diferentes valores da dimensão N (gráfico superior esquerdo),

é evidente que o aumento na dimensão N implica em um aumento no máximo do potencial. Para

{N,rg,r0} fixos e diferentes valores do momento angular orbital 3 (gráfico superior direito), é

evidente que um aumento em 3 também implica em um aumento no máximo do potencial, con-

tudo agora o gráfico se move consistentemente para a direita. Para {N,rg, 3} fixos e diferentes

valores de r0 (gráfico inferior esquerdo), um aumento em r0 não interfere no máximo do poten-

cial. Por fim, para {N,r0, 3} fixos e diferentes valores do raio de Schwarzschild (gráfico inferior

direito), é notório que um aumento em rg produz uma diminuição no máximo do potencial e

que este se move para a direita.

Quando ondas puramente outgoing e ingoing são impostas em ambos os infinitos

espaciais na equação fundamental de ondas, isso dá origem aos modos quase-normais denotados
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Figura 5: Barreira de potencial efetivo para perturbações escalares por coordenada radial para
os parâmetros mostrados nas legendas.

por ω em buracos negros assintoticamente planos. A fórmula WKB fornece uma forma fechada

para os modos quase-normais, como:

ω2 =V0 +A2(K2)+A4(K2)+A6(K2)+ . . .

2 iK
√

22V 22
0 (1+A3(K2)+A5(K2)+A7(K2)+ . . .)

(4.38)

onde Ak(K2) são polinômios das derivadas U 22,U 222, . . . que podem ser encontrados em [91] e K
é para os modos QN (quasi-normais) iguais a

K =

ù

üú

üû

+n+ 1
2
, Re(ω)> 0;

2n2 1
2
, Re(ω)< 0;

(4.39)

em que n = 0,1,2,3, . . ., e V0,V
22
0 ,V

222
0 , . . . são, respectivamente, o valor e as derivadas de ordem

mais alta do potencial V (x) no seu ponto máximo.

Aumentar a ordem do método WKB não necessariamente resulta em uma aproximação

mais precisa da frequência. Tipicamente, o erro da aproximação da fórmula WKB é avaliado

comparando duas ordens consecutivas. Para estimar o erro para ωk obtido através da fórmula
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WKB de ordem k, empregamos a quantidade

∆k =
|ωk+1 2ωk21|

2
. (4.40)

Para aumentar a precisão da fórmula WKB, basta seguir o procedimento de Matyjasek e Opala

[92]. Além disso, será utilizado o uso dos aproximadores de Padé. Formulações analı́ticas

precisas para o espectro quase-normal de buracos negros são alcançáveis apenas em casos es-

peciais, como quando a equação diferencial correspondente à componente radial da função de

onda pode ser transformada na função hipergeométrica de Gauss e em casos de potenciais com

formato Pöschl-Teller. Para o buraco negro de Dymnikova, devido às caracterı́sticas não triviais

da equação (4.30), torna-se imperativo recorrer a métodos numéricos para calcular os modos

QN correspondentes. Devido a forma do potencial, que se assemelha ao gráfico do efeito de

tunelamento, será utilizado o método WKB.

Em geral, a fórmula WKB tende a ser mais precisa quando 3 aumenta e tanto n

quanto N são menores. Na Figura 6, podemos observar que, para encontrar o modo fundamental

com precisão suficientemente alta, o mais alto nı́vel de precisão é alcançado ao empregar altas

ordens de WKB em conjunto com a aproximação de Padé.
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Figura 6: ωRe (esquerda) e ωIm (direita) como funções da ordem WKB onde

n = 0,N = 5,rg = 1,r2
0 = 0,2, 3= 1 (superior) and 3= 2 (inferior).

Na Tabela 1, é mostrado a precisão da fórmula WKB para 3= 1,n= 0 em diferentes

dimensões. Observa-se que o erro pode ser muito bem estimado ao comparar as frequências

com o menor erro em conjunto com a de sexta ordem. Assim, dentro da faixa de parâmetros

considerada, o buraco negro permanece estável contra perturbações escalares com base nos

cálculos dos modos quase-normais. Isso se mantém verdadeiro devido a Im(ω) negativo, pois

a perturbação desaparece com o tempo, ou seja e2iωt = e2iωRteωIt desaparece. Buracos negros

instáveis possuem ωI > 0, em outras palavras a perturbação cresce exponencialmente. O sinal
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da parte real é uma mera questão de convenção para se definir a direção da propagação da onda.

r2
0 ω Sixth order WKB

3= 1, n = 0, D = 4
0.20 0.583422 - 0.195365i 0.579949 - 0.201839i
0.25 0.580694 - 0.193959i 0.574068 - 0.190187i
0.30 0.575456 - 0.194747i 0.571264 - 0.195078i
0.35 0.566952 - 0.191897i 0.555443 - 0.200196i
0.40 0.562671 - 0.179931i 0.547077 - 0.184825i
0.45 0.547112 - 0.176065i 0.555613 - 0.180324i

3= 1, n = 0, D = 5
0.20 1.01299 - 0.370259i 1.00626 - 0.372503i
0.25 1.00921 - 0.366918i 1.01385 - 0.367913i
0.30 1.00237 - 0.358466i 1.00814 - 0.368051i
0.35 1.00033 - 0.350568i 1.00719 - 0.363288i
0.40 0.981471 - 0.356504i 0.980692 - 0.366012i
0.45 0.982178 - 0.33442i 0.964823 - 0.362666i

3= 1, n = 0, D = 6
0.20 1.44322 - 0.517553i 1.44063 - 0.525754i
0.25 1.43482 - 0.505017i 1.4427 - 0.52096i
0.30 1.42936 - 0.510123i 1.44053 - 0.520656i
0.35 1.41782 - 0.480749i 1.42884 - 0.5221i
0.40 1.4067 - 0.50002i 1.42285 - 0.520919i
0.45 1.39392 - 0.48167i 1.38135 - 0.519523i

Tabela 1: Modos Quasi-normais do campo escalar não massivo para diferentes dimensões e r2
0,

rg = 1 e 3= 1, calculados usando a fórmula WKB de diversas ordens.
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5 CONCLUSÃO

Explorar a relatividade geral em dimensões superiores promete insights valiosos

sobre a natureza da teoria, especialmente no contexto dos buracos negros. Neste trabalho, apre-

sentamos um buraco negro Dymnikova estático e esfericamente simétrico exato que é regular

dentro de um espaço-tempo N-dimensional arbitrário. Analisamos a solução, identificando ho-

rizontes potenciais. Além disso, verificamos a estrutura regular do espaço-tempo e conduzimos

uma análise termodinâmica. Investigamos o comportamento da temperatura de Hawking vari-

ando as dimensões. Todas as dimensões exibem uma transição de fase de ordem zero na qual

a temperatura se anula e a evaporação do buraco negro se interrompe em raios de horizonte

finitos. Portanto, massas de remanescente aparecem como resultado dessas transições de fase.

Podemos observar que, ao aumentar a dimensão, o valor de r+ no qual a tempera-

tura de Hawking se anula torna-se menor. Portanto, a massa de remanescente é afetada pela

dimensão. Também estudamos a capacidade térmica, já que a determinação das potenciais

transições de fase no buraco negro depende do critério para uma mudança no sinal da capaci-

dade térmica. Uma capacidade térmica positiva (C > 0) é um sinal de estabilidade local contra

flutuações térmicas, enquanto uma capacidade térmica negativa (C < 0) indica instabilidade

local. Mostramos que a capacidade térmica possui um ponto de Davies, sendo tal ponto relacio-

nado ao máximo da temperatura de Hawking. Portanto, o ponto de Davies estabelece o valor de

r+ no qual o buraco negro Dymnikova N-dimensional exibe uma transição de fase, e também

demonstramos que o ponto de Davies depende da dimensão. À medida que aumentamos o va-

lor da dimensão, a posição do ponto de Davies é deslocada para a esquerda, de modo que a

transição de fase ocorra para valores menores de r+.

O estudo dos modos quase-normais de um buraco negro de Dymnikova oferece

uma janela única para suas propriedades fundamentais e comportamento gravitacional. Neste

trabalho, ilustramos representações gráficas da barreira de potencial efetivo em relação à coor-

denada radial, r, variando individualmente o conjunto de parâmetros N,rg,r0, 3. Em seguida,

calculamos numericamente os modos quase-normais usando o método WKB. Nossas descober-

tas indicam que, dentro da faixa de parâmetros considerada, o buraco negro permanece estável

contra perturbações escalares com base nos cálculos dos modos quase-normais. Isso se mantém

verdadeiro devido a Im(ω) negativo. Os resultados apresentados neste trabalho ampliam o bu-

raco negro de Dymnikova, implicando relevância potencial dentro do contexto da teoria das

corda.
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