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ABSTRACT

The theory of electron linace in their conventional form is well
sovered in the exiasting literature. A few topics, such as the design
3f standing-wave tf structures, beam loading and beam breakup, are
reviewed here for completeness. In recent years, however, aa impor-
tant application of electron linaecs has been to gerve as rf cavities
in high energy electron-positron storage rings. The theory under-
lying this application is developed, with particular attemtion to the

rrmkTgme ~nf Feanadamt bhaam laaddnoe and anoarou lana ta hiochor-ardar
P'. U LIS UL Ll, ﬂ!lul:l'h [FL—-] 0] J.Utl\-l&lls kR S & 6’ IO W LA/ L TR ML

cavity modes. Still more recently, electron linacs have heen viewed
in 2 potential role as high-gradient linear ¢olliders. The theory of
beam loading for intense single bunches in a collider structure is
developed. As background for this theory, the properties of the
impedance functiom im the frequency domain and the wake potential in
the time domain, together with the transform relations connecting

the frequency and time domains, are reviewed.

Throughout these notes the application of basic physical principles
such as energy conservation, superposition and causality is emphasized,
both to provide insight and to simplify certain derivations. Phasor
diagrams are liberally used to present the analysis of complex beanm
loading effects, in particular transieant beam loading, in a visual form
which can be readily grasped by the reader.

Based on Lectures given in the 1981 Summer School on
High Energy Particle Accelerators,
Fermli National Accelerator Laboratory,
July 13-24, 1981

*
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PREFACE TO SLAC-PUB-2884 (REVISED)

The original SLAC-PUB-2884 was based on lectures presented at the 1981
Suminer School on High Energy Particle Accelerators, held at Fermilab July 13-24,
1981. It was published in AIP Conference Proceedings No. 87 (American Institute
of Physics, New York, 1982) pp. 550-563. The present revision updates the original
document in several ways. First, all of the sections on linear collider design and
on high peak power tf sources has been eliminated. The material in these sections
is by now completely out of date. These two areas (linear colliders and high power
rf sources) have experienced almost exponential growth since 1981, and the reader
must look to more modern references (probably many of them). This leaves the
core of the original publication, which deals primarily with the interaction between
electron beams and rf structures. This material has aged reasonably well in the
past ten years, and has not required major revisions to bring it up to date. Typos
and other minor errors have of course been corrected. Of more consequence, one
section and two appendices have been added for completeness. Section 10.5 treats
the long-range wake potentials, muiti-bunch beam loading and beam breakup for
short bunch trains. Appendix A'gives the details of the derivation of the expression
for beam loading in a constant gradient structure. This was passed off as problem
5.2 in the original text, moreover with an incorrect suggestion for a starting point.
Appendix E’éives a short summary of beam loading in non-synchronous structures.
Finally, in Section 9.2 the definition of the Fourier transform has been changed by
a factor of 7 to bring it in line with more generally accepted usage.

Perry B. Wilson

November 1891

£ Not mdduded



1.

5‘

6.

9.

-iii-

INTRODUCTION . . . . . . . .

BASIC CONCEPTS 4+ o« o + # = o & = a s 4 o = = 4 & = & &

21?1‘[380:3-:--- . + = B + & = w s ®m + & % & &
2.2 The “Big Four” Basic Principles . « . « « + « & =
2.3 Differential Superposition . « ¢ o ¢ ¢ s ¢ o s

ST&HDING‘“AVE Lms % 8 & % 4 # ® ® = » 4w =m & w =«

3.1 Shunt Impedance . « = « « « + « « v = a » ¢ = o =
3.2 Troansit-Time FACLOT . o+ o o + o o + + o ¢ & o o @
3.3 Bunch Form FActor + « o « +» = s = s = s =« & ¢ & «
3.4 Standing-Wave Structures . . « ¢ « » o o o = = =
3.5 Equivalent Circuit for a Cavity with Beam
Loading « « » o + o s s o v s 2 s s+ a4 4 s ow ..

APPLICATION TO STORAGE RIKG RF SYSTEMS . . . . . .+ .

4.1 Beam Loading in Storage Ring RF Systems . . . . .
4.2 Phase Stability and Robinson Damping « « - - . -

TRAVELING-WAVE LINACS . . + ¢ ¢ o o o ¢ ¢ o & = ¢ o« =

1 Basic Principles . . « o ¢ « o o o s o o =+ 2 o
2 Structure ParaueLers . . - ¢ + « 5 o 4« « = & 2 »
.3 Energy Gain end Beam Loading . . « + + « « « +
4 Non-Synchronous Operation « + « « ¢ ¢ = = ¢ « «

SINGLE-BUNCH BEAM LOADIRG . . . « =« » o = ¢ =« o « o =

6.1 The Fundamental Theorem of Beam Loading . . . . .
6.2 Higher-Order Cavity Modes and the loss Impedance
6.3 Efficiency for Energy Extraction from a Cavity .
6.4 Beam Loading by a Bunch Train with Tp ~T¢ . - .
6.5 The Rescnance Function . « ¢ + « o s + &+ « & + =

TRANSIENT BEAM LOADING . . ¢« ¢ o o ¢ = « & = « » = - =

7.1 Transient Response of a Resonant Cavity . . « . .

7.2 Trensient Variation of Cavity Voltage and
Reflected Power Between Bunches . . . . . ..

7.3 ‘fransient Beam Loading in Traveling-Wave Linacs .

BEAM

P e 3 & e a4 e 8w = m e s e s =
8.1 ( "M”hBeamBreakup........o--o--

8.2 Cumulative Beam Breakup . . . « ¢ o ¢« « & ¢ ¢ o

IMPEDANCES AND WAKES . o o + ¢ « & o 9 2 v o o s o o o

9.1 1Longitudinal Impedance Function and Wake
Potentdal) . 2 v 4 ¢ « &« ¢ 4 o s & b o 4 2 u o =
9.2 Transform Relatfons . . . « + « « o = = & « & s+ =

R P N

O~

23
23
24
28

28
30
32
34

35
35
38
40
41
44
46
46
48
31
53

33
55

¥

57
57



-ty

9.3 Properties of the Impedance Function . . . . . . . 60
9.4 Application to Resonmant Mades . . , .+ « « + « + 64
9.5 The Transverse Wake ., . . ., . e 4 n e e e e s e 68
9.6 The Quadrupole Wake . . . . . . . . . ... ... 72
9.7 Scaling of the Wake with Frequency and
Structure Parameter . . . . . ¢ . . . 4 - a0 o4 . 73
10, SOME APPLICATIONS OF WAKE POTENTIALS . . . . & « + + & T4
10.1 Single Bunch Acceleration . . . .. . .. .. .. 74
10.2 Single Bunch Beam Loading for a
Gaussian Bunch . . . s s e s e s « 17
10.3 Two-Particle Model for Transverse
Emittance Growth . . . + e e e e et e e B4
10.4 Strong Head-Tail Inatability
in a Storage Ring .- . et e e e e 87
10.5 The Long Range Wake and Hultibuuch
Acceleration . ., . . . . ... 44 44 .. s 88
APPENDICES
A, Beam loading in Constant Gradient
Structures , . e e e e e e »
B. ©Non-Synchronous Beam Loading v e e e e s e e e s
ACKNOWLEDGEMENTS . . « + v v v 4 s o 0 e o o u v v v &9
REFERENCES . . . 4 & © & 4 o o o e o s o o « s s 2 o 8"
LIST OF SYMBOLS . . ¢ & 4 ¢« &t 4 o o o o o o o o + « « « ({g‘

3 SQQ. -30(,0 -?7-'7\ ;v\ A p % w‘ISm A-ijlt,b/{ tn
g{ f}uyi\ gjey~0~)’\ ﬁ4\t/lnvruA}-R- 55(31~4L&4.-L‘ ’r;|/ ‘J\jlzo
-

Colidug"s Chaptn 7 of wﬁwﬁffhg
M‘W‘*’W%'/ A G"vaho\l- 6—(‘.{4\']\0‘{ rand Ve ¢
eds., Ar*l’eulp House | @_)os'hm t494
Ago s 2D Foalles and P& ‘”"5“‘«

o-elt EV\,J\ Cﬁ‘h
Qo Evect Bosw Locding vy
pﬁ{ NLj DQAVWQC\ 5’#\’\:0‘} ” NLC - Nota #(

160y
Su;c, Decownben

Rmp.\'



HIGH ENERGY ELECTRON LINACS: APPLICATION TO
STORAGE RING RF SYSTEMS AND LINEAR COLLIDERS

Perry B. Wilson
Stanford Linear Accelerator Center
Stanford University, Stamford, California 95305

1. INTRODUCTION

The theory of electron linacs will be developed with two particu-
lar applications in mind: the use of standing-wave linacs as rf ac-
celerating structures in high energy electron-positron sterage rings,
and the application of traveling-wave linacs to
the acceleration of intense single bunches in very high gradient
linear colliders., These topics are of special interest for the future
of high energy particle accelerators, and in addition they are not
covered in a coherent manner in the existing literatvre. Excellent
and complete references to the theory of conventional high energy
traveling-wave linacs, such as the SLAC two-mile accelerator, do of
course exist. In Refs. 1 and 2, for exawple, topics such as structure
design, particle dynamics and beam break-up in travellng-wave electron
linacs are given extensive treatment. Although we cannot hope to
duplicate the completeness of the coverage in these references, some
of the mein features of the theory will be summarized here. FHopefully
these lecture notes will complement this previous work, especially in
the area of beam loading by single bunches of charge.

Because of the broad scope of the materisl being covered, the
treatment of some toples {for example, standing-wave rf structure
design) must remain superficial. However, an attempt will be wmade to
present a thorough and comprehensive treatment of the gemeral problem
of beam-structure interactions; that is, the problem of beam loading
in all of its many manifestations. The interaction of intense single
bunches with longitudinal and transverse modes in thd rf strucrure
sets fundamental limits on the performance of both linear colliders
and elactron storage rings, and will be given particular attention.

It is in prianciple possible to solve many beam-structure inter-
action problems by simply setting up an appropriate differential
equation and turning the mathematical crank. 1In these notes we prefer
to teke a more visual approach, using the principle of superposition
and the geometry of phasor diagrams to analyze vather complex multiple-
bunch beam leoading problems under transient conditlons. 1In the case
of single~bunch beam loading, we are able to bypass some messy details
in the direct solution of Maxwell's equatioms by a careful applicatiom
of basic principles such as superposition, conservation of energy and
causality. These concepts are useful not only as aids in developing
physical thinking; they also provide techniques for solving important
real-world problems in a relatively simple way.

The initial charge for this particular set of lectures was to
cover both linacs and rf power sources. We have already chosen to
limit the discussion of linacs to high energy electron linacs, and in
fact to only a portion of this subject area. The theory and design



of r{ power sources, usually klystrons, for conventional c¢w and pulsed
electron linacs is a separable subject that will not be treated here.
The reader 1s referred to Refs. 3 and 4 for an introduction to kIy-
streon theory and design. Ref, 46 gives a recent (1991) survey of the
status of R&D on high peak power klystrons for linear colliders. Also,
in recent years rf pulse compression has assumed increasing importance
as a means of boosting the peak power of existing sources. The SLED
pulse compression scheme is described in Ref. 47, binary rf pulse
compression is described in Ref. 48, and the SLED-1I method in Ref. 49.

2. BASIC CONCEPTS

2.1 Phasors

Fields and voltages in standing-wave rf structures are taken to
be complex (phasor) quantities, written with a tilde. For example,

Veyedt (2.1)
where V = |?| 1s the absolute value of V., Here V might represent the
voltage gain for a particle crossing a cavity driven at rf angular
frequency w. In this case eV 1s the maximum energy that can be gained
by a non-perturbing charge traversing the cavity; that is, the charge
16 assumed to be sufficiently small po that the beam—induced voltage
is negligible compared to the rf driving voltage. The trajectory of
a particle or bunch of particles is8 wusually taken to be the axis of
symmetry of a cavity or structure, except when considering dipole
(deflecting) modes. In that case the trajectory is assumed tp be
digplaced from, but parallel to, the axis. The real part of V
Re V = V cos8 where 6 = tan~l{Im V/Re V], gives the energy gain for a
charge crossing the cavity or structure at an arbitrary phase with
tespect to the cavity field. The position of a charge at time t can
be written £ = z, + ct. The position z, at time t = O for a point
charge which receives the maximum possible energy gain defines a
reference position or plane inside the cavity. It 1is often useful to
take this reference plane as the origin for the axial coordinate z,
For problems concerning resonant cavities driven by an external
generator, it ig useful to view the phasor in a frame of reference
rotating at the driving frequency w. Thus if the phase of the rf
voltage 1s varying with time as 0 = wt + 8,, the phasor is writtea in
this reference frame as

Vaeve ° . (2.2)

The importance of choosing a reference frame determined by the
external generator will become apparent in the discussion of the
longitudinal etability of the beam &n a storage ring against phase
oscillations.

Phasors are ‘manipulated using the usual rules of complex alge-
bra. In particular, it {g useful to recall that multiplying a phasor
by e3¥ rotates the phasor through angle ¢ without changing its
magnitude,



2.2 The "Big Four™ Basic Principles

Four basic principles that will often be of use in the develop-
ment to follow are: superposition, conservation of energy, ortho-
gonality of modes and causality. Superposition will be called upon
most frequently. As & typical example, consider a standing-wave
resonant cavity driven by an external rf generator and loaded by a
beam current. The total cavity voltage V¢ can be considered to be
the superposition of a voltage component 58 produced by the rf
generator acting alone (beam current off), and a component Vi due to
the bean {generator off}):

Vc - VB + Vb . (2.3)

Conservation of energy will be called upon to establish some
basic theorems concerning beam loading. Conservation of total energy
is straightforward. If a charge q with energy U; enters a cavity
with no infitial stored energy, and if after the charge leaves the
cavity the stored energy is W., then clearly

o=y ~u (2.4)

vhere Us is the final energy of the charge. Conservation of energy
can also be applied to differentisl energy exchanges. Suppose, for
example, that & charge g at position z = 2z’ moves a distance dz' along
a trajectory {taken to be the z coordinate axis) such that the
electric field for & given mode has a z component Ez{z'). The change
in the energy stored in the mode is then

W = -qE (z') dz’ . (2.5)

The field at position T for the moge in qqgstion is related to the
energy W stored in the mode by E2(T) = f£(r)W, where the function
£f(T) depends on the cavity geometry. Thus we have on the cavity axis

f(z) dW = 2 Ez(z) dEz . {2.6)

From these two expressioms, together with the fact that time Iis
related to the position of the charge through ct' = z', an expression
is obtained for dE, as a function of z at time t'. Treated as a
phasor, the field element dE, at some later time t will be described
by

N - jo (t-1t")

d4E (z,t) = dE _(z,t')e @ (2.7

where w, 18 the resonant frequency of the mode. Using the concept of
differential superposition, the total beam-induced cavity field at
any position z and time t can now be obtained by addiag up all the
differential field elements induced at previous times through an
integration which takes proper account of'the phase relationships




between elements. But as will be seen later, one more ingredient —
causality — must be added to complete the picture.

Ioplicit in the foregoing analysis is the concept of norual
wodes, It is assumed that each mode in the cavity can be treated
independently in computing the fields induced by a charge crossing
the cavity. The total stored energy is taken as the sum of the
energies in the separate modes. The total ffeld is the vector
(phasor) sum of al) the individusl mode fields at any instant,

Causality is a somewvhat more subtle principle thaet must alsc be
taken into account in computing the field induced by a charge passing
through an rf cavity or structure. By causelity we mean simply that
there can be no disturbance ahead of a charge moving at the velocity
of light. Thue, in a mode analysis of the growth of the beam-
induced field, the field must vanish shead of the movimg charge for
each mode. As we will see in more detafl in Sec. 9.3, this is ac-
complished 1f the charge also induces imaginary differential field
components in addition to the real field components as obtained from
the energy interchange described by Eqse. (2.5) and (2.6). These
ifmaginary components, which lie at 3900 with respect to the real com-
ponent at time t = t*, must have an amplitude distribution a5 a func-
tion of frequency such that they add up, when integrated over
frequency, to cancel the real induced components ahesd of the charge
{t < t') and to double the real components behind the charge (¢t > t')

Real high energy electrons and positrons move at velocities
which are close to, but not exactly equal to, the velocity of light.
Subtle questions arise as to how close is close enough so that the
v = ¢ approximation 1s suffictently accurate in any given situation.
There will not be space here to go fnto this problem in detail; in
fact, some aspects of the causality problem are still controversial
and have not yet been adequately resolved to everyone's satisfaction.
For our purposes here, ve will assume that csusality is absolute for
point charges moving throuvgh rf cavities and traveling-wave structure

2.3 Differential Superposition

Because of the importance of the concept of differential super-
position, let us use it here to compute the answer to a practical
question: what is the voltage induced in a cavity by a Gaussian
charge distributfon with total charge q, if the voltage induced by a
point charge q is V,? A charge element dq will induce & valtage
dv = V,(dqfq). Assume that the charge element dq crosses the cavity
reference plane at time ty. At some other time t the voltage inducec
by this charge element will be

v juo(t- to)
e

o ._0- -
av = p dq(to) . {2.8)
For a Gaussian charge distribution
-ti!Zcz
= - 4 ’ 2.9
dq(to) It Yt e de (2.9)

2no



and therefore

- Vo jwot -ti!Zoz
dv = e e (cosmoto-j sinmoto)dto - (2.10)

Y2xg

We invoke differential superposition and integrate over all arrival
times to, noting that the integral of the second term in the preceding
expression vanishes by symmetry. The result is

- jmot -w:ozf2
Ve Vo e e ’ (2.11)
Jugt
where V, e is just the voltage Induced by a peint charge. Thus
for a Gaussian charge distribution,

-m202/2
V=V e ° ] (2.12)

Since bunch distributiong in storage rings and linaecs are usually
Gaussian, or nearly so, the result given by Eq. (2.12) is of broad
applicability.

3. STANDING WAVE LINACS

3.1 Shunt Impedance

The shunt impedance R, for an rf cavity 1s a figure of merit
which relates the accelerating voltage V to the pguer P dissipated in
the cavity walls through the expression V = (R,P)“. For a mode with
stored energy W, both the power dissipation P = wW/Q and ghe longi-
tudinal electric field on the cavity axis E,(z) = [£(z)W]* are
specified in terms of the geometry-dependent factors Q and f(z).
Assuming that these factors are known, it remains to compute V in
terms of E,(z).

Assume that the path of an electron (positron) lies along the z
coordinate in an arbitrary standing wave structure driven by an
external generator at frequency w. The z component of the electric
field along the axis is then

E_(z,t) = E(2) ot (3.1

Assume that a positive E, produces an accelerating force on the
particle in question, and that the particle velocity 18 ve= ¢. The
particle position at time t is

z, =c(t-t) 3.2)

where zg = 0 at t = t,. The accelerating field seen in a reference
frame moving with the particle (the co-moving frame) is then



jm{t +z/e)
Ez(cmf) = E{z) =& ©

(3.3

Jut
‘m E(z) e ° ejkz

where k = w/c. The voltage gained by the particle in moving from

z = 27 to z = z3 (23 and z; would normally be at the cavity entrance
and exit) is .

Z2 ot %2
v -] Ez(cmf)dz = e 0] E(z) ejkzdz
z z

1 l
{(3.4)
Jot
=e °fc+i8) .
Here C and'S are the cosine and gine integrals
22 _
C= f E(z} cos kz dz {3.5a)
zl ’
%2
S -f E{z) sin kz dz - {3.5b)
z
1
We then have
- jlut +8)
V=ve ¢ . (3.6)
where
%2
v=|V] =~ f E(2) e-"k‘dzl - 2+ sHE (3.7a
|
-1
g = tan (S/C) . {(3.7b

If E(z) is symmetric about a point on the z axis, the S integral in
Eq. (3.5b) will vanish if the symmetry point is chosen to be the
origin z = Q. Even if the structure is not symmetric, we can make
the transformations

wt' = ot + @
[+ ] o

{3.8)
kz' = kz - O .



vhere z' = c(t-ty) is the position of the charge with respect to the
wt

new coordinate origin. Then V=ve ©andthe point z' = 0 defines

the reference plane for the cavity. The shunt impedance 15 now
defined as

2
v
Ra =3 {3.9)
where
P = %—R Bsz . (3.10)
5
cavity
durface
Here
R, = (wu/20)* = xz_(8/3) (3.11)

is the surface resistance, y the permeability, o the dc conductivity,
8 the skin depth, Z, the impedance of free space and ) = 2ac/u.

The above definition of shunt impedance, Rz, 18 the so-called
accelerator definition, which is used in most of the modern litera-
ture on linac structure design. The shunt impedance is, however,
occasionally defined with a factor of 2 in the denominator as R =
VZ/2P. The reader should be aware of this potential source of con-
fusion.

3.2 Transit-Time Factor

An "uncorrected” shunt impedance R, 1s sometimes defined in terms
of a voltage V,,, the integral of the electric fielu along the cavity
axis:

R =
u

(3.12a)

”l:‘k

v~ [E@ @z . | (3.12b)

The shunt impedance defined in this way does not take into account

the variation in the fileld during the time it takes a particle to
cross an accelerating gap or pass through an rf cavity; that is, the
effect of transit time 1s ignored. To obtain the true shunt impedance,
a transit-time factor T is applied to the uncorrected shunt impedance
so that®

R - aurz , (3.13a)

*
In the literature Eq. (3.13) 1s often written Zgy = zT2, 1In these
notes we reserve Z for the rf impedance.




where -

le(z} ejkzdz
fE(z) dz

Problem 3.1: Show that the transit-time factor for s gap
of length L with a uvniform field E; along the particle
trajectory is

v
“v " . €3.13b)
u

Te !iﬂ§§§£31 \ (3.14)

where 8 = kL = 25xL/X ia the transgit angle, Use the defini-
tion in Eq. (3.13b) and compute the transit-time factor in

two ways: with the origin z = 0 at the center of the gap,

and with the origin such that the gap extends from 2z = 0 to
z =1,

The transit-time factor i{s introduced here for historical reason:
and because it is often found in the Iiterature. Since the voltage V
as given by Eq. (3.7a) has to be computed in any case, the atteative
reader might wonder why the shunt impedance is not computed directly
using Eq. (3.9), rather than through the circular process of Egs.
(3.12a), (3.132) and (3.13b). Indeed, the transit-time factor does m
need to be calculated to obtain the shunt impedance, and it is some-
times even misleading. Consider, for example, a cavity of length L
operating in a mode such that the axial field is

E{z,t) = Eo cos kz cos wt . (3.15)

If the cavity is exactly one-half wavelength long, then kL =~ ¥ and

L
\J’-Efcoskzdz-o
u 00

R =0 .
u

(3.16)

The axial field for such a cavity is shown by the solid curves in
Fig. 3.1 at time ¢t = 0 and t = L/c. (Can this cavity be a cylindric:
“pillbox" cavity of finite radius? Why not?) On the other hand, the
field 4in a co-moving frame (kz = wt) for a particle which enters the
cavity at t = 0 variles as

Eenf) = E_ cosikz . (3.17



£, The field seen in such a frame mov-
ing with a relativistic particle is
ghown by the dashed lime im Fig. 3.1.
The voltage gained by the particle
is

H L
V=E f cos’kz dz = EL/2
o o]

0
{3.18}
-&s
(2 L) azaThe and
Fig. 3.1. Axial electric field T=VY/V «=
in a TMp;1-mode cavity one-half v . (3.19)

free-space wavelength long; 2

(a) at t = 0, (b) at t = L/c aud Rh = RuT « (0) (=) .
{c) in a co-moving frame for a

particle wvith v= c.

In this case, it is meaningless to define the shunt impedance through
Eq. (3.132). Although the concept of a transit-time factor breaks dowm
in this case, it is sometimes helpful in giving a better physical
feeling for the process of optimizing the shunt impedance of acceler-
ating cavities {see Sec. 3.4).

3.3 Bunch Form Factor

Real bunches in real accelerators and storage rings are sot point
bunches, but extend over some finite length, It is clear for this
case that not all particles in the bunch can achieve the maximum
energy gain, but that some particles must cross the cavity reference
plane earlier or later than the time for peak gain. Suppose the cur-
rent in the bunch flowing past a fixed point is I{t}, and that the
total charge in the bunch 1s

f I()de = q . (3.20)

Suppose also that a reference plane is again chosen such that the
maximum voltage V, is gained by a particle which crosses the plane
at t = 0. Then the average voltage gained by all the charge elements
dq = I(t}dt is

f v ej“’t « 1{t)dt
- 4]

)

V « - vo(C' +18%) (_3.21)

a -
f 1(t)dt

where C' and S' are the cosine and sine integrals
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c' =2 I(0) coswt dt (3.22a)
s --:-I I(t) sinwt dt . (3.22b)

The magnitude of the average voltage gain is

LA |va| =F, . (3.23)
where F igs the bunch form factor,
Fe(C'24 5212 (3.24)

For a Gaussian bunch with rms bunch length ¢_ 2nd for a uniform bunch

of time length t; we have t
1 22
-7 0,
F(Gaussian) = & (3.2%a)
s8in (%-utb)
F(rectangular) = 1 . {3.25b)
7Y%

For F = 0.9, we have 0,/A = 0.073 and £,/) = 0.25, vhere ¢, = co, and
23, = ctp. Note that the forn factor for the case of 2 Gaussian bunch
is the same as obtained previously in Sec, 2.3, where the voltage
induced in a cavity by such a bunch was calculated using the principle
of differential superposition.

3.4 Standing-Wave Structures

The longitudinal and transverse modes In a chain of ¢ylindrical
“oillbox™ cavities provide an approximate yet often surprisingly
acturate model for the accelerating and deflecting fields in more
realistic accelerating structures. The properties of a single cylin-
drical resonator are simple to treat analytically, and will serve as
8 starting point ‘for a discussion of standing-wave accelerating
structures.

Consider a pillbox cavity with radius b and axial length L. The
axial electric and azimuthal magnetic field components for the lowest-
order accelerating mode (THOIO mode) are

E =E J (kr) coswt
z [+ I+ ]

(3.26)
E

o
H’ = - E; Jl(kr} sinut .

where Z, = 377 ohms, k = 25/) = pp3/b and py; = 2.405 is the first
root of J,. The stored energy and power dissipation are computed to
be
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£
0
u--z—jv‘ dv-ichEJ (pgy)

{3.27)
Rs f 2 'bksgi 2
P= 5 H’ dA = (b+1L) JI(POI) .
A Z
Q
The accelerator parameters of interest are
G
P e D (3.28a)
P Rs
2
2 G, T
T v 2
) w“L- Y . Ul (3.28b)
2
2 G,G6,T
ARG D SN,
TP & w . (3.28c)

Here ¥ £ R,/L 15 the shunt impedance per unit length, Ry = (muc,.*"'lar};i
is the surface resistance, T i{s the transit angle factor and Gy and
G, are two constants, independent of frequency and cavity material,
given by

P
01 { L L
6, = & (m) z_ = 453 (HL) ohms (3.29a)
4z
G, = ...i_._._e_._ = 967 ohms (3.29b)
(p )
Po1 %1(Pgy
. Eio {=L/)
T _»___l(“Lm . (3.29¢)

Problem 3.2: Show that the shunt impedance per unit
length r for a pillbox cavity is maximum at L/b = 0.75,
and that the total shunt impedance rl Is maximum at

L/b = 1.15. What are the corresponding values of r, vl
end Q in these tuwo cases for a room-temperature copper
cavity at S00 MH2?

Designers of accelerating structures have been working for many
years to increase the shunt impedance as much as possible beyond that
which can be obtained from a chain of simple pillbox cavities.
Initially this was accomplished by & combination of intuition and
laboricus rf measurements in the laboratory. In more recent years,




- 12 =

powerful computer programs fave greatly facilitaced the process of
optimizing the design of stinding-wave accelerating structures. The
first of these codes, LALA,* was developed at the los Alamos Scienti-
fic Laboratory to aid in the design of structures for high-energ
proton linacs. A more recent and more powerful code, SUPERFISH," is
now available at many accelerator laboratorles. SUPERFISH can calcu-
late higher-order cavity modes as well as the lowest frequency ac-
celerating mode, although both programs ere limited to axidlly-
symzetric modes in axially—symmetric structures. However, a new
program, ULTRAFISB is nov under development which can compute the
frequencies and fields of wrdes which vary as cos m¢ (where ¢ is the
aximuthal angle and m > 0} in axially-symmetric structures. Modes
with m > 8 can cauvse deflec:iion and defocusing of bunches and trains
of bunches in an accelerariag structure, leading to ewittance growth
and to beam breakup.

Pigure 3.2 illustrates some of
the factors entering into the design

8 of a single cell of 2 standing-wave
. accelerating structure. The wmost
a characteristic features are the go-
3 q ' called "nose cones,” as shown at A.
- = - ¢ For a given stored emergy, the nose

% cones help to concentrate the elect-
tic field in the region of the bean,
v thus increasing the factor R,/Q =
veer .. VZ/uWw, The gap length g between
' nose cones is adjusted for maximum
Fig. 3.2. Single Cell of = Ra/Q. As g is decreased, the transit
s-node accelerating structuce. time factor T increases, but the
integral of the axial field,
Eq. (3.12b), decreases for a given stored energy. After the R,/Q
factor has been optimized b shaping the nose cones and adjusting the
gap length, the shunt impedznce can be increased further by maximiz-
ing the Q. The Q is controlled largely by losses at the outer
surfaces of the cavity, shown at B in Fig. 3.2, vhere the magnetic
field 1s greatest. The higiest Q is obtained if this part of the
cavity surface can be made zpproximately spherical in shape. This,
however, increases the complexity in manufacturing the cavity. It is
often a reasonable trade-off to keep a cylindrical outer boundary
with a consequent 10% or sc reduction in shunt impedance.
1t 15 usually awkward to feed each cavity separately with rf in
a long linac structure. Thus a2 number of cavities, or cells, are
usually coupled together tc form a coupled-cavity struetyre with a
single 1f feed point. Sucl a structure is shown schematically in
Fig. 3.3. A structure consisting of N coupled cells (resonators) wil!
have N normal modes, as sheown in the dispersion diasgrem of Fig. 3.4.
The frequencies of the nornzl modes can be obtained by solving an
equivalent circuie®s? consisting of a chain of coupled LRC resonators
as shown in Fig. 3.5. For a structure with weak magnetic cell-to-cell
coupling and vanishingly small losses, the normal mode frequencies ar
given by
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Fig. 3.3. Diagram showing the important features
of 2 five-cell w-mode structure with magpetic

field coupling.
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PHASE SHIFT PER CELL

[ 1)

Fig. 3.4. Dispersion diagram for
a five—cell structure with "flat"

r-mode.

2= IRERFE

Fig. 3.5. Equivalent circuit representation for a
chain of coupled resonant cavities. For a flat w-mode,
L' = L + 2L_ and there is thea no mode with zero phase

shift per cell,
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i
o

wlm) = ~ uo(l +‘§\cos mﬂfﬂ) (3.30)

{1 - B cos mifﬂ)g

where B ig the bandwidth of the structure, w is the mode number
{(m=1, 2, -- N for a structure with full-length end cells)} and mx/N
15 the phase shift per period.

RF structures for storage rings usually operate in the = mode
{(m = N). In order to obtaim a "flat" x-mode (field amplirude equal
in all N cells) in a structure with full-length end cells, the two
end cells must be tuned lower in frequency (for magnetic-field coupl-
ing) by an amount Sw/w = B/2. The field amplitude in the nth cell
for the mth normal mode iz for this case

En - A sin [ax{2n ~ 1) /2N] N (3.31)

where n = 1, 2, —— N.

Problem 3.3: Drav the equivalent curcuit ‘ot a chain of N
coupled resonators with half-length end cells (metal
boundaries at the planes of symmetry inm each end cell).
Show that the normal-mode frequencies are given by w(m) =
woll-B cos mn/(N - 1) 3% and the corresponding (ield ampli-
tudes by Ep = Ap cos{ms (n-1)/{N-1)1, vheren = 1, 2, —N
and m = 0, 1,-~(N-1). The /2 wmode is obtained for

m = (N-1)/2. Compare the fileid amplitudes E, for this
case with the w/2-mode £fi:1ds given by Eq. (3.31) with o =
N/2.

1t is important to know the sensitivity of the field amplitudes
in the individual cells to errors in tuning, due either to unwanted
perturbations or to the presence of tuners. It is usuvally not
practical to put a remctely-controlled tuner in each cell of a wulti-
cell structure., If, for example, we attempt to adjust the frequency
of a multicell structure with a single tuner in one cell, an error ir
field flatness will be introduced. A mathematically elegant approact
to this problem is given by the application of perturbation theory
the equivalent circuit representation.l? The problem can also be
treated in certain sinple cases by considering the multiple reflec-
tions of a wave traveling on a finite-length chain of coupled
resonators.}! Suppose we have 2 chain of N s-mode cells with both
the rf feed point and a single tuner located in the center cell in a
structure with an odd number of cells. If f{r) is the flatness func
defined as the ratio of the perturbed field amplitude to the unper-—
turbed field along the structure, then the maximum devistion from
flatness 1is given by

Y. ‘“‘1) (“") , (3.32)
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where 8w 1s the change in structure resonant frequency produced by

the tuner, and N = 3, 5, 7 etc., We see that for the % mode the sensi-
tivity of the field flatneas to tuning varies quaedraticaliy with the
pumber of cells, and is fnversely proportional to the bandwidth. A
similar analysis for the n/2 mode shows that the field flatness is
less sensitive to tuning errors. The deviation from flatness varies
as

2 2
&f = -(“—‘%L . (i'-f’-) (3.33)
28 @

where N = 5, 9, 13 etc, As shown in Fig. 3.6a, every other cell in
an unperturbed ¥/2 mode is unexcited for a lossless structure.* The
main effect of a detuning error is to introduce a field in the nomi-
nally unexcited cells. The maximum value of this field is in the two
cells adjacent to the center cell with tuner and is given by

s w AR (%"l) . (3.34)
Y A comparison of Eqs. (3.33)
@ gl
and ¢3.34) with Eq. {3.32) shows
i‘:—’l I\/_' u_ A . the superiority of the %/2 mode

NP Y Py against tuning perturbations.

However, from Fig. 3.6{a) it is
a apparent that the shunt impedance
{6} 32— of the %/2 mode will be poor,

[N UTJ U since every other cavity is un-
=~ — - iniata excited and will not contribute
l/#ﬁhﬁ k/#ﬁxll/ﬂ_ﬁj kfﬂﬁjl to the acceleration of particles.

One solution is to shrink dowm
i) g?]i E;Ei the length of the unexcited cavi-

F\H__a’; lxh__,AJm‘__,z4 ties, as shown in Fig. 3.6(b),

- resulting in a so—called bi-

t/’ﬁ_ﬁhﬁ’lﬁ“ﬁﬁjf’F_“j]"_q‘kj periodic structure., A more ele-
J; -iif; ;1* gant solution is to remove the
unexcited cavities from the beam
B - line entirely, as shown in Fig.
3.6{c). This results in the side-
Fig. 3.6. (a) Simple x/2-mode coupled structure, exploited
structure; {b) bi-periodic struc- extensively at Los Alamos.? The
ture; {(c} side-coupled structure. field on the axis looks like that
for a f-mode, but the structure
has the good stability against perturbations of the n/2 mode.

Recently a new type of standing~wave structure with good shunt impe-
dance and large bandwidth has been under development, particularly at

*
This is true for a structure terminated in half-length end cells
(see problem 3,3). Full-length end cells can alsoc be used if they
are properly detuned.
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Los Alamos,12»13 Thig is the disk and washer (DAW) structure, ghown
schematically 4n Fig. 3.7. The r/Q of this structure is less than
that of a chain ¥-mode cells with nose cones, but the Q is signifi-
cantly higher. The reason for this is that the structure has evolved
from a chain of pillbox cavities
operating in the next higher-
order radial mode. The stored
energy 1s therefore higher for
2 given field on the axis,
leading to a lower r/Q. How-
ever, the current tends to flow
as a8 lossless displacement cur-

rent between the disks and the

washers, rather than as a

physical curremt in the surface
2 at the outer boundary. This

§\ leads to a much greater value
TRTEIETEENEEEESNS for Q. Like the side-coupled

structure, the DAW structure
works In a x~1ike mode, but

<

WA

i

L

?

[/
Av
v
W

NNCRRANAY

Fig. 3.7. Disk and Wzsher (DAW) with resonant coupling in the
structure with sketch of electric region of the digks. The coupl-
field lines. ing is very heavy, giving the

structere a large bandwidth and
great stability against perturbations.

Properties of several structures operating at 350 Miz are com-
pared in the table below: the DAW structure just described, a w-mode
structure proposed for the rf system for the LEP storage ring at
CERN,I“ and for comparigon a chain of pillbox cavities A/2 in length.
The DAW and LEP structures have beam aperture radii of 5 cm, while
the pillbox cavity, of course, has no beam opening. This brings up
a very important poipt: structures should always be compared at the
same value of beam hole radius, since the shunt lwpedance is a
strong function of the size of the beam aperture. Figure 3.8 shows
the variation in shunt impedance per unit length as a function of
beam-hole radius a for a simple disk-loaded structure and for a
shaped s-mode cell with nose cones. Note thar the shunt impedance
for these structures is reduced by a factor of two at a = 0.15 X.

Table 3.1 A Comparison of Several Copper Structures at 350 MHz

r/Q Q r
(3/m) (/m) B
LEP14 635 49, 000% 31% =0.01
pawl3 325 130, 000* 42 =0.5
Pillbox 465 52,000 24 -

*These Q and r values should be reduced by about 153 for a practical
structure to take fnto account losses due to washer supports {(DAW},
coupling slots (LEP), and imperfect surfaces,
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Fig. 3.8, Variatfon in shunt impedance
per unit length as a function of beam-
hole radius for two typical structures.,

3.5 Equivalent Circuit for s Cavity with Beam Loading

Figure 3.9(a) shows the equivalent circuit for an rf source
(usually a klystron) connected to a linac or storage ring cavity by a
transmission 1ine, Since such eguivalent circuits are basic to the
analysis of rf system design and performance, several comments ave in
order, First, note that the rf cavity and the klystron cutput cavity
are represented by resonant LRC circuits, While this circuit repre-
sentatlion may be fntuitively obvicus, a rigorous justification of the
use of lumped-element circuits to model resonant modes in metal
cavities ig given in Ref., 15. Second, note that the beam in the rf
cavity is represented by a current generator. This is an excellent
representation for a relativistic beam, since the velocity of the
particles passing through the cavity is independent of the cavity
voltage. The situation is different for the case of the kiystron
output cavity. The velocities of the electrons as they pass through
the gap of the output cavity cam change in response to the cavity
fields, and as a consequence a current-dependent beam loading admit-
tance, Yp), is needed in the equivalent circult (see, for example,
Ref. 3). Third, note that the transmission line connecting cavity
and klystton has both forward and backward traveling waves, These
waves must satisfy the boundary condition Uﬁ + Vi, = Vi/ny at the
klystron, and a simjilar condition at the cavity. Since there may be
a number of transmission line elements between A and B, each with
reflection, phase shift and possibly loss, the solution of the general
problem can be quite complex.16 For our purposes here, we can simplify
the problem considerably by assuming that there is an isolator or
circulator just before the cavity. Thus, any power which is reflected
from the cavity and which travels back toward the klystron will be
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Fig. 3.9. {(a) Equivalent circuit for a beam-loaded cavity couple
te a klystron; {b) simplified circuit assuming a matched RF sourc

absorbed. The simplified equivalent circuit im Fig. 3.9(b), in whi
the transmission lime impedance G, and the current generator repres
ing the rf source are transformed to the cavity side of the trans-
former representing the transmission-line-to-cavity coupling networ
can now be used. Here 8 is termed the cavity coupling coefficlent.
1f the source generator is off and the cavity is excited internally
by the beam, 8 is then seen to be the ratio of the power radiated
out of the cavity through the coupling loop or aperture to the powe
dissipated in the cavity walls.

in using the simpliffed equivalent circuir, the available powe
from the generator, Pg, is to be f1dentified with the incident klyst
power. Also watch out for factors of twoe. 1In terms of the accelex
definition of shunt impedance introduced previously, and the dc cu:
1,, we have

2
C. " ®
a
z
v
S Y S - 3.3
Pc 2 chc R .
-
—m202f2
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Assuming short bunches {wyo, << 1), we have from Fig. 3.9(b) that the
voltages at resonance produced by the beam and the rf source, 1f each
one acts independently on the circuit, are

v = ___iﬁ___ - _EE@L.. YR P (3.358)
g "G (148 "1+ 2 g -358

A

(R A R S (3.350)

It is instructive to consider the accelerating voltage V,, the power
dissipated the cavity walls P, the efficiency n for the conversion
of generator power into beam power, and the reflected power P, for
the case of a linac operating on resonance and in phase {bunches
receive maximum acceleration such tgat Va = Vo). In terms of a beam-
loading parameter K = (I5/2)(Ra/Pg)%, these quantities are:

i} 2/8 1 8 '
Vs Jﬁal’g {—-—-—-1 + B (1 - _/g)} ﬁ_{al’c {3.36&)
I Vv
o a 278 X
- = 2 X1 - — {3.36b)
a 7, 146 [ ( ’“ﬁ)]

P [-1) -2x/EY
Tg 8+ 1)?

. (3.36c}

Problem 3.4: Show that Eq. (3.36c) follows from conserva-
tion of energy: P_=F - nP -P .
- . r g [4 ¢

The important feature of Eq. {3.36a) is that the accelerating voltage
decreases 1inearly with increasing current. These “load lines" are
shown in Fig. 3.10 for various values of B. TFor a given beam cur-
rent, the maximum accelerating voltage is determined by the condition
aVy/3B = 0 at Ky = (B-1)/{2/8). The conversion efficiency, shown in
Fig. 3.11 with 8 as a parameter, is seen to vary parabolically as a
function of beam current, reaching a maximum at Ky = YB/2. The beam
voltage is then one-half of the voltage at zero current. From Eq.
(3.36c), note that the condition for zero reflected power is given by
K = (8-1)/(2/8), but that this is not the condition for optimum ef-
ficiency as a function of beam current.

Problem 3.5: What is the condition for optimum efficiency
at a fixed current as a function of B? Why is this dif-
ferent than the condition for maximum efficiency at fixed

B as a function of beam current? What would a contour plot
showing lines of constant efficiency in the K - B plane
look 1ike? (See Ref. 16a.} Show also that for P, = 0 the
coupling coefficient is B = 1 + Py,/P;, and Py = 8P..
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Fig. 3.10. Formalized energy gain as a function of the
beam-loading parameter for various values of the coupl-
ing coefficient.
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Fig. 3.11. Conversion efficiency as a function of the
beam-loading parameter for various values of the coupl-
ing coefficient.

We next consider beam loading in a standing-wave structure whi
igs tuned to be off resonance. The admittance of thg parallel reson
circuit representing the cavity without coupling (¥, in Fig. 3.9(d)

is
o w mo .
e " G [1 * 3% (‘.:; - ?)] - Q.3

vhere w, = 1//LC 1s the resonant frequency, W = 1/2 Cvg is the stol

energy, and Q, = w W/P_ = woC/Gc. We 1imit the following discussic
to the case of a h?gh 6 cavity such that § £ (u-w,)fuw, << 1. Iaty
ducing &, Eq. (3.37) becomes
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T =6 (1+320Q8 . (3.38)

The total admittance seen by the beam must include the loading by the
coupled adwittance of the input transmission line. This external
admittance is taken into account by adding 8G, to the preceding ex—
pression to obtain the loaded cavity impedance

'5-..1_-___*____30 (3.39)
L § 1+320¢8 '
where R, = £cc(1+-a)]‘1 is the loaded impedance at resonance and
QL = Qo7(14-6) is the loaded Q.

We now define a quantity ¢, termed the tuning angle for reasons
that will be clear shortly, by

tan § £ -2 QL6 . {3.40)

A slmple manipulation of Eq. (3.39) gives

EL - Ro(coszt)(li-j tany) = Ro cosy oa-j'i'r . {3.41)

In terms of the beam-loading voltage and the generator voltage at
resonance, given by Eqs. (3.35), we have

Vg 15 ZL vgr cosy e (3.423a)
q‘ o EL =V, cos¥ L {3.42b)
mﬁi}i
e A
7 cos\h} hY
P \
( L 4
—= Re ('\791
\ Vg {
v !
\ 7
. s
~ 4
~a - 11-814
— - ETITAND

Fig. 3.12. Diagram showing how both generator and
beam-loading voltages vary in the complex plane as
a function of the tuning angle.
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Thus, as the tuning angle increases from zero, the magnitudes of bot
Ve and Vp decrease as cosy, and the phases rotate through angle ¢,
This is illustrated in Fig., 3.12. Note especially that the tip of
the phasor Vs ar Vh traces out a circle in the complex plane as the
tuning angle ¢ is varied.

We are now ready to consider the superposition of the generator
and beam-loading voltages to obtain the net cavity voltage. For con
venience, the reference phase {positive real axis) 1is taken in the
direction of -i. The accelerating voltage V, is then simply the
real component of the net cavity voltage. The superposition Vc -

Vp + V in this reference frame ig shown in Fig. 3.13. UNote that tv
agditionai important angles have been defined: the phase angle §
between Vc and -1b, and the angle § between ig and -1;,. In storage
ring applications, ¢ 1s termed the synchronous phase angle. In a
linac ¢ is the angle between the current bunches and the creet of ti
rf voltage wave, The angle § is under external control in an rf
linac; it can be adjusted by means of a phase shifter in the input
drive to a klystron feeding a cavity or group of cavities. 1In a
storage ring 8 is determined 1f the beam-current (or Vpp), the cavi
voltage V., the voltage gain per turn V, 8nd the tuning angle y are
specified.

Fig. 3.13. Diagram showing the vector addi-
tion of generator and beam-loading voltages
in an RF cavity,

A thorough understanding of the vector diagram in Fig. 3.13 is
the key to steady-state beam loading calculations, The diagram
wiil be exploited in the following section to compute, as an exampl
the optimum tuning and coupling for a storage-ring rf eavity. Befc
proceeding, however, we should récall vhat is meant by “steady-stat
First of all, it is assumed that both the beam current and the rf
generator have been turned on for a time which is lorg compared to
the cavity filling time, which is given by

29 29

bl = - 30"‘:
f w w (1+8) (
o [+]

T

If the beam current is turned on at t = 0, then for t less than
several filling times the cavity flelds are in a transient state.



- 23 -

However, another type of transient behavior is also possible. Suppose
the bunches in either a linac or storage ring are spaced apart by time
T,. In this section we have implicitly assumed that ail bunches con-
tain equal charge, and that Ty << Tg. The case vhere Ty 1s comparable
to T¢ will be dealt with in a later section.

4. APPLICATION TO STORAGE RING RF SYSTEMS

4.1 Beam Loading in Storage Ring RF Systems

In high energy electron linacs, buncheg are accelerated at the
peak of the rf voltage wave in order to achieve the maximum possible
energy gain. On the other hand, in an electron-positron storage ring
it is necessary to operate off the crest of the accelerating voltage
wavefornm in order to insure stability against phase osciliations, and
to contain the energy fiuctuations due to the quentum nature of syn-—
chrotron radistion. The rf cavities nust as a consequence be detuned
off resonance in order to minimize the reflected power and the
required generator power.

Let us compute firgt the generator power required if the cavity
shunt impedance R,, the coupling coefficient 8§, the beam current I,
the cavity tuning angle #, the accelerating voltage Vo = V., cosd,
and the desired synchronous phasé angle ¢ are specified. From
Fig. 3.13,

) .
v, - Vc cosd = vgr cosy cos{8+y) - Vyr €08 v {4.1a)
\’c sing = vgr cosy sin{8+ ¢} - vbr cosy siny . (4.1b)

Eliminate (6 + ¢) from these two equations, and rewrite the result
using Egqs. (3.35) to obtain

2
v 2 I R 2
P =-S. (1+g) 1 [cos¢ + c &8 c082¢]
& Ra 48 coszio Vc(l +8)
(4.2}
Io Ra 2
+ [simp + ch(l"‘ﬁ) cosy sinﬂl] .

By choosing the tuning angle ¥ correctly, we can make the cavity
voltage look "real™; that is, just as is_the case at resonance with
no beam current, the net cavity voltage V. wust have the same phase
as ip. From Fig. 3.13 this implies that

0 =¢ . (4.3)

Using the law of sines on the vector triangle in Fig. 3.13, we have
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Ybr % sin(e-e-y) _ _ siny )
v sind sin¢
c
- IO Rﬂ
tacy = W sing . (4.4)

Problem 4.1: Show that the condition in Eq. (4.4) 1s also
obtained by minimizing the generator power with respect to
the tuning aogle; that is, take 3P8f3& = 0 using Eq. (4.2).

Using Eq. (4.4) im Eq. {4.2), the generator power at optimum
tuning is

2 V. 4V _ cos¢)
p = S1¥B)_ ¢ bY . .5

£ 48 R,

By differentiating this expression with respect to 8 (don't forget
that Vi is also a function of B), the minimum generator power at
8 = By is found to be

4

I R cosd P
o a b (4.6a)
B°'1+“—'v——‘—*"1+!’
c c
P -vis"-r =P +PF (4.6b)
go R, fo c b

Here Pp = = I V. cos¢ is the power transferred to the beam, and

P, = V2!Ra gs the pouer dissi{pated in the cavity walls. By conserva-
tion of energy, the reflected power is Pr = Pg - Pc - Pp. From the
above expression for P,,, we see that the reflected power is zero
when both ¥ and B are set to their optimum values. At optimum coupl-
ing, Eq. (4.4) becomes

By =

1
By t 1”TM ¢ %.n

tan =
4,0

4.2 Phage Stabilitv =nd Robinson Damping

As shown ia E, Courant's lecture (see also Ref, 17, Ch.3), ther
is an effective restoring force in a storage ring for deviatioos 1in

the energy or phase of & particle away from the synchrencus energy o
phase. A non-synchronous particle undergoes harmonic oscillations a
the syachrotron frequency given by (for small anplitude oscillations’

aldva/dtl
R e . (4.8)
Cc Q
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Here a is the momentum compaction factor, Up = eV, 1s the particle
energy, Ty is the revolution time and dV, 1s the change in accelerat-
ing voltage per turn for a particle which is delayed by time dt per
turn with respect to a synchronous particle. Above transition
(always the case for high-energy electron storage rings), a particle
with too much energy will follow a longer path compared to a synchro-
nous particle, and will therefore return to a given point in the ring
at a later time after one revolution. ¥For stability, such s particle
must gein less energy than a synchronous particle, or dVa/dt < 0. In
the absence of beam loading, this condition leads to

dv

Tﬁ? = -y Vc ging < D . {4.9)

or ¢ » 0 for stability. That is, the synchropous phase is on the
time-falling side of the rf cavity voltage. However, at high cur-
rents where the beam-induced voltage compenent is large, the situa~
tion is more complicated. Ae the arrival time varies due to phase
oscillations, the beam-induced voltage component moves with the bunch -
and hence cannot contribute to phase stability; only the generator
voltage component can provide an effective restoring force against
phase perturbations. From Fig. 3.13, recalling that the phasors
rotate counterclockwise with angular velocity w, the condition

dvgfdt < O implies

0« (B+y) <= . (4.10)

An equivalent way to obtain this same condition is to compute dva{de
directly from Eq. (4.1a), recogrizing that t must be measured by an
external clock which is independent of phase oscillations, and that
the phase 6 of the external rf generator ig provides such & clock.

Problem 4.2: Draw a phasor diagram, similar to that in
Fig. 3.13, with a large beam voltage component, with

$ > 0 and with (84 ¢) < 0. Show from the geometry of
the figure that a positive At In arrival time results in
a positive AV,.

From Eq. (4.1b), using the condition in Eq. (4.10) that sia(@+¢)
is positive, we obtain

ZVC sing + V, _sin2¢ > 0 . {4.11)

br

This is the condition for the high-current limit on phase stability
first derived by Robinson.!® Robinson’s derivation involves serting
up & set of linear equations in terms of perturbations to the vari-
ables of the system. He then applies Routh's criterion to the deter-
minant of the coefficients to test for solutions which grow
exponentially. However, it i5 well to remember that the reswvit is
completely equivalent to the simple condition in Eq. (4.10}, which is
elmost immediately obvious from a carefully comstructed phasor
dlagram.
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If the cavity tuning is édjusted to make the beam-cavity im-

pedance look “real” according to Eq. (4.4}, then the conditfon for
phase stability reduces to '

vbr coBd < Vc . {£,12)

Problem 4.3: 1If the cavity coupling is also optimlzed
according to Eq., (4.6a), show that the condition in
Eq. (4.12) is met for any value of beam current.

We next want to compute the damping time for phase coscillations
{sometimes termed Robingon damping). A derivation in the frequency
domain of the damping time is givea in Ref., 19. Sone interesting
physics, however, is hipghlighted in a time-domain_analysis. 20 agsume
a beam current with phase modulation of the form ip = 1, {1+ 3JA coswgt
where A << 1, The response of a parallel resonant circuit to this
driving current is

just -ﬂwst
> - m T 1 JA e e }
p(® “010{1”5* 2 [1+3(£+n) +JL+J(~£--rs)] (4.13)

where £ = -tany = {u- uo)T and n = . Tr, The terms in eijmst
represent two counter-rotating vectors with origins at the tYp of the
steady-state beam loading vector V Roiocosw eI¥ vhere Roip = Viys

Problem 4.4: Show that the resulitant of the two vectors is
a vector whose tip moves on an ellipse in the complex plane
with semi-major axes

a= {1+ @+ 4 1+ -0 o
(4.14)

b= w2 {li+ €+ -+ -0 Ry

Show further that the angle v in Fig, 4.1 is given by
Yy=-n/2+ (ﬁ+ + ¥ _)/2, vhere tany, = ~(¢+n) and tany_ =

-{E-m).

The phasor diagram in Fig. 4.1 {llustrates the response Vp(t) t
& driving current resulting from a phase oscillation of the bunch
center of charge. WNote from the result of Problem 4.4 that as wg_
approaches zero the ellipse collapses to 8 line perpendicuylar to Vo,
while for wgTg>>1 it collapses to a point at the tip of V,.

The ellipse in Fig. 4.1 is guite suggestive. In analogy with
similar diagrams in the force-displacement plane, or the pressure-
volume plsne in thermodynamics, we conjecture that the area of the
ellipse is proportional to the power transfer to or from the oscil-
lation. The conjugate coordinates in the present case are voltage
and charge, given by &V = (dV/d4)8¢ = (V. 5ing) (A coswgt) and
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Fig. 4.1. Response of a resomant circuit to
a phase-modulated driving current.

8q = (nAip/wg) coswgt (the relation between charge and current is
given in Sec, 9.1)., Assume small demping and integrate &Vdq =
&V{d/de(5q)1dt to obtain the energy in the oscillation,

2
A 1ovc sing

2w *
8

W =

Likewise, the average power transfer to the oscillation can be shown
to be P = {i,/Vyy) times the area wab of the ellipse, where a and b
are given by Eqs. (4.14).

Problem 4,5: Show that P = nisab/Vpy using the following
procedure. First, take the real part of Eg. (4.13) to

find 6Vy(t). Then P(t) = &qld/dt(8Vp)] is the instantaneous
power transfer during_the oscillation., Average over one
cycle of wgt to find P,

The damping time is now obtained from

= v w
1 _1P _ br s | —&n . {4.15)
g 28 Vosine [y m?l1 e (g-n?l

Here a negative 13 implies damping, and a positive 1y growth of the
phase oscillation. Whether there is growth or damping of the oscil-
lation depends on the direction that the ellipse in Fig. 4.1 1s
followed with time, and in turn this depends on the sign of L. Posi-
tive £ (or negative tuning angle) gives damping. The origin of the
damping can be traced to the inertia of the stored energy in the rf
cavities. Because of the finite filling time, the beam-induced
voltage cannot follow changes in beam current instantanecusly. &
phase difference between the induced voltage and driving current
appears, which in turn leads to an energy interchange between the
oscillation and the cavity fields.



- 28 —

A somewhat different derivation of Eq. (4.15) is given in Ref. 2(
It is also shown there that the synchrotron oscillation frequency 1is
shifted as the beam loading increases. The limit of zero frequency i
just the stability 1imit in Eq. €4.11). The condition £ > 0 is the
dynamic stability condition, also derived by Robinson.!® It 1s worth
noting that the dynamic condition £ > 0 and the "static" conditfon in
Eq. (4.11) have analogs in any high frequency resonant system in whici
the stored energy is modulated by a low frequency parametric variatio
For example, Ceperly?’! has analyzed the electromechanical oscillation
which result from the modulation of the resonant frequency of a cavit
by mechanical vibratione. In this case, the wechanical oscillation 4
coupled to the rf stored energy through the force exerted by the rf
fields on the ecavity walls. Ceperly concludes that in this case the
oscillaticns are antidamped for w > w,, and that for o < w, a static
instability occurs as the cavity fields increase and the modulation
frequency goes to zero, corresponding to the limitr im Eq. (4.11).

As a final comment, we note that Robinson damﬁiﬁg operates only
on the center of charge of the bunch as a whole. Radiation damping,
on the other hand, acts on the incoherent synchrotron oscillations of
the individual particles within the bunch.

5. TRAVELING-WAVE LINACS

5.1 Besic Principles

Consider a traveling wave for a given wode of propagation im 2
structure of arbitrary cross section with periodic length p along the
z axis. By Floquet's theorem,?? at a given frequency the fields at
one cross section differ from those one period away only by a complex
constant. Thus

Br,4,2,t) = Ep(r,¢,z) Y2 et (.1)

wvhere vy =jB_ + o 1is the propagation constant and E {r,¢,z) is period!
in z with period p. Expanding P(r,¢,z) in a Fourier series,

— . jlue-8 2) _
Fr.é,2,0) = Z E (r,0) e nT 9 (5.2)
n‘-—ﬂ
where
8_ =g + 3%9- (5.9
and

z4p /
* 1 > j(2ru/pdz
sntr.o)-;j; E(r.6.0) e az . (5.4)
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Thus the total traveling-wave field has been expanded in a series of
space harmonics, each with 1ts own propagatiosm constant B, and phase
velocity vpn = w/By, but with all space harmonics having the same
group velocity vg = dw/df8., These relationships are i1llustrated by
the dispersion curve (also called & Brillouin diagram or w- £ diagram)
in Fig. 5.1.

1 1 i 4
F R G OR; F Y5
-e - 8 azyrace

Fig. 5.1. Dispersion diagram for a
periodic accelerating structure,

Consider the specific case of a cylindrically symmetric struc-—
ture. In the neighborhood of the axis, the accelerating field com—
ponent for a given propagating mode in a lossless structure has- the
form {see for example Ref. 23},

- j(wi—anz)
E (r,$,2,t) = cos m Z AJ (K1) e (5.5)

nu—h
where

2

2 2
X = (wfle)” - Bn (5.6)

For a space harmonic component which s synchronous with a velocity
of light garticle, Bp = w/c and E; ~ r™ in the region of the beam
aperture.*3 Thus for a synchronous wave in the accelerating mode

(m = 0), the accelerating field is independent of transverse position
within the beam aperture. The structure design problem now consists
of several parts. First, at the operating frequency the transverse
dimensions of the structure are adjusted to cbtain synchronism with
the fundamental space harmonic component (n = 0). Second, the geom—
etry of the structure is chosen, in so far as possible, to reduce the
amplitudes of the non-synchronous space harwonic components. These
components carry energy which can play no part in the acceleration of
particles. Third, the geometry is adjusted to reduce the stored
energy per unit length for a given synchronous accelerating fleld.
Finally, the Q of the structure is maximized by choosing 8 structure
material, usually copper, with good conductivity. As fn the case of
standing wave cavities, the Q of the structure does not Jepend very
strongly on the shape of the individual periodic cells. The Q does,



Y

- 130 -

however, increase if there are fewer pericds per unit length (for
example, fewer disks per wavelength in a disk-loaded structure), But
then the amplitudes of the non~synchronous space harmonic compounents
tend alsc to increase for a givem synchronous component amplitude.
These trade-offs are explored in detail in Ref. 2, Ch. B.l.1, for
the case of the SLAC~type disk~loaded structure.

5.2 Structure Parameters

If Ea = Egy 18 the accelerating field for the synchronous
traveling-wave space harmonic comporent and w the total stored energy
per unit length in the propagating wave with power flow P, then the
shunt impedance per unit length and the structure { are defined by

2
rz —2 (5.7a)
lap/az|
z —2¥ (5.7b)
|dp/dz]
B2 .
% = ﬁ . (5.7¢)

We can define ao energy flow velocity by vg = P/w. In Ref. 22,
Sec. 1.5, it 1s proven that vg = v,, where vg vas defined as dw/dB.
Thus, from the expression for G,

az - - ;“‘6 = ~2aP {5.8a)
dE
—2& = gE (5.8b)
dz a
©
a= {5.8c)
2ng

where o 15 the attenuation parameter per unit length. The relation
between power flow and accelerating field is now obtained as

Ei = r|dP/dz} = 2arP (5.9a)

(5.9b)

ar = WL
3 .
ng
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A structure which has uniform parameters along its length 1s
called a constant impedance structure.® For such a structure,
Eqs. (5.8) can be integrated to yield

E =E e {5.10a)

P=r o202 (5.10b)

where E, and P, are the accelerating field and power flow at the imput
to the structure. The field and power flow at the end of a structure

of length L are then Ep = E, e ' and PL =P, e~21, where

wL
2
ng

T = gL = {5.11)

ig the attenvation parameter for the structure.

Consider now an accelerating mode (no variation with aziwmuthal
angle $) propagating in a disk~loaded structure with disk hole radius
a. In the disk hole region, both Hy and Ey are proportional to r mear
the axis. Thus, 1f the disk opening is not too large, the power flow
per unit area for a given stored energy per unit length is propor-
tional to rl. Integrating from r = a, the total power flow, and thus
the group velocity, will be proportional to a°. From Eq. (5.8¢c), 1t
is therefore possible to change o over a wide range by varying the
disk aperture over & relatively small range. Of course, the shunt
impedance per unit length will also vary as the disk opening is
changed, but its dependence on the disk hole radius is much weaker.
From Eq. (5.%9a) the possibility now exists, as the power flow along
the structure decreases due to dissipation in the structure walls,
to keep E; constant by increasing o ~ 1/P. This is the basis for the
constant gradienf structure.

Let us ignore the weak variation in r along the length of such
& structure. Then from Eq, (5.7a) dP/dz = constant, or

P = Po - (Po-PL)(z[L) . (5.12)

If the attenuation parameter T is again defined from the expression
P =P €27, the above relation gives

pl -1~ (z/LU~e
Q

21, (5.13a)

Note that ar = EEIZP has dimensions of ohms!mz. A closely related

quantity used in microwave circuit theory, Eﬁf(ZBﬁP) is ealled the
coupling impedance, or sometimes the interaction impedance for the
nth space harmonic ecomponent.
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az L L

"y {5.13b)

From Eqs. (5.8a), (5.8¢c), (5.13a) and {5.13b) the variation in group
velocity with length requivred to produce a constant gradient is seen
to be

-21
wh [1 - (z/L){1-e )] .
vg(z) -— 21 (5.14)

Q 1-e

Problem 5.1: The filling time for a constant impedance
(and hence constant group velocity) structure is simply
T = L!vi. By integrating dt = dz/vy from z = O to

ng

z =1 us Eq. (5.14), show that for a constaut gradient
structure
- 29.) |
- (2 . (5.15)

From Eq. (5.11), note that this is exactly the same as
the filling time for a constant impedance structure.

5.3 Energy Gain and Beam Loading

By 1ntegrat§ng Eq. (5.10a) from z = 0 to z = L, and substituting
for E5 = {20xP_,)? according to Eq. (5.9a), the unlcaded energy gain
of a constant impedance (CZ) accelerating section is calculated to be

cz: v - (p)® [r)2-eH) . (5.16)

The unloaded energy gain of a constant gradient (CG) section is,
using Eq. {(5.9a),

k X
V,=ELl = (riP )* (20 1) . (5.17)

Using Eqs. (5.Ba) and (5.13b), the above expression becomes

%

cG: V= (rIP ) (1-e21y% (5.18)

As a function of 1, Eq. (5.16) has a broad maximum at T = 1.26 where
Vol(rLPo)E = 0.90, Eor the case of a constant gradient structure,
Vo approaches (rlPy)™* for large t.

We next compute the beam induced field in a travelipg-vave
structure, assuming that there 45 no input power from the rf generatm
1f there is a generator-produced field component, the net acceleratinj
voltage is readily obtained using superposition. From comservation
of energy, at any point in the structure
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dp
az IoEb ~ 2aP . (5.19)

where Ey, is the peak beam-induced field which opposes the wotion of a
beam of short buaches with dc current Ig. Using EE = 2arP, this
becomes

dEb
a3z - Ioar - nEb - (5.20)

Now assume & constant impedance structure (o independent of z) and
integrate to obtain

E (2) = zoru-e'“) . (5.21)
Integrate again to find the energy,

vy = I L1 - (1-e ¥)/1) . (5.22)

The derivation of the beam loading voltage for the case of a constaat
gradient structure is given in Appendix A. The result is

v, = LrL I - 1 e 2T - 7%y (5.22b)

The results of Eq. (5.22) and Problem 5.2 can be used, together

with superposition, to express the net voltage gain in s beam-loaded
structure as

V=V cos8 -~ ml
o o

l - e--r
CZ: m=1rL]1l - — €5.23a)
=21
CG: m = rL[%— - —T—e—z—] (5.23b)
=27
l-~e

where Vo is the unloaded energy gain given by Egs. (5.16) and {(5.18),
and ® is phase of the current bunches with respect to the crest of
the generator-produced wave. If the bunches are not short compared
to the rf wave length, the epergy gain is reduced by the same bunch
form facter computed in Sec. 3.3.

In Fig. 5.2 the energy gain for comstant gradient and constant
fmpedance structures 1s plotted as a function of current for several
values of T. Note the linear load lines, similar to those in
Fig. 3.10 for the case of a standing wave structure. Note, in addi-
tion, that t and 1/B play similar roles in the two types of structures.
This can also be seen from the expressions for the filling time,
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2qQ

o
Tf(SW) = ;;fit;iﬁ' : {5.24a)

.29t
-Tf(Tﬂ) " . (5.24b)

Multiplying Eq. (5.23) by
I,, the power transferred to
— Corstont | | the beam, and hence the conver-
s Conglont Grodient sion efficiency, 1s seen to be
] quadratic as & function of bear
current. Recall that this was
also the case for standing wave

o

i T 1

o
(™
g

NORMALIZED ENERGY V/V/TLF,
o
o

0.4 structures (see Fig. 3.11),
The maximum efficiency 1is
0.2 reached when the ' eam energy is
reduced te one-half of its un-
0 loaded value at I, = V5/2m.
o 1 2 3 4 5 The maximum conversion effi-
..  NORMALIZED CURRENT IoviL/rg ciency 1s then
Fig. 5.2, BReam-loaded energy as a Vz .
function of beam current for coo~ Noix = & wP + (5.25)
stant impedance and constant gra- max 0

dient structures for peveral values
of the attenvation parameter t.

As an example, Nyay 8t T = 1 45 637 for & constant gradient structure
and 54% for a constant impedance structure. These efficlencies
increase to 76% and 73X respectively at T = 0.5, and both increase
toward 100Z as T approaches zero according to ng,, ¥ (1-21/3).

The power flowing into the output termination of a beam-loaded
traveling-wave section can be computed by first finding the net fiel¢
at the load. For example, using Egs. (5.21), (5.10a) and (5.%a) in
the case of a constant impedance structure, ’

E, = Eoe-T - I r(l- e ')
(5.26)

2
PL EL Li21ir

The power dissipated in the structure is then obtained as Ps =
Po - PL - IDV.

5.4 Non-Synchronous COperation

If a traveling-wave structure is operated at s frequency dif-
ferent than the synchronous frequency, the bunches will slip in phas
with respect to the traveling vave. The total phase slip in length .
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for an electron with velocity v, = ¢ is described by the parameter

- L - L - - :E)
d =y (vp ve) BOL(]. P - €5.27)

In a constant gradient structure (or in a constant impedance structure
for small 1) without beam loading we expect

2
_ o [sin gslzz] ( & )
vay [l sy (1- & (5.28)
for §<<1, Recall that fot a standing~wave cavity,
¥
Vo= ?o coay = vo (1 -5 ) . (5.29)

Thus the phase-slip parameter plays & similar role for a traveling-
wave structure as the tuning angle does for a standiag-wave cavity.
This correspondence is evideat also from the relation between § and
$ and the filling times for standing-wave and traveling-wave struc-
tures. For a frequency deviation 8w = w - w, and using a8 = dufvg, .

1 {2Q

¢ = tan L (1;5 Am) R T (SW) - Bu
O

. : (5.30)

§=L(B -8) =L ABS T (TW + &u .

In both cases, the sensitivity to tuning errors is seen to be pro-
porticnal to the filling time.

A detailed discussion of non-synchronous beam leoeding in constant
impedance structures is given in Ref. 24.and in Appendix B.

6, SINGLE-BUNCH BEAM LOADRING

6.1 The Fundamental Theorem of Beam Loading

Consider a point charge crossing a cavity initially empty of
energy, After the charge has passed out of the cavity, a beam—induced
voltage ¥y, remains in each mode. What fraction of Vy, does the
charge itself see? Since the induced voltage for mode n starts at
zero as the charge erters the cavity, and ends up at Vi, as the charge
exits from the cavity, the most naive assumption is to take the aver-—
age, or 1/2 Vins 2s the effective fraction of the induced voltage
acting on the charge, In this section we prove that this factor of
one-half {s indeed exact for any cavity. The fact that a charge
“sees” exactly one-half of its own beam-induced voltage we will call
the fundamental theorem of beam loading. The theorew provides the
key which relates the energy loss by a charge creossing a cavity or
passing through a structure to the electromagnetic properties of modes
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in the cavity or structure computed in the absence of any charge. B
superposition, the beam-induced voltege in a cavity is the same
whether or not a generator voltage component is present, Thus the
theorem 1s also basic to the computation of the effective wvoltage
acting on 8 bunch when both a generator voltage and a beam-induced
voltage are present. Following is one of several possible proofs of
the theorem.

Let a charge pass through a cavity in which the stored energy i:
related to the cavity voltage in 2 given mode by

U=g V2 . {(6.1)

Asgume that a fraction f of the beam~induced voltage Vy, acts on the
particle, or Vo = fVy, vhere V, is the effective voltage seen by the
charge. Assume further that the beam-induced voltage is not oeces-
sarily at such a phase as to maximally oppose the motion of the
charge; that is, assume it wight lie at an angle ¢ with respect to
Va. Now let the charge be bent back around in a lossless manner,
for example by magnetic fields, such that it passes through the cavi
& second time, Let the time for the charge to traverse the external
path be any wultiple n of the rf period, plus a residual time &/u,
where § is an arbitrary angle and w, is the resonant frequency of th
mode. When the particle crosses the cavity reference plane & second
time, we have the phasor addition of voltages shown in Fig. 6.1.
Here Vi{2) ig the voltage induce:

v the second pass by the charge,

] Reference Phose « while the vcﬂ.tage induced on th
first pass, Vp{(l), has rotated
with respect to Vp(2) by an angl
2¥n + 6. We can assume the
cavity losses are very small so
that Vy(2) = Vi (1). Thus the
net energy stored in the cavity

ALRIAL is
—a LIFECTT)
8+2

Fig. 6.1. Diagram showing addi- W =af2V cos

c b 2
tion of beam-induced voltages for 6.2)
two passes by the same charge 2 )
through-a cavity, = 2uvb(14-cose) .

On the other hand, the energy lost by the particle on the two passe:
is

Al = que + qvb cos{e+8) . (6.3)

That is, on the first pass the charge experiences a retarding volta
Ve, while on the second pass it sees the sum of V, plus the compone:
of Vy(1) which lies slong the negative real axis fn the phasor dia-
gram. By conservation of energy W. and AU must be equal. Letting
Vo = fVp and equating Egs. (6.2) and (6.3) we have
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2(qf-avb) + (q cose-ZaVb)cose - {q sinc)sing = 0 .

The left-hand side can only vanish for arbitrary & if

sine = 0, e=0 (6.4a)
v, - q/2u {6.4Db)
f - uvbiq = 1/2 . {6.4c)

Eq. (6.4a) expresses the fact that the beaw-induced voltage must have
a phase such as to maximally oppose the motion of the inducing charge.
{Is ¢ = » a valid solution to Eq. (6.4a)?) Equation (6.4c) tells us
that the charge sees exactly one-half of fts own beam induced field.
Combining Egs. (6.1) and (6.4b), we obtain

2

2
-Vt e -
We=aV =7-= kg (6.5)

for the energy left behind 1n a cavity by a chatge q. The quantity
k is called the loss parameter, and, of course, each resonant mode
has its own value of k. From Egs. (6.5) &nd (6.1) we have

O = '!%i'(' (6.63)
2
v

k= yav] . {6.6b)

Further, from Eqs. {6.4b) and {6.62a),

v, = Zkq (6.72)
vb
ve - —2— - kq - (6-?b)

Thus the leoss parameter k relates the beam-induced voltage to the
charge, by Eq. (6.72), and the energy loss by a charge passing through
a cavity initially empty of energy, by Eq. (6.3). It is important to
note that superposition applies and Eqs. (6.7) are valid even if a
voltage is already present in the cavity before the charge arrives.

We can therefore construct the basic phasor diagram in Fig. 6.2 for
single-bunch beam loading for the accelerating mode (k = ko, Vp = Vhol,
or for any mode with an externally applied generator voltage. Here
Ve = —Kyoq Is the effective beam loading voltage seen by the charge.
The reference phase is taken in the direction ~V,. Thus the net
accelerating voltage acting on the charge is

- [ -— -8
Va vc cosé Vg coseg koq . {6.8})
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| Phose

hré A V, = VeCosg v,:ose,

Fig., 6,2. Phasor disgram showing the
net single-bunch energy gain for a
cavity driven by an external rf sowrce.

where ¢~ = B, is the phase of the generator voltage component just
before the cgazge crosses the cavity reference plane,

Problem 6.1: Prove that relations (6.4), {(6.6) and {(6.7)
are also valid when a generator voltage component is
present., Using Fig. 6.2, compute the decrease in cavity
stored energy, AW = u{(VE)Z - (Vt)ZJ. Using conservation
of energy, equate this to the energy gained by charge q.
Write the result in the form Vp = f3(Vp)/f3(Vp)where both
f) and f; must vanish, since Vg cannot depend on Vy.

As & final comment, note that the parameter kp describes the
single-bunch beam loading properties of the nth cavity mode, and th
it can be computed in terms of the charge-free properties of the
cavity from Eq. {6.6b). As described in Sec. 3.4, the programs LAL
and SUPERFISH® compute the quantity R,/Q ~ V%{wu. Then from Eq. (6

6.2 Higher-Order Cavity Modes and the loss Impedance

Consider the energy lost by 2 charge to all modes in an rf ac-
celerating cavity, assuming the cavity is initially empty of storec
energy befere the arrival of the charge. let AU; be the energy los
to the fundamental {accelerating) mode, and

6Ut = BAUO {6.1¢

be the total energy lost to all modes, where B ig called the beam
loading enhancement factor. The energy lost to higher-order cavit:
wmodes only is

AU
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After the charge has exited from the cavity, g beam—induced voltage
Vpo and corresponding stored energy Al, = ayVf, remain in the funda-
mental mode. Then From Eqs. (6.11), (6.6a) and (6.7a),

M=o (B-1V, = (B-1) k9 . (6.12)

As discussed earlier, Vi, = 2k g 15 a voltage which, by superposition,
is the same whether or not there is energy stored in the fundamental
zmode before the arrival of the charge. Equation (6.12) therefore is
valid also wvhen the fundamental mode is driven by an external genera-
tor.

Consider mow a linac or storage ring with equal bunches of charge
q spaced apart in time by Tp. If the fields in each cavity mode decay
away coupletely between bunches (Ty >> Tgn for all modes), and using
also q = I Ty where 1, is the average current, Eq. (6.12) gives

1 ) .
th - Tb AUhm Iozhm I°¥hm {6.13a)
vhm - Iozhm (6.13b)
zhm = (B-1) ko'rb = 'rb }: kn . {6.13c)

n>o

In a storage ring the presence of higher-order cavity modes means that,
in additfon to the synchrotron radiatiom loss per turn Vg, the rf
system must supply an accelerating voltage Vyp. There sre also losses
to other vacuum chamber components outside the rf system. If the sum
of all the loss parameters for these components is k., and if it is
again assumed that the induced fields decay avay between bunches, then

Vv =12 (6.14)

ve kchb

Thus the total accelerating voltage that must be supplied by the rf
system to each beam in a storage ring is
VvV = +V. +V . 6.15
a vs vhm vc ‘ )
If the beam induced fields do not decay away between bunches for a
particular mode, the situation is more complicated., The resonance

function, described in Sec. 6.5, is then needed to compute the voltage
lost to that mode.
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For simplicity, the expressions in this and the preceding section
have been written assuming a point bunch. For. a bunch of non-zero
length, the bunch form factor must be taken into account. For a
Gaussian bunch, the loss parameter for each mode must be multiplied

by e “n%t (see Sec. 9.4).

6.3 Efficiency for Energy Extraction from a Cavity

In a linac or storage ring rf system, the beam takes energy from
the driven fundamental mode, but dumps some of it back into the highe:
cavity modes. It 1is of interest to compute the net energy extracted
from the cavity, If we apply the law of cosines to the vector tri-

angle (?:, Vo, Vpo! in Fig, 6.2,

2 _ vy

bo 'bo cosd . {6.16)

+, 2 ~2
(Vc) (Vc) + ¥V
By conservation of energy, the energy extracted from the accelerating
mode is aU, = a [(V))Z - (vHZ]. Using Eq. (6.16),

- - 2
AUO - GO(ZVcho cosd - vbo) . {6.17)

To obtain the net energy extracted from the cavity, we subtract.off
the energy put back into higher-order modes, as given by Eq. (6.12),
to cbtain

“a VYV, cosd - Bv2 ) . (6.18)

BU0ee = 8Y, - 40 ¢ bo bo

net he=

The efficiency for net energy extraction is now
AU v V. 12
oo —-—% -2 (__‘3-2)c05¢' -B (_b__g_) . {6.19)
uo(vc) vc vc

The maximum efficiency as a function of Vy , for a given initial
stored energy is readily obtained to be

cos2¢_
Bnax B (6.20)
at a2 beam-induced voltage
v - XF.E_ . (6.21)
bo B

Note that angle ¢ in Eq. (6.14) is not the synchronous phase angle
for a storage ring. It is the phase angle of the cavity voltage just
before the arrival of the bunch. From Fig. 6.2 it is related to the
synchronous phase angle by
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tan

tan¢ =377 xalv,

(6.22)

Problem 6.2: A storage ring is often operated with two
counter—circulating beams of opposite charge and equal
intensity. The rf cavities are located so that the fields
induced in the fundamental mode by the qt and q  charges
are coherent; that is, the cavities are located at dis-
tances from the interaction point which are integral
multiples of a half-wavelength at the acceleraring mode
frequency. On the other hand, it {5 reasonable to assume
that the fields induced in the higher cavity mecdes are,

on the average, incoherent for the two beams (see dis-
cussion in Sec. 6.5). Show that for this case the maximum
efficiency for energy extractiom is

. .cos ¢
"vax ~ (B+1)/j2 ° (6.23)

6.4 Beam Loading by a Bunch Train with T, ~ Tf

We next calculate the build-up of the beam-induced voltage when
bunches pass repetitively through a cavity, as in the rf system of a
storage ting or for a train of equally-spaced bunches in a linac. A
cavity £illing time ig assumed which is not necessarily short compared
to the bunch spacing. The situation is fllustrated graphically in
Fig. 6.3. Here Vpq is the single-pass beam-induced voltage, e " gives
the decay of the cavity fields during one turn, & is the net phase
shift per turn (subtracting off multiples of 2x) and Vg and ¥ are
the cavity of voltages for ¢ + « just before and just after the pss-
sage of a bunch. The decay parameter 7 and phase angle & can be
written

.
'I‘f (6.24a)
Voo
/-'—\__N-‘-"‘\ Rm' ﬁ‘is 'ut
""""""""" e § « T w - thb {6.24b)
& -iv LY, be
« Z Yo 7 Ybo
& | / e =T {o_-uw)
=~ v, /v bo

Bere w, is the resonant fre-
quency of the cavity and by,
an integer, is the harmonic
number for a single-bunch
machine, or the number of rf
Fig. 6.3. Phasor diagram showing the wavelengths betveen bunches
buildup of the beam-induced voltage for a2 linac or for a ring

by a train of bunches of equal charge. with more than one bunch.

(B [RTTLTS
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In constructing Fig. 6.3, we again consider a reference frame vhich
is rotating at the angular frequemncy w of the external rf generator,
It is natural to use the external generator as the basic clock for
describing fileld variations in the cavity, since the spacing of
bunches in a storage ring is determined by the driving frequency of
the generator and not by the cavity resonant frequency.

The final {t + =) voltage just after a bunch passage is now
readily obtained as the sum of the gecmetric series

i -t §6, -2t 326
Vb Vb°(1+e el e e e L0
e
6.25
Y _ 1 [(6.25¢

Voo 1. e“T ej6

To obtain the effective beam-loading field Vb in the limit ¢t » =, we
take the field Vb induced by all the previous bunch passages at a
time just before the arrival of a bunch at the cavity reference plan
and add to it a phasor V, = -1/2 Vp, to account for the effective
self-field seen by the bunch in qQuestion to obtain

V=¥ -2y - 1

b~ " bo “ Vo ¥ 2 V%o - (6.251

Using this expression together with Eq. (6.25a) and the fact that

Yoo = “Ybot
{;b 1 1
— - - ~ &= F_{1,8) + jF_{(1,8) {6.26¢
SR S T I
Fpl1,8) « _11' = T (6.261
2(1-2¢ " cosS + e ")
2¢ " einé
FI(r'G) - 73 . {6.26¢

2(1-2e ¥ cosé + e °7)

These expressions give the real and imaginary parts of the enhance-
ment of the single-~bunch beam loading voltage due to resonant bulld
up.

The quantities v, § and Vy, in Egs. (6.26) can be expressed in
terms of more usual cavity parameters. The voltage decay parameter
per tumm is

T = 10(14-8), " Tb,Tfo {6.27

where T¢o = 2Q,fw,. From the definition of the tuning angle, tang
{wy - wh/wy = Te{wy-w) and Eq. {6.24b}, we have
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6§ = 1 tany . {6.28)

The single-bunch beam leoading voltage can slso be written as

W, Ra) IoRa
vbo =2kq-= --2—-(-6- 9=7yg " IRT, » (6.29)
where I, 18 dc current (assuming short bunches) or the total circulat-

ing current for both beams in a storage ring. Equation (6.26a) can
now be written in the form

U, ~ - Rt [Fo(r .8,8) + 4F (r ,8,9)) . (6.30)

In a storage ring the desired net cavity voltage, including the
effect of beam loading, 18 usually specified; that 1is, a certain
accelerating voltage V. cos¢ and synchrounous phase angle ¢ are
required. If the beam current and cavity parameters are spacified,
then the generator voltage can be obtained from the phasor relation

Vs =v.o-v - (6.31)
This is 1}justrated in Fig. 6.4, in which a constant generator volt-
age has been added to the beam~induced voltages shown in Fig. 6.3.

Reference Pnaose
. Vo © Vecose T

Fig. 6.4. Vector sum of voltages in a
beam-loaded cavity driven by an external
generator.

Let us now compute the required generator power for a linac or storage
ring rf system with beam loading under the condition Ty ~ Tg. Taking
the real and imaginary components of the preceding phasor relation and
using also the notation in Fig. 6.4, together with Eq. (6.26a), ve
obtain
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Vg COSBS - Vc cosd + Vbo?R(T.G) (6.32a)
Vs sinag - Vc sing + VboFI(t,G) . (6.32b)

Squaring and adding these two expressions to eliminate 8g, then using
Eqs. (3.35a) and (3.42a) to express v2 in terms of Pg, we have

£
"3 a+ B)2 Iol?.a'ro ]2
P = - - COB‘ + —— F (T ’B ")
& Ra coszt 48 , [ vc
{6.33)
IRT 2
+[=1uo+°’ Fila 8,0 .
[

Problem 6.3: Show that, in the limit v, + O, the result in
Eq. (6.33) approaches that in Eq. (4.2).

The phase angle of the generator voltage is obtained by dividing
Eq. (6.32b) by Eq. (5.32a),

v sind + VpoF1{tys8s ¥)

g V coss +V R(To's’*)

tand . (6.34)

For a given Tgs the generator power in Eq. (6.33) can be mini-
mized by varying 8 and ¢, although it is not possible to obtain simple¢
analytic expressions as was the case for the minimization of Eq. (4.2)
for v << 1. However, the minimum value of Eq. (6.33), and the cor-
responding values of B and ¢, are easily found numerically. It is
found that the transient nature of the beam losding between bunches
increases the minimum generator power by a few percent for typical
cavity parameters for 1, up to about 0.5. For 15 > 1 the generator
power increases rapidly, snd for large 1,, where the time between
bunches becomes large compared to the cavity filling time, it is clea
that some gort of pulsed rf system its desirable. In such & system,
power is applied to the cavities for about a filling time preceding
the arrival of the bunch. For most of the period between bunches
there is no stored energy in the rf cavities and hence no power dis-
sipation. A discussion of pulsed rf systems for large storage rings
is given 1in Ref. 25.

6.5 The Resanance Function

From Fig. 6.4 and Eq. (6.32a), the net accelerating voltage
acting on a charge passing through an rf cavity is

V. =V cosp = Vg coseg - koq[ZFR(T,G)] . (6.35)



Since k,q is the effective beam loading voltage seen by a charge
making & single passage through a cavity initially empty of energy,
the factor ZFR(T,G) takes into account the resonant build-up of fields
due to successive bunch passages, either for a storage ring or for a
train of bunches is & linac. For large 7, 2Fy 1s seen to approach
unity, as expected. For small 1, Eq. (6.35) can be rewritten in a
form which is more natural for a nearly continuous beam,

[*Y

R .

oa
V8 Va coseg 148 [tFR(r.G) .

in Problem 6.3 it was shown that 1Fp approaches cosly in the limit
t + 0, This can be compared with the result of Eq. (4.1a), noting

that 8; = 6 + ¥ (see Fig. 3.13).
In Fig. 6.5, the rescnance function

]l - e-ZT

1- Ze | cosb + e

ZFR(I,G) = 71

is plotted as a function of § for two values of 1. WNote that the
maximum amplitude at resonance {8 = 0) is given by

-1
2F (1’0) - .;_:"_e__.
W01 T T R 1-e "
. {6.37)
B8 o0 - 2FR(1,0) :% 1 <<l .
= 6 & At anti-resonance (6=1x),
£ 5 i
= 1- e-‘t
~ 4 - 2F _{t,n) =
3 . R 1+e '
(6.38)
2F =10 m 1
P I N ZFR(t.w) £ Fl T <<l .
0 z ] 5 i "
o 027 OA4r 067 08w » The phase angle which divides
e 5 erane resonance and anti-resonance,

that is, the wvalue of § at which
Fig. 6.5. The resonance function 2FR(1.61) = j, is seen to be
2Fp{t,6) as & for two values of

the decay parameter T. cosé1 -e '

{6.39)
1/2

T << } .

51 = {21)

An important property of the resonance function has been pointed

out by Sands.?® The average value of the resonance function is com-
puted to be
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k]
2—1- L
2Fpd> = = LZFR{t.G) a5 =1 . (6.40

Thus, 1f the phase shift § 1s chosen at random, the expectation val
of the resonance function is unity. For swmall ¢, the maximum value
of the resonance function Is indeed very large, but the chance of
finding 6 < &y is very smsll. 1In & storage ring, therefore, eince
the exact freguencles of the higher modes and hence the values of ¢
are never precisely known, it 1is reasonable to compute the higher-
mode losses in the single-pass limit as 4G, = knqz, even though the
factors Tb;Tfn might be small compared to unity. On the average,
the single~pass limit (2Fy = 1) will be correct, although in any
particular machine there is always the possibility of hitting = hij
resonance with a consequent large enhancement of the beam loading
voltage for that particular mode.

The condition {(6.40) also has an important implication for thi
higher-mode losses in the rf cavities in a storage ring with two
counter~rotating beams, The cavities are placed an appropriate di:
tance from the interaction points so that the qt and q~ bunches pa
through the cavities (in opposite directions) ‘with a time differem
that is an integral multiple of the rf peried for the accelerating
wode. The higher-mode frequencies, however, are in general not
rational multiples of the fundamental mode frequency. Thus the an
§, for the passage time between the counter-circulating bunches 1s
effectively random for any particular higher-order cavity mode. I
other words, the voltages induced in the higher-order modes do not
coherently., The iaduced voltage and power loss for the higher-ord
modes can therefore be computed for each beam separately, igmoring
the presence of the other beam. Thus the total power lost to both
higher-order cavity modes and to parasitic modes in the vacuum cha
components if there are two beams with circulating currents Ig and

is
+\2 -\2
- + 6.4
P+ P [(10) + (10) ] z +2,) ¢
where Zpn and Z,. are defined by Egs %6.13c} and (6.14) and we as

that the ky,'s contaia the factor e"wnui. However, in computing t}
required generator power for the fundamental accelerating mode usi
Eq. (6.33), I, must be replaced by (1; + 1),

7. TRANSIENT BEAM LOADING

7.1 Transient Response of a Resonant Cavity

We want first to compute the response of & resonant cavity t«
step change in driving voltage. This resull will be used to find
transient variation in the voltage and reflected power between bu:
for a cavity loaded by a periodic bunch train. The response of a
tesonant circuit to a step change in driving voltage can, of courn
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be cbtained by applying standard mathematical techniques te solve an
appropriate differential equation. Here, however, let us use our
phasor approach to find the answer in a very simple way.

Consider first an undriven cavity with resonant frequency «, and
damping time Tg. Suppose the cavity is 1nit131}¥ charged to voltage
V4(0), and that this voltage then decays as e °/*f for t > 0 while
viewed in a reference frame rotating at angular frequency w {the rf
driving frequency}. The time variation of the cavity voltage is

-t/T
T =V@e Jtde B ¢S

where duw = wy - w. The time variation of V4{(t) [the reason for the
subscript will become clear shortlyl is illustrated in Fig. 7.1.
The relevance of this
seemingly simple physical
s picture may not be obvious at
Valt) first glance. In a storage
' ring or linac we are dealing
with driven rf cavities, and
/ \¢ the bunch repetition frequency
<« “~\\ is also a sub-harmonic of the
shws {1/ T tan ¢ TN _; i driving frequency w. Thus all
%0 steady-state driven voltages
) are phasors viewed in a coordi-
nate system rotating at the
driving frequency w. Transient
variations can, however, be
viewed as the superposition of
a final steady-state voltage
plus an undriven discharge toward this voltage, which occurs at the
natural cavity resonant frequency wp. Thus, by adding a final steady-
state vector V(=) to the diagram in Fig. 7,1, we obtain the gemeral
transient variation of the cavity voltage V(t}, as shown in Fig. 7.2.
Equation {7.1) now gives the time variation of the "difference
vector,” Vy4{t), where

A Y X

Fig. 7.1. Discharge of a cavity
resonant at frequency w, viewed in
a coordinate frame rotating at
frequency wu,

'\‘r‘d(:) - V(t) - V(=) (7.2a)
'ﬁd(o) = V(0) - V(=) . (7.2b)

Using the definition of the tuning angle, tany = Tfaw, Eq. (7.1)
becomes

. o ~(t/T}(1-3 tand) .
vd(t} = vd(o) e . (?.3)

Substituting for 6d(:) and ?d(ﬁ) in this expression using Eqs. (7.2),
we obtain
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Fig. 7.2. Traosient response of a resonant
cavity_ to a step change in driving voltage
a¥ = —V;(0) applied at t = O,

~ ~ - - ~(t/T) (1~ § tany)
V(t) = V(=) + {V(0) - V(=}1 e . (7.4

This expression can also be considered as giving the transient re-
sponse of a resonant cavity to a step change in driving voltage
AV = V(=) - V¥(0) = -~V _(0), applied at time t = 0.

It is interesting to show that Eq. (7.3) represents an equi-
angular spiral; that is, the tangent to the curve at any point P in
Fig. 7.1 makes a constant angle with respect to_the difference vect
joining point P to the origin. The derivative V- d¥/dt is tangent
to the curve V{t}). From Eq. (7.3},

%a(c) « F (O~ tand)/T, .

Since

e-j¢ = {1-3 tany) cos¢ ,

we have

s —~ e"j"
IACKEEACE- .

f cosy

Thus_4if Vd(:) is rotated by angle +y, it will lie along the direct:
of -V4{t) as shown in Fig. 7.1.

7.2 Transjent Variation of Cavity Voltage and Reflected Power
Between Bunches

Let us now apply Eq. (7.4) to find the traasient variatiom of
the cavity voltage between bunches for the case of & bunch train i
which the time between bunches is not necessarily small compared t:
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the cavity filling time. We start with the vector diagram in
Fig. 6.4, showing the cavity and beaw loading voltages just before
and just after the passage of a single bunch through & cavity driven
by a generator voltage V. These voltages are redrawn in Fig. 7.3.
When the bunch crosses the
cavity reference plane, the
cavity voltage changes Instan-
taneously (in our wodel) from
v; to Vg. The magnitude of
the change 18 ~Vp,. The volt-
age then begins to charge
toward Vo along the spiral
path shown. At the precise
moment the voltage once again
reaches Vg, another bunch
comes by to repeat the cycle.
We can now make the following
correspondences between the
- voltages in Eq. (7.4) and
those in Fig. 7.3:

Reference Phase

-8 472FATE

Fig. 7.3. Transient respoﬁ?e of a 1 -~

driven cavity to a train of equal E‘t) ZF(t)

bunches. V{0) ~ V: : (7.6)
V(=) ~V

We have therefore 8

oy —(E/T)(1-4 tany)
AT
8

- . -u*
v - - .
RORR AL ("c (7.7
But frowm the diagram in Fig. 7.3,
e,
& (7.8)
vg vc - vb - E-vbo .

Therefore

~(t/T.)(1-3 tand) ]
Vi =7 +9 [e ~1l-3v, - 09

To simplify the notation, we introduce 8 normalized time x = /Ty,
such that x = 1} when t is equal to the arrival time of the next
bunch, Recall also that tang¢ = 6/7. Substituting for Vi from
Eq. (6.25), sgain taking into account that Vpo = ~Vp,, we find

-xT _Jxé& _ ]
_ vbo [e e 1 vbo

Vc(x) - Vc T 36 -3 (7.10)
1 -e e
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Separating this expression into real and imaginary compoments with
the aid of Fig. 7.3, :

Vc(x) cosy = Vc cosé + VboFA(x) (7.11a)
vc(x) siny = vc giné + VboFB(x) £7.11b
where
F,(x) = {1- 2T - 267X cop xb + 2e” B THT coss(1-x)} /2D

(7.12=a

Foix) = [e™ s1ns - e ¥ sin xb - e-(li-x)t 8ind(1-x)] /D
(7.12b

D=1- 2" cost + e-21 .
Squaring and adding Eqs. (7.11a) and (7.11b), using also Vpp = 1R,
Vi(x) ioRxo 2 10Rt° z
57— = jcosé + FA(’) + | siné + FB(x) . {7.13)

Vc vc vr.:

For a fixed t,, the optimum values of £ and ¥ can be obtained by

minimizing the generator power as given by Eq. (6.33). Equation (7.
together with the definitions of F4 and Fp given by Egs. 7.12), the
determines the transfent variation between bunches in the amplitude
the cavity voltage. The transient variation in the phase of the can
voltage is obtained by takieg the ratic of Egs. {7.11b) and {7.1la),

Vv sinéd + VbOFB(x)

c {7.14’
Vc cos¢ + VbOFA(x)

tanu(x) =
The reflected power P, can mnow be computed using consexvation
energy:

P =P ~P -dWfdt , {7.1%
x g c

where P, is the incident generator power, P = Vg(t)fka is the in-
stantanéous cavity dissipated power and W is the stored energy give
by

V:(t) 1
Wit) = ;;tﬁ;?ay -‘E TfoPc(t) .
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Here Tg, = 2Q,/w, 18 again the unloaded filling time. Equation (7.15)
now becomes

1 d
Pr(t) - Pg - Pc(t) -3 Tfo ac [Pc(t)] . {7.16)

If a normalized cavity voltage v(t) = V. (t)/V. is introduced, the
above expression can be written in normalized form, again using
x = t/Tp and 1, = Tp/Tg,, as

2
v
[ 2 1 d 2
Pt(x) - ?3 - 'E;- v {x) + a’; i [v (x)] . (7.17)

The function vZ(x) is just that given by Eq. (7.13).

The above derivatfon does mot give the phase of the reflected
voltage wave in the input transmission line to the cavity, vhich may
sometimes be of interest, An alternative derivation, which solves
for both the magnitude and the phase of the reflected wave, is given
in Ref. 27.

7.3 Transient Beam loading in Traveling-Wave Linacs

The concepts introduced in Ch. 6 to deal with single~-bunch beam
loading in standing-wave structures can also serve as the starting
point for an analysis of transient beam loading in traveling-wave
structures. Assume an element of charge dq passes through a traveling-
wave structure at a velocity v, ® c¢. Assume alsc that the group velo-
city is low, v, << ¢, so that the induced wave of amplitude dEy
travels a negl?gible distance during the time At = L/c it takes for
dq to transit through the structure. By amalogy to Eq. (6.7a), the
induced wave will have amplitude

dEb = 2k1 dq , (7.18)
where ki is the traveling-wave loss parameter per unit length given by

k= @/8)(c/Q) = % arv, . (7.19)

Here T i1s the shunt impedance per unit length for a synchronous wave
as defined by Eq. {(5.7a), a is the attenuation parameter per unit
length, and Eq. (5.8¢) has been used to eliminate w/Q.

Assume now a constant impedance structure in which v, does not
vary with length. The analysis for the case of a constan§ gradient
structure would diverge at this point. For a constant impedance
structure of length L, the voltage induced by dq is, using Eq. (7.18)

v, =L@E) =2 kLdg . (7.20)

b 1
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Using Eq. (7.19) for kj in this expression, together with dq = I dt,
Tg = L/vg, 1 oL and x = t/Tg, we obtain

v, = I rt vs(dt) = I_rL(dx) . (7.21)

As time proceeds, this induced field element propagates downstream
through the structure and alips out of the downstream end intec the
terminating load. 1If dE, is induced at t = O, then at time t = xT,
the above voltage element dVp is reduced by 2 factor (1l-x) due to
this downstream propagation. In addition, the voltage element will
also decay by a factor exp(~wt/2Q) = exp{-1x) because of wall losses.
The preceding expression for dVy, thus becomes at time x,

=

4V, (x) = I rLt(l-x) e Tdx . (7.22)

Integrating to 8dd up all the induced voltage elements from t = 0 to
t = x, we obtain

V,(x) = Il [(1-%) (1- e““‘) +x e'"‘] . (7.23)

For t << 1, this reduces to

Vb(x) 5 Iori.r(x-x2/2) . (7.24)

In this limit the bean-loading voltage increases parabolically with
time. In general, the beam loading voltage starts off linearly for
x << 1 with slope dVyp/dt = Ior"k" and approaches the steady-state
limit :

Vy~IrLfl-(- e )/13 (7.25)

with slope Ior"g ':2 at t ~ Tg.

The transient energy gaein from the generator voltage component
can be obtained by integrating Eq. (5.10a) from z = 0 to z = xL. Th
result is, assuming Vg i5 turped on at time t' = O,

v = ettt a-e L e

When a generator-produced wave and beam-induced wave are both presen
the net energy gain as a function of time can be obtained by a super
position of Egs. {(7.23) and (7.26). The twc voltage components can,
of course, be turned on at different times. There may be a phase
difference also, which can be taken into account by multiplying V_(x
by cos® where again ® 1s the phase angle of Vg with respect to a
reference phase taken im the direction -V;.

As a final comment, note that by setting dq = I,dt we have
implicitly assumed a train of bunches, each of which is short compa:
te an rf wavelength, and which gre spaced closely compared to the
filiing time. 1If this is not the case, then from Eg. (7.22) the net
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voltage at time t can be obtained by summing the beam induced
voltages
-1x
n

Vbn(t) - rvs‘r(l-xn) e 1, {7.27)

due to charges qp passing through the structure at times t,, where
xg = {t-1t,)/T¢ and Vp, = O for x; > 1.

8. BEAM BREAKUP

Both the theoretical and experimental aspects of beam breakup in
electron linace are discussed in detail in Refs. 1 and 2, and we will
not attempt to duplicate this coverage here. Rowever, since we have
set ourselves the task in these notes of reviewing the main features
of the beam-structure interaction problem, & brief summary follows
giving 82 few of the important analytic results of beam breaskup theory.

8.1 Regerative Beam Breakup

Regenerative beam breaskup is an oscillation within a single ac-
celerating section due to the interaction of the beam with a dipole
(deflecting) mode. 1Ia these medes the E, field component varies
linearly with distance r from the axis, and as cos¢ in the azimuthal
direction (see Sec. 5.1). Regions of transverse magnetic deflecting
fields lie displaced from the region of maximum E, by tA/4 in a
synchronous wave moving at velocity c¢. The field pattern for such
a "THj;-like," or HEM hybrid mode, is sketched in Fig. 8.1. In the
ustual disk-loaded structure, these
deflecting modes are often of the
backward wave type; that is, the
phase velocity and the group velo-

G;?) city are in opposite directiens.

(::) The interaction between a synchro-
nous particle and & deflection
mode can be characterized by the

iran E-Field Lines H-Field Lines transverse shumt impedance per

unit length, defined by

Fig. 8.1. Approximate electric

and magnetic field limes for the 2 + 2
TM;1-like deflection mode in a - (1/k )(3Ez/a;) {8.1)
disk-loaded structure with »- 5 dPsfdz *

phase shift per cavity. Maximum
H-field oceurs a quarter-cycle
after maximum E-~field at the
cross-section shown.

Here k = w/c and EY is the syn-
chronous forward-wave field com-
ponent. For a standing-wave mode,
dP./dz is the average power dissipated in the structure walls per
unit length. For a typical disk-lcoaded structure, the relation

T
_qi_-;i'?-"—i‘?ﬁ (8.2)
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can be used to get a rough estimate of the transverse shunt fmpédance
of the lowest-order deflection mode., In a typical structure the fre-
quency of this mode 1ig 40-50T higher than the accelerating wode
frequency. Therefore, the Q can be expected to be somewhat lower
{70-802) compared to the @ for the accelerating mode.

Consider now a traveling-wave structure with fields proportional
to an amplitude factor A}, and sssume a continuous electron beawm
entering the structure on axis, The particles in the region of trans-
verse magnetic field will experience & deflecting force, and the
transverse displacenent of these particles will tend to incresase ag
the square of the distance along the structure. Since the sign of
the deflecting field alternates every half wavelength, the beam viewe
from the side will look like & wave of growing amplitude, something
like the wiggles in a stream of water from a hose nozzle which is
shaken sideways. The mechanism for energy interchange depends upon
the beam velocity being slightly non-synchronous with reapect to the
wave, If the electrons in the regions of maximum displacement (maxi-
oum deflecting B field)} begin to slip ashead of the wave, they entexr
A reglon of the wave having a decelerating E, electric field com—
ponent. We would, consequently, expect maximum energy to be extracte
from the beam if the electrons slip shead by sbout a half a vavelengt
in the length of the structure, A detailed calculation shows that th
phase slip parameter defined in Eq., {5.27) is & = 2,65 for maximum
energy extraction., The power extracted from the beam is proportional
to the beam current, This power propagates toward the upstream end
of the section, since we are dealing with a backward wave, where it
produces & field with an amplitude factor A2. The condition for an
oscillation is that Ay be equal to the sssumed initiasl field amplitud
Aj. Detailed calculations?® give a starting current

2
v X(v [e)
I_(TW) -‘“ e —33 (8.3a)
8 32(5) L (rllQ)

Here eV, is the energy of the beam in electron volts, and gy(§) is a
function of the phase slip parameter. This function has a maximum
value of 1.04 at & = 2,65, giving the minimum starting curreat. Thi
expressicn was derived assuming & constant electron energy in the
section.. However, the first section in a linac 1s most likely to
oscillate since the energy is lowest, and the energy Is far from
constant over the length of this section, If Vi and V¢ are the inpu
and output energles for such a section, and if Vg >> Vi, then it can
be shown that the starting current is reduced by a factor of 3 below
that in Eq. (8.3) when Vg = V,, giving

Vf xz(v fe) )
1(TW) = —E V. >> ¥ . (8.3b"

g’ r 1) £t

Attenuation in the section was not taken into account in deriving
these expressions. Thus, measured threshold currents temd to exceed
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the computed thresholds by perhaps 50%, It 1s also assumed that the
phase slip condition is accurately maintained over the entire length
of the section, which may not be the case if the group velocity is
very small,

The above relations were derived for a traveling-wave section in
which it was assumed that the backward-wave deflecting mode 1is not
reflected at the input coupler (upstream end) of the structure, 1f
the structure 1s short with bad reflections, or if we are considering
deflecting mode fields trapped within a short regior of & constant
gradient structure, then a standing-wave analysis is @more appropriate,
In such an analysis, the condition for oscillation is that the power
extracted from the beam be equal to the power dissipated in the struec-
ture walls, This leads to a starting current

12V' X
I (sw) = 2 .
s 2
4g2r1L

(8.4)

Again, gy(max) = 1.04, and if the energy gain in the section is large
compared to the input energy the starting current is expected to be
lower. By using r,/Q from Eq. (8.2) in Eq. (8.4), and setting g3
equal to gs{max}, we have
v 12
I,(sW) = .025 2 . (8.5)

Q1

Note that 1.(TW) varies as (A/L)3 since r,/Q ~ 1/1, and that 15(SW)
varies as (A/L)2 for & given Q.
The above starting currents were derived assuming a continuous
beam. For a beam pulse of finite length t,, the starting current is
28 P
increased by the ratio

() FT
g P -
T Tt . (8.6)

Here T¢ = 2Q/w is the f£illing time and efe 15 the amplification factor
from noise required to produce breakup. Experimental data indicate
that F, is ip the range 10-20.

8.2 Cumulative Beam Breakup

The mechanism for cumulative beam breakup is quite different.
In a multi-section accelerator, each section acts like an amplifier
which provides a small increase in the amplitude of the transverse
displacenent wave., Even though the "gain® per stage is close to
unity, (1+¢) say, the total gain in an accelerator such as SLAC with
many sections can be very large. Thus for the SLAC accelerator
(1+¢)V = exp{F,)}, vhere N=960. ¥, (the e~folding factor) ™ 20
and (1+¢) = 1.02 at the threshold for breakup. Assume that the
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defliecting mode occupies a2 length & in a structure of total length L,
The total transverse shunt impedance per gection is then R, = tr,,
where, for the particular case of the SLAC constant gradient gtructure
£ %25 cm, L =3 m end R;/Q has been measured to be 400 ohms.

Details of the beam-cavity interaction are relatively easy to
calculate from first principles in the steady-state limit {(cw beam).
At each awplifying cavity {regions in the structure) there is a
transverge displacement modulation and a transverse momentum modula-
tion on the beam. The transverse displacement modulation excites the
cavity through the interaction with the off-axis E, field component,
and the resulting Hy field component provides an additional momentum
kick to the beam. !n the drift space between cavitles, the transverse
momentum is converted into additional displacement. For maximum gain,
it can be shown?? that the momentum “wave" lags the displacement wave
by 30°. Furthermore, the frequency of the modulation for maximum
gain 1is such as to drive the cavities off resonance with a tuniag
angle ¥ = 30°, For an accelerator with a uniform accelerating gra-~
dient V' = dV/dz, the e-folding factor in the asymptotie limit
(Fe »>> 1) can be shown to be?®,29

=1 zR 172
= . 8.7)

3/4 o
F (W) = (3) [2 VL

For the transient case {pulse length t, less than or comparable to
the filling time), the analysis is more complex. For times which arve
not toc long (:P < F.Tf), the e-folding factor can be written?®

(332 [tzIoz c:(nlm)-]ln .

F Aty = . (8.8)
e 2 V'AZL
The preceding expressions were all derived assuming no focusing.
1f the focusing ie not too strong, the e-folding factor can be
modified?® to take focusing into account. For the case of an ac-
celerating gradient and a focusing strength which are constant along

the accelerator,
2 2,2
L] - -
Fe Fe [1 Cksz lFe] . (8.9)

Here kz is the betatron wave number of the focusing system and the
constant C has the values for the steady-state and transient cases

Css = 1/2

c. = 3/4 .

In Ref. 30 an analysis 1s given for cumulative beam breakup ia the
presence of solenoidal focusing. An asymptotic expression {z must
be sufficiently large) is developed which is valid for strong focus-
ing and arbitrary pulse length compared to the cavity filling time.
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9. TIMPEDANCES ANB WAKES®

9.1 Longitudinal Impedance Function and Wake Potential

If a sinusoidal current at frequency w having a pesk value I{w)
induces g voltage with peak value V{u) in a component or chain of
components, then the impedance is defined as

Z(w) = V{w}/I(w) .

The impedance is compiex, since V{(w) can be out of phase with I{w).
The chain of components can be, in particular, the components in one
couplete turn for a storage ring. " Similarly, if a unit point charge
passes through a component or chain of components, the wake potential
w(t) i5 defined as the potential experienced by a test particle fol-
lowing & difstance’ ¢t behind the unit charge. In the following dis-
cussion we assume high-energy electrons or positrons traveling close
to the speed of light, such that space charge forces between particles
can be neglected. Both the impedance function and wake potential are
therefore identically zero for a beam of particles in free space. As
we will see, efther Z{w) or w(r) is sufficient to completely charac-
terize the-longitudinal effects produced by the beam environment.

The concepts of an inpedance function and a wake potential apply
both to particles and currents passing through vacuum chamber com-
ponents and to currents and charges in lumped equivalent circuits.

In the case of an equivalent circuit, the wake potential is the voit-
age across the circuit as a function of time following the application
of a unit current impulse I{t) = 6(z}. The response of a component

to a2 unit current step is also useful in certain calculations. If
s(1) is the response to a unit current step applied at 1 = 0, then the
relation between the step and impulse response funcrions is

T
s{t) -f w{t")dr? .
o

Note that w{1) 1is in units of voltse per coulomb or olms per second,
while s{1} is in ohms. The forms for w(r) and s(r) for several
common ¢ircuit elements are shown in Fig. 9.1. A resistive {ox
decelerating) wake dg taken to he positive.

9.2 Transform Relations

Problems in accelerator theory can often be viewed within the
conceptual framework provided by either the frequency or the time
domains. Sometimes the framework provided by one domain or the other
is more vseful for viewing or solving a particular problem. In the
past, there may have been some preference for the frequency domain as
being the more fundamental. In these notes, however, problems have
been approached wherever possible in a time-domain framework, with
phasors providing a graphic aid in describing the physics of such
processes as, for example, beam Joading by bunch trains. It is

* See Refs. 50 and 51 for a more extensive treatment of wake potentials

and their applications,
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Fig. 9.1, Impulse wake and step response function for
four circuit elements.

clezrly desirable to be able to view a problem in either domain, and
to iransform physical quantities back and forth between these two
worlds. -

Consider the Fourier expansion for a periodic time-domain func-
tion, such as the curreat I(t} for a bunch train with period At:

- Ina t heid ‘
1(t) = Zan e ° =1+ Z I(wt) (9.1)

where ® > o and

“ ac/2 -jnuot
a = —= f I(t) e dt
D oom Joar/2
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Wm = M, = 2rmfAL 3 m >0

Gm = (0n + Qn) , b = F {00 —a_n)

If J(t) is physically measurable function of time {(beam current for example), then it
iz a real function. Furthermore, it can be expanded in terms of positive (physically
measureable) frequency components w,. Then the relation between the coefficients
@m, bm and an depends on the symmetry of I(t). If I(1} is symmetric, then from

Eq. (3.1)

an = a_p = Real ,

am =20y bm =0
If I(t) is antisymmetric
an = —a_, = Imagmary

bm = 2j0p = Real ;am =0

Now consider the limit Af — oco,w, — 0. Set nw, = w and w, = dw, and let
Hw) = (27 fws)oy, be the density at frequency w of the Fourier components in
the expansion of I(t) as w, approaches 8. We then obtain the Fourier transform
relations for the general function f(t):

oo

£t) = % / Fluw)e®dw = Flw) (9.2a)
Flw) = f f(tye it = E(t) . (9.25)

For the particular case of a Gaussian bunch with charge ¢ and bunch length o,
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1) = s eap (~1*/20)) (9.3a)
I{w) = g exp (—w?o?/2) . (9.35)

For a repetitive train of Gaussian bunches, using I, = (wo/27)q,

o = -;’—: {[(w) + I (—w)] = 21, ezp (~miwia?[2) . (9.4)

Let us now apply these iransform relations to a buach with current distribution
I{t). The wake function w{r), sometimes called the deita-function wake potential,
gives the potential a distance cr behind a unit point charge. The contribution
dVy{t) to the potential at position ¢t due to an element of charge dg a distance
et — t') ahead in the bunch is then

dVp(t) = w(t — £')dg = w(t — ") I(t')dt’ .

Summing the contributions to the potential produced by all charge elements in the
bunch ahead of position ct,

t

Wit) = j w(t — ) I{t)dt' = / w(T)I{t ~ 7)dr . (9.5)

-0
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The total energy loss by charge q, in terms of the loss parameter k
introduced in Eq. (6.5}, is AU = kq?. Thus

k=3 f V() I()de . (5.6)
q -
Now take the transform of Eq. {9.5) to obtain

‘;:(?‘-)- : f e dut g, f wit) I{t-1)dr . {(9.7)
: o

-

"Reverse the order of integration, let t = t + t' and find
[ [,
V) V(0 = I W . (9.8)

Since Z(w) = V(w)/XI{w), we have

2{0) =  wit) (9.9a)
V() =V (2) (9.9b)
I(w) = It} - (9.9¢)

9.3 Properties of the Iwpedance Function

We define the wake function to be a real function of time. This
then imposes a condition on the impedance function, Z{(uw) =
ZR(m) + i Zl{m). Thus

w(t) = Z() = > f 2(w) &° 4y
- ..2.]:; f-‘- [Za(w) cosut = Zl(m) sinmr] dw {9.10)

+ —23; f_' [ZR(m) sinut + Zl(w) cosmt] dw

If the imaginary part is to vanish for arbitrary Z(w), it 1s necessary
for Zg{w) to be an even function of frequency and for Z3{w) to be an
odd function of frequenecy. We can confine ourselves to positive
frequencies only, to obtain
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wit) --% ~[ [ZR(u) cosuwt - Zz(w) sinwt] dw .  {9.11)
]

In addition, the wake potential must be csusal; that is, w(t) =
for t < 0. Therefore

wi-t) -%- f [ZR(u) coswt + ZI{u) ginvtl dw 2 0, €9.12)
o .

leading to

j ZR(w) cosut duw = - f Zl(w) sinwt du . (9.13)
o

o

Substituting Eq. (9.13) in Eq. (9.11),

wi1) -% f ZR(m) cosut dw . (9.14)
o]

Problem 9.1: Show that Egq. (9.13} is equivalent to the
Hilbert transform,

e 2 {u')
1l R '
ZI(«)) - I_ — du . (9.15)

w = W
o

Hint: Rewrite Eq. (9.13) with limits of integration
between -« and =, Substitute for Zy(w) using Eq. (9.15},
then reverse the order of integration. ZR(w) is obtained

from Zy{w)} by the inverse transform {above transform
mypltiplied by -1).

Thus, 1f either the real or the imaginary component of the impedance
function is specified, the other component is also determined as a
consequence of the causality condition.

The preceding relations can be visualized using phaser concepts.
Consider a unit point charge interacting with an impedance Z{w). By
Eq. (9.3b), the spectral density of the current in the frequency
domain is I{w) = 1/ at all frequencies. At time t = 0, due to the
interaction of the charge with the real component of the impedance,
beam—induced voltage elements

dVH(0) = Zp(w) T(w)du = '3? 25 (w)duw

(9.16)
o~ 1 - 1+
dUR(O) == ZR(—u)dm = ZR(m)du
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are produced in the frequency interval dw at tw. A positive real
impedance component indicates that the induced voltage elements
oppose the motion of the charge and extract energy from it. At t = 0,
imaginary beam-induced voltage components

T (0) = % Zpw)de = -3 [-

% |

Z;(w)dm]
{(9.17)

» s

d'\?;w) - -;l 7 (-wdde =+ [— Z;(m)dm]

are also produced which are at right angles to the Teal components
and hence play no part in the energy interchange with the charge.
These real and imaginary voltage elements are shown schematically by
the solid phasors in Fig., 9.2. The total self-voltage acting on the
charge is obtained by integrating the real components over all fre-
quency at t = O,

1 = + - 1~ o+
v, =5 [.., dw[dVR(O) + dvR(o)] - f Za(w}dw . (9.18}

o

At some later time t, the phasor voltage elements will have rotated
to the positions shown by the dashed phasors in Fig. 9,2, The total
wake voltage, including the contribution from the imaginary {(at t = o)
components, is obtained by integrating over frequency,

dVE(O) dvy iy

~+ [
v {0} \va(u

=83 £TIFE M

Fig., 9.2. Diagram showing how imaginary
voltage elements induced by a point charge
at t = 0 in the frequency interval dw
rotate to produce a causal wake.

-



- 63 -

w(t>0) = f [dv; coswt + dV-; sinw;] dw
e (9.19)

1 71+ +
= L [Za(w) coOsSwt - Zl(m) sinwt] dw .

For t < 0, the four phasors rotate in the opposite sense, and

[l

w(t < 0) -%- f [Z;(w) coswt + Z;(w) simt] dvw 20 . (9.20)
[+]

This last relation is equivalent to the causality ¢ondition (%.13),
and together with the preceding relation leads again to Eq, (9,14).
Thus, to satisfy causality, the imaginary voltage components
induced at t = 0 in a frequency interval dw rotate and always add up
for t < 0 so as to cancel the wake produced by the sum of the real
components induced at t = O when integrated over all frequencies, Fo
t >0, the imaginary components rotate so as to produce a total real
wake which is exactly double that duve to the sum of 211 real com-
ponents. Note that by extrapolating Eq. (2.14) to t = 0, we obtain

w(0) = Zws . (9.21)

The factor of two in this expression is essentially the same as that
in Eq. {(6.7b), which was obtained by applying conservation of energy
and superposition to resonant modes in a cavity, To see this more

clearly, let us calculate the total loss parameter k, using Eq. (9.6

k = —:—'i- -]:wvb(t)l{t} = ---1-—2- fﬂvb(t)dt f _1’(1'4}) e-—jwt P

-l

gt o (9.22)

Reversing the order of integration,

1 = ®
k = — f 1" (@) V(w)da = -}-E f z(wde . (9.23)
27q - 27q -
Since I{t) is a real funcrion of time, we have by the same argument
that lead to Eq, {9.11) that the real and imaginari part of I(w) are
symmetric and anti-symmetric respectively. Thus I4{w) is symmetric,
and

k-
7

f 12 (w) zp () . (3.24)
nq o

For a Gaussifan bunch, using Eq. (9.3b),
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v [ "“’2“:2:
k =3 . ZR(u) e de . (9.25)

For a point charge this agrees with the self-wake derived in Eq.
(9.18).

9.4 Application to Resonant Modes

Let us now compute the wake potential and loss parameter for a
single resonant mode. The impedance for such a mode is given by
Eq. (3.39},

R
2]
Z{w) = Zg(u) + 32, () = T3¢
(9.26)
( Ro -R°£
Z{w) = 2. .(w) = .
R 1+ el I 1+

where, as before, £ = {w-uwy)Ty and Tg = 2Qp/uw,.

Problem 9.2: Show that Zp(w) and Zy{w) above obey the
cavsality condition in Eq. {9.13), assuming uw,Tf =

2qp, >> 1.

Applying Eq. (S.14), assuming & high Q mode so that coswt = cosuyt
over the range of w where Zp(w) is appreciable, we obtain

ZRO ® dE woRo
w{t) ~ cosw T * I = cosw T . (9.27)
o "y Joi4+g2 4 °

Using R, = [G.(1+8)771, Q, = (1+8)Q and the fact that the ac-
celerator shunt impedance 1s Ry = 2/6., we have

w R :
wit) = —2-9- (_&‘E) cosu T {9.28)

for the wake function for a mode resonant at frequency w,. The total
loss parameter for a Gaussian bunch is obtained in a similar fashion
using Eq. (9.23),

R a?oz
s {2} ot
k(o) = 7 (—Q) e . (9.29)

Note that for a point bunch w(0) = 2k,, where kg = (0p/4) (R, /Q).
This gives

wit) = 2k  cosw T {9.30a)



- /5 -

0%t
k(ot) - ko e .. (9.30%

These results are readily extended to find the total wake func:
tion and total loss parameter by summing over all modes (assumed no:
overlapping) in a resonant cavity or traveling-wave structure:

wit) = 2 an cosw T (9.31a
n
—uzoz
o}
k(s,) = Zn: ke ) (9.31b

For the case of a resonant cavity, using Eq. (6.6b),

o (f) . 5
k =1{——] =5 {9.32)
n 4 \Q a 4Hn
vhere V,;, 1g the maximum voitage gain for the nth mode for a velocit

of light test particle when the stored energy in the mode is W,
Similar concepts apply to traveling-wave modes in a periodic struc-
ture. Using Eq. (5.7c),

w

x -—‘-‘~(~5—) =2, (9.33)
n 4 n

where E, is the amplitude of the synchronous space harmonic compont

of the axial electric field for the nth mode, and w, is the stored

energy per unit length sumwed over all space harmonic components fi

that mode.

In order to compute the wake potential using Eq. (9.3la), val
for wy and ky are needed for as many modes as peossible, either res
nant modes in the case of a cavity or traveling~wave modes for a
periodic accelerating structure, Values of w, and k, are obtained
solving .the boundary value problem for 8 charge-free cavity or str
ture. Two computer programs are generally available at the presen
time which accomplish this purpose. The program Kn7¢3! solves for
traveling-vave modes in a round pipe loaded by disks with flat,
parallel faces. This structure is described by four parameters:
radius of the beam aperture in the disk, the inside radius of the
pipe, the length of a period, and the length of the pipe between d
faces, The program SUPERFISH® solves for resonant modes in ao axi
symmetric cavity having an arbitrary boundary as & function of the
axial eoordipate z; that is, on the boundary r(¢) 1s constant but
r(z) is an arbitrary function.

As frequency increases, the number of modes per unit frequenc
interval also increases, Since there is a limit on the total numb
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of modes that can be calculated with reasonable computer time, there
is a corresponding maximum frequency for the sums in Egs., (9.31). 1If
this frequency 1s uy, details in the wake will not be accurate for
time intervals a1 X ”m » and the loss parameter will not be sccurate
for bunch lengths ¢, < ”m For high frequencies where the mode
density 18 large, it 18 only the statistical properties of the modes
that are important,

Problem 9.3: For s pillbox cavity of radius b and length L,
show that the density of modes approaches dnfdu = wbL/2%e2,

In the case of a disk-loaded structure, loss by a point charge

into high fregquency traveling-~wave modes can be considered as a dif-
fraction leoss by an equivalent plane wave having the same power
spectrum and Poynting vector at the disk radius as the actual field
due to the charge. This is the so-called optical resonator mode}3?
for the energy loss by a point charge passing through a periodic
sequence of thin plates with circular holes, In the limit of high-
energy (y >> wafc where a fs the hole radius), the loss_parameter
per unit frequency interval predicted by this model is 32

A
dk _ 1
1 - 3/2 . (9.34)

The wake potential due to this "analytic extensicn” for loss at all
frequencies w > w, is then

Cosw'f
w () = 24 f 55

{(9.35)
4A
o X 2x
- —--—-—wm”z {cos x- N7 [1 - 25(\’-1-'—)]}

where § is the Fresnel integral. The constant Ay can, in principle,
be specified analytically, at least for a structure with thin

disks. In practice, it ig better to obtain A, for a particular struc-
ture by making a fit of Eq. ¢9.34) to a log-log plot of computed modes
for w < w_.

The preceding concepts have been applied to compute the wake for
the SLAC disk-loaded structure having a periodic length A/3 = 3,50 cm.
The disk thickness is 0.58 ¢m, the radius of the outer wall is 4.13 cm
and the disk hole radius is 1.16 cm for an average cell near the
center of each constant gradient structure of 3 m length. The wake
for the first 10 ps is shown in Fig. 9.3. The dashed curve glves
the wake due to 416 computed modes, using Eq. (9.31a)., The total
wake is obtained by adding an analytic extension given by Eq. (9.35).
Note that, because of the analytic extension, the total wake has a
vertical tangent at 1 = § but & finite value of w(0) = 8 V/pC/peried.
The wake due to the excitation of the fundamental accelerating mode

X=w T
k]
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only, is shown for compari-
Eon. ~ Note that on this scals
it 15 almost comstant {the
period is 350 ps), with an
amplitude of about cne-sixth
of w(0}.

Figure 9.4 shows the
longitudinal wake for the
SLAC structure out to 300 ps
The large negative (acceler-
ating) spike at 200 ps is th
first reflection from the
outer wall arriving at the
structure axis. Shown again
is8 the wake dve to the funda
mental mode, which undergoes
almost a full perlod of
oscilistion. After 5 to 10
periods, it will be the domi
nant term in the wake, the
higher modes having alwmost
entirely decohered., On the
time scale of interest,
damping of the modes has
also been ignored. Damping
could be taken into account
by multiplying each term in
Eq. (9.31a) by exp{~oat),
where g, is the damping con-
stant for the nth mode,

For a pumber of years
there was a controversy as
to whether the modal analys:
leading to Eq. (9.31a) was
giving the complete wake,

It was thought that this
modal approach might be neg
lecting terms in the wake
due to the scalar potential
of the charge. Bane 3 has
recently shown analytically
that the wodal analysis giv
a wake which agrees with th
derived from the vector and
scalar potentlals for a
charge with v = ¢, Weiland
and Zotter% have shown tha
the modal wake is in agree-
ment with that obtained by
direct integfation of Max-
well's equations, using the
program BCI, for a bunch mc
through a cavity.



- 68 ~

9.5 The Transverse Wake

In this section we work out the transverse wake for the specific
case of an axisymmetric disk-loaded structure. For such & structure,
the synchronous space harmonic component of the nth traveling-wave
mode has an axial electric field variarion described by?3

Ezn = Eon (f)m cos mo-cosmn(t-zic) s (9.36)

where E_, is the field strength at the radius of the disk opening,

For each mode a loss parameter

Ein
k 5 -— {9.37)
n 4wn

can again be defined in terms of the "cold" (no charge present)
electromagnetic properties of the structure. Using the same formalism
developed for the case of longitudinal wmodes, k, will also describe
the intersction of a point charge with the mode in question. Specifi-
cally, the beam-induced energy deposited per unit length in the nth
mode by a charge q traveling parallel to the axis at radius r = Tq is

(e
v, " kn a q . (9.38)

Eliminating w, using the preceding two expressioms,

r m
E = =2 (-—‘1) kq . (9.39)
on a n

The minus sign indicates that the induced field is such as to oppose
the motion of the charge. Substituting Eq. (9.39) in Eq. (9.36), the
induced field at position r, azimuth ¢ (assuming the driving charge g
is at ¢ = 0) and position A2 = &1 behind a charge g at radius Ty is

r A\
E. = -2k g (E)m (—q-) cos m$ COsw T . {9.40)
zn n’ \a a n
For @ = 0, we see that the longitudinal wake potential per unit length
is recovered.

Now define the transverse (deflecting) wake per unit length of
structure by

S () = (cle) dp fdz = (F +cB) (cnf) (9.41)

where d;t/dz is the transverse momentum kick experienced per unit
length of structure by a particle following at distance ct behind a
unit driving charge. The superscript indicates as before that the
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transverse fields are to be evaluated in a reference frame which is
o-movin§ with the particle., In a theorem due to Panofsky and
Wenzel, 3> it 1s shown that the momentum kick in such a co~moving fram
can be expressed in terms of the E; field component only:

(cmf) (cemf)
(th-cit) - j(c!m)‘v’tzz . (9.42)

Problem 9,.4: Péove the Paﬁafsky-h‘enzel theoren.

Hint: Express and (cx in terms of the vector
pqtential A, Expand c x find the totsl derivative
dA/dt, and set this equal to zero for a synchronous wave.

For a synchronous wave, putting Eq. (9.40) 4in the form E,, =~

T .
--Ili?_l.llejm"1 and using the preceding theorem, the transverse wake
becomas

. 2le | 3jE_|
w__ = (c/w) simt(f—-—-—@—-'i';l—""gl' ’

tn 14 r 9¢ (9.43)

where T and § are unit vectors. Evaluating these two components,

R k c w1 fr_\m
T: wtn(r‘,@.t) - Zm(é;) (%) (-;q) cos m¢ sinw T (9.44a

k c " w-l/r \m :
$: um(r,¢,1) = '2“’(::?) (;—) (-—f) sin m¢ sinmn'( « (9.44b

The r component of the dipole (m= 1) wake at 4 = 0 is of wost intere

k c b o
RO 2( )(—-‘1) sinu T . (9.45

a a
n

Note that the amplitude of the dipole wake depends on the transvers:
coordinate r, of the exciting unit charge, but that behind Tq the
wake 1tself gs independent of r. Agein, for a sum of modes

)y
wd\(;)—- Z(a) . m—;‘-simn‘l . (9.46

" Assuming dk;/dw = Alh.s?'/z. we can compute an analytic extension to
the above sum over modes following the same procedure as that which
led to Eq. {(9.35). The result to be added to a sum over modes up €
a maximum frequency wpy is
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() (fﬂ) 4 A1c X 2 + sin x
Yia'T a —wyza 3 cos x + ~— —

m

- J2m (1 - ZS(JZ;;))]L ux

(9.47)

Again, § is the Fresnel integral and the constant A; is obtained by

fit to modal results for w < Wy .
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for the SLAC disk-loaded struc—
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for the SLAC disk-loaded struc-
ture (0-100 ps).

Values for w, and ky, can be
computed for an axisymmetric disk-
loaded structure using the program
TRANSVERS.?® The resulting trans-
verse wake per period for the SLAC
structure is shown in Figs. 9.5 to
9.7. BRote in Fig. 9.5 that for very
short times the total wake increases
almost linearly at the rate of
0.25 V/pC/ps per pericd. This s
about 10 times the slope due to the
Jowest frequency mode, which is
responsible for beam-breakup in
SLAC. In Fig. 9.6, note how the
analytic extension combines with
the modal contribution to preduce
a8 smooth total wake. 1f more modes
are used, together with a contribu-
tion from the analytic exteansion
which is consequently smaller, es-
sentially the same total wake is
obtained. The long-range wake is
showm in Fig. 9.7. The high fre-
quency modes, all of which add
coherently at 1 = 0, have nearly
decohered on this time scale. The
main contribution to the wake 1s
the lowest frequency mode, which has
a period of 235 ps and an amplitude
of 1.0 ¥/pC.

It 1s sometimes useful to de-
fine a dipole transverse impedance
per unit length of structure by

(E: + th)

A e R
()

(9.48)

where E_ and B, are the transverse
deflecting field components pro-
duced by a current f{ilament of
strength I; having a sinusoidal
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Fig. 9.7. Dipole wake per celil for the
SLAC disk-loaded structure (0-2000 ps).

transverse modulation of amplitude Ar at frequency w. For a compone
or for a storage ring of circumference L, the transverse impedance §

L -+
Zd(w) - Vt(m)lld(w) where Vt(m) - J; E+¢x i)tdz and Id(u) = gAr

Problem 9.5: Show that, for a resonant mode,

2c kd

2.2
o a

z

d
L. 9.49
Q ( )
Hint: Multiply Eq. (9.45) by e-mtlZQ' then take the

transform using Eq. (9.2b) to find ¥y (w}, noting also
that Iz{w) = q tg for a point charge.

For typical dipole and iongitudinal modes having the same E, at the
disk radfus in a disk-loaded structure, we expect kg = &4 ky. Howeve
the density of transverse modes per unit frequency interval is twice
as large, since both TE- and TM-1like modes can be excited.?? Using
alsc the fact that kg = (0/2){Z4/Q) for a longitudinal mode (settimy
Ry = 223 im Eq. (6.9)), we obtain

2c

zd - -—-—2 zf. . {9.50
wa

This expression 1s often used to estimate the broadband dipole im-
pedance if the longitudinal impedance is known.
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9.6 The Quadrupole Wake

Evaluating the expression for the t component of Weni{r,$,7) in
Eq. {9.46a) for m = 2, we obtain the quadrupole wake potential

2 k
wa(;r'\) = ﬁ(ff) (-E-)nz $ sinunt .

The wake varies with szimuthal angle as cos?¢d, where again 1t is
assumed that ¢ = 0 ig the aximuth of the exciting charge at radius r,.
The expression for the analytic extemsion is that given by Egq. (9,25)
muitiplied by 2(rq!a)(rfa). The quadrupole wake computed for the
SLAC disk-loaded structure is shown in Figs. 9.B and 9.9. The wake
is again normalized to the disk hole radfus a = 1.163 cm &snd to the
periodic length p = 3.50 cm. To convert to a wake per unit length

of structure, wq(f)frzr in vunits of V{C!m&, the ordinate must be
multiplied by 1012!a3p = 1,82 x 1019, (To obtain the dipole wake

wi{t}/tg in units of V{C!mz, the corresponding factor is 1012/ap =
2.45 x 1015.)

(9.51)
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Fig. 9.8. GQuadrupole wake per Fig., 9.9. Quadrupole wake per

cell for the SLAC structure
{0-10 ps).

cell for the SLAC structure
(0-100 ps).

It can be argued that effects due to the guadrupole wake will bte
small, since its strength is smaller than the strength of the dipole
wake by roughly a factor r r/el, MNote, however, that the quadrupole
wake sets a fuhdamental limit on emittance growth in a linac with
alternating gradient focusing. 1In such a machine the beam cannot
always be round. Fven if the beam 1is exactly on axis and there are
no misalignments, there will still be an emittance growth due to the
quadrupole wake because the beam will necessarily have a quadrupole
moment. In a recent calculation, Chao and Cooper38 have found such 2
situation in which effects due to the quadrupole wake can be
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significant. 1In the first sector of the SLAC accelerator, there is
non-negligible emittance growth for an injectéd bunch of 5 x 1010
particles with S, = 1 mn.

9.7 Scaling of the Wake With Frequency and Structure Parameters

The scaling with frequency of the amplitude of the wake poten-
tfal for a resonant mode, or the magnitude of some characteristic
feature such as the intercept at v = O for the longitudinal wake or
the value of the first meximum for the deflection wake, is5 per unit
of structure,

w{longitudinal) ~ m2
w(dipole) ~ m3 {9.52)
wi{quadrupole) ~ us .

The time at which some characteristic feature occurs, such as the
first zero crossing of the longitudinal wake or the first maximum of
the deflection wake, scales of course as w"l. The magnitude of the
impedance for a resonant mode, again per unit length of structure,
then scales as

Z
?? {longitudinal) ~ ©

A
—%3 (dipole) ~ wz {9.53

z
~%§ (quadrupole) ~ wa .

The amplitude of the so-called broad-band impedance function scales
with the same frequency dependence, The impedance or the wake for
specific vacuum chamber component {as opposed to the impedance or w
per unit length of structure) scales as one power of frequency less
than given above.

The dependence of both the longitudinal and tramsverse wakes o
beam aperture has been investigated by K. Bane3? for the SLAC disk-
loaded structure. The intercept at T = 0 of the longitudinal wake
was found to vary as

1.68

wl(o) ~a (9.54

over the range in aperture radii for the SLAC structure. The time
which the longitudinal wake falls to one-half its value at 1 = O is

= - - 9-5&
/2 .09 alc {
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The amplitude of the first maximum of the dipole wake was computed to
vary as

v ) ~a P (3.55a)

However, the time at which the wske veaches its maximum value also
varies with the beam aperture radius as

L ~ (.64 afc . {9.55b)

Thus the initial slope of the wake was found to vary more strongly
with 8 than the value of the first maximum:

dw
j;t_l_ ~ 8-3"'8 T+0 . {9.55¢)

These scaling relations would not be expected to hold wher extrapolat-
ing to beam apertures significantly different from a = 1,163 cm, which
is the aperture radius for an sverage cavity ig the SLAC constant
gradient structure. If the scaling law is written in the form a™®,
then the value n is larger than given above when scaling to larger
values of 8, and smaller when scaling to smaller a.

A structure filling factor car be defined by £ = (p-t)/p, where
p is the periodic length and t is the disk thickness. For the SLAC
structure, p = 3.5 cm and f = 6.83. When scaling to a structure with
a different £1{11ing factor, computations indicate that the amplitude
of the wake scales roughly in direct proportion to f,

10. SOME APPLICATIONS OF WAXE POTENTIALS

10.1 Single Bunch Acceleration

In this section we consider the acceleration of single bunches
in traveling-wave linac structures. As will be discussed later,
traveling-wave structures are to be preferred over standing-wave
structures for single-bunch amcceleration because the stored energy
per unit length required to produce a given accelerating gradient is
in general lower.

- Using the notation in Ch. 5, the average accelerating gradient
E, for a structure of length L with input power P and unloaded energy
gain V, can be written in the form

5 (vo)z Pr

E& - I - L f£(t) . ;10.1)

For constant fmpedance {CZ) and constant gradient (CG) structures,
CZ: f{1) = (2/1)(1-e—1)2 - 21(1-14-12/2____) (10.2a)

C: £(0) = (L-e 2 ® 20(1ar+208/3 y . (10.2p)
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For single-bunch acceleration it is also of interest to relate the
energy stored per unit length of structure, wg, to the energy gradienmt.
The loss parameter k introduced previously and defined in Eq. {9.33)
provides the desired relatioa:

.2
k 2.5—--9-(.5)- 2
1T, 4\Q w ’

where the subscript emphasizes that kj is per unit length of struc-
ture. The average gradient for a structure of length L can now be
written as

-2
- L T » -
E =4 kw n =&k T¢ 11'[5 (10.3)

where w, = POT /L i3 the input energy per umit leongth, P, = POIL is
the input powet per unit length, and g is a structure e%ficiency.
given by

cz: n = (1-e 2/t (10. 4a)

cG: n_ = -2 . (10. 4b)

Problem 10.1: Derive the expressions for ng im Egs. (10.4).
Hint: Recall that the filling time for both constant impedance
and constant gradient structures is given by Ty = 1{2Q/u).

The structure efficieney ng, and normalized power P, = o/(EgLIr)=
1/£¢1) are plotted in Fig. 10.1 as a function of the sttenuation
parameter 1 for a constant impedance structure. Note that a high
structure efficiency and the

lowest peak power requirement .G R :
are mutually exclusive. The s 17
best compromise for both high fig f - ~4 g2
and low P, is reached for a v on ¢ - g
the order of {.3-0.5. o 1 P " 13z
The structure parameter k3 © 05 7 z

is a strong function of the beam X [ 12 5
aperture radius a. The depen- 3 i =0 &
dence of k3 on beam aperture is © | 1'%
shown in Fig. 10.2 for the SLAC obat ot 11 v 1. g é
disk-loaded structure at 2856 © 02 04 06 0B 10 12 14 %
MHz. The solid curve can be - Bitenotion Povometsr ¢ s
approximated analytically by the .
expression Fig. 10.1. Structure efficiency

and normalized peak power per unit

length as a function of the artenu-
k, = 27 V/pC/m . {(10.5) ation parameter T.

13+ 30.5(a/0)?
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10 , ] : . . . . Other structures might be expected
= to have g similar dependence of kj
---= 1/A:0 on afi.

The familiar disk-loaded
structure does nol necessarily
have the highest value of kj &t &
given frequency and beam aperture.
‘An alternative structure is the
jungle gym structure, shown in
Fig. 18.3. The group velocity of
the accelerating mode in the jungle

4] i S Lt A 1 gym structure tends tc be con-
o4 0.2 0.3 04 giderably higher than is the case
res a/x we for the disk-loaded structure.
In addition, the jungle gym is =&
backward wave structure (phase

20

{WpC-m)

k)

Fig. 10.2. Structure parameter k3

f tion of b aperture
radivs for t:eosmgagiai-lo:ded velocity and group velocity have
structure for two values of disk opposite sigas for the sccelerat-
thickness ¢ (t/ix =: 0.036, % = ing mode). Typically, vgfc ~ 0.20

for the /2 mode (n/2 phase shift
10.5 cm for the SLAC structurel. between adjacent bar), and vgic =

0.19 for the n/3 mode. Table 10.1 compares the jungle gym and disk-
loaded structures at three frequencies that might be of interest for
a high-energy linear collider. Values of r, k3, Q and vgfc for the
n/2-mode jungle gym are scaled from valuves measured"? at”714 MHz for
a structure used for several years as an rf cavity in the Cornell
University electron synchrotron. Values for the n/3-mode jungle gym
are estimated from some old measurements®! made at the Stanford Uni-
versity Microwave Laboratory. The k) value for the disk-loaded
structure with a wider beam aperture, a = 1,50, is obtained from
Fig. 10.2;,v8!c is scaled as a%, From Eq. (9.55¢), the slope of
transverse wake for this structure for t + 0 should be lower by s
factor of about 2.5 compared to & structure with a = 1.16 ca.
Finally, values for the standing-wave disk-and-washer structure,
described in Sec. 3.4, are given for comparison. Note that although
the § and shunt impedance for this structure are very high, the
value of ky is low compared to both the jungle gym and disk-loaded
structures,

] *’ 1 S S I ( Beam Axis
¢ llellell)
|
"-'
Transverse Longitudinal Section
Section ]

154Ba)

Fig. 10.3. The jungle gym bar-loaded accelerating
structure.
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T [31 L T¢

Mafm) pcm @ YRS @ e
2856 Mz
Disk-Loaded 56 19 13,300 .01z 3 .83
{a = 1,16 cm}
Disk-Loaded 46 16 13,000 .035 6 .37
(a = 1.50 em)
Disk and Washer 85 iC 40,000 —- - -—
{a =~ 1.16 cm)
Jungle Gym {(x/2) 51 25 9,000 .22 6 .09
€1/2 diag. = 0.84 em)
Jungle Gym (n/3) 60 3o 9,000 .10 6 .20
(1/2 diag. = 0.90 cm)
4040 MHz _
Jungle Gym {%/2) 61 50 7,560 .22 6 09
Jungle Gym (x/3) 71 60 7,500 .10 .20
5712 MHz
Jungle Gym (x/2) 72 100 6,500 .22 6 .09
Jungle Gyn (w/3) 85 120 6,500 .10 6 .20

10.2 Single Bunch Beam Loading for a Gaussian Bunch

Equation (9.5} gives the beam loading potential within a bun
in terms of the wake potential w{t),.

range 0-20 ps.

ciosely by the expression

vhere

w(t) = & expl-(+/8)™]

A= 226 V/pCim ~ w?

B=6.13 ps ~ w *

n = 0.605

As a specific 1llustration,
consider the disk-lcaded structure for the SLAC Iinac.

The compu
tion of the wake potential for this structure was described in the
last chapter; the resulting wake is shown again in Fig. 10.4 for

For this time range, the wake is described quite

{10.
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For a Gaussian bunch, Eq. {9.5) can be written in the fom

ec AN t . )
Eb(t) - ?—i?- L exp [-— (t -Bt ) ]exp [—t'zcth‘}i] at' .,

2% ©
z

(10.7)

Results for the SLAC structure

at 2856 MHz for several values

of ¢, are shown in Fig., 10.5.
The total energy gain per

(v/pCh

LT}

< unilt length by & particle at
§ time t in the bunch can be ob-
= tained by adding the externmal
£ accelerating voltage to the
£ beam loading voltage,

5

% 5 10 5 20 E(t) = E, cos(ut-8)

. Time {ps) . (10.8)
Fig. 10.4. Longitudinal wake poten- - Eb(t) *

tial per period, p = 3.50 cm, for

the SLAC structure. Here 8 is the phase angle by

which the bunch center leads

the crest of the accelerating

wave produced by the extermal
20 5mm rf source. By adjusting this
‘ phase angle, the rising slope
of the accelerating voltage
waveform can be made to can-
cel, at least in part, the
negative-going beam loading
waveform, resulting in a
reduction in the energy spread
of the particles in the bunch
below the energy spread for

o

N

Q
-

Beam Loading Volioge  [MV/m/ICCparhcles)

10 0 10 20 the case 6=0, This is shown
Time (5] schematically in Fig. 10.6.
. Note, however, that the de-
Fig. 10.5, Beam loading voltage crease in energy spread is
within a Gaussian bunch feor the achieved at the expense of a
S5LAC structure for three values of reduction in the average energy
bunch length. gain per unit length per par-
ticle, given by
-
E= %- f E{t) I{t)dc . (10.9)

aat)

As an example, consider the case of the SLAC structure operating at
E; = 17 MV/m (V, = SO GeV total energy) to accelerate a single bunch
of particles with N, = 5 x 1010 and ¢, = 1.0 om. The energy spread
&VfV, which contains 90% of the particles, and the average particle
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£i1) energy V/V,, are plotted as a

function of the phase offset 8

g, E()=E  —E,(H in Fig. 10.7. In this example
L €y~ the energy spread at 8 =~ 139 §

— - — = reduced by a factor of four

! below the spread at & = O, but

I at the expense of an addition:

i 2~1/2% loss in average energy

|

i

per particle.

The detailed energy dis-
| tribution function for the
1 particles within the bunch ma:

& — sometimes be of interest. Th
e O TIME wsran charge dg in the energy range
dv is given by

Fig., 10.6. Diagram showing how the

single~bunch beam loading gradient it )

Ep(t) subtracts from the rf acceler- dq n 10

ating wave E ¢ = E, cos{wt -8} to av = (dvldt)t*t )
]

give the net gradient E(t)}.

The sum is necessary because,
as can be seen from Fig. 10.6
097 there may be up to four value
of time t = t, giving the sam

C3*% . energy V(r,). The energy
095 o Spectrum actually observed in
> & linac is wodified further b
coa T cause of the finite energy ra
accepted by the energy defint
093 slits, This effect can be ta
) into account by convolving tt
o -ttt 11— g9 above distribution function
¢ z 4 6 8 1012 14 16 18 an appropriate slit function.
PHASE AHEAD OF CREST {degrees) “~ This removes the infinite spi
Fig. 10.7. Energy spread and aver- at energies where the derival
age gain per particle for the SLAC dv/dt vanishes, resulting in
structure with E5 « 17 MV/m, smoothed distribution functi
Np = 5 % 1010 gpa g, = 1.0 mm, Examples of energy spectra f«

. beam loading by single bunch

in the SLAC linac are given in Ref. 42 for various values of the p!
offgset parameter 8, Agreement between the measured and computed
distribution functions is very good, indicatiang that the functiona
form of the wake as shown in Fig. 10.4 has a basis in physical rea
The measurements indicate, however, that the amplitude of the comp
wake may be abour 3D% low.*

The efficiency for transfer of stored energy in the structure
into beam energy 1is also of interest:

n, = q Efe (10.1

where W = Eglﬁkl is defined as the effective stored energy per un
length in the structure., Thus

* Recent measurements (1991) on the SLC are 1lm very good agreement
with predictions based on the calculated longitudinal wake.
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GeN k. B we N 4=

- b1 b (E ) (10.12)
=2 E
E a
a

b

Note that, from Eqs. (10.3) and (10.11},

qE = n, n_w . (10.13)

b
Thus, the product of the beam efficiency and the strcture efficiency
gives the net efficiency for the conversion of the applied input
energy per unit length from the rf sources into beam energy.

It is i{nformative to introduce the beam loading enhancement fac-~
tor B, defined in Sec., 6.2 for a point bunch, into the expressiomns

for average energy gain per particle and beam efficiency. By
definition,

Em= EaFl cosh - AEb £ Ea - AE {10.143)

BE, = kg B(o) . ‘ (10.14b)

In Eq. (10.14b} we note explicitly that B is a function of bunch
length. The bunch form factor for the accelerating mode, Fj, 1s also
introduced in Eq. (10.}4a), although usually it will be quite close
to unity (see Sec. 3.3). If a given relative energy reduction per
particle BE/E, is specified, the number of particles that can be
accelerated is, from Egs. (190.14),

Ea AE
Nb - Hk—l [E_ - (1- Fl cosf) . {10.15)

a

For Fj cos8 = 1, note that N scales as Eafﬂuz. The beam efficiency,
Eq. {10.12), can alsc be written in terms of B, using Egs. {10.14), as

n o=t fy - SEVI2E L 1 F cose)| . (10.16)
b B = = 1
E E
a a
The maximum possible efficiency as a function of AEfEa is
Fi cosze
nb(max) = 3 {10.17)
at AE/E, = 1 - (F; cos8)/2.
The enhancement factor can be computed using
Blo) = 5—— [ E () 1(t)de (10.18)
2 z b
F ok, q - .

111
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where Fy is the bunch form factor for the accelerating mode (normally
F; = 1). The enhancement factor is shown as & function of bunch
length %in Fig. 10.8 for the SLAC disk-loaded structure (3 = 10.5 cm,
ky = 19 V/pC/m). As an example, consider a 1 mm bunch with B = 3.1,
For AE/E, = 0.1, F; cos « 1 and E, = 100 MV/m, the number of par-
ticles that can be accelerated is, from Eq. (10.15), Np = 1.1 x 10iZ,
Using Eq. (10.16), the beam efficiency is 12Z.

ENMANCEMENT FACTOR B

§ 1 [} % ]
4] s F
BUNCH LENGTH o, {mm)}

a7 Ap VR

Fig. 10.8. Beam loading enhancement factor
as a function of bunch length for the SLAC
structure.

For a Gaussian bunch, B{¢) can be written directly in terms of
the values k, and w, for the structure wmodes as

-wzcz -1 -w202

B(o)-(kle 1‘) Zk e Bt (10.19)

n
alin

It was shown earlier that, for a single bunch of 5 x 1010
particles in the SLAC linac operating at 17 MeV/m, the single bunch
energy spread due to the longitudinal potential was minimized by
running the bunch about 13° ahead of crest (see Fig. 10.7). .
Figure 10.9 shows this optimum phase as a function of the number of
particles per bunch for the case of a linear collider using the SLAC
accelerating structure at a gradient of 100 MV/m. Results are given
for several bunch lengths at 2856 MHz and 5712 MHz. Figure 10.10
shows the minimum energy spread at the optimum phase, while Fig. 10.1
shows the average energy per particle in the bunch. Figure 10.12
gives the beam energy extraction efficiency as defined in Eq. 10.11.
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In Fig. 10.10 it is seem that the minimum energy spread is
divided into two regimes. At low bunch charge the spread is
doeminated by the curvature cf the rf wave near the crest, and

is given by

&), G)

907

At large values of bunch charge, the energy spread is
dominated by the bunch wake, and is given roughly by

n k.q
(9%) ~0.3 2o =122
90% cos Bm Ea cosBm

where Bm is the phase for winimum energy spread.

{10.20a)

(16.20b)

30 2856 MHz /

e = ST 12 MH2 /

{degrees}

OPTIMUM PHASE

|0|0 ‘0"
f PARTICLES/BUNCH

102

et

Fig, 10.9- Phase angle ahead of crest which minimizes
the single-bunch beam leading energy spread as a func-
tion of number of particles per bunch for the SLAC disk-

loaded structure at a gradient of 100 MV/m.
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10.3 Two-Parcticle Model for Transverse Emittance Growth

In a continuous distribution of charge, each particle is saffected
by the transverse wakes from a1l other particles in the bunch which
are ahead of the particle in question. To solve the transverse equa-
tion of motion for the case of an arbitrary charge distribution, also
taking into account acceleration and external focusing, 1s a formidable
task. Chao gg_g;.,““ give a solution for the case of a linear wake
and a rectangular charge distribution, but the result is too complex
to be cast in a form permitting simple scaling. The simplest model
that still contains the essentials of the physical sitvation is a two-
particle wodel for the bunch. Congider a model for a Gaussian bunch
of total charge q in which a head charge q/2 is located at z' = 4o,
and a tail charge q/2 is located at z' = -g,, where z' is the coordi-
nate relative to the bunch center. Assume a uniform externa! focus-
ing field of strength kﬂ' such that the head particle mwoves on an
orbit described by x; cos kgr as a function of distance ¢ along the
accelerator, The transverse force acting on the tail particle due to
the dipole wake is then :

1
Fl -3 eq_xo wd(Zcz} cos kaz .

where wy(20,) is the dipole wake evaluated at 2g,. The displacement
x1 for the tail particle obeys the transverse equation of motiocn

d dx, 2
E;-[V(z)-g;-] + V{(2}) kexl = Fl(z)fe R (10.21)

where eV(z)} is the energy. For the case of constant energy eV,,
Eq. (10.21) gimplifies to '

" 2 =
Xy + kB X C cos ksz . {19.22)

where xi = dxi/dz, xg

1

d2x1I622 and

qx w,{20_}
o d z
C = A . (10.23)

Equation (10,22) 18 the equation for the amplitude of & lossless
harmonic oscillator driven at resonance. Assuming xj = x3 = 0 at
z = (J, the solution is

- L (10.24a)
x, Tig {z sin ksz)
’ C
x; = %kﬂ {sin sz + sz cos ksz) . (10.24b)

Two limits are of special interest. For kg = 0 we obtain



~ 8% -

% - cz?/2 . (10.25a)
xi = Cz (10.25b)
. (:2 3
£E= xl:ll - ¥ (—i-)z . (10.25¢)
In the limit of strong focusing, kaz >» 1,

Cz
X, (st) sin kaz {10.26a)

.. [ce
Xy (2 )cos sz (10.26b)

) ) AR _

€z 1|x1||xi| -y (ZE;) z . (10:26c)

Thus, the ratio of the maximum displacement with strong focusing to
the displacement with no focusing is

[x1|(focusing) 1 1

% {no focusing) kaz 2% NB

» {10.27)

vhere Ng = z/ig is the number of betatron wavelengths. The cor-
responding ratio of emittances is 1/(4x Np). '~

Note that the wotion of the tail particle is 90° out of phase
with respect to the motion of the head particle. In phasor notatiom

Eq. (11.24a) gives

xl(z) - &’1(0) - JAR {10.28)
where
qzw_{20)
Cz t z
A= K x 4V K - (10.29)
g8 o o B

As gn example, consider the SLAC linac (z = 3 x 103 m), with Ag =
100 m and 2 bunch with § » 1010 particles (q = 8 x 10‘9 C). Assume
a bunch length 6, = 1 om, or op = 3.3 ps {these are parameters for
the proposed SLAC Linear Collider). From Fig. 9.5 the transverse
wake at 6.6 ps 15 1.0 x 1034 V!C—m!periodi recalling that the dimen-
sion a of the disk opeming s 1.163 x 107“ m. Since the length of «
cell is 3.5 x 1072 m, the wake we(20,) = 2.8 x 1015 v/C-m?. Let us
approximate acceleration to 50 GeV (again, the energy for the SLAC
Linear Collider) by a constant energy of 25 GeV. Putting these
numbers in Eq. (10.29) we obtain A = 10, or [x;| = 10{x,}, for the
smplitude of the oscillation of the tail charge as driven by the he
charge. The solution obtained by Chac et al.,““ for these same
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parameters, but assuming a continuous rectangular charge distribution
and uniform accelieration from 1.2 to 50 GeV, is A = 6. Thus, Egq.
(10.29) provides a2 simple but reasonably accurate expression for esti-
mating the single-bunch emittance growth due to the transverse wake
in a linac with focusing.

Problem 10.2: Write the egquation of transverse motion,
Eq. (10.21), for the case of a linac with uniform acceler-
ation, V{(z) = Vo + V'z. Let the strength of the focusing
force scale with beam energy so that kg remains constant,
independent of z. Can you find an asymptotic expression
analogous to Eq. (10.29) for the growth ratio A?

If there is an energy spread for the particles withian_the bunch,
there will also be spread in betatron frequencies, since kg ~ 1fy for
a given focusing strength. This corresponds, in the two-particle
model, to a2 head particle with frequency (wave number) kg, drivipg a
tail particle with frequency kg, = kBo + &%. The tail particle is
now a harmonic oscillator being driven off-resonance, and we might
expect 2 reduction in the growth of the amplitude of the oscillation
compared to that given in Eq. (10.26a). .

The equation of motion for this case and its solutions, assuming
X} =xy=0atz=0, is

" 2
X3 + kBl x, = C cos kBoz (10.30a}
X = —E"—g——i (cos kﬁoz - cos kBlz)
kBl - kﬁo {10.300)
2 ([ oen oo o]
kz - kz g[sin 3 (ksli-kso)z sin 3 (kﬁl kso)z
B1 fo
e o€ - :
x > 5 (kBl sin kg,z kg, sin kaoz} « (10.30c¢)
k -k
Bl Bo

The maximum amplitudes of x and x', assuming 6k/kg is small, ave

C

|x1| " ¥ ek {1G.31a)
8
Il = 5 (10.31b)

en %tf_]
. kﬁ(ak)? (10.31e)
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By comparing Eq. (10.31a) with Eq. (10.26a) the reduction in 'xl| due
to the head-tail frequency difference is

lel (with&k) | ,
z 8k ) {16.32)

lxi!(&k - 0)

The emittance is reduced by the square of this factor,

10.4 Strong Head-Tail Instability in a Storage Ring

In a storage ring, the head and the tail of the bunch change
places periodically due to synchrotron oscillations. The head first
drives the tail for half s synchrotron period, and on the next half-
period the tail moves forward to drive the former head, which has now
become the new tail., Thus a feedback mechanism exists which can lead
to a8 possible instablliry. Let us assume that the transverse deflec-
tion wake is confined to the rf structure only, of length Lyf. There
will certainly be transverse wakes associated with other wvacuum
chamber componenrts in the ring, but the rf structure is often the
mator impedance source. Ia one-half synchrotron period the bunch
will pass through the rf structure £./2f; times, where f_ is the
tevolution frequency and fg is the synchrotron frequency. Since the
current per bunch is Iy = q fp, the growth factor A in Eq. (10.29) is,
efter one~-half synchrotron period,

Ty e ¥

A= 8 v 3 . (10-33)
o 5

Here we have introduced the beta function, B.¢ = 1/kg, which is normal
in storage ring nomenclature. The wake function in Eq. (10.33) wmust
also be averaged from 1 = § to 15 = 20,, where T * T, Simugt.

Problem 10.3;: Show that the average wake seen by the tail
particle during one-half period of synchrotron oscillation
is

[T e
° (Tn - )

The phasor diagram in Fig. 10.13 i{llustrates how .the phasors
representing the betatron oscillations of the head and the tail
particles change during each half synchrotroa period. 1let xél) and
%§1) be the head and tail particles during the first half-period. 1f

~(1) ~( ) j at the beginning of the half-period, then it will be
driven to x{l) -3¢ at the end of the half-period, where (see Fig. 10,

gin a = % * {10.353)
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Thus X,{(1) and X;(1), when

chosen in this manner, are eipen-
vectors which differ from one
turn te the next by a real phase
shift only. During the next

half period the roles of the
particles are reversed, and par-
)‘hm' ticle X, is changed according to
;(2) - ;(2) e'j“ - ;(1) e'JZ“.

o 1 o

Equatfon (10.35) has two
important consequences, First,
if (A72) < 1, 1t corresponds to
a rteal shift in betatron fre-
quency given by

“TIup

. a 1 -1 A
Fig. 10.13. Diagram showing the Ay = = (—1}-) w = - (— sin 3-) w
elgenvectors on successive half & 4 8
periods of synchrotron oscillation (10.36)
for the motion of two particles
driven by the transverse wake in Secondly, for A > 2 the fre-
a storage ring. quency shift becomes imaginary,

indicating unstable growth.
From the geometry of Fig. 10.13 it is also seen that A = 2, o = T/2 1is
a 1limit for stable amplitudes of oscillation for the twe particles.
This limit oun stability using the two-particle model was first derived
by Kohaupt.“3 The threshold current for the instability can be found
by setting A = 2 in Eq. (10.33),

le v f
o s

- 1 - ?
TL_ 8 (10.37)

Ib(threshnld) =
rf "rf

Measurements of threshold currents for the single~bunch transverse
instability observed in PEP, PETRA and SPEAR are in reasonable agree-
ment with Eq. (10.37).

10.5 The Long-Range Wake and Multibunch Acceleration

See Ref. S@L(SLAC-PUB-5062) and Ref. 5.



-&9-

ACKNOWLEDGEMENTS -

In developing the material presented in these lectures, I have
profited through interactions with many colleagues over a peried of
vears, While it is not possible to acknowledge the many relevant
discussions ipn detail, I would like to single out a few contributions
which have been especially helpful. The proof of the fundamental
theorem of beam loading outlined in Problem 6.1 was suggested by Klaw
Halbach, Karl Bane has been involved in all aspects of the theory am
computation of the wake potentials, and in particular was responsible
for computing the wske potentials shown im Figs. 9,3 through 9.9,
Discuseions with Alex Chac and Phil Morton have been helpful in clari.
fying various aspects of the impedance—wake potential formalism
presented in Ch. 9. The two-particle model for transverse emittance
growth in a linac, as given in Sec. 11.1, is largely based on an
analysis suggested by Alex Chao and Phil Morton. The analysis in
Sec. 11.2 of the strong head-tail instability in storage rings is the
result of a collaboration with Alex Chao, Phil Morton, John Rees and

Hat thew Sands. MW‘M%

_gudhlishedq Finally, 1 would like to thank Ronald Ruth for his effort
in editing the manuscript for these lectures, and for his numerous
helpful comments and suggestions.

REFERENCES

1. BR. B. Neal, ed. The Stanford Two-Mile Accelerator, (W. A.
Benjanmin, New York, 1568).

2. P. Lapostolle and A. Septier, eds. Linear Accelerators (North
Holland, Amsterdam, 1970). See Chapters B.l.l, Accelerating
Structures; B.1.2, Particle Dynawics; B.1.3, Beam Loading and
Transient Behavior; B.l.4 Beam Breakup.

3. Harvin Chodorow and Charles Susskind, Fundamentals of Microwave
Electronics (McGraw-Hill, New York, 1964).

4, A. Staprans, E. W, McCune and J. A. Ruetz, “High Power Linear
Beam Tubes,” Proc. IEEE 61, 299 (1973).

5. H. C. Hoyt, D. D. Simmonds and W. F. Rich, Rev. Sci. Instrum, 37
755 (1966}.

6. K. Halbach and R. Holsinger, Particle Accel. 7, 213 (1976),

7. R. L. Gluckstern, K. Halbach, R. F. Holsinger and G. N. Minerbo,
1981 Linear Accelerator Conference (Santa Fe, New Mexico,
October 19-23, 1981). To be published.

B8, D. E. Nagle, E. A. Knapp and B. €. Knapp, Rev. Sci. Instrum, 38,
1583 (1967).

‘"9, E. A. Knapp, Ch, C.1.1c in Linear Accelerators, P. Lapostolle
and A, Septier, eds. (North Holland, Amsterdam, 1970).

10. J. R. Rees, "A Perturbation Approach to Calculating the Behaviorz
of Multi-cell Radiofrequency Accelerating Structures® PEP-255,
Stanford Linear Accelerator Center {1976).

11, P, B. Wilson, 1EEE Trans. Nucl. Sci. NS5-16, No. 3, 1092 {(1969).




-90 -

12, J, J. Manca, E. A. ¥Knapp and D. A. Swenson, IEEE Trans. Nucl.
Sci. N$-24, No. 3, 1087 (1977).

33, 8. O. Schriber, Proc. 1979 Linear Accelerator Conference (BNL-
51134, Brookhaven National Laboratory, 1979), p. 164,

14. M. Henke, "The LEP Accelerating Cavity," LEP Note 143, CERN
{1979). '

15. C. G. Montgomery, R, H. Dicke and E. M. Purcell, eds. Principles
of Microwave Circuits. Radiation Laboratery Series Vol. B
(McGraw-Hi1l, New York, 1948), Ch. 7.

16. M. Lee and L. Swmith, PEP-Note-222, Stanford Linear Accelerator
Center (1977).

16a. P. B. Wilson, Ref. 2, Ch. E.2.

17. M. Sands, “The Physics of Electron Storage Rings: An Intro-
duction,” in Physics with Intersecting Storage Rings, B. Touschek,
ed. (Academic Press, New York, 1971); p. 257f. Also available as
SLAC-121, Stanford Linear Accelerator Center (November 1970).

18. K. W. Robinson, "Stability of Beam in Radiofrequency System."”
Cambridge Electron Accelerator Report CEAL-1010 (February 1964).

19. A. Hofmann in Theoretical Aspects of the Behavior of Beams in
Accelerators and Storape Rings. (CERN 77-13, July 1977}, pp.
163-165.

20. P. B. Wilson, Proc. 9th Int. Conf. on High Energy Accelerators
{Stanford Linear Accelerator Center, 1974), p. 60.

21, P, H. Ceperly, IEEE Trans. Nucl. Sci. NS-19, No. 2, 217 (1972}.

22. D. A. Watkins, Topics in Electromagnetic Theory (John Wiley, New
York, 1958), Ch. i,

23. B. Zotter and K. Bane, "Transverse Reconances of Periodically
Widened Cylindrical Tubes with Circular Cross Section.” PEP-Note
308, Stanford Linear Accelerator Center (September 1979).

24. G. A. Loew, "Non-Synchronous Beam Loading in Linear Electron
Accelerators,” Microwave lLaboratory Report No. 740, Hansen
Laboratories, Stanford University {August 1960).

25, P. B. Wilson, IEEE Trans. Mucl. Sci. N§-26, No. 3, 3255 (1979).

26. M. Sands, PEP-Note-90, Stanford Linear Accelerator Center {July
1874).

27. P. B. Wilson, “Transient Beam Loading in Electron-Positrom
Storage Rings," PEP-Note-276, Stanford Linear Accelerator
Center {(December 1978).

28, R. H. Helm and G. A. Loew, Ref. 2, Ch. B.1.4.

29. P. B. Wilson, "A Simple Analysis of Cumulative Beawm Breakup for
the Steady State Case." HEPL-TR-67-8, High Energy Physics
Laboratory, Stanford University (September 1967).

30. V. K. Neil, L. S. Hall and R. K. Cooper, Part. Accel. 9, 213
(197%).

31. E. Keil, Nucl. Instrum. Methods 100, 419 (1972).

32, See, for example, Sec. 4.3 in Ref. 31.

33. ¥. Bane, "Constructing the Wake Potentials from the Empty
Cavity Solutions of Maxwell's Equations.' CERN/ISR-TH/80-47
(November 1980).

34. 1T. Weiland and B. Zotter, "Wakefield of a Relativistic Current
in & Cavity." CERN/ISR-TH/80-36 (July 1980).

35. W.K.K. Panofsky and W. A. Wenzel, Rev. Sci. Iastrum. 27, 967
(1956).




36.
37.
38.
39.

49,
41,

42,

43.
44,

45.

46.

47.

- 48.

49.

-9l -

K. Bane and B. Zotter, 11th International Conf. on High Energy Accelerators
(Birkhauser Verlag, Basel, Switzerland, 1980), p. 581. -

K. Bane, “Transverse Cavity Impedance in LEP,” CERN/ISR-TII/80-48
{November 1980).

A. W. Chao and R. K. Cooper, “Beam Breakup Due to Quadrupole Wake

Field for Sector 1.” International Note CN-142, Stanford Linear Accelerator
Center (January 1982}.

K. Bane, private communication.
M. Tigner, [EEE Trans. Nucl. Sci. NS-i8, No. 3, 249 (1971).

See, for example, Mictowave Laboratory Reports ML-416, M1L-432, ML-520,
ML-557, and ML-58], Stanford University (April 1957- February 1959).

R. F. Koontz, G. A. Loew, R. H. Miller and P. B. Wilson, IEEE Trans. Nucl.
Sci. NS-24, Ne. 3, 1463 (1977).

K. Bane, private communication {1991).

A. W. Chao, B. Richter and C. Y. Yao, 11th International Conf. on High
Energy Accelerators {Birkhauser Verlag, Basel, Switzerland, 1980}, p. 597.

R. D. Kohaupt, “Simplified Presentation of Head-Tail Turbulence”. DESY
Internal Report M-80/19 {October 1980}.

G. Caryotakis, “Multimegawatt RF Power Sources for Linear Colhiders”, Pro-
ceedings of the 1991 Particle Accelerator Conference, San Francisco, CA,
May 6-9, 1991 (to be published). Also SLAC-PUB-5508 {April 1991).

Z. D. Farkas, H. A. Hogg, G. A. Loew and P. B. Wilson, Proceedings of the
9th International Conference on High Energy Accelerators, SLAC, Stanford
May 1974; pp. 576-583. Also SLAC-PUB-1453.

Z. D. Farkas, IEEE Trans. MTT-34, 1036 {1986). Also SLAC-PUB-3694
(1986).

P. B. Wilson, Z. D. Farkas and R. D. Ruth, Proceedings of the 1990 Linea:
Accelerator Conference, Albuquerque, NM, September 1990 (LANL Repori
LA-12004-C, Los Alamos, NM, March 1991) pp. 204-206. Also SLAC-PUB
5330 (September 1990).

S0 q@, K. L. F. Bane, P. B. Wilson and T. Weiland, “Wakefields and Wakefield Ac-

St

celeration™, in Physics of High Energy Particle Accelerators, AIP Conference
Proceedings No. 127, M. Month, P. Dahl and M. Dienes, eds. {Americar
Inst. Physics, New York, 1985), pp. 875-928. Also SLAC-PUB-3528.

ﬁ;\ P. B. Wilson, “Introduction to Wakefields and Wake Potentials”, in Physic:

of Particle Accelerators, AIP Conference Proceedings 184, M. Month and M.



Dienes, eds. {American Inst. Physics, New York, 1989), pp 525-564. Also
SLAC-PUB-4547 {1989).
g2 ¥R D.U.LY. Yo and P. B. Wilson, Proceedings of the 14th International Con-

ference on High Energy Accelerators, in Particle Accelerators 30, 65 (1990).
Also SLAC-PUB-5062, (September 1989)}.

53 ’. Ronald D. Ruth, “Mulii-bunch Energy Compensation”, SLAC-PUB-4541
(February 1988).

LiST OF SYMBOLS

Symbols are listed by chapter, in order of first use. The
equation number in which, or immediately following which, the symbol
is first defined or used is given in pareatheses after each definition,
Symbols are omitted when they have a clear, conventional meaning
{(e.g., t, q, Y), or when they are used a single time only without
possibility of confusion. Note that several symbols have different
meanings in different chapters.

Chapter 2
v o
v, Ve
v

¥
Wey W
£(z)
e

Vo

a, O¢
Chapter 3
E, {(emf)
k

C, 8
Ra

I

Rg

Z,

Ry

Vu

T

L

[:]

Va

cr, st
¥

b

b

Qo QO
r

A

Angular frequency of rf generator (2.1)
Complex {phasor) cavity voltage (2.1)(2.3)
Generator voltage component in a cavity (2.3)
Bean loading voltage component in a cavity (2.3)
Stored energy in a cavity or in a given cavity

mode {2.4){2.5)
Function relating cavity field to stored energy (2.6}
Resonant frequency for a particular cavity mode (2.7)
Voltage induced in a cavity by a point charge (2.8)
RMS bunch length in time (2.9)

Axial field in a co—moving frame (3.3)

Free—space propagation constant k = wfc = 2%/3% (3.3)

Cosine and sine integrals for cavity voltage (3.5)

Cavity shunt impedance {accelerator definition){3.9)

Cavity power dissipation (3.10)

Surface impedance (3.11)

Impedance of free space (3.11)

Uncorrected shunt impedance {3.12a)

Uncorrected cavity voltage (3.12b)

Transit-time factor (3.13a)

Length of cavity or gap (3.14)

Transit angle, 8 = kL (3.14)

Average voltage gain per particle; accelerating
voltage {3.21) '

Cosine and sine integrals for bunch form factor (3.22)

Bunch form factor (3.24)

Total length in time of a rectangular bunch (3,25b)

Radius of a pillbox cavity- (3.27)

Unlcoaded cavity ¢ (3.28a}

Shunt impedance per unit length (3.28c)

Free space rf wavelength (3.28b)
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Chapter &

=
!

Q

-
11 s

Q

~g3 -

Geometry constants for a pillbox cavity (3.29a,d)

Number of cells, coupled resonator medel (3.30)

Mode number, coupled resonator model (3.30)

Bandwidth, coupled resonator model (3.30)

Center frequency of passband, coupled resonaror
model {3,30)

Cell number, coupled resonator model (3.31)

Field flatness function, coupled resonator model
(3.32)

Cavity coupling coefficient (3.34")

Cavity shunt conductance, equivalent circuit model
(3.34%)

Cavity power dissipation, equivalent circuit model
{3.347)

Peak value of rf curreat (3.341%)

DC current (3.34")

RF Generator current, equivalent circuit model (3,3

Generator power, equivalent circuit model (3.35a)

Generator voltage component at vesonance {3.35a)

Beam loading voltage component at resonanc7 (3.35b)

Ream loeding parameter, K = (10/2)(R3!P3)1 2 (3.36a)

Beam conversion efficiency {3,36h)

Reflected power

Unloaded cavity admittance for a resonant mode {3.3;

Tuning parameter, 8§ = (w-wg)/w, €3.38)

Loaded cavity impedance, admittance (3.39)

Loaded impedance at resonance, R, = {G.(1+ B)]"l
{3.39) .

loaded Q, Q = Q,/(1+8) (3.39)

Tuning angle, ¥ & tan‘if—ZQLéj (3.49)

Loaded filling time, Tf = 2Qp/w, (3.43)

Ph?zelog Vgr with respect to -Tg (see Fig. 3.13)

.1a

Phase of V. with respect to -Ib {synchronous phase
angle) {(4.1a)

Power transferred to beam, Py, = I,Vy (4.6a)

Cavity coupling for zerc reflected power (4.6a)

Generator power at optimum tuning and coupling (4.6

Tuning angle at optimum tuning and coupling (4.7

Synchrotron frequency (4.8)

Tuning parameter, £ = (w-wy)Ty {4.13)

Filling-time parameter, n= wgT¢ (4.13)

Equilibrium beam loading voltage and current (4,13)

Stored energy and average power transfer for a phas
oscillation (4.14)
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Azimuthal angle, cylindrical coordinates (5.1}

Complex propagation constant per unit length (5.1)

Propagation constant per unit length (5.2)

Attenuation parameter per unit length (5.2)

Periodic length (5.3)

Propagation constant for the fundamental space
harmonic (5.3)

Propagation constant for the nth space harmonic (5.3)

Phase velocity, vy = w/B {5.4)

Accelerating field in a travelimg-wave structuare (5.7a)

Power flow in a traveling-wave structure {5.7a)

Traveling-wave shunt impedance per unit length (5.7a)

Stored energy per unit length (5.7b)

Group velocity, vy, = dw/dB (5.8a)

Field at z = 0 and 2 ~ L in a traveling-wave structure
{(5.10a)

Power filow at z = 0 and z = L (5.10b)

Attenuation parameter, T = al, for structure of
length L (5.11)

Filling time for a traveling-wave gtructure {5.15)

Unloaded energy gain for a structure of length L
{5.16)

Beam-induced field in a traveling-wave structure (5.20)

Beam-induced voltage in a structure of length L (5.22}

Beam-loading coefficients for a traveling-wave
structure {5.23)

Phase slip parameter (5,27)

Parameter relating stored energy and voltage,
a = W2 (6.1)

Angles in the proof of the fundamental theorem of
beam loading (see Fig. 6.1) (6.2)(6.3)

Single-pass beam induced voltage {6.2)

Bffective voltage seen by a point charge (5.3)

Self-voltage factor, f = Ve/Vy (6.4c)

Energy loss parameter, k £ w/q? (6.5)

Phese of the generator voltage component (see Fig. 6.2)
(6.8)

Loss parameter for the accelerating mode {(6.8)

Beam-loading enhancement factor (6,10)

Energy loss to the fundamental and to higher—order
rodes {6.11)

Parameter & for the fundamental (accelerating) mode
6.12)

Single-pass beam induced voltage for the fundamental
mode (6.12)

Higher-order mode loss impedance and voltage {(6.13a}

Loss parameter for the nth mode (6.13c)
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Time between bunches (6.13c)
Synchrotron radiation loss (in volts) per turm (6.15)
Cavity voltage just before and just after arrival
of bunch (see Fig. 6.2) (6.16)
Phase of cavity voltage just before arrival of
bunch (6.16)
Decay parameter, T = T,/T¢ (6.24a) i
Phase shift between bunches, § = Tp{w,-w) (6.24b)
Beam—induced voltage component just before and just
after arrival of bunch (see Pig. 6.3) (6.25a)
Effective beam~induced voltage (see Fig. 6.3) (6.25b)
Real and imaginary components of Vi, (6.26)
Unloaded filling time, Tgy = 2Qy/w, (6.27)
Unloaded decay parameter, tg = T},/Tg, (6.27)

Transient difference vector {see Fig, 7.1) (7.1)
Transient cavity voltage {(see Fig. 7.2) {(7.2a) (7.6)
Normalized time, x £ t/Ty (Sec. 7.2) (7.10)
Decay parameter, T = Ty/Tg¢ (Sec. 7.2) (7.10})
Transient phase angle of cavity voltage (7.11)
Real and imaginary components of the transient
part of V. {(x) (7.11)
Loss parameter per unit length for the accelerating
mode in a traveling-wave structure (7.19)
Normalized time, x = t/T¢ (Sec. 7.3) (7.21)
Traveling~wave attenuation parameter (Sec. 7.3) {(7.21)

Transverse shunt impedance per unit length (8.1)
Beam energy in electron volts (8.3)

e~folding factor (8.6)

Beam pulse length (8.6)

Energy gradient, av/dz (B8.7)

Focusing strength {betatron wave-number) {8.9)

Complex impedance function (longitudinal) (See, 9.1)
Time domain wake potential (Sec. 9.1)

Step response function (Sec. 9.1}

Time following a unit point charge {Sec. 9.1)
Beam-induced voltage wirhin a bunch (9.5)

Self-wake seen by a point charge (9.18)

Loss parameter and frequency for the nth mode (9.31)

Fresnel integral, with x = wyt {9.35)
Maximum frequency for sum over modes (9.35)
Disk-hole radius (9.36)

Azimuthal mode index (9.36)
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Transverse loss parameter (Sec. 9.5) (9.37)

Field at disk-hole radius {9.37)

Radius at location of wake-producing charge (9.38)
Transverse wake {any m » 1) (9.41)

Dipole wake potential {(m = 1) {9.45)

Transverse impedance {m = 1) (9.48)

Dipole loss parameter {(9.49)

Quadrupole wake potential (m = 2) (9.51)

Unloaded accelerating gradient averaged over
structure length (10.1)

Structure efficiency (10.3)

Particles per bunch (10.7}

RMS bunch length, 6, = cop (10.7)

Phase angle ahead of crest (10.8)

Average energy gain per particle (10.9)

Effective stored energy per unit length (10.11)

Bean efficiency {18.11)

Energy from rf source per unit length (10,13)

Phase for wminimum energy spread (10.20b)

Wave nmumber for focusing field, kg = 2w/ig (10.21)
Amplirude growth factor, A = xl(zgfxg{io.29)
Synchrotron fregquency, fg = wg/27 (10.33)
Revolution frequency (10.33)

Current per bunch, Iy = gfy (10.33)

Beta~function in rf system, 8 = 1l/kg (10.33)
Phage shift per half synchrotron period (10.35)



