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ABSTRACT 

The theory of electron linacs in their conventional form IS well 
:overed in the existing literature. A few topics, such as the design 
If standing-wave rf structures, beam loading and beam breakup, are 
reviewed here for completeness. In recent years, however, an impor- 
tant application of electron linacs has been to serve as rf cavities 
tn high energy electron-positron storage rings. The theory under- 
lying this application is developed, with particular attention to the 
problems of transient beam loading and energy loss to higher-order 
cavity modes. Still more recently, electron linacs have been viewed 
in a potential role as high-gradient linear colliders. The theory of 
beam loading for intense single bunches in a collider structure is 
developed. As background for this theory, the properties of the 
impedance function in the frequency domain and the wake potential in 
the time domain, together with the transform relations connecting 
the frequency and time domains, are reviewed. 

Throughout these notes the application of basic physical principles 
such as energy conservation, superposition and causality is emphasized, 
both to provide insight and to simplify certain derivations. Phasor 
diagrams are liberally used to present the analysis of complex beam 
loading effects, in particular transient beam loading, in a visual form 
which can be readily grasped by the reader. 
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PREFACE TO SLAC-PUB-2884 (REVISED) 

The original SLAC-PUB-2884 was based on lectures presented at the 1981 
Summer School on High Energy Particle Accelerators, held at Fermilab July 13-24, 
1981. It was published in AIP Conference Proceedings No. 87 (American Institute 
of Physics, New York, 1982) pp. 550-563. The present revision updates the original 
document in several ways. First, all of the sections on linear collider design and 
on high peak power rf sources has been eliminated. The material in these sections 
is by now completely out of date. These two areas (linear colliders and high power 
rf sources) have experienced almost exponential growth since 1981, and the reader 
must look to more modern references (probably many of them). This leaves the 
core of the original publication, which deals primarily with the interaction between 
electron beams and rf structures. This material has aged reasonably well in the 
past ten years, and has not required major revisions to bring it up to date. Typos 
and other minor errors have of course been corrected. Of more consequence, one 
section and two appendices have been added for completeness. Section 10.5 treats 
the long-range wake potentials, multi-bunch beam loading and beam breakup for 
short bunch trains. Appendix 4 ives the details of the derivation of the expression 
for beam loading in a constant gradient structure. This was passed off as problem 
5.2 in the ori 
Appendix 4 

inal text, moreover with an incorrect suggestion for a starting point. 
ives a short summary of beam loading in non-synchronous structures. 

Finally, in Section 9.2 the definition of the Fourier transform has been changed by 
a factor of ?r to bring it in line with more generally accepted usage. 

Perry B. Wilson 

November 1991 
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HIGH ENERGY ELECTRON LINACS: APPLICATION TO 
STORAGE RING RP SYSTEl4S AND LINEAR COLLIDERS 

Perry B. Wilson 
Stanford Linear Accelerator Center 

Stanford University, Stanford, California 95305 

1. INTRODUCTION 

The theory of electron linacs will be developed with two particu- 
lar applications in mind: the use of standing-wave linacs as rf ac- 
celerating structures in high energy electron-nositron storage rings, 
and the application of traveling-wave linacs to 
the acceleration of intense single bunches in very high gradient 
linear colliders. These topics are of special interest for the future 
of high energy particle accelerators, and in addition they are not 
covered in a coherent manner in the existing literature. Excellent 
and complete references to the theory of conventional high energy 
traveling-wave linacs, such as the SLAC two-mile accelerator, do of 
course exist. Ia Refs. 1 and 2, for example, topics such as structure 
design, particle dynamics and beam break-up in traveling-wave electron 
linacs are given extensive treatment. Although ve cannot hope to 
duplicate the completeness of the coverage in these references, some 
of the main features of the theory will be summarized here. Hopefully 
these lecture notes will complement this previous work, especially in 
the area of beam loading by single bunches of charge. 

Because of the broad scope of the material being covered, the 
treatment of some topics (for example, standing-wave rf structure 
design) must remain superficial. However, an attempt will be made to 
present a thorough and comprehensive treatment of the general problem 
of beam-structure interactions; that is, the problem of beam loading 
in all of its many manifestations. The interaction of intense single 
bunches with longitudinal and transverse modes in thd rf structure 
sets fundamental limits on the performance of both linear colliders 
and electron storage rings, and will be given particular attention. 

It is in principle possible to solve many beam-structure inter- 
action problems by simply setting up an appropriate differential 
equation and turning the mathematical crank. In these notes we prefer 
to take a more visual approach, using the principle of superposition 
and the geometry of phasor diagrams to analyze rather complex multiple- 
bunch beam loading problems under transient conditions. In the case 
of single-bunch beam loading, we are able to bypass some messy details 
in the direct solution of Maxwell's equations by a careful application 
of basic principles such as' superposition, conservation of energy and 
causality. These concepts are useful not only as aids in developing 
physical thinking; they also provide techniques for solving important 
real-world problems in a relatively simple way. 

The initial charge for this particular set of lectures was to 
cover both linacs and rf power sources. We have already chosen to 
limit the discussion of linacs to high energy electron linacs, and in 
fact to only a portion of this subject area. The theory and design 
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of rf power sources, usually klystrons, for conventional cw and pulsed 
electron linacs is a separable subject that will not be treated here. 
The reader is referred to Refs. 3 and 4 for an introduction to kly- 
stron theory and design. Ref.46 gives a recent (1991) survey of the 
status of R&D on high peak power klystrons for linear colliders. Also, 
in recent years rf pulse compression has assumed increasing importance 
as a means of boosting the peak power of existing sources. The SLED 
pulse compression scheme is described in Ref.47, binary rf pulse 
compression is described in Ref.48, and the SLED-II method in Ref. 49. 

2. BASIC CONCEPTS 

2.1 Phasors 

Fields and voltages in standing-wave rf structures art taken to 
be complex (phasor) quantities, written with a tilde. For example, 

(2.1) 

where V = I?1 Is the absolute value of 7. Here ? might represent the 
voltage gain for a particle crossing a cavity driven at rf angular 
f rtquency w. In this cast eV is the maximum energy that can be gained 
by a non-perturbing charge traversing the cavity; that is, the charge 
is assumed to be sufficiently small so that the beam-induced voltage 
is ntgligiblt compared to the rf driving voltage. The trajectory of 
a particle or bunch of particles is usually taken to be the axis of 
symmetry of a cavity or structure, except when considering dipole 
(deflecting) modes. In that case the trajectory Is assumed te be 
displaced from, but parallel to, the a$s. The real part of V, 
Rt V = V co& where 0 - tan’ lCIm $/Re VI, gives the energy gain for a 
charge crossing the cavity or structure at an arbitrary phase vith 
respect to the cavity field. The position of a charge at time t can 
be written x - x0 + ct. The position z. at time t - 0 for a point 
charge which receives the maximum possible energy gain defines a 
reference position or plane inside the cavity. It is often useful to 
take this reference plane as the origin for the axial coordinate 2. 

For problems concerning resonant cavities driven by an external 
generator, it is useful to view the phasor in a frame of reference 
rotating at the driving frequency w. Thus if the phase of the rf 
voltage is varying with time as 8 - wt + 8,. the phasor is written in 
this reference frame as 

c 
jeO 

- Ve . (2.2) 

The importance of choosing a reference frame determined by the 
external generator will become apparent in the discussion of tht 
longitudinal stability of the beam In a storage ring against phase 
oscillations. 

Phasors are :manipulated using the usual rules of complex algt- 
bra. In particular, it is useful to recall that multiplying a phasor 
by tfJ’ rotates the phasor through angle & without changing its 
magnitude. 
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2.2 'ihe "Big Four" Basic Principles 

Four basic principles that will often be of use in the develop- 
ment to follow art: superposition, conservation of energy, ortho- 
gonality of modes and causality. Superposition will be called upon 
most frequently. As a typical example, consider a standing-wave 
resonant cavity driven by an external rf_ktnerator and loaded by a 
beam current. The total cavity voltage V can be considered to be 
the superposition of a voltage component 6 g produced by the_rf 
generator acting alone (beam current off), and a component Vb due to 
the beam (generator off): 

” - T + iib . g (2.3) 

Conservation of energy vi11 be called upon to establish some 
basic theorems concerning beam loading. Conservation of total energy 
is straightforward. If a charge q with energy Ui enters a cavity 
with no initial stored energy, and if after the charge leaves the 
cavity the stored energy Is WC, then clearly 

WC - ui - Uf * (2.4) 

where Uf 1s the final energy of the charge. Conservation of energy 
can also be applied to differential energy exchanges. Suppose, for 
example, that a charge q at position 2 - 2’ moves a distance dz' along 
a trajectory (taken to be the 2 coordinate axis) such that the 
electric field for a given mode has a 2 component E2(2’). The change 
in the energy stored In the mode is then 

dW = -qE2(z') dz' . (2.5) 

The field at position G for the mode in question is related to the 
energy W stored in the mode by E2(;) = f&W, where the function 
f(:) depends on the cavity geometry. Thus we have on the cavity axis 

f(z) dW - 2 E=(Z) dE2 . (2.6) 

From these two expressions, together with the fact that time is 
related to the position of the charge through ct' = z', an expression 
Is obtained for dE, as s function of z at time t'. Treated as a 
phasor, the field element dE, at some later time t will be described 
by 

ds2(z,t) - dE2(z,t')e 
)w,(t - t’) 

(2.7) 

where w. is the resonant frequency of the mode. Using the concept of 
differential superposition, the total beam-induced cavity field at 
any position 2 and time t can now be obtained by adding up all the 
differential field elements induced at previous times through an 
integration which takes proper account of*the phase relationships 
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between elements. But as will be seen later, one more ingredient - 
causality - must be added to complete the picture. 

Implicit in the foregoing analysis is the concept of normal 
modes. It is assumed that each mode in the cavity can be treated 
independently in computing the fields induced by a charge crossing 
the cavity. The total stored energy is taken as the sum of the 
energies In the separate modes. The total field is the vector 
(phasor) sum of all the individual mode fields at any instant. 

Causality is a somevhat more subtle principle that must also be 
taken into account in computing the field induced by a charge passing 
through an rf cavity or structure. By causality we mean simply that 
there can be no disturbance ahead of a charge moving at the velocity 
of light. Thus, In a mode analysis of the growth of the beam- 
induced field, the field must vanish ahead of the moving charge for 
each mode. As we will see in more detail in Sec. 9.3, this is ac- 
complished if the charge also induces imaginary differential field 
components in addition to the real field components as obtained from 
the energy interchange described by Eqs. (2.5) and (2.6). These 
imaginary components, which lie at i9Oa with respect to the real com- 
ponent at time t = t', must have an amplitude distribution as a func- 
tion of frequency EUCh that they add up, when integrated over 
frequency, to cancel the real induced components ahead of the charge 
(t e t') and to double the real components behind the charge (t > t')< 

Real high energy electrons and positrons move at velocities 
vhich are close to, but not exactly equal to, the velocity of light. 
Subtle questions arise as to how close Is close enough so that the 
v= c approximation is sufficiently accurate in any given situation. 
There vi11 not be space here to go into this problem in detail; in 
fact, some aspects of the causality problem are still controversial 
and have not yet been adequately resolved to everyone's satisfaction. 
For our purposes here, we will assume that causality is absolute for 
point charges moving through rf cavities and traveling-wave structure 

2.3 Differential Superposition 

Because of the importance of the concept of differential super- 
position, let us use it here to compute the answer to a practical 
question: what is the voltage induced in a cavity by a Gaussian 
charge distribution with total charge 4, if the voltage induced by a 
point charge q is Vo? A charge element dq will induce a voltage 
dV = V,(dq/q). lLssume that the charge element dq crosses the cavity 
reference plane at time to. At some other time t the voltage inducei 
by this charge element vi11 be 

v. 
dv=qe 

joott - toI 
dq(t,) . 

For a Gaussian charge distribution 

dq(to) - I(to)dto = A- e 
-?I202 

ic 
dto . 

. 

(2.8) 

(2.9) 
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and therefore 

v. Not 
dV"-Ee 

-tt/2o2 
e (coswoto-j sinwoto)dto . (2.10) 

We invoke differential superposition and integrate over all arrival 
times to, noting that the integral of the second term in the preceding 
expression vanishes by symmetry. The result is 

a-Voe 
hot -+2/2 

e , 

’ 

(2.11) 

where V, ejoot is just the voltage induced by a point charge. Thus 
for a Gaussian charge distribution, 

V-V e 
-+-2/2 

0 . (2.12) 

Since bunch distributions in storage rings and linacs are usually 
Gaussian, or nearly so, the result given by Eq. (2.12) is of broad 
applicability. 

3. STANDING WAVE LINACS 

3.1 Shunt Impedance 

The shunt impedance R, for an rf cavity is a figure of merit 
which relates the accelerating voltage V to the p ver P dissipated in 
the cavity walls through the expression V = (Rap) & . For a mode with 
stored energy W, both the power dissipation P = wW/Q and he longi- 
tudinal electric field on the cavity axis E,(z) = cf(z)Wl 5 are 
specified in terms of the geometry-dependent factors Q and f(r). 
Assuming that these factors are known, it remains to compute V in 
terms of E,(z). 

Assume that the path of an electron (positron) lies along the z 
coordinate in an arbitrary standing wave structure driven by an 
external generator at frequency w. The z component of the electric 
field along the axis is then 

EZ(z,t) - E(z) e jut . (3.1) 

Assume that a positive E, produces an accelerating force on the 
particle in question, and that the particle velocity 16 Vez C.. The 
particle position at time t is 

L e - c(t- to) (3.2) 

where se = 0 at t - to. The accelerating field seen in a reference 
frame moving with the particle (the co-moving frame) is then 
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Es(cmf) - E(z) e 
Jw(to + E/C) 

jut0 
'- E(z) e ejh 

(3.3) 

where k 5 w/c. The voltage gained by the particle in moving from 
2 - 21 to z - 22 (rl and 22 would normally be at the cavity entrance 
and exit) is 

7- Es(cmf)dr - e E(t) ejkzdz 

(3.4) 
jut0 

=e cc+ jsl . 

Here C and's are the cosine and sine integrals 

i(z) cos kz dz (3.Sa) 

S- I 22 E(z) sin kz dz . 

=1 

We then have 

? = V ejtwto+ e, B 

(3.SbI 

(3.6) 

where 

E(z) ejkZdz 
I 

- (C2 + S2)4 (3.7a 

0 - tan "(S/C) . (3.7b 

If E(z) Is symmetric about a point on the L axis, the S integral in 
Eq. (3.Sb) will vanish if the symmetry point is chosen to be the 
origin 2 - 0. Even if the structure is not symmetric, we can make 
the transformations 

wt' 0 - wto + 8 

(3.8) 
kz' -kz-6 , 
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where t' - c(t- t:) is the position of the charge with respect to the 

new coordinate origin. Then ? - V ejwto and the point a' - 0 defines 
the reference plane for the cavity. The shunt impedance is nov 
defined as 

V2 
Ra-p . 

. 
where 

Here 

P-$R8 / H2dh 
cavity 
surface 

(3.9) 

(3.10) 

RS 
- (C&20)4 - rzo(6/x) (3.11) 

is the surface resistance, y the permeability, a the dc conductivity, ' 
6 the skin depth, 2, the impedance of free space and X - 2nc/o. 

The above definition of shunt impedance, Ra, fE the so-called 
accelerator definition, which is used in most of the modern litera- 
ture on linac structure design. The shunt impedance is, however, 
occasionally defined with a factor of 2 in the denominator as R - 
V2/2P. The reader should be aware of this potential source of con- 
fusion. 

3.2 Transit-Time Factor 

An "uncorrected" shunt impedance Ru is sometimes defined in terms 
of a voltage Vu, the integral of the electric field along the cavity 
axis: 

e 
v: 

RU - P (3.12a) 

v - E(z) dz . (3.12b) 
U 

The shunt impedance defined in this way does not take into account 
the variation in the field during the time it takes a particle to 
cross an accelerating gap or pass through an rf cavity; that is, the 
effect of transit time is ignored. To obtain the true shunt impedance, 
a transit-time factor T is applied to the uncorrected shunt impedance 
so that* 

* 
In the literature Rq. (3.13) is often written Zsh - ZT2. In these 
notes ve reserve Z for the rf impedance. 
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where - 

TmV.. Is E(r) ejkzdzl 

vU s 
. 

E(z) dz 

Problem 3.1: Show that the transit-time factor for a gap 
of length L with a uniform field E, along the particle 
trajectory is 

(3.13b) 

(3.14) 

where 0 - kL - 2rL/;X is the transit angle. Use the defini- 
tion in Eq. (3.13b) and compute the transit-time factor in 
two ways: vith the origin I - 0 at the center of the gap, 
and with the origin such that the gap extends from t - 0 to 

2 - L. 

The transit-time factor is introduced here for historical reason: 
and because it is often found in the literature. Since the voltage V 
as given by Eq. (3.7a) has to be computed in any case, the attentive 
reader might wonder why the shunt impedance is not computed directly 
using Eq. (3.9), rather than through the circular process of Eqs. 

(3.12a), (3.13a) and (3.13b). Indeed, the transit-time factor does nc 
need to be calculated to obtain the shunt Impedance, and it is some- 
times even misleading. Consider, for example, a cavity of length L 
operating in a mode such that the axial field Is 

E(z,t) - E. cos kz cos ot . (3.15) 

If the cavity 18 exactly one-half wavelength long, then kL - II and 

I L 

vu - E. cos kz dz - 0 
0 (3.16) 

Ru-0 . 

The axial field for such a cavity is shown by the solid curves in 
Fig. 3.1 at time t - 0 and t - L/c. (Can this cavity be a cylindrica 
"pillbox" cavity of finite radius? Why not?) On the other hand, the 
field in a co-moving frame (kr - ot) for a particle which enters the 
cavity at t - 0 varies as 

E(cmf) - E cos2kz . 0 
'(3.17: 
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The field seen in such a frame mov- 
ing with a relativistic particle is 
shown by the dashed line in Fig. 3.1. 
The voltage gained by the particle 
IS 

I 

L 
V-E cos2kt dz - EoLJ2 , 

O 0 
(3.18) 

IS.1 l . . . . . and 

Fig. 3.1. Axial electric field 
in a TMOll-mode cavity one-half 

T-V/V -- u . (3.19) 
free-space wavelength long; 
(a) at t - 0, (b) at t - L/c and 
(c) in a co-moving frame for a 

Ra - RUT 2 
- (0) (-1 . 

particle with v 2 c. 

In this case, it is meaningless to define the shunt impedance through 
Eq. (3.13a). Although the concept of a transit-time factor breaks down 
in this case, it is sometimes helpful in giving a better physical 
feeling for the process of optimiring the shunt impedance of acceler- 
ating cavities (see Sec. 3.4). 

3.3 Bunch Form Factor 

Real bunches in real accelerators and storage rings are not point 
bunches, but extend over some finite length. It is clear for this 
case that not all particles in the bunch can achieve the maximum 
energy gain, but that some particles must cross the cavity reference 
plane earlier or later than the time for peak gain. Suppose the cur- 
rent in the bunch flowing past a fixed point is I(t), and that the 
total charge in the bunch is 

Q 

I, 
I(t)dt - q . (3.20) 

Suppose also that a reference plane is again chosen such that the 
maximum voltage V, is gained by a particle which crosses the plane 
at t - 0. Then the average voltage gained by all the charge elements 
dq - I(t)dt is 

/ 

9 

V ejwt l I(t)dt 0 
p- -- 

/ 

* - Vo(C' + j.s') 

I(t)dt 
-m 

where C' and S' are the cosine and sine integral8 

. 

(3.21) 
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I(t) cosut dt 

I(t) shut dt . 

The magnitude of the average voltage gain is 

where F is the bunch f onm factor, 

F a (cr2 + s’2)1’2 

(3.22a) 

(3.22b) 

(3.24) 

For a Gaussian bunch with rms bunch length ut and for a uniform bunch 
of time length tb ve have 

- 1 u202 
F(Gaussian) - e 2 t 

sin (* Wtb) 
F(rectangular) = , . 

(3.25a) 

(3.25b) 
1 wt 2 b 

For F = 0.9, we have ox/X - 0.073 and gb/a = 0.25, where a, = cat and 
ab - ctb. Note that the form factor for the case of a Gaussian bunch 
is the same as obtained previously in Sec. 2.3., where the voltage 
induced in a cavity by such a bunch was calculated using the principle 
of differential superposition. 

3.4 Standing-Wave Structures 

The longitudinal and transverse modes in a chain of cylindrical 
"pillbox" cavities provide an approximate yet often surprisingly 
accurate model for the accelerating and deflecting fields In more 
realistic accelerating structures. The properties of a single cylin- 
drical resonator are simple to treat analytically, and will seme as 
a starting point'for a discussion of standing-wave accelerating 
structures. 

Consider a plllbox cavity with radius b and axial length L. The 
axial electric and azimuthal magnetic field components for the lowest- 
order accelerating mode (Rio10 mode) are . 

Ex - EoJo(kr) coswt 
(3.26) 

E 
0 J (kr) sinwt , H4 - - z. 1 

where 2, = 377 ohms, k = 2x11 - pOl/b and pO1 = 2.405 is the first 
root of Jo. The stored energy and power dissipation are computed to 
be 
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= $ cob2L EtJ; (~~1) 
(3.27) 

rb RsEz 
zt (b+ L) J;(pol) . 

The accelerator parameters of interest are 

low Cl -4 *-r-c&J 
Q P R 

(3.28a) 
8 

(3.28b) 

v2 2 G1G2T r, r=z- aR MU . 
6; 

(3.28~) 

E Ra/L is the shunt impedance per unit length, R, - (wIJ,/~u) 4 Here r 
1s the surface resistance, T is the transit angle factor and Gl and 
G2 are two constants, independent of frequency and cavity material, 
given by 

(3.29a) 

(3.29b) 

(3.294 

Problem 3.2: Shov that the shunt impedance per unit 
length r for a plllbox cavity is maximum at L/b - 0.75, 
and that the total shunt impedance rL Is maximum at 
L/b - 1.15. What are the corresponding values of r, rL 
and Q in these two cases for a room-temperature copper 
cavity at 500 MHz? 

Designers of accelerating structures have been working for many 
Years to increase the shunt impedance as much as possible beyond that 
which can be obtained from a chain of simple pillbox cavities. 
Initially this was accomplished by a combination of intuition and 
laborious rf measurements in the laboratory. In more recent years, 
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powerful computer programs have greatly facilitated the process of 
optimizing the design of etaading-wave accelerating structures. The 
first of these codes, LAM,' was developed at the Los Alamo6 Scienti- 
fic Laboratory to aid In the design of structures for high-energ 
proton linacs. A more recent and more powerful code, SUPERFISH, z Is 
now available at many accelerator laboratories. SUPERFISU can calcu- 
late higher-order cavity modes as well as the lowest frequency ac- 
celerating mode, although both programs are limited to axially- 
symmetric modes in axially-symmetric structures. However, a nev 
program, ULTRAFISH, is now under development'vhich can compute the 
frequencies and fields of ties which vary as cos m+ (where 4 is the 
aximuthal angle aud m B 0) in axially-symmetric structures. Modes 
with m > 0 can cause deflec:ion and defocusing of bunches and trains 
of bunches in an accelerating structure, leading to emittance growth 
and to beam breakup. 

Figure 3.2 Illustrates some of 
the factors entering Into the design 
of a single cell of a standing-wave 

For a given stored'energy, the nose 
cones help to concentrate the elect- 
ric field in the region of the beam, 
thus increasing the factor R,/Q - 
VI/,W. The gap length g between 
nose cones Is adjusted for maximum 

Fig. 3.2. Single Cell of a &IQ- A6 g is decreased, the transit 
n-mode accelerating structure. time factor T increases, but the 

integral of the axial field, 
Eq. (3.12b) ;decreases for a given stored energy. After the R,/Q 
factor has been optimized by shaping the nose cones and adjusting the 
gap length, the shunt impedance can be Increased further by maximit- 
lng the Q. The Q is controlled largely by losses at the outer 
surfaces of the cavity, 6ho-n at B in Fig. 3.2, where the magnetic 
field is greatest. The hig:lest Q is obtained if this part of the 
cavity surface can be made cpproximately spherical In shape. This, 
however, increases the complexity In manufacturing the cavity. It is 
often a reasonable trade-off to keep a cylindrical outer boundary 
with a consequent 10% or SC reduction in shunt impedance. 

It is usually awkward co feed each cavity separately with rf in 
a long linac structure. Thcs a number of cavities, or cells, are 
usually coupled together to form a coupled-cavity structure vfth 6 
single rf feed point. Suck a structure is shown SChetitiCally in 
Fig. 3.3. A structure consisting of N coupled cells (resonators) vi13 
have N normal modes, as shwn in the dispersion diagram of Fig.. 3.4. 
The frequencies of6tke no-1 mode6 can be obtained by solving an 
equivalent circuit 9 consisting of a chain of coupled LRC resonator6 
as shown in Fig. 3.5. For a structure with weak magnetic cell-to-eel: 
coupling and vanishingly 611611 losses, the normal mode frequencies ar 
given by 
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,.- 
Fig. 3.3. Diagram shoving the important features 
of a five-cell n-mode structure with magnetic 
field coupling. 

wO 

(I-ep2 

WO 

"0 

u+ EC2 

PHASE SHIFT PER CEiL 
I,-.* 4, .:a. 

Fig. 3.4. Dispersion diagram for 
a five-cell structure with "flat" 
r-mode. 

Fig. 3.5. Equivalent circuit representation for a 
chain of coupled resonant cavities. For a flat u-mode, 
L' - L + 2L, and there is then no mode with zero phase 
shift per cell. 



- 14 - 

I# 

w(m) - 
0 

(1 - B cos mr/N)' 
- wo(l + $ cos mn/N) (3.30) 

where B is the bandwidth of the structure, m is the mode number 
(m - 1, 2, -- N for a structure with full-length end cells) and 61x/N 
is the phase shift per period. 

RF structures for storage rings usually operate in the t mode 
(m - N). In order to obtain a "flat" x-mode (field amplitude equal 
in all N cells) in a structure with full-length end cells, the two 
end cells must be tuned lower in frequency (for magnetic-field coupl- 
ing) by an amount 60/w Z B/2. The field amplitude in the nth cell 
for the mth normal mode is for this case 

En - ‘rn sin Cmx(2n-1)/2N1 , (3.31) 

where n - 1, 2, -- N. 

Problem 3.3: Draw the equivalent curcuit "np a chain of N 
coupled resonators with half-length end cell6 (metal 
boundaries at the planes of symmetry in each end cell). 
Show that the normal-mode frequencies are given by w(m) = 
w,Cl- B cos mr/(N- 1)1-b and the corresponding iield ampli- 
tudes by En - Am cos~ms (n-l)/(N-l)l, where n - 1, 2,--N 
and m - 0, l,--(N-l). The r/2 mode is obtained for 
m * (N-1)/2. Compare th J? Field amplitude6 En for this 
ca6e with the r/2-mode fP~&% given by Eq. (3.31) with m = 
N/2. 

It is important to know the sensitivity of the field amplitudes 
in the individual cells to errors in tuning, due either to unwanted 
perturbations or to the presence of tuners. It is usually not 
practical to put a remotely-controlled tuner in each cell of a multi- 
cell structure. If, for example, we attempt to adjust the frequency 
of a multicell structure with a single tuner in one cell, an error IT 
field flatness will be introduced. A mathematically elegant approad 
to this problem is given by the application of perturbation theory tc 
the equivalent circuit representation.lO The problem can also be 
treated in certain simple cases by considering the multiple reflec- 
tions of a wave traveling on a finite-length chain of coupled 
resonators.ll Suppose we have a chain of N r-mode cells with both 
the rf feed point and a single tuner located in the center cell in a 
structure with an odd number of cells. If f(n) is the flatness func. 
defined as the ratio of the perturbed field amplitude to the unper- 
turbed field along the structure, then the maximum deviation from 
flatness Is given by 

(3.32) 
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where 60 is the change in structure resonant frequency produced by 
the tuner, and N - 3, 5, 7 etc. We see that for the n mode the sensi- 
tivity of the field flatness to tuning varies quadratically with the 
number of cells, and is inversely proportional to the bandwidth. A 
similar analysis for the n/2 mode shows that the field flatness is 
less sensitive to tuning errors. The deviation from flatness varies 
as 

(3.33) 

where N - 5, 9, 13 etc. As 6hOw! in Fig. 3.6a, every other cell in 
an unperturbed r/2 mode is unexcited for a lossless 6tructure.* The 
main effect of a detuning error is to introduce a field in the nomi- 
nally unexcited cells. The maximum value of this field is in the two 
cells adjacent to the center cell with tuner and is given by 

(3.34) 

I 
------------ 

,,.a, . I,._ 

Fig. 3.6. (a) Simple n/2-mode 
structure; (b) bi-periodic struc- 
ture; (c) side-coupled structure. 

A comparison of Eqs. (3.33) 
and (3.34) with Eq. (3.32) shows 
the superiority of the t/2 mode 
against tuning perturbations. 
However, from Fig. 3.6(a) it is 
apparent that the shunt impedance 
of the n/2 mode will be poor, 
since every other cavity is un- 
excited and will not contribute 
to the acceleration of particles. 
One solution is to shrink down 
the length of the unexcited cavi- 
ties, as shown in Fig. 3.6(b), 
resulting In a so-called bi- 
periodic structure. A more ele- 
gant solution Is to remove the 
unexcited cavities from the beam 
line entirely, as shown in Fig. 
3.6(c). This results in the side- 
coupled structure, exploited 
extensively at Los Alamos.' The 
field on the axis looks like that 
for a n-mode, but the structure 

has the good stability against perturbations of the n/2 mode. 
Recently a new type of standing-wave structure with good shunt.impe- 
dance and large bandwidth has been under development, particularly at 

* 
This is true for a structure terminated in half-length end cells 
(see problem 3.3). Full-length end cell-s can also be used if they 
are Properly detuned. 
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Los Alamo~.~~*~~ This is the disk and washer (DAW) 6tructure, shown 

schematically in Fig. 3.7. The r/Q of this structure is less than 
that of a chain x-mode cell6 with nose cones, but the Q is signifi- 
cantly higher. The reason for this is that the structure has evolved 

from a chain of pillbox cavities 
operating in the next higher- 
order radial mode. The stored 
energy 16 therefore higher for 
a given field on the axis, 
leading to a lower r/Q. Eow- 
ever, the current tend6 to flow 
as a lossless displacement cur- 
rent between the disks and the 
Washer6, rather than as a 

physical current in the surface 
at the outer boundary. This 
leads to a much greater value 
for Q. Like the elde-coupled 
Btructure, the DAW structure 
works in a x-like mode, but 

Fig. 3.7. Disk and Washer (DAW) with resonant coupling in the 
structure with sketch of electric region of the disks. The coupl- 
field lines. lng is very heavy, giving the 

structure a large bandwidth and 
great stability against perturbations. 

Properties of several structures operating at 350 MHz are com- 
pared in the table below: the DAW structure just described, a r-mode 
structure proposed for the rf system for the tEp storage ring at 
CEBN,14 and for comparison a chain of pillbox'cavities A/2 In length. 
The DAW and LEP structure6 have beam aperture radii of 5 cm, while 
the pillbox cavity, of course, has no beam opening. This brings up 
a very important point: structure6 should always be compared at the 
same value of beam hole radius, since the 6hUnt impedance is a 
strong function of the size of the beam aperture. Figure 3.8 shows 
the variation in shunt impedance per unit length as a function Of 
beam-hole radius a for a simple disk-loaded structure and for a 
shaped n-mode cell with nose cones. Note that the shunt impedance 
for these structure6 is reduced by a factor of two at a I 0.15 1. 

Table 3.1 A Comparison of Several Copper Structure6 at 350 M?lz 

r/Q 
(n/m) 

Q B 

LEPl4 635 49, ooo* 31* zo.01 

DAW13 325 130, OOOf 42* ZO.5 

Pillbox 465 52,000 24 Be 

*These Q and r value6 should be reduced by about 1% for 6 practical 
structure to take into account losses due to washer supports (DAW), 
coupling 61ots (LEP), and imperfect surfaces. 
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-SLAC Dish Loodcd 
---0pltmued n-Mode Cell 
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,.,.,I o/x . ,411. 

Fig. 3.8. Variation in shunt impedance 
per unit length as a function of beam- 
hole radius for two typical structures. 

3.5 Equivalent Circuit for a Cavity with Beam Loading 

Figure 3.9(a) shows the equivalent circuit for an rf source 
(usually a klystron) connected to a linac or storage ring cavity by a 
transmission line. Since such equivalent circuits are basic to the 
analysis of rf system design and performance, several conxaents are in 
order. First, note that the rf cavity and the klystron output cavity 
are represented by resonant LRC circuits. While this circuit repre- 
sentation may be intuitively obvious, a rigorous justification of the 
use of lumped-element circuits to model resonant modes in metal 
cavities is given in Ref. 15. Second, note that the beam in the rf 
cavity is represented by a current generator. This is an excellent 
representation for a relativistic beam, since the velocity of the 
particles passing through the cavity is independent of the cavity 
voltage. The situation is different for the case of the klystron 
output cavity. The velocities of the electrons as they pass through 
the gap of the output cavity can change in response to the cavity 
fields, and as a consequence a current-dependent beam loading admit- 
tance, ybk, is needed in the equivalent circuit (see, for example, 
Ref. 3). Third, note that the transmission line connecting cavity 
and klystron has both forward and backward traveling waves. These 
waves must satisfy the boundary condition V$ + Vi; = Vkfnk at the 
klystron, and a similar condition at the cavity. Since there may be - 
a number of transmission Line elements between A and B, each with 
reflection, phase shift 'and possibly loss, the solution of the general 
problem can be quite complex.16 For our purposes here, we can simplify 
the problem considerably by assuming that there is an isolator or 
circulator just before the cavity. Thus, any power which Is reflected 
from the cavity and which travels back toward the klystron will be 
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(a) 
KLYSTRON OUTPUT 

CAVITY 
TRANSMISSION A F CAVITY 

A LINE 6 

nh :I I: no 

Fig. 3.9. (a) Equivalent circuit for a beam-loaded cavity couple, 
to a klystron; (b) simplified circuit assuming a matched RF sourc 

absorbed. The simplified equivalent circuit in Fig. 3.9(b), in whi 
the transmission line impedance Go and the current generator repres 
ing the rf source are transformed to the cavity side of the trans- 
former representing the transmission-line-to-cavity coupling networ 
can now be used. Here $ is termed the cavity coupling coefficient. 
If the source generator is off and the cavity is excited internally 
by the beam, 6 is then seen to be the ratio of the power radiated 
out of the cavity through the coupling loop or aperture to the powe 
dissipated in the cavity walls. 

In using the simplified equivalent circuit, the available powe 
from the generator, Pg. is to be identified with the incident klyst 
power. Also watch out for factors of two. In terms of the acceler 
definition of shunt impedance introduced previously, and the dc cur 
I o, we have 

Cc -$ 
a 

V2 

pC 
- $ G,V: - ; 

a 
(3.3 

-W*o*/* 
\ -21 oeot =:*I0 . 
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. 

Assuming short bunches (Woot << 1) , we have from Fig. 3.9(b) that the 
voltages at resonance produced by the beam and the rf source, if each 
one acts independently on the circuit, are 

'br = 
%I IO Ra 

Gc(l+ 8) -l+B l 

(3.3Sa) 

(3.35b) 

It is instructive to consider the accelerating voltage V,, the power 
dissipated the cavity walls PC, the efficiency n for the conversion 
of generator power into beam power, and the reflected power P, for 
the case of a linac operating on resonance and in phase (bunches 
receive maximum acceleration such t 

t 
t Va = V,). In terms of a beam- 

loading parameter K - (I,/*) (Ra/Pg) , these quantities are: 

(3.36a) 

'0 'a 
rl' ---$kK(+)] P 

8 
(3.36b) 

_ - I<6 - 1) -*K&1* ‘r 
P 

g (B+l)* l 

(3.36~) 

Problem 3.4: Show that Eq. (3.36~) follows from conserva- 
tion of energy: Pr = P - n P - PC. 

g g 

The important feature of Eq. (3.36a) is that the accelerating voltage 
decreases linearly with Increasing current. These “load lines” are 
shown in Fig. 3.10 for various values of 6. For a given beam cur- 
rent, the maximum acceleratin voltage is determined by the condition 
aV,/aS - 0 at Km - (B-1)/(2 $ g). The conversion efficiency, shown in 
Fig. 3.11 with @‘as a parameter, is seen to vary parabolically as a 
function of beam current, reaching a maximum at K, = G/2. The beam 
voltage Is then one-half of the voltage at zero current. From Eq. 
(3.36c), note that the condition for zero reflected power is given by 
K = (l3- 1)/(26), but that this is not the condition for optimum ef- 
ficiency as a function of beam current. 

Problem 3.5: What is the condition for optimum efficiency 
at a fixed current as a function of $? uhy is this dif- 
ferent than the condition for maximum efficiency at fixed 
6 as a function of beam current? What would a contour plot 
showing lines of constant efficiency in the K - S plane 
look like? (See Ref. 16a.) Show also that for P, = 0 the 
coupling coefficient Is 8 = 1 + Pb/Pc, and Pg - 8P,. 
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Fig. 3.10. Normalized energy gain as a function of the 
beam-loading parameter for various values of the coupl- 
ing coefficient. 

0 I 2 3 4 

Fig. 3.11. Conversion efficiency as a function of the 
beam-loading parameter for various values of the coupl- 
ing coefficient. 

We next consider beam loading in a standing-wave structure whi 
is tuned to be off resonance. The admittance of t$e parallel reson 
circuit representing the cavity without coupling (Yc in Fig. 3.9(b) 
IS 

i.,[,+,Qo(;-~)] , (3.37 

where w. = l/f%? is the resonant frequency, W 9 l/2 C$ is the star 
energy, and Q. : w W/P - woC/Gc. We limit the following discusslc 
to the case of a h?gh 6 cavity such that 6 3 (LO-wo)/wo << 1. Into 
ducing 6, Eq. (3.37) becomes 
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” f Gc(l+j 2 Qo6) . (3.38) 

The total admittance seen by the beam must include the loading by the 
coupled admittance of the Input transmission line. This external 
admittance is taken into account by adding BG, to the preceding ex- 
pression to obtain the loaded cavity impedance 

‘i w&m RO 

L yL l+j2QL6 ' (3.39) 

where R - ccc(l+g)3-1 is the loaded Impedance at resonance and 
QL = QoT(l+ 6) is the loaded Q. 

We now define a quantity $, termed the tuning angle for reasons 
that will be clear shortly, by 

tan Ir % -2 QL6 . (3.40) 

A simple manipulation of Eq. (3.39) gives 

EL - Ro(cos2#)(1+ j tan*) - R. cos$ ejJ) . (3.41) 

In terms of the beam-loading voltage and the generator voltage at 
resonance, given by Eqs. (3.35). we have 

if -i 
g 

g q = Vgr co@ ej’ 

tb = \ tiL - Vbr cosJl ej’ . 

Re (7,) 

Fig. 3.12. Diagram showing how both generator and 
beam-loading voltages vary in the complex plane as 
a function of the tuning angle. 

(3.42a) 

(3.42b) 
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xhus, a? the tuning angle increases from zero, the magnitudesof bot 
V 

K 
and Vb decrease as cos#, and the phases rotate through angle JI. 

T is is illgstrat$d in Fig. 3.12. Note especially that the tip of 
the phasor Vg or Vb trace6 out a circle in the complex plane as the 
tuning angle * is varied. 

We are now ready to consider the superposition of the generator 
and beam-loading voltages to obtalo the net cavity voltage. For con 
venience, the zeference phase (positive real axis) is taken in the 
direction of -ib. The accelerating voltage V, is then simply the 
zeal zomponent of the net cavity voltage. The superposition vc - 
V 
a 8 

+ Vb in this reference frame is shown in Fig. 3.13. Note that t& 
dition@ imporzant angles have been define<: the phase angle + 

between V, and -ib, and the angle 8 between ig and -ib. In storage 
ring applications, 4 is termed the synchronous phase angle. In a 
linac 0 is the angle between the current bunches and the crept of tt 
rf voltage wave. The angle 8 is under extemal.control in an rf 
linac; it can be adjusted by means of a phase shifter in the input 
drive to a klystron feeding a cavity or group of cavities. In a 
storage ring 9 is determined if the beam-current (or Vbr)r the cavil 
voltage V,, the voltage gain per turn Va and the tuning angle $ are 
specified. 

Fig. 3.13. Diagram showing the vector addi- 
tion of generator and beam-loading voltages 
in an RF cavity. 

A thorough understanding of the vector diagram in Fig. 3.13 is 
the key to steady-state beam loading calculations. The diagram 
will be exploited in the following section to compute, as an exampl 
the optimum tuning and coupling for a storage-ring rf cavity. Befc 
proceeding, however, we should recall what is meant by *'steady-stat 
First of all, it is assumed that both the beam current and the rf 
generator have been turned on for a time which is long compared to 
the cavity filling time, which is given by 

2QL 24 
Tf-r- 0 

0 
wo(l+B) l 

(3.41 

If the beam current is turned on at t = 0, then for t less than 
several filling times the cavity fields are in a transient state. 
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However, another type of transient behavior is also possible. Suppose 
the bunches in either a linac or storage ring are spaced apart by time 
Tb* In this section we have implicitly assumed that all bunches con- 
tain equal charge, and that Tb (< Tf. The case where Tb is comparable 
to Tf will be dealt with in a later section. 

4. APPLICATION TO STORAGE RING RF SYSTpis 

4.1 Beam Loading in Storage Ring RF Systems 

In high energy electron linacs, bunches are accelerated at the 
peak of the rf voltage wave in order to achieve the maximum possible 
energy gain. On the other hand, in an electron-positron storage ring 
It is necessary to operate off the crest of the accelerating voltage 
waveform in order to insure stability against phase oscillations, and 
to contain the energy fluctuations due to the quantum nature of syn- 
chrotron radiation. The rf cavities must as a consequence be detuned 
off resonance in order to minimize the reflected power and the 
required generator power. 

Let us compute ffrst the generator power required if the cavity 
shunt impedance R,, the coupling coefficient 8, the beam current I,, 
the cavity tuning angle V, the accelerating voltage Va = V, COB+, 
and the desired synchronous 'phase angle 4 are specified. From 
Fig. 3.13, 

'a S 'c cots+ = v gr COSrl, COS(e+V) - vbr COS'$ (4.la) 

V sin+ * V C gr CO69 sin(e++) - Vbr COS#' 6in#' s (4.lb) 

Eliminate (8 + 9) from these two equations, and rewrite the result 
using Eqs. (3.35) to obtain 

V2 
P C m-. (1+012 . 1 '0 Ra 2 2 

g Ra 48 cos2$ 
c-4 + vp+ (,J) cos 4 

3 
(4.2) 

+ 
'0 Ra 

*inO + vc(l+ B) ~0~4 . 

By choosing the tuning angle 9 correctly, we can make the cavity 
voltage look "real"; that is, just as is-the case at resonance with 
no beam current, the net cavity'voltage V, must have the same phase 
as lg. From Fig. 3.13 this implies that 

e-4 . (4.3) 

Using the law of sines on the vector triangle in Fig. 3.13, we have 
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V br CO64 
- 

, sin(4-@-JI) I -sinl)r 

vC sine sin4 

taa* * 
- ‘0 Ra 
Vc(l+ 8) *in+ ’ (4.4) 

Problem 4.1: Show that the condition in Eq. (4.4) is’also 
obtained by minimizlog the generator power with respect to 
the tuning angle; that is, take aPg/ag - 0 using Eq. (4.2). 

Using Eq. (4.4) in Eq. (4.2). the generator power at optimum 
tuning is 

p ,Il+$)2 . (%+v”,’ coaN2 . 
8 a 

(4.5) 

By differentiating this expression tjith respect to B (don’t forget 
that Vbr is also a function of S), the minimum generator power at 
g - $. is found to be 

$0 - 1+ 
IO Ra COS+ ‘b 

vC 
-I+- 

pC 

$6 
P .=.ps 

go Ra co -Pc+P.' . b 

(4.6a) 

(4.6b) 

Here Pb - .I V, - IoVc co@ is the power transferred to the beam, and 
PC - V2fRa $6 the power dissipated in the cavity walls. By conserva- 
tion 0 f energy, the reflected power is Pr - Pg - Pc - Pb. From the 
above expression for Pgor we see that the reflected power Is zero 
when both 1, and g are set to their optimum values. At optimum coupl- 
ing, Eq. (4.4) becomes 

B 
tanjJo = - -&*+m+ (4.7) 

0 
I 

4.2 Phase Stability >nd Robinson Damping 

AS shown in E. Courant's lecture (see also Ref. 17, Ch.31, there 
is an effective restoring force in a storage ring for deviations in 
the energy or phase of a particle away from the SynChrOnOUS energy 01 
phase. A non-synchronous particle undergoes harmonic oscillations a1 
the synchrotron frequency given by (for small amplitude oscillations: 

,I 4 
us .= 

. (4.8) 
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Bere a is the momentum compaction factor, U. * eVo is the particle 
energy, To is the revolution time and dV, Is the change in accelerat- 
ing voltage per turn for a particle which is delayed by time dt per 
turn with respect to a synchronous particle. Above transition 
(always the case for high-energy electron storage rings), a particle 
with too much energy till follow a longer path compared to a eynchro- 
nous particle, and vi11 therefore return to a given point in the ring 
at a later .time after one revolution. For stability, such a particle 
must gain less energy than a synchronous particle, or dVa/dt * 0. In 
the absence of beam loading, this condition leads to 

dVa 
dt- -wvc6in~~o * (4.9) 

or 0 P 0 for stability. That is, the synchronous phase is on the 
time-falling side of the rf cavity voltage. However, at high cur- 
rents where the beam-induced voltage component is large, the situa- 
tion is more complicated. As the arrival time varies due to phase 
o6cillation6, the beam-induced voltage component moves vith the bunch. 
and hence cannot contribute to phase stability; only the generator 
voltage component can provide an effective restoring force against 
phase perturbations. From Fig. 3.13, recalling that the phasors 
rotate counterclockwise with angular velocity w, the condition 
dVg/dt ( 0 implies 

0 < (e+JI) < 1 . (4.10) 

An equivalent way to obtain this 6ame condition is to compute dV,/d% 
directly from Eq. (4.la), recognizing that t must be measured by an 
external clock which is independent of phsse oscillations, and that 
the phase 0 of the external rf generator ig provide6 such a clock. 

Problem 4.2: Draw a phasor diagram, similar to that in 
Fig. 3.13, with a large beam voltage component, with 
0 > 0 and vith (e+JI) < 0. Show from the geometry of 
the figure that a positive At in arrival time results in 
a positive AV,. 

From Eq. (4.lb), using the condition in Eq. (4.10) that sin(e+$) 
is positive, we obtain 

2Vc sin4 + Vbr sin2JI > 0 . (4.11) 

This is the condition for the high-current limit on phase stability 
first derived by Robinson.1* Robinson's derivation involves setting . 
up a set of linear equations in terms of perturbations to the vari- 
ables of the system. He then applies Routh's criterion to the deter- 
minant of the coefficient6 to test for solutions which grow 
exponentially. However, It is well to remember that the result is 
completely equivalent to the simple condition in Eq. (4.10). which IS 
almost immediately obvious from a carefully constructed phasor 
diagram. 
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If the cavity tuning is adjusted to make the beam-cavity ix& 
pedance look "real" according to Eq. (4.4). then the condition for 
phase stability reduces to 

vbr CO69 < v . 
C 

(4.12) 

Problem 4.3: If the cavity coupling is also optimized 
according to Eq. (4.6a), show that the condition in 
Eq. (4.12) is met for any value of beam current. 

We next want to compute the damping time for phase oscillations 
(sometimestermed Robinson damping). A derivation In the frequency 
domain of the damping time Is given in Ref. 19. Some interesting 
physics, however, is highlighted in a time-domainWsnal~sis.20 Assume 
a beam current with phase modulation of the form lb - i. (l+jA cosw,l 
where A C< I. The response of a parallel resonant circuit to this 
driving current is 

-jwgt 
5b(t) -RZ 1 -+ A! 

&Jst 
+ 

00 f 1+jc 2 [ l+;(E+d 1 +ej&r)) 1, (4.13) 

vhere C; - -tan* - (w-wo)Tf and n - wsTf. The terms in e *just 
represent two counter-rotating veztors v&th origin6 at the tip of the 
steady-state beam loading vector V, - Roiocos~ ej# where &lo - Vbr. 

Problem 4.4: Shov that the resultant of the two vectors is 
a vector whose tip moves on an ellipse in the complex plane 
with semi-major axes 

a- (A/2) ( [ 1 + (E+323-+ + [l + W21+}Vbr 
(4.14) 

b= (A/2) ( [l + (E +35 -+ - [l + w2p}Vbr . 

Show further that the angle y in Fig. 4.1 is given by 
y - n/2 + (++ + JI )/2, where tan#+ - -({+n) and tan+- * 
-(E-n). - 

The phasor diagram in Fig. 4.1 illustrates the response Vb(t) t 
a driving current resulting from a phase oscillation of the bunch 
center of charge. Note from the result of Problem 4.4 that as ws, 
approaches zero the ellipse collapses to a line perpendlc$ar to Vo, 
while for w,Tf>>l it collapses to a point at the tip of Vo. 

The ellipse in Fig. 4.1 is quite suggestive. In analogy vith 
similar diagrams in the force-displacement plane, or the pressure- 
volume plane in thermodynamics, we conjecture that the area of the 
ellipse is proportional to the power transfer to or from the OScil- 
lation. The conjugate coordinate6 in the present case are Voltage 
and charge, given by 6V - .(dV/d#)Q - (V, sing)(A cosw,t) and 
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0 

Fig. 4.1. Responee of a resonant circuit to 
a phase-modulated driving current. 

6q = (nAio/ws) cosWst (the relation between charge and current is 
given in Sec. 9.1). Assume small damping and integrate Wdq = 
6VCd/dt(6q) ldt to obtain the energy in the oscillation, 

6W = 
xA2ioVc sin+ 

206 
. 

Likewise, the average power transfer to the oscillation can be shown 
to be 5 - (io/Vbr) times the area aab of the ellipse, where a and b 
are given by Eqs. (4.14). 

Problem 4.5: Show that P - ni,ab/Vb, using the following 
procedure. First, take the real part of Eq. (4.13) to 
find 6Vb(t). Then P(t) - 6q(d/dt(6Vb)] 16 the instantaneous 
power transfer during-the oscillation. Average over one 
cycle of ost to find P. 

The damping time is nov obtained from 

1 li; 'br w6 
-'?Ei' Vc sin@ l 

-En (4.15) 
'd I1 + (f+rG21C1 + (E- lG21 l 

Here a negative Td implies damping, and a positive rd growth Of the 
phase oscillation. Whether there is grotith or damping of the oscil- 
lation depend6 on the direction that the ellipse in Fig. 4.1 is 
followed with time, and in turn this depend6 on the sign of E- pod- 
tive E (or negative tuning angle) gives damping. The origin of.the 
damping can be traced to the inertia of the stored energy in the rf 
cavities. Because of the finite filling time, the beam-induced 
voltage cannot follow changes in beam current instantaneously. A 
phase difference between the induced voltage and driving current 
appears, vhich in turn leads to an energy interchange betveen the 
oscillation and the cavity fields. . 
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A somewhat different derivation of Eq. (4.15) is given in Ref. 2( 
It is also shown there that the synchrotron oscillation frequency is 
shifted as the beam loading increases. The limit of zero frequency ir 
just the stability limit in Eq. (4.11). The condition E > 0 is the 
dynamic stability condition, also derived by Robinson.l6 It is vorth 
noting that the dynamic condition E. > 0 and the "static" condition in 
Eq. (4.11) have analog6 in any high frequency resonant system in vhicl 
the stored energy 16 modulated by a low frequency parametric variation 
For example, CeperlyZ1 ha6 analyzed the electromechanical oscillation. 
which result from the modulation of the resonant frequency of a cavit: 
by mechanical vibrations. In this ca6e, the mechanical oscillation i 
coupled to the rf stored energy through the force exerted by the rf 
fields on the cavity valls. Ceperly concludes that in this case the 
oscillations are antidamped for w > wo, and that for 61 < w. a static 
instability occurs as the cavity field6 increase and the modulation 
frequency goes to tero, corresponding to the limit in Eq. (4.11). 

. I._ 
As a final cOrmpent, we note that Robinson damping operates only 

on the center of charge of the bunch as a whole. Radiation damping, 
on the other hand, act6 on the incoherent synchrotron oscillations of 
the individual particle6 within the bunch. 

5. 

5.1 Basic Principles 

Consider a traveling wave for a given mode of propagation in a 
structure of arbitrary cro66 section with periodic length p along the 
2 axis. By Floquet's theorem,22 at a given frequency the fields at 
one cro66 section differ from those one period away only by a Complex 
constant. ThUS 

TRAVELING-WAVE LINACS 

B(r,#,z,t) - sp(r.0.2) e"' ejwt , 

where y -jB, + a is the propaga ion constant and 3 (r,9,z) is periodi 
in 2 vith period p. Expanding i p(r,+,z) in a Four er series, P 

m 

2(r,+,z, t) - )‘ 
E-(r,+) el(we-6n2) ema , (5.2) 

where 

and 

6 n -go+? 

2 

gp(r,+,2) ej(2nn'p)2dz 

(5.3) 

. (5.4) 



- 29 - 

Thus the total traveling-vave field ha6 been expanded in a series of 
space harmonics, each with its own propagation constant f3 and phase 
velocity Vpn - W/Bn* but with all space‘harmonics having trike same 
group.velocity vg = dw/d$. Theee relationships are illustrated by 
the dispersion curve (also called a Brillouin diagram or w-6 diagram) 
in Fig. 5.1. 

I I’ I v II I I I 

3=FY 0 8”$ F F $ 

t-*: /3 .:,,.*, 

Fig. 5.1. Dispersion diagram for a 
periodic accelerating structure. 

Consider the specific case of a cylindrically symmetric 6truc- 
ture. In the neighborhood of the axis, the accelerating field com- 
ponent for a given propagating mode in a lossless structure has.the 
form (see for example Ref. 23), OD 

E2(r,4,z,t) * co6 m9 c (5.5) 
no-s 

where 

x2 - b/c) 2 - (32 (5.6) n n * 

For a space harmonic component which is synchronous with a velocity 
of light 
aperture. 

I;rticle, 8, = w/c and E, - rm in the region of the beam 
Thus for a synchronous wave in the accelerating mode 

Cm - 01, the accelerating field is independent of transverse position 
within the beam aperture. The structure design problem now consists 
of several parts. First, at the operating frequency the transverse 
dimension6 of the structure are adjusted to obtain synchronism with 
the fundamental space harmonic component (n - 0). Second, the geom- 
etry of the structure Is chosen, in so far as possible, to reduce the 
amplitude6 of the non-synchronous space harmonic COmpOnent6. These 
component6 carry energy which can play no part in the acceleration Of 
particles. Third, the geometry is adjusted to reduce the stored 
energy per unit length for a given synchronous accelerating field. 
Finally, the Q of the 6trUctUre is maximized by choosing a structure 
material, usually copper, with good conductivity. As in the case of 
standfng wave cavities, the Q of the structure does not depend very 
strongly on the shape of the individual periodic cells. The Q does, 
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however, increase if there are fewer periods per unit length (for 
example, fewer disks per wavelength in a disk-loaded structure). But 
then the amplitudes of the non-synchronous space harmonic components 
tend also to increase for a given synchronous component amplitude. 
These trade-offs are explored In detail in Ref. 2, Ch. B.l.l, for 
the case of the SLAC-type disk-loaded structure. 

5.2 Structure Parameters 

If Ea - Esn Is the accelerating field for the synchronous 
traveling-wave space harmonic component and w the total stored energy 
per unit length in the propagating wave with power flow P, then the 
shunt impedance per unit length and the structure Q are defined by 

E2 

rE 

,dP;dz, 
(5.7a) 

(5.7b) 

E2‘ 
5-2 . (5.7c) 

We can define an energy flow velocity by VE = P/w. In Ref. 22, 
Sec. 1.5, it is proven that ye - vg, where vg was defined as dw/dS. 
Thus, from the expression for Q, 

dE 
2 - -aE a (5.8b) 

a-+j (5.84 

where a is the attenuation parameter per unit length. The relation 
between power flow and accelerating field is now obtained as 

Ei = rldP/dt] - 2arP (5.9a) 
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A structure which has uniform parameters along its length is 
called a constant impedance structure.* For such a structure, 
Eqs. (5.8) can be integrated to yield 

Ea - E. ema2 (5.10a) 

. 
P-P e -202 

0 

where E, and PO are the accelerating field and power flow at the imput 
to the structure. The field and power flow at the end of a structure 

of length L are then EL - E, e -7 and PL - PO e -2t , where 

OL T-aL=- 
2vgQ 

(5.11) 

is the attenuation parameter-for the structure. 
Consider now an accelerating mode (no variation with azimuthal 

angle 4) propagating in a disk-loaded structure with disk hole radius 
a. In the disk hole region, both H,$ and Er are proportional to r near 
The axis. Thus, if the disk opening is not too large, the power flow 
per unit area for a given stored energy per unit length is propor- 
tional to r2. Integrating from r - a, the total power flow, and thus 
the group velocity, will be proportional to a . From Eq. (5.8~). it 
is therefore possible to change a over a wide range by varying the 
disk aperture over a relatively small range. Of course, the shunt 
impedance per unit length will also vary as the disk opening is 
changed, but its dependence on the disk hole radius is much weaker. 
From Eq. (5.9a) the possibility now exists, as,the power flow along 
the structure decreases due to dissipation in the structure walls, 
to keep Ea constant by increasing a ~1 l/P. This is the basis for the 
constant gradient structure. 

Let us ignore the weak variation in r along the length of such 
a structure. Then from Eq. (5.7a) dP/dz - constant, or 

P-P 
0 

- (PO -P,)(rIL) l (5.12) 

If the attz:uation parameter T is again defined from the expression 
PL - PO e , the above relation gives 

P 
po-l 

- (~/L)(l-e-~~) 

* 
Note that ar - Ez/2P has dimensions of ohms/m'. A closely related 

quantity used In microwave circuit theory, 2/(2BiP) is called the 
coupling impedance, or sometimes the interaction impedance for the 
nth space harmonic component. 
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dP po - pL - _ po 
dz-- L y- (l-ew2') . (5kb) 

From Eqs. (5.8a), (5.8c), (5.13a) and (5.13b) the variation in group 
velocity with length required to produce a constant gradient is seen 
to be 

v,(t) - yf Cl - (Z/L)(l- ew2')3 . 
1 - .-2t 

Problem 5.1: The filling time for a constant impedance 
(and hence constant group velocity) structure is simply 
Tf - L/v*. By integrating dt - dt/vg from 2 - 0 to 
z - L using Eq. (5.14), show that for a constant gradient 
structure 

(5..15) 

From Eq. (5.11), note that this is exactly the same as 
the filling time for a constant impedance structure. 

5.3 Ener gym 

By integrat ng Eq. (5.1Oa) from z 
4 

- 0 to E - L, and substituting 
for Eo - (2arP ) 
of a constant llrl 

according to Eq. (5.9a), the unloaded energy gain 
pedance (CZ) accelerating section is calculated to be 

cz: v. - (rLPoj4 [(2/*)+(1- evT)l l (5.16) 

The unloaded energy gain of a constant gradient (CG) section is, 
using Eq. (5.9a), 

V. - EoL - (rLPo) Ir (2aoU4 . 

Using Eqs. (5.8a) and (5.13b), the above expression becomes 

CC: V. - (rLPo)+ (l- ew2r)& . 

(5.17) 

(5.18) 

As a function of T, Eq. (5.16) has a broad maximum at T - 1.26 where 
Vo/(rLPo)+ - 0.90. or 

c 
the case of a constant gradient structure, 

V. approaches (rLP,) for large T. 
We next compute the beam induced field in a traveling-wave 

structure, assuming that there is no input power from the rf generatol 
If there is a generator-produced field component, the net accelerating 
voltage is readily obtained using superposition. From conservation 
of energy, at any point in the structure 
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dP*IE 
dz ob - 2aP , (5.19) 

where Eb is the peak beam-induced field which opposes the motion of a 
beam of short bunches with dc current I,. Using E2 - ParP, this 
becomes 

dEb - I dz 0 ar - aE b l 

(5.20) 

Now assume a constant impedance structure (a independent of Z) and 
integrate to obtain 

59 - Ior(l- ewa2) . (5.21) 

Integrate again to find the energy, 

Vb.- IorL I1 - (I-e-')/?I . (5.22) 

The derivation of the beam loading voltage for the case of a constant 
gradient structure is given in Appendix A. The result is 

Vb - IorL [S - T eW2'/(1 - e-2T)] (5.22b) 

The results of Eq. (5.22) and Problem 5.2 can be used, together 
with superposition, to express the net voltage gain in a beam-loaded 
structure as 

v-v case - mI 
0 0 

cz: m-rL l- 
[ 

1 - e" 
t 3 

CG: 
[ 

1 m*rL -- T ev2' 
2 l-ew2T 1 

(5.23a) 

(5.23b) 

where V. is the unloaded energy gain given by Eqs. (5.16) and (5.18)‘ 
and 0 is phase of the current bunches with respect to the crest of 
the generator-produced wave. If the bunches are not short compared 
to the rf wave length, the energy gain is reduced by the same bunch 
form factor computed in Sec. 3.3. 

In Fig. 5.2 the energy gain for constant gradient and constant 
impedance structures is plotted as a function of current for several 
values of T. Note the linear load lines, similar to those in 
Fig. 3.10 for the case of a standing wave structure. Note, in addi- 
tion, that T and l/S play similar roles in the two types of structures. 
This can also be seen from the expressions for the filling time, 



I 
-.. 

- 34 - 

- 

(5.24a) 

(5.24b) 
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Fig. 5.2. Beam-loaded energy as a 
function of beam current for con- 
stant impedance and constant gra- 
dient structures for several values 
of the attenuation parameter T. 

Multiplying Eq. (5.23) by 
I the power transferred to 
toht beam, and hence the conver- 
sion efficiency, is seen to be 
quadratic as a function of beax 
current. Recall that this was 
also the case for standing wave 
structures (see Fig. 3.11). 
The maximum efficiency is 
reached when the s.eam energy is 
reduced to one-half of its un- 
loaded value at I, * Vo/2m. 
The maximum conversion effi- 
ciency is then 

V2 
0 n I- . 

nlax 4mP (5.25) 
0 

As an example, nmax at T - 1 is 635 for a constant gradient structure 
and 54% for a constant impedance structure. These efficiencies 
increase to 76% and 73% respectively at T - 0.5, and both increase 
toward 100% as T approaches zero according to nmax z (I- 2~13). 

The power flowing into the output termination of a beam-loaded 
traveling-wave section can be computed by first finding the net fielc 
at the load. For example, using Eqs. (5.21), (5.10a) and (5.9a) in 
the case of a constant impedance structure, 

EL - Eoe S-f - Ior(l-evT) 

2 
PL - EL L/Zrr . 

(5.26) 

The power dissipated in the structure is then obtained as P6 * 
PO - P - IoV. 

L 

5.4 Non-Synchronous Operation 

If a traveling-wave structure is operated at a frequency dif- 
ferent than the synchronous frequency, the bunches will slip in phasl 
with respect to the traveling vave. me total phase slip in length 1 
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for an electron with velocity ve Z c is described by the parameter 

6 = w(-p) -BoL(l -2) l (5.27) 

In a constant gradient structure (or in a constant impedance structure 
for small T) without beam loading we expect 

v-v y@.q~vo(l-$) 
0 [ 

for d<<l. Recall that for a standing-wave cavity, 

2 v - v. cosJr-=: v. 1 - 2 
( > 

. 

(5.28) 

(5.29) 

Thus the phase-slip parameter plays a similar role for a traveling- 
wave structure as the tuning angle does for a standing-wave cavity. 
This correspondence is evident also from the relation between $ and 
d and the filling times for standing-wave and traveling-wave struc- 
tures. For a frequency deviation. AU = w - w. and using AR Z Ao/vgr. 

Z T (SW) . AU f 
(5.30) 

6 - L(Bo -8) -LAgETf(IW) l AW . 

In both cases, the sensitivity to tuning errors is seen to be pro- 
portional to the filling time. 

A detailed discussion of non-synchronous beam loading in constant 
impedance structures is given in Ref. 24.and in Appendix B. 

6. SINGLE-BUNCH BEAM LOADING 

6.1 The Fundamental Theorem of Beam Loading 

Consider a point charge crossing a cavity initially empty of 
energy. After the charge has passed out of the cavity, a beam-induced 
voltage Vbn remains in each mode. What fraction of Vbn does the 
charge itself see? Since the induced voltage for mode n starts at 
zero as the charge erters the cavity, and ends up at Vb,., as the charge 
exits from the cavity, the most naive assumption is to take the.aver- 
age, or l/2 vbnr as the effective fraction of the induced voltage 
acting on the charge. In this section we prove that this factor of 
one-half is indeed exact for any cavity. The fact that a charge 
'(sees" exactly one-half of its own beam-induced voltage we will call 
the fundamental theorem of beam loading. The theorem provides the 
key which relates the energy loss by a charge crossing a cavity or 
passing through a structure to the electromagnetic properties of modes 
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in the cavity or structure computed in the absence of any charge. BJ 
superposition, the beam-induced voltage in a cavity is the same 
whether or not a generator voltage component is present. Thus the 
theorem is'also basic to the computation of the effective voltage 
acting on a bunch when both a generator voltage and a beam-induced 
voltage are present. Following is one of several possible proofs of 
the theorem. 

Let a charge pass through a cavity in which the stored energy 1: 
related to the cavity voltage in a given mode by 

2 W-aV . (6.1) 

Assume that a fraction f of the beam-induced voltage vb acts on the 
particle, or ve = fib where V, is the effective voltage eeen by the 
charge. Assume further that the beam-induced voltage is not neces- 
sarily at such a phase as to maximally oppose the motion of the 
charge; that is, assume it might lie at an angle s with respect to 
Ve* Now let the charge be bent back around in a lossless manner, 
for example by magnetic fields, such that it passes through the cavi 
a second time. Let the time for the charge to traverse the external 
path be any multiple n of the rf period, plus a residual time B/w0 
where 6 is an arbitrary angle and o. is the resonant frequency of th 
mode. When the particle crosses the cavity reference plane a second 
time, we have the phasor addition of voltzges shown in Fig. 6.1. 

G; Reference Phase 

Here Vh(2) isthe voltage induce 
the second pass by the charge. 
while the .voJtage induced on th 
first pass, Vb(ll, has rotated 
with respect to Vb(2) by an angl 
2nn + 6. We can assume the 
cavity losses are very small So 
that Vb(2) - Vb(1). Thus the 
net energy stored in the cavity 
IS 

,-IS t .,,..I. 

Fig. 6.1. Diagram showing addi- 
tion of beam-induced voltages for 

WC - a 
02 

2 Vb cos ? 
1 

two passes by the same charge (6.2) 

thr0ugh.a cavity. - 2aV~(l+cose) . 

On the other hand, the energy lost by the particle on the two passec 
IS 

AU = 2qve + qvbCOs(E+e) . (6.3) 

That is, on the first pass the charge experiences a retarding volta: 
V er while on the second pass it sees the sum of V 

f 
plus the compone: 

of Vb(1) which lies along the negative real aXiS n the phasor dia- 
gram. By conservation of energy WC and AU must be equal. Letting 
ve = fVb and equating Eqs. (6.2) and (6.3) we have 
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2(qf- aVb) + (q toss-2aVb)cose - (q sinc)sin0 = 0 . 

The left-hand side can only vanish for arbitrary 0 if 

sine - 0, e-0 

'b - q/za 

f - aVb/q - l/2 . 

(6.4a) 

(6.4b) 

(6.4~) 

Eq. (6.4a) expresses the fact that the beam-induced voltage must have 
a phase such as to maximally oppose the motion of the inducing charge. 
(Is t - II a valid solution to Eq. (6.4a)?) Equation (6.4~) tells us 
that the charge sees exactly one-half of its own beam induced field. 
Combining Eqs. (6.1) and (6.4b), we obtain 

w - aV2 - $ : kq2 
b 

for the energy left behind in a cavity by a charge q. The quantity 
k is called the loss parameter, and, of course, each resonant mode 
has its own value of k. From Eqs. (6.5) and (6.1) we have 

(6.6a) 

(6.6b) 

Further, from Eqs. (6.4b) and (6.6a). 

'b - 2kq (6.7a) 

'b Ve -21 kq . 

Thus the loss parameter k relates the beam-induced voltage to the 
charge, by Eq. (6.7a), and the energy loss by a charge passing through 
a cavity initially empty of energy, by Eq. (6.5). It is important to 
note that superposition applies and Eqs. (6.7) are valid even if a 
voltage is already present in the cavity before the charge arrives. 
We can therefore construct the basic phasor .diagram in Fig. 6.2 for 
single-bunch beam loading for the accelerating mode (k = kor Vb = Vbo), _ 
or for any mode with an externally applied generator voltage. Here 
ve - -k,q is the effective beam loading voltage-seen by the charge. 
The reference phase is taken in the direction -V,. Thus the net 
aCCderating voltage acting on the charge is 

va = v c cos$ * v case 
g g 

- koq 9 (6.8) 
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Fig. 6.2. Phasor diagram showing the 
net single-bunch energy gain for a 
cavity driven by an external rf source. 

where 4' - 8 
ii 

is the phase of the generator voltage component just 
before the c arge crosses the cavity reference plane. 

Problem 6.1: Prove that relations (6.4). (6.6) and (6.7) 
are also valid when a generator voltage component IS 

present. Using Fig. 6.2, compute the decrease in cavity 
stored energy, AW - a[(V;)2 - (V$21. Using conservation 
of energy, equate this to the energy gained by charge q- 
Write the result in the form Vg - fl(Vb)/f2(Vb)where both 
fl and f2 must vanish, since Vg cannot depend on Vb. 

As a final comment, note that the parameter kn describes the 
single-bunch beam loading properties of the nth cavity mode, and th 
it can be computed in terms of the charge-free properties of the 
cavity from E 2. (6.6b). As described in Sec. 3.4, the programs LAL 
and SUPERFISH compute the quantity R,/Q - Vi/-W. Then from Eq. (6 

k-2 4 (Ra/Q) l (6.9) 

6.2 Higher-Order Cavity Modes and the Loss Impedance 

Consider the energy lost by a charge to all modes in an rf ac- 
celerating cavity, assuming the cavity is initially empty of storec 
energy before the arrival of the charge. Let AU, be the energy lo: 
to the fundamental (accelerating) mode, and 

A"t 
- BAU 

0 
(6.1( 

be the total energy lost to all modes, where B is called the beam 
loading enhancement factor. The energy lost to higher-order cavit] 
modes only is 

AUhm - (B-l) AU0 . (6.1: 



I 

- 39 - 

After the charge has exited from the cavity, beam-induced voltage 
vbo and corresponding stored energy AU0 = a,V remain in the funda- 
mental mode. Then From Eqs. (6.11). (6.6a) and (6.7a). 

A”bm * ao(B-l)Vio - (B-l) koq2 l 

AS discussed earlier, v,, 9 2koq is a voltage which, by superposition, 

is the same whether or not there is energy stored in the fundamental 
mode before the arrival of the charge. Equation (6.12) therefore is 
valid also when the fundamental mode is driven by an external genera- 
tor. 

Consider now a linac or storage ring with equal bunches of charge 
q spaced apart in time by Tb. If the fields in each cavity mode decay 
away completely between'bunches (Tb >> Tfn for all modes), and using 
also q = 1,Tb where I, is the average current, Eq. (6.12) gives 

L AU 2 
'bm-Tb bm-lozhm 

-IV ohm (6.13a) 

%m - lozhm (6.13b) 

zhm E(B-l)koTb-$, c kn . 
11’0 

(6.13~) 

In a storage ring the presence of higher-order cavity modesmeans that, 
in addition to the synchrotron radiation loss per turn V,, the rf 
system must supply an accelerating voltage Vb. There are also losses 
to other vacuum chamber components outside the rf system. If the sum 
of all the loss parameters for these components IS kvcr and if it IS 

again assumed that the induced fields decay acay between bunches, then 

P 2 -1z vc 0 vc 

V -12 vc 0 vc (6.14) 

Z -k T vc vcb l 

Thus the total accelerating voltage that must be supplied by the rf 
system to each beam in a storage ring is 

'a - vs + V& + v 
vc l 

(6.15) 

If the beam induced fields do not decay away between bunches for a 
particular mode, the situation is more complicated. The resonance 
function, described in Sec. 6.5, is then needed to compute the voltage 
lost to that mode. 
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For simplicity, the expressions in this and the preceding section 
have been written assuming a point bunch. For.a bunch of non-zero 
length, the bunch form factor must be taken into account. For a 
Caussir2bunch. the loss parameter for each mode must be multiplied 
by e-sot (see Sec. 9.4). 

6.3 Efficiency for Energy Extraction from a Cavity 

In a linac or storage ring rf system, the beam takes energy from 
the driven fundamental mode, but dumps some of it back into the higher 
cavity modes. It is of interest to compute the net energy extracted 
from the cavity& 
angle Cc, Gi, 

If we apply the law of cosines to the vector tri- 
vbo) in Fig. 6.2, 

@:I2 - q2 + v; - 2ViVbo cos+- . (6.16) 

By conservation of -energy, the energy extracted from the accelerating 
mode is AU0 - ao[ (V;)2 - (V+)21. Using Eq. (6.161, 

2VLVbo co@- - Vi0 > 
. (6.17) 

To obtain the net energy extracted from the cavity, we subtract.off 
the energy put back into higher-order modes, as given by Eq. (6.12). 
to obtain 

co&- - BVto . (6.18) 

The efficiency for net energy extraction Is now 

3’ Aunft2 - 2[$j...,- - Be)2’ , (6.19) 
a0 WC) 

The maximum efficiency a8 a function of Vbo for a given initial 
stored energy is ,readily obtained to be 

cos2+- 
n N---- 

UlaX B (6.20) 

at a beam-induced voltage 
vi cos+- 

v.- B . 
bo 

(6.21) 

Note that angle +- in Eq. (6.14) Is not the synchronous phase angle 
for a storage ring. It is the phaseangle of the cavity voltage jusl 
before the arrival of the bunch. From Fig. 6.2 it is related to the 
synchronous phase angle by 
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tan4$- - tan+ 
1 + koq/Va ' (6.22) 

Problem 6.2: A storage ring is often operated with two 
counter-circulating beams of opposite charge and equal 
intensity. The rf cavities are located so that the fields 
induced in the fundamental mode by the q+ and q- charges 
are coherent; that is, the cavities are located at dis- 
tances from the interaction point which are integral 
multiples of a half-wavelength at the accelerating mode 
frequency. On the other hand, it is reasonable to assume 
that the fields induced In the higher cavity modes are, 
on the average, Incoherent for the two beams (see dis- 
cussion in Sec. 6.9. Show that for this case the maxfmum 
efficiency for energy extraction is 

6.4 Beam Loading by a Bunch Train with Tbsf 

(6.23) 

We next calculate the build-up of the beam-induced voltage when 
bunches pass repetitively through a cavity, as la the rf system,of a 
storage ring or for a train of equally-spaced bunches in a linac. A 
cavity filling time Is assumed which is not necessarily short compared 
to the bunch spasing. The situation is illustrated graphically in 
Fig. 6.3. Here Vbo is the single-pass beam-induced voltage, e-' gives 
the decay of the cavity fields during one turn, t5 is $he net-phase 
shift per turn (subtracting off multiples of 2n) and Vs and V$ are 
the cavity of voltages for t + - just before and just after the pas- 
sage of a bunch. The decay parameter T and phase angle 6 can be 
written 

p’ 

.: A,. *. 

Fig. 6.3. Phasor diagram showing the 
buildup of the beam-induced voltage 
by a train of bunches of equal charge. 

Tb 'II -- 
Tf 

d=TUl bo - 2nhb 

- T (w - w) b o . 

(6.24a) 

(6.24b) 

Here w. is the resonant fre- 
quency of the cavity and hb, 
an integer, is the harmonic 
number for a single-bunch 
machine, or the number of rf 
wavelengths between bunches 
for a llnac or for a ring 
with more than one bunch. 
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In constructing Fig. 6.3, we again consider a reference frame which 
is rotating at the angular frequency w of the external rf generator. 
It Is natural to use the external generator ai the basic clock for 
describing field variations in the cavity, since the spacing of 
bunches in a storage ring is determined by the driving frequency of 
the generator and not by the cavity resonant frequency. 

The final (t + m) voltage just after a bunch passage is now 
readily obtained as the sum of the geometric series 

q * Fbo(l+e-T ej6+ee2’ ej26+ . ...) 

% 1 n,- 
vbo 1 - e-' e ja : 

(6.2% 

To obtain the egective beam-loading field ?b In the limit t + Q, we 
take the field Vb induced by all the previous bunch passages at a 
time just before the arzival of a bunch at the cavity reference plan 
and add to it a phasor V, - -l/2 Vbo to account for the effective 
self-field seen by the bunch In question to obtain 

+bo l 

(6.2St 

&sing this expression together with Eq. (6.2Sa) and the fact that 

'bo - "bo' 

- 3 - Fk(f,6) + jFI(~,bj (6.262 

F&,6) - 
1 _ em" 

2(1- 2e-r cos6 + e -29 

FIh6) - 2ewT Sin6 

2(1- 2evT co& + e -2T) l 

(6.261 

(6.26i 

These expressions give the real and imaginary parts of the enhance- 
ment of the single-bunch beam loading voltage due to resonant build. 
UP* 

The quantities f, 6 and Vbo in Eqs. (6.26) can be expressed in 
terms of more usual cavity parameters. The voltage decay parameter 
per turn is 

T = T0(1+8)r T - T /T 
0 b fo (6.27 

where Tfo - 2Q,/w,. From the definition of the tuning angle, tan$ 
two - w)/wo - Tf(uo-W) and Eq. (6.24b), we have 
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6 = T tan* . (6.28) 

The single-bunch beam loading voltage can also be written as 

'bo =IRT oao ’ (6.29) 

where I, is' dc current (assuming short bunches) or the total circulat- 
ing current for both beams in a storage ring.. Equation (6.26a) can * 
now be written in the form 

'b - -IoRato CFR(~o,S,~) + jRI(ro,fi.*)l 
l 

(6.30) 

In a storage ring the desired net cavity voltage, including the 
effect of beam loading, is usually specified; that is, a certain 
accelerating voltage V, cos+ and synchronous phase angle 0 are 
required. If the beam current and cavity parameters are spe:ified, 
then the generator voltage can be obtained from the phasor relation ’ 

(6.31) 

This is illustrated In Fig. 6.4, in which a constant generator volt- 
age has been added to the beam-induced voltages shown in Fig. 6.3. 

Reference Phosc 

t-u \b = v,cos+ ..v.:.n.. 

Fig. 6.4. Vector sum of voltages in a 
beam-loaded cavity driven by an external 
generator. 

Let us now compute the required generator power for a linac or-storage 
ring rf system with beam loading under the condition Tb 5 Tfo Taking 
the real and imaginary components of the preceding phasor relation and* 
using also the notation in Fig. 6.4, together with Eq. (6.26a), we 
obtain 
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vg case 8 - Vc co60 + VboFR(~,6) 

vg sine 8 - Vc sin+ + VboFI(',6) . 

(6.32a) 

(6.32b) 

Squaring and adding these two expressions to eliminate Ogr then using 
~qs. (3.3Sa) and (3.42a) to express Vi in terms of Pg. we have 

V2 
P- c . (1+N2 . 'oRaT 2 

g Ra COS2e 48 CO84 +- 
Vc 

FR(To,6&) 1 
(6.33) 

+ 

Problem 6.3: Show that, in the limit ~~ + 0, the result in 
Eq. (6.33) approaches that in Eq. (4.2). 

The phase angle of the generator voltage is obtained by dividing 
Eq. (6.32b) by Eq. (S.32a). . 

tang - 
Vc sin+ + VboFI(tor6,~) 

g vc C-4 + VboFR(to,W) l . 
(6.34) 

For a given'r,, the generator power in Eq. (6.33) can be mini- 
mized by varying 6 and JI, although it is not 'possible to obtain simple 
analytic expression8 as was the case for the minimization of Eq. (4.2) 
for T << 1. However, the minimum value of Eq. (6.33). and the cor- 
responding values of g and JI, are easily found numerically. It is 
found that the transient nature of the beam loading between bunches 
increases the minimum generator power by a few percent for typical 
cavity parameters for f. up to about 0.5. For to > 1 the generator 
power increases rapidly, and for large lo, where the time between 
bunches becomes large compared to the cavity filling time, it is cleal 
that some sort of pulsed rf system is desirable. In such a system, 
power is applied to the cavities for about a filling time preceding 
the arrival of the bunch. For most of the period between bunches 
there is no stored energy in the rf cavities and hence no power dis- 
sipation. A discussion of pulsed rf systems for large storage rings 
is given in Ref. 25. 

6-S The Resonance Function 

From Fig. 6.4 and Eq. (6.32a). the net accelerating voltage 
acting on a charge passing through an rf cavity is 

va - vc co+ - V case - koq[2FR(r,6)] . 
g g 

(6.35) 
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Since k q is the effective beam loading voltage seen by a charge 
making z single passage through a cavity initially empty of energy, 
the factor 2Fg(r,&) takes into account the resonant build-up of fields 
due to successive bunch passages, either for a storage ring or for a 
train of bunches Is a linac. For large T, 2Fg is seen to approach 
unity, as expected. For small 7, Eq. (6.35) can be rewritten in a 
form which is more natural for a nearly continuous beam, 

‘a =V case - 
8 g 

ioRa 
1+g . 

In Problem 6.3 it was shown that TFR approaches cos2J, In the limit 
f + 0. This can be compared with the result of Eq. (4.la), noting 
that 6g - 8 + $I (see Fig. 3.13). 

In Fig. 6.5, the resonance function 

25p) - 
1 - es2’ 

1 - 2e-' coed + e -2r 

is plotted as a function of 6 for two values of r. Note that the 
maximum amplitude at resonance (6 - 0) is given by 

0 o.zlr 0.4n 0.67r 0.8n n 

I..? 8 , ..I,.. 

Fig. 6.5. The resonance function 
2Fkcf.b) as 6 for two values of 
the decay parameter T. 

--f 
2F&O) - ' + e-7 

1 -e 
(6.37) 

2FR(f ,o) I 3 t<<l l 

At anti-resonance (6-n), 

1 -7 

2F&,m’) - - e 
1 + e-' (6.38) 

2Fk(r,r) = $ f<<l . 

The phase angle which divides 
resonance and anti-resonance, 
that is, the value of 6 at which 
2Fk(r,61) - 1, is seen to be 

cosd -T 

1 - e (6.39) 

dl 2 (2~)~‘~ i << 1 l 

An important property of the resonance function has been pointed 
out by Sands.26 The average value of the resonance function IS com- . 
puted to be 
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(2FR> = $ 
/ 

v 

2F (7,6) d6 * 1 R . 
0 

(6.40 

Thus, if the phase shift 6 is chosen at random, the expectation val 
of the resonance function is unity. For small f, the maximum value 
of the resonance function is indeed very large, but the chance of 
finding 6 < 61 is very small. In a storage ring, therefore, since 
the exact frequencies of the higher modes and hence the values of I 
are never precisely known, it is reasonable to compute the higher- 
mode losses in the single-pass limit as AtIn - knq2, even though tht 
factors Tb/Tfn might be small compared to unity. On the average, 
the single-pass limit (2FR = 1) will be correct, although in any 
particular machine there is always the possibility of hitting a hig 
resonance with a consequent large enhancement of the beam loading 
voltage for that particular mode. 

The condition (6.40) also has an important implication for the 
higher-mode losses in the rf cavities in a storage ring with two 
counter-rotating beams. The cavities are placed an appropriate dil 
tance from the interaction points so that the q+ and q- bunches pal 
through the cavities (in opposite directions)-with a time different 
that is an integral multiple of the rf period for the accelerating 
mode. The higher-mode frequencies, however, are in general not 
rational multiples of the fundamental mode frequency. Thus the art 
6, for the passage time between the counter-circulating bunches.1~ 
effectively random for any particular higher-order cavity mode. f; 
other words, the voltages induced in the higher-order modes do not 
coherently. The induced voltage and power loss for the higher-ord 
modes can therefore be computed for each beam separately, ignoring 
the presence of the other beam. Thus the total power lost to both 
higher-order cavity modes and to parasitic modes in the vacuum cha 
components if there are two beams with circulating currents I;f and 
IS 

pbm + pvc - [(I;)’ + (IO>‘] (zhm + zvc’ , (6.4 

where Zhm and Zvc are defined by Eqs (6.13~) and (6.14) and we as 

that the kn'i contain the factor e -&&I$ . However, in computing tt 
required generator power for the fundamental accelerating mode usi 
Eq. (6.33), I, must be replaced by (1: + I,). 

7. TRANSIENT BEAM LOADING 

7.1 Transient Response of a Resonant Cavity 

We want first to compute the response of a resonant cavity t( 
step change in driving voltage. This result will be used to find 
transient variation in the voltage and reflected power between bul 
for a cavity loaded by a periodic bunch train. The response of a 
resonant circuit to a step change in driving voltage can, of courl 
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be obtained by applying standard mathematical techniques to solve an 
appropriate differential equation. Here, however, let us use our 
phasor approach to find the answer in a very simple way. 

Consider first an undriven cavity with resonant frequency o. and 
damping time Tf. Suppose the cavity is initial 

B 
charged to voltage 

Vd(O), and that this voltage then decays as eet f for t B 0 while 
viewed in a reference frame rotating at angular frequency w (the rf 
driving frequency). The time variation of the cavity voltage is 

‘d(t) = a,(o) e 
-t/Tf ,mw , (7.1) 

where Aw - wn - w. The time variation of V,(t) [the reason for the 
subscript wiil become clear shortly] is il&trated in Fig. 7.1. 

Fig. 7.1. Discharge of a cavity 
resonant at frequency w. viewed in 
a coordinate frame rotating at 
frequency w. 

plus an undriven discharge toward this 
natural cavity resonant frequency wo. 

The relevance of this 
seemingly simple physical 
picture may not be obvious at 
first glance. In a storage 
ring or linac we are dealing 
with driven rf cavities, and 
the bunch repetition frequency 
is also a sub-harmonic of the 
driving frequency w. Thus all 
steady-state driven voltages 
are phasors viewed in a coordi- 
nate system rotating at the 
driving frequency W. Transient' 
variations can, however, be 
viewed as the superposition of 
a final steady-state voltage 
voltage, which occurs at the 
Thus, by adding a final steady- 

state vector v(m) to the diagram in Fig. 7&l, we obtain the general 
transient variation of the cavity voltage V(t), as shown in Fig. 7.2. 
Equation (7.1) now gives the time variation of the "difference 
vector," vd(t), where 

Td(t) - G(t) - 3(-) (7.2a) 

Td(0) - T(O) - if(-) . (7.2b) 

Using the definition of the tuning angle, tan+ - TfAo, Eq. (7.1) 
becomes 

V",(t) - V,(O) e 
-(t/Tf)(l-j tan$) 

. (7.3) 

Substituting for cd(t) and ?d(O) in this eXpreSSiOn using Eqs. (7.2), 
we obtain 
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Fig. 7.2. Transient response of a resonant 
cavity-to a step change in driving voltage 
Aif - -vd(O) applied at t - 0. 

T(t) - ?<-) + CT(O) - ?(-I 3 e 
-(t/Tf)(l- j tan+) 

. (7.4 

This expression can also be‘considered as giving the transient re- 
seons2 of a zesonantWcavity to a step change in driving voltage 
AV - V(m) - V(0) - -Vd(0), applied at time t - 0. 

It is interesting to show that Eq. (7.3) represents an equi- 
angular spiral; that is, the tangent to the curve at any point P in 
Fig. 7.1 makes a constant angle with respect to the difference vect 
joining point-P to the origin. The derivative s - difldt is tangent 
to the curve V(t). From Eq, (7.31, 

+) - -vd(t)(l-j tanJI)/Tf . 

Since 

.-jllr 9 (l-j tan+) cosg , 

we have 

Gd (t) - -‘&) 
-j$ 

T e cosJl 
f 

(7. 

. 
Thus-if cd(t) is rotated by angle +JI, it will lie along the direct: 
Of -Vd(t) as shown in Fig. 7.1. 

7.2 Transient Variation of Cavity Voltage and Reflected Power 
Between Bunches 

Let us now apply Eq. (7.4) to find the transient variation of 
the cavity voltage between bunches for the case of a bunch train il 
which the time betveen bunches is not necessarily small compared tc 
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the cavity filling time. We start with the vector diagram in 
Fig. 6.4, showing the cavity and beam loading voltages just before 
and just after the passcge of a single bunch through a cavity driven . 
by a generator voltage Vg. These voltages are redrawn in Fig. 7.3. 

When the bunch crosses the 
cavity reference plane, the 
cavity voltage changes instan- 
taneously (in our model) from 
i7$ to TJ The magnitude of 
the change is -Vbo. The volt- 
age theg begins to charge 
toward Vg along the spiral 
path shown. At the precise 
moment the voltage once again 
reaches PC, another bunch 
comes by to repeat the cycle. 
We can now make the following 
correspondences between the 
voltages in Eq. (7.4) and a 
those in Fig. 7.3: 

Fig. 7.3. Transient response of a 
driven cavity to a train of equal 
bunches. 

We have therefore 

V(t) - T,(t) 

t(o) - ?g (7.6) 

V(-) - qg . 

G=(t) - ? 

g + (C _ sg) e-(q) (l- 3 tan*) 

But from the diagram in Fig. 7.3, 

. (7.7) 

(7.8) 

+ 'bo . 

Therefore 

V=(t) 9 V + i$ 
-(t/Tf)(l- j tani) 

e -1 1 - 4 Vbo . (7.9) C 

To simplify the notation, we introduce a normalized time x - t/Tb, 
such that x - 1 when t is equal to the arrival time of $he next 
bunch. Recall also that tan* - 6/r. Substituting for V$ from 
Eq. (6.25), again taking into account that Vbo - -Vbo. we find 

V bo e [ 
--XT eW _ 1 

f,(x) - fc - I 'bo . 
j6 2 (7.10) 

1 - e-' e 
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Separating this expression Into real and imaginary components with 
the aid of Fig. 7.3, 

v$x) cosv - VE coso + VboFAW (7.11a) 

Vc(x) sinp - Vc sin+ + VboFB(x) (7.11b: 

where 

F,(X) -[I - e 
-27 - 2e'= cos x6 + 2e -(1+x)7 cosb(l-x)]/2D 

(7.12a 

FB(%) - [e" s&x16 - ewX7 sin x6 - e 41+x)7 sinb(l-x))/D 
(7.12b 

-7 D-I-2e cosd + ew2' . 

Squaring and adding Eqs. (f.lla) and (7.11b), using also Vbo = ioR?, 

IoR 2 

+ 7 F*(x) 1 [ + IoR= 
2 

sin4 + 7 FB(x) l 

I . 
(7.13) 

C C 

For a fixed ro, the optimum values of B and 1J, can be obtained by 
minimizing the generator power as given by Eq. (6.33). Equation (7. 
together with the definitions of FA and FR given by Eqs. (7.12), tk 
determines the transient variation between bunches in the amplitude 
the cavity voltage. The transient variation in the phase of the cat 
voltage is obtained by taking the ratio of Eqs. (7.llb) and (7.11a), 

tanlr(x) - 
Vc sin9 + VboFB(x) . 
Vc cod + VboFAW 

(7.141 

The reflected power P, can now be computed using conservation 1 
energy: 

pr - P - PC - dWldt , (7.15 
g 

where P is the incident generator power, P, 9 Vz(t)/Ra IS the in- 
stantangous cavity dissipated power and W is the stored energy give 
by 

W(t) - 
v;(t) 

w. (R,/Q) 

- $ TfoPc(t) l 
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Here Tfo = ZQ,/w, is again the unloaded filling time. Equation (7.15) 
now becomes 

P,W - P g - Pc(t) - 3 Tfo & CPc(t)l . 

If a normalized cavity voltage v(t) = Vc(t)/Vc is introduced, the 
above expression can be written in normalized form, again using 
x - t/Tb and lo = Tb/Tfor a6 

P (x) - P 
r 

The function v2(x) is just that given by Eq. (7.13). 
The above derivation does not give the phase of the reflected 

voltage wave in the input trannnission line to the cavity, which may 
sometimes be of interest. An alternative derivation, which solves 
for both the magnitude and the phase of the reflected wave, is given 
in Ref. 27. 

7.3 Transient Beam Loading in Traveling-Wave Linacs 

The concepts introduced in Ch. 6 to deal with single-bunch beam 
loading in standing-wave structures can also 6erve as the starting 
point for an analysis of transient beam loading in traveling-wave 
structures. Assume an element of charge dq passe6 through a traveling- 
wave structure at a velocity vq m c. Assume al60 that the group velo- 
city is low, v << c, 60 that the induced wave of amplitude dEb 
travel6 a neglfgible distance during the time At = L/c it takes for 
dq to transit through the structure. By analogy to Eq. (6.7a). the 
induced wave will have amplitude 

d% = 2kldq s (7.18) 

where kl is the traveling-wave loss parameter per unit length given by 

kl = (o/4) (r/Q) * i arvg l (7.19) 

Here r i6 the shunt impedance per unit length for a synchronous wave 
6S defined by Eq. (5.7a), a is the attenuation parameter per unit 
length, and Eq. (5.8~) has been used to eliminate w/Q. 

Assume now a constant impedance structure in which v doe6 not 
vary with length. The analysis for the case of a constan f gradient 
structure would diverge at this point. For a constant impedance 
structure of length L, the voltage induced by dq is, using Eq. (7.18) 

dVb * L(dE$ - 2 kLL dq . (7.20) 
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Using Eq. (7.19) for kl in this expression, together with dq - l,dt, 
Tf - L/vgr T f aL and x I t/Tf, we obtain 

dVb - Iorzvg(dt) - lorLt(dx) . (7.21) 

As time proceeds, this induced field element propagates downstream 
through the structure and slips out of the downstream end into the 
terminating load. If dEb ie induced at t - 0, then at time t = xTf 
the above voltage element dVb is reduced by a factor (1-x) due to 
this downstream propagation. In addition, the voltage element will 
also decay by a factor exp(-ot/ZQ) - exp (-TX) because of wall losses. 
The preceding expression for dVb thus becomes at time x, 

dVb(x) - IorL t(l-x) e-rx dx . (7.22) 

Integrating to add up all the induced voltage elements from t - 0 to 
t - x, we obtain 

V (xl b - IorL[(l-+) (l- e-'") + x eMTX] . (7.23) 

For T << 1, this reduces to 

Vb(x) CJ IorLr(x-x2/2) . (7.24) 

In this limit the beam-loading voltage increase6 parabolically with 
time. In general, the beam loading voltage starts off linearly for 
x << 1 with slope dVb/dt Z 
limit 

Iorvgf and approaches the steady-state 

Vb - Ior L Cl - (l- e-')/rl (7.25) 

with slope IorvgT 2 att-T. 
The transient energy gafn from the generator voltage component 

can be obtained by integrating Eq. (5.10a) from z - 0 to z - XL. Th 
result is, assuming Vg is turned on at time t' - 0, 

Vg(x’) - (rLP )l" C(Z/r)l" (l-e-X'f)1 . 
0 

(7.26) 

When a generator-produced wave and beam-induced wave are both presen 
the net energy gain as 6 function of time can be obtained by a super 
position of Eqs. (7.23) and (7.26). The two voltage components can, 
of course, be turned on at different times. There may be a phase 
difference also, which can be taken into accgunt by multiplying Vg(x 
by co60 where again 0 is the phase angle-of Vg with respect to a 
reference phase taken in the direction -Vb. 

As a final comment, note that by setting dq - I,dt we have 
implicitly assumed a train of bunches, each of which i6 short compaz 
to an rf wavelength, and which are spaced closely compared to the 
filling time. If this IS not the case, then from Eq. (7.22) the net 
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voltage at time t can be obtained by summing the beam induced 
voltages 

-TX 

Vbn(t) - rvgf(l- xn) e n qn (7.27) 

due to charges qn passing through the structure at times tn, where 
x, - (t- t.,)/Tf and vbn - 0 for xn > 1. 

8. BEAM BBEAKUP 

Both the theoretical and experimental aspects of beam breakup in 
electron linacs are discussed in detail in Refs. 1 and 2, and we will 
not attempt to duplicate this coverage here. However, since we have 
set ourselves the task in these notes of reviewing the main features 
of the beam-structure interaction problem, a brief summary follow6 
giving a few of the important analytic results of beam breakup theory. 

8.1 Regerative Beam Breakup 

Regenerative beam breakup is an oscillation within a single ac- 
celerating section due to the interaction of the beam with 6 dipole 
(deflecting) mode. In these mode6 the E, field component varies 
linearly with distance r from the axis, and as co64 in the azimuthal 
direction (see Sec. 5.1). Region6 of transverse magnetic deflecting 
field6 lie displaced from the region of maximum Ez by *l/4 in a 
synchronous wave moving at velocity c. The field pattern for such 
a "TM11-like," or HEM hybrid mode, is sketched in Fig. 8.1. In the 

L- 

E-Field Lines H-f itld Lines 

usual disk-loaded structure, these 
deflecting modes are often of the 
backward wave type; that is, the 
phase velocity and the group velo- 
city are in opposite directions. 
The interaction between a synchro- 
nous particle and a deflection 
mode can be characterized by the 
transverse shunt impedance per 
unit length, defined by 

Fig. 8.1. Approximate electric 
and magnetic field lines for the 
I'll-like deflection tie in a 
disk-loaded structure vith n- 
phase shift per cavity. Maximum 
H-field occur6 a quarter-cycle 
after maximum E-field at the 
cross-section shown. 

(l/k*) (a Ef/ar) 2 (8.1) 
5 - dP6/dz . 

Here k - w/c and E$ is the syn- 
chronous forward-wave field com- 
ponent. For a standing-wave mode, 

dP6/dz is the average power dissipated in the structure wall6 per 
unit length. For a t>Tical disk-loaded structure, the relation 

r 2 II 100 ohms 
Q x (8.2) 
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can be used to get a rough estimate of the transverse shunt impedance 
of the lowest-order deflection mode. In a typical structure the fre- 
quency of this mode is 40-50X higher than the accelerating mode 
frequency. Therefore, the Q can be expected to be somewhat lower 
(70-80X) compared to the Q for the accelerating mode. 

Consider now a traveling-wave structure with fields proportional 
to an amplitude factor Al, and assume a continuous electron beam 
entering the structure on axis. The particle6 in the region of trans- 
verse magnetic field will experience a deflecting force, and the 
transverse displacement of these particles will tend to increase as 
the square of the distance along the structure. Since the sign of 
the deflecting field alternate6 every half wavelength, the beam viewec 
from the side vi11 look like a wave of growing amplitude, iomething 
like the wiggle6 in a stream of water from a hose nozzle which is 
shaken sideways. The mechanism for energy interchange depends upon 
the beam velocity being slightly non-synchronous with respect to the 
wave. If the electrons in the regions of maximum displacement (maxi- 
mum deflecting II field) begin to slip ahead of the wave, they enter 
a region of the wave having a decelerating E, electric field com- 
ponent. We would, consequently, expect maximum energy to be extracte 
from the beam if the electrons slip ahead by about a half a wavelengt 
in the length of the structure. A detailed calculation shows that th 
phase slip parameter defined in Eq. (5.27) is 6 - 2.65 for maximum 
energy extraction. The power extracted from the beam is proportional 
to the beam current. This power propagate6 toward the upstream end 
of the section, since we are dealing with a backward wave, where it 
produces a field with an amplitude factor A2. The condition for an 
oscillation is that A2 be equal to the assumed initial field amplitud 
Al* Detailed calculationsze give 6 starting Current 

16(TW 3 
v. a% /cl 

8 g2(6) L3(rL/Q) 
. (8.3a) 

Here eV, is the energy of the beam in electron volts, and gz(6) is a 
function of the phase slip parameter. This function has a maximum 
value of 1.04 at 6 - 2.65 , giving the minimum starting current. Thi, 
expression was derived assuming a constant electron energy in the 
section.. However, the first section in a linac 16 most likely to 
oscillate since the energy is lowest, and the energy is far from 
constant over the length of this section. If Vi and Vf are the inpu 
and output energies for such a section, and if Vf B> Vi, then it can 
be shown that the starting current is reduced by a factor of 3 below 
that in Eq. (8.3) when Vf - V,, giving 

Isma - 
Vf P(v /c) 

I? 
G@k3(rl/Q) 

Vf >> vi . (8.3b: 

Attenuation in the section was not taken into account in deriving 
these expressions. Thus, measured threshold currents tend to exceed 
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the computed thresholds by perhaps 50%. It is also assumed that the 
phase slip condition is accurately maintained over the entire length 
of the section, which may not be the case If the group velocity is 
very small. 

The above relations were derived for a traveling-wave section in 
which it was assumed that the backward-wave deflecting mode is not 
reflected at the input coupler (upstream end) of the structure. If 
the structure Is Short with bad reflections, or if we are considering 
deflecting mode fields trapped within a short region of a constant 
gradient structure, then a standing-wave analisis is more appropriate. 
In such an analysis, the condition for oscillation is that the power 
extracted from the beam be equal, to the power dissipated in the struc- 
ture walls. This leads to a starting Current 

I,@W) - 
X2Vo X 

2 l 
(8.4) 

4g2 rp 

Again, g2(max) = 1.04, and if the energy gain in the section is large 
compared to the input energy the starting current is expected to be 
lower. By using r,/Q from Eq. (8.2) in Eq. (8.4), and setting g2 
equal to g2(max), we have 

v. a2 
18(SW) I .025 - 

QL2 . 
(8.5) 

Note that I,(TW) varies as (I/L)3 since r,/Q - l/x, and that 18(Sw) 
varies as (X/L)2 for a given Q. 

The above stsrting currents were derived assuming a continuous 
beam. For a beam pulse of finite length tp, .the starting current is 
increased by the ratioZe 

Ishp) FeTf 
rs(_)-l+tp . (8.6) 

Here Tf = 2Q/w is the filling time and eF e is the amplification factor 
from noise required to produce breakup. Experimental data indicate 
that Fe is in the range 10-20. 

8.2 Cumulative Beam Breakup 

The mechanism for cumulative beam breakup is quite different. 
In a multi-section accelerator, each SeCtiOn acts like an amplifier 
which provides a small increase in the amplitude of the transverse 
displacement wave. Even though the "gain" per stage is close to 
unity, (l+c) say, the total gain in an accelerator such as SLAC with 
many sections can be very large. Thus for the SLAC accelerator 
(1+ c)N - exp(F,), where N-960. Fe (the e-folding factor) N 20 
and (l+ E) z 1.02 at the threshold for breakup. Assume that the 
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deflecting mode occupies a length 1 In a structure of total length L. 
The total transverse shunt impedance per section Is then Rl - trl, 
where, for the particular case of the SLAC constant gradient structure 
I C 25 cm, L = 3 61 and 4/Q ha8 been measured to be 400 ohms. 

Detail8 of the beam-cavity interaction are relatively easy to 
calculate from first principles in the steady-state limit (cw beam). 
At each amplifying cavity (regions in the structure) there is a 
transverse displacement modulation and a transverse momentum modula- 
tion on the beam. The transverse displscement modulation excites the 
cavity through the interaction with the off-axis Es field component, 
and the resulting El 

! 
field component provide8 an additional momentum 

kick to the beam. n the drift space between cavities, the transverse 
momentum is converted into additional displacement. For ra6ximum gain, 
it can be 6houn2’ that the momentum “wave” lags the displacement wave 
by 30°. Furthermore, the frequency of the modulation for maximum 
gain is such as to drive the cavities off resonance with a tuning 
angle J, - 30°. For an accelerator with a uniform accelerating gra- 
dient V’ - dV/dz, the e-folding factor in the asymptotic limit 
(Fe a> 1) can be shown to be28*2g 

Fe(m) - (3) 314 . . (8.7) 

For the transient case (pulse length tP less than or comparable to 
the filling time), the analysis is more,complex. For times which are 
not too long (tP < F,Tf), the e-folding factor can be writtent 

(3)3'2 F,(t) - - l 

n2106 ct(Rl/Q)- l/3 

2 V’ a2L 3 
. 03.8) 

The preceding expressions were all derived assuming no focusing. 
If the focusing is not too strong, the e-folding factor can be 
modified2e to take focusing into account. For the case of an ac- 
celerating gradient and a focusing strength which are constant along 
the accelerator, 

- Ck2 z2/F2 
B e 1 l 

(8.9) 

Here kg is the betatron wave number of the focusing system and the 
constant C has the values for the steady-state and transient cases 

C $8 = l/2 

Ct = 3/4 . 

In Ref. 30 an analysis is given for cumulative beam breakup in the 
presence of solenoidal focusing. An asymptotic expression (2 must 
be sufficiently large) is developed which is valid for strong focus- 
ing and arbitrary pulse length compared to the cavity filling time. 



I 

- 57 - 

9. IMPEDANCES AND WARES* 

9.1 Longitudinal Impedance Function and Wake Potential 

If a sinusoidal current at frequency o having a peak value I(o) 
induces a voltage with peak value V(w) in a component or chain of 
components, then the impedance is defined as 

Z(w) - Vb)lIbJ) l 

The impedance is complex, sioce V(w) can be out of phase with I(w). 
The chain of components can be, in particular, the components in one 
complete turn for a storage ring. ' Similarly, if a unit point charge 
passes through a component or chain of components, the wake potential 
W(T) is defined as the potential experienced by a test particle fol- 
lowing a distance' CT behind the unit charge. In the following dis- 
cussion we assume high-energy electrons or positrons traveling close 
to the speed of light, such that space charge forces between particles 
can be neglected. Both the impedance function and wake potantial are 
therefore identically zero for a beam of particles In free space. As 
we will see, either Z(W) or w(r)is sufficient to completely charac- 
terize the-longitudinal effects produced by the beam environment. 

The concepts of an impedance function and a wake potential apply 
both to particles and currents passing through vacuum chamber com- 
ponents and to currents and charges in lumped equivalent circuits. 
In the case of an equivalent circuit, the wake potential is the volt- 
age across the circuit as a function of time following the application 
of a unit current impulse I(t) - a(t). The response of a component 
to a unit current step is also useful in certain calculations. If 
S(T) is the response to a unit current step applied at T - 0, then the 
relation between the step and Impulse response functions is 

f 
6(T) - w(r')dr' . 

Note that W(T) is in units of volts per coulomb or ohms per second, 
while S(T) is in ohms. The forms for W(T) and S(T) for several 
common circuit elements are shown in Fig. 9.1. A resistive (br 
decelerating) wake ds taken to be positive. 

9.2 Transform Relations 

Problems in accelerator theory can often be viewed within the 
conceptual framework provided by either the frequency or the time 
domains. Sometimes the framework provided by one domain or the other 
18 more useful for viewing or Solving a particular problem. In the 
past, there may have been some preference for the frequency domain as 
being the more fundamental. In these notes, however, problems have 
been approached wherever possible in a time-domain framework, with 
phasors providing a graphic aid in describing the physics of such 
processes as, for example, beam loading by bunch trains. It is 

. 
* See Refs. 50 and 51 for a more extensive treatment of wake potentials 

and their applications. 
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V(w) 

MA IW - h " 
I, 

i!(w) --oy-- 
.1(1)=q6(t)- 

WI 1 

-R2/L 

1 

Fig. 9.1. Impulse wake and step response function for 
four circuit elements. 

clearly desirable to be able to view a problem in either domain, and 
to transform physical quantities back and forth between these two 
worlds. 

Consider the Fourier expansion for a periodic time-domain func- 
tion, such as the current I(t) for a bunch train with period At: 

where m > o and 

W 0 a *- 
D 2T / 

AC/2 
I(t) e 

-Jwot 
dt 

-At/2 
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I, = am~O.swmt + 6, sinw,t ; I, = a0 

Wm = mwo =2xtn/At ; m > 0 

am = (an + (Y-n) 9 brn = j (an - Q-n) 

If I(t) is physically measurable function of time (beam current for example), then it 
is a real function. Furthermore, it can be expanded in terms of positive (physically 
measureable) frequency components wm. Then the relation between the coefficients 
am, b, and a, depends on the symmetry of I(t). If I(t) is symmetric, then from 
Jh* (9.1) 

an = omn = Real, 

am = _ van ;bm=O 

If I(t) is antisymmetric 

Lln = -a-, = Imaginary 

b m=2j%=Real ;am=O 

Now consider the limit At --+ oo,w, + 0. Set nw, = w and w, = dw, and let 
I(w) = (27r/wo)on be the density at frequency w of the Fourier components in 
the expansion of Z(t) as w. approaches 0. We then obtain the Fourier transform 
relations for the general function f(t): 

q(t) = & 7 F(w)ej~~dw E F(w)’ 
-aI: 

00 

F(w) = 
J 

f( t)e-j%t E C(t). 

(9.2c-l) 

(9.2b) 

For the particular case of a Gaussian bunch with charge Q and bunch length ~‘1, 
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r(t) = - J&Y, exp ( -t2/24) 
, 

I(w) = q exp (-w24/2) . (9.3b) 

For a repetitive train of Gaussian bunches, using I,, = (wo/2n)q, 

Qm = $ [I(w) + q-w)] = 21, ezp (-dw,242) . 

(9.3a) 

(94 

Let us now apply these transform relations to a bunch with current distribution 
I(t). The wake function w(r), sometimes called the delta-function wake potential, 
gives the potential a distance CT behind a unit point charge. The contribution 
d&,(t) to the potential at position d due to an element of charge dq a distance 
c(t - t’) ahead in the bunch is then 

dvb(t) = Ut(i- t’)dq = W(t - t’)I(t’)dt’ . 

Summing the contributions to the potential produced by all charge elements in the 
bunch ahead of position ct, 

t 00 
h(t) = J 

w(2 - t’)I(t’)dt’ = I W(T)I(i - f)dT . (9-5) 
--oo 0 
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The total energy loss by charge qt in terms of the loss parameter k 
introduced in Eq. (6.5), is AU = kq2. Thus 

v,(t) I(t)dt . (9.6) 

Now take the transform of Eq. (9.5) to obtain 

- w(r) I(t- r)dr . (9.7) 

Reverse the order of integration, let t = T + t’ and find 

V(w) Evgz)= I(w) w<r3 l (9.8) 

Since Z(w) s V(w)/I(w), we have 

Z(w) - Zi (9.9a) 

V(w) - VT, (9.9b) 

I(w)-% . (9.9c) 

9.3 Properties of the Impedance Function 

We define the wake function to be a real function of time. This 
then imposes a condition on the impedance function, Z(w) = 
Z&I) + j Z,(o). Thus 

w(t) = z<,i Z(W) ejwt dw 

1 w- 
2s - [z,(w) coswt - zl 6,~) sinwt] dw (9.10) 

sirk,,t + Z,(w) cow] dw . 

If the imaginary part Is to vanish for arbitrary Z(w), it is necessary 
for Z,(w) to be an even function of frequency and for Z,(w) to be an 
odd function of frequency. We can confine ourselves to positive 
frequencies only, to obtain 
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- [Z,(w) coswt - Z,(w) sinwtl dw . (9.11) 

In addition, the wake potential must be causal; 
for t < 0. Therefore 

m 
w(-t) - + CZ,(w) coswt + Z+) sinwtl dw 

leading to 

0 w 

z,(o) coawt do I - Z,(w) sinot 

Substituting Eq. (9.13) in Eq. (9.11), 

W(T) - $ 
I 

L) 
Z,(w) coswt dw . 

0 

that is, w(t) E 0 

IO * (9.12) 

dw . (9.13) 

Problem 9.1: Show that Eq. (9.13) is equivalent to the 
Rilbert transform, 

ZI(W) = + 
I 

- Z,(w’) 
Tdw’ . 
w ‘W -m 

(9.14) 

(9.15) 

Hint: Rewrite Eq. (9.13) with limits of integration 
between -~1 and 0. Substitute for ZI(W) using Eq. (9.15), 
then reverse the order of integration. Z,(w) is obtained 
from ZT(w) by the inverse transform (above transform 
multiplied by -1). 

Thus, if either the real or the imaginary component of the impedance 
function is specified, the other component is also determined as a 
consequence of the causality condition. 

The preceding relations can be visualized using phesor concepts. 
Consider a unit point charge interacting with an impedance Z(w). By 
Eq. (9.3b), the spectral density of the current in the frequency 
domain Is I(w) = l/u at all frequencies. At time t = 0, due to the 
interaction of the charge with the real component of the impedance, 
beam-induced voltage elements 

d+N = z,(w) I(w)dw - t Z+,(w)dw 

(9.16) 

dT,(O> = -$ Z;(-w)dw = t Z;(w)dw 
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are produced in the frequency interval dw at fw. A positive real 
impedance component indicates that the induced voltage elements 
oppose the motion of the charge and extract energy from it. At t - 0, 
imaginary beam-induced voltage components 

de(O) - + Zf(w)dw - -1 [- + Z;(w)dw 1 
(9.17) 

dv;(O) - ;f Z;(-w)dw -+j f Z;(w)dw 1 

are also produced which are at right angles to the real components 
and hence play no part in the energy interchange with the charge. 
These real and imaginary voltage elements are shown schematically by 
the solid phasors in Fig. 9.2. The total self-voltage acting on the 
charge is obtained by integrating the real components over all fre- 
quency at t - 0, 

+ dV;(O)] - $ [ Z&)dW . (9.18) 

At some later time t, the phasor voltage elements will have rotated 
to the positions shown by the dashed phasors in Fig. 9.2. The total 
wake voltage, including the contribution from the imaginary (a,t t - 0) 
components, is obtained by integrating over frequency, 

dyI (0) I \ z;(t) 
\ 

Fig. 9.2. Diagram showing how imaginary 
voltage elements induced by a point charge 
at t = 0 in the frequency interval dw 
rotate to produce a causal wake. . 
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w(t>O) - coswt + dVz sinwt dw 
-1 

(9.19) 

z;(w) coswt - Z;(w) sinwt 1 dw . 

For t < 0, the four phasors rotate in the opposite sense, and 

” 
w(t < 0) - 5 J[ Z;(w) coswt + Z;(u) sin& 1 do 1 0 . (9.20) 

0 

This last relation ie equivalent to the causality Condition (9.13), 
and together with the preceding relation leads again to Eq. (9.14). 

Thus, to satisfy causality, the imaginary voltage components 
induced at t - 0 in a frequency Interval dw rotate and always add up 
for t =z 0 so as to cancel the wake produced by the sum of the real 
components induced at t - 0 when integrated over all frequencies. Fo: 
t > 0, the imaginary components rotate so as to produce a total real 
wake which is exactly double that due to the sum of all real com- 
ponents. Note that by extrapolating Eq. (9.14) to t * 0, we obtain 

w(0) - 2w 
s l 

(9.21) 

The factor of two in this expression is essentially the same as that 
in Eq. (6.7b), which was obtained by applying conservation of energy 
and superposition to resonant modes in a cavity. To see this more 
clearly, let us calculate the total loss parameter k, using Eq. (9.6) 

. 

VbWdt .X*(W) eBJwt dw . 

(9.22) 

Reversing the order of integration, 

I*(w)V(w)dw 

Since I(t) is a real function of time, we have by the same argument 
that lead to Eq. (9.11) that the real and imaginary part of I(w)'are 

. symmetric and anti-symmetric respectively. Thus I (w) Is symmetric, 
and 

- I*(w)Z 
R w 

(w)d 
l 

(9.24) 

For a Gaussian bunch, using Eq. (9.3b), 
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1 k-y 
/ 

m -w202 
Z,(W) e tdw . (9.25) 

0 

For a point charge this agrees with the self-wake derived In Eq. 
(9.18). 

9.4 Application to Resonant Modes 

Let us now compute the wake potential and loss parameter for a 
single resonant mode. The impedance for such a mode is given by 
Eq. (3.39). 

RO 
Z(w) - Z,(w) + jZ,(w) - - 1+ 1E 

RO 
z,(w) - - 

‘ROE 

1+ E2 
Z,(o) - - 

1+E2 ' 

where, 8s before, C - (w-wo)Tf and Tf - 2QL/wo. 

Problem 9.2: Show that Z,(w) and Z,(w) above obey the 
causality condition in Eq. (9.13), assuming woTf * 
2QL >> 1. 

(9.26) 

Applying Eq. (9.14), assuming a high Q mode so that coswt =: cosw,t 
over the range of w where ZR(w) is appreciable, we obtain 

w(t) z C08WOT 2R0 

l nT --COSWT . 
0 

(9.27) 
f 

Using R. - tGc(l+g)3-1, Q, - (l+g)QL and the fact that the ac- 
celerator shunt impedance is R, - 2/G,, we have 

COswoT (9.28) 

for the wake function for a mode resonant at frequency wo. The total 
loss parameter for 8 Gaussian bunch is obtained in a similar fashion 
using Eq. (9.25), 

(9.29) 

Note that for a point bunch w(O) - Pk,, where ko * (uo/4)(Ra'Q)* 
This gives 

W(T) - 2ko coswor . (9.30a) 
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- 
-A2 

k(u)-k e ot 
t . 0 (9.30b: 

These results are readily extended to find the total wake func, 
tlon and total loss parameter by summing over all modes (assumed no! 
overlapping) In a resonant cavity or traveling-wave structure: 

Y(T) - 2 c kn coswnt 
n 

-w2u2 
k(at) -ckn e n . 

n 

For the case of a resonant cavity, using Eq. (6.6b), 

(9.31a 

(9.31b 

(9.32) 

where Vn Is the maximum voltage gain for the nth mode for a velocit 
of light test particle when the stored energy in the mode is Wn. 
Similar concepts apply to traveling-wave modes In a periodic struc- 
ture. Using Eq. (5.7~). 

(9.33) 

where En is the amplitude of the synchronous space harmonic componc 
of the axial electric field for the nth mode, and wn is the stored 
energy per unit length summed over all space harmonic component6 fc 
that mode. 

In order to compute the wake potential using Eq. (9.31a). vail 
for w and kn are needed for as many mode6 a6 possible, either rest 
nant modes in the ca6e of a cavity or traveling-wave modes for a 
periodic accelerating structure. Values of on and kn are obtained 
solving, the boundary value problem for a. charge-free cavity or str 
ture. Two computer program6 are generally available at the presen 
time which accomplish this purpose. The program a7c3' 6OlVe6 for 
traveling-uave modes in a round pipe loaded by disks with flat, 
parallel faces. This structure is described by fOUr parameters: 
radius of the beam aperture in the disk, the Inside radius of the 
pipe, the length of a period, and the length of the pipe between d 
faces. The program SUPERFISH solve6 for resonant modes in an'axi 
symmetric cavity having an arbitrary boundary a6 a function of the 
axial coordinate z; that is, on the boundary r(4) is constant but 
r(z) is an arbitrary function. 

As frequency increases, the number of mode6 per unit frequent 
interval also increases. Since there is a limit on the total numb 
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of modes that can be calculated with reasonable computer time, there 
is a corresponding maximum frequency for the 6ums in Eqs. (9.31). If 
this frequency is %, details in the wake will not be accurate for 
time interval6 AT 5 G1, and the loss parameter will not be accurate 
for bunch length6 ut 5 G1. For high frequencies where the mode 
density is large, it is only the statistical properties of the modes 
that are important. 

Problem 9.3: For a plllbox cavity of radius b and length L, 
show that the density of modes approaches dn/dw - wbL/2rc*. 

In the case of s disk-loaded structure, loss by a point charge 
into high frequency traveling-wave modes can be considered as a dif- 
fraction loss by an equivalent plane wave having the same power 
spectrum and Poynting vector at the disk radius as the actual field 
due to the charge. This is the so-called optical resonator modelJ2 
for the energy loss by a point charge passing through a periodic 
sequence of thin plate6 with circular holes. In the limit of high- . 
energy (y >> wa/c where a is the hole radius), the 1066 parameter 
per unit frequency Interval predicted by this model is32 

*a1 AO 
do ; z&d (9.34) 

The wake potential due to this "analytic extension" for loss at all 
frequencies w > u\m is then 

w a (t) - 2A 0 J w 
T dw 

mLd (9.35) 

where S is the Fresnel integral. The constant A. can, in principle, 
be specified analytically, at least for a structure with thin 
disks. In practice, it Is better to obtain A0 for a particular StrUC- 
ture by making a fit of Eq. (9.34) to a log-log plot of computed modes 
for w < w . 

The Freceding concepts have been applied to compute the wake for 
the SLAC disk-loaded structure having a periodic length X/3 9 3.50 cm. _ 
The disk thickness is 0.58 cm, the radius of the outer wall is 4.13 cm 
and the disk hole radius is 1.16 cm for an average cell near the 
center of each constant gradient structure of 3 m length. The wake 
for the first 10 ps is shown in Fig. 9.3. The dashed curve gives 
the wake due to 416 computed modes, using Eq. (9.31a). The total 
wake is obtained by adding an analytic extension given by Eq. (9.35). 
Note that, because of the analytic extension, the total wake has a 
vertical tangent at T - 0 but a finite value of w(O) - 8 V/pC/period. 
The wake due to the excitation of the fundamental accelerating mode 
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Fig. 9.3. Longitudinal wake per cell 
for the SLAC disk-loaded structure 
(O-10 ps). Cell length - 3.5 cm; beam 
aperture radius = 1.163 cm. 
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Fig. 9.4. Longitudinal vake per cell 
for the SlAC disk-loaded titructure 
(O-300 ps). 

only, IS shown for compari- 
son. Note that On this scald 
it IS almost constant (the 
period is 350 ps), with an 
amplitude of about one-sixth 
of w(0). 

Figure 9.4 ShOWS the 
longitudinal wake for the 
SIAC structure out to 300 p6 
The large negative (acceder- 
ating) spike at 200 PS is th 
first reflection from the 
outer wall arriving at the 
structure axis. Shown again 
$6 the wake due to the funda 
mental mode, which undergoes 
almost a full period of 
o6clllation. After 5 to 10 
periods, it vi11 be the domi 
nant term in the wake, the 
higher modes having almost 
entirely decohered. On the 
time scale of interest, 
damping of the mode6 has 
also been ignored. Damping 
could be taken into aCCOUnt 
by multiplying each term in 
Eq.- (9.31a) by exP(-onT), 
where an i6 the damping con- 
stant for the ntb mode. 

For a number of years 
there was a COntrOVerSy 66 
to whether the modal analys: 
leading to Eq* (9.31a) was 
giving the complete wake. 
It was thought that this 
modal approach might be neg 
letting terms in the wake 
due to the scalar potential 
of the charge* Bane33 has 
recently shown analytically 
that the modal analysis giv 
a wake which agree6 with th 
derived from the vector and 
scalar potentials for a 
charge with v - C. Weiland 
and Zotter3" have 6ho& tha 
the modal wake is in agree- 
ment with that obtained by 
direct integration of Max- 
well's equations, using the 
program BCI, for a bunch ma 
through a cavity. 
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9.5 The Transverse Wake 

In this section we work out the transverse wake for the specific 
case of an axisymmetric disk-loaded structure. For such a structure, 
the synchronous space harmonic component of the nth traveling-wave 
mode has an axial electric field variation described by23 

I? -E tn 0 
L al co5 lli& cosw*(t-z/c) 

on a * (9.36) 

where Eon Is the field strength at the radius of the disk opening. 
For each mode a loss parameter 

(9.37) 

can again be defined in terms of the "cold" (no charge present) 
electromagnetic properties of the structure. Using the same formalism 
developed for the case of longitudinal modes, k,, will also describe 
the interaction of a point charge with the mode in question. Specifi- 
cally, the beam-induced energy deposited per unit length in the nth 
mode by a charge q traveling parallel to the axis at radius r = rq is 

W =k . 
n 

Eliminating wn using the preceding two expressions, 

E - -2 on 

(9.38) 

(9.39) 

The minus sign indicates that the induced field is such as to oppose 
the motion of the charge. Substituting Eq. (9.39) in Eq. (9.361, the 
induced field at position r, azimuth + (assuming the driving charge q 
is at I$ = 0) and position AZ = cr behind a charge q at radius r 9 is 

E * -2knq (z)" (r;k)mcos rn4 COOPT . (9.40) zn 

For q = 0, we see that the longitudinal wake potential per unit length 
is recovered. 

Now define the transverse (deflecting) wake per unit length of 
structure by 

+I = (c/e) d;t/dz = (%t+c%t) (cmf) 

where dct/dz is the transverse momentum kick experienced per unit 
length of structure by a particle following at distance CT behind a 
unit driving charge. The superscript Indicates as before that the 
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transverse fields are to be evaluated in a reference frame which is 
co-movi;! with the particle. In a theorem due,to Panofsky and 
Wenzel, it is shown that the momentum kick in such a co-moving fram 
can be expressed in terms of the E, field component only: 

(it, + dt) (Crnf) - j (c/O)iftEz(-f) , (9.42) 

Problem 9.4: P ove the+Pa ofsky-Wenzel theorem. 
Hint: Exp ess 

i 
i t and+(c x i ) in 

pgtential . Expand c x i) x tA 
terms of the vector 

, find the total derivative 
dA/dt, and set this equal to zero for a synchronous wave. 

For a synchronous wave, putting Eq. (9.40) in the form E,, * 

-JE,,]ejaT and using the preceding theorem, the transverse wake 
becomes 

;: ( 
alE,,I 

= (c/w) sinwr t - 
* 1 alE,nI 

-- tn ar + + r a+ ) 9 (9.43) 

where ; and 4 are unit vectors. Evaluating these two components, 

* 
r: w&,w) - 2m($)(f,"' (>jm co8 rn+ sinwnr (9.44a 

3: wtn(r9+,T) = -2m($)(z)m-1(>)m sin m+ slnwnr . (9.44b 

The i component of the dipole (m=l) wake at + = 0 is of most interc 

Wdn(T) = 2(S)(>) SinwJ . (9.45: 

Note that the amplitude of the dipole wake depends on the transversl 
coordinate r of the exciting unit charge, but that behind rq the 
wake itself s s independent of r. Again, for a sum of modes 

Ud (7) - 2 > ( >c knc - SinunT . 
k n mna 

(9.+6 

- Assuming dk,,/dw = A1/a312, we can compute an analytic extension to 
the above sum over modes following the same procedure as that Which 
led to Eq. (9.35). The result to be added to a sum over modes up t 
a maximum frequency wm is 
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Wda(T) = (‘;B)(3){q2cosx+~ 

m 

-s( 1 - 2s 5 cs))l \ 2rx 
I . 

. x - II&f 

(9.47) 

Again, S is the Fresnel integral anh the constant Al is obtained by 
fit to modal results for w ( s. 

Values for wn and kdn can be 
computed for an axisymmetric disk- 
loaded structure using the program 
TMNSVERS. j6 The resulting trans- 
verse wake per period for the SLAC 
structure is shown in Figs. 9.5 to 
9.7. Note in Fig. 9.5 that for very 
short times the total wake increases 
almost linearly at the rate of 
0.25 V/pC/ps per period. This is 
about 10 times the slope due to the 
lowest frequency mode, which is 
responsible for beam-breakup in 
SLAC . In Fig. 9.6, note how the 
analytic extension combines with 
the modal contribution to produce 
a smooth total wake. If more modes 
are used, together with a contribu- 
tion from the analytic extension 
which is consequently smaller, es- 
sentially the same total wake is 
obtained. The long-range wake is 
shown in Fig. 9.7. The high fre- 
quency modes, all of which add 
coherently at T = 0, have nearly 
decohered on this time scale. The 
main contribution to the wake is 
the lowest frequency mode, which has 
a period of 235 ps and an amplitude 
of 1.0 V/PC. 

0 

t 

- Tot01 
--- 435Modes 
-*- Fin! MO& 

0 2 4 6 8 IO 
s-a, TIME (PSI ,z,,.n 

Fig. 9.5. Dipole wake per cell 
for the SLAC disk-loaded struc- 
ture (O-10 ps). 

-0.5 - 
0 20 40 60 80 loo 

a-*7 TIME (PSI .,,,.,” 

Fig. 9.6. Dipole wake per cell 
for the SLAC disk-loaded struc- 
ture (O-100 ps). 

It is sometimes useful to de- 
fine a dipole transverse impedance 
per unit length of structure by 

Z,(w) - -1 
(Et + cBt) 

IO Ar (9.48) 

where E and Bt are the transverse 
deflect E. ng field components pro- 
duced by a current filament of 
strength I, having a sinusoidal 
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low 1500 
TIME (prl .I,..SI 

Fig. 9.7. Dipole wake per cell for the 
SLAC disk-loaded structure (O-2000 ps). 

transverse modulation of amplitude Ar at frequency w. For a compone: 
or for a storage ring of circumference L, the transverse impedance I 

zd(w) - Vt(w)/Id(w) where V,(w) -hL s ( + z x %)tdr and Id(w) - qAr 

Problem 9.5: Show that, for a resonant mode, 

'd 2c kd 

----p Q 
(9.49) 

Hint: Multiply Eq. (9.45) by e-wt/2Q, then take the 
transform using Eq.. (9.B) to find V,(w), noting also 
that Id(w) - q rq for a point charge. 

For typical dipole and longitudinal modes having the same E, at the 
disk radius in a disk-loaded structure, we expect kd z 4 kt. Howevt 
the density of transverse modes per unit frequency interva:,is tvi~t 
as large; since both TE- and TM-like modes can be excited. Using 
also the fact that kl - (w/Z)(Zk/Q) f or a longitudinal mode (settint 
Ra - 22, in Eq. (6.9)), we obtain 

'd 
-2cZ 

-2f ' 
(9.50: 

This expression is often used to estimate the broadband dipole Lm- 
pedance if the longitudinal impedance is known. 
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9.6 The Quadrupole Wake 

Evaluating the expression for the c component of wtn(rr$,r) in 
Eq. (9.44a) for m = 2, we obtain the quadrupole wake potential 

wqc = 4('a)'(@ $ shy . (9.51) 

The wake varies with azimuthal angle as coa29, where again it is 
assumed that 4 = 0 is the aximuth of the exciting charge at radius rq. 
The expression for the analytic extension is that given by Eq. (9.25) 
multiplied by 2(rq/a)(r/a). The quadrupole wake computed for the 
SLAC disk-loaded structure is shown in Figs. 9.8 and 9.9. The wake 
is again normalized to the disk hole radius a = 1.163 cm and to the 
periodic length p - 3.50 cm. To convert to a wake per unit length 
of structure, wq(r)/r$ in units of V/C/m4, the ordinate must be 
multiplied by 1012/a3p - 1.82 x 1019. (To obtain the dipole wake 
wd(r)/r" in units of V/C/m2, the corresponding factor is 1012fap = 
2-45 x iO15.) 

Fig. 9.8. Quadrupole wake per 
cell for the SLAC structure 
(O-10 ps). 

6 0 20 40 60 80 100 
>..i TIME (ps) .:.l,..ti 

Fig. 9.9. Quadrupole vake per 
cell for the SLAC structure 
(O-100 ps). 

It can be argued that effects due to the quadrupole wake will be 
small, since its strength is smaller than the strength of the dipole 
wake by roughly a factor rqr/a2. Note, however, that the quadrupole 
wake sets a fubdamental limit on emittance growth in a linac with 
alternating gradient focusing. In such a machine the beam cannot 
always be round. Even If the beam is exactly on axis and there are 
no misalignments, there will still be an emittance growth due to the 
quadrupole wake because the beam will necessarily have a quadrupole 
moment. In a recent calculation, Chao and Cooper3B have found such a 
situation in which effects due to the quadrupole wake can be 
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significant. In the first sector of the SLAC accelerator, there is 
non-negligible emittance growth for an Injected bunch of 5 x lOlO 
particles with a =1lam. 

XIYIZ 
9.7 Scaling of the Wake With Frequency and Structure Parameters 

The scaling with frequency of the amplitude of the wake poten- 
tial for a resonant mode, or the magnitude of some characteristic 
feature such as the intercept at T = 0 for the longitudinal wake or 
the value of the first maximum for the deflection wake, is per unit 
of structure, 

w(longitudina1) m w2 

w(dipole) - w3 (9.521 

w(quadrupole) * w5 . 

The time at which some characteristic feature occurs, such as the 
first zero crossing of the longitudinal wak; or the first maximum oj 
the deflection wake, scales of course as w . The magnitude of the 
impedance for a resonant mode, again per unit length of structure, 
then scales as 

n 

2 (longitudinal) - w 

2 
T (dipole) u w2 (9.53 

> (quadrupole) N w4 . 

The amplitude of the so-called broad-band impedance function scales 
with the same frequency dependence. The impedance or the wake for 
specific vacuum chamber component (as opposed to the impedance or w 

per unit length of structure) scales as one power of frequency less 
than given above; 

The dependence of both the longitudinal and transverse wakes o 

beam aperture has been investigated by K. Bane3g for the SLAC disk- 
loaded structure. The intercept at T = 0 of the longitudinal wake 
was found to vary as 

-1.68 w L (0) - a 

over the range in aperture radii for the SLAC structure. The time 
which the longitudinal wake falls to one-half its value at 'I - 0 1s 

=1/2 z 0.09 a/c . (9.54 
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The amplitude of the first maximum of the dipole wake was computed to 
vary as 

w(T)-a -2.25 
dm . (9.55a) 

However, the time at which the wake reaches its maximum value also 
varies with the beam aperture radius as 

Trnm 0.64 a/c . (9.55b) 

Thus the initial slope of the wake was found to vary more strongly 
with a than the value of the first maximum: 

dwd -3.48 
dTma T+O . 

These scaling relations would not be expected to hold when extrapolat- 
ing to beam apertures significantly different from a * 1.163 cm, which 
is the aperture radius for an average cavity in the SLAC constant 
gradient structure. If the scaling law is written in the form amn, 
then the value n is larger than given above when scaling to larger 
values of 2, and smaller when scaling to smaller 2. 

A structure filling factor can be defined by f H 
p is the periodic length and t is the disk thickness. 
structure, p = 3.5 cm and f - 0.83. When scaling to a 
a different filling factor, computations indicate that 
of the wake scales roughly in direct proportion to f. 

10. SOME APPLICATIONS OF WAKE POTENTIALS 

10.1 Single Bunch Acceleration 

(p-t)/p,.where 
For the SLAC 
structure with 
the amplitude 

In this section we consider the acceleration of single bunches 
in traveling-wave linac structures. As will be discussed later, 
traveling-wave structures are to be preferred over standing-wave 
structures for single-bunch acceleration because the stored energy 
per unit length required to produce a given accelerating gradient is 
in general lower. 

Using the notation in Ch. 5, the average accelerating gradient 
Ea for a structure of length L with input power P and unloaded energy 
gain V, can be written in the form 

i2 I v. 2 
( > 

Par 
a L -,f(r) . (10.1) 

For constant impedance (CZ) and constant gradient (CC) structures, 

cz: f(T) = (2/~)(1-e-~)~ =: 2r(l-T+T2/2----) (10.2a) 

CC: f(r) - (l- ew2') = 2~(1-. T+ 2~~/3 --v--e) . (10.2b) 
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For single-bunch acceleration it is also of interest to relate the 
energy stored per unit length of structure, ws, to the energy gradient. 
The loss parameter k introduced previously and.defined in Eq. (9.33) 
provide8 the desired relation: 

where the subscript emphasizes that kl is per unit length of struc- 
ture. The average gradient for a structure of length L can now be 
written as 

ii2 = 4 klwo n8 - 4kl TfPA15 (10.3) a 

where w 
the inpzt 

= PoTf/L is the input energy per unit length, P 
power per unit length, and n, is a structure e il 

= PO/L is 
ficiency, 

given by 

CZ: 9, - (l-e -f)2/T2 (10.4a) 

CG: nE - (l-e -2T)/2, . (10.4b) 

Problem 10.1: Derive the expressions for ns in Eqs. (10.4). 
Hint: Recall that the filling time for both constant impedance 
and constant gradient structures is given by Tf = ~(2Q/m). 

The structure efficiency ns and normalized power P, = P,/(%L/r): 
l/f(r) are plotted in Fig. 10.1 as a function of the attenuation 
parameter T for a constant impedance structure. Note that a high 
structure efficiency and the 
lowest peak power requirement a' 
are mutually exclusive. The I’ I’ 1’ II I’I i-5= 

best compromise for both high 'I, 
and low P, is reached for a r on 

f 

the order of O-3-0.5. 
The structure parameter kl 

is a strong function of the beam 2 
aperture radius 5. The depen- 3 
dence of kl on beam aperture is A 
shown in Fig. 10.2 for the SLAC 
disk-loaded structure at 2856 

()‘I I I I L I I I1 I I I I .*j 

0 0.2 0.4 0.6 0.8 I.0 1.2 1.4 2 
MHZ. The solid curve can be I- Attenrolicn Fbmmets r M".. 
approximated analytically by the 
expression Fig. 10.1. Structure efficiency 

and normalized peak power per unit 
length as a function of the attenu- 

kl = 27 V/pC/m 

1 + 30.5(a/X)2 
. (10.5) ation parameter T. 
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30 r 1 1 I I I I 

---- (/A:() 
- 1a=o.o5 

0’ I I 1 I 1 I 

0.1 0.2 0.3 0.4 
*.a O/A ..“., 

Fig. 10.2. Structure parameter kl 
as a function of beam aperture 
radius for the SLAC disk-loaded 
structure for two values of disk 
thickness t (t/X -: 0.056, A = 
10.5 cm for the SLAC structure). 

Other structures might be expected 
to have a similar dependence of kl 
on a/A. 

The familiar disk-loaded 
structure does not necessarily 
have the highest value of kl at a 
given frequency and beam aperture. 
'An alternative structure is the 
jungle gym structure, shown in 
Fig. 10.3. The group velocity of 
the accelerating mode in the jungle 
gym structure tends to be con- 
siderably higher than is the case 
for the disk-loaded structure. 
In addition, the jungle gym is a 
backward wave structure (phase 
velocity and group velocity have 
opposite signs for the accelerat- 
ing mode). Typically, vg/c m 0.20 
for the n/2 mode (n/2 phase shift 
between adjacent bar), and vg/c I 

0.10 for the n/3 mode. Table 10.1 compares the jungle gym and disk- 
loaded structures at three frequencies that might be of interest for 
a high-energy linear collider. Values of r, kl, Q and vg/c for the 
n/2-mode jungle gym are sealed from values measuredho at 714 MHZ for 
a structure used for several years as an rf cavity in the Cornell 
University electron synchrotron. Values for the r/3-mode jungle gym 
are estimated from some old measurements4* made at the Stanford Uni- 
versity Microwave Laboratory. The kl value for the disk-loaded 
structure with a wider beam aperture, a = 1.50, is obtained from 
Fig. 10.2;.vg/c is scaled as a4. From Eq. (9.55c), the slope of 
transverse wake for this structure for t + 0 should be lower by a 
factor of about 2.5 compared to a structure with a = 1.16 cm. 
Finally, values for the standing-wave disk-and-washer structure, 
described in Sec. 3.4, are given for comparison. Note that although 
the Q and shunt impedance for this structure are very high, the 
value of kl is low compared to both the jungle gym and disk-loaded 
structures. 

.- -L 
8 Q Beam Axis -- - -- - -. -- 

8 Q 

I 

Transverse 
Seclion 

Lcngitudinot Section 

Fig. 10.3. The jungle gym bar-loaded accelerating 
structure. 
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- 
Table 10.1 Comparison of Accelerating Structures 

2656 MHz 

Disk-Loaded 
(a - 1.16 cm) 

Disk-Loaded 
(a - 1.50 an) 
Disk and Washer 
(a - 1.16 cm) 

Jungle Gym (a/2) 
(l/2 diag. - 0.84 cm) 

Jungle Gym (u/3) 
(l/2 diag. - 0.90 an) 

4040 MHZ 

Jungle Gym (r/2) 

Jungle Gym (r/3) 

5712 ME8 

Jungle Gym (r/2) 

Jungle Gym (a/3) 

56 19 13,300 .012 3 

46 16 13,000 .035 6 

85 10 40,000 -- -- 

51 25 9,000 .22 6 

60 30 9,000 .lO 6 

61 50 7,500 .22 6 

71 60 7,500 .lO 6 

72 100 ,6,500 .22 6 

83 120 6,500 .lO 6 

.83 

.57 

e- 

.09 

.20 

.09 

.20 

.09 

.20 

10.2 Single Bunch Beam Loading for a Gaussian Bunch 

Equation (9.5) gives the beam loading potential within a bun 
in terms of the wake potential W(T). As a specific illustration, 
consider the disk-loaded structure for the SLAC linac. The compu 
tion ofthewake potential for this structure was described in the 
last chapter; the resulting wake is shown again in Fig. 10.4 for 
range O-20 ps. For this time range, the wake is described quite 
closely by the expression 

W(T) - A expC-(r/B)"] (10. 

where 

A = 226 V/pC/m - w2 

-1 B = 6.13 ps M w 

n-0.605 . 
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For a Gaussian bunch, Eq. (9.5) can be written in the form 

0 5 IO 15 20 
2-s Time bsl ..,... 

Fig. 10.4. Longitudinal wake poten- 
tial per period, p = 3.50 cm, for 
the SLAC structure. 

-g 0.20 
;” 
B P 

Qe 0.15 
E 
‘z 
2 0. IO 
z 
=” 

g 0.05 
d 
8 --1 
E 0 
2 -10 0 IO 20 
a.. Time (psi .e . . 

Fig. 10.5. Beam loading voltage 
within a Gaussian bunch for the 
SLAC structure for three values of 
bunch length. 

E(t) I(t)dt . 

Results for the SLAC structure 
at 2856 MHz for several values 
of a, are shown in Fig. 10.5. 

The total energy gain per 
unit length by a particle at 
time t in the bunch can be ob- 
tained by adding the external 
accelerating voltage to the 
beam loading voltage, 

E(t) - fa cos(wt-0) 

(10.8) ’ 
- Eb(t) . 

Here 0 is the phase angle by 
which the bunch center leads 
the crest of the accelerating 
wave produced by the external 
rf source. By adjusting this 
phase angle, the rising slope 
of the accelerating voltage 
waveform can be made to can- 
cel, at least in part, the 
negative-going beam loading 
waveform, resulting in a 
reduction in the energy spread 
of the particles in the bunch 
below the energy spread for 
the case 6- 0. This is shown 
schematically in Fig. 10.6. 
Note, however, that the de- 
crease in energy spread is 
achieved at the expense of a 
reduction in the average energy 
gain per unit length per par- 
ticle, given by 

(10.9) 

As an example, consider the case of the SLAC structure operating at 
Ea = 17 MV/m (V. = 50 GeV total energy) to accelerate a single bunch 
of particles with Nb = 5 x. 1010 and oa = 1.0 mm. The energy spread 
AV/Vo which contains 90% of the particles, and the average particle 
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. 

energy fi/V,, are plotted as a 
function of the phase offset 0 
in Fig. 10.7. In this example 
the energy spread at 0 - 13O i 
reduced by a factor of four 
below the spread at 0 - 0, but 
at the expense of an addition2 
2-112X loss in average energy 
per particle. 

The detailed energy dis- 
tribution function for the 

-1 particles within the bunch ma; 
sometimes be of interest. Tbc 

,-.I 0 TIME 9*1.,* charge dq in the energy range 

Fig. 10.6. Diagram showing how the dV is given by 

single-bunch beam loading gradient 
Eb(t) subtracts ffom the rf acceler- c& D 1(t,) 

ating wave E,f - E, cos(wt-6) to dV c n (dWWtr t 
(10. 

give the net gradient E(t). n 

The sum is necessary because, 
I I I 1 I I I 1 as can be seen from Fig. 10.6 

- 0.97 there may be up to four value 
of time t = t, giving the sam 
energy V(tn). The energy 
spectrum actually observed in 
a linac is modified further b 
cause of the finite energy ra 
accepted by the energy defini 

I - slits. This effect can be ta 
into account by convolving tt 

0 , I I I I I I a _ 0.92 above distribution function X, 
0 2 4 6 8 IO 12 14 I6 I8 

WA!% AHEAD OF CREST (deges) 
an appropriate slit function. 

.-. s- This removes the infinite spl 
Fig. 10.7. Energy spread and aver- at energies where the derivat 
age gain per particle for the SLAC dV/dt vanishes, resulting In 
structure with Ea - 17 MV/m, smoothed distribution functic 
Nb = 5 x 1010 and as = 1.0 mm. Examples of energy spectra fc 

beam loading by single bunch1 
in the SLAC linac are given in Ref. 42 for various values of the pi 
offset parameter 8. Agreement between the measured and computed 
distribution functions is very good, indicating that the functiona 
form of the wake as shown in Fig. 10.4 has a basis in physical rea 
The measurements Indicate, however, that the amplitude of the camp 
wake may be about 302 low.* 

The efficiency for transfer of stored energy in the Structure 
Into beam energy is also of interest: 

nb 5 q E&s (10.1 

where G, = ii/4kl is defined as the effective stored energy per un 
length in the structure. Thus 

* Recent measurements (1991) on the SLC are in very good agrezyent 
with predictions based on the calculated longitudinal wake. 
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w2 N 4eNbklE L1 b 
‘b - E2 a 'a 

Note that, from Eqs. (10.3) and (IO.ll), 

hE - fib na w. l 

(10.12) 

(10.13) 

Thus, the product of the beam efficiency and the strcture efficiency 
gives the net efficiency for the conversion of the applied input 
energy per unit length from the rf sources into beam energy. 

It is informative to introduce the beam loading enhancement fac- 
tor B, defined in Sec. 6.2 for a point bunch, into the expressions 
for average energy gain per particle and beam efficiency. By 
definition, 

E-EF al cos6 - AE b E Ba - AE (10.14a) 

AEb-klqB(o) . (10.14b) 

In Eq. (10.14b) we note explicitly that B is a function of bunch 
length. The bunch form factor for the accelerating mode, Fl, is also 
introduced in Eq. (lO.l4a), although usually it will be quite close 
to unity (se: Sec. 3.3). If a given relative energy reduction per 
particle AE/E, Is specified, the number of particles that can be 
accelerated is, from Eqs. (10.14). 

- (I- F1 co&) 
I 

. (10.15) 

For Fl cos8 Z 1, note that Nb scales as Ea/Bw2. The beam efficiency, 
Eq. (10.12), can also be written in terms of B, using Eqs. (10.14), as 

- (l-F1 case) 1 . (10.16) 

The maximum possible efficiency as a function of AE/Ea is 

nbtrnd = 
F; cos20 

B (10.17) 

at AE/E, = 1 - (Fl co&)/Z. 
The enhancement factor can be computed using 

(10.18) 
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where F1 is the bunch form factor for the accelerating mode (noriaally 
F1 = 1). The enhancement factor is shown as a function of bunch 
length in Fig. 10.8 for the SLAC disk-loaded structure (1 - 10.5 cm, 
kl - 19_V/pC/m). As an example, consider a 1 mm bunch with B - 3.1. 
For AE/E, - 0.1, Fl cos - 1 and E, - 100 MV/m, the number of par- 
ticles that can be accelerated is, from Eq. (10.15). Nb = 1.1 x 1012. 
Using Eq. (10.16). the beam efficiency is 12%. 

0 I 2 
Wi BUNCH LENGTH uz (mm) L(rr..r 

Fig. 10.8. Beam loading enhancement factor 
as a function of bunch length for the SLAC 
structure. 

For a Gaussian bunch, B(o) can be written directly in terms of 
the values k,., and u+, for the structure modes as 

B(o) - (kl e-+')-l aFnkn e+" . (10.19) 

It was shown earlier that, for a single bunch of 5 x 10 10 

particles in the SLAC linac operating at 17 MeV/m, the single bunch 
energy spread due to the longitudinal potential was minimized by 
running the bunch about 13O ahead of crest (see Fig. 10.7). . 
Figure 10.9 shows this optimum phase as a function of the number of 
particles per bunch for the case of a linear collider using the SLAC 
accelerating structure at a gradient of 100 MV/m. Results are given 
for several bunch lengths at 2856 MHz and 5712 MHZ. Figure 10.10 
shows the minimum energy spread at the optimum phase, while Fig. 10.1 
shows the average energy per particle in the bunch. Figure 10.12 
gives the beam energy extraction efficiency as defined in Eq. 10.11. 
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In Fig. 10.10 it is seem that the minimum energy spread is 
divided into two regimes. At low bunch charge the spread is 
dominated by the curvature of the rf wave near the crest, and 
is given by 

At large values of bunch charge, the energy spread is 
dominated by the bunch wake, and is given roughly by 

= 0.3 'lb klq 
2 = 1.2 '9 

90% cos 0 m Fa cod3 m 

where 8, is the phase for minimum energy spread. 

(10.20a) 

(10.20b) 

- 2856 MHz 
-- 57lZMHz 

0 
10’0 IO” IO’i 

s--u PARTICLES/BUNCH “Me. 

Fig. 10.9. Phase angle ahead of crest which minimizes 
the single-bunch beam loading energy spread as a func- 
tion of number of particles per bunch for the SLAC disk- 
loaded structure at a gradient of 100 MV/m. 
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10.3 Two-Particle Model for Transverse Ezaittance Growth 

In a continuous distribution of charge, each particle 1s affected 
by the transverse wakes from all other particles in the bunch which 
are ahead of the particle Sn question. To solve the transverse equa- 
tion of motion for the case of an arbitrary charge distribution, also 
taking into account acceleration and external focusing! is a formidable 
task. Chao et al., 44 give a solution for the case of a linear wake 
and a rectangular charge distribution, but the result ie too complex 
to be cast in a form permitting simple scaling. The simplest model 
that still contains the essentials of the physical situation is a two- 
particle model for the bunch. Consider a model for a Gaussian bunch 
of total charge q in which a head charge q/2 Is located at z’ * +a= 
and a tail charge q/2 is located at z’ - -or, where t’ is the coordi- 
nate relative to the bunch center. Assume a uniform external focus- 
ing field of strength kg, such that the head particle moves on an 
orbit described by x0 cos kgt as a function of distance t along the 
accelerator. The transverse force acting on the tail particle due to 
the dipole wake is then 

F1 2 -leqxo wd(2az) cos k z 
8 s 

where wd(2ar) is the dipole wake evaluated at 2ar. The displacement 
xl for the tail particle obeys the transverse equation of motion 

-& dxl V(z) yg 1 2 
+ v(z) $x1 - FIW/e . (10.21) 

where eV(z) is the energy. For the case of constant energy eV,, 
Eq. (10.21) simplifies to 

2 xf + kg x1 = C cos k z 6 , 

where xi f dxl/dz, xy f d2xl/dz2 and 

C- 
q x0 Wd t2aZ) 

. (10.23) 

Equation (10.22)is the equation for the amplitude of a lossless 
harmonic oscillator driven at resonance. Assuming ~1 = xl = 0 at 
z = 0, the solution is 

x1 - T& (z sin kgt) 

(sin kgz + kgz cos kgz) . 

(10.24a) 

(10.24b) 

Two limits are of special interest. For kg = 0 we obtain 
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x1 = cz2/2 

Xl = Cr - 
( 1 St C * f X1X; * * 2 z3 . 

In the limit of strong focusing, kgz r> 1, 

c2 2 
t p VlXlIIXiI * f 4k 2 ( ) l 

B 

(10.25a) 

(10.25b) 

(10.25c) 

(10.26a) 

(10.26b) 

(10 i26c) 

Thus, the ratio of the maximum displacement with strong focusing to 
the displacement with no focusing is 

~Xl((focusing) 1 1 
xl (no focusing) - ~ -2nlg ' . (10.27) 

where Ng - z/Xg is the number of betatron wavelengths. The cor- 
responding ratio of emittances is 1/(4x Ng). I 

Note that the motion of the tail particle is 90' out Of phase 
with respect to the motion of the head particle. In phasor notation 
gq. (11.24a) gives 

Z,(z) = iQ(O) - j AgO (10.28) 

where 

CZE 

A = 2kgxo 

qz wt(202) 
4 Vokg l 

(10.29) 

As an example, consider the SLAC linac (2 = 3 X lo3 m) with AB = 
100 m and a bunch with 5 x lOlo particles (q * 8 x 10 -4 C). Assume 
a bunch length u2 - 10111, or ut = 3.3 ps (these are parameters for 
the proposed SLAC Linear Collider). From Fig. 9.5 the transverse 
wake at 6.6 ps is 1.0 x 1014 V/C-m/periodl recalling that the dimen 
sion a of the disk opening is 1.163 X 10 m. Since the length of 4 
cell 7s 3.5 x 10e2 m, the wake wt(2a2) * 2.8 x lo15 V/C-m2. Let us 
approximate acceleration to 50 GeV (again, the energy for the SLAC 
Linear Collider) by a constant energy of 25 GeV. Puttin these 
numbers in Eq. (10.29) we obtain A = 10, or 1x11 = lox, , for the 
amplitude of the oscillation of the tail charge as driven by the he 
charge. The solution obtained by Chao et&.,44 for these same 
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parameters, but assuming a continuous rectangular charge distribution 
and uniform acceleration from 1.2 to 50 GeV, Is A * 6. Thus, Eq. 
(10.29) provides a simple but reasonably accurate expression for esti- 
mating the single-bunch emittance growth due to the transverse wake 
in a linac with focusing. 

Problem10.2: Write the equation of transverse motion, 
Eq. (lb.21), for the case of a linac with uniform acceler- 
ation, V(2) = V, + V'z. Let the strength of the focusing 
force scale with beam energy so that kg remains constant, 
independent of L. Can you find an asymptotic expression 
analogous to Eq.(10.29) for the growth ratio A? 

If there Is an energy spread for the particles within the bunch, 
there will also be spread in betatron frequencies, since k-8 - l/y for 
a given focusing strength. This corresponds, in the two-particle 
model, to a head particle with frequency (wave number) k.go driving a 
tail particle with frequency kg1 = kg0 + bk. The tail particle is 
now a harmonic oscillator being driven off-resonance, and we might 
expect a reduction in the growth of the amplitude of the oscillation 
compared to that given in Eq.(10.26a). 

The equation- of motion for this case and its solutions, assuming 
x1 = x' 1 = 0 at 2 = 0, is 

2 x; + kg1 x1 = C cos kSoz (10.30a) 

(10.30b) 

C 
x1 = k2 2 (cos kg02 - cos kB1 2) 

- 61 kf30 

2c = sin 1 - (kS1+kgo)2 sin L - 2 2 2 

kl3l 
2 

- k$o 
2 (ksl kBo) 

x’ = 
kil : kio (kgl sin k8l2 - kgo sin kgor) 

. (10.30c) 

The maximum amplitudes of x and x', assuming 6k/ke Is small, are 

(10.31a) 

(10.31b) 

(10.31c) 
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By comparing Eq. (10.3la) with Eq. (10.26a) the reduction in (xlrdue 
to the head-tail frequency difference is 

Ix11(wlth6k) = , 
(10.32) 

The emittance Is reduced by the square of this factor. 

10.4 Strong Head-Tail Instability in a Storage Ring 

In a storage ring, the head and the tail of the bunch change 
places periodically due to synchrotron oscillations. The head first 
drives the tail for half a synchrotron period, and on the next hslf- 
period the tail moves forward to drive the former head, which has now 
become the new tail. Thus a feedback mechanism exists which can lead 
to a possible instability. Let us assume that the transverse deflec- 
tion wake is confined to the rf structure only, of length Lrf. There 
will certainly be transverse wakes associated with other vacuum 
chamber components in the ring, but the rf structure is often the 
major impedance source. In one-half synchrotron period the bunch 
will pass through the rf structure fr/2fs times, where f, is the 
revolution frequency and f, Is the synchrotron frequency. Since the 
current per bunch 1s Ib * q frr the growth factor A in Eq. (10.29) is, 
after one-half synchrotron period, 

A- $ Lrf ' 8rf 
8Vofs ' (10.33) 

Here we have introduced the beta function, 6,f = l/kg, which is normal 
in storage ring nomenclature. The wake function in Eq. (10.33) must 
also be averaged from T = 0 to tm = 2or, where r = rm sinw,t. 

Problem 10.3: Show that the average wake seen by the tail 
particle during one-half period of synchrotron oscillation 
is 

(10.34) 

The phasor diagram in Fig. 10.13 illustrates how-the phasors 
representing the betatron oscillations of the head and the tail 

change during each half synchrotron period. Let z(l? and 
be the head and tail particles during the first half-peziod. If 

at the beginning of the half-period, then it will be 

at the end of the half-period, where (see Fig. 10. 

A . sin a = 7 (10.35) 
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Thus z*(l) and :1(l), when 
chosen in this manner, are eigen- 
vectors which differ from one 
turn to the next by a real phase 
shift only. During the next 

j4$' half period the roles of the 
particles are reversed, and par- 
title go is changed according to 

+'+ $2) 
0 

- 32) =-ja I $1) e-j2a. 

Equation (10.35) has two 
important consequences. First, 
if (A/2) 5 1, it corresponds to 
a real shift in betatron fre- 

Pm ‘,,YU qu-y given by 

Fig. 10.13. Diagram showing the 
eigenvectors on, successive half 

Aw = - (;) w5 - - (+ sin-' +) w5 

periods of synchrotron oscillation (10.36) 
for the motion of two particles 
driven by the transverse wake in Secondly, for A > 2 the fre- 
a storage ring. quency shift becomes imaginary, 

indicating unstable growth. 
From the geometry of Fig. 10.13 it is also seen that A = 2, a = IT/~ is 
a limit for stable amplitudes of oscillation for the two particles. 
This limit on stability using the two-particle model was first derived 
by Kohaupt.45 The threshold current for the instability can be found 
by setting A = 2 in Eq. (10.33), 

16 V. f 
Ib(threshold) = 6 L Bs . (10.37) 

rf rf 

?leasurements of threshold currents for the single-bunch transverse 
instability observed in PEP, PETRA and SPEAR are in reasonable agree- 
ment with Eq. (10.37). 

10.5 The Long-Range Wake and Multibunch Acceleration 

See Ref. S@.(SLAC-PUB-5062) and Ref. 53.' 
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LIST OF SYMBOLS 

Symbols are listed by chapter, in order of first use. The 
equation number in which, or immediately following which, the symbol 
is first defined or used is given in parentheses after each definition. 
Symbols are omitted when they have a clear, conv.entional meaning 
(e.g., t, 9, Y), or when they are used a single time only without 
possibility of confusion. Note that several symbols have different 
meanings in different chapters. 

Chapter 2 

Chapter 3 

E, (-0 
k 
c, s 
R, 
P 
R8 

: 

“U 
T 
L 
6 
ca 

C', S' 
F 
tb 

:. Qo 

h' 

Angular frequency of rf generator (2.1) 
Complw (phasor) cavity voltage (2.1)(2.3) 
Generator voltage component in a cavity (2.3) 
Beam loading voltage component in a cavity (2.3) 
Stored energy in a cavity or in a given cavity 

mode (2.4)(2.5), 
Function relating' cavity field to stored energy (2.6) 
Resonant frequency for a particular cavity mode (2.7) 
Voltage induced in a cavity by a point charge (2.8) 
RMS bunch length in time (2.9) 

Axial field in a co-moving frame (3.3) 
Free-space propagation constant k i w/c = PnIX (3.3) 
Cosine and sine integrals for cavity voltage (3.5) 
Cavity shunt impedance (accelerator definition)(3.9) 
Cavity power dissipation (3.10) 
Surface Impedance (3.11) 
Impedance of free space (3.11) 
Uncorrected shunt impedance (3.12a) 
Uncorrected cavity voltage (3.12b) 
Transit-time factor (3.13a) 
Length of cavity or gap (3.14) 
Transit angle, 8 - kL (3.14) 
Average voltage gain per particle; accelerating 

voltage (3.21) 
Cosine and sine integrals for bunch form factor (3.22) 
Bunch form factor (3.24) 
Total length in time of a rectangular bunch (3.25b) 
Radius of a pillbox cavitys(3.27) 
Unloaded cavity Q (3.28a) 
Shunt impedance per unit length (3.28~) 
Free space rf wavelength (3.28b) 
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Chapter 4 

8 

0 

Pb 
$0 
pw 
IlO 
% 
f 

- 

Geometry constants for a pillbox cavity (3.298,b) 
Number of cells, coupled resonator model (3.30) 
Mode number, coupled resonator model (3.30) 
Bandwidth, coupled reeonator model (3.30) 
Center frequency of paeaband, coupled resonator 

model (3.30) 
Cell number, coupled resonator model (3.31) 
Field flatness function, coupled resonator model 

(3.32) 
Cavity coupling coefficient (3.34') 
Cavity shunt conductance, equivalent circuit model 

(3.34') 
Cavity power dissipation, equivalent circuit model 

(3.34') 
Peak value of rf current (3.34') 
DC current (3.34') 
RF Generator current, equivalent circuit model (3.35 
Generator power, equivalent circuit model (3.35a) 
Generator voltage component at resonance (3.35a) 
Beam loading voltage component at resonant 

172 
(3.35b) 

Beam loading parameter, K Z (Io/2)(Ra/Pg) (3.36a) 
Beam conversion efficiency (3.36b) 
Reflected power 
Unloaded cavity admittance for a resonant mode (3.3; 
Tuning parameter, 4 2 (w-wo)/wo (3.38) 
Loaded cavity impedance, admittance (3.39) 
Loaded impedance at resonance, R. E CG,(l+ B) 1-l 

(3.39) 
Loaded Q, 9, E &/(1+6) (3.39) 
Tuning angle, j, P tan'lC-2Ql,61 (3.40) 
Loaded filling time, Tf 9 2QL/oo (3.43) 

ph~~el~f "gr with respect to -Zb (see Fig. 3.13) 

Phas; of V, with respect to -?b (synchronoue phase 
angle) (4.la) 

Power transferred to beam, Pb - IoVa (4.6a) 
Cavity coupling for zero reflected power (4.6a) 
Generator power at optimum tuning and coupling (4.6 
Tuning angle at optimum tuning and coupling (4.7) 
Synchrotron frequency (4.8) 
Tuning parameter, L Z(w-w,)Tf (4.13) 
Filling-time parameter, nEmw,Tf (4.13) 
Equilibrium beam loading voltage and current (4.13) 
Stored energy and average power transfer for a phas 

oscillation (4.14) 
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Chapter 6 

a 

"b 
"e 
f 
k 
% 

k0 
B 
AU,, wJm 

00 

"bo 

%mr “hm k, 

Azimuthal angle, cylindrical coordinates (5.1) 
Complex propagation constant per unit length (5.1) 
Propagation constant per unit length (5.2) 
Attenuation parameter per unit length (5.2) 
Periodic length (5.3) 
Propagation constant for the fundamental space 

harmonic (5.3) 
Propagation constant for the nth space harmonic (5.3) 
Phase velocity, v P w/B (5.4) 
Accelerating fiel B in a traveling-wave structure (5.7a) 
Power flow in a traveling-wave structure (5.7a) 
Traveling-wave shunt impedance per unit length (5.78) 
Stored energy per unit length (5.7b) 
Group velocity, v f do/dS (5.88) 
Field at z - 0 an 8 2 - L in a traveling-wave structure 

(5.108) 
Power flow at z - 0 and t - L (5.10b) 
Attenuation parameter, T f aL, for structure of 

length L (5.11) 
Filling time for a traveling-wave structure (5.15) 
Unloaded energy gain for a structure of length L 

(5.16) 
Beam-induced field in a traveling-wave structure (5.20) 
Beam-induced voltage in a structure of length L (5.22) 
Beam-loading coefficients for a traveling-wave 

structure (5.23) 
Phase slip parameter (5.27) 

Parameter relating stored energy and voltage, 
a L W/V2 (6.1) 

Angles in the proof of the fundamental theorem of 
beam loading (see Fig. 6.1) (6.2)(6.3) 

Single-pass beam induced voltage (6.2) 
Effective voltage seen by a point charge (5.3) 
Self-voltage factor, f E Ve/Vb (6.4~) 
Energy loss parameter, k E w/q2 (6.5) 
Phase of the generator voltage component (see Fig. 6.2) 

(6.8) 
Loss parameter for the accelerating mode (6.8) 
Beam-loading enhancement factor (6.10) 
Energy loss to the fundamental and to higher-order 

modes (6.11) 
Parameter u for the fundamental (accelerating) mode 

(6.12) 
Single-pass beam induced voltage for the fundamental 

mode (6.12) 
Higher-order mode loss impedance and voltage (6.138) 
Loss parameter for the nth mode (6.13~) 
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Time between bunches (6.13~) 
Synchrotron radiation loss (in volts) per turn (6.15) 
Cavity voltage just before and just after arrival 

of bunch (see Fig. 6.2) (6.16) 
Phase of cavity voltage just before arrival of 

bunch (6.16) 
Decay parameter, T Z Tb/Tf (6.24a) 
Phase shift between bunches, 6 E Tb(oo-w)' (6.24b) 
Beam-induced voltage component just before and just 

after arrival of bunch (see Fig. 6.3) (6.258) 
Effective beam-induced voltage (se,e Fig. 6.3) (6.25b) 
Real and imaginary components of Vb (6.26) 
Unloaded filling time, Tfo f 2Q,/o, (6.27) 
Unloaded decay parameter, to I Tb/Tfo (6.27) 

Transient difference vector (see Fig. 7.1) (7.1) 
Transient cavity voltage (see Fig. 7.2) (7.2a) (7.6) 
Normalized time, x Z t/Tb (Sec. 7.2) (7.10) 
Decay parameter, T F Tb/Tf (Sec. 7.2) (7.10) 
Transient phase angle of cavity voltage (7.11) 
Real and imaginary components of the transient 

part of V,(x) (7.11) 
LOSS parameter per unit length for the accelerating 

mode in a traveling-wave structure (7.19) 
Normalized time, x I tJTf (Sec. 7.3) (7.21) 
Traveling-wave attenuation parameter (Sec. 7.3) (7.21) 

Transverse shunt impedance per unit length (8.1) 
Beam energy in electron volts (8.3) 
e-folding factor (8.6) 
Beam pulse length (6.6) 
Energy gradient, dVJdz (8.7) 
Focusing strength (betatron wave-number) (8.9) 

Complex impedance function (longitudinal) (Sec. 9.1) 
Time domain wake potential (Sec. 9.1) 
Step response function (Sec. 9.1) 
Time following a unit point charge (Sec. 9.1) 
Beam-induced voltage within a bunch (9.5) 
Self-wake seen by a point charge (9.18) 
LOSS parameter and frequency for the nth mode (9.31) 

Fresnel integral, with x - %f (9.35) 
Maximum frequency for sum over modes (9.35) 
Disk-hole radius (9.36) 
Azimuthal mode index (9.36) 
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Transverse loss parameter (Sec. 9.5) (9.37) 
Field at disk-hole radius (9.37) 
Radius at location of wake-producing charge (9.38) 
Transverse wake (any m > 1) (9.41) 
Dipole wake potential (m = 1) (9.45) 
Transverse impedance (m = 1) (9.48) 
Dipole loss parameter (9.49) 
Quadrupole wake potential (m - 2) (9.51) 

Unloaded accelerating gradient averaged over 
structure length (10.1) 

Structure efficiency (10.3) 
Particles per bunch (10.7) 
RMS bunch length, as - cat (10.7) 
Phasa angle ahead of crest (10.8) 
Average energy gain per particle (10.9) 
Effective stored energy per unit length (10.11) 
Beam afficiencp (10.11) 
Energy from rf source per unit length (10.13) 

. 

Phase for minimum energy spread (10.20b) 

Wave number for focusing field, k 
Amplitude growth factor, A - xl(z B 

= 2*/Q ‘(10*21) 
/ho (10.29) 

Synchrotron frequency, f, - w,J2n (10.33) 
Revolution frequency (10.33) 
Current per bunch, Ib - qfr (10.33) 
Beta-function in rf system, B - l/k8 (10.33) 
Phase shift per half synchrotron period (10.35) 


