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Abstract

In the study of decays of mesons to three body final states the Dalitz plot analysis is a

standard tool for the description of the phase space and CP violation searches in the quark

sector. The technique applied for the study of these decays often depends on the model

used for the description of the dynamics of the intermediate states. As an alternative, the

Miranda procedure is used as a model independent method for detection of CP violation in

decays of mesons. In this work we perform sensitivity studies using the Miranda procedure

for the detection of CP violation on the decay D+ → K−K+π+, using Monte Carlo gener-

ated samples.

Keywords: decay, CP vilation, Dalitz plot, charm quark, sensitivity, Standard Model,

Miranda procedure.

Resumen

En el estudio de la desintegración de mesones en tres estados finales los diagramas Dalitz

son una herramienta estandar para la descripción del espacio de fase y busquedas de vio-

lación CP en interacciones del sector de quarks. La tecnica usada para el estudio de estas

desintegraciones amenudo depende del modelo usado para la descripción de la dinámica de

los estados intermedios. Como una alternativa, el procedimiento de Miranda es usado como

un método independiente del modelo para la detección de violación CP en desintegración de

mesones. En este trabajo se realizó un estudio de sensibilidad a la detección de violación CP

usando el procedimiento de Miranda en la desintegración D+ → K−K+π+, usando muestras

generadas por Monte Carlo.

Palabras clave: desintegración, violación CP, figura de Dalitz, quark encantado, sen-

sibilidad, Modelo Estándar, procedimiento de Miranda.
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1. Introduction

Violation of the Charge-Parity (CP) symmetry on weak interactions has been established

and widely measured for different meson systems, in particular decays of K and B mesons.

Due to the small amounts of CP violation (CPV) expected on the charm system within the

Standard Model (SM), measurements of CPV related quantities require larger data samples

and more refined statistical methods [1]. Just recently the first direct observation of CPV

in decays of D mesons was observed by the LHCb collaboration, measuring the difference

of the CP asymmetries for the decay channels D0 → K−K+ and D0 → π−π+ [2]. So far

results coming from CPV in the quark sector seem to agree with SM expectations [3].

In the SM, CP violation appears from the complex phase in the mixing matrix of quarks in

the charged weak interactions. Its measurement is of great interest as a constraint on the SM

parameters but also since this symmetry relates matter and antimatter, it is known that a

greater source of CPV is needed in the universe to account for the dominance of matter over

antimatter. In this sense a deviation from expected SM values in the CP asymmetry may

give us a hint on physics beyond the SM and new sources of CPV. As larger data samples of

decays of heavy mesons to three final states and heavy baryons become available, studies on

these modes turn of great interest, as their complicated structure may hide physics beyond

the SM.

The study of decays of mesons to a system of three pseudo-scalars can be done using only two

independent degrees of freedom and their phase space described by a 2-dimensional diagram,

the Dalitz Plot (DP) [4]. The study of these decays is usually done on the isobar model

description of the amplitudes, or its more formal description the K-matrix formalism [5].

Under these descriptions, fits to data on the decay amplitudes for the process and its CP

conjugates are done and the CPV parameters measured. This approach although useful

for measuring the CP observables of the SM, depends on the model used to describe the

dynamics and is very demanding for analysis with great numbers of events. An alternative

model independent approach using the direct comparison of the DP for a decay and its CP

conjugate is proposed to measure the amounts of CP violation in a particular decay channel,

the Miranda procedure [6, 7].



2 1 Introduction

As expected SM effects of CPV on the charm sector are very small, large data sets are

required to make such effects observable. As such, a sensitivity study is very important to

determine the amount of CP violation that we would be able to observe in a data sample

of given size. In this document an analysis of sensitivity to CPV on the decay D+ →
K−K+π+ for an estimated signal data size of the LHCb run II using the Miranda procedure

is performed. The studies are done using a toy Monte Carlo generator that simulates the

lineshape of the decay given a set of resonances parametrized by their magnitudes and

relative phases. This complete set of parameters makes the amplitude of the decay, where

CPV effects are introduced as relative differences in the magnitude or the phase between

the decay mode and its CP-conjugate. By performing the Miranda procedure on set of

10 samples where every set has different levels of a asymmetry and different amounts of

background contributions sensitivity to CPV is studied as the number of samples out of

10 in which a 5σ observation is possible. The study is also performed using three different

binning schemes for the determination of the best binning strategy to be used on real data.

In the analysis performed on real LHCb Run II data sets, a data selection that ensures that

no production asymmetries are introduced on the decay channel of interest is key to ensure

that any asymmetries observed by the Miranda procedure come purely from CPV effects.

For this, an analysis of the Miranda procedure is performed on the sidebands of the decays

channel D+ → K−K+π+ and the control channel D+
s → K−K+π+ is performed with the

objective of studying any asymmetries coming from the background of the data set after

data selection.

The present document is organized as follows. In chapter 2 a small review of the current

theory behind CPV in the SM is presented, including a small discussion of the CP symmetry

and its properties in physics. Chapter 3, discusses the Dalitz plot description of three-body

decays and its main properties, a description of the Miranda procedure is presented. A short

overview of the LHCb experiment can be found in chapter 4. The studies of sensitivity on

toy Monte Carlo data for the decay D+ → K−K+π+ are shown on chapter 5 with a study

on the CPV of the sidebands obtained for real LHCb run II data is presented on chapter.

Finally, conclusions of this study can be found in chapter 6.



2. CP violation in the Standard Model

The concept of Charge-Parity (CP) conjugation is key to the development of the Standard

Model of particle physics. The violation of this symmetry by the weak interactions is an

important characteristic of the model. By itself, P violation shows that only left-handed

fermions can participate in weak interactions which defines the form of the operator used

for the Lagrangian density description of the interaction, the V −A lagrangian current. The

violation of the combined symmetry CP by weak interactions appears from the mixing matrix

in the interaction of quarks on the weak charged current. Measurements of CP violation

serve as constraints of the parameters of the SM and a possible way into the discovery of

new physics.

2.1. Symmetry

As understood by modern physics, symmetry is the invariance of a system under a given

transformation. A system that after a particular physical transformation remains the same as

before. This invariance allows to classify its behavior and understand some of its properties

that at a first look might not be obvious. Because of its generality, this concept has become

of central importance in the study of physical systems. From the rotation of an uniform

sphere to gauge transformations in quantum field theory [8].

In classical physics, symmetry is associated with the invariance of the equations of motion

under some transformation on the generalized coordinates. In quantum mechanics transfor-

mations are performed through the application of a unitary operator O on the state |ψ〉

|ψ〉 → |ψ′〉 = O |ψ〉 . (2-1)

In that way, the normalization of the wave function is guaranteed and the probability is

conserved

〈ψ|O†O |ψ〉 = 〈ψ|ψ〉 = 1. (2-2)
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For a system that goes from an initial state |i〉 into a final state |f〉, such a transition is

described by the matrix element 〈f |S |i〉. If a transformation O is performed, then the

invariance of the system would imply

〈f ′|S |i′〉 = 〈f |O†SO |i〉 = 〈f |S |i〉 , (2-3)

which means that

O†SO = S → [O, S] = 0. (2-4)

This allows to relate the invariance of a system under a transformation O with its commu-

tation to the S-matrix and by extension with the Hamiltonian ([O,H] = 0) [9].

Two types of physical transformations can be distinguished, Space-Time and Internal trans-

formations. The first as the name suggests are transformations on the space-time coordinates

of the state of the system, such as space translation, rotations or time reversal. Internal

transformations act on the internal quantum numbers of the state like charge conjugation.

2.1.1. Parity

A particular space-time transformation important on quantum mechanics is parity. Parity

transformation is the space reflection of all the coordinates as

x→ x′ = −x, (2-5)

such that an unitary parity operator P acts on a wave function in the form

Pψ(x) = ψ(−x). (2-6)

This operator has eigenvalues ±1. In particular it is found that electromagnetic and strong

interactions preserve parity but weak interactions do not ([P,Hweak] 6= 0).

The possibility of parity violation on weak interactions was first proposed by Lee and Yang

in 1956 [10]. Their prediction was verified later on that same year by the measurement of

angular distributions of electrons coming out of Co60 polarized nuclei in the famous Wu ex-

periment [11]. By the early 1957 in a follow up experiment Garwin, Lederman and Weinrich

confirmed the violation of parity in weak interactions by analyzing angular distributions

from pion and muon decays [12,13].

Total angular momentum is invariant under parity transformation, that is

[P,J] = 0, (2-7)

and orbital angular momentum is also invariant under parity (L = x× p). Since J = L + S

for elementary particles, the parity of the spin operator is an intrinsic property that defines

the parity of its wave function. This is called the intrinsic parity of a state.
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2.1.2. Charge Conjugation

Charge conjugation symmetry appears naturally on quantum mechanics, with the intro-

duction of special relativity and with it the existence of antiparticles. This symmetry is

seen to be maximally violated by weak interactions [8]. The transformation associated with

charge conjugation is the exchange of particles by its antiparticles, that is all internal charges

(charge Q, isospin I, baryon number B, etc.) associated with the particular state change

sign while the space-time coordinates remain unaffected.

Given an operator that transforms particle-antiparticle states

Uc
∣∣π+
〉

=
∣∣π−〉 . (2-8)

Being qi any internal quantum number, electric charge Q, baryon number B, hypercharge

Y , etc. Such an operator would transform as

Uc |qi〉 = |−qi〉 , (2-9)

so that Uc and Qi anti-commute

UcQi |qi〉+QiUc |qi〉 = qi |−qi〉 − qi |−qi〉 (2-10)

{Uc, Qi} = 0. (2-11)

Meaning that is not possible to find a simultaneous eigenstate of Uc and the internal quantum

numbers Qi. As a discrete transformation, the charge conjugation operator has eigenvalues

±1 and as with parity transformation, electromagnetic and strong interactions have been

observed to be invariant under charge conjugation but not weak interactions ([Uc, Hweak] 6=
0).

2.2. Standard Model

The Standard model of particle physics is build as a gauge invariant theory upon the Lie

groups SU(3)C × SU(2)L × U(1)Y which breaks spontaneously into SU(3)C × U(1)Q. This

parametrization using gauge groups comes from considering the Lagrangian of the system

invariant under a set of local gauge group transformations, that is transformations on the

fields of the theory whose parameters are dependent of the space-time coordinates.

A first example of gauge groups is the Abelian group U(1) on which Quantum Electrody-

namics (QED) is constructed, the theory for the electromagnetic interaction. Extensions of
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this are the non-Abelian groups like SU(3)C on which Quantum Chromodynamics (QCD) is

constructed, this is the theory for the interaction of quarks mediated by eight vector bosons,

the gluons, the theory for strong interactions. Weak interactions correspond to the gauge

group SU(2)L and by the inclusion of a scalar multiplet and its potential, particles acquire

mass while preserving gauge symmetry in the known Higgs mechanism.

2.2.1. Quantum Electrodynamics (QED)

Considering the Lagrangian density for a spin 1/2 free-particle (Dirac’s Lagrangian)

L0 = ψ̄(x)(iγµ∂µ −m)ψ(x). (2-12)

In a similar way as in classical field theory, electromagnetic interactions can be introduced

using the minimal coupling. In quantum field theory, this is given by the local transforma-

tions

ψ(x)→ eiα(x)ψ(x), (2-13)

ψ̄(x)→ e−iα(x)ψ̄(x), (2-14)

where to maintain the gauge invariance the derivative is replaced with a covariant derivative

∂µ → Dµ = ∂µ − ieAµ(x). (2-15)

Here the field Aµ(x) is introduced and transforms as

Aµ(x)→ Aµ(x) +
1

e
∂µα(x). (2-16)

In the description of electromagnetic interactions this will imply that the constant e corre-

sponds to the absolute value of the electron charge and the field Aµ(x) is associated with

the photon. Hence we introduce a photon kinetic term

LEM0 = −1

4
Fµν(x)F µν(x). (2-17)

Such that Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor. Including this into our

theory implies that the new Lagrangian density is given by

LQED(x) = ψ̄(x)(iγµ∂µ −m)ψ(x)− 1

4
Fµν(x)F µν(x) + eψ̄(x)γµψ(x)Aµ(x). (2-18)

This is the Lagrangian of QED. Which represents a charged spinor field of mass m interacting

with the electromagnetic field [14]. Which is shown through the interaction term

HQED
int = eψ̄(x)γµψ(x)Aµ(x) = jµ(x)Aµ(x), (2-19)

that will correspond to the conserved current according to Noether’s theorem. The given

transformation describes the unitary Abelian gauge group U(1).
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2.2.2. Yang-Mills theories and Quantum Chromodynamics (QCD)

Historically the observation of baryon states, hadrons composed of 3 constituent quarks,

led to the introduction of three color charges to avoid violation of Pauli’s principle. These

color charges (red, green and blue) mean that each quark belongs into a representation of

the gauge group SU(3)C [9]. In a similar way as in QED, the introduction of a local gauge

symmetry with coupling constant e leads to the introduction of gauge vector bosons (the

gluons). For strong interactions we start by generalizing this idea to the case where we have

more than one type of state given by the color charge (qa, a = r, g, b). With the local gauge

transformation

qa → q
′

a = e
i
2
λAΛA(x)qa. (2-20)

Here the transformations

U = e
i
2
λAΛA(x), (2-21)

are unitary and have determinant 1. This makes the states qa a representation of the color

SU(3) group, and λA, A = 1, ..., 8 the eight Gell-Mann matrices [15]. Starting from the

Lagrangian density for free quarks

L0 = q̄a(iγmu∂µ −m)qa. (2-22)

For the three quark families (u, d, s). As before if we want our Lagrangian to be invariant

under the given transformation, we need to replace the usual derivative by a covariant

derivative given by

∂µ → Dµ = ∂µ −
i

2
gsλAGAµ. (2-23)

here gs corresponds to the coupling constant of the strong interaction and the vector fields

GAµ are the gluon fields, the generators of the interaction. The gluon strength tensor is

GA
µν = ∂µGν − ∂νGµ + igsf

ABCGB
µG

C
ν . (2-24)

Here an extra term is included compared to the EM case for the strength tensor which will

result in an interaction term between gluons, in strong interactions the vector bosons also

carry color charge.

Non-Abelian gauge theories were first proposed by Yang and Mills in 1954 [16]. It cor-

responds to a generalization of the gauge symmetry used for constructing QED in which

interactions are described using a special unitary group of degree N, SU(N). Hence the case
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of strong interactions is described with the non-commutative SU(3)C gauge group where

the Lie Algebra is given by

[tA, tB] = ifABCt
C . (2-25)

Being the eight ta the 3×3 traceless matrices that generate the Lie group. These are related

to the Gell-Mann matrices by

tA =
1

2
λA. (2-26)

Considering all of these properties the complete Lagrangian for QCD will be

LQCD = q̄a(x)(iγµ(∂µ + igsG
α
µ(x)

1

2
λα)−ma)qa(x)− 1

4
Gα
µν(x)Gµν

α (x). (2-27)

Here the kinetic term for the gluon field was also included.

2.2.3. Weak Interactions

First indications of the existence of a weak interaction came from the study of β-decays

and the postulation of the neutrino by Pauli. The theoretical approach towards a theory

for weak interactions starts with the proposition of Fermi’s Lagrangian for the description

of this particular type of decays [17, 18]. As other similar processes began to appear it

became evident the need for a theory for this new type of interactions. The discovery of

parity non-conservation proposed by Lee-Yang and later measured by Wu gave a more clear

insight of the properties of this interaction [10, 11]. Later on, it was be proved that parity

non-conservation also applied to the decay of pions and for the different decay modes of the

K+ which will be known as the τ − θ problem [4]. All this experimental information gave

hints for the existence of a new kind of interaction that not only violated parity but also has

relatively long decay times and with a very small range. With all of this the introduction of a

Vector minus Axial (V −A) type of current made its way to describe an effective Lagrangian

for weak interactions as the only possible coupling that can reproduce the desired helicity

results observed from experiment. This is done using a current-current interaction term of

the form

Leff (x) = −GF√
2
J†λ(x)Jλ(x) + h.c. (2-28)

Here GF is the universal Fermi coupling constant and the Jλ(x) current has the vector minus

axial form given by

Jλ(x) = ν̄lγ
λ(1− γ5)l + ūγλ(1− γ5)d′. (2-29)
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Each term corresponds to the leptonic and hadronic currents respectively. The interaction

between up and down type of quarks is given by the mixing matrix which will be discussed

in depth in the next section.

The inclusion of the factor (1−γ5) in the interaction shows that only negative chirality states

are allowed on weak interactions, which goes in accordance to observations for the helicity

of the electrons in β-decays [9]. This theory is able to make a very good description of some

phenomena present in weak interactions at low energies but is not self-consistent, it violates

unitarity at lowest order and is non renormalizable. Besides this, the presence of neutral weak

currents were established from the measurements of neutrino-electron scattering at CERN

[19]. Considering all these characteristics of the weak interactions the gauge theory proposed

for their description is the composed symmetry SU(2)L×U(1)Y that is spontaneously broken

into U(1)Q by the Higgs mechanism in which the gauge bosons acquire mass.

2.2.4. Electro-weak unification

In the SM at high energies there is a single SU(2)L×U(1)Y symmetry that is spontaneously

broken by the vacuum expectation value of a doublet H into U(1)Q in what is known as

the Higgs mechanism. Through this mechanism we are able to build a model for weak

interactions that includes the V − A form with intermediary massive vector bosons and a

massless photon that mediates electromagnetic interactions while also accounting for charged

and neutral weak interactions. It is through this mechanism that the gauge bosons and the

fermions acquire a mass while preserving universality and renormalizability of the theory.

The SU(2)L×U(1)Y symmetry is used as a model for the unification of electromagnetic and

weak interactions. This group is generated by 4 vector bosons, 3 generators from SU(2)L
and one from the hypercharge U(1)Y , they are Wα

µν and Bµν respectively with coupling

constants g and g′.

The fermionic sector of the theory is described by left-handed doublets for leptons and quarks

LiL =

{(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)}
Qi
L =

{(
uL
dL

)
,

(
cL
sL

)
,

(
tl
bL

)}
, (2-30)

and the right handed SU(2) singlets

LiR = {eR, µR, τR} (2-31)

uiR = {uR, cR, tR} (2-32)

diR = {dR, sR, bR}. (2-33)



10 2 CP violation in the Standard Model

Introducing the Higgs multiplet

φ(x) =

(
φ(+)(x)

φ(0)(x)

)
, (2-34)

the symmetry breaking will be generated by including the potential

V (φ) = (Dµφ)†
(
Dµφ)− λ(|φ|2 − ν2

2

)2

. (2-35)

with the covariant derivative

Dµφ =

[
∂µ +

i

2
gW a

µ τ
aH +

i

2
g′Bµ

]
φ, (2-36)

that couples the scalar doublet to the SM gauge bosons. The Higgs potential induces a non-

vanishing vacuum expectation value (vev) for φ, i.e. | 〈0|φ |0〉 | = ν/
√

2 that spontaneously

breaks the symmetry. The vacuum of the theory breaks the symmetry but the Lagrangian

is still invariant under it. Parametrization of the Higgs multiplet makes explicit the mass

eigenstates for the gauge bosons W±
µ , Zµ while allowing the inclusion of mass terms for the

fermions without breaking gauge symmetry [20].

The Yukawa couplings of the Higgs doublet to the fermions are given by

LY = −ydQ̄LφdR − yuQ̄Lφ̄uR − ylL̄Lφlr + h.c. (2-37)

After electroweak symmetry breaking the fermion mass terms arise in the form −me(ēLeL +

ēReR) with me = yeν/
√

2, given by the Yukawa couplings yf [21].

2.3. CKM matrix

The interactions in the electro-weak sector do not mix between quark families in the flavour

basis but once we transform into the mass basis it can be noted that the W±
µ couplings do

have mixing terms given by the mixing matrix V

Lmix =
e√

2sinθw

[
W+
µ ū

i
Lγ

u(V )ijdjL +W−
µ d̄

i
Lγ

u(V †)ijujL
]
, (2-38)

here θw is the Weinberg angle and sin2θw ≈ 0.231, is the angle by which SSB rotates the

Bµ, W 3
µ gauge bosons into the physical Z0

µ and Aµ mass eigenstates.

This mixing matrix is known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix

V =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (2-39)
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It is a complex unitary matrix with 9 degrees of freedom that can be represented using

three rotation angles and six phases. Using re-definitions of the quark fields five of the six

phases can be removed. Leaving us with only four independent degrees of freedom. With

this description taking as δ the remaining phase and θ12, θ13 and θ23 as the rotation angles

in the ij-flavor plane, the CKM matrix can be parametrized as

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (2-40)

The rotation angles in the mixing matrix are considerably small, meaning that the CKM

matrix is close to a diagonal. In the Wolfenstein parametrization we redefine the matrix in

terms of the four real parameter A, λ, ρ, η by taking

s12 = λ, s23 = Aλ2, s13e
iδ = Aλ3(ρ− iη). (2-41)

With this we can rewrite the CKM matrix as an expansion in terms of λ. At the order λ6

the CKM matrix in the Wolfenstein parametrization is [22]

VCKM ≈



1− λ2

2
− λ4

8

−λ6

16
[1 + 8A2(ρ2 + η2)]

λ Aλ3(ρ− iη)

−λ+ λ5

2
A2 (1− 2ρ− 2iη) 1− λ2

2
− λ4

8
(1 + 4A2)

−λ6

16
(1− 4A2(1− 4ρ− 4iη))

Aλ2

Aλ3 (1− ρ− iη)

+λ5

2
A(ρ+ iη)

−Aλ2 + Aλ4(1− 2ρ− 2iη)

+λ6

8
A

1− λ4

2
A2

−λ6

2
A(ρ2 + η2)


.

(2-42)

From this parametrization it is observed how the imaginary terms in the charm sector appear

at the order of λ5 while in the bottom appear at the order of λ3. Hence it is expected that

CP violation will be very small in decays of charmed hadrons within the SM.

The condition of unitarity in the CKM matrix implies a relation like

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2-43)

If we define the parameters ρ̄ and η̄ as

ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗cb
, (2-44)

the unitarity of the CKM matrix can be represented graphically in the complex plane as

shown in figure 2-1. Where the internal angles are given by
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Figure 2-1.: Unitarity triangle on the ρ̄− η̄ plane.

α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
, (2-45)

β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
, (2-46)

γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (2-47)

Fits on these values from measured CKM parameters help to constraint the SM mixing

parameters in the quark sector in search for new physics. The CKMfitter group [23] fit is

shown in figure 2-2.

Most recent average values give

λ = 0.22453± 0.00044, A = 0.836± 0.015 (2-48)

ρ̄ = 0.122+0.018
−0.017, η̄ = 0.355+0.012

−0.014. (2-49)

and magnitude values of the CKM matrix are

|VCKM | =

 0.97401± 0.00011 0.22650± 0.00048 0.00361+0.00011
−0.00009

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.039780.00082

−0.00060 0.999172+0.000024
−0.000035

 . (2-50)

taken from the Particle Data Group Review [3]. The inner angles of the unitarity triangle

are

α = 91.7+1.7
−1.1

◦, β = 22.56+0.47
−0.40

◦, γ = 65.80+0.94
−1.29

◦, (2-51)

taken form the CKMfitter results [23].
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Figure 2-2.: Unitary triangle on the ρ̄− η̄ plane with the fitted results obtained by the CKM

fitter group [23].

2.4. CP violation

Parity non-conservation under weak interactions suggests that to have a complete left-right

symmetry of the interactions the complete mirror reflection will be the CP transformation.

This seems to recover the apparent asymmetry of the weak interaction currents, since it

seems to act in the same way in left-handed particles as in right-handed anti-particles, the

corresponding CP conjugate. CP transformation in addition to the time inversion completely

inverts all the space-time coordinates of our Lagrangian. CPT theorem tell us that any

Lorentz invariant local Lagrangian must respect CPT invariance, that is Charge conjugation,

Parity inversion and Time inversion [8].

CP violation appears on weak interactions on the mixing terms of the charged gauge bosons.

Here CP is conserved only if the mixing matrix is real (V = V ∗). Then measurements of the

complex phase δ in the CKM matrix give us a measurement of the amount of CP violation
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coming from weak interactions. This can be seen graphically in the unitarity triangle, since if

the CKM matrix is real the triangle collapses into a line. Hence the amount of CP violation

in the SM can be seen on the measurement of the angles α, β and γ, shown in figure 2-2.

Physical effects of CP violation are observed by looking at CP conjugate decays of mesons

and baryons. Given a decay M → f with decay amplitude Af and its CP conjugate M̄ → f̄

with decay amplitude Āf̄ , the complex parameters of the different terms in the Lagrangian

that participate in the decay will appear as phases in the decay of M and its CP conjugate

M̄ . These phases can come from coupling with the charged gauge bosons W± or from re-

scattering of intermediate states, usually mediated by strong interactions. Hence we can

parametrize the decay amplitudes as

Af =
∑
i

|ai|ei(δi+φi), (2-52)

Āf̄ =
∑
i

|ai|ei(δi−φi), (2-53)

where |ai| is the magnitude of the different contributions to the decay amplitude, δi and φi
the strong and weak phases respectively. It is assumed that the strong phases δi are CP

invariant, and therefore do not flip sign under CP. The CP asymmetry is then defined as

ACP =
|Af |2 −

∣∣Āf̄ ∣∣2
|Af |2 +

∣∣Āf̄ ∣∣2 . (2-54)

Taking as an example the case of a two component amplitude

Af = |a1|ei(δ1+φ1) + |a2|ei(δ2+φ2), (2-55)

Āf̄ = |ai|ei(δi−φi) + |ai|ei(δi−φi). (2-56)

The CP asymmetry will be

ACP = − 2|a1a2| sin(δ2 − δ1) sin(φ2 − φ1)

|a1|2 + |a2|2 + 2|a1a2| cos(δ2 − δ2) cos(φ2 − φ1)
. (2-57)

It is noted how the asymmetry depends on δ2−δ1 6= 0 and φ2−φ1 6= 0 to be able to measure

a difference in the weak phases. Therefore the presence of interference between two different

components with different relative strong phases is needed for the observation of direct CP

violation.

Indirect detection of CP violation appears through the study of the decay modes of the

neutral meson mixing. For the case of Kaons the quark content of the four possible strange

pseudo-scalar mesons is

K+ = (s̄u), K− = (sū), K0 = (s̄d), K̄0 = (sd̄). (2-58)



2.4 CP violation 15

In this representation it can be shown that K0 and K̄0 are CP conjugates of each other, but

they are not eigenstates of the weak interaction Hamiltonian. Hence they can mix among

each other and the physical states will be given by

K0
S =

K0 − K̄0

√
2

, (2-59)

K0
L =

K0 + K̄0

√
2

, (2-60)

The short-lived (K0
s ) and long-lived (K0

L) kaons, the actual mass eigenstates. These two are

not anti-particles of each other so they are not required to have same mass and lifetimes.

Given that

CP
∣∣K0

〉
= −

∣∣K̄0
〉
, CP

∣∣K̄0
〉

= −
∣∣K0

〉
. (2-61)

Then

CP
∣∣K0

S

〉
= −

∣∣K0
S

〉
, CP

∣∣K0
L

〉
=
∣∣K0

L

〉
. (2-62)

We can observe that K0
S is CP even which would allow it to decay into a pair of pions

π±(0)π∓(0), but KL being CP odd should decay into a 3π final state instead. The first

experimental observation of CP violation comes from the measurement of long lived neutral

Kaons decaying into a pair of pions [24]. Being the amplitude ratio between these two decays

of the order 10−3 [3]. Direct CP violation measurements on that same decay channels were

performed a few years later [25].

Mixing in the charm sector has been established by different measurements [26–29]. Recently

results of direct CP violation have been shown by the LHCb collaboration by measuring the

difference between the CP asymmetries on the decay channels D0 → K−K+ and D0 → π−π+

[2]. Although predictions on the SM parameters are difficult from measurements on charm

decays, CPV effects are expected to be very small, so that measurement larger than expected

can give us a hint on physics beyond the SM.

In charged D(s) decays, Cabibbo-Suppressed modes are important since other channels might

have effects too small to be detected by current experiments. In particular, searches of three

and four body final states can show CP violating effects that vary across the phase-space

and that can become visible with current data samples.

The B system is where larger CP violating effects have been found in agreement with

complex terms appearing in the Vub CKM element at the order of λ3 [30, 31]. Subsequently

observations of direct CP violation in B0, B+ and B0
s have also been found [32–37]. Model

independent analyses have been used to study CP asymmetry on the phase space of B mesons



16 2 CP violation in the Standard Model

decaying to three-body final states, showing large effects on specific regions of the Dalitz

plot [38] while amplitude analyses for B± → K−K+π± have shown large CPV effects [39].

At present measurements all these observations seem to be in agreement with SM expected

values with some tensions in certain measurements that have not been confirmed and no

hints of new physics have been observed [3].



3. Dalitz Plot analysis

In the study of decays of mesons to three pseudo-scalars the common tool to represent the

process dynamics is using the Dalitz Plot, where a two dimensional representation of the

phase space of the decay is done using the invariant mass of any two pairs of final states

(s12, s13, s23). This description comes from the ability to describe the decay amplitude of

these types of decay using only two independent degrees of freedom.

This description has been used to study the decay amplitudes of B and D mesons and the

resonant structure of their decays, also for the study of CP violation. The description of the

amplitudes is usually done using the isobar model, which describes the decay as a coherent

sum of intermediate resonant and non-resonant states. Alternative, model independent

approaches to study the Dalitz plots, like the Miranda procedure have been proposed for

the observation of CP violation and its the subject of our present study.

3.1. Three-body phase space

Figure 3-1.: Scheme of the decay of 1→ 3.
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The decay rate of a three body decay is described by

dΓ =(2π)4

∫
d3p1

(2π)3

∫
d3p2

(2π)3

∫
d3p3

(2π)3

(
Mm1m2m3

EE1E2E3

)
(3-1)

× δ3(p1 + p2 + p3 − P )δ(E1 + E2 + E3 − E)|M|2, (3-2)

where the squared amplitude of the decay |M|2 describes the dynamics of the process.

Simplifications on this decay rate on the mother particle rest frame reduce the decay rate

to the expression

dΓ =
2m1m2m3

(2π)3(4M2)

∫
ds12ds13|M|2, (3-3)

with sij the squared invariant masses for the i+ j particles system.

In this description the structure of the decay will be shown by the invariant amplitude |M|2.

If the decay is purely kinematic the amplitude will be constant over the whole phase space,

otherwise any dynamical intermediate structure will be shown in the Dalitz plot as density

variations across the phase space.

In the center of mass system (cms) the invariant masses are given by,

sij = (pµi + pµj )2 = m2
i +m2

2 − 2E1E2 − 2p1p2 (3-4)

= (P µ + pµk)2 = M2 +m2
k − 2MEk. (3-5)

where the invariant masses (s12, s13, s23) depend on the momentum of each decay product

and

s12 +m23 + s13 = M2 +m2
1 +m2

2 +m2
3. (3-6)

The boundaries of the Dalitz plot will be given by

(m1 +m2)2 ≤ s12 ≤ (M −m3)2, (3-7)

(m1 +m3)2 ≤ s13 ≤ (M −m2)2, (3-8)

(m2 +m3)2 ≤ s23 ≤ (M −m1)2. (3-9)

3.2. Dalitz plots for the analysis of meson decays

The first appearance of a two dimensional diagram for the description of 3-body decays came

from the description of what was known as the τ+ → π+π+π− decay mode by Dalitz [4].

This will later be identified as a mode of the charged kaon K+ where the first observations
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of P violation in decays of mesons where reported. There, events obtained for the given

decay lie inside an equilateral triangle where the limits of that triangle are given by the

kinematical limits of the decay. In the non-relativistic limit events were bounded inside

the circle inscribed on the triangle. In figure 3-2 the available phase space for the decays

D+ → K−K+π+ and B+ → K−K+π+ is shown.

Figure 3-2.: Comparison of the available phase space for the decays D+ → K−K+π+(left)

and B+ → K−K+π+(right).

In recent years, as data samples for decays of B and D mesons has grown. Dalitz Plots

have become an standard tool for the study of the dynamical structure of the three final

states decays, particularly because they allow for the observation of interference patterns,

the extraction of intermediate states of the decay, their spin and the interfering phases which

are fundamental for the CP content extraction.

3.3. Amplitude analysis

Description of the amplitude of three body decays is done using intermediate resonances

that describe the decay in the form

M → (r → ab)c. (3-10)

The amplitude is modeled as a coherent sum of different resonant states and non-resonant

contributions

M(sab, sac) =
∑
i

aie
iδiAi(sab, sac) + aNRe

iδNRfNR(sab, sac), (3-11)
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where ai and δi are the relative magnitudes and relative phases of each component in the am-

plitude. The dynamical behavior of each resonance is modeled on the amplitude Ai(sab, sac).

For a resonance r → ab is modeled in the form

A(sab) = BL
M(pRM)BL

r (qRr)ZL(p,q)R(sab). (3-12)

BL
M(p, p0) and BL

r (q, q0) are the penetration factors of the mother particle and the resonance

respectively, while ZL(p,q) is the angular distribution of the final states and R(sab) is the

line-shape that describes the resonance. p is the momentum of the particle that doesn’t

participates in the resonance, the bachelor (pc) and q is the momentum of one of the

products of the resonance decay (pa or pb), R
M and Rr are the barrier effective radius for

the mother particle and the resonance.

The helicity formalism included in ZL(p,q) is modeled by the Zemach tensors [40] that

describe the angular probability distribution for a resonance with angular momentum L

L = 0 : Z0(p,q) = 1, (3-13)

L = 1 : Z1(p,q) = −2p · q, (3-14)

L = 2 : Z2(p,q) =
4

3

[
3(p · q)2 − (pq)2

]
, (3-15)

L = 3 : Z3(p,q) = −24

15

[
5(p · q)3 − 3(p · q)(pq)2

]
. (3-16)

The form factors introduced in the resonance amplitude are the Blatt-Weisskopf barrier fac-

tors for the production (BL
M(p)) and decay (BL

r (q)) of resonances of spin L [41]. Considering

a barrier radius R, the barrier factors are given by

L = 0 : B0(z) = 1, (3-17)

L = 1 : B1(z) =

√
1 + z2

0

1 + z2
, (3-18)

L = 2 : B2(z) =

√
z4

0 + 3z2
0 + 9

z4 + 3z2 + 9
, (3-19)

L = 3 : B3(z) =

√
z6

0 + 6z4
0 + 45z2

0 + 225

z6 + 6z4 + 45z2 + 225
, (3-20)

where z = pR, and z0 is the value of z when m = m0. Finally the lineshape of the resonance

is described by the relativistic Breit-Wigner (BW) propagator

R(m) ∼ 1

(m−m0)2 − im0Γ(m)
, (3-21)
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for a resonance of mass m0 and width Γ0, and

Γ(m) = Γ0

(
q

q0

)2L+1 (m0

m

) [
BL(qRr)

]2
, (3-22)

being q0 the value of q at m = m0.

The description of the amplitude as a superposition of Breit-Wigner intermediate states

is known to violate unitarity. This effect is increased for broad overlapping resonances.

As an alternative the transition matrix of the decay can be described using the K-matrix

formalism, which indicates the right approach for including different intermediate states

while preserving unitarity [5].

Controversial light scalar states have been found below the 2GeV threshold, where the

description is hard because of large widths and strongly overlapping states are found that

make them difficult to resolve [42]. In this region non-qq̄ contributions are expected, like

glueballs and multiquark states that would be found below 2GeV [43]. For these cases the

masses and widths of the resonances are found by poles in the process amplitude (T and S

matrices) at the complex energy plane by the form

√
spole = m− iΓ/2. (3-23)

In the case of large width scalar mesons the propagators are described by

R(m) =
1

m2
0 −m2 + iε

. (3-24)

In the case where the invariant amplitude of the decay is constant, this will appear as a DP

with uniform density of points over the entire space. Information on the intermediate states

is observed as variations over the DP. Resonances appear as enhancements on the invariant

mass of the decay products of the resonance, as shown in figure 3-3. In figure 3-4 it can be

observed how a wider resonance affects the distribution of points on the DP. The spin of the

resonance can also be observed from the number of zeros produced in the decay amplitude

as shown in figure 3-5.

The study of the decay amplitudes of meson decays is usually done by performing likelihood

fits that include different contributions of resonant and non-resonant terms across the phase

space of the decay that allow for a precise description of the amplitude. Other approaches

for the study of CP violation in three-body decays that aim for a model independence rely

on observation of the asymmetries across the phase space of the decay.
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Figure 3-3.: Dalitz Plot and lineshape described by a single Breitt-Wigner resonance.

Figure 3-4.: Dalitz Plot and lineshape described by a single Breitt-Wigner resonance with

a larger width.

3.4. Miranda procedure

As available data samples for decays of heavy mesons become larger more interests is ad-

dressed towards the three-body decays of B and D mesons. A model independent way of

measuring CP violation in these decays would be to do a direct comparison of the binned

DP between CP conjugate decays. As shown in section 2.4 direct CP violation in decays

can be measured by computing the asymmetry between the square of the decay amplitudes,

in binned DP these amplitudes are observed as number of events at each bin N(i) for the

particle and N̄(i) for its antiparticle. Hence the asymmetry of a bin i in the Dalitz plot will

be defined as

ACP (i) =
N(i)− N̄(i)

N(i) + N̄(i)
. (3-25)

The use of the asymmetry ACP (i) for the detection of CP violation in a binned analysis

makes the study more sensible to statistical fluctuations [6,7]. Instead it is proposed the use
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Figure 3-5.: Dalitz Plot obtained by a resonance with spin 0 (left), 1(center) and 2(right).

of the significance

SCP (i) =
N(i)− αN̄(i)√
α(N(i) + N̄(i))

, (3-26)

with the normalization factor α = N/N̄ , here N(N̄) are the total number of events for the

particle (anti-particle) decay. The significance values will be calculated bin-by-bin and for

the case where no CP asymmetry exists in the sample, SCP should distribute as a Gaussian

with µ = 0 and σ = 1. In that case significant deviations from that behavior will be

interpreted as evidence for CPV [44].

As was shown in section 2.4, for a direct observation of CPV, the interference of weak and

a strong phases is needed. These complex phases only become observable as relative phases

in the interference of two decay channels. Hence for this analysis the focus of interest will

be in the region of intersection of the main resonances of the decay. Since this is the region

where CPV observation is possible and the region that has a higher statistics in the phase

space. To account for these local asymmetries is important to choose a binning scheme

across the Dalitz plot that allows for the observation of such effects. An adaptive binning

scheme where bins are defined in a way that all bins have the same number of events is also

performed, this analysis is presented in chapter 4.

3.5. Charmed mesons to three-body final states

Decays of heavy mesons are usually defined depending on the degree of suppression by the

CKM matrix elements involved in the process, being the elements on the diagonal Cabbibo

Favoured (CF), changes from one family to the next are Cabbibo Suppressed (CS) while

changes between the first and third quark family are Doubly Cabibbo Supressed (DCS).

The main diagram through which the decay D+ → K−K+π+ occurs at tree level is CS for

it occurs at elementary level by the process c→ dud̄ or c→ sus̄. Tree level diagram of this
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process is shown in figure 3-6a, at higher orders this can also occur through the “penguin“

diagram shown in figure 3-6b. The different components of the intermediate resonant qq̄

states by which this decay goes from 1 to 3 bodies is what give us the characteristic dynamics

shown in the Dalitz plot that are shown in the invariant mass of the K−K+ and K−π+ pairs.

The contribution of each of these diagrams come into the decay amplitude as the components

of a coherent sum of amplitudes, as described in 3-11.

Figure 3-6.: Example Feynamn diagrams that participate in the Cabibbo suppressed decay

of the D+ meson. Tree level (left) and penguin diagram (right).

As can be noted in equation 2-42, the CKM matrix elements that participate in these decays

have an imaginary part at the order of Im(Vcd) ∼ λ5 at the three level and Im(Vub) ∼ λ3

in the penguin diagram, which is loop suppressed, in the Wolfenstein parametrization. The

CPV effects that may be observed on decays of charmed mesons are expected to be very

small in contrast with B meson decays where asymmetry effects apper at the order of λ3.

This makes the study of CP violation in decays of charm mesons of particular interest as an

asymmetry larger than expected would be a hint towards new physics.
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The LHCb detector [45,46] is a single-arm forward spectrometer covering the pseudorapidity

range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector

includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-

rounding the pp interaction region [47], a large-area silicon-strip detector located upstream

of a dipole magnet with a bending power of about 4Tm, and three stations of silicon-strip

detectors and straw drift tubes [48] placed downstream of the magnet. The tracking system

provides a measurement of the momentum, p, of charged particles with a relative uncertainty

that varies from 0.5% at low momentum to 1.0% at 200GeV/c. The minimum distance of a

track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution

of (15 + 29/pT )µm, where pT is the component of the momentum transverse to the beam,

in GeV/c. Different types of charged hadrons are distinguished using information from two

ring-imaging Cherenkov detectors [49]. Photons, electrons and hadrons are identified by a

calorimeter system consisting of scintillating-pad and preshower detectors, an electromag-

netic and a hadronic calorimeter. Muons are identified by a system composed of alternating

layers of iron and multiwire proportional chambers [50]. The online event selection is per-

formed by a trigger [51], which consists of a hardware stage, based on information from

the calorimeter and muon systems, followed by a software stage, which applies a full event

reconstruction.

4.0.1. Detector layout

The LHCb spectrometer is build in the forward region with an angular coverage from 10mrad

to 300mrad in the bending plane and 250mrad in the non-bending plane. This layout was

chosen because bb̄ pairs coming from pp collision on the LHC are produced mostly in the

same forward and backward cone. A view of the LHCb detector is shown in figure 4-1.

A warm dipole magnet of an integrated magnetic field of 4Tm with saddle shaped coils

in a window frame yoke is used on the detector. Each coil is arranged in five triplets of

pancakes-shaped with an specific ohmic resistance below 28Ω at 20◦.
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Figure 4-1.: The LHCb detector. Taken from [45].

4.0.2. Tracking

The tracking system consists of the vertex locator system (VELO), the tracking stations

Tracking Turicensis (TT) that are made of silicon micro strip detectors placed upstream

from the magnet, and three tracking stations (T1-T3) made of silicon microstrips in the inner

region (IT) and straw tubes in the outer region (OT) placed downstream of the magnet.

Vertex Locator (VELO)

The VELO system measures the track coordinates close to the interaction used to identify

displaced secondary vertices. Is composed of a series of silicon modules that measure r and

φ polar coordinates along the beam direction. Track coordinates measured by the VELO are

used to reconstruct production and decay vertices of b and c hadrons for measuring decay

lifetimes and impact parameters for flavour tagging.

Silicon Tracker

The TT and IT stations are made of silicon microstrip sensors. Each station has four layers

with vertical strips arranged for the first and last layer and strips rotated by an angle −5◦

and +5◦ for the second and third layer. TT modules are arranged in two pairs separated by
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27cm along the beam axis. Each IT station is composed of four detector boxes, where each

box contains four layers of seven detector modules. Detector modules consist of a single

silicon strip and a readout hybrid.

Outer Tracker

The OT is a drift-time detector for the tracking and measurement of the momentum of

charged particles. The detector is composed of an array of individual, gas-tight straw-tube

modules. There are two layers of staggered drift-tubes. Each station is composed of four

layers in the same geometry as in the IT modules for the three tracking stations (T1-T3).

4.0.3. Particle identification

A key feature of the LHCb detector is its ability to distinguish clearly pions and kaons,

this is done by an efficient particle identification system. For this task two Ring Imaging

Cherenkov (RICH) detectors, a system of Electromagnetic and Hadron Calorimeters and a

set of Muon chambers are used.

RICH

Two RICH detectors are placed to cover the full momentum range of charged particles.

RICH 1 is located upstream from the magnet between the VELO and the TT stations

and is designed to cover the low momentum range from 1GeV/c to approximately 60GeV/c

using aerogel and C4F10 radiators. RICH 2 is located downstream from the magnet between

the last tracking station and the first muon chamber. and covers the high momentum

range from 15GeV/c up to more than 100GeV/c using a CF4 radiator. For both detectors

Cherenkov light is focused using spherical and flat mirrors to reflect the light out of the

detector acceptance into the hybrid photon detectors. The photon detectors are surrounded

by external magnetic shields.

Calorimeters

The calorimeter system is designed for the selection of transverse energy in hadron, electron

and photon candidates for the first level trigger and the reconstruction of π0 and prompt

photons that are essential for flavour tagging. The structure consist of an electromagnetic
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calorimeter (ECAL) followed by a hadron calorimeter (HCAL). For the rejection of a high

background of charged pions a pre-shower detector (PS) is used upstream from the ECAL,

high background π0’s are rejected using a scintillator pad detector (SPD) to select charged

particles.

Muon stations

Muon triggering and identification is fundamental as muons are present in the final state

of many CP-sensitive decays. The muon system provides information for the high pT muon

trigger at the Level-0 trigger and muon identification for the High Level Trigger. The

detector is composed of five rectangular stations. The first, M1 is placed upstream from

the calorimeters and is used to improve measurements on pT for the trigger. M2-M5 are

placed downstream from the calorimeters separated by 80cm thick iron absorbers. Minimum

momentum for a muon to cross all the stations is around 6GeV/c. The detectors space point

measurements of the tracks in the form of binary information to the trigger. Alignment of

the hits in all five stations is required for the muon trigger.

4.0.4. Trigger

LHCb trigger is composed of two levels, Level-0 (L0) trigger operates synchronously with

the bunch crossing frequency while the High Level Trigger (HLT) operates asynchronously

on a processor farm.

Level-0 trigger (L0)

L0 trigger attempts to reconstruct the highest ET hadron, electron and photon clusters in

the calorimeters and the two highest pT muons. From the pile-up system in the VELO the

number of primary pp interactions in each bunch is estimated, with calorimeter information

the total observed energy and the number of tracks is estimated based on the SPD hits.

Based on the information obtained, events may be rejected to avoid large occupation on the

HLT data-flow. The complete L0 trigger information is collected by the Decision Unit (DU)

and makes a final decision for each bunch crossing.

L0 information is composed of three parts, pile-up system, L0 calorimeter trigger and L0

muon trigger. The DU collects all the information for the evaluation of the final decision.

The Pile-up system provides information on the position of the primary vertices and the
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backward charged track multiplicity. Calorimeter trigger looks for high ET clusters an

identifies them based on information from the SPD, PS, ECAL and HCAL detectors. Muon

chambers allow the muon reconstruction selecting the two muons with highest pT for each

quadrant of the detector.

High Level Trigger (HLT)

HLT is a C++ application running on every CPU of the Event Filter Farm (EFF) that

contains up to 2000 computing nodes. It access to all available data from the detector for

one event. Is composed of two stages, HLT1 and HLT2. At HLT1 the reconstruction of

particles in the VELO and T-stations is done from the L0 information. HLT2 combines all

the information and trigger algorithms to fully reconstruct the final states.



5. CP violation on the decay

D+→ K−K+π+ at the LHCb

experiment

The Cabibbo suppressed decay D+ → K−K+π+ is of interest for the study of CP violation

in decays of charm mesons at the LHCb collaboration, where an analysis has already been

performed using the Miranda procedure on the Run I data set of year 2010. For the Run

II a larger data sample is expected. A sensitivity study for the detection of CP violation

on the decay D+ → K−K+π+, using the Miranda procedure, within the LHCb Run II data

size, is proposed on Monte Carlo generated samples. Where asymmetries are introduced via

relative differences on the decay amplitude of different components of the model used for

their study between the D+ and D− data sets.

These studies on the decay channel of interest aim to have a description of the level of CP

asymmetry that we would be able to measure with a given data set size with a certain

purity of the sample. For this, a toy Monte Carlo model is constructed using the Laura++

package [52]. This is a set of C++ based libraries constructed on the ROOT CERN data

analysis framework [53] for fitting and generating samples of a given decay amplitude of

1→ 3 body decays. For our sensitivity studies we are interested in constructing a model for

the lineshape spectrum of the decay mode that reproduce as much as possible the dynamics

of the real decay. This includes a model for intermediate states resonances, and a simple

background model. Different samples with some amount of CP asymmetry are generated

along the main resonances of the decay and the Miranda procedure is performed on them. A

sensitivity study can also indicate to us the most sensitive binning strategy for the detection

of a CP violating signal in a given region of the Dalitz plot. Here three possible binning

schemes are studied. An uniform binning with equal size square bins distributed along the

DP phase space. An adaptive binning where rectangular bins are defined so that there is

approximately the same number of events for the sum of the events on both charmed meson

charges and a physics motivated binning, where bins are defined paying special attention to

the regions on the main resonances of the decay an the structure on each side.
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Previous analysis on this decay channel have been performed with samples of ∼ 2× 105 by

the CLEO collaboration [54] and the most recent analysis using the Miranda procedure by

the LHCb collaboration on Run I data taken during the year 2010 of ∼ 4× 105 events with

no observable CPV asymmetry found [44]. For the Run II a larger data set is expected.

With a total integrated luminosity of L = 5.67fb−1 for the years 2016− 2018 and a charm

production cross section of σ(pp → D+X) = 834 ± 2 ± 78µb on the LHCb acceptance at a

center of mass energy of
√
s = 13TeV . This will account for a production of ∼ 4.7 × 1012

D± events. After selection it is expected to have a data set of roughly 2 × 108 events of

D+ → K−K+π+ with ∼ 90% purity, this is the data size we will aim to study in our Monte

Carlo generation.

A short discussion on the proposed data selection for the Run II available data and finally a

study of the Miranda procedure applied to the sidebands of the D± invariant mass data sets

for the verification of existent CPV signals coming from the background is also shown. For

the analysis on the decay mode D+ → K−K+π+, the decay D+
s → K−K+π+ is selected as

control mode as is has the same final state structure and no observable CPV asymmetry is

expected to be observed in this channel. Hence, a data selection that controls all production

asymmetries on the D+
s mode will ensure that any asymmetry that may be found on the

D+ decay will be due to CPV effects by applying the same data selection on both cases.

5.1. Monte-Carlo generation

The construction of the amplitude model is done according to the isobar model described by

the results obtained by the CLEO collaboration [54]. Such a model requires the description

of the intermediate states using a magnitude and a relative phase, as given by the isobar

model. The amplitudes and phases used are shown in table 5.1.

Resonance Magnitude Phase (◦) Fit Fraction (%)

K∗(892) 1 0 25.7

K∗0(1430)0 4.56 70 18.8

φ(1020) 1.166 163 27.8

a0(1450)0 1.50 116 4.6

φ(1680) 1.86 -112 0.51

K̄∗2(1430)0 7.6 171 1.7

κ(800) 2.30 -87 7.0

Table 5-1.: CLEO model B used for the generation of MC samples of the decay D+ →
K+K−π+ [54].
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The main resonances of interest are the ones whose fit fraction is greater and are the ones

on which we will focus for our studies, these are K∗(892) that decays into a Kπ pair and

φ(1020) that decays into a KK final state. In particular, for this model the K∗(892) is

used as reference (magnitude 1 and phase 0◦). All the resonant states are defined using a

relativistic Breit-Wigner propagator except for the scalar κ(800) in which a pole like function

was used.

The model used for this initial generation does not include a background component. The

following studies will only look at the behavior of the Dalitz Plot on the signal region.

Sensitivity studies with the inclusion of a background component in the amplitude model

are shown in section 5.7.

5.2. Line shape definition

As shown in previous section we use only 7 intermediate states components to describe the

decay amplitude in our Monte-Carlo pseudo-experiment, based on the results obtained by

the CLEO collaboration. For the generation process of the entire amplitude care must be

taken so that the parameters used by the Laura++ package are the ones that best describe

the expected lineshape of the data. In order to obtain the complete model described in table

5.1 we start by exploring the behavior of the resonant states.

5.2.1. K∗(892)

The intermediate state K∗(892) is the main contribution on the invariant mass of the Kπ

channel. With a mass of 895.55MeV , a width of 46.2MeV and spin 1, all values of mass

and width for the resonance states used are taken from [3]. In the model for the lineshape

studied here the K∗(892) resonance is used as reference, is introduced in the model with

magnitude 1 and phase 0◦. A single component generation of the decay amplitude with the

K∗(892) is shown in figure 5-1.

Here the shape of the BW propagator used to define the amplitude of the resonance can

be distinguished on the Kπ system invariant mass. The effect of the vector nature of this

resonance can also be seen in the node that appears on the DP and how its reflected along

the KK invariant mass.
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Figure 5-1.: Dalitz plot of the generated sample including only the K∗(892) component and

their projections on the KK and Kπ invariant masses.

5.2.2. φ(1020)

The other important contribution to the decay amplitude of the process of interest is the

φ(1020) intermediate state that goes into a pair of kaons KK. For this resonance a mass

of 1019.461MeV is used and a width of 4.249MeV with spin 1. Generation of a single

component amplitude including the φ(1020) only is shown in figure 5-2.

Figure 5-2.: Dalitz plot of the generated sample including only the φ(1020) component and

the projections on the KK and Kπ invariant masses.

For this case the very narrow shape of the φ(1020) state is shown on the invariant mass of

the KK system. While along the Kπ system the node produced as an effect of its spin is

shown as a projection along the Kπ invariant mass.

Considering now the combined amplitude of the K∗(892) and the φ(1020) components. We

perform variations on the relative phase between these two contributions. Here a change

can be observed in the distribution of events in the Dalitz Plot, particularly on the region

where the two resonances interfere. A comparison of these for different phases of the φ(1020)

contribution is shown in figure 5-3. It can be seen that as the phase is changed the number of

events of different regions of the DP change. Particularly how when the two resonances are on

the same phase the constructive interference on the region where they meet is minimum while

when the phase difference is 180◦ the interference is maximal and the region of intersection
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has a greater number of events. For the model proposed here we have a relative phase of

163◦ on the φ so we expect a considerable contribution from that region.

Figure 5-3.: DP of a sample including the K∗(892) and φ(1020) changing the relative phase

of the φ resonance as 0◦ (left), 90◦ (center), 180◦(right).

Finally the φ amplitude is introduced with the 163◦ phase difference as proposed by the

model. The DP and its projections are shown on figure 5-4.

Figure 5-4.: DP for the generated sample including the main components K∗(892) and

φ(1020) with the parameters proposed by the CELO model.

5.2.3. Other contributions

The combination of the K∗ and the φ introduced in previous section already defines the

larger part of the decay amplitude as defined by the model shown in table 5.1. In the

following we show the contribution of the other smaller resonances included in the model

towards the final lineshape of the DP. In figure 5-5 the invariant mass projections are shown

comparing models where different resonances are included sequentially to the 2 component

model in the following order; K∗(1430) + a0(1450) +K∗2(1430) + φ(1680).

Finally the last part of the Kπ amplitude is introduced using a pole function. The scalar

κ contribution to the model used has a mass of 797MeV and a width of 410MeV that
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Figure 5-5.: Invariant mass projections for different models including the components of the

CLEO model.

corresponds to the real and imaginary parts of the pole function description whose pole

description in the complex plane has the form

Tpole(m,mκ,Γ) =
1

(mκ + iΓ)2 −m2
(5-1)

Resulting projections of including the κ state are shown in figure 5-6. Dalitz Plot of the

resulting phase space of the complete amplitude model is shown in figure 5-7.

Figure 5-6.: Invariant mass projections for different models including the 6 components

of the CLEO model and finally the complete model that includes the κ pole

function.
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Figure 5-7.: Dalitz Plot of the final model generated using Laura++ and the CLEO model

including 1× 106 events.

5.3. Initial studies

A first approach towards our sensitivity studies is performing the Miranda procedure on

samples with a relatively small number of events ( 2 × 107 events). In these samples a

particular level of asymmetry between the D+ and the D− samples is introduced as a shift

in the amplitude or the phase of a given resonance. Here we introduce the asymmetry on the

K∗(892) and φ(1020) intermediate states since those are the regions of the DP with greater

statistics and from where a visible CP violating signal will be more likely to be detected.

Miranda procedure analysis is performed on these samples for a 10 × 10 uniform binning

scheme. Results are shown in table 5-2.

For each of these samples the SCP observable was calculated bin by bin. In the no-asymmetry

case those values should be distributed as a mean 0 and standard deviation 1 Gaussian. As

shown in figure 5-8 for the null test, in which no asymmetry is introduced on the amplitude

parameters.

It can be seen that the deviation from the expected Gaussian distribution is very low and the
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∆a(%) χ2/ndof p-value(%)

0 60.58/68 72.68

0.1 66.73/68 52.09

0.2 78.82/68 17.39

0.3 95.08/68 1.68

0.4 117.78/68 0.02

0.5 144.05/68 2.16×10−5

0.6 176.28/68 1.49×10−9

0.7 212.42/68 9.08×10−15

0.8 256.35/68 1.21×10−21

0.9 303.57/68 1.69×10−29

1 355.71/68 1.45×10−38

∆δ(◦) χ2/ndof p-value(%)

0 60.58/68 72.68

0.1 59.66/68 75.47

0.2 63.06/68 64.67

0.3 70.82/68 38.37

0.4 83.50/68 9.75

0.5 99.82/68 0.72

0.6 123.16/68 4.87×10−03

0.7 148.32/68 6.57×10−06

0.8 178.58/68 7.17×10−10

0.9 210.42/68 1.81×10−14

1 251.08/68 8.53×10−21

Table 5-2.: Results for 2×107 events samples (D+, D−) on different asymmetry levels using

a 10× 10 uniform binning.

values of SCP are between -3 and 3. In figure 5-9 results for some samples where asymmetry

is introduced on the relative magnitude of the K∗(892) are shown. Results for asymmetry

introduced on the relative phase are shown in figure 5-10.

The p-value calculated is the probability of obtaining a result as extreme as the observation

given that the null test is accepted that is given that no CP violation is present on the

decay. Under this scope the statistical significance of such a measurement is obtained from

the p-value. If p ≤ 3 × 10−7 we would get a statistical significance of 5σ which is the level

of significance we would want to pursue. 3σ confidence level is obtained at p ≤ 10−3.

The obtained results for SCP for these samples will be used as a reference on the level of

asymmetry that we will be able to measure on the complete statistics tests. There we expect

to measure asymmetries bellow 0.5% of difference in amplitudes and below the 0.5◦ on the

phase differences.

The second binning scheme that will be applied in our studies is an adaptive binning, where

a configuration of bins is defined such that the number of events in each bin is to be equal.

This is done using the kdTreeBinning class of the ROOT framework.

As a test on the behavior of the method a study on the no-asymmetry samples is done using

different number of bins as shown in figure 5-11. Where the number of events in each bin is

displayed. It can be seen that as the number of bins increase there is a greater concentration

of events near the K∗ and particularly on the φ resonances. Which are the regions of the

DP with a greater density of events as expected. For the proposed Miranda study this is



38 5 CP violation on the decay D+ → K−K+π+ at the LHCb experiment

Figure 5-8.: DP of the Miranda procedure on a 2 × 107 events sample with no introduced

asymmetry. On the right is the distribution of the SCP values, black line is the

fitted Gaussian distribution and red line is the reference mean 0 and standard

deviation 1 Gaussian.

particularly useful because it may increase the sensitivity to CP detection near the regions

of interest.

The third binning strategy is to define a grid of rectangular bins in which not only we would

want to get bins with very similar number of events but with a closer emphasis on the inner

structure of the DP, showing the different regions that the main resonances populate. A

22 bins scheme is used in which the regions of the K∗(892) and the φ(1020) resonances are

divided in four bins each, breaking each resonance into its two peaks and along its mass, a

scheme of the bin structure used is shown in figure 5-12.

5.4. Studies on the number of bins

The asymmetry signal that may be detected from the Miranda procedure is very sensitive

to the binning configuration used across the DP, not only on the number of bins used, which

will determine the number of degrees of freedom on the χ2 measurement, but also in their

shape. Since different sources of asymmetry may produce different SCP distributions on the

phase space particularly near the regions of more interest (K∗(892) and φ(1020) regions)

an adaptive binning scheme is used, where the bins are designed so that each bin on the

diagram has approximately the same number of events. A physics motivated binning scheme

is also proposed that is designed to take into account the dynamical structure of the DP

near the larger resonances.

Considering the uniform binning as a starting point, the behavior of the SCP plots is studied
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Figure 5-9.: Results of Miranda procedure applied on samples with different levels of asym-

metry along the K∗(892) magnitude. ∆a = 0.3%(left), ∆a = 0.5%(center) and

∆a = 0.7%(right)

under different number of bins for sets of 10 samples generated with introduced asymmetries

of ∆a = 0.15% and of ∆δ = 0.2◦ on the K∗. Results of the number of samples on which

5σ CPV observation out of 10 are shown in table 5-3. Some of the SCP plots obtained

are shown in figure 5-13. It can be seen that as the bin size becomes increasingly large

the sensitivity to the dynamical structure is reduced, while at small bin size the asymmetry

effects tend to be averaged away with the increase on the number of degrees of freedom.

nbins 5× 5 7× 7 10× 10 15× 15 20× 20

∆a = 0.15% 7/10 6/10 4/10 0/10 0/10

∆δ = 0.2◦ 3/10 9/10 5/10 3/10 2/10

Table 5-3.: Number of samples with observed CPV with a significance of 5σ for samples of

introduced asymmetry of ∆a = 0.15% and of ∆δ = 0.2◦ on the K∗(892).

In the present analysis we use a χ2-test for looking at deviations of the SCP distribution from

its null-hypothesis. Being the null-hypothesis that no CPV is found. Then, the calculated

p-values will be the probability of obtaining such a extreme result given that the null-

hypothesis is true (there is no CP violation in the decay channel). In such a case for

obtaining an observation of CPV at the 5σ level of confidence it would be necessary to

obtain p−value≤ 3× 10−7.

The Z-value distribution is used for obtaining the statistical significance Z = (x−µ)/σ from
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Figure 5-10.: Results of Miranda procedure applied on samples with different levels of asym-

metry along the K∗(892) relative phase. ∆δ = 0.4◦(left), ∆δ = 0.7◦(center)

and ∆δ = 0.9◦(right)

Figure 5-11.: Configuration of bins using the adaptive binning scheme with 10 bins (left),

20 bins (center) and 30 bins (right).

the obtained p-value by the function

Z =
√

2Erf−1(1− 2p), (5-2)

where Erf−1(x) is the inverse error function [55].

Results of the Z − value or standard score obtained for all the samples in the different

number of bins cases are shown in figure 5-14. it is clear how in the case of phase difference

the 5× 5 binning gives a lesser statistical significance than the 7× 7 case.

Looking into the adaptive binning, if we analyze the sensitivity of the method with varying

number of bins we obtain the results shown on table 5-4. SCP graphs for some samples are

shown in figure 5-15.
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Figure 5-12.: Left: Scheme showing the binning structure proposed for the physics moti-

vated binning. Right: Physics motivated binning with the DP of a generated

ToyMC sample showing the distribution of events across the phase space.

Figure 5-13.: SCP values on the DP for different number of bins on an uniform binning grid.

5.5. Miranda procedure on the no-asymmetry case

To introduce the sensitivity studies on the full Monte Carlo samples (2 × 108 events for

(D+, D−)) samples, we start by looking at the null case. That is the case where no asymmetry

is introduced on the parameters of the amplitude for each charge. Here the study is done on

the three proposed binning schemes with a fixed number of bins; 7× 7 bins on the Uniform

case, 22 bins on the Adaptive binning and the Physics motivated binning of 22 bins proposed

in the previous section. As expected in every case the p− values obtained are between 0.1

and 1 meaning that no significant asymmetry is found between the two samples. it can be

seen from figure 5-17 that in every case the distribution of SCP values is approximately

centered at 0 and has standard deviation near 1.
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Figure 5-14.: Z-value obtained for the different samples of asymmetry of ∆a = 0.15%(left)

and of ∆δ = 0.2◦(right) on the K∗ for different numbers of bins on the uniform

binning.

nbins 15 20 22 25 30

∆a = 0.15◦ 6/10 6/10 5/10 6/10 5/10

∆δ = 0.2◦ 1/10 1/10 3/10 2/10 2/10

Table 5-4.: Number of samples with observed CPV with a significance of 5σ for samples of

introduced asymmetry of ∆a = 0.15% and of ∆δ = 0.2◦ on the K∗.

5.6. Miranda studies with different levels of asymmetry

Ten samples of 2×108 events for (D+, D−) are generated introducing a relative difference on

the amplitudes and phases of the K∗(892) and φ(1020). For each of the samples the p-value

is calculated and for the cases where p < 3×10−7 is considered an observation of CPV at 5σ

significance. Results for the Miranda procedure performed using the three binning schemes

are summarized as the number of samples where CPV is observed at 5σ significance out of

the total 10 samples, in tables 5-5 and 5-6.

It is observed how the different binning schemes are less sensitive to asymmetries coming

from the relative phase, particularly on the φ(1020) contribution, this can be attributed to

the very narrow form of the φ(1020) lineshape, which makes its phase change very rapidly

and makes it harder for the method to identify asymmetries coming from that region. Overall

the physical binning method seems to be more sensitive to observation of CPV signals and

performing very well on most levels of asymmetry tested. Graphs of SCP distributions for

several samples can be found in appendix A. The Z-values obtained for different levels of

asymmetry are shown in figures 5-18 and 5-19.
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Figure 5-15.: SCP values on the DP for different number of bins on the adaptive binning

scheme.

Figure 5-16.: Z-value obtained for the different samples of asymmetry of ∆a = 0.15%(left)

and of ∆δ = 0.2◦(right) on the K∗ for different numbers of bins on the adaptive

binning.

5.7. Background

So far, the sensitivity study presented here has only included a signal data set modeled as

resonant contributions to the amplitude. Based on previous analysis for this decay channel

[44] we expect to have a small, yet significant background contribution over the mass window

defined by data selection. Hence, a verification on the purity level that we require for the

Miranda study to be sensitive to CPV observation is necessary. A non-resonant background

contribution is introduced into our model that is uniform across the Dalitz plot, that is a

constant term in the amplitude model.

The purity of a sample is a measure of the amount of total signal that is present, is defined

as S/(S + B), being S and B the number of signal and background events respectively.

Invariant mass projections of the amplitude model with a purity level of 80% are shown in

figure 5-20. The effect of different amounts of background in the data sample is studied

under the Miranda procedure with the different levels of asymmetry as shown before, results
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Figure 5-17.: SCP Dalitz plot on a 7× 7 uniform binning grid (left), a 22 bins adaptive bin-

ning scheme (center) and a 22 bins physical binning scheme. The distribution

of SCP values is shown below. Black line is the Gaussian fitted to the values

obtained. Red line is a reference Gaussian with µ = 0 and σ = 1.

are presented in tables 5-7 and 5-8.

By looking at the significance distribution we are able to compare how the CPV detection

varies slightly by the inclusion of a constant background component. Reducing the Z−value
below the 5σ confidence level in some cases. For the cases studied here the physical binning

scheme is the one that is best able to distinguish these effects from the SCP distribution

across the Dalitz plot. Results for the significance obtained for the Physical binning scheme

are shown in figure 5-21.

In Chapter 5 a study of the asymmetry on the sidebands for the real decays D(s)
+ →

K−K+π+ with the objective of verifying that no observable asymmetry comes from this

region of the mass window. As a further study on the sensitivity we also perform an analysis

of the Miranda procedure using a weighted sample of the combined sidebands for the D+ →
K−K+π+ mode using a purity level of ∼ 10%. Results are shown in table 5-9 and 5-10,

Z-value distributions compared with the no background case are shown in figure 5-22.



5.8 Data selection 45

K∗(892)

∆a(%) Uniform Adaptive Physical

0.1 0/10 1/10 0/10

0.15 6/10 5/10 8/10

0.2 10/10 10/10 10/10

0.3 10/10 10/10 10/10

K∗(892)

∆δ(◦) Uniform Adaptive Physical

0.1 0/10 0/10 0/10

0.15 3/10 0/10 3/10

0.2 9/10 3/10 9/10

0.3 10/10 10/10 10/10

Table 5-5.: Results on the number of samples with observed CPV at 5σ significance out of a

total of 10 samples for the three binning schemes on different levels of asymmetry

introduced on the amplitude (left) and phase (right) of the K∗(892) resonance.

φ(1020)

∆a(%) Uniform Adaptive Physical

0.1 0/10 0/10 0/10

0.15 0/10 6/10 5/10

0.2 9/10 10/10 10/10

0.3 10/10 10/10 10/10

φ(1020)

∆δ(◦) Uniform Adaptive Physical

0.1 0/10 0/10 0/10

0.2 0/10 2/10 5/10

0.3 3/10 7/10 9/10

0.4 8/10 10/10 10/10

Table 5-6.: Results on the number of samples with observed CPV at 5σ significance out of a

total of 10 samples for the three binning schemes on different levels of asymmetry

introduced on the amplitude (left) and phase (right) of the φ(1020) resonance.

5.8. Data selection

Selection criteria applied to the LHCb Run II data set must be the same for the D+ and

D+
s decays. Cuts applied to data must be choosen so that it maximizes the elimination of

background contributions from other channels and miss-identified particles while ensuring

minimal loss of the signal. For this analysis a mass window of 1805 ≤ MD < 1935 for the

D+
s and a mass window of 1905 ≤ MD < 2035 for the control channel, the D+

s is used.

From particle identification of the final states is required that the probability of classifying

the kaons and pions as such to be greater than 0.3 for the three final states, defined by

the variables p(1, 2) ProbNNk > 0.3 and p3 ProbNNpi > 0.3. Identification should also

avoid the inclusion of D+ mesons that come from decays B → DX since it would introduce

asymmetries coming from B decays. This is achieved by computing the displacement of the

track of the mother particle from the primary vertex, the impact parameter (IP), and form

a χ2 under the hypothesis that IP is 0, the cut χ2
(IP ) < 8 is applied.

To reduce specific background contributions, vetos on certain decay modes must be applied.

A veto on the identification of the third particle as a muon is also done to restrict semi-
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Figure 5-18.: Statistical significance for the different experiments produced with asymmetry

of ∆a = 0.15%(left) and ∆δ = 0.2◦(right) along the K∗.

Figure 5-19.: Statistical significance for the different experiments produced with asymmetry

of ∆a = 0.2%(left) and ∆δ = 0.3◦(right) along the φ.

leptonic decay contributions. Other contamination contributions that are subtracted are

the miss-identification of the K+ as a proton p in the decay Λ+
c → K−pπ+ by performing

a cut on the wrong mass identification |mKpπ − 2288MeV/c2| > 13MeV/c2, the wrong

identification of one of the kaons as a pion is done by tightening the particle identification of

the first to particles as a kaon (p1, p2) PIDK > 15, contributions coming from D0 → K−K+

decays are also cut by imposing the condition on the invariant mass of the K−K+ system

mK−K+ < 1.85GeV/c2.

Finally, to control production asymmetries on the Dalitz plot fiducial cuts on the kinematic

variables of the final state particles are performed. Cuts on the momentum components of
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Figure 5-20.: Invariant mass projections of a sample generated with a purity level of 0.8.

Background component is show in red.

∆a = 0.15%(K∗(892))

Purity (%) Uniform Adaptive Physical

80 6/10 3/10 8/10

90 5/10 4/10 8/10

95 5/10 7/10 8/10

100 6/10 7/10 8/10

∆δ = 0.2◦(K∗(892))

Purity (%) Uniform Adaptive Physical

80 6/10 1/10 4/10

90 4/10 2/10 7/10

95 9/10 3/10 9/10

100 9/10 3/10 9/10

Table 5-7.: Results on the number of samples with observed CPV at 5σ significance out of a

total of 10 samples for the three binning schemes on different levels of asymmetry

introduced on the amplitude (left) and phase (right) of the K∗(892) resonance

for different level of purity using a constant non-resonant term.

the final states are performed as

p(1,2)z > 3.57×
∣∣p(1,2)x

∣∣+ 1000MeV/c, (5-3)

p3z > 3.07× (|p3x| − 500MeV/c) + 3000Mev/c, (5-4)

p(1,2)z > 4.25×
∣∣p(1,2)y

∣∣, (5-5)

p3z > 4.0× |p3y|, (5-6)

p(1,2)z > 4000MeV/c. (5-7)

5.9. Asymmetry on the sidebands

In the Miranda studies that will be performed on the decay channel D+ → K−K+π+ is

important to verify that any possible asymmetry signal that may appear will come only
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∆a = 0.15%(φ(1020))

Purity (%) Uniform Adaptive Physical

80 1/10 2/10 4/10

90 0/10 4/10 4/10

95 0/10 4/10 5/10

100 0/10 6/10 5/10

∆δ = 0.3◦(φ(1020))

Purity (%) Uniform Adaptive Physical

80 0/10 8/10 8/10

90 2/10 7/10 9/10

95 3/10 8/10 10/10

100 3/10 7/10 10/10

Table 5-8.: Results on the number of samples with observed CPV at 5σ significance out of a

total of 10 samples for the three binning schemes on different levels of asymmetry

introduced on the amplitude (left) and phase (right) of the φ(1020) resonance

for different level of purity using a constant non-resonant term.

∆a = 0.15%(K∗(892))

Purity (%) Uniform Adaptive Physical

90 5/10 7/10 8/10

100 6/10 7/10 8/10

∆δ = 0.2◦(K∗(892))

Purity (%) Uniform Adaptive Physical

90 7/10 3/10 7/10

100 9/10 3/10 9/10

Table 5-9.: Results on the number of samples with observed CPV at 5σ significance out of a

total of 10 samples for the three binning schemes on different levels of asymmetry

introduced on the amplitude (left) and phase (right) of the K∗(892) resonance

for different level of purity using weighted events from the sidebands on real

data.

from the signal region and not from the background contributions. The crosscheck on these

regions is performed by analyzing the behavior of the lower and upper sidebands for each of

the decay channels, both control and signal modes, under the Miranda procedure.

For this analysis, a definition of the sidebands is needed such that there is as little interference

from the signal lineshape as possible. The mass windows defined for each decay mode of the

K−K+π+ final state is shown in figure 5-23 . The D+ lower sideband is defined as 1810 <

DM < 1830 the upper D+ and lower D+
s sidebands are defined using 1910 < DM < 1930

and the upper D+
s sideband is defined as 2010 < DM < 2030. Dalitz plot for each of these

regions are shown in figure 5-24.

The study is done under three different binning schemes, an uniform binning, an adaptive

binning where each of the bins have the same number of events, and a physics motivated

binning as shown in the previous chapter. Analysis on the SCP significance is performed,

results are shown in table 5-11 for the D+ mode and on table 5-12 for the D+
s mode.

In the analysis performed of the Miranda procedure for the three different binning schemes
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Figure 5-21.: Z-values distribution for the 10 samples studied under different purity levels for

the introduced asymmetries ∆a = 0.15% on K∗(892) (top left), ∆a = 0.15%

on φ(1020) (top right), ∆δ = 0.2◦ on K∗(892) (bottom left) and ∆δ = 0.3◦ on

φ(1020) (bottom right).

a significant asymmetry is not observed, indicating that any asymmetries found on the

data samples used would come mainly from CPV effect or production asymmetries on the

signal region and not from the background. Next steps on the Miranda analysis would

be to study the asymmetries on the signal region of the control channel to verify that

no production asymmetries may come from the K−K+π+ signal region. In case such a

production asymmetry is found, a method for factorizing the production asymmetries would

be needed in order to observe physical CPV effects on the D+ decay mode.
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∆a = 0.15%(φ(1020))

Purity (%) Uniform Adaptive Physical

90 0/10 7/10 7/10

100 0/10 6/10 5/10

∆δ = 0.3◦(φ(1020))

Purity (%) Uniform Adaptive Physical

90 2/10 7/10 9/10

100 3/10 7/10 10/10

Table 5-10.: Results on the number of samples with observed CPV at 5σ significance out

of a total of 10 samples for the three binning schemes on different levels of

asymmetry introduced on the amplitude (left) and phase (right) of the φ(1020)

resonance for different level of purity using weighted events from the sidebands

on real data.

Uniform binning Adaptive binning Physical binning

χ2/ndof p-value(%) χ2/ndof p-value(%) χ2/ndof p-value(%)

Lower sideband 28.37/35 77.86 15.74/21 78.40 21.73/21 41.50

Upper sideband 44.0/35 14.16 38.99/21 0.99 34.10/21 3.53

Combined sidebands 36.93/35 37.99 47.34/21 0.08 35.20/21 2.68

Table 5-11.: Results of the Miranda procedure applied on three different binning schemes,

uniform, adaptive and pyshical. For the D+ → K−K+π+ decay mode.

Uniform binning Adaptive binning Physical binning

χ2/ndof p-value(%) χ2/ndof p-value(%) χ2/ndof p-value(%)

Lower sideband 40.52/34 20.47 35.99/21 2.19 34.24/21 3.41

Upper sideband 56.20/34 0.97 57.67/21 2.86×10−3 45.0/21 0.17

Combined sidebands 54.56/34 1.41 69.73/21 3.88×10−5 42.01/21 0.42

Table 5-12.: Results of the Miranda procedure applied on three different binning schemes,

uniform, adaptive and pyshical. For the D+
s → K−K+π+ decay mode.
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Figure 5-22.: Z-values distribution for the 10 samples studied under different purity levels for

the introduced asymmetries ∆a = 0.15% on K∗(892) (top left), ∆a = 0.15%

on φ(1020) (top right), ∆δ = 0.2◦ on K∗(892) (bottom left) and ∆δ = 0.3◦ on

φ(1020) (bottom right) using weighted events from the sidebands of real data.

Figure 5-23.: Mass spectrum of the D+ → K−K+π+ (left) and D+
s → K−K+π+ (right).

The mass windows for each sidebands are bounded by the red vertical lines.
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Figure 5-24.: Dalitz plot for the sidebands regions of the D+ lower (top left) and upper (top

right) sidebands and the D+
s lower (bottom left) and upper sidebands (bottom

right).



6. Conclusions

The decay channel D+ → K−K+π+ is expected to have a large signal data size on the

LHCb Run II with a considerable high purity. Sensitivity studies are a fundamental first

step for understanding the levels of asymmetry that may be observed in the data sample

and the best binning strategy for the detection of such effects. Using the CLEO model

description for the decay channel, toy Monte Carlo samples of 2 × 108 events of (D+, D−)

were generated and studied using the Miranda procedure. CPV effects can be measured at

the 5σ confidence level coming from variations on the relative amplitude of the K∗(892) or

φ(1020) resonance of ∆A = 0.2%, showing significant CPV effects on every sample. For

asymmetries coming from the relative phases a good probability of observation is shown at

∆φ = 0.2◦ for the K∗(892) while for the φ(1020) a difference of phase ∆φ = 0.4◦ is needed

for having a good CPV observation probability. This dependence can be explained as the

very narrow shape of the φ(1020) resonance makes its phase change rapidly so that phase

differences will be less significative than on the wider K∗(892). Studies including an uniform

background component for samples with a purity level of ∼ 90% show no significant change

in the sensitivity of the Miranda procedure given that no considerable asymmetry effects

come from the background. Using weighted events from the sidebands of the real LHCb run

II data set shows similar results. It is concluded that at the expected purity level of ∼ 90%

no significant changes in the sensitivity are expected.

The physics motivated binning scheme appears to be able to observe asymmetries beyond

these effects and proves to be the most efficient binning scheme for detecting asymmetries

on the DP while also producing good results when a background component is included

at the purity level of 90%. Significant variations on the sensitivity to CPV are observed

depending on the binning structure used for the Miranda procedure. It is observed that a

naive adaptive binning may make the analysis blind to the physical structure coming from

the resonances of the decay that can average away the asymmetry effects observed in the

SCP distribution.

The application of the Miranda procedure on the sidebands of data samples for the D+ →
K−K+π+ and the control mode D+

s → K−K+π+ show that no CPV effects can be expected

from the background of the decay modes. So any asymmetry effects may come only from
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physical or production effects on the signal region.



A. Miranda plots

A.1. Sensitivity studies on the signal model

∆a = 0.15% on K∗(892)

∆δ = 0.2◦ on K∗(892)
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∆a = 0.15% on φ(1020)

∆δ = 0.3◦ on φ(1020)
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A.2. Sensitivity studies including a background model

A.2.1. Studies with uniform background component

∆a = 0.15% on K∗(892) with an uniform background component, 90% Purity.

∆δ = 0.2◦ on K∗(892) with an uniform background component, 90% Purity.
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∆a = 0.15% on φ(1020) with an uniform background component, 90% Purity.

∆δ = 0.3◦ on φ(1020) with an uniform background component, 90% Purity.
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A.2.2. Studies with data from the sidebands

∆a = 0.15% on K∗(892) with weighted sidebands events, 90% Purity.

∆δ = 0.2◦ on K∗(892) with weighted sidebands events, 90% Purity.
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∆a = 0.15% on φ(1020) with weighted sidebands events, 90% Purity.

∆δ = 0.3◦ on φ(1020) with weighted sidebands events, 90% Purity.
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A.3. Miranda analysis on the sidebands

D+ lower sideband.

D+ upper sideband.
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D+ combined sidebands.

D+
s lower sideband.

D+
s upper sideband.
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D+
s combined sidebands.
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