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Factor in QCD

In the framework of the renormalizable quantum field theory
a new approach is developed to the investigation of asymptotical
behaviour of two-particle bound state electromagnetic form factor,
It is shown that the behaviour of the pion EM form factor in
quantum chromodynamics at sufficiently large momentum transfers
is controlled by the short-distance dynamics only. The formula
is obtained which expresses the asymptotical behaviour of the
pion form factor in terms of the fundamental constants of the theory]
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1. INTRODUCTION

Investigation of electromagnetic form factors of had-
rons at high momentum transfers raises now a consi-
derable interest 178°. To a great extent, this is caused
by the agreement between the quark counting formula /.10/

F, () -t "H 1.1)

which relates the asymptotical behaviour of the hadron
form factor Fy to the number of quarks inside hadron
H, and experimentally observed power-law behaviour of
the proton form factor (Gﬁ~ t,_z) and that of the pion
(Fz -t 1), The agreement indicates that for large t, the
behaviour of F (t) may be controlled by small distance
dynamics. Reaﬂy, eq. (1.1) can easily be obtained from
the tree diagram depicted in fig. 1a, if one assumes that
the hadron momentum is equally shared between the
quarks 19/, whereas the ”decay” of the pion into its con-
stituents (quarks) is described by some functions ¢.¢*
which do not affect the asymptotical behaviour with res-
pect to t.

But it is not a trivial task to prove the validity of this
approximation as well as to give a recipe of calculating
the corrections to it.

An analysis of bound states and of the corresponding
dynamical variables is based usually on the Bethe-Sal-
peter formalism /11.12/  that is, the hadron (e.g., the pion)
is described by the BS wave function

X p (X5 %) = < O T (x (x,))[P >. (1.2)
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Fig. 1

To study the behaviour of the bound state form factor
in such an approach one must solve the BS-equation or
at least, thoroughly analyse it (or the quasipotential
equation 13/ see ref.”®/ ) to get necessary information
about the corresponding. wave function. As a result, the
form factor is expressed in terms of y,y  and of the
functions y, s=ir (fig. 1b,c) which can be obtained in
perturbation theory.

It is just a simple comparison of figs. 1a and 1b that
shows that the function ¢ describing in fig. 1la the
”decay” of the pion into two quarks does not coincide with
the BS wave function. The authors of refs. ‘7. 10/ have
used for the function ¢ the term ”soft part of the BS
wave function”. It was implied there that the function

Xp®;.Py) (defined in the momentum representatlon)
in the region P% '~ can be represented as X p ~I(P{.Py)¢ .
The function I corresponds to exchange of a highly vir-
tual gluon, hence it may be related to the short-distance
quark-quark interaction. Asymptotical properties of the

function Yp(py. Pgo ) have been investigated in
refs. /1,2,4,7/ with the help of the operator product
expansion for T(J(X ) (X2)) at (x1-%2)%-0. This
4

regime corresponds in fact to the limit p21 ~p o0
whereas in fig. la one has p2 ~(P./2f.m?Hence one is
forced to assume that taking p? small does not change
the asymptotical properties radically. This assumption
is not evident. Furthermore, the investigation of simple
models’l1/ as well as a more general analysis /14’ show
that it is possible that not only small distances are rele-

vant to the asymptotical behaviour of form factors. If
the probability for a single quark to carry the whole
momentum of the pion is large enough, then the asympto-
tical behaviour can be controlled by the Feynman pro-
cess 715/ when only a quark carrying the whole pion
momentum participates in the hard scattering process,
whereas the second one having a negligible fraction
of the pion momentum, may be associated with the pion
both in initial and final states. This corresponds in
fig. la to a soft gluon exchange, hence this mechanism
is explicitly dependent on large distance dynamics. The
question is whether this process can dominate in a spe-
cific field theory model, e.g., in quantum chromody-
namics (QCD), or not.

The main conclusion of the present paper is that
for sufficiently large t the behaviour of the pion EM
form factor in QCD is controlled only by short-distance
properties of the theory

f2
@%) = 81a (Q}——v (1.3)

F(as)

m

where o, is the effective quark-gluon coupling constant,
and f, =132 MeV is the pion decay constant, which
describes the large-distance contribution. On the other
hand, our analysis of simple scalar models (¢> 3. ¢>3 )
shows that in these theories the leading asymptotlcal
behaviour of form factors is very sensitive to large-
distance dynamics. It sounds like a paradox, but the
analysis of form factors of colourless bound states in
QCD is in some aspects simpler than the analysis of
the analogous problem in ¢(36\-theory.



The paper is organized as follows. In order to split
the complicated problem of investigating the bound state
form factors in QCD into separate parts, we investigate
first some relatively simple models. In Sec. 2 we study
the superrenormalizable gbi -model using the a -
representation analysis. In particular, we investigate
here the specific manner in which the asymptotical
behaviour of the bound state form factor can depend on
large distances. In Sec. 3 we study the peculiarities of
renormalizable theories taking the Yukawa type model
BY YD (4 as an example. In Sec. 3 we give a treatment
of the pion EM form factor in QCD.

The approach used in the present paper was de-
veloped in refs. /16718’ (hereafter referred to as I-III),
where we have studied some inclusive processes. The
acquaintance with these papers will facilitate the under-
standing of the permanently used standard reasonings.
We have supplied them here only with short comments,
because they have been discussed in detail in I-III. The
main results of the present paper have been published
in a short form in refs. 719,20/,

2. ALPHA-REPRESENTATION ANALYSIS

Let us consider the asymptotical behaviour of the
form factor of a ’pion” composed of two scalar quarks
a,b interacting through a scalar gluon field ¢ in the
4-dimensional space-time

2.1)

int

£.,0= T BTy, ®De(®.
i=a,b

We start, as usual 712/ with the auxiliary 5-point
Green function

Rs(x 1'x2; y1 ,y2;0) =<
(2.2)
= <OIT(p, (v 2 W MOWE () F (X ))I0>

or, in momentum representation (see ref.8/)

4 4 ’ ’ . ’ . -
(2m) 8 (py+Py+P1+ P+ ORG(P1PoiP 1P o: 9

(2.3)
= <O, (0] oy @5 N(DY S (B )5 @ IO

If the particles a, b can compose a bound state with
mass m_ then

Xp-®] -p)F (Dx*( -P)
n’ .. _ ;2 P 1 2 n P 1
R5(p1'p2, pl ’p2’ q)_l ,(2.4)
(P2—-m727)(P’2-m2)

m

where y,x* and F, are, respectively, the BS wave
functions and the bound state form factor, all taken in
the momentum representation

<OIT(Y, @ iy @ IP > = (@m) "8 0+ 2, ~Pix (@ - D),
<PiQP>=(@n" 8 (P'~P + OF (@ @.5)

Relations (2.4), (2.5) allow one to obtain F_(q) if the
function R is known. We will demonstrate later that
the functions x p disappear in the final expression for
F., so there is no need in our approach to calculate
it explicitly.

To simplify the « -representation analysis we take
P, =Py =PR;; pP;=P% = P-/2¥*, Then the contribution of
any diagram (fig. 2a) can be represented as

R, (P/2, P/2; P72 P’/2 9= (2.6)
Ilda A A A
Zm o0 t 8

=g (_5_) Tf —1*~*—empi[q2(~A+——E + — + —)/D+1(a,m 3],
47§ D2 2 2 4

X This does not result in the loss of generality, as
we will show below.
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Fig. 2

where A= B(0/1234), A, - B(01/234), - B(02/134), A = B(03:124)+
+ B(04]123); Ag = B(24/013) + B(23/014) + B(14:023) + B(13:024 ).
(for the « -representation analysis see, e.g.,refs. 8,16/ |
the functions B(...|...) are defined, in particular, in the
Appendix to ref./16/ ). The coefficient Flu) - A+A/2:A /2:A /4
is non-negative by construction, hence it vanishes only
at the edge of the integration region, when o -0 for
lines o constituting some t -subgraph Vv O(i.e., the
subgraph after the contraction of which into point the
diagram loses its dependence on t - g=®).

Integration over Ay -0 (by definition A - X « o)

geV

gives in the ¢>?4) -theory the following asymptotical
contribution (see I)

Vext -V

4 ~ ¥
Ry, @ < @Q , (2.7)

where f.y, is the number of external lines of the
t -subgraph V. whereas v is that of its vertices. In
our casefo > 5, v 3,hence R y - Q™" . The lead-
ing contribution is given by subgraphs V,,v, (fig. 2b).

We introduce the Mellin transform &(J) of the amplitude
R5' For the diagrams of fig. 2b type

[4 r
Z I1 dao . L+ é—)(R + -2—)

<1><J)=g2(—4§”-> f "D2 (i -

i 2y(2.8
)Jell(a,m y(2.8)

where R.r(L.Y) are the functions corresponding to the
right (left) hand of the diagram 2b: R(V_ )=B(0:345. V ) ,
r B, (05/34; Vi) and similarly for L[f. We will
utilize the factorization properties:

R = aSDO (\E) + a4R(VR')l l"(VR) =a, I'(Vé);

_ . PNepo_ . 2.9)
L= alDO(VL) +a LV { = a, ¢ (VL),
where the functions R(Vy), r(Vy) are related to the

subgraph Vg. Introducing p-ag+a, A-=a,-a, andintegrating
in the region A, p -0 we obtain

4 23 + 2)
o) A 2, g i
CI)pole pole () = “**’“—2_ __;) foRh' (2.10)
(J+2)°

The functions f, have the following « -representa-
tion

z)
VR

£ [ 1 da
4 0 0 EVR

exp iI(a,mg) 2
DE(VE)  1=R_(VR/Dy(Vg)
(2.11)

The function h corresponds to the ”hanging” part:

g

o da —-a m2 _ J
h=f ST b o “m?) Tt 1, (2.12)
0 2+ J J="=2
5
where m is quark mass.
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To derive formulas (2.10)-(2.12) we have integrated
over B=a,/p from O to 1. We have also used the relations
D=a; Dy (Vy Dy (VE)1+0(+ 0(p)t  and Do(Vg)= R ~R” + 1,
where R’ is the function analogous to R’ R’(V )= B(61034; V).
By definition R_ =R’-R.

Eq. (2.11) resembles formula (5) from I which describes
the deep inelastic structure function in the ¢>34 -model.

One may introduce by analogy the parton wave functions
& (&)

rd

~ e o~ IId R (VZ) .
=3 2y " e 2%5(5— ~x el 1@ ™5 (2.13)
vy A o Dj D, (Vg)

(cf. I, eq. (7)). From the equality Dy~ R+R’+r it follows
that 1R Dl <L Hence ¢(§) vanishes outside the
region [¢/ < 1. The wave function ¢(£) may be related
to matrix elements of local operators just in the same
manner it was done for the parton distribution functions.
Really, the expression

.z o lldg . 2
b= 3 By e oyt e ) @.14)
Vg 47 D2 D,

corresponds to a sum of graphs which have n derivatives
in the O -vertex, consequently the quantity b, is defined
by

<0|TO, ey PWLE YR I0

4 4 (2.15)
= (2n) 6 (p1+p2~P)3Pul...P“n}bn.
In the coordinate representation 0 (%)

Bqoeer bq
= (.2i)n¢,*(x)‘§’:l *5; ¢ (%). If there exists a bound state of
n

particles a, b with mass m, , then

i
bn = ;2_:;5 a'nx P(pl —P2 ) (2.16)

m
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The function a, is defined now by the matrix element

P

<0|0“1_”un(0)1p>:{P ..P, la_. (2.17)

Expanding the expression (1-R /D )-1 (entering into
eq. (211)) into power series in (R_/Do)and using eqs.
(2.14), (2.15) we obtain

A o 4 Q o0
pole F[))ole (u ):_____ln_“_m_(z E b, )(2 E b )- (2.18)
m? Q4 u

R

Comparing eqs. (2.4), (2.16) and (2.18) we find that
the contribution into the form factor is given by eq.
(2.18), where one must change R~ F, by ¢ ~a, ¢ .

Thus we have seen that, as promlsed the BS func-
tion x,(P,.P,) ~ <0 Ty @ )n//(p WP disappears in
the fmal expressmn for ]he form factor. It means that
one may use in place of ¢ ()W (Ps) any combination
A, v*, &) of quark and gluon fields satisfying
<0 |{CIP > #0. In particular, the only restriction for p, ,
p, In eq. (2.4) is p; +py~P. We are free to utilize this
arbitrariness for simplifying the investigation of R; in
the « -representation.

The wave function ¢ (see eq. (2.13)) also possesses
the pole at P2:m$:

o gP 1 g (2.19)

According to eqs. (2.13-2.17), (2.19) the coefficients

a, are the moments of the function ¢:

( b (OE dg. (2.20)

Eq. (2 18) may be rewritten in terms of the ¢-func-
tions

4 2 2 4
FA P @o_f pOm O (221

pole pole m2qQ4 #4 -1 (1-8)/2

1"



The pole contribution (2.21} is due to integration over
the region A-0, p-0.The remaining domain of integration
over the a-parameters also yields the leading poles in
J as a result of integration over , - (then . 1 %)
or over A~0 {then ;> 1,42 ). To calculate the corres-
nonding contribution ;. £, one has to use the

o

formulas D - D (V3D (V1L - o0 and R 12

1 . e . . .
S(D,J(VWVRJ This gives the following representation for

the right half of the diagram

2y e Ty e (2.22)

it possesses a pole (J-2' due to integration over
¢-0.0ne must subtract this pole and then putd -2 . This
can be written formally as

poie reg 4 oo oiRes (] ————07
QF -1 (1-¢1/2 pe -1 A-n\2
2
L2 % -
= (2 % a ) Re; o mos a
Q4( a=g B’ 5#2 (4‘;‘1%‘ D\“ I)L ”"), (2'23)

E'q. (2.23) has 2 simple parton interpretation dictated
by fig. la: the function &) describes the “decay” of the
pion into iwo quarks with momenta Lidp ang 17€p
9] )

< ?
&

whereas the function & *(p) describes the 'fusion® o

Yoty

L 13 1
guarks with momenta Ap -

- T7i

P into pion. Am-
piitude for a parton subprocess is constructed according
to ordinary rules oi perturbation theory: it is just the

b

propagaters which give the facier == b the
) .

sum of egs. (2.21), (2.23) must not depend on ,. One may
always 95ubstitute the 4 -independent sum 1ln(Q2m=? -, %) -+
© const (=) by In(Q% /M%), This gives

-4 2 1
F_(Q - LI [ fé@f‘—i»—)g. (2.24)
m2Q% M? -1 (1-¢)'2

It is worth noting that in _each order of perturbation
theory the contribution into (&) behaves like (1-¢) as
£-1 Really, taking £ -1 (. we obtain

The equality r - 2R 0 may be fulfilled only due to
vanishing of at least two « -parameters. For instance,
one must take «g « 0 in the diagram shown in fig. 2c,
because of r o« T ,NR ugDra R Integrating over «.,
«, we obtain that () - ¢ 1-¢ in the region ¢ .1 Such
a behaviour produces a logarithmic divergence of the
, -integral in eq. (2.23). This reflects the fact that the
right-half contribution has a pole at J -2.Formula (2.24)
obtained as a result of singling out this pole is a meaning-
ful expression if the function SLE behaves like 1 ¢
as ¢ .1, i.e., in each finite order of perturbation theory.
However, there exists a possibility that the ”full” func-
tion &(&) resulting from the summation over all re-
levant diagrams does not approach zero as ¢ - 1 In this
case the r .~integral (2.24) diverges. The parton
interpretation allows one to expect that an account of
quark transverse momentum leads . to the change
xy 2% .xy Q7. (k.. - k;)? which provides the convergence
of the aforementioned integral. But as a result, there
appears an explicit dependence on«:kf - which characte-
rizes the pion size.

In the ¢?4)—mode1 we have no a priori suggestions
about the behaviour of the wave function ¢t for ¢
close to 1. But in renormalizable theories, e.g., in
¢36) . matrix elements of operators (and, hence, the
wave function (¢ )) depend on an additional renormali-

13



zation parameter ,: (& - &(¢.,% and it is pos-

sizble to calculate the limiting form of &(¢, x2) as
# s & -
Dependence of the coefficients a, on u, Ii.e. the

anomalous dimensions, is calculated in the standard
way 17 with some obvious modifications In the qs3

theory we have ®
dJ J
(p—— S 2oy
#(?u + B(8) ag)a“(“ 8) =
6 Iy
~kg¥-a s Loy (2.25)

(n+ 1(n+2) k=0 2

If one chooses another basis, namely, the conformal
one (see the Appendix)

oo

4 el 82
iMgratc? (26/909h, ., | (2.26)
| .

then the anomalous dimension matrix is diagonalized

d 3 ¢
(s B, %) g 31— Ok (2 -
d 0g "

u (n+(n+2)
2
=y, Bk (17.8), (2.27)
where
A - 2
<OIR, .y IP>~ iPul ....Punik 2 s, (2.28)

As a result, we have (see eq. (A.9))

$8, 12 =(1-¢7 S k(P D32 02y, (2.29)
' “""0_ ‘B M+ 1)(n + 2)
where k, (2, g) ~ (In %W ° (by definition S(g)--Bgd...).
From the representation (2.29) it follows that the
term with minimal n (for which k, #0) dominates for
p~ ==, whereas the contribution from higher harmonics
responsible for a ”bad” behaviour at ¢.1 diminishes
with growing uzz .

Yng /B
HEu®) » 1-£HC0% (Omu® O (2.30)

14

The coupling constant g in g¢>3 ) -theory has dimension
of mass.This results in a ”good(’é’t behaviour in the ultra-
violet region and in a rather ”bad” behaviour in the in-
frared one. In particular, eqs. (2.18), (2.24), are meaning-
less in the limit m - 0. The limits m » 0 and Q¢ ~~do not
commute in this case. Large - Q? asym?totical behaviour
of the form factor in the massless ¢;4 -theory, in dis-
tinction with the theory with my 0, is governed by Wy o
Fla); Da) » 0 regime (where F. D is the 92 -coeffi-
cient in the « -representation eq. (2.6)). Note, that by
construction F as well as D are linear functions of
any chosen a, -parameter

Fla) =a { {a)+ ¢ (a).

v’ (2.31)
Dia) =« d (a) + & (a).

g g o

Furthermore, the D -function contains the parameters
of all the lines of the diagram (we consider now only
1-particle irreducible diagrams) i.e., d («) # 0 for
any line ,, whereas it is possible that f(,(a)EO for some
line . Really, the function F(a) is a sum of products
of « ..« type, where the lines T aeen o, are sub-

a 1 (Tk {
jected to the requirement that after removing these
lines we obtain a 2-tree, and the square of the total
momentum k entering into each component of the 2-tree
is large: k?® - 0(Q?%. As a result, the function F(z) does
not include the «,;, -parameter, if for any 2-tree ob-
tained after removing (among others) the o; -line, we
have k* small(i.e., k ? doesnotcontainthe 0(Q% term).
In other words the diagram looses the Q-dependence
after removing the »; -line. In the configuration fig. 2b
such a line is o, . Hence in the massless ¢:24)—theory the
integration of the expression

> s & (o)’
I - b, la)) "exp1—— e 2.32
0 (a5 d5(a)+55(a))2+J > Oy 5+85 ( )

over the 4 >~ region gives a pole at J--1, and the diag-
ram 2b gives 0(1/Q%) contribution. The limit a o cor-

15



responds to a zero-momentum flow through the . -line,
i.e., to the Feynman mechanism. It follows from the
representation (2.32) that the only possibility to damp
such an ”infrared” contribution is to introduce the non-
zero mass for a particle corresponding to the o -line.

The infrared regime «,; - can contribute also when
] (a) # 0, if one performs a simultaneous integration
OVer g~ o and over the region of the  -parameters
space where f,/d; ~0. The meaning of such a combined
integration is easily demonstrated without using the
Mellin transformation

~ dq . Mda £ é
R e)q)[-1Q2—~l~L~~»——l~— + 1] ~
0 (a;d; +5,)7 da;+9
=] Hda f
1 el -
S H ~— exp[i@*— + 1. (2.33)
Q% 0 d;¢;-3; 1, dj

The Q- -dependence is trivial only if f;(a) - 0. For
f,(a) #0 the r.h.s. of eq. (2.33) has a form similar to
the ordinary « -representation, and the large-Q? be-
haviour is governed by the region, where f;/d; ~ 0. This
can be realized either by Ay~ 0 regime, when the « -pa-
rameters which correspond to the lines of some sub-
graph V  tend to zero (the subgraph V must be t -sub-
graph for the diagram with the line +; removed), or by
ay += 5 f(a/dij@ »0 regime. In the second case
f,/d; =0 may be provided either by the fact that after
removing the linesos; , o, the diagram loses the Q2-
dependence, or by integration over the region where
fix /4 ~0, and so on, until all the possibilities will
be exhausted.

For example, fig. 3a gives a contribution into the
form factor of a quark participating in the Feynman
process. Fig. 3b describes a modification of the Feynman
process when one has several wee partons. (The dashed
lines correspond to the « -~ integration). Fig. 3c des -
cribes a situation when the hard scattering process is
accompanied by the wee parton exchange between initial

16
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a) b)
D:itii IO NIG)
NS
c) d)
Fig. 3

and final states. In the ¢34 -model, however, all these
contributions give the corrections which vanish more
rapidly than 1/Q?. Hence, one may neglect them. On the
other hand, higher order corrections result in a more
singular behaviour of the propagator D°(k) in the small-
- k?limit: D®(k) - 1/k? - (g2/k%)Ilnk? ..., As a conse-
quence, the integration over p >~ for the diagram 3d
(where p  ajva, tag :—a4) gives F . const contribu-
tion, whereas the diagrams containing the (%" -order
corrections to the propagator, may give as large con-
tribution as F,_ ~g*%Q*" ! It is very probable that
the expansion for D “(k) is a series expansion in g2
for an expression like (k% g2Lk?®) "1 If this is true,
then the rising powers of Q® correspond to the expan-
sion like

1 >0 202 n
1 _12(_gQ

Q% 1.22Q2M4% Q2 n-0 —7\/!“4‘) : (2.34)

where Mg(g 5 Q2j) is a slowly varying function. As a re-
sult, the sum of infrared contributions behaves asympto-
tically like 1/Q*%, i.e., just like the m#0 formula
(2.24). This is natural because adding g®L  is equivalent
to introducing the effective k° -dependent mass for
a quark. Hence, the result (2.24) can be justified in this

17



sense, but one must assume now that the mass m en-
tering into eq. (2.24) is the effective quark mass ave-
raged over the pion volume, i.e., a phenomenological
constant accumulating the (nonperturbative) large-dis-
tance contribution. This parameter reflects the dyna-
mical cut-off for integrals over large . (or small k)
at 1/m® as if the system were enclosed into the bag
having a radius 1n. These reasonings, of course,
pretend only to a rough qualitative description of such
theories where the behaviour of the exact propagator
is less singular at k .0 than dictated by perturbation
theory. It is quite possible that QCD is a theory of this
type. But, as we will see later, the situation in QCD is
simpler: infrared contributions cancel out in the leading
term for colourless pion form factor.

3. SCALAR GLUON MODEL

Renormalizable theories are more singular than the
é(ﬂ)—model in the ultraviolet region, but less singular
in the infrared one. For example, in ¢'?6 -theory, the
terms rising with Q?® are absent: all infrared contri-
butions behave like Q~% modulo logarithms. Small- A
integration gives also Q™% contribution for any t -sub-
graph V having 5 external lines. There appear also
logarithms due to ultraviolet divergences of diagrams

inherent to renormalizable theories. The Born term
(1-¢~1 (1=~ 2 behaves just like in the 3 -model.
As a result, both ”left” and ”right” subgr(ilbhs may
contribute simultaneously in the c,‘ufﬁ -model. This
leads, in particular, to In?® Q2 -behaviour of the one-
loop diagram.

Fortunately, the amplitude of the leading parton sub-
process (i.e., of those giving 0(1/Q%) contribution)
in theories with the spin- 1/2 quarks in 4-dimensional
space-time is as singular for y = (1-6/2-0 as 1y
modulo logarithms y. This follows from simple dimen-
sional considerations. Really, taking into account that
both the amplitude T and the propagator S (fig. 4a)
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Fig. 4

depend on the momentum P° only through the product
-yP” we obtain
I‘5 + 13'
Ty, P+ BOP)

aP + ‘ '

s. o *_-E_(Y Ii)__ (3.1)
y(P’P) y(P°P)

This gives TSI' . 1/y for y- 0, since the vertex func-
tion I'(qp,,p,)=I'(P’-P,P’-yP, (1-y)P) may possess
only logarithmic singularities as pZ2/Q%2 0. Thus, for
spin- 1/2 quarks only one subgraph in the configu-
ration 4b may produce a pole at J=-1, whereas the se-
cond one gives the contribution which is regular at
J=-1. Henceforth it is always assumed that the form
factor F,_(Q) 1is given by
PP I*(O)P>
F (Q = K ~

5 (3.2)
m, + (PP")

Hence, the contributions which must be taken into
account in the Yukawa type theory (i.e., for scalar gluons)
are those shown in fig. 4c. We have also taken into ac-
count that the estimate (2.7) for theories with dimen-
sionless coupling constants is
Eti

(V). 2
Ffr )(Q) < Q (3.3)

19



(see the Appendix to paper I), where the sum is taken
over the external lines of the t-subgraph V.excluding the
photon one; t; is the twist of the field describing the
i -th external line (remind, that t - 1 for particles
with spin equal to 0 or 1/2, and t-0 for a vector field
in the Feynman gauge).

The a, > ~ regime gives O(1/ ‘@4 contribution for
lines « corresponding to spin-1/2 particles. This al-
lows one to neglect the configurations shown in fig.3a,b,d.
The configuration of fig. 3¢ gives O(l/ Q) only if the
wee parton is a vector particle. Our proot of these state-
ments is based on the «-representation analysis of all
possible combinations of the preexponential factors. We
will not present it here because it is rather lengthy

whereas the final result - that the contribution of the
infrared domain (& - ~., or k . 0) is not damped only
for vector particles - is well-known (see, e.g., ref. = ).

We consider first the scalar gluon model. To facto-
rize the contribution of spinor numerators one must
use the Fierz identity

548 s P s vT AP (3.3)
a’ " B ;1B ia
The S- , V-, 'T-projections give bilocal operators which

have zero matrix elements: < 0/0; P . The A-projection
gives factors P P° which combine into an additional
factor (PP) = Q 2/9 absent for the P -projection. That

is why the axial projection is responsible for the leading
contribution. We write it in the coordinate representa-
tion (see fig. 4c):

[l Ay drydroB oy (fy, Pgutq, 1y 0 %) >

. ‘ (3.4)
0N, 0 PSP IOP L ryi )0

The parameter ;12 characterizes the subtraction proce-

dure which is constructed just in the same way as it was
done for massive lepton-pair production process in Il
It provides the necessary infrared regularization of the
E -functions and the recipe of the renormalization for
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local operators Opp1 Py which result after the Taylor

expansion
r + 7
€ 3 ~ip - 1
<P \Lp(r1 !2:u~)r0 - e 2 _r:-_ .
b , p .
FPIO o @0y —ty) Lo, -t 2)pr. (3.5)
integrating over | ;.1 glives
F_(Q f s (2 Q” 2
@ - 6—: BT )Emnfgvg(#))fn(# )+ 0(1/Q %,
(3.6)
where t are defined by
4 -
(21 <Oy ty & vl WP -
vyity, 0 (#n W (# “ #1 ,..Pun . (8.7)
The contributions fr’omn higher twist operators have
additional factors (M/Q “i"*, where M is a charac-

teristic scale inherent to the matrix element of a higher
twist operator
e HTR ()
<0]O“1.”#n p- - gPli . “'PﬂngM b, (e ). (3.8)

Eq. (3.6) resembles the expansion for the virtual Compton
amplitude

2 2 te(=1) Q° 2 2 2
Tw.@%) n:zomn.ﬂ__é,,.;)_uanﬁ[é»%)An(,L . oMAQd (3.9)
ior w :91‘ It is weli-known 23 that the terms denoted as
OM~/Q~) give for o »1 the contribution which exceeds
the scaling term. The corrections OM? Q%) are in this
case responsible for the resonance structure in the re-

gion where 'S = | \w-1)@*m%is close to the masses of
the low-lying resonances. In the kinematical situation
characteristic for the form factor problem, we have no
large time-like invariant variable, and the presence of
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resonances having photon quantum numbers and the , -
dominance indicate the change 1.Q°%°-1/(Q% m?). The con-
tributions ©OMZ2/Q%) correspond to the nonze()ro value of
the primordial transverse momentum of partons, or (as
argued earlier) to the change xy - xy - 0k?/Q%  for
integrals over x y. In both cases the corrections OM~'Q3
may be neglected for €% sufficiently large. The detailed
treatment of the higher twist contributions, of course,
would be very useful for understanding t{he behaviour of
the form factor at moderately large Q2 In the present
paper, however, we will concentrate only on the contribu-
tion of operators having minimal twist.

The wave functions (&, uz) may be introduced in the
same way  as in qs?e -model (with the change
AN sy, y, 9w ). ). The function E_  for ;- Q is
given by a séries expansion in 24Q) whereas all the
logarithmic corrections are absorbed by the wave func-
tions (&, Q2). Fig. 5a represents the Bornapproximation
E h=-g%. This results in

-2 2
. Q N 2 -
F_(Q)-=- -g——églgl ‘éﬁ%‘)‘ a) 11+ 0@ED). (3.10)

We have used here the fact that only operators with
even number of derivatives have nonzero matrix ele-
ment <0y, y a“m P due to parity conservation.
Hence, the function ¢(&) is symmetric (&) = ¢(=¢&) .
The change (1-&"!+[(1-O"4 1+O Y/2gives (1-¢971in
(3.10).

The dependence of (¢, Q%) on Q® is given by
the formula

& @5 =(1-¢3 s k 2 1+(-1)"  n+3/2 2 (9
#g Q)=(1-¢ a2 Enlkg 2 m+H@m+ 2 " &) x
Q —
xexp ( [y, &), | (3.11)
Ko A
where y  =— L (1+ 2 )(see the Appendix).

1672  (n+1)D+2)
22

The YUdy,-theory has a range of unpieasant pro-
perties. First, the coupling constant g(Q grows with
growing Q (null-charge situation). Second, eq. (3.10)
predicts that the form factor is negative for large Q.
This probably indicates that the repuision dominates in
the qg -system, because in the nonreiativistic approxi-
mation the EM form factor is positive for g®<0”%" if
the potential is attractive. Hence, there arises a question
about the very existence of the bound state. Third, the
anomalous dimensions y, approach their limiting value
from below, i.e., the contribution of higher harmonics
responsible for a ”bad” behaviour at &> 1 is enlarged
with growing Q. This also indicates that there are no
bound states in the qq -system.

4. QUANTUM CHROMODYNAMICS

The leading t-subgraph may possess in vector gluon
theories an arbitrary number of external gluon lines
pecause the vector gluon field has zero twist (in the
reynman gauge). Hence one must sum over the gluons
participating in the parton subprocess. In III we have
developed a rather simple technique of such a summation.
The diagrams describing the cross section for the
AB -y u"Xprocess have the structure analogous to the
diagrams describing the pion EM form factor, and we will
not repeat the reasonings presented in III. Rather, we
formulate only the final result that the summation over
the gluons in configurations shown in fig. 5b gives (for
the colourless pion) the gauge-invariant bilocal operators

- Y’l ~
0,1, ;u? = N . [y (? )y 7, To exp(ig?( A @z ()]
2
(4.1)

in place of the operator u(/ 1))/5)/#(11(? o). In the confi-
gurations 5b we also obtain the contributions which cor-
respond to operators "containing the gluon field tensor
G#V. These operators have a higher twist and, as a con-
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2 N
sequence, they give power corrections —(;-2— (_M,‘,‘) .

We have stressed earlier that in theories describing
massless vector particles one can obtain the pole at J ---1

by a  simultaneous integration over Ay ~ 0,
Agy e dgy > %) where V is some subgraph which
becomes a leading t -subgraph after removing the lines
a4 +ee,0,, cOrresponding to massless vector particles

(cf. ref. 718/). Such a configuration (fig. 5c) describes
the wee gluon exchange between the initial and final
state. These exchanges spoil the factorization we have
observed studying the scalar gluon model (see eq. (3.6)).
But, as it was argued in III (cf. also with the results of
ref. /255 the wee exchanges give power corrections
(0O(M%Q?) rather than logarithmic ones (~1nQ? /p=® |
where p? is the parameter which is responsible for
an infrared regularization), provided that only colourless
particles are present in the initial and final states.
Note that the elementary colourless particles are implied
rather than colourless bound states. But the choice of
fundamental fields describing the qgq system in the
auxiliary Green function (2.2) is rather arbitrary. If we
substitute (a1)y y(asy) by the product of colourless
currents (2 )i (a,). _where j -y, , Jg -y then
the requirement formulated above is fulfilled. This cor-
responds to the transition from (a )y y(a ,) to the
following gauge-invariant superposition of quark and
gluon fields (fig. 6)

Clys ¢ A) - Jf(al)ysSc(al, a,)y(ay,), (4.2)

C
where & (a 1- 29) coincides formally with the quark pro-
pagator in an external gluon field (see III)

c c 4 ¢ T2 [¢
S (a,a,)=8 (a,-a,)+8[d £S5 (a -&y A (OS (E-ay)r..=
Mo 4 e
=T, exp(igag A#dz S (a -ay)+ O(G#V)], (4.3)
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l“QE 4+)? ’
P2 P
, [4 Ll I L
B | &
a) b)

where A, -, A, . and ,, is the gauge group matrix
in the fundamental representation. Note, that upto 0(G,,)
term and a numerical factor S°(ay —-ag ), this change
corresponds to the description of the pion by the gauge-
invariant combination

—~ -— — dl ~
Clus v, &) - y(a, )y, Toemiig [ A dz' yy(a,). (4.4)
; ay u 2
It was argued in ref. '*%/ that if one assumes the quark
confinement, then <0: Ylay)y, y,(az)} P > -0, but

<0 Clgy s AP £0 nevertheless, and only € is the
right combination to be used as a pion interpolating field.

The gauge-invariant bilocal operators (', (& mip?)
may be expanded in the ordinary way into Taylor series
over the local gauge-invariant operators (see III)

—> €

Ow.'l Y {0, “ 2) - N#2 9”/(0))’ 5%)’L;Dz,1- - DL.P‘} ¢(0) (4.5)

nm

Thus, the representation (3.6) is valid in QCD also. As
usual, Du =d , -igA denotes in eq. (4.5) the covariant
derivative acting on tﬁe quark field.
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Fig. 6.

The matrix element of operators (4.5) depends on the
renormalization parameter g, as (gzlnu)N hence,
the validity of the representation (3.6) means that the
double-logarithmic contributions (221n2Q % ;2)N which
appear in some diagrams, are cancelled after summation
over all diagrams of the given order (cf. ref.'27).

We emphasize that it is just the colourlessness of the
pion that is responsible for cancellation of the wee gluon
exchanges which spoil the factorization, as well as for
cancellation of the double logs. If one considers the form
factor of the coloured particle, no cancellation will be
observed (cf. III, part 3).

Further analysis proceeds in the same way as in sec-
tions 2,3. The change a“ > D does not affect the con-
formal property of a tensor in the free-field approxima-
tion*. It is natural, hence, to expect that in the .confor-
mal basis

K“"r"“ _l/,ys%y#(d C,, (2D/4,)), et i (4.6)
the matrix of anomalous dimensions is diagonal in the
one-loop approximation. Straightforward (but cumbersome)
calculations support this view.

The parton wave functions (&, i 2)
specific normalization condition

1

iP, {qs(g p2)dg = <0}¢,y,yv¢, P>=iP f_

satisfy the very

4.7

* We are grateful to A.A.Vladimirov for clarifying
this point.
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because matrix element of the axial current is known
from the decay 7 - puv: f, = 132 MeV. This property
(in a rather different way) was utilized also in refs. 7-8.28°

Eq. (4.7) holds for all ,?, because the axial current has
zero anomalous dimension. It is worth-while to introduce

dimensionless functions a(¢, ;2) = ¢(&u /T Then
a({-‘,Qz) (1- 52) Z 1+ (- 1) n+‘3@_“‘kn(l‘0 3/2({:) y
2 (n+1)(n+2
<an@%/A% /m@azy’ ™ ? (4.8)
where
2 ntly 2
e 4 4 Y ) B 11~ SN 4.9
yn Cp(l (n¢1)(n ’_2) ‘}:: 0 J ) 3 f ( )

CF = 4/3 and N('

0 is the number of quark flavours. The
coefficients k,(Qq)

are defined by
1

2 \ 372
K, (Q%) = | #e Q%3 @ (4.10)
Now we can express the pion form factor in terms of the
wave functions

2

F (Q= 6" ,g)é( ?), (4-11)

g 1d11¢ nuz)E(rfn
Taking © -Q and using the Born approximation for £

E n:1, 8) = __%§_2____ —E—FL{ 1+ 09, 4.12)
(1-£)1-n) N )
where N, =3, we obtain the final expression for the
asymptotical behaviour of the pion form factor in QCD 719/

t2 cp 2
Fp (@) - 8ra (@ 7 N (@) 11+ Oa (Qk. (4.13)
The function y(Q) is given by
A =2 5 LDy @) mes QN B g 4y
2 n=2 2 (n+D(n+2) 1nQ2/AZ2
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Only the first term in the r.h.s. of eq. (4.14) remains
in the limit Q®-~, and we obtain eq. (1.3). Eq. (1.3)
is nothing but the result of substituting the Born appro-
ximation (4.12) for E and the limiting form of the
wave function a(¢, oo)=—2—(1-—§2) into eq. (4.11). One
can find the limiting form in a rather simple way, na-
mely, solving the equation

n

?" Znn'an‘:O’ (4-15)
n =0

where 1z, - is the anomalous dimension matrix, and
using the normalization condition (4.7). The limiting
curve a(f, «) = % (1-.5"&) is analogous to the limiting form
f(x. =) ~8(x) of the parton distribution functions. It is
well-known that at accessible energies the functions
f(x, Qz) differ strongly from its limiting form. The wave
function a(ef,Qz) at moderately large Q° may also
differ from -3 (1-¢%). Let us examine, however, what
predicts eq. {1.3) if one interpolates it into the region
Q% = 244 GeV?2. If one takes the ordinary QCD formula
a s=47/91nQ2/A%) with A = 0.5 GeV, then the curve
(1.3) crosses the curve F,ﬁp) ~(1-Q%/m?™1! (which is in
agreement with experimental data) approximately at Q%=
=2 GeVS:For Q2 ~ 2 GeV?2 the curve (1.3) goes
lower, mainly due to decrease of the coupling constant
ag (. Anyway, the asymptotical formula (1.3) pre-
dicts a magnitude of the right order for F (Q in the
region @° - 1 GeV” and this indicates that a better
agreement between the QCD predictions and experimen-
tal data can be achieved by using the wave function
that differs from a(¢, «), and also by taking into ac-
count some higher twist operators and next order cor-
rections in o _(Q) for the E -function.

We express our gratitude to D.I.Blokhintsev, V.A.Mesh-
cheryakov and D.V.Shirkov for their interest in this
work, and also to V.L.Chernyak, A. De Rujula, R.N.Fa-
ustov, L.F.Ginzburg, E.M.Levin, V.G.Serbo, N.B.Skach-
kov, L.A.Slepchenko, A.A.Vladimirov, and V.I.Zakharov
for fruitful discussions and stimulating remarks.
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APPENDIX

We investigate here the diagonalization of the anoma-
lous dimension matrix. First we consider 45%6) -theory.
The anomalous dimensions in this theory are given by
eq. (2.26). To simplify the calculations, it makes sense
to consider the operators y*J . with the derivative
Jd rather than 3’ The sum in eq. (2.25) runs then over
all k, not only over even k. In terms of these opera-
tors

(g = Bleyza) <0y "y P> =

n -k 5K (A.1)
-3z <00 (g*d WP,
k-0 Uk
where
2 6 ) 1 n>k
S B I 6 1 = {
an "g{Bnk $(n+1)(n+2) nk nk 0 n<k
(A.2)

The eigenvalues of the matrix z , are given by its
diagonal elements A =4g?-1+6/(1+1)(i+2), because
z., is a triangular matrix. Hence, we must find the
vectors k,

k, =S d__a (A.3)

which satisfy the equation

-2 g Lok, =AM k. (A.4)
du Jg
Using the explicit form of A, we obtain the equation
for nn*

o0 d d

oo (A.5)
Cemp v 1)@ +2) (+ 1)(n +2)

The form of this equation is determined by the structure
of the coefficient in front of o ,. Subtracting from (A.5)

29



the equation for dl m o+ 1 gives the recurrent relation,
from which it follows that

m (m+na 2)' (n)

dpyp =17 e —-d ’ (4.6)

m! (m+ 1)!(n—m)!
where d™ ijs an arbitrary normalization constant.

We choose it in such a way that the multiplicatively renor-
malizable operators have the following form

n ) ™ _ >
K _ s (m+n+ 2)!(-1) P m(l"/j*a mdj) _
HiBn m=0 2m!(m+ 1)(n-m)! brgeeep g !
w82
=*9, C " (20/9 +)x/;);,11__.#n}, (A.D)

where C ?,2 (X) are Gegenbauer polynomla Is (see ref.” /

formulak (10.9.20)); 20 = 9 -9 y 94 =d+d ;M. 9 )
=d, "d . The tensors K . are conformal m the
free field approximation /30/, In a somewhat different con-
text the conformal invariance was widely used in the
earlier studies of asymptotic properties of the form
factors /2-4,31/,

Matrix elements of the operators Ku1...u , according
to eq. (A.7), are related to ¢t in the fo[ilowmg way

1
RESTak 3R (AP, P, | -

(A.8)

2
= P>=k ){P . P ; .
<0‘K#r"#n l n(# Hq Hn

The polynomials ¢ 32 (§¢) are orthogonal on the seg-

ment (-1.1) with the welght (1- F‘?) Taking into account
their normalization?9/ gives

6 (En®=(1-¢8 3 k () "R gargy (A.9)

nZo ¥ (n+ 1)(n + 2)
In the ¢w¢ (4 -theory the anomalous dimension matrix

for operators Yy y#a i has the following form
g*® 2

A e I R A.10

nk 167 2 nk © (n+ 1)(11 N 2) nk ( )

30

The coefficient in front of 6 has the same struc-
ture as in the ¢4, -model. Hence, the conformal tensors

0 3. cB3R / A.11
yy51y#d L (24, d+)#1 . Sy ( )

are multiplicatively renormalizable. _ R
In QCD we have obtained for the operators (,/1y5y#D Ty

that z =Z‘§§+ z(n2k) ,  where

(1 g2 1

Zog =Ch — =8 4 —0 i, (A.12)

nk F 8172 nk (0 + 1(n + 2) nk

2 n+1

@ _ o BT - o1 )

z\% CF8n2[ 45n 2 ( ) 2( T )( 3k )]
(A.13)

The term z(nzﬁ corresponds (in the Feynman gauge)
to the prolongation of the derivative.

To find the limiting form of the wave function from
the equation Xz ,a, -0 one may use the following
trick: one solves f1rst the equation 3z(Da, -0 and
then sees that the solution obtained satisfies also the
equation 278 a, = 0. This reflects the fact that in the
free field approximation the prolongation of the derivative
does not affect the conformal properties of a tensor,

i.e., it does not change the structure of eq. (4.8), The
account of D changes only the magnitude of anomalous
dimensions for n > 1. This explains the coincidence bet-
ween eq.(13) and the result of ref. 7/ obtained in the
ladder approximation where only the term z(1) works.
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