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Efficient Quantum Secure Vector Dominance and
Its Applications in Computational Geometry

Wenjie Liu , Bingmei Su , and Feiyang Sun

Abstract—Secure vector dominance is a key cryptographic
primitive in secure computational geometry (SCG), determining
the dominance relationship of vectors between two participants
without revealing their private information. However, the security
of traditional SVD protocols is compromised by the formidable
computational power of quantum computing, and their efficiency
needs further improvement. To address these challenges, an
efficient quantum secure vector dominance (QSVD) protocol
is proposed. Specifically, we first introduce a quantum private
permutation (QPP) subprotocol to shuffle the elements of each
participant’s private input vector. To further facilitate secure
data comparison, we propose an enhanced quantum millionaire
subprotocol with equality determination functionality, building
upon Jia’s original protocol. Based on the above two subproto-
cols, we propose a QSVD protocol with polynomial complexity,
deriving vector dominance in a single interaction with a semi-
honest third party. Performance analyses confirm that QSVD
protocol is correct, resilient against malicious attacks, and retains
polynomial computational complexity, ensuring both security
and efficiency. To demonstrate the scalability of the QSVD
protocol, we illustrate its applications in several geometric com-
putation problems, such as point-line inclusion determination,
line-line intersect determination, and point-in-polygon determi-
nation. Finally, we validate the feasibility of our protocol by
conducting comprehensive simulations on IBM’s Qiskit platform,
demonstrating its practical applicability and effectiveness in real
quantum computing environments.

Index Terms—Quantum computation, quantum communica-
tion, secure multi-party computation, vector dominance, geomet-
ric computation.

I. INTRODUCTION

SECURE Multi-Party Computation (SMC) originated from
the “Millionaire Problem” proposed by Andrew Yao

[1], with the goal of enabling multiple distrustful parties to
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collaboratively compute a target function without revealing
their private data. SMC has since evolved into several subfields,
including Anonymous Voting (AV) [2], [3], Private Set Intersec-
tion (PSC) [4], [5], [6], and Secure Computational Geometry
(SCG) [7], [8], [9], [10], [11], [12], etc.

As an important research branch, SCG focuses on enabling
geometric computations while ensuring the privacy of input
data. In scenarios where multiple parties collaborate to solve
geometric problems, such as intersection testing [7], [8], prox-
imity queries [9], [10], or shape matching [11], [12], SCG
techniques ensure that sensitive geometric data from each party
remains confidential throughout the computation. Considering
the forms of geometric computation, SCG can be categorized
into two types: one based on set operations, referred to as set-
based SCG [9], [10], [12], and the other based on geometric fea-
tures, known as geometric-based SCG [7], [8], [11]. The former
divides the geometric shape into a grid, with each grid point
being sufficiently small, allowing for approximate geometric
calculations based on these grid points. While this method is
straightforward, it may not provide high accuracy for boundary
points. In contrast, geometric-based SCG employs geometric
constraints and mathematical definitions to perform privacy-
preserving computations. While this approach enables precise
determinations, particularly for boundary points, it comes with
higher computational complexity.

With the rapid development of quantum information technol-
ogy, the limitations of Secure Multi-party Computation (SMC)
based on computational complexity assumptions have become
evident, as it becomes vulnerable to attacks from quantum
computers capable of parallel acceleration [13], [14]. How-
ever, by integrating quantum mechanisms with cryptographic
techniques, it is possible to achieve unconditional security in
SMC, leading to the development of Quantum Secure Multi-
party Computation (QSMC) [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29]. This field
encompasses Quantum Private Comparison (QPC) [17], [18],
[19], Quantum Anonymous Voting (QAV) [20], [21], Quantum
Sealed-Bid Auction (QSA) [22], [23], [24], and Quantum Pri-
vate Set Computation (QPSC) [25], [26], [27], [28].

Recently, scholars have begun adopting quantum crypto-
graphic techniques to facilitate multi-party computations on
geometric data, known as Quantum Secure Computational Ge-
ometry (QSCG). In 2017, Shi et al. [30] introduced a method
that partitions geometric shapes into grids, enabling approx-
imate geometric computations via private set operations, and
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proposed a quantum point-inclusion protocol based on phase-
encoded queries. Subsequently, many quantum protocols were
developed to address two-party distance computations [31],
[32], and geometric intersections [33], [34]. More recently, to
address cryptographic problems with broader practical appli-
cations, researchers have focused on developing cryptographic
primitives that incorporate both quantum acceleration effects
and quantum unconditional security. In 2023, Liu et al. pro-
posed a secure two-party quantum scalar product (S2QSP) pro-
tocol and introduced a quantum matrix multiplication protocol
[35]. In 2024, Dou et al. [36] extended the existing two-party
addition and multiplication protocols to multi-party settings
and proposed three related application protocols. To the best
of our knowledge, most existing methods are based on en-
semble SCG. However, these approaches encounter limitations,
including difficulty in precisely identifying boundary nodes and
high resource consumption. The motivation for our paper is to
address these limitations by focusing on geometry-based SCG
methods, which has not been explored in prior literature.

As is well-known, Secure Vector Domination (SVD) [37],
[38] enables participants to securely determine whether one
vector dominates another without disclosing their private in-
formation, which serves as a fundamental cryptographic prim-
itive in secure computational geometry. However, traditional
SVD protocols are vulnerable to quantum computing’s com-
putational power, and suffer from efficiency limitations. To
overcome these challenges, we propose an efficient Quantum
Secure Vector Domination (QSVD) protocol, which is applied
to several geometric computation problems, including point-
line inclusion determination, line-line intersection determina-
tion, and point-in-polygon determination. The contributions of
our work are summarized below.

• A quantum private permutation subprotocol is introduced
to shuffle the elements of each participant’s private in-
put vector. Additionally, an enhanced quantum millionaire
subprotocol with equality determination functionality is
proposed, building upon Jia’s original protocol.

• Based on the above two subprotocols, we propose a
QSVD protocol with polynomial complexity, deriving vec-
tor dominance in a single interaction with a semi-honest
third party.

• To demonstrate the scalability of the QSVD protocol, sev-
eral privacy-preserving geometric computation protocols
are proposed, including point-line inclusion determination,
line-line intersect determination and point-in-polygon
determination.

• We analyze the performance of the QSVD protocol,
demonstrating its correctness and unconditional security.
Additionally, its feasibility is validated through the IBM
Qiskit simulator.

The remainder of this paper is structured as follows: Sec-
tion II outlines the definition of notations, fundamental concepts
of quantum computing, and definitions of composite quan-
tum gates used in our protocols. In Section III, we propose a
quantum private permutation subprotocol for shuffling vector
elements and an enhanced quantum millionaire subprotocol for
secure data comparison. Based on them, we further propose an

TABLE I
DEFINITION OF NOTATIONS

Symbols Meanings

θ The polar angle between the state
vector and the z-axis

φ The azimuthal angle in the xy-plane
relative to the z-axis

α, β Complex coefficients, |α|2 + |β|2=1
|0〉 , |1〉 Quantum basis state
|ψ〉 , |Ψ〉 A quantum state in Hilbert space
ζ e

ı2π
D = cos( 2π

D
) + ı sin( 2π

D
)

⊕ Bitwise XOR
(h, t) System composed of particles h and

t
m,N = 2m Output’s bit number and modulus
d,D = 2d Particle’s qubit number and dimen-

sion
[N ] Set {0, 1, · · · , N − 1}
[D] Set {0, 1, · · · , D − 1}
� Dominant symbol
VA Fixed vector
π(·) Bob’s permutation operation
r′1r

′
2 · · · r′n A string of random bits wherer′i ∈

{0, 1}
R= (r1, r2, · · · , rn) Bob’s random vector
C = c1, c2, · · · , c4n Alice’s random vector
H = (H1, H2, · · · , Hn) Sequence composed of the first parti-

cles
T = (T1, T2, · · · , Tn) Sequence composed of the second

particles

efficient quantum secure vector dominance protocol. In Sec-
tion IV, after analyzing the correctness, security, and complex-
ity of the proposed QSVD protocol, we verify its feasibility on
IBM’s Qiskit platform. Section V presents the application of
the QSVD protocol to several geometric computation problems.
Section VI discusses the strategies considered for enhancing
the robustness of the QSVD protocol in noisy environments,
focusing on quantum error correction codes and error mitigation
techniques, followed by a summary of the paper in Section VII.

II. PRELIMINARY

A. Definition of Notations

Table I lists the definition of notations that will be used in
our paper.

B. Quantum States

In quantum computing, quantum states are represented by
vectors in a Hilbert space. The most basic unit of quantum
information is the qubit, analogous to a classical bit, but with
one crucial difference: while a classical bit can be either in
state 0 or 1, a qubit exists in a superposition of both states
simultaneously. Mathematically, the state of a qubit can be
expressed as:

|ψ〉= α |0〉+ β |1〉 , (1)

where α and β are complex coefficients, that satisfy the normal-
ization condition |α|2 + |β|2 = 1. To provide a more intuitive
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Fig. 1. Bloch sphere representation of a qubit. The Bloch sphere provides a geometric representation of a qubit, where any quantum state |ψ〉=
α |0〉+ β |1〉 can be mapped to a point on the sphere using two parameters, θ and φ. Specifically, α= cos θ

2
and β = sin θ

2
eiφ, where θ is the angle between

the state vector and the z-axis, and φ represents the azimuthal angle in the xy-plane relative to the z-axis. As an example, when α= 1√
2

and β = 1√
2

, the

quantum state is |ψ〉= |0〉+|1〉√
2

, which illustrates the fundamental distinction between a qubit and a classical bit: a qubit can exist in a coherent superposition
of both the |0〉 and |1〉 states simultaneously.

representation, a Bloch sphere can be used to describe the actual
state of a qubit (shown in Fig. 1).

Multi-qubit systems refer to quantum systems composed of
multiple qubits, with their state expressed as:

|Ψ〉=
∑

i1,i2,...,in

ci1i2...in |i1〉 |i2〉 . . . |in〉 , (2)

where i1, i2, . . . , in ∈ [0, 1] represent the possible states of each
qubit, and ci1i2...in are complex coefficients that satisfy the
normalization condition:

∑

i1,i2,...,in

|ci1i2...in |2 = 1. (3)

Taking two-qubit state as an example, in comparison to the
four possible states of two classical bits (00, 01, 10, 11), two
qubits correspondingly have four basis states: |00〉, |01〉, |10〉,
and |11〉. Thus, a two-qubit state can be expressed as a linear
combination of these basis states:

|Ψ〉= c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 , (4)

where
∑

i1i2∈{0,1}2 |ci1i2 |2 = 1.

C. Quantum Gates

Similar to how classical computers use logic gates to manipu-
late bits, quantum computers employ quantum gates to manip-
ulate qubits. These quantum gates are represented by unitary
matrices, and their application to a quantum state transforms it
into a new state.

(1) Hadamard Gate (H): This gate puts a qubit into an
equal superposition of |0〉 and |1〉, and is represented by
the matrix:

H =
1√
2
.

(
1 1
1 −1

)
(5)

And its corresponding circuit is:

H •

When applied to |0〉, it produces the state 1√
2
(|0〉+ |1〉).

(2) Pauli-X Gate (X): This gate is equivalent to the classical
NOT gate, flipping |0〉 to |1〉 and vice versa:

X =

(
0 1
1 0

)
(6)

Circuit:

X

(3) Pauli-Y Gate (Y): The Pauli-Y gate flips the state and
introduces a phase shift.

Y =

(
0 −ı
ı 0

)
(7)

Circuit:

Y

(4) Pauli-Z Gate (Z): The Pauli-Z gate introduces a phase
shift of π when the qubit is in state |1〉.

Z =

(
1 0
0 −1

)
(8)

Circuit:

Z

(5) Controlled-NOT Gate (CNOT): This is a two-qubit
gate where the second qubit (target) is flipped if the
first qubit (control) is |1〉. The CNOT gate is crucial for
creating entanglement between qubits. Circuit:

•
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(6) Toffoli Gate (T): The Tofolli gate is a phase gate that
introduces a phase shift of π

4 . It is represented by:

T =

(
1 0
0 eıπ/4

)
(9)

Circuit:

•
•

(7) SWAP Gate: The SWAP gate exchanges the states of
two qubits. Its matrix representation is:

SWAP =

⎛

⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎟⎠ (10)

Circuit:

×
×

D. Definition of Composite Quantum Gates

To provide a cohesive description of the composite quan-
tum gates used in the following sections, their symbolic rep-
resentations and corresponding functions are presented using
two d-qubit particles, t and h. All addition and multiplica-
tion operations are performed modulo D = 2d, where [D] =
0, 1, · · · , D − 1. The gates are shown below.

(1) Modular multiplication gate MUL(y), where y ∈ [D] is
an odd number:

MUL(y)t : |x〉t → |xy〉t . (11)

(2) Rotation gate ROT (y) where y ∈ [−D,D] is a real
number:

ROT (y)t : |x〉t → ζyx |x〉t . (12)

(3) Bi-particle modular summation gate BSUM :

BSUM(t,h) : |x〉t |y〉h → |x〉t |y + x〉h . (13)

(4) Bitwise XOR gate XOR:

XOR(t,h) : |x〉t |y〉h → |x〉t |y ⊕ x〉h . (14)

(5) Quantum fourier transform QFT and its inverse:

QFTt : |x〉t →
1√
D

∑

j∈[D]

ζjx |j〉t , (15)

QFT †
t :

1√
D

∑

j∈[D]

ζjx |j〉t → |x mod D〉t , (16)

where ζ = e
ı2π
D . Even if x is not an integer, Eq (16) still

holds approximately, as a special example of the phase
estimation algorithm [39].

III. PROPOSED PROTOCOL

In this section, We propose a quantum private permutation
subprotocol and an enhanced quantum millionaire subprotocol.
Based on this work, we propose a quantum secure vector dom-
inance protocol to realize the determination of the dominant re-
lationship between the vectors held by two participants without
revealing their respective private information.

A. Quantum Private Permutation Subprotocol

To ensure the privacy security of the vector dominance de-
termination, we need to solve the private permutation problem
first. Based on the following, we present the quantum private
permutation subprotocol.

Protocol 1: Quantum private permutation (QPP).
Input: N = 2m. Alice has a vector A= (a1, a2, · · · , an) ∈
[N ]. Bob has a permutation π(·) and a random vector R=
(r1, r2, · · · , rn) ∈ [N ].
Output: Alice gets π(A+R).
Step 1 Set d=m+ 2, D = 2d. Alice encodes each of its ele-

ments ai into a quantum state:

|α〉= 1√
D

D−1∑

ji=0

ζaiji |ji〉hi
|ji〉ti , (17)

where ti and hi are particles. Then Alice picks out
the first particle from each state to form an ordered
sequence H = {H1, H2, · · · , Hn}, the second particle
to form sequence T = {T1, T2, · · · , Tn}.

Step 2 Alice prepares a particle g and initializes it to |0〉g , then
performs BSUM to all particles in the H sequence
with particle g:

|j1〉h1
|0〉g

BSUM(h1,g)−→ |j1〉h1
|j1〉g ,

|j2〉h2
|j1〉g

BSUM(h2,g)−→ |j2〉h2
|j1 + j2〉g ,

...

|jn〉hn

∣∣j1 + · · ·+ j(n−1)

〉
g

BSUM(hn,g)−→ |jn〉hn
|j1 + j2 + · · ·+ jn〉g , (18)

then sends H to Bob.
Step 3 Bob shuffles particles Hi to Hπ(i) and sends them back

to Alice, marked π(H). Alice performs MUL(D − 1)
to particle hi to calculates |−ji〉hi

:

|ji〉hi

MUL(D−1)hi−→ |Dji − ji mod D〉hi
= |−ji〉hi

,
(19)

then performs BSUM to particle g in turn:

|−jn〉hn
|j1 + j2 + · · ·+ jn〉g

BSUM(hn,g)−→ |−jn〉hn

∣∣j1 + j2 + · · ·+ j(n−1)

〉
g
,

...

|−j1〉h1
|j1〉g

BSUM(h1,g)−→ |−j1〉h1
|0〉g , (20)
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then measures the particle g. If the measurement re-
sult is |0〉, then continue; otherwise, the protocol is
terminated.

Step 4 Alice performs Bi-particle modular summation gate
BSUM to all particles in the T sequence with particle
g, same as step 2, then sends T to Bob.

Step 5 Bob prepares a random vector R= (r1, r2, · · · , rn). He
shuffles the particles T and vector R to π(T ) and π(R).
Then performs rotation gate ROT (ri) to each particle,
then sends them back to Alice.

Step 6 Alice performs the same operations in step 3 with parti-
cles π(T ), then measures the particle g. If the measure-
ment result is |0〉, then continue; otherwise, the protocol
is terminated.

Step 7 Alice gets the state:

|α′〉= π(
1√
D

D−1∑

ji=0

ζ(ai+ri)ji |ji〉hi
|ji〉ti), (21)

then Alice applies XOR:

|ji〉hi
|ji〉ti

XOR(hi,ti)−→ |ji〉hi
|0〉ti , (22)

then performs QFT † on hi:

π(
1√
D

D−1∑

ji=0

ζ(ai+ri)ji |ji〉hi
)
QFT †

hi−→ π(|ai + ri〉hi
),

(23)

and measures hi to obtain the result π(A+R).

B. Enhanced Quantum Millionaire Subprotocol

In our protocol, a private comparison function is essential.
Building upon Jia’s quantum protocol for the millionaire prob-
lem [17], we propose an enhanced quantum millionaire subpro-
tocol that includes functionality to determine equality between
the participants’ comparison data. The core steps are as follows:

Protocol 2: Enhanced quantum millionaire protocol.
Input: N = 2m. Alice inputs an n-dim vector
W = (w1, w2, · · · , wn) ∈ [N ]; Bob inputs a private vector
S = (s1, s2, · · · , sn) ∈ [N ].
Output: Alice outputs R1, R2, · · · , Rn, where each Ri indi-
cates whether wi > si.
Step 1 Set d=m+ 2, D = 2d, Alice shares a string of random

bits r′1 · · · r′n with Bob privately where r′i ∈ {0, 1} for
i= 1, · · · , n;

Step 2 Trent creates a sequence of n three-particle entangled
states as

|ψ0〉i =
1√
D

∑

j∈[D]

|j〉Ti
|j〉Wi

|j〉Si
, (24)

where the particles Ti,Wi, Si correspond to
Trent, Alice and Bob. Trent picks out the second
and third particles from each state to form an
ordered sequence SW = {|j〉W1

, · · · , |j〉Wn
} and

SS = {|j〉S1
, · · · , |j〉Sn

}. Then Trent sends them to
Alice and Bob respectively;

Step 3 Alice inputs wi by applying ROT ((−1)r
′
iwi) on Wi:

|j〉Wi

ROT ((−1)r
′
iwi)Wi−→ ζj(−1)r

′
iwi |j〉Wi

, (25)

on particle Wi, ζ = e
2π i
D . Similarly, Bob applies

ROT ((−1)(r
′
i+1)si) on Si:

|j〉Si

ROT ((−1)(r
′
i+1)si)Si−→ ζj(−1)(r

′
i+1)si |j〉Si

. (26)

then they send SW , SS back to Trent.
Step 4 Trent gets the state

|ψwi−si〉=
1√
D

∑

j∈[D]

ζj(−1)r
′
i (wi−si) |j〉Ti

|j〉Wi
|j〉Si

,

(27)

then Trent applies XOR gate to the state |ψwi−si〉:
1√
D

∑

j∈[D]

ζj(−1)r
′
i (wi−si) |j〉Ti

|j〉Wi
|j〉Si

XOR(Ti,Wi)
,XOR(Ti,Si)−→

1√
D

∑

j∈[D]

ζj(−1)r
′
i (wi−si) |j〉Ti

|0〉Wi
|0〉Si

, (28)

then performs QFT † on Ti:

1√
D

∑

j∈[D]

ζj(−1)r
′
i (wi−si) |j〉Ti

|0〉Wi
|0〉Si

QFT †
Ti−→

∣∣∣(−1)r
′
i(wi − si)

〉

Ti

, (29)

and measures the particle Ti to obtain the result

Di = (−1)r
′
i(wi − si) mod D. (30)

Step 5 Trent records Ri = 0 if 0<Di <
m
2 , recordsRi = 2

if Di = 0, otherwise Ri = 1, and declares the string
R1R2 · · ·Rn in order.

This protocol differs from the original in the following as-
pect: In step 4, the extraction of phase information using a
measurement operator is replaced by first applying XOR gate
for disentanglement, followed by the application of QFT † to
extract the phase information, after which the particles are
measured. In step 5, the results are categorized into three parts:
greater than, less than, and equal. At this point, Alice and Bob
can compare wi and si by computing Ri ⊕ r′i. If the result is 0,
then wi > si; if the result is 1, then wi < si; otherwise, wi = si.

C. Quantum Secure Vector Dominance Protocol

The secure vector dominance problem can be described as
follows: For simplicity, we consider that there are three partici-
pants, Alice, Bob, and Trent. Alice has an n-dim vector A=
(a1, a2, · · · , an) and Bob has a vector B = (b1, b2, · · · , bn).
They want to determine if A dominates B (denoted as A�B),
that is, whether ai > bi for all i= 1, · · · , n. To facilitate this, a
non-colluding third party Trent is introduced.

Based on the subprotocols proposed above, we provide the
specific process of our protocol as follows.
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Protocol 3: Quantum secure vector dominance (QSVD).
Input: N = 2m. Alice inputs a vector A= (a1, a2, · · · , an) ∈
[N ] and Bob inputs B = (b1, b2, · · · , bn) ∈ [N ].
Output: Alice and Bob both get the result that if A�B.
Step 1 Using a disguise technique:

A′ = (2a1, · · · , 2an, (2a1 + 1), · · · , (2an + 1),

− 2a1, · · · ,−2an,−(2a1 + 1), · · · ,−(2an + 1)),
(31)

B′ = ((2b1 + 1), · · · , (2bn + 1), 2b1, · · · , 2bn,
− (2b1 + 1), · · · ,−(2bn + 1),−2b1, · · · ,−2bn).

(32)

The purpose of the inputs disguise is to get the same
number of a′i > b′i situations as that of a′i < b′i, then
2ai > 2bi + 1, (2ai + 1) > 2bi,−2ai <−(2bi + 1),
and −(2ai + 1)<−2bi, which generates two >’s, and
two <’s. At the same time, it avoids the situation that
the data of Alice and Bob is the same. If a= b, the
inputs disguise can get 2a �= 2b+ 1. After that, Alice
gets the disguised input A′ = (a′1, · · · , a′4n), and Bob
gets the disguised input B′ = (b′1, · · · , b′4n). Let VA =

(

2n︷ ︸︸ ︷
1, 1, · · · , 1,

2n︷ ︸︸ ︷
0, 0, · · · , 0).

Step 2 Alice and Bob execute Protocol 2, where Alice inputs
A′ = (a′1, · · · , a′4n) and Bob inputs a permutation π(·)
and a random vectorR= (r1, r2, · · · , r4n) ∈ [N ]. After
the protocol process, Alice outputs

A′′ = π(A′ +R), a′′i = π(a′i + ri). (33)

Step 3 Bob performs the permutation operation π(·) on the
vector B′ = (b′1, · · · , b′4n) and VA, then adds the ran-
dom vector R= (r1, · · · , r4n) to B′ :

b′i
π(·),R−→ b′π(i) + rπ(i), VA

π(·)−→ π(VA), (34)

then Bob gets

B′′ = π(B′ +R), b′′i = π(b′i + ri), V
′
A = π(VA), (35)

respectively.
Step 4 To prevent Bob from pretending to perform a per-

mutation operation, Alice adds a random vector C =
(c1, c2, · · · , c4n) ∈ [N ] on A′′ and sends C to Bob. Bob
then adds it on B′′.

Step 5 Alice and Bob execute Protocol 1, Alice inputs A′′ +
C and Bob inputs B′′ + C. After the protocol process,
Alice outputs the result U = (u1, u2, · · · , u4n), where
for i= 1, · · · , 4n, if a′′i > b′′i , ui = 1, otherwise ui = 0.

Step 6 Alice and Bob execute Protocol 1 again to calculate
whether U and V ′

A are equal. Alice inputs U and Bob
inputs V ′

A. After the protocol process, Trent outputs the
result Ri. If all Ri are equal to 2, that is, U = V ′

A, Trent
declares the result: A�B. Otherwise, Trent declares
the result A /�B.

IV. PERFORMANCE ANALYSIS

A. Correctness

Here we analyze the correctness of the proposed protocols.
In Protocol 3, Alice and Bob calculate the result of if ai > bi

for i= 1, · · · , n, mean that U = V ′
A. In step 1, after using a

disguise technique, Alice gets A′ = (a′1, · · · , a′4n), Bob gets
B′ = (b′1, · · · , b′4n). In step 2, Alice and Bob execute Pro-
tocol 1. In step 5 of Protocol 1, Bob performs the same
permutation on H and T sent by Alice, the state should be:

|α′′〉= 1√
D

D−1∑

ji=0

ζaiji |ji〉hπ(i)
|ji〉tπ(i)

. (36)

After Bob performs ROT (ri)Ti
to each particle in the se-

quence T , Alice gets the state shown in Eq (21). After ap-
ply the QFT †, Alice gets π(A′ +R) mod D. Throughout
the entire protocol process, conducting a meticulous overflow
analysis is crucial because potential overflow situations can
impact the accuracy of calculations during various operations
and transformations. Given that R ∈ [N ] and A′ ∈ [2N + 1], it
follows that π(A′ +R) ∈ [3N + 1]. Since D = 2d = 2m+2 =
4 · 2m = 4N , it implies that π(A′ +R) mod D = π(A′ +R).
The final result is Alice gets A′′ = π(A′ +R) and Bob gets
R respectively, While Bob knows the permutation π(·). After
that, Bob performs the π(·) on his vector B′ and VA to obtain
B′′ = π(B′ +R) and V ′

A = π(VA +R). As a precautionary
measure against Bob, Alice adds C and sends it to Bob. In step
5, Alice and Bob execute Protocol 2, Alice inputs

A′′ + C = (a′π(1) + c1, · · · , a′π(4n) + c4n), (37)

and Bob inputs

B′′ + C = (b′π(1) + c1, · · · , b′π(4n) + c4n). (38)

They protect their data by pre-sharing a string of random bits
r′1r

′
2 · · · r′(4n). After executing Protocol 2, Alice obtains U =

(u1, · · · , u4n), where:
(1) If A′′ + C >B′′ + C, then ui = 1 (i.e., a′π(i) > b′π(i));
(2) If A′′ + C <B′′ + C, then ui = 0 (i.e., a′π(i) < b′π(i)).
Let π(U ′) = U , meaning u′

i = 1 if a′i > b′i and u′
i = 0 if

a′i < b′i. The result U = V ′
A implies π(U ′) = π(VA), where VA

satisfies:
(1) For i= 1, 2, · · · , 2n, a′i > b′i;
(2) For i= 2n+ 1, · · · , 4n, a′i < b′i.
Due to the disguise technique, this implies that ai > bi for

all i= 1, 2, · · · , 4n.

B. Security

Here, we analyze the security of the proposed Quantum Se-
cure Vector Dominance (QSVD) protocol, considering various
aspects related to information leakage and resistance to mali-
cious behaviors.

(1) Input Forgery Attack
In Protocol 3, Alice could input a fraudulent vector
to deduce Bob’s permutation operation π(·). However,
Bob adds a random vector RB to each particle before
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sending it to Alice, introducing sufficient randomness
to prevent Alice from deducing the permutation. Even
if Alice returns the original sequence, the perturbation
introduced by RB makes it infeasible for her to recover
Bob’s private data. Bob might attempt to falsify the
permutation process by keeping Alice’s particles in their
original order and adding his own random vector. This
would prevent Alice from detecting the absence of a
permutation operation, allowing a third party, such as
Trent, to obtain Alice’s unpermuted data. To counter
such attacks, Protocol 3 introduces a random vector C in
Step 4, requiring Bob to add it. This ensures the unique-
ness of each computation, making it impossible for Bob
to modify the permutation and accurately determine the
final result.

(2) Measurement Attack
An attacker might attempt to measure the exchanged
quantum particles between Alice and Bob, as represented
by the state:

1√
D

∑

j∈[D]

ζjx |j〉t |j〉h , (39)

in an effort to gain private information. However, the
security of the phase information in the Fourier entan-
gled state has been proved in Ref. [35], which shows
that the specific structure of the quantum systems h and t
ensures the resistance of the phase factor x to manipula-
tion. This structure prevents an attacker from extracting
phase information from the global density operator, thus
preserving the confidentiality of the phase domain. Con-
sequently, if an attacker attempts to measure the quan-
tum particles exchanged between Alice and Bob, the
entanglement properties ensure that any measurement
on a part of the system would collapse the state. As a
result, the measurement would not reveal any private
information, making such an attack ineffective.

Furthermore, in Protocol 2, suppose Alice attempts
to determine Bob’s secret si after the phase shifting
operations. The particle state |ψ0〉i becomes |ψ〉i, and
the reduced density matrix of Alice’s subsystem is:

ρWi = TrTiSi
(ρTiWiSi) =

1

D

∑

n∈ZD

|n〉Wi
〈n|Wi

, (40)

which remains unchanged under any operation. There-
fore, Alice cannot extract information from the particle
Wi or learn si from the transmitted particle Si. Only by
performing collective measurements on Ti, Wi, and Si

can the secret be obtained. Even if Alice holds both Wi

and Si, no information is exposed, as the reduced density
matrix is:

ρWiSi = TrTiSi
(ρTiWiSi)

=
1

D

∑

n∈ZD

|n〉Wi
|n〉Si

〈n|Wi
〈n|Si

, (41)

which is independent of the phase. Since the particle
Ti is not transmitted, Alice cannot perform collective
measurements on all three particles.

(3) Entanglement-Measurement Attack
In this attack, Bob might prepare an auxiliary particle
e, entangle it with the received particle hi, and attempt
to measure it to gain information. However, since Alice
does not perform individual measurements and the in-
verse quantum Fourier transform results are undisclosed,
Bob cannot fully decode Alice’s private information
without access to the entire quantum state.

(4) Intercept-Resend Attack
An adversary may intercept and measure the quantum
particles, subsequently forging new particles and re-
sending them. In Protocol 1, Alice employs entangled
particles, which prevents Bob from decoding her pri-
vate information. Additionally, Alice verifies the sum of
the particles to ensure data integrity, thereby safeguard-
ing against tampering during transmission. The inherent
quantum entanglement further ensures that the data re-
mains secure and cannot be altered by an attacker. In Pro-
tocol 2, Trent retains the entangled particles Ti, which
are neither transmitted nor disclosed, further protecting
the integrity of the communication.

(5) External Attacks
In the case of an external attack, such as a man-in-the-
middle attack where Eve intercepts the quantum parti-
cles, Eve cannot extract useful information due to the
quantum nature of the particles. Quantum measurements
cause state collapse, and the legitimate parties can detect
any information leakage. Moreover, quantum encryption
and entanglement protection prevent Eve from acquiring
private information. Replay attacks are thwarted by Al-
ice’s verification steps and Bob’s use of random vectors,
ensuring the integrity of the information.

Therefore, Protocol 1, Protocol 2, and Protocol 3 ensure
security by preventing unauthorized access to the participants’
private vector information. As a result, none of the parties
involved can extract or infer any private information from the
protocol execution.

C. Complexity

Here, we analyze the communication and computational
complexities of the proposed protocols. As shown in Fig. 2(e),
a QFT (or QFI†) gate can be decomposed into O(d2) H

and CP (i) : |a〉 |b〉 → e
ı2π2i

D ab |a〉 |b〉 gates, the ROT gate,
represented as ROTh =

∏
i,k∈[d]

∏
(i+ k)bihi

, has complexity
O(d2), the XOR gate decomposes into d CNOT gates, re-
sulting in a complexity of O(d) [39]. The MUL gate has com-
plexity O(d2), as shown by Shor’s algorithm [13]. In general,
the complexity of the gates in Section II-D is all below O(d2).

The Quantum Secure Vector Dominance Protocol (QSVD)
calculates the dominance relationship between two vectors A=
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) by invoking Proto-
col 1 and Protocol 2, along with operations such as input vec-
tor hiding, encryption, exchange, and computation. First, the
protocol disguises the input vectors, with the complexity of
the disguise operation primarily determined by data processing
and disguise, which is considered a constant-level overhead.
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Fig. 2. The circuits of quantum gates. (a)–(f) are circuits of MUL, ROT , BSUM , XOR, QFT , and π(·) respectively.

Next, Protocol 3 calls Protocol 1 to perform the exchange of
input vectors. Protocol 1 involves quantum encoding, BSUM ,
MUL, rotation gates, and other operations. The computational
complexity of this step is O(n), while the communication com-
plexity, due to the exchange of quantum bits, is O(mn), where
m is the number of quantum bits and n is the vector dimension.
Then, Protocol 3 invokes Protocol 2 for vector comparison.
Protocol 2 compares the elements of the vectors using quantum
rotation gates (ROT ), XOR, and QFT †. The complexity of
this step is O(n), and both computational and communica-
tion complexities are linearly related to the input dimension
n. In summary, the communication complexity of Protocol 3
is determined by the communication steps in Protocol 1 and
Protocol 2, yielding O(mn). The computational complexity is
mainly derived from the quantum operations in the protocol,
and is O(n).

Thus, the overall computational complexity of the QSVD
protocol is O(mn) for communication and O(n) for compu-
tation. Consequently, the QSVD protocol exhibits polynomial-
time complexity, rendering it appropriate for practical quantum
computing applications.

D. Example

Assume that N = 16, n= 3, Alice has a vector A= (4, 5, 3),
Bob has a vector B = (3, 3, 1). The expected result is that
A�B.

(1) In step 1, after performing a disguise technique, we have
A′=(8, 10, 6, 9, 11, 7,−8,−10,−6,−9,−11,−7),
B′ = (7, 7, 3, 6, 6, 2,−7,−7,−3,−6,−6,−2),
VA = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0).

(2) In step 2, we set π(·) = (6, 11, 3, 1, 9, 5, 8, 2, 10, 7, 4, 12)
and R= (2, 3, 1, 4, 5, 7, 3, 6, 2, 6, 9, 6), then Alice and

Bob call Protocol 1 to calculate A′′ = π(A′) + π(R) =
(9,−10, 6,−11, 7, 8,−9,−8, 11,−6, 10,−7) + (4, 6,
1, 9, 7, 2, 6, 3, 5, 2, 3, 6) = (13,−4, 7,−2, 14, 10,−3,
−5, 16,−4, 13,−1).

(3) In step 3, Bob performs π(·) on the vector B′ and
VA, then B′′ = (10,−1, 4, 3, 9, 9, 0,−4, 11,−1, 10, 4),
V ′
A = (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0).

(4) In step 4, since Bob has π(·), to prevent him from col-
luding with Trent to obtain the vector sent by Alice,
Alice generates a random vector C = (c1, · · · , c4n) =
(3, 2, 1, 4, 2, 7, 5, 9, 7, 6, 8, 4) and sends it to Bob, allow-
ing both parties to add a layer of security, and finally ob-
taining A′′ + C = (16,−2, 8, 2, 16, 17, 2, 4, 23, 2, 21, 3)
and B′′ + C = (13, 1, 5, 7, 11, 16, 5, 5, 18, 5, 18, 8).

(5) In step 5-6, Alice and Bob execute Protocol 2 to output
the result U = (1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0), and it is
clear that U = VA. Prove that the vector A dominates
the vector B, i.e. A�B.

E. Simulated Experiments

To verify the correctness and feasibility of the protocol,
we conducted circuit simulation experiments using the IBM
Qiskit simulator (Qiskit-1.2.0; Python-3.9; OS-Windows). This
simulation allowed us to model the quantum circuits and test
the protocol’s performance in a controlled environment. Set
m= 2 (i.e., d= 4). Fig. 2 depicts all quantum gate circuits
described in Section II-D. The circuit design of BSUM adopts
a Fourier adder, as detailed in [40]. Although its complex-
ity is O(d2), it does not need to consume quantum auxiliary
bits.

The quantum state preparation begins with the application of
QFT to each qubit in the h register, creating the superposition
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Fig. 3. The circuit of Quantum private permutation subprotocol, where the first part is the quantum state preparation process, the second part is the
replacement of hi particles after the particles are added to the initialization of g particles for subsequent honest testing, the third part is the replacement of
ti particles, and then the random vector R is added in the way of phase shifting, and finally QFT † and measurement operation are carried out.

state 1√
D

. Phase modulation is then applied using the Rz gate
with phase factors ζaiji . Finally, XOR gates are used to entan-
gle each hi qubit with its corresponding ti.

Assuming that the input ai = 3, the quantum state prepara-
tion process is shown in the first part of Fig. 3. Then we design
a permutation circuit diagram, assuming that π(·) is (4,2,1,3),
the permutation circuit can be designed as shown in Fig. 2(f).
Thus the quantum private permutation subprotocol is shown in
Fig. 3. Finally, by combining all the proposed protocols, the
overall circuit diagram is derived as shown in Fig. 4.

Table II presents the input and output parameters, along
with the selection of intermediate parameters ri, π(i) and ci.
The quantum program for i= 1, 2, 3, 4 was executed 1024
times, with the results presented in Fig. 5. The outcomes indi-
cate that our protocol operated flawlessly with a 100% success
rate, validating its accuracy and reliability.

V. APPLICATIONS

In this section, we present some applications of Protocol 3
in several PGI problems, i.e., point-line inclusion determi-
nation, line-line intersect determination, and point-in-polygon
determination.

A. Point-Line Inclusion Determination Protocol

Definition 1: (Point-Line inclusion determination).
Input: N = 2m. Alice inputs a point P = (m,n), Bob inputs
two point information from the line, namely W = (x0, y0) and
Q= (x1, y1).
Output: Alice and Bob both get the result of whether the point
is on the line.

When a point is not on a line, the cross product of vectors−−→
WP and

−−→
WQ can be computed. If the cross product is non-

zero, the point P is not on the line. For example, the vectors−−→
WP = (x0 −m, y0 − n) and

−−→
WQ= (x1 − x0, y1 − y0) give

the following cross product:

−−→
WP ×−−→

WQ= (x0 −m)(y1 − y0)− (y0 − n)(y1 − y0)

=m(y1 − y0) + n(x0 − x1) + (x1y0 − x0y1), (42)

which can be expressed as a scalar product of two vectors.
In protocol design, these results can be used to construct the
vector components and determine the intersection of points and
lines through vector domination outcomes.

Protocol 4: Quamtum secure point-line inclusion determina-
tion (QSPLLD).
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Fig. 4. The total circuit of quantum secure vector dominance.

TABLE II
PARAMETER OF THE EXPERIMENT

External Parameter Input Intermediate Parameter Output

m N i a′i b′i VA d D ri π(i) ci V ′
A U

2 4

1 4 3 1

4 16

2 3 3 0 0
2 5 2 1 1 2 1 1 1
3 -4 -3 0 3 1 2 1 1
4 -5 -2 0 1 4 3 0 0

Step 1 Alice computes her vector A4 = (m,n, 1), Bob
computes his vector B4 = (y1 − y0, x0 − x1, x1y0 −
x0y1).

Step 2 Alice and Bob execute a quantum secure two-party
scalar product (QS2PSP) protocol [35] to get results of
A4 ·B4.

Step 3 After all the steps of QS2PSP are completed, Alice can
obtain the result

A4 ·B4

=m(y1 − y0) + n(x0 − x1) + (x1y0 − x0y1) + r.
(43)

Bob can obtain the random vector r generated by
himself.

Step 4 Then they execute Protocol 3 to completed vector a
and r.

Step 5 After all the steps of the protocol are completed, Alice
gets the result if the point is on the line.

Analysis:
(1) Correctness: In Protocol 4, Alice and Bob calculate the

result of if a� r. That is

m(y1 − y0) + n(x0 − x1) + (x1y0 − x0y1)> 0

→−−→
WP ×−−→

WQ> 0. (44)
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Fig. 5. The results U for i= 1, 2, 3, 4 of the experiment.

(2) Security: Since QS2PSP and Protocol 3 are secure, then
any party cannot learn more information other than their
vector.

(3) Complexity: Alice and Bob call QS2PSP once, with
computational and communication complexity O(m2)
and O(m) respectively. They also call Protocol 3
once, with computational and communication complex-
ity O(n) and O(mn) respectively. Therefore the com-
munication complexity and computational complexity of
Protocol 4 are O(mn) and O(m2) respectively.

B. Line-Line Intersect Determination Protocol

Definition 2: (Line-Line intersect determination (LLID)).
Input: N = 2m. Alice inputs a line yA = kAx+ bA, Bob inputs
a line yB = kBx+ bB .
Output: Alice and Bob both get the result of whether the two
lines intersect.

To determine if two lines intersect, compare their slopes kA
and kB . If they intersect at a negative abscissa, they do not
intersect at positive abscissas. Trent can select an abscissa z
and compare the ordinates at this point. If one line’s slope and
ordinate are greater, the lines do not intersect in the calculation
area.

Protocol 5: Quamtum secure line-line intersect determina-
tion (QSLLID).
Step 1 Trent announces a number z. Alice computes kAz + bA

and prepares her vector A= (kAz + bA, kA), Bob com-
putes kBz + bB and prepares her vector B = (kBz +
bB , kB);

Step 2 Then they execute Quantum secure vector dominance
protocol to completed vector A and B;

Step 3 After all the steps of Protocol 3 are completed, Trent
announces the result of Whether the lines intersect.

Analysis:
(1) Correctness: In Protocol 5, Alice and Bob calculate the

result of if (kAz + bA, kA)� (kBz + bB , kB). That is,

the transverse coordinates of the intersection of line yA
and x= z are greater than the transverse coordinates
of the intersection of line yB , and the slope of line
yA is greater than that of line yB . It is expressed as
two lines that do not intersect after crossing the line
x= z.

(2) Security: The security of Protocol 5 is based on Pro-
tocol 3, which was analyzed in Section IV-B

(3) Complexity: Alice and Bob call Protocol 3 once, with
computational and communication complexity O(n) and
O(mn) respectively. Therefore the communication com-
plexity and computational complexity of Protocol 5 are
O(mn) and O(n) respectively.

C. Point-in-Polygon Determination Protocol

First, we provide a precise definition of the problem.
Definition 3: (Point-in-Polygon determination (PIPD)).

Input: N = 2m. Alice inputs a point A= (m,n), Bob in-
puts line information for its polygon with p sides: l1 :
y = k1x+ b1, l2 : y = k2x+ b2, l3 : y = kx + b3,· · · ,lp : y =
kpx+ bp.
Output: Alice and Bob both get the result of whether the point
is inside the polygon. In addition, each party cannot learn the
exact position of the other party’s point.

To study the problem of the positional relationship between
points and polygons, we should first study the positional rela-
tionship between points and triangles(illustrated in Fig. 6), and
then extend it to the case of polygons. Taking the problem of
determining the point inclusion of a triangle as an example, we
use the following analysis method:

The triangle is enclosed by the image of these three function
expressions of degree one. Specifically, a triangle is enclosed
by an image of the inequality group l1 : y = k1x+ b1, l2 : y =
k2x+ b2, l3 : y = k3x+ b3 in a planar rectangular coordinate
system. It can be seen from Fig. 6(a) that the straight x=m
intersects the line l1, l2, l3, denoted (m,n1), (m,n2), (m,n3)
in turn, and according to Fig. 6(a), it is clear that the point is
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Fig. 6. Two cases where the point is inside the triangle.

inside the triangle only under the following conditions.
⎧
⎪⎨

⎪⎩

n2 − n > 0

n− n1 > 0

n− n3 > 0

(45)

If one of the sides of the triangle is perpendicular to the
X-axis according to the Fig. 6(b). Assume the triangle is en-
closed by an image of the inequality group l1 : y = k1x+ b1,
l2 : y = k2x+ b2, l3 : xy3

= n3 in a planar rectangular coordi-
nate system. The point is inside the triangle only under the
following conditions.

⎧
⎪⎨

⎪⎩

n2 − n > 0

n− n1 > 0

m− n3 > 0

(46)

Protocol 6: Quamtum secure point-in-triangle determination
(QSPITD).
Step 1 Alice computes her vector A= (m, 1, n), Bob

computes his vector B1 = (−k1,−b1, 1), B2 =
(k2, b2,−1), B3 = (−k3,−b3, 1);

Step 2 Alice and Bob execute a quantum scalar product proto-
col [35] to get results of A ·B1, A ·B2, A ·B3;

Step 3 After all the steps of quantum scalar product protocol
are completed, Alice can obtain three results
⎧
⎪⎨

⎪⎩

x1 = (m, 1, n) · (−k1,−b1, 1) =−k1m+ n− b1 + v1

x2 = (m, 1, n) · (k2, b2,−1) = k2m− n+ b2 + v2

x3 = (m, 1, n) · (−k3,−b3, 1) =−k3m+ n− b3 + v3,

(47)

Bob can obtain the random vector V = (v1, v2, v3) gen-
erated by himself;

Step 4 Then they execute Quantum secure vector dominance
Protocol 3 to completed vector X = (x1, x2, x3) and
V = (v1, v2, v3);

Step 5 After all the steps of Protocol are completed, Alice gets
the result if X = (x1, x2, x3)� V = (v1, v2, v3).

Analysis:
(1) Correctness: In Protocol 6, Alice and Bob calculate

the result of ifX = (x1, x2, x3)� V = (v1, v2, v3). That
satisfies the condition

⎧
⎪⎨

⎪⎩

x1 =−k1m+ n− b1 + v1 > v1

x2 = k2m− n+ b2 + v2 > v2

x3 =−k3m+ n− b3 + v3 > v3,

(48)

which means
⎧
⎪⎨

⎪⎩

−k1m+ n− b1 = n− n1 > 0

k2m− n+ b2 = n2 − n > 0

−k3m+ n− b3 = n− n3 > 0.

(49)

Therefore, the protocol correctly gives the determination
result of the inclusion of points in the triangle.

(2) Security: For each 1≤ i≤ 3, Alice and Bob execute
one-time QS2PSP protocol. Then Alice gets Outputi =
A ·Bi + vi, Bob only gets vi. Since QS2PSP is se-
cure enough with high probability, the result Alice can
only obtain is Outputi. Since Outputi is an input to
the Protocol 3, that is, it acts as a whole, it does
not provide any more information than Alice deserves.
Similarly, Bob is unable to receive any improper ben-
efits. Therefore, Protocol 6 is at least as secure as
Protocol 3.

(3) Complexity: The two participants call QS2PSP, with
computational and communication complexity O(m2)
and O(m) respectively. They also call Protocol 3
once, with computational and communication complex-
ity O(n) and O(mn) respectively. Therefore the com-
munication complexity and computational complexity of
Protocol 4 are O(mn) and O(m2) respectively.
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VI. QUANTUM ERROR CORRECTION AND

ERROR MITIGATION

In practical quantum communication, protocols are in-
evitably affected by noise, such as bit-flip, phase-flip, and deco-
herence. To mitigate these challenges, we propose an integrated
approach with two key components:

Quantum Error Correction (QEC) employs techniques such
as surface codes, CSS codes, and multi-hypercube codes to
detect and correct errors at the physical qubit level. Recent
research, including the Google team’s Willow chip, a 105-qubit
superconducting processor using surface codes, has shown sig-
nificant improvements in logical error suppression and real-time
decoding [41]. Error Mitigation (EM) incorporates methods
like Zero-Noise Extrapolation (ZNE), Probabilistic Error Can-
cellation (PEC), and Randomized Compiling (RC) to further
reduce residual noise. RC, in particular, transforms complex
noise channels into stochastic Pauli noise, providing a more
manageable error model and aiding post-processing [42].

A. Surface Code Encoding and Error Correction

In the proposed QSVD protocol, the initial quantum states
are prepared as:

|α〉= 1√
D

D−1∑

ji=0

ζaiji |ji〉hi
|ji〉ti , (50)

where ζaiji is a phase factor based on Alice’s input. To enhance
robustness during transmission, these states are encoded using a
distance-3 surface code, mapping each logical qubit to 9 phys-
ical qubits. Data qubits store the computational information,
while syndrome qubits detect bit-flip and phase-flip errors.

We periodically measure the stabilizer operators SX and SZ

to detect errors:

SX = (−1)mX , SZ = (−1)mZ , (51)

where mX and mZ represent bit-flip and phase-flip error syn-
dromes, respectively. Upon detecting an error, a corresponding
X or Z operation is applied. To minimize logical error rates,
we use the Minimum-Weight Perfect Matching (MWPM) algo-
rithm to correct the most likely error patterns.

B. Randomized Compiling and Encoded Quantum
State Transmission

In addition to QEC, we apply Randomized Compiling (RC)
to reduce residual noise. RC inserts Pauli gates Tk and their
corrections T c

k−1 around each quantum operation Ck in the
decomposed QSVD unitary:

U =GKCK · · ·G1C1, (52)

such that

C ′
k = Tk Ck T

c
k−1. (53)

This randomization transforms the noise channels into a
stochastic Pauli model, simplifying error estimation and en-
abling post-processing mitigation. Combined with other EM

strategies, RC further reduces error rates beyond what QEC
alone can achieve.

After applying surface code encoding and RC, the final quan-
tum state is:

|ᾱ〉= 1√
D

D−1∑

ji=0

ζaiji |j̄i〉hi
|j̄i〉ti , (54)

where each logical state |j̄i〉 is encoded across multiple physical
qubits using the surface code. This encoding preserves quan-
tum information necessary for QSVD, even under bit-flip and
phase-flip errors, ensuring more reliable computations in noisy
environments.

By integrating surface codes for QEC and RC for EM, our ap-
proach enhances fault tolerance in practical quantum systems.
These methods not only lower error rates but also improve the
feasibility of secure vector dominance computations in noisy
settings.

VII. CONCLUSION

In this paper, we propose a novel Quantum Secure Vector
Dominance (QSVD) protocol, enabling two participants to de-
termine vector dominance without revealing their private data.
The protocol is built upon a quantum private permutation sub-
protocol and an enhanced quantum millionaire subprotocol, en-
suring both efficiency and security. We analyze its correctness,
security, and complexity, validate its feasibility on IBM’s Qiskit
platform, and demonstrate its scalability through applications in
geometric computations. To address noise-related challenges in
quantum communication, we propose an integrated approach
that combines Quantum Error Correction (QEC) with Error
Mitigation (EM), enhancing the protocol’s reliability in noisy
environments.

While the proposed QSVD protocol represents a significant
advancement in secure quantum computation, several chal-
lenges and limitations remain that require further exploration.

First, scaling QSVD to multi-party and distributed quantum
systems remains a challenge. While the protocol currently sup-
ports two-party computations, real-world applications require
extending it to multiple parties. Ensuring security, privacy, and
scalability in such settings necessitates further exploration of
distributed quantum computing models and multi-party secure
computation protocols.

Second, advancing quantum error correction is vital for im-
proving fault tolerance. While surface codes show promise,
exploring alternatives like concatenated codes, color codes, or
topological codes could offer better trade-offs in efficiency, fault
tolerance, and error rates. Identifying the most suitable QEC
technique for QSVD is crucial for enhancing performance in
noisy environments.

Third, effective noise characterization and modeling are es-
sential for optimizing protocol robustness. While QEC and EM
techniques improve noise resilience, further research is needed
to model the diverse noise types affecting quantum systems.
Developing accurate noise models will facilitate more efficient
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noise mitigation and better integration with error correction
methods.

In summary, the QSVD protocol lays the groundwork for
secure vector dominance in quantum computing. Overcoming
challenges in multi-party scalability, error correction, and noise
modeling is crucial for its practical deployment. Future research
will focus on overcoming these challenges, optimizing the pro-
tocol for real-world applications, and exploring new avenues for
extending its functionality to more complex secure computation
problems.
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