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Abstract

According to the holographic principle, the maximum amount of informa-
tion stored in a region of space scales as the area of its two-dimensional surface,
like a hologram. We show that the holographic principle can be understood
heuristically as originated from quantum fluctuations of spacetime. Applied to
cosmology, this consideration leads to a dynamical cosmological constant A of
the observed magnitude, in agreement with the result obtained by using uni-
modular gravity and causal-set theory for the present and recent cosmic epochs.
By generalizing the concept of entropic gravity, we find a critical acceleration
parameter related to A in galactic dynamics, and we construct a phenomeno-
logical model of dark matter which we call “modified dark matter” (MDM). We
provide successful observational tests of MDM at both the galactic and cluster
scales. We also discuss the possibility that the quanta of both dark energy
and dark matter obey the quantum Boltzmann statistics or infinite statistics
as described by a curious average of the bosonic and fermionic algebras.
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1 Introduction and Summary

In Vulcano 2004, in a talk titled ”Space-time fluctuations,” T discussed some
aspects of "space-time foam” — a foamy structure of spacetime arising from
quantum fluctuations. 1) To examine how large the fluctuations are, I consid-
ered a gedankan experiment in which a light signal is sent from a clock to a
mirror (at a distance | away) and back to the clock in a timing experiment
to measure [. From the jiggling of the clock’s position alone, the Heisenberg
uncertainty principle yields 512 R %, where m is the mass of the clock. On the
other hand, the clock must be large enough not to collapse into a black hole;

this requires dl R %m We conclude that the fluctuation of a distance [ scales

as 6l 2 1Y/312/* (where lp = /RG/c® is the Planck length). 2) 1 also showed
that this scaling of §l is what the holographic principle 3) demands.

The present talk is a continuation of the talk I gave twelve years ago. I will
start (in Section 2) by rederiving this scaling of 6/ by another method 4) which
can be generalized to the case of an expanding universe for which a dyamical
cosmological constant is shown to emerge, 5) a result that was earlier obtained
6) by a consideration (in Section 3) of unimodular gravity 7) and Sorkin’s
causal-set theory. This led me to my more recent work with Ho and Minic, and
later also with Edmonds, Farrah and Takeuchi. We found it natural (see Section
4) to generalize Verlinde’s formulation 8) of entropic gravity/gravitational
thermodynamics to de-Sitter space with a positive cosmological constant. The
result was a dark matter model which we call modified dark matter (MDM). 9)
Recently we have successfuly tested MDM (see Seclt(i)())n 5) with 30 galactic

The take-home message from this talk is this: It is possible that the dark

rotation curves and a sample of 93 galactic clusters.

sector (dark energy and dark matter) has its origin in quantum gravity. And
if the scenario to be sketched in Section 6 is correct, then we can expect some
rather novel particle phenomenologies, for the quanta of the dark sector obey
not the familiar Bose or Fermi statistics, but an exotic statistics that goes by
the name infinite statistics 1) or quantum Boltzmann statistics. 12)

I would like to take this opportunity to make a disclaimer: In a recent
paper “New Constraints on Quantum Gravity from X-ray and Gamma-Ray
Observations” by Perlman et al. (ApJ. 805, 10 (2015)), it was claimed that

detections of quasars at TeV energies with ground-based Cherenkov telescopes
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seem to have ruled out the holographic spacetime foam model (with d scaling as
1/ 31?3/ %). But now I (one of the authors) believe this conclusion is conceivably
premature when proper averaging is carried out (though presently there is no

formalism yet for carrying out such averages.)

2 Spacetime Foam and the Cosmological Constant A

We can rederive the scaling of §/ by another argument. Let us consider mapping
out the geometry of spacetime for a spherical volume of radius [ over the amount
of time 2l /c it takes light to cross the volume. 4) One way to do this is to fill the
space with clocks, exchanging signals with the other clocks and measuring the
signals’ times of arrival. The total number of operations, including the ticks
of the clocks and the measurements of signals, is bounded by the Margolus-
Levitin theorem which stipulates that the rate of operations cannot exceed the
amount of energy E that is available for the operation divided by wh/2. This
theorem, combined with the bound on the total mass of the clocks to prevent
black hole formation, implies that the total number of operations that can occur
in this spacetime volume is no bigger than 2(I/lp)%/7. To maximize spatial
resolution, each clock must tick only once during the entire time period. If we
regard the operations as partitioning the spacetime volume into “cells”, then
on the average each cell occupies a spatial volume no less than ~ 13/(1%/I%) =
113, yielding an average separation between neighboring cells no less than ~
1/ 3l§3/ 3. 5) This spatial separation can be interpreted as the average minimum
uncertainty in the measurement of a distance [, that is, 4l R 3lfg/ 3

5, 12) the above discussion for a static

It is straightforward to generalize
spacetime region with low spatial curvature to the case of an expanding universe
by the substitution of by H~! in the expressions for energy and entropy
densities, where H is the Hubble parameter. (Henceforth we adopt c=1="
for convenience unless stated otherwise for clarity.) Applied to cosmology, the
above argument leads to the prediction that (1) the cosmic energy density has
the critical value p ~ (H/lp)?, and (2) the universe of Hubble size R contains
I ~ (Ry/l,)? bits of information. It follows that the average energy carried
by each particle/bit is pR% /I ~ Ry'. Such long-wavelength constituents of
dark energy give rise to a more or less spatially uniform distribution of cosmic
energy density and act as a dynamical cosmological constant with the observed
small but nonzero value A ~ 3H?2.
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3 Quantum (Generalized Unimodular) Gravity and (Dynamical) A

The dynamical cosmological constant we have just obtained will be seen to play
an important role in our subsequent discussions. So let us “rederive” it by using
another method based on quantum gravity. The idea makes use of the theory
of unimodular gravity 7 6), more specifically its generalized action given by
Sunimod = —(167G)! [[\/g(R 4+ 2A) — 2A9, T*](d*z)dt. In this theory, A/G
plays the role of “momentum” conjugate to the “coordinate” [ d®z7y which
can be identified as the spacetime volume V. Hence the fluctuations of A/G
and V obey a quantum uncertainty principle, 6VOA/G ~ 1.

Next we borrow an argument due to Sorkin, drawn from the causal-set
theory, which stipulates that continous geometries in classical gravity should
be replaced by ”causal-sets”, the discrete substratum of spacetime. In the
framework of the causal-set theory, the fluctuation in the number of elements
N making up the set is of the Poisson type, i.e., 6N ~ v/N. For a causal set,
the spacetime volume V' becomes I N. Tt follows that §V ~ I56N ~ IV N ~
l%\/v = GV, and hence §A ~ V—1/2, By following an argument due to Baum
and Hawking, we argued 6) that, in the framework of unimodular gravity, A
vanishes to the lowest order of approximation and that its first order correction
is positive (at least for the the cosmic epoch corresponding to redshift z R
See the second paper of Ref. 6)) We conclude that A is positive with a
magnitude of V=12 ~ R1}2, contributing a cosmic energy density p given by:
P ﬁ, which is of the order of the critical density as observed!

4 From A to Modified Dark Matter (MDM)

The dynamical cosmological constant (originated from quantum fluctuations of
spacetime) can now be shown to give rise to a critical acceleration parameter
in galactic dynamics. The argument 9) is based on a simple generalization
of Verlinde’s recent proposal of entropic gravity 8) for A = 0 to the case of
de-Sitter space with positive A. Let us first review Verlinde’s derivation of
Newton’s second law F' = md. Consider a particle with mass m approaching
a holographic screen at temperature T'. Using the first law of thermodynamics
to introduce the concept of entropic force F' = T%7 and invoking Bekenstein’s
original arguments concerning the entropy S of black holes, AS = 2nkp 3¢ Ax,
Verlinde gets I' = 2wkp%°T. With the aid of the formula for the Unruh
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temperature, kT = %, associated with a uniformly accelerating (Rindler)
observer, Verlinde obtains F = md. Now in a de-Sitter space with positive
cosmological constant A for an accelerating universe like ours, the net Unruh-
Hawking temperature, as measured by a non-inertial observer with acceleration
a relative to an inertial observer, is T = QwF;Cch with a = /a2 + a% — aop, 13)
where ag = y/A/3. Hence the entropic force (in de-Sitter space) is given by the
replacement of T' and a by T and a respectively, leading to F' = m[\/m -

ao). For a > ag, we have F/m =~ a which gives a = ay = GM/r?. But for

2 . . .
a<ag, F~ m;—ao = muv? /r for circular motions, so the observed flat galactic

rotation curves (v being independent of 7) now require a ~ (2ay aj /) i But
that means F' = m,/aya., the modified Newtonian dynamics (MoND) scaling
14), proposed by Milgrom. Thus, we have recovered MoND with the correct
magnitude for the critical galactic acceleration parameter a. = ag/(27) =~
cH/(2m) ~ 1078¢m/s? (where we recall H is the Hubble parameter). As a
bonus, we have 31)50 recovered the observed Tully-Fisher relation (v* oc M).

Next we can follow the second half of Verlinde’s argument 8) to
generalize Newton’s law of gravity a = GM/r2. The end result is given by
a = GM/TZ, where M = M + M, represents the total mass enclosed within
the volume V = 4713 /3, with M, being some unknown mass, i.e., dark matter.
For a > aq, consistency with the Newtonian force law a =~ ay implies My = 0.
But for a < ag, consistency with the condition a ~ (2aN ag/w)Z requires
Mg~ 1(% )2 M ~ (vVA/G)Y/2M'/?r. (Note the curious connections among

Mg, A and M.) Thus dark matter indeed exists. And the MoND force law
derived above, at the galactic scale, is simply a manifestation of dark matter!

5 Observational Tests of MDM

In order to test MDM with galactic rotation curves, we fit computed rotation
curves to a selected sample of Ursa Major galaxies given in 15), using the mass-
to-light ratio M/L as our only fitting parameter. For the CDM fits, we use the
Navarro, Frenk & White density profile, employing three free parameters (one
of which is the mass-to-light ratio.) We find that both models fit the data
well (and more or less equally well)! But while the MDM fits use only 1 free
parameter, for the CDM fits one needs 3 free parameters. Thus the MDM
model is a more economical model than CDM in fitting data at the galactic
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scale. As for dark matter density, the profiles predicted by MDM and CDM
agree well in the asymptotic (large R) regime. See Ref. 10) for details.
To test MDM with astronomical observations at a larger scale, we 10)
compare dynamical and observed masses in a large sample of galactic clusters
studied by Sanders 16) using the compilation by White, Jones, and Forman.

Sanders 16)

studied the virial discrepancy (i.e., the discrepancy between the
observed mass and the dynamical mass) in the contexts of Newtonian dynam-

ics and MoND. He found the well-known discrepancy between the Newtonian

M
dynamical mass (M) and the observed mass (M}): < ﬁ > ~ 4.4. And
obs

for the sample clusters, he found (MyroND/Mohg) = 2-1.

We 10) have adapted Sanders’ approach to the case of MDM. Not-
ing that the argument used in Section 4 does allow M, to include a term
of the form & ( %0) M with an undetermined universal parameter &, we (in
some unpublished work) have decided to use a more general profile of the form

My = {g(@)-f-l (@)2} M.For§z0.5,weget<1\4]\1}{.Ei\/[>21.0.(As

a ™ a
an aside, we have refit the galaxy rotation curves using £ = 0.5 and have found
equally good fits.) Thus the virial discrepancy is eliminated in the context of
MDM! At the cluster scale, MDM is superior to MoND.

6 The Dark Sector and Infinite Statistics

What is the essential difference between ordinary matter and dark energy from
our perspective? To find that out, let us recall our discussion in Section 2,
and liken the quanta of dark energy to a perfect gas of N particles obey-
ing Boltzmann statistics at temperature 7' in a volume V. For the problem
at hand, as the lowest-order approximation, we can neglect the contributions
from matter and radiation to the cosmic energy density for the recent and
present eras. Thus let us take V ~ R3, T ~ Ry', and N ~ (Rg/lp)>.
A standard calculation (for the relativistic case) yields the partition function
Zn = (NY"HV/X3)N, where A\ = (7)%/3/T, and we get, for the entropy of the
system, S = —(0(=TInZy)/0T)y.n = N[In(V/NX?) +5/2].

The important point to note is that, since V' ~ A3, the entropy S becomes
nonsensically negative unless NV ~ 1 which is equally nonsensical because N
should not be too different from (R /lp)? > 1. But the solution 12) 4

obvious: the N inside the log of S somehow must be absent. That is the case if
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the Gibbs 1/N! factor is absent from the partition function Zy, implying that
the “particles” are distinguishable and nonidentical!

Now the only known consistent statistics in greater than two space dimen-
sions without the Gibbs factor is infinite statistics (sometimes called “quantum

11).

Boltzmann statistics”) Thus the “particles” constituting dark energy

obey infinite statistics, instead of the familiar Fermi or Bose statistics. 12)

To show that the quanta of MDM also obey this exotic statistics, we
9) first reformulate MoND via an effective gravitational dielectric medium,
motivated by the analogy 17) between Coulomb’s law in a dielectric medium
and Milgrom’s law for MoND. Ho, Minic and I then find that MoNDian force
law is recovered if the quanta of MDM obey infinite statistics.

What is infinite statistics? Succinctly, a Fock realization of infinite statis-
tics is provided by the commutation relations of the oscillators: aka;r = Ok-
Curiously a theory of particles obeying infinite statistics cannot be local 11),
But the TCP theorem and cluster decomposition have been shown to hold
despite the lack of locality 1), Actually this lack of locality is not unex-
pected. After all, non-locality is also present in holographic theories, and the
holographic principle is an important ingredient in the formulation of quantum
gravity. Infinite statistics and quantum gravity appear to fit together nicely,

and non-locality seems to be a common feature of both of them. 12)

Perhaps
it is the extended nature of the dark quanta that connects them to such global

aspects of space-time as the Hubble parameter and the cosmological constant.
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