
Frascati Physics Series Vol. 64 (2016)
Frontier Objects in Astrophysics and Particle Physics
May 22-28, 2016

HOLOGRAPHIC THEORY OF GRAVITY AND COSMOLOGY

Y. Jack Ng
Institute of Field Physics, Department of Physics & Astronomy,
University of North Carolina, Chapel Hill, NC 27599-3255, USA

Abstract

According to the holographic principle, the maximum amount of informa-
tion stored in a region of space scales as the area of its two-dimensional surface,
like a hologram. We show that the holographic principle can be understood
heuristically as originated from quantum fluctuations of spacetime. Applied to
cosmology, this consideration leads to a dynamical cosmological constant Λ of
the observed magnitude, in agreement with the result obtained by using uni-
modular gravity and causal-set theory for the present and recent cosmic epochs.
By generalizing the concept of entropic gravity, we find a critical acceleration
parameter related to Λ in galactic dynamics, and we construct a phenomeno-
logical model of dark matter which we call “modified dark matter” (MDM). We
provide successful observational tests of MDM at both the galactic and cluster
scales. We also discuss the possibility that the quanta of both dark energy
and dark matter obey the quantum Boltzmann statistics or infinite statistics
as described by a curious average of the bosonic and fermionic algebras.
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1 Introduction and Summary

In Vulcano 2004, in a talk titled ”Space-time fluctuations,” I discussed some

aspects of ”space-time foam” – a foamy structure of spacetime arising from

quantum fluctuations. 1) To examine how large the fluctuations are, I consid-

ered a gedankan experiment in which a light signal is sent from a clock to a

mirror (at a distance l away) and back to the clock in a timing experiment

to measure l. From the jiggling of the clock’s position alone, the Heisenberg

uncertainty principle yields δl2
>∼ h̄l

mc , where m is the mass of the clock. On the

other hand, the clock must be large enough not to collapse into a black hole;

this requires δl
>∼ Gm

c2 . We conclude that the fluctuation of a distance l scales

as δl
>∼ l1/3l

2/3
P (where lP =

√
h̄G/c3 is the Planck length). 2) I also showed

that this scaling of δl is what the holographic principle 3) demands.

The present talk is a continuation of the talk I gave twelve years ago. I will

start (in Section 2) by rederiving this scaling of δl by another method 4) which

can be generalized to the case of an expanding universe for which a dyamical

cosmological constant is shown to emerge, 5) a result that was earlier obtained
6) by a consideration (in Section 3) of unimodular gravity 7) and Sorkin’s

causal-set theory. This led me to my more recent work with Ho and Minic, and

later also with Edmonds, Farrah and Takeuchi. We found it natural (see Section

4) to generalize Verlinde’s formulation 8) of entropic gravity/gravitational

thermodynamics to de-Sitter space with a positive cosmological constant. The

result was a dark matter model which we call modified dark matter (MDM). 9)

Recently we have successfuly tested MDM (see Section 5) with 30 galactic

rotation curves and a sample of 93 galactic clusters. 10)

The take-home message from this talk is this: It is possible that the dark

sector (dark energy and dark matter) has its origin in quantum gravity. And

if the scenario to be sketched in Section 6 is correct, then we can expect some

rather novel particle phenomenologies, for the quanta of the dark sector obey

not the familiar Bose or Fermi statistics, but an exotic statistics that goes by

the name infinite statistics 11) or quantum Boltzmann statistics. 12)

I would like to take this opportunity to make a disclaimer: In a recent

paper “New Constraints on Quantum Gravity from X-ray and Gamma-Ray

Observations” by Perlman et al. (ApJ. 805, 10 (2015)), it was claimed that

detections of quasars at TeV energies with ground-based Cherenkov telescopes
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seem to have ruled out the holographic spacetime foam model (with δl scaling as

l1/3l
2/3
P ). But now I (one of the authors) believe this conclusion is conceivably

premature when proper averaging is carried out (though presently there is no

formalism yet for carrying out such averages.)

2 Spacetime Foam and the Cosmological Constant Λ

We can rederive the scaling of δl by another argument. Let us consider mapping

out the geometry of spacetime for a spherical volume of radius l over the amount

of time 2l/c it takes light to cross the volume. 4) One way to do this is to fill the

space with clocks, exchanging signals with the other clocks and measuring the

signals’ times of arrival. The total number of operations, including the ticks

of the clocks and the measurements of signals, is bounded by the Margolus-

Levitin theorem which stipulates that the rate of operations cannot exceed the

amount of energy E that is available for the operation divided by πh̄/2. This

theorem, combined with the bound on the total mass of the clocks to prevent

black hole formation, implies that the total number of operations that can occur

in this spacetime volume is no bigger than 2(l/lP )2/π. To maximize spatial

resolution, each clock must tick only once during the entire time period. If we

regard the operations as partitioning the spacetime volume into “cells”, then

on the average each cell occupies a spatial volume no less than ∼ l3/(l2/l2P ) =

ll2P , yielding an average separation between neighboring cells no less than ∼
l1/3l

2/3
P . 5) This spatial separation can be interpreted as the average minimum

uncertainty in the measurement of a distance l, that is, δl
>∼ l1/3l2/3P .

It is straightforward to generalize 5, 12) the above discussion for a static

spacetime region with low spatial curvature to the case of an expanding universe

by the substitution of l by H−1 in the expressions for energy and entropy

densities, where H is the Hubble parameter. (Henceforth we adopt c = 1 = h̄

for convenience unless stated otherwise for clarity.) Applied to cosmology, the

above argument leads to the prediction that (1) the cosmic energy density has

the critical value ρ ∼ (H/lP )2, and (2) the universe of Hubble size RH contains

I ∼ (RH/lp)
2 bits of information. It follows that the average energy carried

by each particle/bit is ρR3
H/I ∼ R−1

H . Such long-wavelength constituents of

dark energy give rise to a more or less spatially uniform distribution of cosmic

energy density and act as a dynamical cosmological constant with the observed

small but nonzero value Λ ∼ 3H2.
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3 Quantum (Generalized Unimodular) Gravity and (Dynamical) Λ

The dynamical cosmological constant we have just obtained will be seen to play

an important role in our subsequent discussions. So let us “rederive” it by using

another method based on quantum gravity. The idea makes use of the theory

of unimodular gravity 7, 6), more specifically its generalized action given by

Sunimod = −(16πG)−1
∫

[
√
g(R + 2Λ) − 2Λ∂µT µ](d3x)dt. In this theory, Λ/G

plays the role of “momentum” conjugate to the “coordinate”
∫
d3xT0 which

can be identified as the spacetime volume V . Hence the fluctuations of Λ/G

and V obey a quantum uncertainty principle, δVδΛ/G ∼ 1.

Next we borrow an argument due to Sorkin, drawn from the causal-set

theory, which stipulates that continous geometries in classical gravity should

be replaced by ”causal-sets”, the discrete substratum of spacetime. In the

framework of the causal-set theory, the fluctuation in the number of elements

N making up the set is of the Poisson type, i.e., δN ∼
√
N . For a causal set,

the spacetime volume V becomes l4PN . It follows that δV ∼ l4P δN ∼ l4P
√
N ∼

l2P
√
V = G

√
V , and hence δΛ ∼ V −1/2. By following an argument due to Baum

and Hawking, we argued 6) that, in the framework of unimodular gravity, Λ

vanishes to the lowest order of approximation and that its first order correction

is positive (at least for the the cosmic epoch corresponding to redshift z
<∼ 1.

See the second paper of Ref. 6).) We conclude that Λ is positive with a

magnitude of V −1/2 ∼ R−2
H , contributing a cosmic energy density ρ given by:

ρ∼ 1
l2
P
R2

H

, which is of the order of the critical density as observed!

4 From Λ to Modified Dark Matter (MDM)

The dynamical cosmological constant (originated from quantum fluctuations of

spacetime) can now be shown to give rise to a critical acceleration parameter

in galactic dynamics. The argument 9) is based on a simple generalization

of Verlinde’s recent proposal of entropic gravity 8) for Λ = 0 to the case of

de-Sitter space with positive Λ. Let us first review Verlinde’s derivation of

Newton’s second law ~F = m~a. Consider a particle with mass m approaching

a holographic screen at temperature T . Using the first law of thermodynamics

to introduce the concept of entropic force F = T ∆S
∆x , and invoking Bekenstein’s

original arguments concerning the entropy S of black holes, ∆S = 2πkB
mc
h̄ ∆x,

Verlinde gets F = 2πkB
mc
h̄ T . With the aid of the formula for the Unruh
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temperature, kBT = h̄a
2πc , associated with a uniformly accelerating (Rindler)

observer, Verlinde obtains ~F = m~a. Now in a de-Sitter space with positive

cosmological constant Λ for an accelerating universe like ours, the net Unruh-

Hawking temperature, as measured by a non-inertial observer with acceleration

a relative to an inertial observer, is T̃ = h̄ã
2πkBc

with ã ≡
√
a2 + a2

0 − a0, 13)

where a0 ≡
√

Λ/3. Hence the entropic force (in de-Sitter space) is given by the

replacement of T and a by T̃ and ã respectively, leading to F = m[
√
a2 + a2

0−
a0]. For a � a0, we have F/m ≈ a which gives a = aN ≡ GM/r2. But for

a� a0, F ≈ m a2

2 a0
= mv2/r for circular motions, so the observed flat galactic

rotation curves (v being independent of r) now require a ≈
(
2aN a

3
0/π

) 1
4 . But

that means F ≈ m√aNac , the modified Newtonian dynamics (MoND) scaling
14), proposed by Milgrom. Thus, we have recovered MoND with the correct

magnitude for the critical galactic acceleration parameter ac = a0/(2π) ≈
cH/(2π) ∼ 10−8cm/s2 (where we recall H is the Hubble parameter). As a

bonus, we have also recovered the observed Tully-Fisher relation (v4 ∝M).

Next we 9) can follow the second half of Verlinde’s argument 8) to

generalize Newton’s law of gravity a = GM/r2. The end result is given by

ã = GM̃/r2, where M̃ = M + Md represents the total mass enclosed within

the volume V = 4πr3/3, with Md being some unknown mass, i.e., dark matter.

For a� a0, consistency with the Newtonian force law a ≈ aN implies Md ≈ 0.

But for a � a0, consistency with the condition a ≈
(
2aN a

3
0/π
) 1

4 requires

Md ≈ 1
π

(
a0
a

)2
M ∼ (

√
Λ/G)1/2M1/2r. (Note the curious connections among

Md, Λ and M .) Thus dark matter indeed exists. And the MoND force law

derived above, at the galactic scale, is simply a manifestation of dark matter!

5 Observational Tests of MDM

In order to test MDM with galactic rotation curves, we fit computed rotation

curves to a selected sample of Ursa Major galaxies given in 15), using the mass-

to-light ratio M/L as our only fitting parameter. For the CDM fits, we use the

Navarro, Frenk & White density profile, employing three free parameters (one

of which is the mass-to-light ratio.) We find that both models fit the data

well (and more or less equally well)! But while the MDM fits use only 1 free

parameter, for the CDM fits one needs 3 free parameters. Thus the MDM

model is a more economical model than CDM in fitting data at the galactic
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scale. As for dark matter density, the profiles predicted by MDM and CDM

agree well in the asymptotic (large R) regime. See Ref. 10) for details.

To test MDM with astronomical observations at a larger scale, we 10)

compare dynamical and observed masses in a large sample of galactic clusters

studied by Sanders 16) using the compilation by White, Jones, and Forman.

Sanders 16) studied the virial discrepancy (i.e., the discrepancy between the

observed mass and the dynamical mass) in the contexts of Newtonian dynam-

ics and MoND. He found the well-known discrepancy between the Newtonian

dynamical mass (MN) and the observed mass (Mobs):

〈
MN
Mobs

〉
≈ 4.4 . And

for the sample clusters, he found 〈MMoND/Mobs〉 ≈ 2.1.

We 10) have adapted Sanders’ approach to the case of MDM. Not-

ing that the argument used in Section 4 does allow Md to include a term

of the form ξ
(
a0
a

)
M with an undetermined universal parameter ξ, we (in

some unpublished work) have decided to use a more general profile of the form

Md =
[
ξ
(
a0
a

)
+ 1

π

(
a0
a

)2 ]
M . For ξ ≈ 0.5, we get

〈
MMDM
Mobs

〉
≈ 1.0 . (As

an aside, we have refit the galaxy rotation curves using ξ = 0.5 and have found

equally good fits.) Thus the virial discrepancy is eliminated in the context of

MDM! At the cluster scale, MDM is superior to MoND.

6 The Dark Sector and Infinite Statistics

What is the essential difference between ordinary matter and dark energy from

our perspective? To find that out, let us recall our discussion in Section 2,

and liken the quanta of dark energy to a perfect gas of N particles obey-

ing Boltzmann statistics at temperature T in a volume V . For the problem

at hand, as the lowest-order approximation, we can neglect the contributions

from matter and radiation to the cosmic energy density for the recent and

present eras. Thus let us take V ∼ R3
H , T ∼ R−1

H , and N ∼ (RH/lP )2.

A standard calculation (for the relativistic case) yields the partition function

ZN = (N !)−1(V/λ3)N , where λ = (π)2/3/T , and we get, for the entropy of the

system, S = −(∂(−T lnZN )/∂T )V,N = N [ln(V/Nλ3) + 5/2].

The important point to note is that, since V ∼ λ3, the entropy S becomes

nonsensically negative unless N ∼ 1 which is equally nonsensical because N

should not be too different from (RH/lP )2 � 1. But the solution 12) is

obvious: the N inside the log of S somehow must be absent. That is the case if

54



the Gibbs 1/N ! factor is absent from the partition function ZN , implying that

the “particles” are distinguishable and nonidentical!

Now the only known consistent statistics in greater than two space dimen-

sions without the Gibbs factor is infinite statistics (sometimes called “quantum

Boltzmann statistics”) 11). Thus the “particles” constituting dark energy

obey infinite statistics, instead of the familiar Fermi or Bose statistics. 12)

To show that the quanta of MDM also obey this exotic statistics, we
9) first reformulate MoND via an effective gravitational dielectric medium,

motivated by the analogy 17) between Coulomb’s law in a dielectric medium

and Milgrom’s law for MoND. Ho, Minic and I then find that MoNDian force

law is recovered if the quanta of MDM obey infinite statistics.

What is infinite statistics? Succinctly, a Fock realization of infinite statis-

tics is provided by the commutation relations of the oscillators: aka
†
l = δkl.

Curiously a theory of particles obeying infinite statistics cannot be local 11).

But the TCP theorem and cluster decomposition have been shown to hold

despite the lack of locality 11). Actually this lack of locality is not unex-

pected. After all, non-locality is also present in holographic theories, and the

holographic principle is an important ingredient in the formulation of quantum

gravity. Infinite statistics and quantum gravity appear to fit together nicely,

and non-locality seems to be a common feature of both of them. 12) Perhaps

it is the extended nature of the dark quanta that connects them to such global

aspects of space-time as the Hubble parameter and the cosmological constant.
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