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Abstract: 

For a local amplitude we prove a one-to-one correspondence between 

properly defined scaling, the leading light-cone singularity and the 

asymptotic behaviour of the corresponding Jost-Lehmann spectral function 

in the sense of distribution theory. 

i. Introduction 

It has been claimed very often that BJorken scaling of the imagi- 

nary part of the forward scattering amplitude for the virtual Compton 

process is explained in terms of the light-cone (LC-) singularities of 

the Fourier transform of that amplitude [1]. This claim has led to the 

development of the llght-cone physics Ill. 

It is the aim of the present paper to discuss the connection 

between LC-singuiarities, Bjorken scaling and related asymptotics ~) 

In particular we will show that there is a one-to-one correspondence 

between scaling, light-cone singularities and asymptotic behaviour of 

the Jost-Lehmann (JL) spectral function, if all these limits are under- 

stood as limits of sequences of distributions [2,3]. 

In order to avoid complications due to the photon spin we consider 

a model-amplitude 

%) For comments on earlier attempts we refer to [2]. 
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: <p IJ 

with a real scalar current J(x) and a state Ip> of one scalar particle 

of momentum P (p2 = 1). Our assumptions are those of general quantum 

field theory, e.g. [4] 

CA) T(q,p) 

A1) 

A2) 

satisfies 

Lorentz-invariance: 

÷ 
T(Aq,Ap) = T(q,p) V A E L+ 

Spectrum: 

supp T(q,p) C {(q,P) lq'P > 0, q2 + 2q.p > 0} 

A3) Locality: 

~(x ,p )  -~(-x,p) = 0 fo r  x 2 < 0 ~ p 

A4) T) Temperedness: 

T(q,p) ~ ' ( ~ )  fo r  f ixed  p, p2 = 1. 

(B) Positivity: 

~(x,p) is of positive type, e.g. 

<~(x-y, p ) ,# (x)#*(y)>  S0 ~ e ~ ( ~ 4 ) V p  f i xed .  

Let us comment on condition A4). We think A4) to be natural in 

our context: On one hand, it is well known from the perturbative 

treatment of renormalizable field theories that the n-point-functions 

are tempered distributions. On the other hand, we don't know of any 

example for a~nontrivial ordinary function ~(x,p) which satisfies A2) 

A3) and (B) TT). Thus, in the general case, we cannot expect both T(g,p) 

and ~(x,p) to be functions, and are thus forced to introduce a notion 

+) In the usual axiomatic framework temperedness of matrix elements of 
field operators holds if these are taken with respect to proper 
@ave packet) states. For reasons of simplicity we restrict ourselves 
to improper (plane wave) states. 

t%) ~ In the special case supp T(q,p) c V + it can be shown (Borchers 
[5]) by A3) and (B) that ~(x,p) cannot be an ordinary function 
different from a constant. 
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of asymptotic behavlour of (tempered) distributions for a characteri- 

zation of Bjorken scaling. 

At first it seems to be most natural to define the asymptotic 

behaviour of a distribution F E~'(~ I) via the asymptotic behaviour 

of Its regularization [6], e.g. 

Definition i: 

We say, F g~,(~l) behaves asymptotically like x -T (is of 

asymptotic degree Y ~ ~I) if 

(i) lim x Y (F,f)(x) ~ = Cy('~) V )o E ~,~ (~R I) 
x-+ +~ 

(Ii) Cy(~) # 0 for at least one ~, If F # O. 

But we prefer another definition [7]: 

Definition 2: 

We say, F ~ ~,(~I) behaves asymptotically llke x -Y (is of 

asymptotic degree Y~I) if 

(1) tim ~YF(~x) 3 = Fy(x) in ~,(ml) 
I++~ 

There are some essential differences between both definitions: 

(a) The asymptotic degree of F ~,(~i) may be well-defined in the 

sense of both definitions but may differ: take F of compact 

support, then the asymptotic degree Y of F in the sense of 

definition I is YI = +~' but y = Y2 is finite in the sense 

of definition 2. 

(b) The asymptotic degree may be defined in the sense of one definition 

but not in the other: 

F(x) = e ix has the asymptotic degree Y2 = +~ in the sense of 

definition 2 bus is not defined in the sense of definition I. 

(c) There are classes of tempered distributions on which both defini- 

tions agree, for instance on those homogeneous distributions which 

don't have compact support. 

(d) Both definitions agree especially for 
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F e  d ( R I ) ,  Zim x ~ F ( x ) 9 =  c # 0, Y < l .  (Z) 
X+±~ Y 

Such a situation we want to cover: if we identify q and p 

with the photon and nucleon momentum in the virtual Compton process, 

we expect T(q,p) to be a continuous function at least for q2j0, 

because it is measurable there. The experimentally observed 

behaviour of T(q,p), q2 < 0, suggests a structure for T(q,p) 

which can be expressed via a condition like (I). 

(B) 

We prefer definition 2, because 

(~) we think it to be sufficiently good adapted to the experimental 

situation (see above). 

it is not far away from the most general situation we have in 

quantum field theory, e.g. each tempered distribution is almost 

power-behaved in the sense of definition 2: 

Lemma I (Steinmann [7]): 

There exists a function 

all F G~'(N1): 
Y: ~(~I) + (_~, +.] such that for 

(i) lim 16F(Ix) ~= 0 

(ii) lim 16F(Ix) 

(~) 

V g < y (F) ~ in ~ ; ( ~ 1 )  

¥~ > ¥ (F) ) 

Definition 2 is rather symmetric with respect to Fourier trans- 

formation: 

lim IYF(Xp)~ in ~' ~i ( p )  4=# 
t++ 

lim IY-ig(x/l)~ in ~,(~) 
I++ 

and thus seems to be an appropriate notion for characterizing 

Bjorken scaling of 

V(q,p): = T(q,p) - T(-q,p) (2) 

and the LC-singularity structure of ~(x,p). 

We say that V satisfies condition A (B) if T does. 
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2. Asymptotics in Minkowski. S.~ace 

In the following we want to define for V the properties of 

strong sca!ing t) and weak scaling respectively in accordance with defini- 

tion 2 and lemma 1. 

Due to condition AI), V is a 0+(3)-invariant tempered distri- 

bution in the rest system p = (I,~). We define 

V(q): = V(q, (i,~)) 

Hence V(q) e ~'(~ 4 0+(3)) 

Due to the topological isomorphism between ~,(~3, 0+(3)) 
~'(R~) we may define uniquely a tempered distribution V l of the 

0+(3)-invariants only: 

with 

(3) 

<Vl(q0,p), ¢f(qo,p)> = <V(q), f(q)> Wf e~(~ 4) (4) 

Cf(q0,P): = ( 4~)-I I dm f(q0,/pm). 
i I=i - 

We have [8] #fg~(~l×~#) and therefore Vl(q0,p) E~'(~Ix~#). 

There exists a unique extension of V I to a distribution 

V2 e~. , (B2)_ t¢) .  

(5) 

and 

bution 

~f(qo,,/'#)> <V2(q0,w),~(q0,w)> = <Vl(q0,p), /~ 

and 

V2(q0,w) = 0 on ~,(~2) \~,,(B2)_. 

For the following it is advantageous to define a tempered distri- 

F (u,v) by means of the relation tt~) 

#) Here and in the following 'scaling' always means 'BJorken scaling' 

it) By n~ n) we denote the space consisting of testfunctions from 
~(~ ) which are antisymmetric in all variables. 

~tt) There is a slight difference in the definition of (u,v) compared 
to [2 ] .  
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F(u,v): = V2(v+u , v-u). 

From the antisymmetry of V 2 

F(u,v) = -r(v,u), 

F(u,v) = F(-u, -v). 

(6) 

we obtain the symmetry relations 

(7a) 

(7b) 

We are now prepared to state the scaling condition in two alter- 

native forms. 

Definition 3: (Strong scaling) 

V(q) shows strong scaling of degree 

constant 8, such that 

IB-I lira F(Xu,v) = Fs(u,v) 

F B ~ 0 if F ~ 0. 

We conclude that FB(u,v ) 

on ~i with respect to u. 

B, if there exists a real 

in ~' (~2), 

I-B 

and the support of F we obtain [8] 

F~(u,v) = ul+-~F~(v) + ul_-~F~(-v) 

for 8 ~ 2,3,4,... with supp Fs(v)C [-1/2, +~). 

is a homogeneous distribution of degree 

With that, the symmetry relation (7b) 

(8) 

Later on we will show that (8) may be continued into the points 

8 = 2,3,4,... by means of locality leading to 

Fn(U,V) = u l-n Fn(V) (9) 

We note that the form of the scaling limit (8), (9) is just the 

naively expected result. 

It is well known that strong scaling is violated for renormalizable 

interactions by logarithmic terms in finite order of perturbation theory. 

Recent investigations even suggest that this is true for the exact 

amplitude in asymptotic free theories. 

In this situation we consider in accordance with lemma i a weak 

form of the scaling limit which always exists. Weak scaling of degree 
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B is a consequence of strong scaling of degree B, but not vice versa. 

Our formulation of strong scaling agrees with the point limit of 

F for F ~(R 2) if B < 2 as shown in the introduction. With the 

usual variables (v,w) we have the asymptotic correspondence u ÷ 

~: = -q2/2v + -2v. 

Similarly we treat the leading LC-behavlour in the following. 

We define a distribution ~i of the O+(3)-invariants x 0 and 2 

by means of the chain of relations (Vf,~ ~(E4)) 

<Vl(xo,~), Cf(Xo,~)> = <~(Xo,a) , f(Xo,~) 

= (2~)4<V(qo,q) , f(qo,q) > = (2~)4<vl(qo,p), Cf(qo,p)>. 
(lO) 

In exactly the same way as in case of V I (q0,p) we extend 

~l(x0,c) to a distribution ~2 ~,(R2)_. By means of eqs. (5) and 

(I0) we obtain 

V2(Xo. ) = -2 ildqoI . qoXo-Si  . V2(qo,W). ( l l )  

Due to crossing (2) and locality A3) we may define a distribution 

~ ( ~ ( H ~ ) ~ l ) _ )  ' by 

~2(Xo, ~) = ~(xo)?(x~-~2,~). (12) 

Two alternative forms of leading LC-behaviour are defined in terms 

of 9 now. 

Definition 4: (Strong LC-behaviour) ¢~ ~ 

V(q,~) shows strong LC-behaviour of degree y, if there exists 

a real constant T, such that 

l im 1Y-2v(n/t,~)~ = Vy(q,~) in (~(H~)~E1)_) ', 

Definition 4 implies that Vy(~,~) is a homogeneous distribution 

of degree y - 2 on [0, ~) with respect to n , i.e. [8] 

@) Compare ref. [3]- 
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(q)Y-2 
+ 

?~(~,~) = ~ g (~). (13) 

This result is equal to the usually assumed form of the leading 

LC-singularity. 

With the same arguments as given above and in accordance with 

lemma I we introduce the notion of weak LC-behaviour of degree y. 

Now we give a general representation formula for a distribution 

satisfying strong LC-behaviour. 

Lemma 2: ¢) 

A distribution ~(n,~) which satisfies condition A shows 

strong LC-behaviour of degree 7 if and only if there exists a natural 

number n with n + y - 2 > 0, such that 

~(n,~) = Dnn nn+~-2 ?~'~)' (14) 

where ~O(q,~) exhibits the following properties: 

(i) it is continuous and polynomially bounded in 

i (n,~) E ~+ x ~ l  

(ii) it is an odd entire function of exponential type 1 in 

I 
~ ~, V~+, n fixed. 

Corollary 

Sufficient for the validity of (14) is strong LC-behavlour of 

degree y of V(n,~) on ~I , Vg > 0, 
g 

3. Equivalence of Scalin$ and Leadin~ LC-behavlour 

The equivalence of scallng and leading LC-behaviour is stated in 

our following main theorem i by means of definitions 3 and 4 given In 

section 2. 

T) For all proofs we refer to ref. [2]. 
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Theorem I 

For a distribution V(q) which satisfies condition A, we have: 

(a) Strong scaling of degree B implies strong LC-behavlour of degree 

(b) ,Strong LC-behaviour of degree B > 0 implies strong scaling of 

degree B. 

In addition we may derive some interesting properties of the 

distribution FB(V) and gB(~) which occur in the asymptotic forms 

of F and 9 (eqs. (8), (13)) respectively. 

Lemma 3: 

The distribution gB(~) defined by means of eq. (13) is an odd 

entire function of exponential type i which is polynomially bounded for 

Im~ = O. 

Lemma 3 is an immediate consequence of the representation eq. (14) 

for V. 

Lemma 4: t) 

The distribution FB(v) (eq. (8)) and gB(~) are related to each 

other according to (B > O) 

f FB(v) = -i~ -I d~g~M)aB-22B-Icos[2v~+ g(B-l)] (15) 

0 
1 

for v _> - ~. 

From the spectrum condition we know supp F B ~ [-i/2,~). On the 

other hand the r.h.s, of eq. (15) is symmetric (antisymmetric) under the 

substitution v ÷ -v, if B is equal to an odd (even) integer. There- 

fore, we obtain from eq. (15) the well-known fact, that the scaling 

function F B has bounded support for integer B = n 

I I 
supp F n a [ - ~ ,  ~]. 

This result proves eq. (9) as the continuation of eq. (8) to 

integer B. 

%) Compare Gatto, Menotti - ref. [l] and ref. [9]. 
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Our theorem I may be extended immediately to the cases of weak 

scaling and weak LC-behaviour respectively. 

Corollary la 

For a distribution V(q) which satisfies condition A, we have: 

(a) Weak scaling of degree B > 0 implies weak LC-behaviour of degree 

B. 

(b) Weak LC-behaviour of degree ~ > 0 implies weak scaling of degree 

B. 

Corollary Ib 

Singularities in the interior of the light cone do not contribute 

to the scaling limit. 

4. Equivalence of Leadln 5 LC-behaviour and JL-asymptotic [3] 

As a consequence of condition A the 0+(3)-invariant tempered 

distribution V(q) satisfies a JL-representation. 

Lemma 5 (Jost-Lehmann [i0]): 

A distribution V(q) satisfies conditions A2) - A4), if and 

only if there exists an 0+(3)-invariant tempered distribution ~(s,u) 

with 

supp ~ C {(s,~)II~l ~ i, s ~ So(U) = (i - ~_ 2 )2} 

such that 

<V(q),f(q)> : <$(s,u), Tf(s,u)> Vf E~(R 4) (16) 

with 

Tf<s,~>: : Id4qf(q)~<qo)~<q~ - (q-~)2-s) 

By means of the Fourier transform of ~ with respect to ~ we 

introduce a distribution ~2 E (~(~)~i)_), of the O+(3)-invariants 

only: 
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<~2(s,~), ~¢~(s,~2)> = (2w)3<@(s,~), f (s ,2)> .  (17) 

With that and the definition of V we obtain as an alternative 

form of the JL-representation 

where the mapping 
Oo 

g(q,~) ~-~ fg (S,~) :  = i (2v)  2 Id~Jo ( ~v~)-~g(q'~)8,, 
0 

is a topological isomorphism of ~([~l)~l)_.- 

In terms of ~_ we may formulate the JL-asymptotic now. -g 

Definition 5: 

~2 ( s ,~) 
a real constant 

(Strong JL-asymptotlc) 

shows strong JL-asymptotic of degree 

6, such that 

l im Xg~2(Xs,~)~ = ~ ( s , ~ )  
i÷+~ - 

in ( ~ # ) ~ I ) _ ) ,  

(m8) 

(z9) 

~, if there exists 

is a homogeneous distribution 

S, i .e .  [8 ] :  
5 implies that ~(s,~) Definition 

of degree -6 on [0, ~) with respect to 

~ (s )+  
(2o) 

Again we may introduce a weak form of JL-asymptotic in accordance 

with lemma I. 

From the properties of the mapping (19) we obtain the following 

theorem: 

Theorem 2: (Zavialov [3]) 

Suppose V(q) satisfies condition A. Then ~(x2,~) shows 

strong LC-behaviour of degree 6 if and only if ~2(s,~) shows strong 

JL-asymptotic of degree B • VB ~ ~I 
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Corollary 2 

Theorem 2 may be extended to the cases of weak LC-behaviour and 

weak JL-asymptotic respectively. 

5. Equal-time Limits and LC-singularities 

The connection between leading LC-behaviour and equal-time commu- 

tation, supposed by many authors ~), can be put on a rigorous mathematical 

basis. Let us consider the most important example, the so-called 

"Schwinger term sum rule".. By means of the representation eq. (14) and 

Lebesque's bounded convergence criteria one easily proves the following 

lemma: 

Lena 6: 

Suppose V(x2,M) 

~ x° g~l 
lim ~i v(~, x)~ - ~(x) 
I++~ ~Xo - ~ |~=0 - 

in ~,(a4). 

shows strong LC-behavlour of degree l, then 

( 2 1 )  

Inverting eq. (15) we obtaln the desired sum rule 
+1/2 

gl(~)I~ ~=0 -- -2i I dv Fl(V) , 

- i / 2  

where the integral on the r.h.s, has to be understood as a regularized 

one if necessary. 

By the same method other equal-time sum rules including their 

generalization for S # I may be derived. 

But the argumentation leading to lemma 6 cannot be reversed. 

The equal-time limit might exist in the sense of (21) even for an arbi- 

trary singular behaviour of ~ on the llght-cone [II]. 

6. Conclusions 

The combination of theorems I and 2 leads to the supposed equi- 

valence between scaling, leading LC-behavlour and JL-asymptotic in a 

region 8 > 0 which contains the physical relevant interval i < 8 < 2. 

We suppose that zero is not a natural lower bound for S in this context, 

because quite recently Zavialov proved the same equivalence for a some- 

¢) Compare the first two papers of ref. [I]. 
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what different definition of scaling without any restriction on 8 [3]. 
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