ASYMPTOTICS AND LIGHT-CONE SINGULARITIES
IN QUANTUM FIELD THEORY

by

E. Briining and P. Stichel

Department of Theoretical Physlcs
University of Bielefeld
Germany

Abstract:

For a local amplitude we prove a one~to-one correspondence between
properly defined scaling, the leading light-cone singularity and the
asymptotic behaviour of the corresponding Jogt-Lehmann spectral function
in the sense of distribution theory.

1. Introduction

It has been clalmed very often that Bjorken scaling of the imagi-
nary part of the forward scattering amplitude for the virtual Compton
process is explained in terms of the light-cone (LC-) singularities of
the Fourier transform of that amplitude [1]. This claim has led to the
development of the light-cone physics [17].

It 15 the alm of the present paper to dlscuss the connection
between LC-singularities, Bjorken scaling and related asymptotics +>.
In particular we will show that there is a one-to-one correspondernce
between scaling, light-cone singularities and asymptotic behaviour of
the Jost-Lehmann (JL) spectral function, 1f all these limits are under-

stood as limits of sequences of distributions [2,3].

In order to avold complications due to the photon spin we consider
a model-amplitude

+)} Por comments on earlier attempts we refer to [2].
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T(x,p): = <pl3(5)I(-5)|p>

with a real scalar current J(x) and a state |p> of one scalar particle
of momentum p (p2 = 1). Our assumptions are those of general quantum
field theory, e.g. [4]

() T(q,p) satisfiles
A1) Lorentz-invariance:
T(Aq,Ap) = T(q,p) Viel,
A2) Spectrum:
supp T(q,p) € {(q,p)|q-p > O, a® + 2q-p > 0}
A3)  Locality:
%kx,p) - T(-x,p) = 0 for x> <0 V p
All)+> Temperedness:

T(a,p) €9”'(R) for fixed p, p° = 1.

(B) Positivity:
%(x,p) is of positive type, e.g.
<F(xoy, p)PX)PE(Y)s >0 VYpeF®HVp fixed.

Let us comment on condition AL)., We think AL4) to be natural in
our context: On one hand, it 1s well known from the perturbative
treatment of renormalizable fleld theories that the n-point-functions
are tempered distributions. On the other hand, we don't know of any
_example for a nontrivial ordinary function T(x,p) which satisfies A2)
A3) and (B)TTl Thus, in the general case, we cannot expect both T(4,p)

and ﬁ(x,p) to be functions, and are thus forced to 1introduce a notion

+) In the usual axiomatlc framework temperedness of matrix elements of
field operators holds if these are taken with respect to proper
(wave packet) states. For reasons of simplicity we restrict ourselves
to improper (plane wave) states.

t+) In the special case supp T(q,p) € vt it can be shown (Borchers
[51) by A3) and (B) that T(x,p) cannot be an ordinary function
different from a constant.
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of asymptotic behaviour of (tempered) distributions for a characteri-
zation of Bjorken scaling.

At first it seems to be most natural to define the asymptotic
behaviour of a distribution F €3 (IRl) via the asymptotic behaviour
of its regularization [6], e.g.

Definition 1:

We say, F E.?*’(Rl} behaves asymptotically like x| (is of
asymptotic degree vy e Bl) if

(1) Un 3’ (PN 0T=c () YVyeD®H

X+

(11) cY(?) # 0 for at least one ¥, if F # 0.
But we prefer another definition [7]:

Definition 2:

We say, F g 9”'(&1) behaves asymptotically like x ' (is of
asymptotic degree yelRl) if

(1)  1im AYF(Ox) 3= F(x) in g (RY)
A 400 Y

(ii) FY #0 1if F #0

There are some essential differences between both definitions:

(a) The asymptotic degree of F eﬁw'@ﬂﬁ may be well-defined in the
sense of both definitions but may differ: take F of compact
support, then the asymptotic degree v of F 1in the sense of
definition 1 is Yy = +o, but y = YZ is finite in the sense'
of definition 2.

(b} The asympbtotic degree may be defined in the sense of one definition
but not in the other:

F(x) = e* nas the asymptotic degree Y, = +® in the sense of
definition 2 but is not defined in the sense of definition 1.

{c) There are classes of tempered distributions on which both definl-
tions agree, for instance on those homogeneous distributions which
don't have compact support.

(a) Both definitions agree especlally for
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Fe ¢@®Y), 1im x"F(x)3=c # 0 ¥ <l. (1)
X>io Y

Such a situation we want to cover: If we identify g and p

with the photon and nucleon momentum in the virtual Compton process,

we expect T{(q,p) to be a continuous function at least for qgio,

because 1t is measurable there. The experimentally observed

behaviour of T(q,p), q2 < 0, suggests a structure for T(q,p)

which can be expressed via a condition like (1).

We prefer definition 2, because

(o) we think it to be sufficiently good adapted to the experimental
situation (see above).

(8) it is not far away from the most general situation we have in
guantum field theory, e.g. each tempered distribution is almost
power-behaved in the sense of definition 2:

Lemma 1 (Steinmann [7]3):

There exists a function y: 9’”81) + (~0, +o] such that for
all F &g (RY):

(1) 1im AaFU\x)3= 0 Y§ < y(¥)

A+t o in 9")(&1)
(11) 1im Aép(xx)j; Vs >y (F)

At

) Definition 2 1is rather symmetric with respect to Fourler trans-
formation:

1im AYF(Op)3  in W'(E;) &

A+ + o

1im 2 Y ' (xA)3 in 9#7(Bi)
o+t oo

and thus seems to be an appropriate notion for characterizing
Bjorken scaling of

V(dg,p): = T(q,p) = T(~q,p) (2)

and the LC-singularity structure of V(x,p).

We say that V satisfies condition A (B) if T does.
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2. Asymptotics in Minkowski Space

In the following we want to define for V the properties of
strong scaling+) and weak scaling respectively in accordance with defini-
tion 2 and lemma 1.

Due to condition Al), V is a 0 ,(3)-invariant tempered distri-
butlion in the rest system p = (1,g). We define

V(g): = V{g, (1,Q)) (3)
Hence V(q) € 9"(Ru, 0,(3)).
Due to the topological isomorphism between 9*'(R3, O+(3)) and

gﬂ(Ri) we may define uniquely a tempered distribution Vl of the
0,(3)-invariants only:

<V, (a4,0), 65(ag,e)> = <V(a), fla)> Vr eF*®") ()

with  $2(ag.e)t = ™ [ du £(a,./Fw).

wl=1

. 1.1 RPN R )
We have [8] ¢f Z*(R™xR,) and therefore Vl(qo,o) €9°' (R xR,) .

There exists a unique extenslon of Vl to a distribution

‘(g2y Tt

v, ey (%) T
<Vy(ag>w) s Pasw)> = <Vp(aq.0)s %p Flay,V5)> (5)
Ve Y(‘Rz)_

and

Vylag:) = 0 on 9B%) \NFUR)_.

For the following 1t 1s advantageous to deflne a tempered distri-
bution F (u,v) by means of the relation+++)

+) Here and in the following ‘'scaling' always means 'Bjorken scaling',

++) By n??ﬁn) we dencte the space conslsting of testfunctions from
2R} which are antisymmetric in all varilables.

+++) There is a slight difference in the definition of (u,v) compared
to [2]
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Flu,v): = Vg(v+u, veu). (6}
From the antisymmetry of V2 we obtailn the symmetry relations

-P(v,u), {7a)

F(-u, -v). (70)

It

Flu,v)

Flu,v)

We are now prepared to state the scaling condition in two alter-

native forms.

Definition 3: (Strong scaling)

V(g) shows strong scaling of degree B, 1f there exists a real
constant B, such that

1im A8 vow,v) = Fo(u,v) in 91 (R%),
A+too

FB #0 1if F ¥ 0.

We conclude that Fs(u,v) 1s a homogeneous distribution of degree
1-8 on ml with respect to wu. With that, the symmetry relation (7b)
and the support of F we obtain [8]

1

+—BFB(V) + uE—BFB(—v)

FB(u,v) =y
(8

for B # 2,3,4,... with supp FB(v} C [-1/2, +=).

Later on we will show that (8) may be continued into the points
B = 2,3,4,... by means of locality leading to

1i-n
Fn(u,v) = u

F, () (9
We note that the form of the scaling limit (8), (9) is just the
nailvely expected result.

It 1s well known that strong scaling is violated for renormalizable
interactions by logarithmic terms in finite order of perturbation theory.
Recent investigations even suggest that this is true for the exact

amplitude in asymptotic free theories.

In this situation we consider in accordance with lemma 1 a weak
form of the scaling limit which always exists. Weak scaling of degree
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B 1is a consequence of strong scaling of degree B, but not vice versa.

Our formulation of strong scaling agrees with the point limit of
F for F EY?(RZ) if B8 < 2 as shown in the introduction. With the
usual variables (v,w) we have the asymptotic correspondence u > Vv
w: = —q2/2v + =2v.

Similarly we treat the leading LC-behaviour in the following.
We define a distribution V- of the 0 +(3)- invariants Xy and 52

by means of the chain of relations (%&6 ?%R )

TH(xgs0), $7(xy,0)> = Flxg,x), £(xq,%) ,
10)
= (20 <V(ag,a), Flag,q)> = (20)'<V (ay,0), $7(ay,0)>.

In exactly the same way as in case of V (qo,p) we extend
?d(x ,0) to a distribution 2 e ' (R? )_. By means of egs. (5) and
0
{10) we obtain

Vz(xo,x) = —Zwiquojdw sin qux,tsin w V,(qg,w). (11)

Due to crossing (2) and locality A3) we may define a distribution

Te @UREAERY) )
TP xgok) = E(xg)Txe-1,0). (12)

Two alternative forms of leadlng LC-behaviour are defined in terms
of ¥ now.

Definition 4: (Strong LC~behaviour)+)

V{n,#) shows strong LC-behaviour of degree Y, if there exists

a real constant v, such that
Y-2= a .o 1 1 '
%im AT (n/A003 = VY(”’“ in @ROSPR) ),
->+00

VY#D ir ¥ # o.

Definition 4 implies that Vy(n,X) is a homogeneous distribution
of degree Yy - 2 on [0,%) with respect ton , i.e. [8]

+) Compare ref. [3].
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Y-2
T (10 = oy 8, (0 (13)
YH,K"PY_I gY . 3
This result is equal to the usually assumed form of the leading
LC-singularity.

With the same arguments as given above and in accordance with

lemma 1 we introduce the notion of weak LC-behaviour of degree vy.

Now we give a general representation formula for a distribution
¥ satisfying strong LC-behaviour.

Lemma 2:+)

A distribution V(n,#®) which satisfies condition A shows
strong LC-behaviour of degree Y if and only if there exlsts a natural
number n with n +y - 2 > 0, such that

T(n,®) = DY A2 5% ), (14)

where Vo(n,XJ exhibits the following properties:

(1) it is continuous and polynomially bounded in
1 1
(n,#) € R, x R,
(ii) 1t is an odd entire function of exponential type 1 in

o € ¢, VnelR}_, n fixed.

Corollary

Sufficient for the validity of (14) is strong LC-behaviour of
degree vy of V(n,®) on Ri . Ve > 0,

RD @ = (] [®] > ¢ >0}

3. Equivalence of Scaling and Leading LC-behaviour

The equivalence of scaling and leadlng LC-behaviour i1s stated in
our following main theorem 1 by means of definitions 3 and U given in
section 2.

) TFor all proofs we refer to ref. [2].
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Theorem 1

For a distribution V{q) which satisfles condition A, we have:
(a) Strong scaling of degree B implies strong LC-behaviour of degree
B ¥V BeR.

{b) .Strong LC-behaviour of degree B > 0 implies strong scaling of
degree 8.

In addition we may derive some interesting properties of the
distribution FB(V) and gBQQ) which occur in the asymptotic forms
of F and ¥V (egs. (8), (13)) respectively.

Lemma 3:

The distribution gB(%) defined by means of eq. (13) is an odd
entire function of exponential type 1 which 1s polynomially bounded for
Im® = 0.

Lemma 3 is an immediate consequence of the representation eq. (1U4)

for V.

)

+
Lemma 4:

The distribution FB(V) (eq. (8)) and gB(n) are related to each
other according to (R > 0)
o0
Fo(v) = —m‘lfdugﬁ(a‘e)see"?gﬂ‘lcos[2vae.+ L(s-1)] (15)
0

nj-

for v > -

From the spectrum condition we know supp FB c [-1/2,*). On the
other hand the r.h.s. of eq. (15) 1s symmetric (antisymmetric) under the
substitution v * -v, 1f B 1isg equal to an odd (even) integer. There-
fore, we obtain from eq. (15) the well-known fact, that the scaling
function FB has bounded support for integer B = n

1 1
supp F ¢ [~§, 5].

This result proves eq. (9) as the continuation of eq. (8) to
integer 8.

+) Compare Gatto, Menotti - ref. [1] and ref. [9].
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Our theorem 1 may be extended immediately to the cases of weak
scaling and weak LC-behaviour respectively.

Corollary la
For a distribution V(q) which satisfies condition A, we have:
(a) Weak scaling of degree B > 0 iImplies weak LC-behaviour of degree
B.
(b) Weak LC-behaviour of degree £ > 0 implies weak scaling of degree

8.
Corollary 1b

Singularities in the Interior of the light cone do not contribute
to the scaling limit.

4, Equivalence of Leading LC-behaviour and JL-asymptotic [3]

As a consequence of condition A the 0+(3)—invariant tempered
distribution V(q) satisfies a JL-representation.

Lemma 5 (Jost-Lehmann [107):

A distribution V{g) satisfies conditions A2) - A4), if and
only if there exlsts an O+(3)-invariant tempered distribution P(s,u)
with

supp p ¢ {(s,u)|]uf <1, s > solu) = (1 - ff;;T)Q}
such that
<V(a),£(a)> = <p(s,u), Tf(s,u)>V¥? e F“R") (16)
with
Te(s,w: = [atar(@elay)s(ag - (g-w)®-s)
By means of the Fourier transform of ¢ with respect to u we

introduce a distribution v, € (??Ri)@@%ﬁl)_) of the O+(3)~invariants
only:
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<B,(s,0), o (s,#)> = (2m3<p(s,w), £is,u)>. (17)

With that and the definition of ¥ we obtain as an alternative
form of the JL-representation

TR, g(n®)> = <¥,(s,%), )"g(s,aé)>, (18)

where the mapping

oG

g = P (s, = 1(2m? [ang o (/78)Ea(n,) (19)
0
is a topologlical isomorphism of 9%&;)@%%&1)-.

In terms of @é we may formulate the JL-asymptotic now.

Definition 5: (Strong JL-asymptotic)

92(5,1) shows strong JL-asymptotic of degree &, if there exists
a real constant &, such that

im VT, 0,03 = T in @WRLHEIEY )",
+4o00

# 0.

<

¢5 #0 if 5

Definition 5 implies that @G(S,K) is a homogeneous distribution
of degree -8 on [0,®) with respect toc s, i.e. [8]:
-8

~ (s
Vs(s,®) = prrogy o), (20)

Again we may introduce a wesk form of JL-asymptotic in accordance
with lemma 1.

From the properties of the mapping (19) we obtain the following
theorem:
Theorem 2: {(Zavialov [37)

Suppose V{g) satisfies condition A. Then ?(xz,m) shows
strong LC-behaviour of degree B if and only if @é(s,x) shows strong
JL-asymptotic of degree 8, ¥R e!Rl.
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Corollary 2

Theorem 2 may be extended to the cases of weak LC-behaviour and

weak JL-asymptotic respectively.

5. Equal-time Limits and LC-singularities

The connection between leading LC-behaviour and equal-time commu-
tation, supposed by many auﬁhors%), can be put on a rigorous mathematical
basis. Let us consider the most important example, the so-called
"Schwinger term sum rule".. By means of the representation eq. (1”)‘and
Lebesque's bounded convergence criteria one easily proves the following

lemma:

Lemma 6:

Suppose V(XZ,W) shows strong LC-behaviour of degree 1, then

~ X gy (@ y
1im A V(=2, %3 = -’£-1 8(x) in 9" (R'). (21)
Arbew 3Xg AT S ® =0 " T
Inverting eqg. (15) we obtain the desired sum rule
+1/2
g, (%) = -21 j av Fo(v),
® =0 “172

where the integral on the r.h.s. has to be understood as a regularized

one if necessary.

By the same method other equal-time sum rules including their
generalization for B # 1 may be derived.

But the argumentation leading to lemma 6 cannot be reversed.
The equal-time 1limit might exist in the sense of (21) even for an arbi-
trary singular behaviour of ¥V on the light-cone [117.

6. Conclusions

The combination of theorems 1 and 2 leads to the supposed equi-
valence between scaling, leading LC~behaviour and JL-asymptotic in a
region B > 0 which contains the physical relevant interval 1 < B<2,.

We suppose that gero is not a natural lower bound for B in this context,

because quite recently Zavialov proved the same equivalence for a some-

t) Compare the first two papers of ref. [17.
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what different definition of scaling without any restriction on B [3].
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