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Abstract

In the current LHC era, a vast number of models for BSM physics are being tested. For
predictions accurate enough to match experimental errors, theoretical calculations have
to go beyond LO estimates. However, calculating one-loop corrections in BSM models
involves many new particles with specific model dependent properties. Therefore, they
are done largely by hand, or in partially-automated ways. I present a fully automated
tool for the calculation of generic massive one-loop Feynman diagrams with four
external particles, implemented as a module within the fully automated MADGOLEM
framework. With this one can compute the NLO-QCD corrections to generic BSM
heavy resonance production processes, for example in the context of supersymmetric

theories.
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Chapter 1

Introduction

1.1 Motivations for NLO calculations

As a result of an outstanding performance, by the end of 2012 the LHC has delivered
around 56 fb~! of data at the ATLAS and CMS detectors, setting out on the quest for
signatures of new and interesting physics past the Standard Model (SM).
Experimental signatures at the LHC can be highly sensitive to perturbative QCD
effects, due to the hadronic nature of the colliding particles. In order to search for
experimental signs of new physics (also known as beyond the Standard Model or
BSM physics), it is therefore necessary to have a comprehensive understanding of the
perturbative framework in which the signature processes reside; accurate predictions,
including next-to-leading order (NLO) QCD corrections, are instrumental at this stage.
NLO calculations allow for a reduction of the theoretical uncertainty in predictions,
as they render more stable results with respect to the (unphysical) renormalization
and factorization scale choices; on the other hand, they provide suitable total rates to
normalize the event samples simulated by standard Monte Carlo (MC) generators.
The increased complexity inherent in NLO calculations over that of leading order
(LO) ensures that a manual computation of the NLO matrix elements required for
many key processes can be unpractical to perform. In this context, the development
of dedicated tools that can perform these types of calculations ranks very high in
the phenomenologists wishlist, with a particular demand for high degrees of self—
automation. In the past years the physics community has witnessed an impressive
thrust of activity in the area of NLO predictions. Many groups have contributed NLO
tools [1-10], both automated and non—. These developments are documented in various
summaries [11-13]. Even with all these contributions however, there is still space for
more NLO tools, particularly highly automated ones. Not only is competition between

tools encouraged, but a diverse range of tools allows for cross—checks and greatly
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Chapter 1. Introduction

improves error checking and consistency across calculations. Diversity also allows for
alternative and complementary techniques of calculation, which may be more efficient
for certain calculations when other methods are not. Some NLO tools are more oriented
towards multileg calculations, while others may allow analytical processing; some NLO
tools may also be restricted to specific models and/or processes but also benefit from

very fast computation times.

1.2 MADGOLEM

Direct searches for new physics typically rely on resonant production of novel heavy
states or, alternatively, on their associated production along with SM particles. For
example, the studies conducted at the LHC so far have already enabled to constrain the
phenomenologically viable parameter space of the Minimal Supersymmetric Standard
Model (MSSM), mainly upon analyses based on jet production from squark and gluino
decays plus missing energy. With this in mind, the creation of a highly automated NLO
tool for new physics 2 — 2 processes is not only viable, but useful for aiding timely and
most relevant predictions relevant to the LHC.

MADGOLEM [14-18] is conceived as a highly modular, independent add-on to the
Monte Carlo tool MADGRAPH [19]. It implements an automated framework in which
to compute total cross sections and distributions for 2 — 2 processes, including QCD
quantum effects to NLO accuracy. MADGOLEM is mainly tailored to describe the
production of heavy particle pairs within theories beyond the SM. The tool is currently
undergoing a final testing phase, prior to its public release, and is meant to be of interest
for model-builders, phenomenologists and fundamentally for the LHC experimental
community.

This thesis presents a detailed overview of the virtual corrections module for
MADGOLEM, complete with algorithms for constructing and calculating the loop matrix

elements required for a model-independent 2 — 2 process at NLO.

1.3 Thesis outline

Chapter 2 covers the necessary theory required to understand how to construct generic
matrix amplitudes and produce cross sections. This includes techniques for producing
model-independent Feynman diagrams, and handling the spinor and color structures
by factorisation into separate partial amplitudes. These techniques are usable at all
orders of a perturbative calculation.

Chapter 3 contains the theory needed to evaluate the virtual corrections present

in a NLO calculation. This covers dimensional regularisation and renormalisation of
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loop integrals, as well as methods for reducing tensor integrals into a set of basic form
factors or scalar integrals.

Chapter 4 describes the internal structure of the MADGOLEM code, with an
emphasis on the virtual corrections module. Here algorithms are constructed from
the equations of the previous chapters in order to calculate the virtual NLO-QCD
corrections to a generic 2 — 2 process, and explain the internal scripting that automates
the calculation. Some concerns are addressed regarding the choice of reference momenta
for four—fermionic and entirely massive processes.

Chapter 5 details several example processes calculated by MADGOLEM, in order
to convince the reader of the code’s usability. Each of these processes is covered in
greater detail in other papers produced by the MADGOLEM group, with a focus on the
phenomenological aspects of the numerical results; therefore in this thesis this chapter
will focus on the specific duties of the virtual corrections module. The NLO-QCD
processes calculated are pp — {gx},4q*, g9} in the MSSM framework, and pp — GG*
in a generic SM extension with additional scalar color octets (scalar gluons or sgluons).

Finally, Chapter 6 summarises and concludes the thesis.

1.4 Conventions

In this thesis, we work in D = 4 — 2¢ dimensions for purposes of dimensional
regularisation, and keep all physical observables (such as external momenta) in D=4
dimensions. We denote a process that has 2 particles incoming and 2 particles outgoing

as 2 — 2. For an example process utt — eTe™, there is an explicit form:
u(kl) —l—ﬂ(k}g) — 6+(l€3) +e (k4) , (1.1)

where k1, ko, k3, k4 are the physical four-momenta of the particles involved. Conserva-

tion of momentum erOI'CGSl

ki+ko=ks+ky. (1.2)
Four-momenta are presented in Minkowski space, with the metric convention
g" = diag(+1,-1,-1,-1) . (1.3)

Contractions of Lorentz vectors with Dirac gamma matrices are written using the

shorthand Feynman slash notation:

k= kb, (1.4)

Later in the thesis we will treat all four particles as incoming, so that ki + k2 + ks + k4 = 0.
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The Dirac gamma matrices obey the anti-commutation relation:

{2 =29". (1.5)

Summation of repeated indices is assumed unless otherwise stated. Natural units are
used: h=c=1.
In Chapter 4 we provide a description of the MADGOLEM tool, using both

mathematical and algorithmic formats:
e File names are formatted in italics, e.g. file_name.map.

e Lines of code and algorithms are formatted as shown in this text, e.g. with

variables [a_1,a.2,...].

e Algebraic terms and variables are formatted using the conventional equation

environment, e.g. with variables (a1, aq,...).



Chapter 2

Amplitude theory

2.1 Introduction

In this chapter we describe the standard techniques for constructing matrix amplitudes
and cross sections using Feynman diagrams, including rules for BSM Majorana
particles, colow flow decomposition methods and the spinor helicity formalism. These
techniques are presented with an aim to form a set of computer algorithms that can

construct and calculate the NLO-QCD cross section for a generic 2 — 2 process.

2.2 Cross sections

A powerful physical observable used in experimental particle physics calculable by
theoretical tools is the cross section o, which defines the probability of a particular
interaction event occurring at a given energy scale. When well-defined in perturbation
theory, the cross section for a process is calculated by integrating the scattering
amplitude matrix element squared |M|? over the relevant process-dependent phase
space by use of a Monte Carlo event generator.

Interaction events produced at colliders are largely of the type 2 — N: one
particle from each of the particle beams interacts, producing N outgoing particles.
For hadronic colliders like the LHC and Tevatron, the incoming particles are protons
(and antiprotons). However, the underlying physics of the cross section describes the
interaction of partons, which requires the devolution of hadronic initial states into
the gluons, sea and valence quarks (and antiquarks) contained within. At sufficiently
high beam energies (momentum transfer () greater than the QCD hadronisation scale
A ~ 1GeV), incoming hadronic particles can be safely resolved into constituent partons
thanks to the factorisation property of QCD [20]. Under this condition, the hadronic

differential cross section do is factorized into the convolution of all contributing partonic
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differential cross sections do with the set of non—perturbative partonic distribution

functions (PDFs) f; g (x, u%). For a 2 — 2 process, the differential cross section is:

1,1
do (Hi(k1) + Ha(k2) — o1+ ¢2) = Z/o/odxldm i (@, 10F) fiom (22, 1F) )
i.j 2.1

x d6 (Pi(z1k1) + Pj(w2ks) — @1+ ¢2)

where Hjo are incoming hadrons (protons and antiprotons) and ;2 are outgoing
final state particles of interest. The PDFs define the probability for acquiring a given
parton 4 within a known hadron H at a fraction x of the hadronic momenta. PDF's
are evaluated at a fixed factorisation scale pp, which needs to be fixed at a value
that minimises the scale uncertainties inherent in fixed—order perturbation theories,
i.e. at the same order as the momentum transfer () = ki + ko of the process. When
considering the production of heavy final state particles, the conventional choice is
pr = (mg, +mgy,)/2 — which is further identified with the renormalisation scale p1r too

— is known to lead to perturbatively stable results [16].

The partonic differential cross section for a 2 — 2 process is defined as

. 1 1
A (P1(k1) + Pa(kz) — 1 (ks) + p2(ka)) = 5= o dPSy(ky + ko) IM)*,  (2.2)
where n1 and ne are normalisation factors resulting from spin & color sum averages
over the two incoming particles, and dP.S> is the 2—particle Lorenz—invariant kinematic

phase—space element:

4 4 .
dPS(Q) = (H (‘; 7333 5 (k7 — m§)> (20D (Q -3 k)
0 = (2.3)
= gy b 8k — ) (1 — ) 6(Q — ks — )

An additional normalisation factor of 1/n! is required for each set of n final-state
particles that are indistinguishable (photons, gluons, Majorana fermions etcetera).
The scattering amplitude, or matrix element squared |[M|? in Eq. (2.2) contains all
of the kinematical and colour information of the interaction P; + Po» — 1 + @o. It
is constructed from the summation of all possible Feynman diagrams that match the
initial and final particle requirements at a fixed order in perturbation theory (LO, NLO,
NNLO, ...).

The total cross section o is obtained by integrating Eq. (2.1) over the phase space
region (defined by experimental cuts and kinematic restrictions) by use of a Monte Carlo

event generator. For non-hadronic initial states, there is no need for factorisation and

6
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0.

o

Processes with identified hadrons in the outgoing state require the use of non-—
perturbative fragmentation functions to evolve the outgoing particles, in much the same
manner as the use of PDFs to devolve initial hadrons into partonic forms. This thesis
however focuses on the calculation of perturbative matrix elements and production
cross sections; it is enough to understand the origin of the particle actors, and how the

final state fragments or hadronises is not necessary information for these calculations.

2.2.1 NLO calculations

Processes containing colored final and/or initial states are strongly affected by QCD—
mediated corrections, which can be calculated by including further orders in «y, the
strong coupling constant, to the matrix element M. Leading order (LO) processes are
calculated at tree level with matrix elements of order a2 or a! depending on the gauge
forces involved. Cross sections at LO contain a significant degree of inaccuracy and
are highly dependent on scale variations in pr; by including higher order corrections in
the cross section, scale dependencies are reduced and the overall accuracy is increased.
Higher order corrections are introduced in the forms of additional external colored
particles via real emission, and internal virtual corrections via loops. For a 2 — 2

process, the partonic cross section at next—to—leading order (NLO) is presented as

6_NLO — 5’B + a_virtual + a_roal + a_dipolc ) (24)
B is defined as the LO cross section, and is constructed from the tree level Born matrix

element squared, integrated over the 2—particle final state:

2
— _~ 4Ps MB|” . 2.5

/ 25 ning 2(Q) | | (2:5)
The virtual contribution 6Vl has the same external particle content and kinematics
as the LO, and is defined as the integral over the 2—particle final state of the interference

term between the Born and the one—loop matrix element:

1

6_virtual —
25 ning

dPS5(Q) | (MYralyi pB - (MEB)I pmirtuall - (2.6)

5real i tree-like (no internal loops) but contains an

The real emission contribution &
additional outgoing particle, and is defined as the integral over the 3—particle final

state of the tree level 2 — 3 matrix element squared:

Areal /_ —dP33(Q) |Mreal‘2 ) (27)

2s ning
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Both the virtual and real contributions can contain infrared (IR) divergences (1/err, 1/¢%5),
however their sum is IR finite. In order for Monte Carlo tools to successfully evaluate
finite cross sections over the separately divergent 2— and 3—particle phase space regions,
the Seymour—Catani dipole subtraction scheme [21,22] is used to remove soft and
collinear IR poles before integration. This scheme is handled by the additional dipole

dlpole

contribution & which is divided into virtual and real parts:

Adlpole — .
[/ 25 ning g OE52 Z (/ e D]>:|Virtual

(2.8)

where D; contains process-relevant dipole subtraction terms. These two terms are

pvirtual and g7l to cancel the local phase space dependent IR divergences

absorbed into &
and allow for successful numerical integration over the separate 2— and 3—particle phase

space regions. The numerically safe form of Eq. (2.4) is therefore:

&NLO a,B

+ (2 dPS5(Q) 2Re<(MB)TMVmal>+Z< / dPSl,ij>

2s n1No 7 (2.9)

dPS3(Q) || M) ZD

1

+ 2s ning

For the rest of the thesis the second term in Eq. (2.9) will be relabelled as the IR—finite
gvirtual and the third term will be relabelled as the IR-finite 6™, unless otherwise

specified. This leaves the NLO calculation of a cross section split into three parts:
a_NLO — &B + a_virtual + &roal ) (210)

The K factor for a cross section is a good measurement of a process’s sensitivity to NLO
effects. It is defined as the proportional difference in the cross section when including
NLO corrections:

K = oNO /L0 (2.11)

K factors ~ 1 point to negligible corrections from NLO effects; these processes may be
safely calculated in a LO approximation. Processes with K factors that significantly
deviate from 1 are greatly affected by the inclusion of NLO effects, and cannot be
approximated at LO with any accuracy. This is typically the case for the production
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process of heavy colored particles at the LHC.

2.2.2 Example: ete” — uu

As a simple example of a NLO calculation, we consider the Standard Model process of
quark pair production by electron—positron annihilation (ete™ — wu) with NLO-QCD
corrections, i.e. the addition of a gluon either virtually as a loop, or externally as an
additional jet. At LO the matrix element M? is O(a?); the NLO corrections MVirtual
and M4 are O(al) and O(ai/ 2) respectively.

The diagrams below provide a schematic representation of the different matrix

elements needing to be calculated:

MB ~ Mvirtual ~ Z Mroal ~ Z
7/Z loops, CTs /7/Z jets ’7/Z

At both LO and NLO there are two subchannels for the process ete™ — wuu: one
subchannel propagates via the photon and the other via the Z boson. With only
differences in coupling strengths and propagator masses the subchannels are effectively
similar, and the NLO corrections are identical for both. For simplicity we will look
only at the photon—mediated subchannel, and extend the calculation later to include
Z—mediation.

Myirtual and AMreal are summed over all allowed Feynman diagrams that contribute
at the allowed order in the Standard Model. As the initial state eTe™ is colorless,
NLO-QCD virtual corrections only affect the LO vertex yuu (1 contributing loop

1 There are 2 real emission diagrams, one for

diagram, plus 1 counterterm diagram).
each external gluon emitted from one of the outgoing particles. Both the virtual and
real matrix elements are UV—finite (by renormalisation for loop corrections, naturally
for real emission) and IR-divergent, due to the soft and collinear nature of the added
massless gluons. The integrated and un—integrated dipoles required at the cross section

level for 6NEO

are not shown above, but have well-known definitions given in [21].
BEach term in the partonic cross section 6N'C from Eq. (2.10) is calculated
independently, as each component is separately UV— and IR-finite. The matrix

real

elements-squared for 6% and & can both be calculated and integrated by tree—
level numerical tools already in existence, such as MADGRAPH/MADEVENT [19]. The
calculation of V8l yges the interference between MP and MYl which requires

tools for calculating loops as well as tree-level techniques. Both the real and virtual

'Loop corrections to the external legs are on-shell corrections, which are removed by calculating
MYl within an on—shell renormalisation scheme, which is discussed later in Section 3.4.
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\/E[GGV] O'LO [pb] O.v1rtua1 [pb] o,rcal [pb] O.NLO [pb] K
20 332 16.6 -4.15 345 1.04
100 163 8.14 -2.06 169 1.04
500 725-107% 36.3-107% —-9.16-107% 752-1073 1.04

Table 2.1: Production rates and K factors for NLO-QCD corrections to eTe™ — .
These calculations use the fixed renormalisation and factorisation scales pugr/p = mz.

NLO cross sections automatically include dipoles via e.g. MADDIPOLE [23,24].
Numerically calculated LO and NLO cross sections with K factors for ete™ — uu

(including both v and Z subchannels) are shown in Table 2.1. K = 1.04 for a range

of center—of-mass energies /s, which agrees with the well-known theoretical result for

this process:

N0 _ (1 N M) o0~ (L04) oM . (2.12)

2.3 Feynman diagrams

For this thesis the only restrictions on the calculation of NLO cross sections are that
the process calculated is 2 — 2 for LO and virtual processes (2 — 3 for real emission),
and defined within a physical model that is fully renormalisable and perturbative in
orders of ag (e.g. SM, MSSM, scalar gluons). As discussed in the previous section,

calculating oVirtual

(without integrated dipoles) requires the evaluation of both 2 — 2
tree-level and loop matrix elements MP and MVl which are constructed directly
from Feynman diagrams. Due to the model independence required, it is useful to define
a set of model-generic Feynman rules that can be used to calculate the Born and loop
diagrams for a given process.

The term ‘generic model’ hereon refers to a physical setup with a generic gauge
structure (SU(N.) ® ...), variable particle particle masses, decay widths and couplings.
In a generic renormalisable model (i.e. all couplings with mass dimension [g;] > 0),
particles can be organised into three physical types and one unphysical type according
to their quantised spin numbers. The physical particles are spin—0 scalars S, spin—
1/2 fermions F' and spin-1 vectors V,,. Gauge vectors V,, require gauge fixing, giving
rise to the fourth unphysical particle type: Faddeev—Popov ghosts G. Particles with
higher spin are excluded by requiring renormalisability for d = 4 dimensions. The
(SU(N.) ®...) nature of the generic model allows any of the particles from the four
types to also have an associated color index most commonly from either the fundamental

or adjoint SU (V) gauge groups.

10



2.3. Feynman diagrams

The following derived Feynman rules are depicted accordingly in the figures:
e Scalar particles are denoted by a dashed line.

e Fermionic particles are denoted by a solid line, with an arrow that fixes the

fermion flow.

e Vector particles are denoted by a wavy line (or curly line, in the case of color

octets).
e Ghost particles are denoted by a dotted line.

e Particles with a fundamental color index have an arrow that fixes the direction of
the color flow. In the case of fermions (which already have an arrow), the color

flow is aligned with the fermion flow.

2.3.1 Colorless Feynman rules

The Lagrangian terms describing the propagator for each of the four particle types

(without color) are

Lss ~ (8,91 (9*S) —m2S'S  Lpp ~F (i) —m)F

_ _ (2.13)
Lyy ~V, (8° —m?) V* Lac ~ 0,GO"G — m*GG

Here the scalars S are defined as complex; for real scalars ST = S. Barred notation for

fermions and ghosts is defined in the usual manner as

X=Xy (2.14)

The Feynman rules resulting from these Lagrangian terms are shown in Fig. 2.1. Gauge
vectors are fixed using the Lorenz and Feynman gauge conditions (0"V, =0, £ =1

respectively), simplifying the gauge propagator greatly:

—i pp”  ptpY —igh”
He — — . 2.15
(p? — m2 +imI) <g p? e 2 ) (p?2 — m?2 4 imI) (2.15)

Breit—-Wigner widths I' are added to the propagators to model unstable particles;
however widths are a special set of higher order corrections, and if used must be applied
such that they are only present in non—QCD propagators that appear at both LO and
NLO orders as an overall factor, in order to be treated as a correction that is consistent
across both LO and NLO.

11
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_______ i _ i(p+m)
p (7 —m? + iml) > (7 — m? + iml)
M v —igh” [
~ U (p2 sy ZmI‘) ..... p ..... (p2 ey Zmr)
p

Figure 2.1: Generic Feynman rules for colorless propagators by spin, including ghosts.

The Lagrangian terms for all renormalisable colorless 3— and 4—particle interactions

with generic couplings g (and chiral couplings gg/r,) are:

Lsss ~gSSS Lssy ~ g8, SV

Lyyvs ~gSV,VH Lyvy ~ g(0,V, —0,V,) VIV

Lrrs ~SF (grllg+ g L) F Lrrpy ~Fv,(9rllg+ gcllp) FV# (2.16)
Leay ~g(0,G)G V" Lssss ~gSSSS

Lyyss ~ gSSV,VH Lyyyy ~gV,VFV, V.

Here Il are the chiral projection operators:
g =51+9) . (2.17)

For fermionic couplings which are not chirality—dependent, gr = gr = g, and the

fermionic interaction Lagrangian terms simplify to
Lrps~gSFF Lrpy ~gF~yFVHE. (2.18)

Note: the Lagrangian terms involving vector bosons assume that the vectors are
identical. Interactions between differing vector bosons contain extra sets of Minkowski
metrics to account for symmetries, however still produce the same Feynman rules
irrespective of which vectors are involved. For example, the four—vector Standard
Model Lagrangian term composed of two electroweak Z bosons and two electroweak W

bosons is
Lzzww ~ g (9" 9" — ¢""g" ) ZuZ, W W . (2.19)

The Feynman rules resulting from the interaction Lagrangians in Eq. (2.16) are shown
in Fig. 2.2 and Fig. 2.3. The only model-dependent terms are the definitions for the
couplings g (and gp / 1), which will depend on the specific particles and model involved.

12



2.3. Feynman diagrams

Feynman rules for the external states of the three physical particle types are
described in Fig. 2.4. Here we use Dirac spinor notation (u,u,v,7) for fermionic
states; in Section 2.4 we will show how Majorana spinors can also be written in this
form. Outgoing particles are listed on the left, and incoming particles are listed on the
right. For the calculation of M? and MYi'tual a]] external particles can be treated as
incoming, so that the process is effectively 4 — 0 instead of 2 — 2. Using conservation

of momentum this enforces

> ki=0. (2.20)

This simplifies the use of Feynman rules as only the external states on the right of
Fig. 2.4 are used, and a translation back to 2 — 2 is applied only at the numerical
integration stage.

Each loop in MYl hag an unfixed internal momentum, ¢. This is integrated over

dD
/ﬁ : (2.21)

Finally, each Feynman diagram constructed has an overall sign associated:

with the D—dimensional measure

(- (2.22)

where P is the permutation parity of the external spinors with respect to a fixed
reference order, and L is the number of closed fermionic loops in the diagram. This

factor sets the relative sign required for correct interference between diagrams.

2.3.2 Colored Feynman rules

The additional Feynman rules for SU(N,.) colored particles are applied over the top of
the standard colorless rules. This color factorization property becomes very useful later
in Section 2.5 when we use color flow decomposition to simplify Feynman amplitudes.

The procedure for applying colored Feynman rules is as follows:

e Colored propagators (e.g. gluons, quarks) include an extra delta function in either
the SU(N,) adjoint (6%°) or fundamental (55) indices.

e The color factor for vertices depends on the number and SU(N.) gauge
representation of the colored particles involved. For the case of two colored (plus

other colorless) particles, the color flow is the same as a colored propagator.

e For the case of three colored particles (and other colorless), either an adjoint

generator (T%)7 or structure constant f abe js applied; the former for the interaction

13



Chapter 2. Amplitude theory

\\ 1 \\
\\ \\ 1% ] u
=== ig //'\./\./'\., ig (pl —p2)
7/ 2 7/
Iz Lp
3,p
————  igg"™ ig g" (p1 — p2)” + cyclic
v 2,v
. K .
---- i (grIlR + grI1z) iv" (grllp + grIL)
1 .
. H N
A 19 Py
2 -

Figure 2.2: Generic Feynman rules for colorless triplet vertices, including ghosts. All
momenta are defined as incoming.

N ig ig g""”

ig (2s7“”g”A — g'hgP — g“”g”>
by v

Figure 2.3: Generic Feynman rules for colorless quartic vertices by spin.

- ————-- 1 ° 1
—» u(p) ——e u(p)
———  u(p) ——=o  (p)
7 7
o~~~ e"*(p) e (p)
p p

Figure 2.4: Generic Feynman rules for colorless external particles by spin.
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2.3. Feynman diagrams

7 a
>wmaxa (1) %@mﬂf ifabe
J b

Figure 2.5: Generic Feynman rules for colored triplet vertices.

{ k 1 a

S {rrf,
J l J b
a C

fabe fcde (gHakegholta — ghaltd ghbtic)
+ face fbde (guaub gheta — ghaltd glvhe)

, . +fadefbce (g#uﬂbgﬂd‘d _ guaucgubud)

Figure 2.6: Generic Feynman rules for colored quartic vertices.

of two SU(N,) fundamental particles with a SU(N,) adjoint, and the latter for
the interaction of three SU(N.) adjoint particles. Colored triplet vertices are

shown in Fig. 2.5.

e Feynman rules for the case of colored quartic vertices are given in Fig. 2.6.
The structure of the four-fundamental vertex S;ji; is highly dependent on
the individual particles concerned and has no standard form. The only four—
fundamental vertex used in this thesis is the squark quartic vertex S;ji; for the
MSSM, and is defined in Appendix A.2.2 The four-adjoint vertex is provided
for vector particles (e.g. gluons), as the color structure becomes intrinsically
intertwined with the Lorentz structure®. For other four-adjoint vertices, the
contributing color and Lorentz structures are smaller, due to the decreased

symmetry in external fields.

e External colored states contain an additional SU(N.) adjoint or fundamental

index (e.g. €"“ for external gluons).

Feynman rules for the specific models (SM, MSSM, scalar gluon) that will be used
in this thesis are provided in Appendix A.

2See [25] for further MSSM details which include dependence on R—parity, generations etc.
3For the case of the four-gluon vertex, the contributing Lagrangian term is £ = %F v F4,, where
Fomv — grAY — 9¥ A 4 g, foP°[AP*, A°¥]. The resulting four-gluon vertex arises from the term

g2 febe fade[ A A°V] (AL, Ag], producing the mixed color/Lorentz structure Feynman rule in Fig. 2.6.
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Chapter 2. Amplitude theory

2.4 Majorana particles and fermion flow

Majorana particles arise in supersymmetric extensions to the Standard Model, as the
spin-1/2 superpartners of spin-1 gauge bosons. Majorana fermions (xs) have a self-

conjugate charge:

Xu=CXy = xXum

N (2.23)
Xor = X Ch =X -
C' is the charge—conjugation matrix used to relate spinors v and o:
1=Cv" =u, (2.24)
v=vCl =7, '
and has the properties
cl=ct', cT=-c, crfct=nyr;, (2.25)
where
+1 forI'; =1, 75,
= or I'; V55 Vs (2.26)
—1 for I'; = ,.

The self-conjugation property described in Eq. (2.23) ensures that vertices involving
Majorana fermions do not have a well-defined fermion flow. In order to construct a
complete set of Feynman rules for the interactions of Majorana fermions we have to
prescribe a fixed fermion flow, with a constant direction throughout all joined Majorana
and Dirac fermions hereafter referred to as a fermion line.

Rules for fixing the fermion flow for a given fermion line are described in [26]. A
fermion line composed entirely of Majoranas can be assigned an arbitrary fermion flow,
provided it is done in a consistent manner across all diagrams in a given amplitude
where external Majoranas are present. A fermion line containing both Majoranas and
Dirac particles can also be assigned a fermion flow, although cases where the newly fixed
flow clashes with the pre—defined direction of the Dirac fermions require the ‘flipping’

of the involved Dirac structures®. For a generic interaction term

where x represents either a Majorana or Dirac fermion, and I' represents a generic

4This property of flipping the fermion flow for both types of fermion is crucial for using the Feynman
diagram generator QGRAF [27], which does not differentiate between Majorana and Dirac particles and
will assign fermion flows that need flipping without the allowance of a ‘preferred’ Dirac fermion flow.
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2.4. Majorana particles and fermion flow

XM XM

XM

XM

XM

VN WY N

X

Figure 2.7: Flipping rules for vertices involving Majorana s and Dirac x fermions.
The curved arrow fixes the fermion flow, and flips the vertex I' — I'” as necessary.

fermionic interaction involving Dirac matrices, coupling constants and bosonic fields,

the ‘flipped’ form is
= cf
=x"cfertotox”
=xX(D)'X
=X(nT)X -

(2.28)

The situations where enforcing a fermion flow results in a flipped vertex are listed in
Figure 2.7.
By using the definition for n from Eq. (2.26), we can derive the standard set of

flipping rules for all interaction terms involving Majorana and Dirac fermions:

1) =
(") =
(g/r) = HR/L (2.29)
(vgs) = ="k
(Y9 Tgs1)" =771 -

17



Chapter 2. Amplitude theory

—— iS(k) ——— iS(—k) s i5(k)

Figure 2.8: Flipping rules for propagators involving Majorana and Dirac fermions. The
underlying arrow fixes the fermion flow, and flips the propagator S(k) as necessary.
The momentum k flows from left to right.

—_— —_— —_—

— ——— o v(k)
—_— —_— —_—
—_—— —_—— —_——

—>—o ———e oA, oe u(k)
—_— —_— —_—

Figure 2.9: Flipping rules for external Majorana and Dirac fermions. The underlying
arrow fixes the fermion flow, and defines the external spinor as necessary. The
momentum k flows from left to right.

The flipping rules in Eq. (2.29) are applicable for altering the fermion flow of Dirac
as well as Majorana fermions, and also provide the rule for reversing the fermionic
propagator: %
' —p+m
(S(k)) = m = S(—k) . (2.30)
Conditions for flipping a fermionic propagator are listed in Figure 2.8. The spinor
nature of external Majorana and Dirac fermions is defined by the fermion flow; flipped

external spinors are defined in Eq. (2.24) and listed in Figure 2.9.

The above rules for fixing the fermion flow and flipping necessary internal structures
for a given set of Feynman diagrams must be applied in a consistent manner when
calculating matrix elements for physical observables. Just as for Dirac fermions, each

individual Feynman diagram within a matrix element must be multiplied by a relative

18



2.5. Color methods

sign as defined in Eq. (2.22).

2.5 Color methods

Color flow decomposition [28,29] is a technique used to extract the factorisable
color-dependent partial amplitude from a SU(N.)-dependent Feynman diagram. By
reducing all color operators to a combination of N.-dimensional delta functions in
fundamental color space, each amplitude can be reduced to a set of kinematic terms that
are combined with a basis of simple color structures. This makes the color dependence
of the amplitude explicit, and greatly simplifies the results of amplitudes where external

color octets such as gluons are involved.

2.5.1 Color flow decomposition

For a non-Abelian SU(N,.) gauge theory, the generic structure that encodes the color
information of an amplitude is represented by delta functions §, 5;-, fundamental
J

generators (7%)]

: and structure constants fe¢. Gluons and other color octets carry an

(N2 —1)-dimensional adjoint color index a, while quarks and other color triplets carry
a N.—dimensional fundamental color index i.°

This multi-dimensional color structure can be simplified by reducing the number
of different color functions. Using the normalisation convention Tr(T%T?) = Tgd®,
we can rewrite the structure coefficient £ in terms of the fundamental generator, by

starting with the definition for the structure constant:

i =
= if TN (TY); = (TT (T4 — (T°T)](T7); (2.31)
= = - — | BT - (T TT)|
R
Similarly, any pair of fundamental generators that are summed across the adjoint index

a can be reduced into a set of fundamental delta functions:
. . 1
(T*Y(T*)}, = Tr (52% - ﬁ5§6§g> (2.32)

Egs. (2.31) and (2.32) are represented diagrammatically in Figure 2.10 to show the
fundamental color flow. For completion we note that the above relations describe the

color factors of the Feynman rules for the contracted color octet propagator and the

5Feynman rules for Standard Model QCD, MSSM QCD and scalar gluons are defined in Appendix A.
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Chapter 2. Amplitude theory

_———
—»—

i

Figure 2.10: Color flow depiction of the contracted fundamental generators T*T* and
structure coefficient fe°.

|
==
PR —

3-octet vertex; these color decompositions can be applied to any SU(N,) gauge theory

to factorize otherwise-complex color structures in amplitudes.

The above two equations are not enough to decompose every color factor into purely
fundamental delta functions, as the presence of an external color octet such as a gluon
will provide an adjoint color index a that remains uncontracted at the amplitude level.
An amplitude M with ng external color octets and ng external color triplet—antitriplet
pairs will have ng ‘unsaturated’ adjoint indices. By saturating each external adjoint
index a with a corresponding fundamental generator (7' a)f at the amplitude level, all
of the loose indices may be contracted, and by applying Egs. (2.31) and (2.32) the full
color structure of the amplitude can be reduced to a series of N.—dimensional delta
functions which describes the color flow. The translation of an amplitude from ng loose

adjoint indices to the color flow representation is defined:

ng

M sang — ADL-bng H <5akbk>
k=1
ng

1 ) .
— MbLobng H (T_(Tak)g:(Tbk);Q (2.33)
k=1 £
) . ng 1
o Bl yeenyin N\J
= Mj17,,,,jn88 H < T};(T“k)ii) )

ng
lel,n-,Z@S = Ma17---7an8 H < (Tak)l.k> . (234)

J1yedn T J

' i ko1 \VTR *
Egs. (2.33) and (2.34) are both normalised to ensure that the amplitude-squared is
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2.5. Color methods

identical:

|Ma1,...7an8|2 — |Mi1""’in8 |2 . (235)

jlv"'vjns

If we define a permutation group S,, to contain all the allowed combinations of n color
flow lines for a given amplitude M, then the factorisation of the set of purely kinematic

terms from the basis of color flow lines is straightforward:

M= Moles), |eo) =670 5. (2.36)

11
UESn

The total number of allowed basis structures in .5, is
#(o € Sy) = (ng+n3)!, (2.37)

which is simply the number of unique permutations within the set of fundamental
indices in the amplitude {i,...,i,}, where n = n3 + ng. In contrast, for a non—
saturated non—decomposed basis constructed out of the fundamental generators T,

the total number of allowed basis structures for a 2 — 2 process is

n3! no external octets

#(o € Sr) = { (2.38)

(ng +mn3 —1)! otherwise.

Constructing the amplitude-squared is straightforward, as the color basis-squared
forms a S, X S, matrix containing only contracted combinations of delta functions,

with which we can contract the kinematic partial amplitudes:

IMP =" (eorleo) (MaMy + MuM) (2.39)

oE€Sy o’ESy

We conclude that using the color flow decomposition method allows us to represent
internal and external color structures in a mathematically simple manner (being
composed entirely of delta functions), that is also easy to present diagrammatically

using the rules given in Figure 2.10.

This method is shown to be applicable to any generic non—-Abelian SU(N,) theory;
for Standard Model and supersymmetric QCD: N. =3, Tr = %
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Chapter 2. Amplitude theory

2.5.2 Example: gg — uu

As an example of the usefulness of color flow decomposition, we will calculate the color

factor for a tree-level diagram of gg — wu, featuring an s-channel gluon propagator.

a 7

as 7

Firstly we will use Eq. (2.34) to saturate the two external gluons with fundamental
generators, so that the adjoint indices a; and a9 are replaced with the fundamental

indices (i1,71) and (42, j2) respectively. To better view the diagram we will rotate it:

J2 1

Next we apply the color flow decomposition Egs. (2.31) and (2.32) iteratively, reducing

the adjoint propagators to fundamental color lines:

J2 1

(¢}

A StV R

D R AN T
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2.6. Spinor helicity techniques

Here it can be seen that most of the color flow diagrams cancel out due to the
antisymmetric nature of the 3—gluon vertex. This leaves the final color factor as:

~—— j2 il
J2 21

M~ \<2\ ;1/ - 12 Ji
Jooi J '

]

By resolving each color line into a delta function, we can see that for the above diagram
the decomposed colour structure has only one basis, which is (excluding a universal
numerical factor):

lc) ~ 6116257 — §9257 61 (2.40)

i1 "2 i1 12
The total color factor for the amplitude-squared as defined in Eq. (2.39) would be:

(cle) ~ |6167267 — 57250 571

1 12 11 712

g (N2 - N.) . (2.41)

2.6 Spinor helicity techniques

The spinor helicity formalism [30-32] is a powerful tool for factorising and simplifying
the kinematic and helicity—dependent partial amplitudes from the total amplitude, by
projecting each external particle onto a set of helicity—dependent states and summing

the total amplitude over helicity:

M= > MM, (2.42)
{A}eSH

where Sy contains all the possible helicity combinations for the amplitude. This
technique allows the resulting gauge—invariant helicity-dependent terms within M{*
to be represented as a series of Lorentz—invariant Mandelstam variables, multiplied by
a kinematically non—invariant prefactor. This can produce greatly simplified results
when calculating the total amplitude, particularly in the case where external particles

are massless.

In this section we will first describe the prescription used for projecting massless
fermions and vector bosons onto the spinor-helicity basis, and then extend the

prescription to include massive particles.%

6Scalar bosons are exempt from the spinor helicity formalism, as they have no spin or helicity
representation.
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Chapter 2. Amplitude theory

2.6.1 Massless spinors

Massless fermions and vector bosons have only two physical degrees of freedom, but
are typically represented by four-component Dirac spinors (u, v, u, ¥) and polarisation
vectors (e, €4"). The spinor helicity formalism reduces this four-component represen-

tation by projecting the massless particles onto definite helicity states:

(k) = §(1 £ y5)ulk) = ux(k)
+ 1 —
(k) = 5(1 £ 5)v(k) = ve (k) , (2.43)
u(k)IF = (k)3 (1 £ ) = uz (k) ,
o(k)ITF = (k)3 (1£75) =vr(k) .

The positive and negative energy solutions of the Dirac equation for massless spinors
are identical up to a normalization convention [32], allowing for the definition of two
unique spinors, with definite helicity. We use the conventional bra-ket notation for

massless spinors, defined as:
=) = us (ki) = vp(—ki) (iF| = v (ki) = Uz (ki) (2.44)

where k; denotes the i~th momentum in a given process.” From Eq. (2.44) we will
choose the incoming Dirac spinors u(k) and (k) as our two unique spinors, and note
that the helicity notation is reversed for outgoing Dirac spinors. Spinor products are

defined in shorthand notation by:

i) =1ty lil=1im), (il =], [i= (i,

2.45
(ij)= (i iT), [ig]1= ("), (28

"The two outgoing Dirac spinors v(—k) and %(—k) have reversed momenta in order to be consistent
with the massive formalism described later. For the massless formalism there is no resulting difference.
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2.6. Spinor helicity techniques

and come with the following set of identities:

(M) = 2k (
Fi=li) [l + i) (al (
(1) = =iy, [ij]=—[4i], (i) =[ii]=0, (
(i) =1[Jil, (2.49
(1]1=1[ij) =0, (
[aly™17) TRlyull) = 20k 1 (15) (
[ily"l5) = "] (
(ij ) [gi]=Te (I fif;) = 2k - kj = sij - (

The trace identity (Eq. (2.53)) is one of the most useful, allowing for the representation
of spinor products in terms of kinematically-invariant Mandelstam variables s;;. It also

exists in an equally helpful four-spinor product form:

(ig ) [ L] (Im) [ mi] = Tr (IT" Kk Hafom)
1 (2.54)
=5 [SijSim — SitSjm + SimSji — 4ie(i, j, 1, m)]

where (i, j, 1, m) = e po ki Kk k7,

Polarisation vectors for massless vector bosons are constructed by spinor products:

k]
i (k,q) = +7\/§<qk> )
& (s, q) = ~Lal™Ik) (2.55)

V2[qk]
e (k,q) = i (k,q)

where ¢ is an auxiliary light-like reference vector (satisfying ¢> = 0) which defines the
transverse direction for the polarisation vector, also known as the polarisation axis.
Eq. (2.55) satisfies the necessary conditions to define a massless gauge polarisation

vector, forming an orthonormal and complete set:

k- 6:|:(l€7Q) =0 ’
ex(k,q) - ex(k,q) = =0xx (2.56)
H vx nv quV + q#]{;’/
> ek, ek (k,q) = —g™ + &g

A==+

Careful choice of the auxiliary reference vector g can greatly simplify partial amplitudes,
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Chapter 2. Amplitude theory

as Eq. (2.55) produces a set of further identities:

q-ex(kiq) =0, (2.57)
ex(ki,q) - ex(kj q) =0, (2.58)
ey (ki kj) - e (kj,q) =0, (2.59)
fu (ki kj)|55) = 0. (2.60)

It is recommended that ¢ be chosen to be equal to one of the other light—like external
momenta k;-; involved in the process, to best take advantage of these identities.

2.6.2 Massive spinors

The extension of the spinor helicity formalism to cover massive spinors and polarisation
vectors is quite straightforward [30]. Any momentum k; belonging to massive particle

I, can be decomposed into a sum of two light-like momenta, k; and g:
kY =k + agh . (2.61)

By using the on-shell conditions k? = m%, k:f =0, ¢> = 0, the parameter « is defined:

(2.62)

Within this formalism k! is understood to be the momentum of the light-like
correspondent to I, and ¢* is the arbitrarily—defined auxiliary reference momentum.
From Eq. (2.61) we can note two things, one is that in the massless limit we retrieve
only the light-like correspondent to particle I:
K —— K (2.63)
mr—0
The second comment is that a useful identity arises when contracting the reference

momentum ¢ with kf:
q-kr=q-k;. (2.64)

This method of decomposing massive momenta into two light-like vectors can also
be applied to massive helicity spinors, using the same bra—ket notation as in Eq. (2.44)
and Eq. (2.45). However, due to the presence of mass, the positive and negative
energy solutions to the Dirac equation are no longer equivalent up to a normalization
convention, and one cannot simply ignore the outgoing spinors w(k) and v(k). But if

the momentum of the outgoing spinors is reversed (kK — —k), then once again there are
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2.6. Spinor helicity techniques

only two unique Dirac spinors, defined in bra—ket notation as
115) = us(kr) = ve(—kr), (I =vx(kr) = wx(—k1) , (2.65)

where k; denotes the massive [-th momentum in a given process. This allows us to
keep our choice of using the incoming Dirac spinors u(k) and v(k) as before, with
the stipulation that outgoing spinors have reversed helicities and momenta. This

prescription works for both massive and massless spinors

The decomposed spinor forms of Eq. (2.61) in terms of massless spinors are:

1) =1i) + 5 la]
1] =]+ 7la)
| <7f,§l> (2.66)
(= (il + 22 L
g
1] = il + 7
They satisfy the Dirac equations:
m?2 . my
(ks =l = (Gl = ma ) 174+ (k= i) {551
m m2 m2
— (F i) =mi ) 1)+ (gtatai) = 55T (2
=0,
(TF|(fr +mp) =0,
orthogonality relations:
)= =0, (2.68)
=[II)=2mg,
and the completeness relation:
L) [ 1]+ 1] (1| = Fr+my . (2.69)
Eq. (2.64) also holds in spinor form:
(¢f)=(qi), [al]=1[qi]. (2.70)

The massive extension to Eq. (2.55) for polarisation vectors uses Eq. (2.61) to define
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the massless spinors, and adds a third helicity state, €

_ |, Lk
e (krq) = + V2(qki)
_lalik)
e (kr.q) = V2 (qki] (2.71)
L 2.71
eg(k‘LQ):mLI(q-—/inM_k?) 7

Ei*(k?[,Q) = Ei(kh(ﬁ 5
Eg*(kl,Q) = Eg(klvq) .

Note the use of the massless momentum k; for the spinor products in the transverse
helicities, and the massive momentum k; for the longitudinal helicity. The light-
like momentum ¢ is used as the auxiliary reference momentum for both the mass
decomposition and also as the polarisation axis. Eq. (2.71) satisfies the orthonormal

and completeness requirements for a massive gauge polarisation vector:

]C['Ej:(k?[,Q) :07
]{7['60(1{7[7q) :07

EA(k,Q) : E;’(kjv q) = _5>\,)\’ s (272)
* 4 k“kl/
> Ak )exr (k) = —g" + #
A=+,0 1

2.6.3 Helicity amplitudes

Using the spinor-helicity formalism described above, every external fermion line and
vector boson in an amplitude can be transformed into a set of helicity amplitudes,

composed of massless spinor products on which we can perform the Dirac trace.

Each pair of external fermions connected by an unbroken fermion line in an

amplitude has the same generic helicity structure:
A= ﬁ(kJ)Fu(k:I) . (273)

I" contains the internal structure of the fermion line, which is composed of mass terms,
momenta and Dirac matrices. As explained previously, outgoing spinors u and v can

be treated as incoming spinors by reversing the momenta and helicity. The helicity
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2.6. Spinor helicity techniques

structure of Eq. (2.73) can be separated into four individual helicity terms:

AT =5(k )0 T u(k;) = [ JTT)
AT =v(k)I TH u(ky) = [JTT] (2.74)
AT =Tk T u(ky) = (JTT)
A" =Tk )T u(ky) = (JT T ]

The four terms can be decomposed into massless spinors using Eq. (2.66), and
manipulated into traceable forms by using Eqs. (2.46)—(2.54). The reference momenta
for fermions I and J are chosen to be equal, ¢; = ¢; = ¢, and preferably equal to
a separate light-like momentum that is also present in the calculated process. The

resulting terms, written as Dirac traces with helicity-dependent prefactors, are:

t+ — 5T s g 7 mrmy
S 7 A T AR 7 TR AR
1
= WTI" [H+(kj —my)T(kr + m1)¢j]
t— = [4iT4 IO g 7 Iy
AT SRy TR g I Gy e
{Tr [ (Fg —m)T(Fr +mpksg]  Te [ (Fy — mg)T(Er + mo)frd] }
(ij) 2k; - q 2k - q
myj . miim.;gj
=(jli)+ [ ]< ]+m[qu>+m[qfﬂ
{ ~ Ky —m)T(Fr +mp)ksg]  Te [ Ky — mg)U(Fr + mo)frd] }
z 2k - q Zki'q
. my . mpm,g
=(jli]+ >< >+m[qu]+m[qrfﬁ
:WT v (I (k7 — m)L (k1 +m1)d]

(2.75)

The above equations are completely generic, and may become greatly simplified

depending on the number of Dirac gamma matrices in I', and whether fermions [
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or J are massless. In the massless limit (mr, m; — 0), Eq. (2.75) reduces to:

AT = [jTi) = WTY (T ;T Had)
- it = L TR TR
AT U=y e (2.76)
A—+_><jri>:[;]Tr(nmi?‘rfi%jg)zo
—— . L1 1 ' /3 .
AT = U= gy T (T ATE)

The suppression of helicity amplitudes AT~ and A~ for massless fermions can be
derived with the knowledge that I'" always contains an odd number of Dirac gamma
matrices, and that any trace containing an odd number of gamma matrices is zero,

with or without the presence of IT*.

Just as any external fermion line can be written as a set of helicity amplitudes
composed of a trace and a helicity-dependent prefactor, so can the external polarisation

vectors € (kr, q).

e'(k1,q) = € (kr,q) + " (kr,q) + € (k1,q) ,

1 T /> K
VEa (i) [ng] 1)
1

Ei(k.UQ) = +

& (k) = — (2.77)

+ 14 o
AT Lin] (ngy 1 (T Heti)

1 m?2

© _ I n 12

€ (k =— | ——q"—K| .

0( I,Q) mr <qk‘1q [>
The extra ‘glueing’ momentum n is added to close the trace, and should be chosen in the
same manner as the reference momentum ¢: as a light-like momentum (n? = 0), ideally
equal to a separate momentum that is already present in the process. For clearly-seen
reasons in the above equation, n # ¢q. The longitudinal polarisation vector e} (kr, q)

keeps the same form as before in Eq. (2.71), and does not require tracing.

By transforming all external fermions and vectors bosons in an amplitude into

helicity—dependent terms, the complete amplitude can be written into a helicity basis:

M= > MM (2.78)
{A}eSH

where S contains all the possible helicity combinations for the amplitude. Constructing
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2.6. Spinor helicity techniques

the amplitude—squared is straightforward, as the helicity basis is orthogonal, i.e.
M (./\/l{’\l})* - 5{/\}{>\’}‘M{>\}‘2 ) (2.79)
Knowing this, the amplitude—squared becomes:

MP= > M2 (2.80)
{A}eSH
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Chapter 3

Loop theory

3.1 Introduction

In this chapter we describe the techniques used to reduce and simplify loops in Feynman
diagrams arising from the virtual corrections to a 2 — 2 process in order to calculate
MYirtual - Thege procedures are presented in a model-generic manner and form some of
the core algorithms of the MADGOLEM [14-18] code.

A general D—dimensional n—point loop integral of rank r < n can be written (sans

contractions with external momenta and additional metrics) as

I;Uflrnuu'er = 1
peet(s) = [ G S (3.1)

where ¢ is the internal loop momentum. The internal propagators are defined (up to a

maximum of 4):

N15q2—m%—|—ie

No = (q+p1)° —m3 +ie

N3 = (q+p1+p2)* —m3 +ie
Ny = (q+p1+p2 +p3)° —mj +ie

Here p; is constructed from a combination of the external momenta k;, and is also

conserved: .
> pi=0. (3.3)
i=0

The kinematic set S contains the parameters p; and m;. An example 4—point loop
integral is shown in Fig. 3.1.

It is well known that these integrals often contain divergences that can arise from
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q+p1+Dp2

b2 - p3
q+Dp1A Yq+Pp1+Dp2+p3
Y41 q Pa

Figure 3.1: 4-point loop with labelled incoming momenta.

CDR | tHV | DRED
Internal (virtual) Dimensions D D D
External (real) Dimensions D D D
Int. gluon polarisations D—-2|D-2 2
Ext. gluon polarisations D -2 2 2
Int. quark polarisations 2 2 2
Ext. quark polarisations 2 2 2

Table 3.1: Dimensional regularisation techniques. (D =4 — 2¢, D= 4)

both UV sources as well as soft and collinear IR sources. In the case of scalar integrals
found in 2 — 2 processes, UV divergences only arise in 1- and 2-point integrals (also
known as tadpoles and bubbles), whereas IR divergences are found in 3— and 4-point

integrals (triangles and boxes).

3.2 Regularisation techniques

The regularisation of matrix elements is prescribed to handle UV divergences in a
gauge—invariant way by calculating loop momenta in (typically) D = 4 —2¢ dimensions.
When also applied to soft and collinear divergences, different choices of dimensional
regularisation schemes also affect the finite terms originating from IR sources, making
it crucial to ensure that both the virtual and real corrections are calculated within
the same scheme. Regularisation techniques differ in how they consider the number of
dimensions and/or polarisations for internal and external (massless) particles. While
a more detailed discussion of the different regularisation schemes can be found in the
literature [33—-36], Table 3.1 provides a general overview of the standard examples.

Treating external particles in 4 dimensions is necessary for using the spinor—helicity
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3.2. Regularisation techniques

formalism, which rules out using Conventional Dimensional Regularisation (CDR) [37].
Furthermore, using Dimensional Reduction (DRED) [38] leads to complications in
handling the partonic factorisation of processes with massive final-state particles [39].
Therefore, throughout this thesis we will use the ’t Hooft Veltman (tHV) [40]

prescription for dimensional regularisation.

In D dimensions, Eqn. (3.1) can be rewritten in terms of the well-recognised

Passarino—Veltman form factors [41]:

Iﬁl"“’“”D(S) = 1672 (47@“%%)5/ inD/2 Ni---N,, (3.4)

where pp is the arbitrary renormalisation scale that enters via the reparameterisation

of the strong coupling g2 — (gsp%)? in D dimensions.!

3.2.1 Dimensional splitting

The use of tHV prescribes D = 4 — 2¢ dimensions for internal particles. However,
the chirality projection operator 7° used within the spinor helicity formalism is a
purely D = 4-dimensional object, defined as the combination of D-dimensional Dirac

matrices:

{ AU ApA
75 = Eﬁuup/\’Y”’YV’Yp’YA . (35)

In this definition for v° there are no anticommutation relations with the D—dimensional
Dirac matrices that arise in the tHV scheme. This naturally causes problems when
calculating the virtual matrix elements.

To navigate this issue, we rewrite the internal Dirac algebra (involving both
Dirac matrices and loop momenta) into two separate components using dimensional
splitting [42]. At its most basic this means projecting the D—dimensional metric onto
an orthogonal D + D basis:

GGG =T, = (3.6)
which satisfies the desired relations

o =D=4, §¥Gu =D=—2, (3.7)

>

=

]

K=}
=
)

Il
o

In this framework v° now has a set of well-defined anticommutation and commutation

' As in this thesis we are only examining loop corrections in orders of g., this is the only source of
HR-
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relations with the split Dirac matrices:

{#*,7°} =0, [*4°]=0. (3.8)

The anticommutation relations for Dirac matrices can also be determined from
Eq. (3.7):
Ay =29, {97y =29", {3",4"}=0. (3.9)

The dimensionally—split basis allows a new set of rules to be defined for the loop

momenta ¢* and Dirac matrices y*:
=+, T(r) =T(D)Te(T)/D. (3.10)

The trace rule for a combination of gamma matrices I' is proven in [42]. The above rules
can be used to separate individual Feynman amplitudes into D and D-dimensional
terms, at the point before any Dirac traces are evaluated. Extra simplifications in
physical amplitudes arise due to Eq. (3.7), which ensures that terms which are linear
in ¢"* and gamma matrices v* will become D-dimensional, as they must eventually be
contracted with D-dimensional external momenta k;:
G hi=dk (3.11)
’Yukzl‘l = ’A}’ukf
These relations can be applied easily within FORM, which expects all Dirac algebra
to be 4-dimensional by default.

Virtual amplitudes are processed in the following way:

- Take each helicity amplitude as defined in Section 2.6, and split D—dimensional

loop momenta and gamma matrices within the Dirac traces using Eq. (3.6).

- Apply anticommutation relations Eq. (3.8) and Eq. (3.9) to push the D-

dimensional terms to the right of the D-dimensional terms.

- Apply Eq. (3.10) to factorize and evaluate the Dirac traces. Use Eq. (3.11) to
simplify and rewrite all terms into either purely D— or composite D-dimensional

tensor integrals of the form:

dP F200\ 11 L b
/ q (@)q q (3.12)

inP/2 Ny---N, ’

where « is an integer number (as odd orders of ¢ are removed by contraction with

external momenta).
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3.3. Tensor techniques

The D—-dimensional tensor integrals can be evaluated normally using the standard
techniques. Each of the remaining composite terms can be transformed into a higher—
dimensional integral in terms of ¢ with ¢ removed. The full list of possible terms and

their transformations for a 2 — 2 process are:

/ qu (q~2)2 _ _E/ dD+4q 1

iwD/IZ Ny --- N, D2 N -~ N,

/ d”q (@P)a"e" _ e ,w/ dPtiq 1
iwD/2 N, --- N, 59 inDID/2 Ny - N,

/qu (@) _,
itD2 Ny - Ny

dPq ()
_ 3.13
/2'771:)/2]\[1...]\[4 0 (3.13)

/ qu (q2) _6/ dD+2q 1

irD/2 NyNoN3 im(D+2)/2 Ny Ny Ny

/qu ()" _ . / d’t2q g
Z'7'l'D/2 N1N2N3 ’i7T(D+2)/2 N1N2N3

/ qu (q~2) _E/ dD+2q 1
imP/2 N1 Ny N im(D+2)/2 Ny Ny

We note that non-zero translations are those which satisfy the condition [42]?

0<n<1l; n=I[r/2]+a+2-n, (3.14)

where |r/2| indicates that fractional values of r/2 should be rounded down to the
nearest integer. The transformed (D + 2)- and (D + 4)-dimensional integrals can
be calculated using the techniques in the following section, and result in a finite

contribution to the helicity amplitude.

3.3 Tensor techniques

Generic D—-dimensional tensor integrals of the form Eq. (3.4) can be simplified and
reduced to either a basis of scalar integrals or form factors using the procedures
described ahead, either of which can be calculated numerically using a variety of
integral libraries (such as GOLEM95 [43,44]). Neglecting a common prefactor of
i/(167%) (47 p%)e, Eq. (3.4) can be rewritten

. qu q:ufl e q/Jfr
ulv"'vuf'xD —
& (5) / inD/2 [T, (g2 — m?2 +ie) (3.15)

2Orders of O(¢) are not present as they do not contribute to the physical amplitude at NLO.
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P2 < ps3

q1y W

b1

Ny

2

Figure 3.2: 4-point loop with redefined internal momenta.

Here the internal momentum flow has been redefined (see Fig. 3.2 for example):
t=plt+rt rh=0 = ¢t =q¢". (3.16)

The parameter S describes the ordered set of propagator labels corresponding to the
ql’-L , S ={1,...,n}. Propagators in the loop can be removed or ‘pinched’ by various
techniques, in which case the notation St¥} is used to pinch the k—th propagator from
the ordered set S.

3.3.1 Passarino—Veltman reduction

Any tensor integral depending on external momenta can be simplified using Passarino—
Veltman (PV) reduction [41]. This involves rewriting the momenta in the numerator

in terms of part of the denominator:

1
a1 =5 [(@ —m) = [a = mi] +rf —mi +my] (3.17)
¢ = [(¢ —mp) +my] .

By making one of these substitutions any rank » n—point tensor integral can naturally
be simplified to a set of rank (r — 1) n— and (n — 1)—point integrals. For example, in

Eq. (3.18) a rank 1 triangle is reduced to two scalar bubbles and one scalar triangle.

(s [ L[
e TP (@ —m2) 2 L) PP (@ —md) (a3 —m3)
_/ dPq 1 /qu r? —m?} +m3

)

im/2 (g —m3)(a3 = m3 iTPR T2 (@2 — m2)
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3.3. Tensor techniques

The generalised application of Eq. (3.17) to tensor integrals produces:

) 1 . . )
TLMT.I#hanr,D(S) — 5 [1-7};1_71~~7M7-717D(S{n}) - Igl_,-l--,ﬂrflyD(S{Z})
+ (Tz2 _ m22 + mi) I#lwwﬂrfl?D(S)] 7 (3.19)

5 s — 7D ceey by —23
Gpurorp TP (8) = Ty B (1) k-2 D(5)

In each reduced/pinched integral it may be possible to shift the loop momentum in
order to regain the standard integral definition in Eq. (3.15), at which point Eq. (3.19)
may be applied iteratively. In the example Eq. (3.18) a rank 1 triangle was reduced
purely to scalar integrals, but a complete reduction of all tensor integrals to scalars
is not possible using just the PV formalism when r > 2. If we take this example but

include an additional factor (¢-71) in the numerator, we can see that the second reduced

_/ d"q q-T (3.20)
P12 (a5 —ma){ag = m) '

is not reducible any further, as no terms of ¢; exist in the denominator.

term

Iterative application of the PV reduction formalism in Eq. (3.19) ensures that each
rank r; n;,—point tensor integral can be reduced to a single scalar n;—point integral,
plus a set of rank ry < r; tensor and scalar ny < n;—point integrals. In the standard
case where tensor integrals have a maximum rank equal to the number of propagators,
this guarantees a reduced rank r < 3 for all tensor integrals in a 2 — 2 process after
iterative application of Eq. (3.19). Tensor n—point integrals that depend on momenta
other than the external momenta k;, such as those with numerator terms featuring
q - k5 when ks cannot be constructed purely from a basis of r;, cannot be reduced using
the PV formalism and will have an unreduced rank r < 4, as well as remaining tensor

n—point integrals.

3.3.2 Form factor representation

Using the procedures of [45, 46], any generic tensor integral of the form given in
Eq. (3.15) can be expressed as a linear combination of momenta r!' and scalar form
factors A, B, C:

Iﬁl,---vﬂr?D(S) — Z [rjl . Tjr] {Hl"'ﬂr}An,T (S)

jlv"'?jr'
+ > g )BT L(9) (3.21)
Jirjr—2€S

+ [g,,g,,] {Ml"‘Mr-}Cn,r(S) )
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The notation [g"x'y']{“ 1#r} describes the full set of permutations of indices {p1-pr}
over the metric g and vectors - and y. The connection between this representation

and that of Feynman parameter integrals is:

lr/2] m n
Zﬁl,...,#r;D(S) _ (_1)—7“ Z <_%> Z [(g“)@m . 7’37,72m] {pm1--p2}

m=0 J1jr—2m=1

(3.22)
X ZD+2m(j1, v ,jr_gm; S) .
More detail on Feynman parameter integrals is given in Appendix B.

The form factor representation of all possible tensor integrals for a 2 — 2 process
is given in Eqgs. (3.23)—(3.27).

ZP(8) = A™9(9) (3.23)
TP (8) = rtAT(S) (3.24)
jeSs
Tl Z "3 Ajla 2,(S) + g"1#2 Bm3(S) (3.25)
J1,j2€8

1, 2,330 — E 12 B3 AT3
In (S) - le 7’]2 J3 AJ17]27.73 (S)
J1,32,J3€S
3
+ E (gﬂll@r;@ + gﬂlusr;& + gHWST;%l) B;“ (S)
jes
11,2, 143,445 D _ Z M1 2 p3 e AT,4

In (S) = 751 Mo Tis Tja Aj1 7j2,j3,j4(5)

J1,J2,J3,J4€S

+ E < M1, 42 lB M4 +gu1,u3 MZ N4 —1—9“1’“47";‘127";?

J1,J2€8 (3.27)

+ gu2,u3 Hl u4 +guz7u4 p1 ,uz —1—9“3’“47"“17‘”2) B™t (S)

(3.26)

Ji o J2 J1,72

P2 3 M3 12 1 PApa 23 (4
+ (ghiiRghens 4 gt gl  ghi ghels ) O sia(S)

The form factors are UV divergent for n = 1,2, and IR divergent for n = 3,4.
By applying Egs. (3.22) & (B.1) & (B.2), the form factors can be reduced to a basis

of fundamental scalar integrals:
{15,15,13 ,ID+2} . (3.28)

In this basis the divergent sources are uniquely attributed: If)z contains only UV poles

(which will require renormalisation)?, Igf) contains soft and collinear IR poles, and Z; D+2

3There is one exception, the scalar integral 72 with massless particles m; = mgo = 0 and light-like
momentum r; = 0. This integral is described using the more manifest Passarino-Veltman notation
By (0;0,0), and contains both a UV and IR simple pole. This integral will feature more prominently in

40



3.4. Renormalisation

LO:

CT:

Figure 3.3: Sample LO and counterterm diagrams for the process gu — yu.

is purely finite. Z, f *2 is also expressible in terms of TP & TP, which are both separately
IR divergent. A full description of the form factors in the fundamental scalar integral

basis is given in Appendix B.

3.4 Renormalisation

The UV renormalisation of QCD virtual amplitudes requires the introduction of
counterterms as a new set of Feynman diagrams, that when added to the virtual
diagrams, cancel out all instances of UV divergence. In the standard Lagrangian,

these counterterms arise by a redefinition of the bare (unrenormalised) parameters:
PO = (1 +6Z)V2, mE) = my+omy gl — g.(1+ dgs) | (3.29)

where 1 denotes all strongly interacting fields that require renormalisation.

By renormalising the Lagrangian, one counterterm diagram is required for each
possible QCD vertex correction and internal self energy correction that can be made
to the initial LO process. For an example see Fig. 3.3. Feynman rules for the
individual counterterms are derived by choosing a renormalisation scheme which fixes
the renormalisation constants 02y, dmy, 6gs — i.e. in doing so we normalise the field
wavefunction and provide a physical definition for the mass and coupling strength.

In this thesis, the UV renormalisation of QCD virtual amplitudes is handled in two
parts: massless particles are renormalised using the MS renormalisation scheme, while
massive particles are renormalised using the on—shell scheme.

As the specifics of renormalisation are highly model-dependent, this discourages a

generic model approach. Therefore in this section we will use the MSSM framework for

Section 3.4.
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all model-specific details, but otherwise keep the theory model generic.
A full listing of values for the renormalisation constants in the MSSM (as well as the
SM and in the context of scalar gluons), along with the Feynman rules for the relevant

counterterms can be found in Appendix A.

3.4.1 MS renormalisation

The renormalisation constants dgs and ¢6Z, (i) massless) are fixed by the MS
renormalisation scheme [40]. The correction to the QCD coupling constant dgs in the
MSSM is provided through a decoupling of all heavy particles (m > m;) by subtraction

at zero momentum [47-49]. Including corrections from heavy particles [50]:

2 2
as BE+BE 1 as |1, m? msz 1 mg;

0gs = —— ——— — — — —IOg—z + log—2 + = Z log 2 ) (330)
dr 2 € Am |3 Tpug py o 12 oo PR

1 1
ST - F + log(4m) + O(e) . (3.31)

The pole can alternatively be written as 1/& = rp(4m)¢, where rr is defined:

CT2(1 -1 +¢) 1

T = = +0(e)
T(1 - 2¢) T(l—¢)
PR (3.32)
=1- 2E - = %)
EYE +¢€ [2 12} O(e?)
The beta function is split into light (L) and heavy (H) components:
11 2
gt = ch - 30
o 9 9 1 (3.33)
50 = —g—ch—g(nf‘Fl)

Here ny = 5 as we consider the bottom quark to be effectively massless in comparison
to the top quark and supersymmetric particles. With the heavy particles decoupled
the Q%scale evolution of the QCD coupling constant is determined purely by the light
particles and is consistent with the expected values:

9g3(Q?)

Blog(qr) ~ (@I .

The other MS-fixed renormalisation constant 7, (¢ massless) is written in terms
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of the scalar two—point Passarino—Veltman integral By(0;0,0), which is defined as the

conflict of two divergences?:

Bo(0;0,0) = — — — . (3.35)

Structuring counterterms in this manner allows them to be matched with the
accompanying virtual corrections, which will also have occurrences of By due to
tensorial reduction. The renormalisation term for the gluon wavefunction in the MSSM
framework (which satisfies the Slavnov—Taylor identity §Zimt = —2§gfnite [51,52)) is

Qg Qs
02y = 7 25 +056)Bo(0;0,0)+ —logu—+log—+— D log ‘“ - (3.36)

squarks

The renormalisation term for the massless quark wavefunction in the MSSM framework
07

4dR/L

is defined in Appendix A.

External gluon counterterms

By choosing to define the counterterms in terms of By (which contains IR poles), this
necessitates additional counterterms alongside 07, in the presence of external gluons,

in order to correctly subtract the heavy fields’ IR contributions.

Qg ﬁ(]
0z = 3.37
g(ext) 471' 9 5IR ( )
This correction is not required for the case of internal gluons, as the self-energy
corrections are already naturally IR-safe due to having a non—vanishing momentum,
and their counterterms are already zero by self—cancellation. The use of external gluon
counterterms is shown below for two example processes, with the aid of counterterm

Feynman rules from Appendix A.2:

e For the process ut — g — uu (Fig. 3.4) there is a total contribution of %5Zg -
0Z4 + %5Z9 = (0. The negative sign of the self-energy counterterm ensures that

there is no overall contribution from the gluon renormalisation constant.

e For the process gg — g — wu (Fig. 3.5), there is a non—zero contribution of
%5Zg — 074 + %5Zg = 0Z4. External gluon counterterms are now required to

remove the IR poles contributed by the heavy fields. As there are two external

“In situations where we are not concerned with the nature of the divergences in our process, this
may be considered to be zero.
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Figure 3.4: Counterterm diagrams for the process uu — g — wu, noting contributions
of 6Z,.

Figure 3.5: Counterterm diagrams for the process gg — g — @, noting contributions
of 6Z,.

gluons in this process, the contribution from the external counterterms will be

20Zg(ext) = +4= é{ /€rRr, which cancels the IR miscontribution as required.

dgs within tHV

While tVH is an ideal choice of dimensional regularisation for the reasons discussed in
Section 3.2, we note that this prescription violates supersymmetric Ward identities due
to the mismatch between the number of degrees of freedom for internal gluons (D — 2)
and gluinos (2) [53]. In order to calculate supersymmetric processes featuring gluinos
in the MSSM, a modification to the bare Yukawa coupling g§°) for the vertex qqg is

required:
s [ 2
9 =gl [1 + a—w <_”f - §Cfﬂ , (3.38)

where Cy = (N2 —1)/2N,. This shift ensures that the running coupling g5 = g5 at the

one—loop level, and supersymmetry is preserved.

3.4.2 On-shell renormalisation

The renormalisation constants dm, and 67, (i massive) are fixed by on-shell
renormalisation [54]. This scheme is defined by the requirements that the self-energy
corrections to external massive particles must be zero under renormalisation. This
avoids the rise of internal propagators with denominators 1/(p? — m?) which are

naturally divergent when p? is on-shell, p> = m? (See Fig. 3.6 for example).
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+m
= M I s ()
p m¢

Figure 3.6: Example unrenormalised on—shell correction to an external fermion.

For scalar and vector particles, these requirements are:

Re {fl(mi)} =0 = oémy=+Re {E(mi)}

sy 9 L (3.39)
Re{E (m¢)} —0 = §Z4=—Re{¥(m3)}
where ¥/ = 9% /0p? and S is the renormalised self-energy:
S(p?) = 2(p?) + (p° — m3)6Zy — dmy (3.40)

For fermions, the on—shell requirement is more complicated:

Re {mi(mi)u(p)} =0 (3.41)

2 _ 2

p my,

where 3 is the renormalised self-energy:
S(p?) = B(0°) + (p— my)dZy — dmy (3.42)

The bare fermionic self-energy 3 can be redefined in terms of a pair of unknown scalar
functions A and B:

S(0?) = (p — my)A(p?) +myB(p) (3.43)
This allows Eq. (3.41) to be rewritten (expanding about the point of divergence p? =
m?p)
2

A(m2) + 2m2 B (m2) + 62, + —"%_ (B(m2) — 5 —0
(my,) + 2my, B (my,) + w+m( (mi,) — dmy /my) |u(p) = (3.44)

= 0my, = —Re {mwB(m?p)} , 0Zy = —Re {A(mi) — 2miB/(m12p)}

where B’ = OB/0p?. By choosing this renormalisation scheme, all on-shell divergences

in massive fermions are removed.
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Chapter 4

Automated virtual corrections

within MADGOLEM

4.1 Introduction

This chapter provides an overview of the MADGOLEM code, with an in—depth
explanation of the technical details involved in the virtual corrections module, on which
this thesis is focused.

MADGOLEM [14-18] is a highly modular, independent add-on to the Monte Carlo
tool MADGRAPH 4.5 [19]. It implements an automated framework in which to calculate
the NLO-QCD cross section oV“O and distributions for 2 — 2 processes.

The MADGOLEM code is split into modular components, which are run in 2 stages:

e Analytical calculation: Here the NLO process is specified for a given model
by defining a modified MADGRAPH card proc_card.dat, and then created by
executing newprocess_nlo and running the PERL script run_golem.pl. These two
files construct the analytical form of the terms that make up the differential

NLO " and write them into a set of FORTRAN9O modules ready

cross section do
for numerical calculation. This analytical output is independent of parameter

choices, so only needs to be produced once for a given process.

NLO s computed for the

o Numerical calculation: Here the total cross section o
chosen model and experimental parameter sets defined in the MADGRAPH cards
param_card.dat and run_card.dat respectively. This is achieved by executing
generate_events_nlo, which runs all of the FORTRAN90 modules through a Monte

Carlo event generator based on the MADGRAPH structure.

The different MADGOLEM modules serve to create the differential cross section

terms from Eq. (2.4):
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Chapter 4. Automated virtual corrections within MADGOLEM

e The tree-level elements do? and do™® (sans dipoles) are created by MAD-

GRAPH 4.5, which is initiated by the newprocess_nlo process.

e do™ is modified by on-shell (OS) subtraction, which is initiated by the
newprocess_nlo process. OS divergences in the real emission terms can arise at
NLO in the case where heavy colored final states emit light—quark jets, these are
handled using local OS subtraction in the PROSPINO scheme [50,55] to avoid a
potential double—counting of diagrams. Further details on the OS subtraction are

given in the Appendix of [16].

e The virtual corrections doVirtual

are calculated by newprocess_nlo and run_golem.pl.
The executable newprocess_nlo runs QGRAF [27] to generate the relevant LO and
virtual Feynman diagrams, after which the PERL script run_golem.pl runs a set
of FOrM [56] and MAPLE algorithms to analytically resolve and simplify the
resulting matrix elements using techniques inherited from GOLEM [43,57]. It
then includes model-dependent counterterms for renormalisation, and constructs
FORTRAN9O code for the resulting doV™! with references to the GOLEM95
integral library [43,44] to allow numerical calculation of scalar integrals and form

factors.

e The virtual 2 — 2 and real 2 — 3 parts of do@P°° (Eq. (2.8)) are initialised by
newprocess_nlo, and implemented as an extended add—on to the Catani—-Seymour
dipole framework provided by MADDIPOLE [24]. The two components are added
to doV'@l and do™°®! respectively, in order to cancel IR poles. Further details on

the dipole terms are given in the Appendix of [16].

A flowchart depicting the interactions of the various modules that make up
MADGOLEM is provided in Fig. 4.1.

A short list of instructions for creating and calculating a NLO-QCD process with
MADGOLEM is given in Appendix C.

4.2 Virtual corrections

The virtual corrections module in MADGOLEM is based on the Feynman-diagrammatic
approach used by GOLEM [43,57] and expounded in Chapters 2 & 3, optimised for
implementation in MADGRAPH. It is designed with the aim to calculate the NLO-QCD
virtual corrections to any 2 — 2 process in a model-generic approach, such that it can
be applied to the Standard Model, MSSM, and many other renormalisable theories.

virtual

The creation and calculation of the virtual corrections term do is primarily

governed by the PERL script run_golem.pl. This ‘master script’ runs a sequence of
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Figure 4.1: Flowchart of the MADGOLEM tool (credited to Ben Wynne).

algorithms written in FORM and MAPLE files to first apply Feynman rules to QGRAF—
produced LO, loop, and counterterm Feynman diagrams. It then uses the spinor helicity
formalism, color methods and loop reduction techniques to produce matrix amplitudes
for both LO and renormalised virtual elements, which are combined in a FORTRAN90
code that returns the numerical array [ag, ai, as], corresponding to the virtual part of
Eq. (2.2):

. 1 1
' Re (ertual)TMLO] =ap+a;— + ag—5— - (4.1)
nlning €IR €IR

Notice that the UV poles 1/&yy are cancelled upon the addition of the one-loop and
the counterterm amplitudes within MYl The remaining IR divergences contained
in a; and ag are to be cancelled by the integrated dipoles.

By combining Eq. (4.1) with the total partonic NLO-QCD cross section as described
in Eq. (2.9), the partonic NLO-QCD differential cross section for a given 2 — 2 process

is:

doNO = dsP

+ dPS5(Q) 1 [ao + CL1~i +a2%] + Z(/ dPSy Dj>

2s €IR ¢IR (4.2)
1 1 rea. 2
+dP53(Q)£m M =S "D,
J

During the numerical calculation stage, the array [ag,a1,as] is combined with the
equivalent array output by the integrated dipole term ) ; ( [ dPS, Dj): [do, d1,ds].

If the virtual corrections and dipole contributions are calculated correctly, diy = —aq
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Chapter 4. Automated virtual corrections within MADGOLEM

and dy = —ag, ensuring that the divergent IR poles are removed from the result.
This leaves the finite virtual contribution to the partonic NLO-QCD differential cross
section:

~virtua 1
dgvirt 1=dps2(Q)2 [ag + do)] (4.3)

S
To produce the total cross section, Eq. (4.3) is integrated over the weighted phase space,
including PDFs as shown in Egs. (2.1) & (2.6), and added to the total calculated LO
and real emission cross sections.

run_golem.pl also produces analytical MAPLE output in the form of partial
amplitudes: where each Feynman diagram is broken down into a basis of underlying
color structure, specific helicity, and contributing scalar integrals and form factors
(produced by the tensor reduction techniques in Section 3.3). This makes the underlying
structure of the one-loop process explicit, and allows for a large amount of information
to be analysed before a numerical calculation is even needed.

The virtual corrections code as governed by run_golem.pl can be loosely broken

down into four separate routines:

1. Generating the full set of Born diagrams, one-loop diagrams, and counterterms
with QGRAF, and translating the output into FORM code suitable for symbolic
manipulation.  The structures describing the Feynman diagrams and the
corresponding Feynman rules are rewritten as algebraic expressions, keeping
track of external wave functions, vertex couplings and internal propagators, color

factors, Lorentz structure, and the overall sign from external fermion fields.

2. Mapping the analytical evaluation of the color, helicity and tensor structures onto
partial amplitudes, i.e. a basis of color, helicity and tensor structures based on

the spinor-helicity formalism.

3. Applying an analytical reduction of tensor integrals to scalar loop integrals and /or

form factors.

4. Collecting the results and inserting the correct renormalisation constants into the
counterterms. The final output for the virtual corrections is returned both as
the set of analytical partial amplitudes in MAPLE, and a FORTRAN9O code for

calculating the numerical matrix element-squared.

run_golem.pl has several flags available to be defined before running. The first flag
is $num workers, which is set to =2 by default. This flag sets the maximum number
of individual process threads that run_golem.pl will use when calculating individual
diagrams and partial amplitudes in parallel; for maximum processing efficiency this

number should be equal to the number of available cores on the computer. The
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4.2. Virtual corrections

particles.dat:

#Name anti_Name Spin Linetype Mass Width Color Label Model

d a~ F S ZERO ZERO T d 1
d1 a1~ S D MDL  WDL T d1 1000001
g g v C ZERO ZERO 0 _ 21

particles-qgraf.dat:

#Name anti_Name Sign 2Spin Color Mass Width

d dx - 1 3 ZERO ZERO
dl dilx + 0 3 MDL WDL
g g + 2 8 ZERO ZERO

selfenergy_ct.dat:

#Name anti_Name Sign 2Spin Color Mass Width

d  dx - 1 3 CTZERO ZERD
dl dlx + 0 3 CTMDL WDL
g g + 2 8 CTMGLU ZERD

Figure 4.2: Sample particle data from a MADGRAPH model file, and corresponding
QGRAF model file, plus self-energy counterterm QGRAF model file.

second flag is the number of massless fermions in the process, $N_FERMIONS (default
=5), which affects the value of the counterterm beta functions, and must be consistent
with the model files used to generate the process. After these two there are a set of
debugging flags allowing the separate stages of run_golem.pl to be disabled, and flags
for topologically restricting the set of generated diagrams (which are discussed in the

next section).

4.2.1 Diagram generation
Qgraf generation

Initiated by newprocess_nlo, QGRAF generates all possible topological LO, counterterm,
and on—shell QCD—-induced loop diagrams that correspond to the process specified in
the MADGRAPH card proc_card.dat. The topological rules that QGRAF uses to construct
diagrams are read from modified versions of the model files used by MADGRAPH which
contain lists of all allowed particles and particle interactions (vertices) for a given model
(SM, MSSM, etc). A sample comparison between the standard MADGRAPH model files
and their QGRAF counterparts is given in Figs. 4.2 & 4.3.
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Chapter 4. Automated virtual corrections within MADGOLEM

interactions.dat, interactions-qgraf.dat:

#particlel particle2 particle3 coupling model (QCD,QED)
ddg GG QCD

d d a GAD QED

e- e—- a GAL QED

vertex_ct.dat:

#particlel particle2 particle3 coupling model (QCD,QED)
d d g GGCT QCD

d d a GADCT QED

e- e- a GAL QED

Figure 4.3: Sample interaction data from a MADGRAPH model file, and corresponding
QGRAF model file, plus vertex counterterm QGRAF model file.

The LO topologies are straightforward to produce by QGRAF, as the only required
input is the external particles defined in proc_card.dat and the QGRAF model files
particles-qgraf.dat & interactions-qgraf.dat.

Counterterm topologies are produced by asking (QGRAF to create another set of
LO topologies as before, but using the model files selfenergy_ct.dat & vertezr_ct.dat,
which have the tag CT associated with every QCD—gauge particle and interaction. The
master script run_golem.pl then creates nor copies of each counterterm topology with
nor CT-tagged propagators and vertices, and systematically strips out all but one CT
tag from each topology. This ensures that for each diagram in the LO amplitude, there
are multiple counterterm diagrams with CT-tagged vertices and propagators to act as
placeholders for the counterterm Feynman rules, in agreement with the example Fig. 3.3
in Section 3.4. run_golem.pl also copies an additional counterterm topology for each
external gluon present in the process, and attaches the WF tag to act as a placeholder for

the external gluon counterterms, in accordance with the example Fig. 3.5 in Section 3.4.

The loop topologies are created by running QGRAF with the model files particles-
qgraf.dat & interactions-qgraf.dat, and requiring the output of all one loop topologies
that satisfy the external particles (with QGRAF options= notadpole, onshell). This
output may contain many undesirable topologies of an incorrect order of the strong
coupling ag, as it includes all NLO corrections as opposed to only the NLO-QCD
corrections which are desired. To filter out the unwanted diagrams and ensure that
only NLO-QCD loops are produced, run_golem.pl first counts the order O(alt0) of
the LO process, then removes all loop diagrams that are not O(a?20F1!). The orders

are counted by searching the QGRAF diagrams for occurences of MADGRAPH—notation
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4.2. Virtual corrections

QCD couplings GG, G, G4G, GC, GQLGOM etc. This filtering process can be altered
by changing the flag nlotype within proc_card.dat (default nlotype=0). Dedicated
flags (nlotype=1,2,...) are tailored to different models and oriented to ease the
implementation of certain restrictions. For example, choosing nlotype=6 produces all

NLO corrections and enforces the QGRAF rule:

false= iproplg,gh,u,d,c,s,t,b,sg,sgx,0,0] ;

This flag is used for the calculation of NLO-QCD corrections to the sgluon model, and
demands at least one colored propagator to be from the SM or a sgluon/anti-sgluon.
Setting nlotype to be anything other than the default 0 does not guarantee the creation
of only NLO-QCD loops, and therefore demands a careful understanding of the process
to be calculated.

The overall sign associated with each QGRAF topology has to be fixed by
run_golem.pl, as external Majorana particles (when present) can confuse the QGRAF
sign algorithm, due to having an initially unfixed fermion flow. Therefore this value is
prescribed by run_golem.pl in a consistent manner using Eq. (2.22). Example QGRAF
output for the LO, counterterm and loop topologies for the process ete™ — URUY, is
given in Figs. 4.4, 4.5 & 4.6. The output is formatted for parsing by FORM using a
QGRAF style template created by Thomas Reiter [58].

More precise topological constraints on the created diagrams (e.g. removing all
gluonic t—channel contributions or self-energy corrections) can also be applied by
run_golem.pl, which also checks for and removes diagrams which are trivially zero,
such as diagrams which mix photonic/gluonic currents via a quark loop. These
rules are applied by searching for particular topological features within each diagram
and discarding those which do not meet the requirements. For example, setting
$gluon_tchannel = O calls the PERL code in Fig. 4.7. This ensures that all
gluonic t—channel diagrams are discarded from the process. Alternatively, setting
$selfenergies = O calls the PERL code that discards diagrams with 2 non-loop
propagators (propagators without any terms of the loop momentum ¢*). By making
use of these field insertion and loop topological restraint options in run_golem.pl, any
debugging and testing of processes in MADGOLEM can be greatly simplified.

run_golem.pl also uses the topological selection algorithms to identify and group
together diagrams with common topologies by changing the overall factor in the QGRAF
output. For example, the set of self-energy corrections to the gluon propagator contains
ny identical diagrams featuring massless fermions in the loop; these can be grouped

into one such diagram with an overall factor n fl.

!This technique is known as loop-filtering in the literature.
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Chapter 4. Automated virtual corrections within MADGOLEM

qgraf_lo.out:

x——#[ diagrami:

*

Local diagraml =

+ 1

inp([field.ep], idxlril, pl) =*
inplorentz(-1, iviriLl, pl, ZERO ) =*
inpcolor (1, iviriC1l) =
inp([field.em], idxlr2, p2) *
inplorentz(+1, ivir2L1, p2, ZERO )
inpcolor(2, ivir2C1) *
out([field.ur], idx2r3, p3) *
outlorentz(+0, iv2r3LO, p3, MUR )
outcolor (1, iv2r3C3) *
out([field.urx], idx2r2, p4) *
outlorentz(-0, iv2r2L0, p4, MUR )
outcolor (2, iv2r2C3) *
vertex(iv1l,GZL ,ONE,
[field.ep], idxirl, -1, pil, ivirili, -1, iviriCi,
[field.em], idx1r2, +1, p2, ivir2L1, +1, ivir2Ci,
[field.z], idx1r3, +2, -pl-p2, ivir3L2, +1, iv1r3Cl) x*
vertex(iv2,GZURUR ,ONE,

[field.z], idx2rl, +2, pl+p2, iv2ril2, +1, iv2riCl,
[field.ur], idx2r2, +0, -p4, iv2r2L0, +3, iv2r2C3,
[field.urx], idx2r3, -0, -p3, iv2r3L0, -3, iv2r3C3) *
prop([field.z], ZERO, idx2rl, idx1r3) =*

propcolor(+1, iv2riC1l, iv1ir3Cl) *

proplorentz(+2, -pl-p2, ZMASS , iv2riL2, ivir3L2)

*

*

*

)

*—-#] diagrami:

Figure 4.4: Sample output LO QGRAF topology for the process ete™ — aru}.
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4.2. Virtual corrections

qgraf_ct.out:

x——#[ diagrami:

*

Local diagraml =

+ 1 x

inp([field.ep], idxlrl, pl) *
inplorentz (-1, iviriLl, pl, ZERO ) =
inpcolor(1l, iviriC1l)
inp([field.em], idx1r2, p2) *
inplorentz(+1, ivir2L1, p2, ZEROD ) *
inpcolor(2, ivir2C1) *
out([field.ur], idx2r3, p3) *
outlorentz(+0, iv2r3LO, p3, MUR )
outcolor (1, iv2r3C3) *
out([field.urx], idx2r2, pd) *
outlorentz(-0, iv2r2L0, p4, MUR )
outcolor (2, iv2r2C3) *
vertex(ivl,GZL ,0NE,
[field.ep], idxirl, -1, pil, ivirill, -1, iviriCi,
[field.em], idx1r2, +1, p2, ivir2L1, +1, ivir2C1,
[field.z], idx1r3, +2, -pl-p2, ivir3L2, +1, iv1r3Cl) x*
vertex (iv2,GZURURCT,ONE,

[field.z], idx2rl, +2, pl+p2, iv2ril2, +1, iv2riCl,
[field.ur], idx2r2, +0, -p4, iv2r2L0, +3, iv2r2C3,
[field.urx], idx2r3, -0, -p3, iv2r3L0, -3, iv2r3C3) *
prop([field.z], ZERO, idx2rl, idx1r3) *

propcolor(+1, iv2riCl, ivir3C1l) *

proplorentz(+2, -pl-p2, ZMASS , iv2ril2, iv1ir3L2)

*

*

b

*——#] diagraml:

Iﬁgun345:Sanqﬂeoutputcmnneﬂﬁmﬁ(QGRAFtopok%yibrtheproaﬁse+e_-—>&R@E.
The value GZURURCT is the placeholder for the NLO-QCD counterterm Feynman rule
associated with the Zuguy, vertex.

95
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qgraf-nlo.out:

x——#[ diagraml:

*

Local diagraml =

+ 1 x*

inp([field.ep], idxlrl, pl) *
inplorentz (-1, iviriLl, pl, ZERO )
inpcolor(1l, iviriC1l)
inp([field.em], idx1r2, p2) *
inplorentz(+1, ivir2L1, p2, ZERO ) *
inpcolor(2, ivir2C1) *
out([field.ur], idx2r3, p3) *

*

outlorentz(+0, iv2r3L0O, p3, MUR ) *
outcolor (1, iv2r3C3) *
out([field.urx], idx3r4, pd) *
outlorentz(-0, iv3r4lLO, p4, MUR ) *

outcolor(2, iv3r4C3) *

vertex(ivl,GZL ,0NE,

[field.ep], idxirl, -1, pl, ivirill, -1, iviriCi,
[field.em], idx1r2, +1, p2, ivir2L1, +1, ivir2C1,
[field.z], idx1r3, +2, -pl-p2, ivir3L2, +1, iv1r3Cl) *
vertex(iv2,GC ,0NE,

[field.gl, idx2r1l, +2, -ki1, iv2rilL2, +8, iv2riCs,
[field.ur], idx2r2, +0, ki1+p3, iv2r2L0, +3, iv2r2C3,
[field.urx], idx2r3, -0, -p3, iv2r3L0, -3, iv2r3C3) *
vertex(iv3,GGZURUR ,DUM R

[field.z], idx3rl, +2, pl+p2, iv3ril2, +1, iv3riCl,
[field.gl], idx3r2, +2, k1, iv3r2L2, +8, iv3r2C8,
[field.urx], idx3r3, -0, -k1-p3, iv3r3LO, -3, iv3r3C3,
[field.ur], idx3r4, +0, -p4, iv3r4lLO, +3, iv3r4C3) *
prop([field.z], ZERO, idx3rl, idx1r3) =*

propcolor(+1, iv3riC1l, iv1ir3C1l) *

proplorentz(+2, -pl-p2, ZMASS , iv3rilL2, ivir3L2) *
prop([field.ur], idx3r3, idx2r2) *

propcolor(+3, iv3r3C3, iv2r2C3) *

proplorentz(+0, k1+p3, MUR , iv3r3L0, iv2r2L0) *
prop([field.g], idx3r2, idx2rl) *

propcolor(+8, iv3r2C8, iv2ri1C8) *

proplorentz(+2, -k1, ZERO , iv3r2L2, iv2ril2)

b

*——#] diagraml:

Figure 4.6: Sample output loop QGRAF topology for the process ete™ — aru},.
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4.2. Virtual corrections

run_golem.pl

#### gluon, t channel
if ($gluon_tchannel==0) { if($colorindex==8)
{if ($string3[1] ="/.proplorentz\(\+2, \-p1\+p3, ZERO./)
{$discard = True;}}
}
if ($gluon_tchannel==0) { if($colorindex==8)
{if ($string3[1] ="/.proplorentz\(\+2, pi\-p3, ZERO./)
{$discard = True;}}
}
if ($gluon_tchannel==0) { if($colorindex==8)
{if ($string3[1] ="/.proplorentz\(\+2, \-p2\+p4, ZEROD./)
{$discard = True;}}
}
if ($gluon_tchannel==0) { if($colorindex==8)
{if ($string3[1] ="/.proplorentz\(\+2, p2\-p4, ZERO./)
{$discard = True;}}
}

Figure 4.7: Sample topological selection PERL code in run_golem.pl.

Data management

Along with the produced topological diagrams, QGRAF produces an additional input
file for run_golem.pl to read, golem_input.dat, which contains the basic external particle
information gathered from the QGRAF output. An example golem_input.dat file
for the process ete”™ — apu}, is given in Fig. 4.8. The data in golem_input.dat
allows run_golem.pl to calculate the normalisation factors for the initial particles, and
determine the basis of color structures that will arise from color flow decomposition.
The normalisation factors n!-nj - ng that precede the amplitude-squared as shown

in Eq. (4.1), are calculated from the golem_input.dat data:

golem_input.dat:

#Name Sign 2Spin Color Mass
ep - 1 1 ZERO
em - 1 1 ZERO
ur + 0 3 MUR
urx + 0 3 MUR

Figure 4.8: golem_input.dat file for the process eTe™ — upu},.
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Chapter 4. Automated virtual corrections within MADGOLEM

$SPIN_COL_AVG = $color[0]*$color[1]*$spinavg[0]*$spinavg[1]*x$symfac;

For massless vectors, spinavg = 2spin, and for all other particles spinavg = 2spin + 1.
The symmetry factor is an additional normalisation required for identical final state
particles: sym fac = 2 for identical particles, sym fac = 1 for distinct particles.

The color basis that will arise from color flow decomposition methods discussed in

Section 2.5 can be estimated by the description:

ﬁ <T )J(k R Z (53 (1)) 53((20( ) . 53((Z£;L8))> . (4.4)

k=1 0ESng

In other words, for ng external color octets (and ng3 external color triplets) there will
be ng unsaturated adjoint generators, which once saturated according to the color flow
decomposition method (as seen in Eqgs. (2.33) & (2.36)), will produce (ng + n3)! sets
of color basis structures (from Eq. (2.37)). It is then simply a case of using the color
information of the external particles, as provided by golem_input.dat, to produce the
fully permuted set of color basis structures for the process amplitude.

For each set of diagrams (LO, counterterm, loop), run_golem.pl produces a FORM
and MAPLE formatted input file INPUT_DATA_TREE|COUNTER|LOOP.h|map. This
file contain all the relevant process information required by the following algorithms:
number of diagrams, external particle types and masses, normalisation factors, color
bases, and several other flags for debugging and simplification purposes. In order
for FORM to process the QGRAF—written diagrams for application of Feynman rules,
run_golem.pl also creates a list of FORM declarations for all the model-specific
parameters (fields, masses, couplings, widths) found in the diagrams. If the flag
nlosimp in proc_card.dat is enabled (default =1), several files containing FORM identities
simplifying the model couplings (setting vanishing couplings to zero, merging identical
couplings) will also be produced, which can improve the computation efficiency by

several factors depending on the model and process concerned.

Application of Feynman rules

Once the QGRAF diagrams have been produced and filtered by run_golem.pl, the
remaining diagrams are processed by a set of FORM routines, which will apply the
model-independent Feynman rules specified in Section 2.3.

The FORrM files qgraf_tree| counter|loop.frm take in each QGRAF-produced diagram?

one at a time by use of the command (for LO):

2Examples given in Figs. 4.4, 4.5 & 4.6.
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#include ‘SUBDIR’qgraf_lo.out # diagram‘num’

where ‘SUBDIR’ is the directory of the QGRAF output, as referenced in (for LO)
INPUT_DATA_TREE.h. The QGRAF diagrams are processed as follows:

1. The two outgoing particles are transformed into incoming particles by reversing

the momenta:

argument vertex, proplorentz;
id p3 = -p3;
id p4 = -p4;

endargument;

.sort

This enforces conservation of momentum as in Eq. (2.20).

2. By evaluating the vertex () functions in QQGRAF diagrams one can determine the
coupling constant, 2spin, momentum (directed into the vertex), and color type
of each leg within the vertex. This is all the information needed to apply the
model-independent Feynman rules for vertices as derived in Section 2.3. Within
each vertex() function are three coordinates for each leg, which connect the
topology, Lorentz structure and color structure of the vertex to other parts of the
diagram. A sample FORM identity for the 3—color octet triple vector vertex is

given below:

*-——#[ VVV vertex (QCD)
id once vertex(iv?, g?, ONE,
fieldl?, idx17?, 2, k17, ivilL?, 8, iviC?,
field27, idx27, 2, k27?7, iv2L?7, 8, iv2C?,
field3?, idx37, 2, k37, iv3L?, 8, iv3C?) =
- g * (
+ d(iviL, iv2L) * (k1(iv3L) - k2(iv3L))
+ d(iv2L, iv3L) * (k2(iviL) - k3(iviLl))
+ d(iv3L, iviL) * (k3(iv2L) - k1(iv2L))
) * £(iv1lC, iv2C, iv3C) * node(idx1l, idx2, idx3);
*-—-#] VVV vertex (QCD)

In the case of vertex counterterms tagged by CT, the coupling constant (e.g.

GG1CT) is replaced at a later stage by the counterterm Feynman rule.
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Chapter 4. Automated virtual corrections within MADGOLEM

3. The inp|out () function, combined with inp|outlorentz() and inp|outcolor ()

functions describes the incomingloutgoing external particles: these functions
contain the 2spin, momentum, mass and color type of the external particle, which
is enough to apply the model-independent Feynman rules for external particles
as derived in Section 2.3. Within the three functions are coordinates to link the
topology, Lorentz structure and color structure to other parts of the diagram as
before. Note that formerly outgoing fermions are now reversed, so that only u(p)
& ©(p) are produced. In the case of external gluon counterterms tagged by WF,
a multiplicative factor WFcorr([field.g]) is created with a standard external
gluon; this factor will be replaced at a later stage by the external counterterm

Feynman rule.

. The prop() function, along with the propcolor () and proplorentz() functions,

contains the information required to apply model-independent Feynman rules
for the internal propagators of the diagram. These functions contain the 2spin,
momentum, mass, particle width (if available) and color type of the propagator,
along with the Lorentz, color and topological coordinates. In the case of CT—
tagged propagators: as the self-energy counterterm cannot be factorised into a
standard propagator multiplied by a kinematically—invariant term, propagators
tagged by CT have to be transformed into the product of two propagators
separated by a kinematically—dependent structure with counterterm placeholders.

For the example of the fermionic self-energy counterterm, the translation is:

prop(field?,...) - proplorentzCT(sign?{-1,1},p?,m?,i?,j?7)
 p+m p+m (4.5)
where values for §Z and dm are taken from the model-dependent file selfen-

ergy_ct.dat, and replaced at a later stage.

. After each of the individual terms (vertices, external particles, propagators) is

translated by FORM, they need to be linked using the coordinate structure, to
ensure that the non—commutative Dirac structure and fermion flow is correctly
applied throughout the diagram. Individual non—commutative structures desig-
nated by NCContainer(?a,iv17,iv27?)3 are connected by coordinates ivi and

iv2:

id NCContainer(?7a,iv1?,iv2?) NCContainer(?b,iv27,iv37?) =

NCContainer(?a,?b,iv1?,iv37?);

60

3Using notation inspired by [58].
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GRAPHS_-MGGOLEM_LOOP.h:

G diagraml =
Den(- k1 - k2,ZMASS2,ZMASS,0) * intM( Den(ql,0),Den(k3 + q1,MUR2) ) *
SUNSum(G1u9,8) * SUNSum(Co0l110,3) * SUNT(Glu9,Co0l3,Co0l10) *
SUNT(G1lu9,C0110,Co014) * GC * GGZURUR * scalar3 * scalard4 * Pi~(-2) x*

(  1/16 * Spinor(k1,0,-1) * g_(2,7_,k3) * Spinor(k2,0,1) * GZL2
+ 1/32 * Spinor(k1,0,-1) * g_(2,7_,q1) * Spinor(k2,0,1) * GZL2
+ 1/16 * Spinor(k1,0,-1) * g_(2,6_,k3) * Spinor(k2,0,1) * GZL1
+ 1/32 * Spinor(k1,0,-1) * g_(2,6_,q1) * Spinor(k2,0,1) * GZL1 );

Figure 4.9: Sample loop Feynman diagram translated from QGRAF output in Fig. 4.6

These structures have natural ending points in either the external fermions,
or are self-connecting as a closed fermion loop (which introduces a factor
—1). After all NCContainer () functions have been merged, the internal Dirac
algebra (v#,p,Ilg/r,, 1) is correctly ordered, and defines the fermion flow. When
Majorana particles are present, the individual coordinates in NCContainer () may
not align correctly. In this case special care is taken to ensure that the fermion

flow is correctly aligned:

id NCContainer(?a,iv1?,iv2?) NCContainer(?b,iv3?,iv27?7) =

NCContainer(7a,flip(?b),iv1l?,iv37);

where £1ip() is defined using the flipping rules as defined in Eq. (2.29).

6. FORM finally cleans up the diagram: removing topological remnants, contracting
color and Lorentz indices and applying simplification identities (enabled by

nlosimp=1) throughout.

After processing all QGRAF diagrams in this manner, three FORM files

(GRAPHS_MGGOLEM_TREE|COUNTER|LOOP.h) containing the full set of LO,
counterterm and loop Feynman diagrams?® for the NLO-QCD process are written. A
sample loop Feynman diagram for the process eTe™ — upuj, is given in Fig. 4.9,

translated from the QGRAF output in Fig. 4.6. The correspondence between the

“Using notation inspired by [59].
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MADGOLEM FORM functions and the standard Feynman algebra is defined:

83
SUNT(a,i,§) = (T*) , SUNF(a,b,c) = f*, SUMSum(ali,8)3) => ,
ali

Spinor (k,m,+1) =v|u(k,m) ,

) (4.6)
D 2,m,T) =
en(pum , M, ) (p2 _ m2 + Zmr) ’
intM( Den(),...,Den() ) = /Z-ﬂ_D/2 Ny---N,

Dirac algebra is contained within the special FORM function g_() [56].

4.2.2 Partial amplitude factorisation

The script run_golem.pl now processes the Feynman diagrams found in
GRAPHS_-MGGOLEM_TREE|COUNTER|LOOP.h, using FOrRM and MAPLE algo-

rithms to factorise the diagrams into partial amplitudes, i.e. a basis of color, helicity

and tensor structures. Here the LO and counterterm diagrams can be handled in an

identical manner, as they are both tree—level diagrams with no tensorial structures, and

the CT-tagged placeholders are scalar invariants and thus unaffected by the following

techniques. Therefore first the processes applied to the LO and counterterm diagrams

will be described, followed by the loop diagrams.

LO and counterterm diagrams

The key steps run by run_golem.pl to factorise LO and counterterm diagrams are:

1. The MAPLE algorithm PROCESS-TREE|COUNTERGRAPH_INFO.map calcu-

lates the full set of dot products for the external momenta (k; - k;) in terms
of the Mandelstam variables (s = s(k1,k2), t = s(k1,k3), u = s(k2,k3))>?,
and external masses. This is computed from the external masses defined in
INPUT_-DATA_TREE|COUNTER.map. Due to conservation of the external
momentum, the dot products can be defined purely in terms of two out of the
three Mandelstam variables; these definitions are output as FORM identities in
kikj_ LO|COUNTER.h.

. The ForMm script ALL_.TREE|COUNTER_-GRAPHS.frm calls the color flow

decomposition algorithms contained in COLOR_ALGEBRA.h. These algorithms

apply the techniques discussed in Section 2.5 to saturate the external color octets,
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and evaluate the resulting color structures that factorise out from the amplitude
as shown in Eq. (2.36). The factorised color structure for each diagram (numbered
GNUM) is output to a MAPLE file COLOUR_INFO_G ‘GNUM’ _LO|COUNTER.mapout,

ordered by the number of separate color bases.

. The ForwMm script ALL_TREE|COUNTER_GRAPHS.frm calls the spinor helicity
algorithms contained in HELICITY_PROJECTION_AUTO.h to process the re-
maining kinematic partial amplitude using the techniques discussed in Section 2.6.
These algorithms apply Eqs. (2.73) & (2.75) to each pair of external fermions
connected by an unbroken fermion line (o(k;) & w(k;)), choosing the reference
momentum (¢ = $kref) to be equal to another external light-like momentum in

the process:

#if ( “1°<3 && “j’<3)

#$kref=k3b;

#elseif ( ‘i’=1 && “j’>2 ) || ( ‘i°>2 & ‘j’=1)
#$kref=k2b;

#else

#$kref=kib;

#endif

.sort

Here k3b is the light—like momentum of k3, as defined by the mass decomposition
formula (Eq. (2.61)). Each external vector boson e”(k;) is processed using
Eq. (2.77), choosing the reference momentum (¢ = $kref), and ‘glueing’

momentum (n = $kglue) to be other light-like external momenta:

#if “jr=1
#$kref=k2b;
#$kglue=k3b;

#elseif “j’=2

#$kref=klb;
#$kglue=k3b;
#else
#$kref=kib;
#$kglue=k2b;
#endif
.sort
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External scalars, while not requiring helicity projections, are also assigned a
reference momenta in order to calculate the light-like momentum by mass
decomposition (Eq. (2.61)):

#if <jr=
#$kref=k2b;
#else
#$kref=kilb;
#endif
.sort

By the end of HELICITY_PROJECTION_AUTQO.h, the kinematic partial ampli-
tude is factorised into separate helicity—dependent components that are composed

of Dirac traces with a bra—ket spinor product prefactor.

There is one caveat that arises when choosing the reference vectors for the external
fermion pairs: when the process being calculated has four external fermions, and
contains diagrams featuring all three topological channels of momentum transfer
(s—channel, t—channel, u—channel), the above choices of reference momenta do not

work.

The explanation for this is that the reference momentum for each fermion pair
has to be chosen consistently for each diagram in the process, in order for the
physical observable (based on the amplitude—squared) to be reference—invariant.
From Eq. (2.75) it can be seen that factors of

1 1 1 1
liq] ™ (ig) " [dal’ (Jq)

(4.7)

appear when constructing helicity amplitudes from the connected fermion pairs
U(kj)Tu(kr). Because of these factors, the reference momentum ¢ cannot be
chosen equal to the light—like momentum of either external fermion in the pair,

as the resulting helicity amplitudes will contain unphysical divergences as
[ii]=(ii)=0. (4.8)

With this in mind, processes with four external fermions have the potential to
produce diagrams containing every possible fermion pair (connected by the three
topological channels: s—channel, t—channel, u—channel); in this case, there is no
legal combination of external momentum available to q = $kref that will not

cause divergent results. This situation also occurs when all four external particles
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are massive, as it becomes impossible to produce a light-like reference momentum

based on external momenta using Eq. (2.61).

To navigate this concern, when the process contains four external fermions or four
massive particles run_golem.pl enables the option ($k5 = 1)°. This causes the
spinor helicity algorithms to choose the reference vector for fermions and scalars
to be

#$kref=kb;

The four-momentum k5 corresponds to a fifth external momentum in the process
ks, that is light-like and completely independent of the other external momenta.
Due to this independence, the summation of the four standard momenta is still

conserved:
> k=0, (4.9)

however the kinematic structure of the partial helicity amplitude is no longer
purely defined by the conventional Mandelstam variables, including also the terms
(s15 = s(k1,k5), s95 = s(k2,k5), s35 = s(k3,k5), s45 = s(k4,k5))7.

4. After producing the helicity—dependent partial amplitudes,
ALL_TREE|COUNTER_GRAPHS.frm runs DIRACOLOGY.h to evaluate the
Dirac traces contained in the helicity amplitudes using the FORM command
trace4 for each fermion line, and then applying the identities read from
kikj_-LO|COUNTER.h to reduce the helicity amplitude to a set of kinematically—
invariant Mandelstam variables (with extra terms in the case of k5). Non-
invariant terms ~ e, okt kY kPkg, will also arise from the trace by Eq. (2.54).
When k5 is not present in the process, these terms vanish upon application of the
identity k4 = —k1 — ko — k3. When ks is present, one non—invariant term will
survive: i€ poky ki kEkg; this term is replaced by the placeholder ckSEPSTENSOR

to be evaluated numerically during the Monte Carlo event generation process.

5. The resulting kinematically—invariant helicity—dependent partial amplitude (with
non—invariant bra—ket prefactor) is output to a MAPLE file
GRAPH_‘GNUM’ _LO|COUNTER.mapout, with respect to the factorised color
bases denoted by COLOURPOLY (‘GNUM’, ‘CNUM’).

Sample factorised output from GRAPH_2_LO.mapout for the process eTe™ — uu is
given in Fig. 4.10, where COLOURPOLY (2, 1) is defined in COLOUR_INFO_G2_LO.mapout

5This option can also be enabled by setting ($k5debug = 1) in the debugging options in run_golem. pl.
" Also calculated by PROCESS_TREE|COUNTERGRAPH_INFO.map when $k5 is enabled.
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GRAPH_2_LO.mapout:

G GRAPH2 = + POWER(S12,-1)*AMPINFO(2,4,-1,1,-1,1,0,0,0,0,k5,k5,k5,k5,
InvSpaa(kl,k5)*InvSpaa(k3,k5) *InvSpbb (k2,k5) *InvSpbb (k4,k5) ) *
COLOURPOLY(2,1) * ( GAL2xGAU2*S23*S25*S35 + GALQ*GAU2*523*515*S45‘
+ 2xck5EPSTENSOR*GAL2*GAU2*S45 - 2*xck5EPSTENSOR*GAL2*GAU2*S35
+ 2%ckSEPSTENSOR*GAL2*GAU2%S25 — 2%ck5EPSTENSOR*GAL2*GAU2*S15 )

Figure 4.10: Partial output for GRAPH_2_LO.mapout for the process eTe™ — uu.

as

COLOURPOLY[ 2,1 ]:= dd(Col4,Col3):

The function AMPINFO() in Fig. 4.10 contains information describing the diagram
number (2), number of external particles (4), helicity basis (-1,1,-1,1), external
masses (0,0,0,0), reference momenta (k5,k5,k5,k5), and bra—ket prefactor
(InvSpaa(kl,k5)*InvSpaa(k3,k5) *InvSpbb (k2,k5) *InvSpbb (k4,k5) ), where

InvSpaa(k1,k2) = (12)7', InvSpbb(k1,k2) =[12]", (4.10)

using a similar convention to [60].

Loop diagrams

The key steps run by run_golem.pl to factorise the loop diagrams into partial amplitudes

are:

e For each diagram,the number of loop propagators and maximum tensor rank is
recorded by the FORM file PRE_PROCESSING_LOOP.frm. This file also orders
the loop denominators according to Eq. (3.1) and records the ordering of the
internal k—momenta. The loop denominator IntM( Den(),...,Den() ) is then
rewritten into the scalar Passarino—Veltman terminology A0i(), B0i(), C0i(),

D0i (), where the internal parameters record the internal momenta and masses.

e The MAPLE algorithm PROCESS_LOOPGRAPH_INFO.map calculates the full
set of dot products for the external momenta as for the LO and counterterm
case, and outputs the resulting identities to kikj.h. It also calculates the ordered
loop r—momenta as defined in Egs. (3.15) & (3.16), and produces the identities
translating between the original internal k~momenta and the new r—momenta in
R2K.h and K2R.h, as well as a list of dot product identities for r—momenta
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in rirj.h. A file (PVI2SLh) providing the translation from the Passarino-
Veltman defined loop denominators A0i(), BOi(), C0i(), DOi() into the r—
momentum—based scalar integral terminology is also produced, of which an

example is given below:

#if ‘GNUM’=1

id C0i(k,k+k3, k-k4, mass3, massl, mass2) =
S1(D,3,r1, r3, 0, massl, mass2, mass3);

#endif

.sort

e The MAPLE algorithm CREATE_FUNLIST.map predicts a complete MAPLE list
(FUNLIST.map) of the possible scalar integrals and form factors that will be
produced by the application of tensor reduction methods, and creates a FORM
file symmetrise_funargs.h listing the potential symmetries in the resulting scalar
integral and form factor arguments, based on the known r—momenta and internal

masses.

e The FOrRM script ALL_LOOP_GRAPHS.frm (which can process $num workers
loop diagrams in parallel by multi-threading) calls the identities listed in
PV2SI.h to translate the loop denominators into the r—momentum basis,
followed by the color algorithms in COLOR_ALGEBRA.h (which outputs
the MAPLE file COLOUR_INFO_G‘GNUM’ _LOOP.mapout), and the helicity
projection techniques in HELICITY_PROJECTION_AUTO.h, which are already

discussed above.

e After producing the color basis and helicity—dependent partial amplitudes,
ALL_LOOP_GRAPHS.frm runs DIRACOLOGY .h, which applies the algorithms
discussed in Section 3.2.1 to dimensionally—split the Dirac algebra in the
numerator and separate the partial amplitude into D- and D-dimensional terms,
at the point before Dirac traces are evaluated®. DIRACOLOGY.h then applies
the Dirac traces using Eq. (3.10) to avoid the 4-dimensional constraint on trace4.
The identities from kikj.h are applied, reducing the helicity amplitude to a set of
Mandelstam variables (including k5 terms) and loop integral numerator terms of

G, ¢* and q - ki.

e ALL_LOOP_GRAPHS.frm next translates the remaining k; terms in the numer-
ator into r—-momenta by calling the file K2R.h. Note that the k5 momentum (if

8Dimensional splitting is applied to the LO and counterterm diagrams as well, but has no ultimate
effect as the corrections arising from this begin at O(¢).
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present) is unaffected by this. All terms ~ 2 are also rewritten in terms of the

D and D-dimensional loop momenta using Eq. (3.10) (¢% = ¢% + ¢*):

id kh.kh = k.k - kt.kt;

This leaves the helicity—dependent partial tensor amplitude purely in terms of

r—momenta, and ready for preliminary tensor simplification.

ALL_LOOP-GRAPHS.frm applies the Passarino—Veltman (PV) reduction for-
malism as described in Subsection 3.3.1 to reduce the rank of the tensor integral,
by calling CancelPropInHex.h. The algorithm that corresponds to the specific
example given in Eq. (3.18) is:

id SI(D,3,r1?,r27,0,eml1?,em2?,em3?) * r1?.k" ‘1’ = r1.k~{‘1’-1} *
( s1(D,2,r1,r2,eml1,em2) - SI(D,2,r2, 0,em2,em3)
+ SI1(D,3,r1,r2, O,eml,em2,em3) * ( rl.rl-eml+em3 ) ) / 2;

Iterative application of the PV reduction algorithm in Eq. (3.19) ensures that
each rank r; n;—point tensor integral can be reduced to a single scalar n;—point

integral, plus a set of rank ry < r; tensor and scalar ny < n;—point integrals.

In the cases where k5 is not present, this implies that after PV reduction,
(regardless of the process calculated) the most complicated 4—point integral

remaining is the scalar box integral!

When ks is present however, the PV reduction formalism does not work on
numerator terms ~ ¢ - k5, as ks is not writeable in terms of r;. In this case,
it is possible for 4-point tensor integrals to survive the algorithms contained in
CancelPropInHex.h.

After PV reduction, numerator terms are tidied up by calling rirj.h to rewrite

any dot products 7; - 7; into Mandelstam variables and external masses.

After PV reduction, ALL_LOOP_GRAPHS.frm calls SI2TI.h, which combines the
loop momenta g”! --- ¢g#*" in the numerator with the scalar integral denominator
SI(D,n,...) to produce the rank r tensor integral function

TI(D,n, 7y 41y« -y by --.). SI2TILR also applies the higher—dimensional identities
that arise from D-dimensional momenta ¢ in the numerator, as shown in
Eq. (3.13).

ALL_LOOP_GRAPHS.frm next calls the FORM file TI2FF.prc, to rewrite the

n—point rank r tensor integrals TI(D,n,r, u1,..., M, ...) in terms of the form
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GRAPH_2_LOOP.mapout:

G GRAPH2 = + POWER(S12,-1)*AMPINFO(2,4,1,-1,1,-1,0,0,0,0,k5,k5,k5,k5,
InvSpaa(k2,k5)*InvSpaa(k4,k5) *InvSpbb (k1,k5) *InvSpbb(k3,k5)) *
COLOURPOLY(2,1)*TC32(0,0,D,0,812,0,0,0,0)*Pi~(-2)* eps *

( 1/4*ck5EPSTENSOR*GAL2*GG2 "~ 2*xGAU2*S25
- 1/4*ck5EPSTENSOR*GAL2*GG2~2*GAU2*S15 )

Figure 4.11: Partial output for GRAPH_2_.LOOP.mapout for the process ete™ — u.

factor representation as given in Egs. (3.23)—(3.27). The form factors use the
alternate notation TCnr({j},D,...), instead of A|B|C’?JZ§($).

e Lastly, ALL_.LOOP_GRAPHS.frm tidies up the partial tensor amplitude by dis-
carding terms of order O(g) and returning the amplitude momenta to its original
k; basis using R2K.h. The resulting kinematically—invariant helicity—dependent
partial loop amplitude rearranged into form factors (with non—invariant bra—
ket prefactor) is output to the MAPLE file GRAPH_¢GNUM’ _LOOP.mapout, with
respect to the factorised color bases denoted by COLOURPOLY (‘GNUM’, ‘CNUM’).

Sample factorised output from GRAPH_2_LOOP.mapout for the process ete™ — ua is
given in Fig. 4.11, where COLOURPOLY (2, 1) is defined in
COLOUR_INFO_G2_LOOP.mapout as

COLOURPOLY[ 2,1 ]:=dd(Col4,C0l3)*NC~(-1)-dd(Col4,Col3)*NC:

The form factor TC32(0,0,D,0,812,0,0,0,0) here corresponds to the conventional
form factor B>?(S).

4.2.3 Tensor reduction

After having factorised and simplified the Feynman diagrams into partial amplitudes
based on color basis, helicity dependency and tensorial structure, the script run_golem.pl
prepares for a full reduction of the tensor integrals found in the loop diagrams (as
written in GRAPH_‘GNUM’ _LOOP.mapout).

run_golem.pl calls the MAPLE script CREATE FULL_ REDUCTION_CODE.map,
which creates a set of FORM projections PROJECT_GRAPH_‘GNUM’ _C'‘CNUM’ _E1.frm
for each partial amplitude, ordered by color basis ¢‘CNUM’ and diagram number ¢GNUM’.
These projection algorithms are designed to input the loop diagram FORM files
GRAPH_‘GNUM’ _LOOP.mapout and read off the terms corresponding to
COLOURPOLY (“GNUM’ , ‘CNUM’).
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For processes where k5 is not present, the potential tensor integrals to be processed
are at most 3—point triangles, as the PV reduction formalism applied previously by
CancelPropInHex.h ensures that all 4—point box tensors are completely reduced to
the scalar box integral plus a set of n < 4-—point tensor and scalar integrals. In this
case, the projection algorithms in PROJECT_GRAPH_‘GNUM’ _C'‘CNUM’ _E1.frm apply
a comprehensive list of integral reduction algorithms as defined in Appendix B, which
are fundamentally based on Egs. (B.1) & (B.2), in order to reduce all tensor integrals
to a fundamental set of purely—scalar integrals.

When k5 is present however, it is possible for 4—point tensor integrals to survive the
PV reduction algorithms, as discussed previously. In this situation, the projection
algorithms do not contain definitions for the reduction of (potentially massive) 4—
point tensor integrals; these integrals are therefore preserved in their form factor
representation, and added to the fundamental set of integrals for later calculation by
the GOLEM95 integral library.

After running the reduction algorithms, PROJECT_GRAPH_‘GNUM’ _C ‘CNUM’ _E1.frm
calls the ForM file FxpandInEpsilon.h to expand and simplify € terms:

repeat;

if ( count( eps,l1 )>2 ) discard;
id 1/(D-3) =1  +2xeps/(D-3);
id 1/(D-2) = 1/2 +2*eps/(D-2)/2;
id 1/(D-1) = 1/3 +2*eps/(D-1)/3;
id 1/D = 1/4 +2xeps/D/4;
endrepeat;

.sort

Scalar integrals that have a prefactor O(e) such that the total term (when including
known UV or IR divergences) is also of order O(e) are removed here also. The file
symmetrise_funargs.h is also called to collect integrals with symmetrically—equivalent
arguments. The projection algorithms finally run through the list of possible
fundamental scalar integrals and form factors as described in FUNLIST.map to collect
the total coefficient of each, with respect to diagram number and color basis. When
run by FORM the resulting coefficients are written into a set of MAPLE files named by
the format RES_G‘GNUM’ C' ‘CNUM’ E1F ‘FNUM’.mapout, where ‘FNUM’ is the assigned
integral number from the total set of contributing integrals in the amplitude.

Once CREATE FULL_REDUCTION_CODE.map has created the projection algo-
rithms, run_golem.pl runs them iteratively over all loop diagrams and color bases?,

using multi-threading to process $num _workers loop diagrams in parallel.

Tt is known that the maximum number of color bases per diagram is 3%, where k is the maximum
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The end result is a set of MAPLE files (RES_G ‘GNUM’ C'‘CNUM’ E1F' ‘FNUM’ .mapout ),
containing the kinematically—invariant helicity— and color-dependent coefficients for
each fundamental scalar integral, form factor and finite term, henceforth referred to as
the set of basis functions F (1/¢%,1/e,1) (where the parameters (1/¢2,1/e,1) describe
the analytical structure of these one—loop functions in terms of their UV— & IR-—pole

Laurent coefficients).

4.2.4 Analytical results

Having produced a complete analytical reduction of the LO, counterterm and loop
diagrams into partial amplitudes factorised by color & helicity basis, and in the
case of loop diagrams also basis functions, run_golem.pl can now run algorithms
to collect the partial amplitudes into a set of MAPLE files (AMP_TREFE.mapout,
AMP_LOOP.mapout, AMP_LOOP_CT.mapout), that present the diagram amplitudes
in the format

Moo= > (Mo -l ), (4.11)

o€Sn {\}ES)

Mcrioor = Y. >, Y. (MCT\LOOP)C{:\;'F(l/gz’l/g’ 1) -lea) . (412)
o€Sy {\}eSy FESE
In this format, the amplitudes are clearly factorised into a set of purely kinematic
terms (also known as coefficients), within a basis of color |o) (Eq. (2.36)), helicity {A}
(Eq. (2.78)), and function F (1/e2,1/¢,1).

The collection of the LO, counterterm and loop partial amplitudes is performed
by the MAPLE algorithms COLLECT_TREES.map, COLLECT_-COUNTER.map and
COLLECT_LOOP_part.map:

COLLECT_TREES.map constructs the set of potential color and helicity bases
from the information provided by INPUT_DATA_TREFE.map, and then reads in each
LO partial amplitude stored in GRAPH_*GNUM’ _L O.mapout, looped over the number of
LO diagrams ‘GNUM’. Within each LO diagram COLLECT_TREES.map iterates over
the individual helicity amplitudes (noted by AMPINFO(GNUM,4,heli_ids,...), where
heli_ids is an array containing the helicity basis) and color bases (the number of
which is defined in COLOUR_INFO_G ‘GNUM’ _LOOP.mapout), and stores the helicity—
and color—dependent partial amplitude in the output file AMP_TREE.mapout:

GRAPH_TREE [GNUM,HNUM, CNUM] := partial_amp:
SPINOR_FAC[GNUM,HNUM] := bra_ket_prefactor:

number of possible 4-gluon vertices. For a 2 — 2 NLO-QCD process, iteratively running over 9 possible
color bases is adequate.

71



Chapter 4. Automated virtual corrections within MADGOLEM

These two terms correspond to (MLO)({,A} in Eq. (4.11), factorised into the kinematically—

invariant Mandelstam variables and the non—invariant bra—ket helicity prefactor:
(MLO)({,)\} — bra ket _prefactor((ij),[ij]) - partial_amp(s(s,j)) . (4.13)

After AMP_TREE.mapout is created, a second MAPLE algorithm
COLLECT_SIMPLIFY_TREE.map is run to further simplify the content. The
algorithm removes all helicity bases that do not have any non—zero partial amplitudes;
if the flag nlosymsimp is enabled in the MADGRAPH process card proc_card.dat, it also

checks the partial amplitudes for the potential helicity hermitian symmetry:
A N
MY = (Mih (4.14)

where {\'} # {A}. Only the unique helicity amplitudes are listed, along with a note
of which helicities are hermitian. This simplification can greatly reduce the size of the
output for processes, but must be disabled for processes which are helicity hermitian at
LO but non-hermitian at loop level’?. At the top of AMP_TREE.mapout is a header
containing all relevant LO process information, an example of which is given in Fig. 4.12
for the process eTe™ — uu.

COLLECT_COUNTER.map functions in an identical manner to the LO coun-
terpart in collecting the helicity— and color— dependent partial amplitudes from
GRAPH_‘GNUM’ _COUNTER.mapout, (looped over the number of counterterm dia-
grams ‘GNUM’) and listing them in the output file AMP_.COUNTER.mapout. Rather
than running a second simplification algorithm on the output, COLLECT_COUNTER.map
uses the non—zero helicity basis read directly from the simplified AMP_TREE.mapout.
The CT-tagged counterterm placeholders within the partial amplitudes, being composed
of fundamental scalar integrals, are implemented at the same time as the collection and
simplification of the loop amplitudes.

COLLECT_LOOP_part.map acts to collect the coefficients of all fundamental scalar
integrals and form factors present in both the loop and counterterm partial amplitudes,
ordered by color and helicity basis. The MAPLE script reads the non—zero helicity
basis directly from AMP_TREE.mapout, which when (nlosymsimp=1) can lead to a
greatly reduced coefficient output and a large reduction in collection time. Next
COLLECT_LOOP_ _part.map reads in AMP_COUNTER.mapout, and matches the CT—
tagged counterterm placeholders with the model-specific renormalisation constant list
contained in CT_list_mod.map. This list contains the precise analytical values for all

CT-tagged coupling, self-energy and external gluon counterterms in the model, written

0F g. the MSSM NLO-QCD process pp — gg for chirally—unique squark masses, which contribute
in otherwise helicity hermitian diagrams
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AMP_TREE.mapout:

# FILE CREATED BY COLLECT_SIMPLIFY_TREE.map on 2013-02-23

ExternalMasses := [0, 0, 0, O]:
NUM_TREE_GRAPHS := 2:

NCOLS := 1:

COLL 1] := dd(Col4,Col3):

#

# 4 unique helicity amplitudes found
NUM_HELIS := 16:

base_helis := [6, 7, 10, 11]:
unique_helis := [6, 7, 10, 11]:
symmetry_helis := []:

HELI[ 6]:=[1, -1, 1, -1]:
HELI[ 71:=[1, -1, -1, 1]:
HELI[ 10]:=[-1, 1, 1, -1]:
HELI[ 11]:=[-1, 1, -1, 1]:

#

ReferenceVector := [k5, k5, k5, k5]:

NUM_TREE_GRAPHS := 2:

#

# GRAPH_TREE has indices: NGRAPH,NHELI,NCOL

GRAPH_TREE[ 1, 6, 1] := -GZL1*GZU1*(S12*xS35*S45+S12%S15*%S25

-S23*x325*%S35-523*%515*%S45+2*%ck5EPSTENSOR*S45-2*%ckS5EPSTENSOR*S35
+2*xck5EPSTENSOR*S25-2%ck5EPSTENSOR*S15) / (S12-ZMASS2) :
SPINOR_FAC[ 1, 6] := InvSpaa(k2,k5)*InvSpaa(k4,kb)*
InvSpbb(k1,k5)*InvSpbb(k3,k5) :

Figure 4.12: Example AMP_TREE.mapout header for the process ete™ — uu, after
being simplified by COLLECT_SIMPLIFY_TREE.map.
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in the style
14+6Z — 1+ CT_prefac*(CT_integral+CT finite). (4.15)

Counterterms depending on several fundamental scalar integrals can be simply split
and written down in different rows, one per loop function. This matching allows the
counterterm partial amplitudes to finally be written in terms of the fundamental scalar
integrals; from this point on they can be processed in exactly the same manner as the
partial loop amplitudes.

Iterating over number of loop diagrams, color bases, and the maximum number of
possible fundamental scalar integrals and form factors (as listed in FUNLIST.mapout
and the diagram-specific FUNLIST_-GRAPHS.mapout), COLLECT_-LOOP_part.map
reads in each partial loop amplitude from RES_G ‘GNUM’ C'‘CNUM’ E1F ‘FNUM’.mapout.
Within each partial loop amplitude returned MAPLE extracts the individual helicity
amplitudes (as explained for COLLECT_-TREES.map), and stores the partial am-
plitudes for each diagram in the output file AMP_LOOP_‘GNUM’.mapout, written as
a series of kinematic coefficients of basis functions sorted by helicity, color basis,
and function (scalar integral, form factor or 1) (as shown in Eq. (4.12)). For each
counterterm diagram CTNUM, COLLECT_LOOP_part.map also stores the counterterm
partial amplitudes in the output file AMP_LOOP_CT_‘CTNUM’.mapout, formatted
identically to the loop diagrams.

The coefficient output corresponding to (MCT‘LOOP){AI]; is formatted in a similar

g,

manner to the LO output:

GRAPH_COEFF [GNUM, HNUM, CNUM, 1,FNUM] := partial_amp:
SPINOR_FAC[GNUM,HNUM] := bra_ket_prefactor:

(MCT\LOOP)({:\; — bra ket _prefactor((ij),[ij]) - partial_amp(s(i,j)) . (4.16)

Here each coefficient GRAPH_COEFF [GNUM, HNUM,CNUM, 1,FNUM] corresponds to a basis

function F (1/e2,1/e,1), the full set of which (ignoring internal parameters) is:

ONE, SINGLEPOLEd4 , SINGLEPOLEIRd4,
TADd4 (), BUBd4(), TRId4(), BOXd4(),

TC41(), TC42(), TC43(), TC44(),

TC31(), TC32(), TC33(), TC21(), TC22(), TC11().

Extra basis functions may be introduced by the counterterm renormalisation constants
defined in CT_list_mod.map. The MAPLE script COLLECT_SIMPLIFY_LOOP_part.map
simplies the content in AMP_LOOP_CT|LOOP_¢CTNUM’|‘GNUM’ .mapout, removing all

basis functions that don’t have non—zero coefficients. A header is also written to the top
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of every counterterm and loop output, containing all relevant NLO process information
(such as the non—zero function basis), an example of which is given in Figure 4.13 for

the process ete™ — ua.

4.2.5 Numerical evaluation

By using the analytical results in the MAPLE output files, it is straightforward to
produce a FORTRANIO module (virtual_corrections.f90) that allows the analytical
partial amplitudes to be numerically evaluated, producing the virtual component of
the NLO-QCD matrix element—-squared in the form of a numerical array [ag, a1, as]

corresponding to Eq. (4.1):

2 virtua. 2
e Re (M M| = e ST ST 3T D (elen)

c€Sn o’'eSy {\}eS)\ FESF

x Re | (Mly.0) P} (Mio) DT F (1%, 1/2,1) | (417)
1 1
=a)+arz=—+ar5 -
€IR €IR

The construction of the FORTRANIO code virtual_corrections.f90 that will provide
the virtual component of the NLO-QCD matrix element—squared ([ag,a1,as] via
Eq. (4.17)), for event generation by Monte Carlo methods and combination with
the integrated dipoles, is handled by the MAPLE scripts CREATE_AUX_TREE.map,
CREATE_AUX_LOOP_ _part.map and CREATE_GOLEM_part.map, as well as a script
COLOUR_MATRIX.map that constructs the color correlation matrix (c,|c, ):

colour_correlationmatrix(i,j) = COL[¢] - COL[j] , (4.18)

where COL[i] are read from the AMP_*.mapout files.

CREATE_AUX_TREE.map and CREATE_AUX_LOOP_part.map write and com-
{7}

from the AMP_mapout files) into a set of FORTRANIO shared object (.so) library
archives: libcoeffs_all_tree.so, libcoeffs_all_ct_*CTNUM’.so and libcoeffs_all_¢ GNUM’ .soll.

These ‘coefficient libraries’ contain the individual coefficient functions, defined for LO

pile the individual partial amplitudes (MLQ) and coefficients (MNLO)c{r)\; (as read

and counterterm/loop as:

function c_{\}_‘GNUM’ 0'(i1,i2,i3,i4,k,s) — (MLO)({;\} ; ( )
4.19

function c_F_{\}_‘GNUM’ ¢’ (i1,12,i3,14,k,s) — (Mnro) ¥ .

' Shared object (.s0) libraries are used when MADGOLEM is installed on a standard LINUX system;
for UNIX systems (such as MAc OSX) the dynamic library file (.dylib) is used instead.
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AMP_LOOP_1.mapout

# FILE CREATED BY COLLECT_SIMPLIFY_LOOP_part.map on 2013-02-23

ExternalMasses := [0, 0, 0, O]:
NUM_LOOP_GRAPHS := 2:

NUM_CTS := 2:

NCOLS := 1:

COL[ 1] := dd(Col4,Col3):

#

# Function basis has 4 elements, reduced from 7 elements.
NUM_LOC_FUNS := 4.

FUN[ 1] := ONE:

FUN[ 2] := BUBd4(0,0,0):

FUN[ 3] := BUBd4(S12,0,0):

FUN[ 4] := TRId4(S12,0,0,0,0,0):

#

# 4 unique helicity amplitudes found
NUM_HELIS := 16:

unique_helis := [6, 7, 10, 11]:
HELI[ 6]:=[1, -1, 1, -1]:
HELI[ 71:=[1, -1, -1, 1]:
HELI[ 10]:=[-1, 1, 1, -1]:
HELI[ 11]:=[-1, 1, -1, 1]:

#

ReferenceVector := [k5, k5, k5, kb5]:
FINAL_GRAPH_LIST := [1, 2]:

#

# GRAPH_COEFF has indices: NGRAPH,NHELI,NCOL,1,NFUN

GRAPH_COEFF[ 1, 6, 1, 1, 1] := 1/6*GZL1*GG2"2*GZU1*(S12*xS35*S45+
S12%S515%S25-S23%xS25%S35-523*%S15%S45+2*%ckbEPSTENSOR*S45-2*xckbEPSTENSOR*
S35+2*xck5EPSTENSOR*S25-2%ck5EPSTENSOR*S15) / (S12-ZMASS2) /Pi~2:
GRAPH_COEFF[ 1, 6, 1, 1, 2] := -1/3*%*GZL1*GG2"2*xGZU1*(S12*xS35%345+
S12%S15%S25-523*xS25%S35-523*%515%545+2*%ckbEPSTENSOR*S45-2*xckbEPSTENSOR *
S35+2*xck5EPSTENSOR*S25-2*%ckSEPSTENSOR*S15) / (S12-ZMASS2) /Pi~2:
GRAPH_COEFF[ 1, 6, 1, 1, 3] := -1/24*GZL1*GG2"2*GZU1*(S12%S15%S35
+3512%S1572-5%S12*%S35%S45+2xS12*%S45xS15+512%S45°2-5%S12%S515%525
+3512%S525%S45+523*%S3572+S23*%S15%xS35+2*xS23*%545%S35+7*523*%515%S45+523%
S4572+7%S523*%S25%xS35+523*%525%S45+12%xckbEPSTENSOR*S35+12*xckbEPSTENSOR*
S15-12%ck5EPSTENSOR*S45-12%ck5EPSTENSOR*S25) / (S12-ZMASS2) /Pi~2:
GRAPH_COEFF[ 1, 6, 1, 1, 4] := 1/6*GZL1*GG2"2*GZU1*S12*(S12*xS35%
S45+512%S15*%S25-S23*%S25%S35-523*%S15%545+2*%ckBEPSTENSOR*S45-2%xS35%
ck5EPSTENSOR+2*ck5EPSTENSOR*S25-2*xck5EPSTENSOR*S15) / (S12-ZMASS2) /Pi~2:
SPINOR_FAC[ 1, 6] := InvSpaa(k2,k5)*InvSpaa(k4,k5)*InvSpbb(kl,k5)*
InvSpbb(k3,k5) :

Figure 4.13: Example AMP_LOOP_1.mapout header for the process ete™ — uu, after
‘%}ing simplified by COLLECT_SIMPLIFY_LOOP_part.map.



4.2. Virtual corrections

These functions can be referenced by the main numerical module virtual_corrections.f90,
returning the numerical value for the kinematically—invariant partial amplitudes.
Because of their potential size, the coefficient libraries are pre-compiled before the
numerical calculation stage, and linked dynamically during calculation to avoid memory

complications at the final stage of compilation.

The main FORTRAN module that is attached to the rest of the MADGOLEM
code during numerical calculation is wvirtual_corrections.f90, which is created by the
MAPLE script CREATE_GOLEM _part.map. virtual_corrections.f90 contains the main
subroutine golem(k,mu,amplitude array), which takes in the phase space values for
the external momenta:

k = {k', kb, k5 K} . (4.20)

These momenta are configured for a 2 — 2 process (as opposed to 4 — 0), so the
values of k§ and kj are inverted before any calculation of the kinematic variables is
performed. golem() also takes in the renormalisation scale (mu = pg) which is required
for calculation of the fundamental scalar integrals and form factors in the loops, as well

as renormalisation constants featuring logarithmic terms log(m?/ ,u%).

golem() returns the array amplitude_array, which contains the values:
amplitude_array = [ag, a1, a2, ap,ayy] . (4.21)

The first three terms in amplitude array are the coefficients of the Laurent expansion
in £7p of Eq. (4.17), corresponding to the finite term, simple pole and double pole
respectively. In other words, the value ag is the entire finite contribution resulting
from the NLO—QCD virtual correction to a process, ignoring contributions from the

integrated dipole, for a given phase space point.

The MADGOLEM code that calls the golem() subroutine combines the first three
terms (ag, a1, as) returned by amplitude_array with the three terms returned by the
integrated dipole module (dy,d;,d2). As a; and ay (likewise d; and dy) provide the
coefficients of the simple and double IR poles, a correct calculation of the virtual terms
and the integrated dipoles requires that dy = —ay and do = —as; this can be verified
by MADGOLEM using an error—checker that generates warnings when A;p > 1077

dij2 + ay)2

Ay = (4.22)

d1|2 — a2

After testing for succesful IR subtraction, MADGOLEM calculates the finite virtual
contribution to the partonic NLO-QCD differential cross section by combining the
values ag and dp according to Eq. (4.3), and calculates the full partonic NLO-QCD
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differential cross section by including the LO and real emission results (as in Eq. (4.2)):
AN = dg”

+ dPSQ(Q) i [ao + do]

2s (4.23)
1 1 rea.
+dPSy(Q) 5. - [|M -3 "p)].
J

The fourth term returned by amplitude_array is the LO, or Born amplitude-

squared:

1
ap = IMrol?. (4.24)

"~ nlngne
This is included to allow for comparison with the equivalent value produced by
MADGRAPH, as an extra form of error—checking. The fifth term returned by
amplitude_array is the coefficient of the 1/yy pole present in the virtual NLO

amplitude—squared:

agy = Re {(/\A“rml)T MLO} . (4.25)

nlning
If the virtual calculation is correctly renormalised, ayyy = 0. This can be verified by

MADGOLEM using an error—checker that generates warnings when Ay > 1077

Apy = 29V (4.26)
ap

The internal workings of golem(k,mu,amplitude_array) are arranged as follows:
The matrix elements MV and Mrpo that make up the results in amplitude_array

are calculated using the algorithms as explained in Eq. (4.17):

2
nlning

Re (Mvirtual)TMLO:| —

n!n21n2 Z Z Z Z <c‘7‘c‘7/> (427)

0ESy 0'€Sn {A}ESy FESE

x Re [(MIT\ILO)({:\;(MLO)B}F (1/€%,1/e, 1)} .

g

The kinematic terms (MLLO)?} and (MLO){?} are contained as functions inside the
library coefficient files as shown in Eq. (4.19), and the color correlation matrix (¢, | s )

is returned by the subroutine colour_info(colour_correlationmatrix).

The basis functions F (1 /g2, 1/e, 1) are declared as 4—dimensional arrays, containing
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4.2. Virtual corrections

the numerical coefficients of the finite terms and UV & IR poles:

F(1/e%,1/e,1) = [#1/&7 5, #2/E1R, #3, #4/E0v ] (4.28)

Values for the four array components are calculated by the GOLEM95 integral
library [43,44], taking care to ensure that UV-divergent one— and two—point integral
results are assigned to elements 3 and 4 in the array, and that IR-divergent three—
and four—point integral results are assigned to elements 1, 2 and 3. Non-standard
basis functions that are not recognised by GOLEM95, such as the scalar integral
By(0;0,0) = 1/éyy —1/E1R, are defined manually within CREATE_GOLEM _part.map.
As GOLEM95 does not include the renormalisation scale pg in its integral calculations,

it must be introduced using the transformation:

F(1/e%,1/e,1) — (1 + log(ug) + %log2(,u3)) (1/%,1/e,1) . (4.29)

Sample code for the calculation within GOLEM95 of the three—point scalar integral
TRId4(s(1,2),0,0,0,0,0) is given in Fig. 4.14.

Having determined which functions to call for each element in Eq. (4.27), the steps
taken in wirtual_corrections.f90 upon calling golem() to calculate amplitude_array

are:

e The LO amplitude-squared value ap in Eq. (4.24) is calculated by summing
the helicity— and color-dependent amplitude—squared, and dividing by the

normalisation factor n!nins:

i >, > D Re |:(M£O)<{7>\}<CU|CU’>(MLO)({;\}] : (4.30)

|
nnin
172 {A}ES)\ 0€Sn 0’ E€Sh

where (MLO)?} is evaluated by summing the helicity— and color-dependent LO
functions contained in libcoeffs_all_tree.so over all LO diagrams. The key code

that performs this task is shown in Fig. 4.15.

e The virtual NLO-QCD amplitude-squared values ag, a1, as and ayy in
Eq. (4.27) are calculated by first combining the 4-dimensional basis functions
F(1/€2,1/e,1) (Eq. (4.28)) with their respective helicity— and color-dependent
kinematic coefficients (provided by the libcoeffs files), summed over all coun-
terterms and loop diagrams. This produces a set of helicity— and color—
dependent partial amplitudes that contain the UV & IR poles along with the finite
results in a 4-dimensional array. The amplitude—squared is then constructed by

contracting the helicity— and color-dependent virtual partial amplitudes with the
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virtual_corrections.f90

call initgolem95(3)

|
s_mat(1,1)

= zero
s_mat(1,2) = zero
s_mat(1,3) = s(1,2)
s_mat(2,1) = s_mat(1,2)
s_mat(2,2) = zero
s_mat(2,3) = zero
s_mat(3,1) = s_mat(1,3)
s_mat(3,2) = s_mat(2,3)
s_mat(3,3) = zero

I
mass_int_sq(1)
mass_int_sq(2)
mass_int_sq(3)
I
s_mat(1,1)
s_mat(1,2)
s_mat(1,3)
s_mat(2,1)
s_mat(2,2)
s_mat(2,3)
s_mat(3,1)
s_mat(3,2)

s_mat(3,3)
!

zZero

zero

zZero

s_mat(1,1)
s_mat(1,2)
s_mat(1,3)
s_mat(2,1)
s_mat(2,2)
s_mat(2,3)
s_mat(3,1)
s_mat(3,2)
s_mat(3,3)

call preparesmatrix()

mass_int_sq(1)
mass_int_sq(1)
mass_int_sq(1)
mass_int_sq(2)
mass_int_sq(2)
mass_int_sq(2)
mass_int_sq(3)
mass_int_sq(3)
mass_int_sq(3)

I TRId4(s(1,2),zero,zero,zero,zero,zero)

mass_int_sq(1)
mass_int_sq(2)
mass_int_sq(3)
mass_int_sq(1)
mass_int_sq(2)
mass_int_sq(3)
mass_int_sq(1)
mass_int_sq(2)
mass_int_sq(3)

res6 = a30(s_null)

fun( 4, 1 ) = res6ja

fun( 4, 2 ) = res6%b + log(musq)*res6ia

fun( 4, 3 ) = res6jc + log(musq)*res6y%b + (log(musq)**2)*res6%a/2d0
fun( 4, 4 ) = (0.d0,0.d0)

fun( 4, 5 ) = (0.d0,0.d0)

!
call exitgolem95()

Figure 4.14: Sample code from wirtual_corrections.f90 for the calculation of the three—
point scalar integral TRId4(s(1,2),0,0,0,0,0) with GOLEM95.
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virtual_corrections.f90

! loop over helicities...
!

doi=1, nc

ctemp = camp_tree(11,12,13,14,i)
cket (i) = ctemp
cbra(i) = conjg(ctemp)
end do
ctemp = (0.D0,0.D0)
do i=1,nc
do j=1,nc

ctemp = ctemp + cbra(i)*colour_correlation_matrix(i,j)*cket(j)
end do
end do
camp2 = camp2 + ctemp
]
! end loop...
amplitude_square = real( camp2,ki )! spin average not included

Figure 4.15: Key code from wvirtual_corrections.f90 demonstrating the calculation of
ap.

LO functions (MLO)?} by the color correlation matrix (¢, |c,s ), then summing
over helicity and color and dividing by the normalisation factor n!nins, in a
similar manner to that shown in Fig. 4.15. The four values ag, a1, a2 and ayy
correspond to the 4-dimensional array amplitude_square, as shown below with

included normalisation factor (example nlning = 4) and alongside a:

(amplitude_square(3)
- amplitude_square(1)*pi**2/12.D0)/4.DO
amplitude_square(2)/4.D0

amplitude_array(0)

amplitude_array(1)

amplitude_array(2) = amplitude_square(1)/4.D0

amplitude_array(3) = amplitude_square_lo/4.DO

amplitude_array(4) = amplitude_square(4)/4.D0

The alteration to the finite value ag shown above:

7.(.2

I 4.31
12&2 ) ( )

ag — ag —

arises due to a difference in dimensional regularisation convention between the virtual

corrections module and the dipole module. The virtual corrections module uses the
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MS-shifted pole 1/ defined in Eq. (3.31), which can alternatively be written as

1/& = rp(4m)° , (4.32)
where rr is defined:
N2 2
rr = 1-— EYE + 62 <7E — E) + 0(63) . (433)

An alternate convention for defining the divergent poles (which is used by the dipole

module) replaces rp with e 72:

2
e — 1 — eyp + 52% + O . (4.34)

Using differing regularisation conventions between modules is allowed, provided the
correct shift is applied to the resulting amplitude—squareds! The difference between

the two conventions is:

2
rp=e F (1 BED) E2> +0O(e?)
(4.35)

2
e — pp. <1 + %62> +0(?),

therefore, the amplitude-squared output contained in amplitude_array is shifted from

the rr to the e ¢7E convention by including a multiplicative factor (1 — 7{—;52

) , as is per-
formed in Eq. (4.31). This ensures that the results produced by virtual_corrections.f90,
via the subprocess golem(k,mu,amplitude_array), are comparable with the results
produced by the integrated dipole module, allowing MADGOLEM to calculate the full
partonic NLO-QCD differential cross section by including the LO and real emission

results (as in Eq. (4.2)):

doNO = dsP

+ dPS(Q) 2% lag + do)

Tl G D Y-

(4.36)

+ dPS5(Q) GP—

k5

A concern of virtual_corrections.f90 is the numerical value of the fifth ‘external’ light—
like momentum k%. In order for the helicity projection algorithms discussed on Page 64

to produce physically meaningful results, the value of kf cannot be representable in
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terms of the four external momenta k. Therefore a four-momenta must be assigned
to k£ by wirtual_corrections.f90 that minimises the possibility of ‘similarity’ with the
other momenta.

As MADGOLEM is expected to be used for collider-based predictions, it can be
assumed that a common axis for the two incoming momenta k{' and k% will be parallel
or near—parallel with the beam z—axis:

k#

12 ~ (E1|270707 k1\2) . (437)

For light-like incoming momenta this becomes proportional to (1,0,0,1). For collider
events, the least common axis for the two outgoing momenta kf and &} will be parallel

or near—parallel with the x— or y—axis:
kg“l 7& (E3‘4’k3‘47070) & kg|4 7é (E3|4707 k3\470) . (438)

For light-like incoming momenta these become proportional to (1,1,0,0) and (1,0, 1, 0).

Based on these two considerations, the direction of k%', 71, can be chosen to be either
A=(1,1,0,00 or A=(1,0,1,0), (4.39)

with a minimum chance of becoming parallel or ‘similar’ to either the incoming
momenta or outgoing momenta.

The choice of magnitude for k£ is also a concern, as both spinor products and
scalar products between two momenta of considerably different magnitudes can produce
numerically unstable results. To determine a suitable magnitude for k£, a NLO-QCD
‘test’ process was numerically calculated by MADGOLEM over a range of k£ magnitudes,
with the overall degree of numerical stability assessed by counting the number of UV

& IR pole miscancellations for each choice of magnitude. The test was run as follows:

e The test process used is vz — gg (within the MSSM).

e The kY magnitudes tested were fixed (ks = {10°,103,10°,10} - A1) and variable
(ks = 3(E1 + E»)a}), with 7 = (1,1,0,0) for the direction.

e The numerical calculation was integrated over 1000 phase space events, iterated

20 times by the MADGOLEM phase space / Monte Carlo generator.

e The number of pole miscancellations (Ajjgy > 10~®) was tracked by counting
the number of warning messages generated by the pole—checking algorithm

poles_check.f.

The results are presented in Tab 4.1, and point towards using the ‘smart k£ choice:
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ks =10 [ ks = 107 | ks = 10% [ ks = 109 | ks = 5(E1 + Ep)n
Iteration 1000 events/iteration
1 (578,440) 0 0 (0,4) 0
2 (687,620)) 0 0 (0,2) 0
3 (792,768) 0 0 (0,3) 0
4 (771,759) 0 0 (0,3) 0
5 (786,761) 0 0 (0,4) 0
6 (756,738) 0 0 (0,1) 0
7 (733,719) 0 0 (0,7) 0
8 (758,737) 0 0 (0,2) 0
9 (725,709) 0 0 (0,4) 0
10 (735,725) 0 0 (0,6) (1,0)
11 (697,673) 0 0 (0,5) 0
12 (708,690) (1,0) (1,0) (1,5) 0
13 (713,692) 0 0 (0,3) 0
14 (747,725) (1,0) (1,0) (1,6) (1,0)
15 (723,703) 0 0 (0,5) 0
16 (725,688) 0 0 (0,2) 0
17 (658,649) 0 0 (0,2) 0
18 (738,725) 0 0 (0,2) 0
19 (729,696) 0 0 (0,4) 0
20 (732,620) 0 0 (0,4) 0

Table 4.1: Number of pole miscancellations (UV/IR), for the MSSM process uu — gg.

84



4.2. Virtual corrections

ks = %(El + E3)n , which is weighted by the two incoming particles’ energies E; &
E5 to ensure that the magnitude of k%' is of the same order as at least two of the four
external momenta. While two other choices (k5 = 1037 & k5 = 10%7) produced the
same number of miscancellations, there is no guarantee that this stability will hold
across the majority of MADGOLEM processes and energy scales.

From these considerations, the defined value for k£ within virtual_correction.f90 is:

k(:,5) = ( k(0,1) + k(0,2) ) / 2d0 * (/ 1d0, 1d0, 0dO, 0dO /)
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Chapter 5

Calculated processes

5.1 Introduction

This chapter demonstrates the calculation of several sophisticated NLO-QCD 2 — 2
processes by MADGOLEM, in order to convince the reader of the code’s usability. Each
of these calculations has been published by the MADGOLEM team in the papers [14-16],
with a focus on the phenomenological aspects of the numerical results. The objective of
this chapter is instead to present the specific results of the virtual corrections module
for each process, as governed by the PERL script run_golem.pl and the numerical

FORTRANI9O module virtual_corrections.f90.

By the end of the chapter it is hoped that enough evidence has been provided
to demonstrate beyond reasonable doubt that the virtual corrections module, as part
of MADGOLEM, is a viable loop calculator; and that satisfactorily performs as an
automated platform/module for the calculation of the NLO-QCD virtual corrections
to generic new physics beyond the SM 2 — 2 processes, based on a fully analytical,

Feynman—diagrammatic approach.
The individual NLO-QCD processes presented in the following sections are:
L pp — gx§ (MSSM) [14];
2. pp — q¢* (MSSM) [16];

3. pp — gg (MSSM) [16];

4. pp — GG* (scalar gluons / sgluons) [15].
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5.2 pp — X\

The NLO-QCD corrections to the 2 — 2 MSSM process pp — ¢X} have been calculated
by MADGOLEM and are presented in full detail in [14].

5.2.1 Motivation

In conventional MSSM scenarios where R—parity is conserved, the preferred channel
of squark decay is ¢ — ¢g when kinematically viable. However if the gluino ¢ is of
a sufficiently high mass, then § — ¢X) becomes the new favoured channel [61]. For
parameter sets that posit the neutralino %(1) as the lightest supersymmetric partner
(LSP) candidate, this is the end—point of the decay chain.

As an aid to dark matter studies of this MSSM decay process ¢ — ¢x}, one can
study the complementary process at the LHC, which is the production of the LSP (Y?)
in association with a squark: pp — gx}. The lead driver of this process at leading-order
(LO), ignoring QCD vertices, is the ¢gx{ interaction. As the dominant light quarks have
a negligible Yukawa coupling, this interaction is governed by the two weak charges of
the quark—squark pair involved. This way the pp — Zji(l) process provides information
on the composition and dynamics of the dark matter candidate X, and about the
underlying SUSY-breaking mechanism [62]. An accurate measurement would improve
predictions and parameter space constraints for direct detection and relic density of
dark matter.

The main computational motivation for calculating this process is that it tests a
very large range of computational steps in MADGOLEM and in the virtual corrections

module. The list of algorithms tested by the pp — g} process are:

e Handling of (massive and massless) external and internal scalars, vectors, and
fermions. This includes the dedicated handling of Majoranas (which are genuine
indicators of new physics), to correctly resolve the assignment of the overall
relative sign for each Feynman diagram, as well as possible instances of ”clashing

arrows” along the fermion flow.
e Tensor and loop algorithms for massive integrals including 4—point box diagrams.
e Renormalisation routines using MSSM—defined counterterm model files.

e Numerical compatibility between the individual MADGOLEM modules as shown
in Fig. 4.1, particularly the matching of the MSSM integrated dipoles with the

virtual corrections.
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Figure 5.1: LO diagrams for pp — q~R/L>Z(1).
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Figure 5.2: Loop diagrams for pp — ¢x7. Shaded blobs contain all strongly interacting
corrections to the propagator or vertex.
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5.2.2 Calculation

Analytical computation

Following the approach laid out in Chapter 4, MADGOLEM generates the full set of
LO and NLO-QCD diagrams contributing to the process pp — qg/ X}, and provides
the MSSM dipole and OS subtraction terms required for the complete NLO-QCD

calculation.

For the virtual corrections, QGRAF produces LO, loop and counterterm diagrams
as shown in Figures 5.1, 5.2 & 5.3, where shaded ‘blobs’ contain all strongly interacting
corrections to the propagator or vertex. These diagrams are processed by run_golem.pl,
which reduces the number of unique loop diagrams by loop filtering. Model—
independent Feynman rules are applied to the diagrams, including defining the fixed
fermion flow for the internal and external Majorana particles.

A full reduction of the Feynman diagrams into partial amplitudes and coefficients
within a basis of color, helicity and loop function is performed. As the extra external
momentum k% is not required for this step, the tensor reduction of loop integrals
(including massive boxes) does not require much computational effort, and the resulting
analytical results stored in the AMP_*.mapout files are reasonably concise: 2 color bases

and 100 functions are identified for ug — upX\.
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Figure 5.3: Counterterm diagrams for pp — gxJ, including external gluon counterterms.

point My, Mg mg mg. mso mg mass hierarchy

SPS1ai000 561 549 586 545 96.7 1000 dr <qL <g

Table 5.1: Squark and gluino masses in GeV for the SPSlajggg benchmark point.

Values for the counterterm renormalisation constants are provided by the MSSM
model file C'T_list_mod.map, which is defined for the MSSM using the Feynman rules
given in Appendix A.2.

From these analytical results, the fully renormalised virtual corrections FORTRAN9OQ
module is created, and linked to the integrated dipoles within a 2 — 2 MC phase space
generator run by MADGOLEM.

Numerical computation

The numerical calculation of pp — §x} uses the parameter set SPSlajgg, which is a
modification of the MSSM parameter set SPS1a [63], such that the gluino mass is raised
to 1 TeV. This benchmark point features a minimal Supergravity—based SUSY breaking
mechanism. It avoids the current LHC bounds on squark—gluino production [64, 65],
and ensures that the decay channel ¢ — ¢¥} is preferred over § — ¢g, making pp — ¥}
a process of interest. The relevant masses in SPSlajggg are given in Table 5.1. The
first and second generation squark masses are degenerate and separated by chirality, so
that mg, = mg,, mg = Mgy, Miy = Mey, Mg = Mgy,
The PDFs used by MADGOLEM for the numerical calculation are supplied by the
five-flavor CTEQGL1 for LO processes, and CTEQ6M for NLO processes [66], in order
to consistently account for the LO and NLO distributions separately. Factorisation and
renormalisation scales are set to their central values:
mg+ mso
—

P =y = plp = (5.1)
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o™Opb] N Opb] K Mgy [GeV]
ﬂR%(l) 29.62 42.17 1.42 549

drX} 3.61 5.31 1.47 545
CRX} 1.12 1.81 1.61 549
SrRXY 0.57 0.78 1.38 545

S drX)  34.92 50.07  1.43

Table 5.2: Individual production rates o(pp — grX}) and corresponding K factors for
the modified SPS1ajgg scenario at v/S = 7TeV.

oOpb] o Opb] K mg, [GeV]

ULXy 0.83 1.26 1.52 561

drxX? 1.21 177 1.46 568

cLX} 0.03 0.06 2.00 561

sxY 0.19 0.29 1.56 568
SaLxy 226 3.38 1.50

Table 5.3: Individual production rates o(pp — grX}) and corresponding K factors for
the modified SPS1ajgg scenario at /S = 7TeV.

a choice that has been proven to provide perturbatively stable results.

The NLO-QCD cross sections and K factors for right— and left—handed light flavor
squark-neutralino production calculated at 7TeV are provided in Tables 5.2 & 5.3,
broken down by final state squark generation. Cross sections and K factors for
production at 14TeV, as well as for other SPS parameter sets are presented in the
MADGOLEM paper [14].

The largest rates of ¥, production predictably come from the uy!)/ Elvi(l] channels,
due to the flavor-locked nature of the process with the proton valence quarks.
Differences in the chiral production rate between gr and ¢7, can be explained by the
mostly bino-like neutralino, which couples with a different magnitude to the right—
and left-handed squarks. For the parameter set SPSlajggg, the ratio of chiral coupling
strengths is

G 30w

1
~ 5.2
6 Y ( )

gﬂRSZ?u

which accounts well for the ratio of cross sections

o(pp — E”ﬁé) L1 (5.3)
o(pp — urX]) 36

The minor deviation from this ratio can be assigned to the small mass difference between
the right— and left-handed squarks.

Band plots for the dominant production channel pp — gX} (as read from Tables 5.2
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Figure 5.4: Band plots for pp — @igX) (blue = LO, red = NLO).

& 5.3) are presented in Figure 5.4, at VS = 7TeV and VS = 14TeV. The squark

masses are varied simultaneously by fixing the mass difference parameter:
Ay = my, — My, =20GeV . (5.4)

The band plots are obtained over the range % 1 < prr < 2u°. The scale dependence
of the NLO-QCD process pp — gX\ is seen to be drastically improved over the LO.
The topological selection algorithms present in MADGOLEM (see Page 53) allow for
the presentation of NLO contributions to be separated into different topologies for the
loop corrections, and placed alongside the integrated dipole and real emission terms.
This is shown in Figure 5.5 for pp — ug, XY at VS = 7TeV!, as a plot of individual

contributions by relative size:

AgNLO  GNLO _ 510 5.5)
L0 — +LO : :

The squark masses are varied, fixing the mass difference parameter A,, (Eq. (5.4)) as
before.
From this topological breakdown it can be seen that the virtual contributions are

dominated by corrections to the SM—-QCD vertex guu, with the only other sizable

!The real contributions and dipoles are separated by setting the FKS-like [67,68] dipole parameter
a = 1, which allocates more phase space to the integrated and non-integrated dipole contributions,
and less to the 2 — 3 real-emission contribution.
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Figure 5.5: Individual contributions to pp — ﬂR/L)Z? by relative size: AgNFO /glO,

Contributions from self energy diagrams are negligible (< 1%) and not shown.

contributions (~ 10%) coming from the MSSM electroweak vertex ux,u at low squark
masses. The integrated dipoles (red line) contribute a similar amount as the guu vertex
corrections over the whole range of squark masses; while the real emission (blue line) is

only significant for left-handed squark production (pp — @z X}) at large squark masses?.

The numerical results for the finite renormalised virtual amplitudes produced
by wvirtual_corrections.f90 have been compared with FEYNARTS, FORMCALC and
LoopTooLs [59]. Internal checks, such as varying the choice of reference momenta
for the external particles within the spinor helicity formalism have also been applied;
for example, enforcing all external particles to use k£ as their reference momentum
produces identical numerical results. Similar procedures have been used to check
the overall gauge invariance of the calculation. Finally, the final results have been
compared with the literature (e.g. ete™ — qg* [69]) as well as with PROSPINO [70] and
MADFKS [71] (e.g. pp — II*).

5.3 pp—qq*

The NLO-QCD corrections to the 2 — 2 MSSM process pp — q¢* have been calculated
by MADGOLEM and are presented in full detail in [16].

2This is due to the additional real-emission coupling terms g RX0u At NLO over the coupling g5 LX0u
at LO (with the ratio shown in Eq. (5.2)), which causes large Kica factors as the LO cross section
decreases for larger masses.
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5.3.1 Motivation

Experimental searches [72,73] underway at the LHC are probing vast parameter regions
of the MSSM, most notably the sections of the squark—gluino mass plane which can be
described in terms of gravity mediation [74]. Inclusive searches for the production and
decay of squarks and gluinos require high—accuracy predictions including NLO-QCD
effects, which up until now have been calculated with simplifying assumptions about
the squark mass spectrum involved. In contrast, MADGOLEM can freely sweep over the
entire parameter space of a given model, varying each input parameter independently
in order to calculate effects to both total rates and distributions. These abilities allow
one to observe e.g. the shift in channel rates as the R/L balance of squarks is altered.

This differs from PROSPINO or other precision tools which rely on a single mass scale
for all light—flavor squarks for all NLO-QCD effects. A fully general scan as provided
by MADGOLEM is therefore beyond the reach of these tools.

Within the MADGOLEM paper [16] are calculations for squark pair production
(pp — 44/qq"), gluino production in association with a squark (pp — ¢q/g9q"),
and gluino pair production (pp — gg, detailed in Section 5.4). The computational
motivation for selecting the process pp — qq¢* for demonstration is that it tests several

areas of the MADGOLEM code that are not covered by Section 5.2:

e Handling of multiple distinct initial state channels: gg fusion; ¢g annihilation and

scattering (via s—channel gluon and t—channel gluino sub—channels respectively).

e Color flow decomposition routines for complicated color structures resulting from

the interaction of four colored particles, two of which may be color octets.
e Inclusion of ghost particles.

e Correct application of the four—scalar vertex Feynman rule, and inclusion of

complicated gluino counterterms (including the correction to the Yukawa coupling
~(0)
gs )

e Calculation of the MSSM-specific on-shell (OS) subtraction terms.

e Handling of a large diversity of loop topologies, including the reduction of rank
3 & 2 box tensors.

e Clear benefits from loop filtering: e.g. squark—mediated contributions in which

all families and chiralities are involved.

For simplicity only the calculations for the up—squark final states (pp — UR/LUR / )

will be presented in this section.
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Figure 5.6: LO diagrams for pp — upuj .

5.3.2 Calculation
Analytical computation

As the process pp — Up/LUp, g, i O(a?) at LO, MADGOLEM generates NLO-QCD
diagrams of O(a?), including ghost particles in the corrections to the gluon propagator
and three—gluon vertex, in order to compensate for the unphysical degrees of freedom
of the exchanged virtual gluons upon Faddeev—Popov quantisation. The process is
separated and stored in multiple channels according to the initial states: gg and ggq =
{ua, dd, s3,cc}. MSSM dipoles are generated, as well as the MSSM OS subtraction
terms.

For the virtual corrections, QGRAF produces LO, loop and counterterm diagrams
as shown in Figures 5.6, 5.7 & 5.8. The processes pp — ugruy and pp — uruj
are topologically identical, and allowed by all partonic sub—channels (gg fusion, ¢g
annihilation, and ¢g scattering by a t—channel gluino). The processes pp — urup
and pp — ugru} are also topologically identical, and contain only two partonic sub—
channels (¢g annihilation and scattering), as gluonic initial states for these processes
are forbidden at LO due to flavor locking.

Iterating over the initial state channels {gg,uu,...}, run_golem.pl reduces the
number of unique loop diagrams by filtering techniques (as discussed on Page 53),
before applying model-independent Feynman rules. The colored Feynman rules for the
squark quartic vertices have the definitions as defined in Appendix A.2, dependent on
flavor and chirality. These three varieties are tagged by their coupling in the model files
(G45Q1,G4SQ2,G45Q3), to ensure that the correct color structure is applied to each.

A full reduction of the Feynman diagrams into partial amplitudes and coefficients is
performed without the presence of k£ for the example channel gg — uru} the increase

in complexity of the color structure produces 6 identified color bases by the color flow
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5.3. pp — qq*

point My, Mg mg. mg mg mass hierarchy
CMSSM 10.2.2 1162 1120 1165 1116 1255 qr<qrL<g

Table 5.4: Squark and gluino masses in GeV for the CMSSM 10.2.2 benchmark point
for the LHC at v/S = 14 TeV.

decomposition algorithm, and 101 basis functions by the tensor reduction algorithms.
For the simpler color-structured example channel vt — uru}, 2 color bases and 125
functions are identified.

Values for the counterterm renormalisation constants are provided by the MSSM
model file as before, including the definitions for the gluino renormalisation constants
and the modified Yukawa coupling g}go), which includes the conventional finite piece in
order to restore the supersymmetric Ward identities as prescribed in Subsection 3.4.1.

From these analytical results, the fully renormalised virtual corrections FORTRAN9OQ
module is created, and linked to the integrated dipoles within a 2 — 2 MC phase space

generator run by MADGOLEM.

Numerical computation

The numerical calculation of pp — ug/rup /1, uses the MSSM parameter benchmark
point CMSSM 10.2.2 [75], with relevant masses given in Table 5.4. Unlike the pp — gX}
case, the first and second generation squark masses are completely independent.

The PDFs used by MADGOLEM for the numerical calculation are supplied by
CTEQ6L1 and CTEQ6M, as in the pp — gx} case. Factorisation and renormalisation

scales are set to their central values:

mi + meo
2 )

0

where my o are the final state squark masses.
The NLO-QCD cross sections and K factors for right— and left— handed up—squark—
antisquark production calculated at the LHC center of mass energy v/S = 14 TeV are

provided in Table 5.5, broken down into the separate chiral final states:
pp — ULdy , pp — URUR, PP — ULUR, Ppp — URU], . (5.7)

A comprehensive list of cross sections and K factors including both first generation
final state squarks, over a range of benchmark points at both 8 TeV and 14 TeV, is
presented in the MADGOLEM paper [16].

It can be seen that the K factors for all chiral final states are fairly similar (K ~ 1.5);

this is due to the dominance of the SM QCD corrections, mainly those originating from
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ULO [fb] UNLO [fb] K

ui; 3.0 45 152
URils, 3.8 57 150
ULy, Ugly, 4.6 6.8 147

Table 5.5: Individual production rates o(pp — g /LUR / ;) and corresponding K factors
for the CMSSM 10.2.2 benchmark point, at /S = 14 TeV.
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Figure 5.9: Band plots for pp — uru} (blue = LO, red = NLO).

the exchange of virtual (and the emission of real) gluons, which are independent of
chirality. Supersymmetric QCD effects are suppressed by the heavy particle masses

involved in squark and gluino loops.

Band plots for the production channel pp — uruj are presented in Figure 5.9 for
VS = 14TeV, as a function of the final state mass my, . All the other heavy masses
are varied simultaneously, keeping the absolute mass splittings of the CMSSM 10.2.2
benchmark point shown in Table 5.5. The band plots are obtained over the range
%,uo < prr < 2u°. Both error bands nicely overlap and reflect a reduction of the
theoretical uncertainties from O(60%) at LO down to O(30%) at NLO.

A breakdown of the virtual corrections to pp — uruj by topology is displayed
alongside the integrated dipoles in Figure 5.10, separated into the two initial state
channels gg and ¢g. The individual contributions are presented in terms of relative
size Ao™NLO /1O as defined in Eq. (5.5). Heavy masses are varied in parallel, as in

Figure 5.9.
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Figure 5.10: Individual virtual contributions to pp — uru} and integrated dipoles by
relative size: AgNO /L0,

The topological breakdown of the gluon fusion channel (99 — uruj) shows an
interesting feature of squark—antisquark production: threshold effects corresponding
to Sommerfeld enhancement [76]. To explain, long-range gluon exchange between
slowly moving squarks in the gg — wuruj channel gives rise to a Coulomb singularity
o ~ mag /B, where 3 denotes the relative squark velocity in the center—-of-mass frame,
B =4/1- 4m%L /S. This feature is clearly visible in the domination of the relative
box contributions in Figure 5.10, which increase with the squark mass mg, (leading
to sizeable quantum effects in the 30%-70% range). In comparison, the individual
relative contributions in the qg — upu} channel stay fairly constant. This analysis is
illustrative of the usefulness of the topology selection algorithms within MADGOLEM,
allowing physical insights into NLO-QCD processes to be made from the underlying

topological information.

As for pp — ¢X}, the numerical results for the finite renormalised virtual amplitudes
produced by virtual_corrections.f90 have been compared with FEYNARTS, FORMCALC
and LoopTooLs [59]. Internal checks, such as varying the choice of reference momenta
for the external particles within the spinor helicity formalism have also been applied;
for example, enforcing all external particles to use kL as their reference momentum
produces identical numerical results. Similar procedures have been used to check
the overall gauge invariance of the calculation. Additionally, the results within the
MADGOLEM paper for squark—antisquark production [16] have been checked with
PROSPINO [70] wherever possible.
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54 pp— qgg

The NLO-QCD corrections to the 2 — 2 MSSM process pp — gg have been calculated
by MADGOLEM and are presented in full detail in [16].

5.4.1 Motivation

The phenomenological reasoning for providing automated NLO-QCD corrections to
gluino pair production is much the same as for squark—antisquark production in
Section 5.3. Loop effects in gluino pair processes are exceedingly involved, forcing NLO
tools to assume mass degeneracies for the internal squarks. Just as for the calculation
of pp — qq¢*, MADGOLEM makes no assumptions about model parameters due to its
model-independent algorithms. This allows for a complete parameter sweep over the
calculated NLO-QCD process.

The computational motivation for selecting the process pp — gg for demonstration
is that this process is a great example of an extreme case in 2 — 2 NLO-QCD

calculations:

e The loop corrections have a maximally complicated color structure, containing
up to four external color octets (for the initial state gg fusion channel) as well as

the strongly interacting ggqq* & squark quartic vertices.

e The initial state ¢g annihilation & scattering channel forces the use of the external
kL reference momentum, as the channel involves four external fermions. This
results in a very large number of partially-reduced massive form factors to be

calculated by the GOLEM95 integral library, including 4—point tensor integrals.

e The helicity basis is large due to the massive Majorana fermions in the final
state, combined with vectors and fermions in the initial state. The hermitian
chiral symmetry simplification flag nlosymsimpl used to reduce the number of
unique helicities (Eq. (4.14)) cannot be enabled for this process either, due to the

inclusion of chirally-dependent squark masses in the loops.

e The number of contributing diagrams at the loop level is incredibly large:

numbering 146 for each ¢q initial state channel, and 402 for the gg fusion channel.

These four factors contribute to create an incredibly large analytical and numerical

output, of a complexity that cannot easily be beaten®.

30ne can increase the size of the helicity basis by producing massive vector particles instead of
massive fermions, but this process would not require the usage of the additional kY momentum and
would therefore lead to a much simpler output. Phenomenologically, this situation would correspond
to the production of vector color octets, e.g. coloron or axigluon fields [77,78].
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Figure 5.11: LO diagrams for pp — gg. Not pictured are the u—channel diagrams,
which correspond to swapping the external gluinos in the t—channel.

\\gxsﬁ?\\pgsﬁ‘?
//%/@%

Figure 5.12: Loop diagrams for pp — gg. Not pictured are the u—channel diagrams,
which correspond to swapping the external gluinos in the t—channel.

5.4.2 Calculation

Analytical computation

As with the process pp — ¢¢*, MADGOLEM generates NLO-QCD diagrams of O(a?),
including ghost particles in the production of loop diagrams. The process is separated
into the individual initial state channels: gg and ¢ = {u@, dd, s3,cc}. MSSM dipoles
and OS subtraction terms are generated, including terms for the external gluinos.

For the virtual corrections QGRAF produces LO, loop and counterterm diagrams
as shown in Figures 5.11, 5.12 & 5.13. U—channel diagrams are not presented in the
Figures, although they can be constructed by swapping the two external gluinos in the
t—channel diagrams.

As for the process pp — qq*, run_golem.pl iterates over the initial state channels
{99, v, ...}, reducing the number of unique loop diagrams by filtering techniques, and
applying the model-independent Feynman rules.

A full reduction of the Feynman amplitudes into partial amplitudes and coefficients
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el )X 4
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Figure 5.13: Counterterm diagrams for pp — gg¢, including external gluon counterterms.
Not pictured are the u—channel diagrams, which correspond to swapping the external
gluinos in the t—channel.

is performed. For the channel gg — ¢g, the maximal complexity of the color structure
resulting from four external color octets produces 24 identified color bases. In this
channel k' is not required, and all tensor integrals (including massive boxes) are reduced

purely to a set of 329 scalar integrals.

For the channel ¢g — gg, the simpler color structure (2 triplets and 2 octets)
produces 6 identified color bases (equivalent to the color structure for the process
channel gg — ¢q calculated in Section 5.3). As this channel contains four external
fermions, the external kL reference momentum is required: as a result a complete
reduction of loop diagrams to scalar integrals is not possible, producing 406 scalar
integrals and form factors. Unlike the previous calculations in Sections 5.2 & 5.3, the
necessary introduction of k£ also causes the analytical results to be written in terms of
the extended Mandelstam variables (s;;; 4,5 € {1,...,5}), instead of the conventional
Mandelstam variables (s = s12, t = s13, u = 323)4. This increase in variables greatly

enlarges the complexity of the analytical results for the channel ¢g — gg.

Values for the counterterm renormalisation constants are provided by the MSSM

model file as for the process pp — ¢q*.

From these analytical results, the fully renormalised virtual corrections FORTRAN90Q
module is created, and linked to the integrated dipoles within a 2 — 2 MC phase space
generator run by MADGOLEM.

1See Page 64.

102



54.pp — g9

VS oMOlb] oNO[b] K
8 TeV 0.34 1.19 3.51
14 TeV ~ 23.3 03.4 2.29

Table 5.6: Individual production rates o(pp — gg) and corresponding K factors for the
CMSSM 10.2.2 benchmark point, at v/'S = 8 TeV and /S = 14 TeV.

Numerical computation

Due to the size of the numerical code created for the NLO-QCD process pp — ¢g,
dynamic linking of the pre-compiled FORTRAN9O coefficient libraries libcoeffs_*.so is
required, in order to avoid compilation errors during numerical calculation (as described
on Page 77). MADGOLEM performs this by default.

The numerical calculation of pp — gg uses the MSSM parameter benchmark point
CMSSM 10.2.2, as defined in Table 5.4. The PDFs used by MADGOLEM are supplied
by CTEQ6L1 and CTEQ6M, as in the pp — gx} and pp — G¢* cases. Factorisation

and renormalisation scales are set to their central values:

0

ph = Hp = mg . (5.8)

The NLO-QCD cross sections and K factors for gluino pair production calculated
at the LHC center of mass energies V.S = 8TeV & /S = 14TeV are provided in
Table 5.6. A complete list of cross sections and K factors over a range of benchmark
points at both 8 TeV and 14 TeV is provided in the MADGOLEM paper [16]. These

results essentially reproduce what is included in PROSPINO.

K factors for the NLO-QCD corrections are very large, being K ~ 2.3 for the
14 TeV center of mass energy, and surpassing K ~ 3 for the lower LHC energy 8 TeV.
The extreme size of the lower energy K factor can be determined to be caused by
the poor perturbative behaviour of the CTEQ parton densities, which suppresses LO
production rates for particles with O(TeV) masses while producing perturbatively
stable NLO rates. Another reason for the large K factor can be assigned to the poor
convergence of the perturbative expansion in «ay, which is evolved from a mass scale of
mz (as(m;) ~ 0.1) up to the gluino production threshold mg. The large total rate at
14 TeV when compared to pp — gq* can be explained in part by the color charges of
the produced gluinos, as interactions among color octets will give typically larger rates
than color triplets. Additionally, production rates grow with the spin representation
of the particles involved; gluino (spin 1/2) pair production naturally operates above
squark or sgluon (spin 0) pairs.

Band plots for total gluino pair production are presented in Figure 5.14 for the
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Figure 5.14: Band plots for gluino pair production (blue = LO, red = NLO).

LHC center of mass energy v/S = 14TeV, as a function of the gluino mass myg. The
squark masses are varied in parallel with the gluino, as for pp — gq*. The band plots
are obtained over the range %uo < purrF < 2%, The error bands overlap and show
a reduction in the theoretical uncertainty from O(70%) at LO to O(30%) at NLO, in
spite of the large K factors present in Table 5.6.

The successful calculation of the process pp — ¢g provides good evidence for the
abilities of MADGOLEM as an automated 2 — 2 NLO-QCD computational tool. As
explained in Subsection 5.4.1, this process serves as a perfect example of a ‘difficult’
process, with an extremely large number of contributing diagrams (O(1000)), massive
basis integrals (~ 400 each for the gg— and gg-initiated channels), color structures
and helicity projections. It thus qualifies as a most demanding probe of the very
frontier capabilities of the analytical, Feynman—diagrammatic approach to NLO-QCD

calculations and its automated implementation within the MADGOLEM framework.

5.5 pp— GG*

The NLO-QCD corrections to the 2 — 2 scalar gluon (sgluon) process pp — GG* have
been calculated by MADGOLEM and are presented in full detail in [15]
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5.5. pp — GG*

5.5.1 Motivation

Scalar gluons (sgluons) G, are complex scalar colored octets with zero electroweak
charge. Appearing in common supersymmetric extensions to the Standard Model [79,
80], sgluons can be decoupled from other supersymmetric terms whilst still rendering
a fully renormalisable sector for the considerations of sgluon pair production [15].

Direct couplings to matter only arise as effective dimension—5 operators (for
instance, induced by one-loop squark and gluino loops). As long as these couplings are
small — which is true if they are loop-induced — the sgluon mass range is not constrained
by stringent bounds from dijet resonance searches®. As a consequence, sgluons can be
relatively light, and at the LHC sgluon pairs will be copiously produced just through
their couplings to gluons.

The computational motivation for demonstrating the process pp — GG* is that it
tests and showcases the ability of MADGOLEM to calculate processes within non—-MSSM
models, being a model-independent automated tool. The areas of the MADGOLEM code

that are tested that have not been covered by the previous MSSM processes are:

e Creation and usage of the files required for a new NLO-QCD model within
MADGOLEM, beyond the default SM and MSSM files.

e Avoiding technical issues in MADGRAPH4 [19] concerning the quartic ggGG*

coupling®.

5.5.2 Calculation
Analytical computation

MADGOLEM generates NLO-QCD diagrams of O(a?) from the sgluon model files
defined in ../Models/sgluon/ (interactions-qgraf.dat, particles-qgraf.dat, vertex_ct.dat,
selfenergy_ct.dat). These files are modified versions of the model files used by
MADGRAPH, as described in Section 4.2.1. In MADGRAPH4 a technical issue arises
when generating the color structure for the quartic ggGG* coupling. This does not
affect the diagrams produced by QGRAF, but does affect the LO and real emission
diagrams which depend on the MADGRAPH routines, based on HELAS and the internal
MADGRAPH color algorithms. MADGOLEM avoids this issue by generating the required
color structure through an auxiliary massive, color—adjoint vector boson V#, that

produces the quartic ggGG* coupling in the decoupling limit m%/ > s.

5Conversely, for O(1) qqG couplings sgluon masses below mg = O(2TeV) are already ruled out by
LHC experiments.
5Solved in MADGRAPHS [81].
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Figure 5.15: LO diagrams for pp — GG*.
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Figure 5.16: Loop diagrams for pp — GG*.

MADGOLEM also provides the sgluon—defined dipoles required for the complete
NLO-QCD calculation, and separates the process into the initial state channels gg
and ¢g. The sgluon dipoles can be easily constructed from the MSSM squark dipoles,
rescaled by a color factor that accounts for its SU(3).-adjoint nature. This reflects the
universality of the NLO-QCD virtual and real corrections, which essentially depend
on the color charges and spin representation of the strongly—interacting fields present
within a given model. That makes our automated, model-independent approach very
easily extendable to generic BSM scenarios.

For the virtual corrections, QGRAF produces LO, loop and counterterm diagrams
as shown in Figures 5.15, 5.16 & 5.17. These diagrams are processed by run_golem.pl,
which iterates over the initial state channels and reduces the number of unique loop

diagrams by filtering. Model-independent Feynman rules are applied to the diagrams.

A full reduction of the Feynman amplitudes into partial amplitudes and coefficients
is performed. For this process k' is not necessary, and the nlosymsimp option can be
enabled, as the NLO-QCD process is chirally hermitian. For the gluon fusion channel
g9 — GG*, 24 color bases are produced (identical to the process channel gg — gg
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Figure 5.17: Counterterm diagrams for pp — GG*, including external gluon
counterterms.

in Section 5.4), and 37 scalar basis functions are identified. For the quark antiquark
annihilation channel gg — GG*, 6 color bases are produced (identical to the process
channel ¢qg — gg), and 17 scalar basis functions are identified. The number of unique
helicities is reduced to 2 (from 4) for the gg initial state process, and 1 (from 2) for the
qq initial state process, due to chiral hermitian symmetry.

Values for the counterterm renormalisation constants are provided by the sgluon
model file CT_list_mod.map. This file is defined for the sgluon model using the Feynman
rules given in Appendix A.3, written in the style (reproduced from Eq. (4.15))

146Z — 1+ CT_prefac*(CT_integral+CT_finite). (5.9)

From these analytical results, the fully renormalised virtual corrections FORTRAN90
module is created, and linked to the sgluon—specific integrated dipoles within the 2 — 2

MC phase space generator run by MADGOLEM.

Numerical computation

The numerical calculation of pp — GG* uses the SM parameter set, with a variable
sgluon mass mq. The PDFs used by MADGOLEM are the CTEQ6L1 and CTEQ6M

for LO and NLO, as in the pp — gx\ case. Factorisation and renormalisation scales
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ma [GeV] oO[pb] oNEO[pb] K
200 2.12 x 102 3.36 x 10° 1.58
350 8.16 x 10°  1.36 x 10  1.66

500 764 x 1071 134 x10° 1.75
750 3.40 x 1072 654 x 1072 1.93
1000 247 x 1073 529 x 1073 2.15

Table 5.7: Individual production rates o(pp — GG*) and corresponding K-factors for
different sgluon masses for the LHC at VS = 8TeV.

10"

\ pp - GG
10 VS=8TeV

10 250 500 750 1000
m, [GeV]

Figure 5.18: Band plots for sgluon pair production (blue = LO, red = NLO).

are set to their central values:

0

[k = pp = ma - (5.10)

The NLO—-QCD cross sections and K factors for sgluon pair production calculated
at the LHC center of mass energy /S = 8 TeV are provided in Table 5.7, broken down
into separate sgluon masses. A list of cross sections and K factors for sgluon production
at 14 TeV for variable m¢ is presented in the MADGOLEM paper [15].

Band plots for total sgluon pair production are presented in Figure 5.18 for the
LHC center of mass energy /S = 8TeV, as a function of the sgluon mass m¢. The
band plots are obtained over the range %uo < prr < 21°. The error bands show a
reduction in theoretical uncertainty from O(80%) at LO to O(30%) at NLO.

A topological breakdown of the relative contributions (as defined in Eq. (5.5)) to
pp — GG* is presented in Figure 5.19.
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Figure 5.19: Individual NLO contributions to pp — GG* by relative size: Ao
Contributions from self energy diagrams are negligible (< 1%) and not shown.

NLO/ULO.

The dominant contributions to the gluon fusion channel g¢g — GG* can be seen
to come from the combined real emission and integrated dipoles, and the virtual
corrections to the quartic vertex ggGG*, which includes all box diagrams; both of which
increase with the sgluon mass m,. These features reveal a clear parallel with the visible
threshold effects observed in the gluon fusion channel for squark antisquark production
(99 — qq*) . This is unsurprising, as the LO and NLO-QCD process channels
99 — GG* and gg — qq* are topologically very similar (comparing Figures 5.16 & 5.7),
and the differences between the two at LO (comparing Figures 5.15 & 5.6) can be traced
directly to the relative strength of the color interactions arising from the fundamental

vs adjoint final-state scalars.

The topological features of the quark antiquark annihilation channel qg — GG*
are not similar to the squark antisquark production channel ¢q¢g — ¢q* however; the
dominant contribution to qg — GG™* comes from the virtual corrections to the ¢gGG*
vertex, whereas the corresponding gqq™ vertex corrections are almost negligible. This
difference can be explained due to the additional t—channel gluino diagrams present at
LO in ¢q7 — qq*, that do not feature in qg — GG*. In the MADGOLEM paper [15],
it is pointed out that in the case of decoupled gluinos the topologies for qg — GG*
and q¢ — ¢q* become similar, and the separate initial state production ratios can be
calculated from the analytical results:

o(g@@—qq") _ 1 olgg —qq) _ 1 (5.11)
o(qq — GG*) 6 o(gg — GG*) 20

The succesful calculation of the process pp — GG* provides good evidence for the

usage of MADGOLEM to calculate NLO—QCD corrections for user—defined models, as
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an automated model-independent tool.

The results of the MADGOLEM NLO—-QCD calculation for the process pp — GG*
have been used in the ATLAS search for sgluons to exclude sgluon pair production at
the LHC in the mass range of 100 GeV to 287 GeV [82].
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Conclusion

The intent of this thesis is to convince the reader that the automated calculation of

one—loop processes by use of the virtual corrections module within MADGOLEM is:

e Based on a sound theoretical underpinning of amplitude and loop simplification

techniques;
e Constructed within a robust framework of model-independent algorithms;

e Capable of calculating complicated 2 — 2 NLO-QCD processes across a variety

of models.

NLO-QCD computations for physics beyond the Standard Model (BSM) are not a
new concept, and 2 — 2 NLO calculations have been performed over the last several
decades for MSSM and other BSM models, including many automated and semi-
automated calculations by various tools.

However, MADGOLEM is the first instance of a computational framework that
takes all the individual steps or modules involved in a model-independent NLO-QCD
calculation, and combines them in a highly streamlined and automated manner that
does not require the input of extra auxiliary numerical calculations'. At variance with
alternative tools presently under development, MADGOLEM is based on a Feynman
diagrammatic description of the NLO-QCD amplitudes and is able to provide not only
numerical, but also fully analytical results. Within the universal properties of QCD-
driven interactions and through dedicated coding, this tool is ready to handle genuine
BSM structures.

MADGOLEM has already been applied with success to frontline new physics
searches [14-18,82,83]. As an independent, modular add-on to to MADGRAPH,

'In Appendix C, the steps required to produce an NLO-QCD cross section for any renormalisable
(SU(N:) ® ...) model with MADGOLEM are described; the list covers less than a page.
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Chapter 6. Conclusion

MADGOLEM can be easily linked to the multiple analysis and simulation tools built
upon the MADGRAPH architecture (MADANALYSIS5, FEYNRULES, MADWEIGHT) [81].
This makes it a most useful tool to bridge precise theory predictions and experimental

data. Dedicated studies along these lines are underway [84].
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Appendix A

Feynman rules

This appendix lists the set of Feynman rules for the various physical models that are
used for the calculations in this thesis. All momenta are defined as incoming for vertices,
and parameters for coupling constants other than g, are left undefined in order to allow
the Feynman rules to be used in a largely model-independent manner, as values for
masses and charges can be inserted after the main calculation.

For SU(N,.) structures we are more strict, and assume N, = 3 throughout, with
normalisation conventions Tr(7T%T%) = % and [T%, TP = if®°Tc. We also apply the
color values Tr = %, Co=3and Oy = %.

For Majorana and Dirac fermions, the arrows define the fixed direction of the
fermion flow; Majoranas may have an original fermion flow that clashes with the fixed
Dirac fermion flow in the amplitude, in which case the Majorana is flipped using the
rules in Section 2.4. The Dirac structure of the Feynman diagram is constructed by
following the fermion flow in reverse order.

For colored particles, the arrows define the direction of the color flow, which aligns
with the fermion flow in cases where both exist.

Counterterms are expressed in terms of the scalar one— and two—point Passarino—
Veltman integrals Ap and By. The derivative B}, = 0B/ Jp? is also used. The massless
integral By(0;0,0) is defined as the conflict of two divergences:

1 1

A.1 Standard Model QCD

The Feynman rules in Figure A.1 correspond to the SU(N.) sector of the Standard
Model, and its interactions (via quarks) with the electroweak sector. All couplings

and propagators are written in the Feynman gauge; gr and gy, are the right— and left—
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handed coupling constants associated with the chiral projection operators Ilg /1, = I+,
Faddeev-Popov ghosts are also included to allow for properly renormalised NLO QCD
calculations. The electroweak Feynman rules are not described here, as they are not
the main focus of the thesis, and can be found easily elsewhere.
Feynman rules for the counterterms are given in Figure A.2. The renormalisation
term for the QCD coupling constant is:
as BE+ 81 ag1l, m?

5gs = ~ — 2 log—-, A2
9= "4 2 F 43 PR (4.2)
where the light (L) and heavy (H) beta functions are

11 2 2
50L = ch - gnf ) ﬁé{ = —3- (A.3)

The renormalisation term for the gluon wavefunction is defined:

o m;
by 2

Qg 1 ;
67, = 1 (50L o — 2NC) By(0;0,0) + 5 [glogﬂpj (A.4)

An additional renormalisation term is required for external gluons, in order to account
for the heavy fields’ IR poles that remain in 67, via By(0;0,0):

H
_asfPy 1
5Zyet) = 1 5 (A.5)

The renormalisation terms for the massless quarks and the massive top quark are
0Zy = — —CtBy(0;0,0)
T

1
82 = = Cy |4miBy(mi; mi, mf) — WAo(mf) -1 (A.6)

A.2 Supersymmetry

A full account of Feynman rules for the MSSM can be found in [25]; in this appendix
we will restrict ourselves mostly to the strongly—interacting sector of supersymmetry.
Mixing between squarks other than the stops is not considered in this model, which
therefore restricts us to only the light flavor squarks (superpartners of u, d, s, ¢, b;
noted by Gr/r) and the stops (with mass eigenvalues t; and £3). The Feynman rules
in Figure A.3 are for the SU(N.)-dependent vertices and propagators: those that
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Figure A.1: Feynman rules for the SU(N.) sector of the Standard Model.
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Figure A.2: Feynman rules for the SU(N.) counterterms of the Standard Model.
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include gluons, gluinos, quarks and squarks. Right— and left-handed sfermions are
associated with the chiral projection operators g, = II*. The definition for the
squark quartic color structure Sj;,; depends on the flavor f; of the particles and the
s; = L/R handedness of their Standard Model partners:

St = + (T T+ (TVUTY, 5 si=s;, s5=h; fi=Ff, fj=f
Sijki = + (TN}, - si=sj,85=s5 [fi#fi, j#h (AT
Sijkl = — (Ta)g(Ta)ic : 8i # S, Sj F Si

Feynman rules for the electroweak sector are given in Figure A.4. The coupling

parameters ar,/g, br/g, 91,2 are defined in the appendix of [85].

The counterterms for the strongly interacting supersymmetric particles at one
loop are described in detail in [16]. Feynman rules for the counterterms are given
in Figure A.5, with renormalisation terms defined below. The QCD coupling

renormalisation is defined:

as BE+BE 1 as |1, m? mZ 1 @
6gs = —— 20 0~ 5 | _Jog—L +log—L + — g log—*| , (A.8)

a7 2 g€ 4m |3 ,u%% /ﬂ 12 scaarks /ﬁ%

where the light (L) and heavy (H) beta functions are
11 2 2 2 1
L H

= _N,—Zny, =—— —-N,— - 1) . A9
Bo 3 3 Bo 373 3(”f+ ) (A.9)

(0)

As described in Section 3.4, the Yukawa coupling gs’ for the vertex gqg requires an
additional correction in addition to dgs to account for a mismatch in degrees of freedom

between gluons and gluinos. This additional term is
ag (2 3
Gs = — | =ns— = . Al
0gs = <3”f 20f> (A.10)

The renormalisation term for the gluon wavefunction, which satisfies the Slavnov—
Taylor identity 67, (finite) = —2dg,(finite) is defined:

. Qg I H . Qg q
02y = =205 + 55 ) Bo(0:0,0) + —loglu +log—2 2 + Z log—_| (A1)

R squarks

An additional renormalisation term is required for external gluons, in order to account
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for the heavy fields’ IR poles that remain in 67, via By(0;0,0):

Qs 50
5Zg(ext) 47‘( 2 5 (A12)

The renormalisation terms for the light quarks are defined:

57 As

aL/rR = T 471'0 By(0;0,0) + BO(O;m'%’mg)

! (A.13)

BO(Om m2 )

dr/L

B{(0; m ymZ )+ (m2

+ (m dL/R g ‘ZR/L)

2
g QL/R)

Renormalisation terms for the massive squarks (s = L/R) are defined:

57 = %Cf [[Bo(m ,0,m2 ) +m By(mz ,0,m)

—Bo(m m ,0) + (m%— )Bo(m m 0)] (A.14)

Smg, = — 4—80 [4m~ +340(m2.) + 240(m2) + 2(m2 — m2 ) Bo(m2. ,m2 0)]
T
Renormalisation terms for the gluino field and mass are:
A
025 = ENC [1 + 4mgBé(m2, 0, m%) - Ao(mg)/mg]
as
- Z |:A0 m~ — (m% + m%) BO(mgyovmg)

9 light

— 2m? <m’527 - m%) By(mg, 0, mg)}

Qs 2 2 2 2
+ 87Tm§ Z [2m~ <mq~ —my — m~) Bo(m mg,mg.)

(A.15)

heavy

+ (mg - mgv — m%) Bo(mg,m ms ) + Ao(m~) Ao(mg)]

Z mgmyg RY RszBo(m m2 mz )

qs
heavy

(A.16)

4mqng81R82Bo(m m? m ) — Ao(m )+Ao(mz]2~)]

q7

Summations are taken over the light /heavy quarks with their respective superpartners.
As the bottom quark is considered to be massless, only the two stops and top quark

contribute to the heavy sum. RY is defined as the mass mixing matrix to create the
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Figure A.3: Feynman rules for supersymmetric QCD, excluding squark mixing. For

colorless fermions 524 — 1.

mass eigenstates 5172 from the chiral states £ L,R; in the terms where RZLQ is present, a

summation over the chiralities (s12 = L/R) is implicit.

A.3 Scalar Gluons

The Lagrangian describing the sgluon interactions with SM gluons is

Lg = D,G*D'G — mEGG*

with covariant derivative

D,G* = 0,G" + go f ™ G A,

(A.17)

(A.18)

where G* denotes the sgluon field and Aj, the gluon field. The Feynman rules for sgluon

interactions are given in Figure A.6.
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Figure A.4: Feynman rules for the supersymmetric extension to the electroweak sector,
excluding mixing. For colorless fermions § — 1.

The counterterms for scalar gluons and the strong coupling constant at one loop are
described in detail in [15]. Feynman rules for the counterterms are given in Figure A.7,
with renormalisation terms defined as:

as(pr) B+ 681 as(ur) [1

3gs(pin) = — S LiogL 4 Liog™G
G = =y T2 E T Tar 3752 T2 %%

2
. ) R1 ) (A.19)
62y = =2 (BF + 6 —4N./3) Bo(0:0,0) + 5= | =lo 1; +5lo g@
ir 302, 20N
The light (L) and heavy (H) beta functions for the QCD coupling constant are defined:
—=N,. (A.20)

An additional renormalisation term is required for external gluons, in order to account
for the heavy fields’ IR poles that remain in 67, via By(0;0,0):

la, 1
0z =———— A2l
g(ext) 3 AT E1n ( )
The renormalisation terms for the sgluon wavefunction and mass are:
@
0Zg = 2—SNc [Bo(m%;;m%;,O) + méBé(mé; m%, 0)]
T (A.22)

mg = — Z—;NC [4mE + 340(m)] .
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Figure A.5: Feynman rules for strongly interacting MSSM counterterms.
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Figure A.6: Feynman rules for scalar gluons as an extension to the Standard Model.
Arrows define the ‘direction’ G* — G.
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A.3. Scalar Gluons
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Figure A.7: Feynman rules for scalar gluon counterterms. Arrows define the ‘direction’
G* — G.
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Appendix B

Form factors

The form factors in Eqgs. (3.23)—(3.27) can be directly calculated numerically by the
integral library GOLEM95 [43,44]. Alternatively, they can be decomposed into scalar
integrals using Eq. (3.22) and Egs. (B.1) & (B.2) below.

= > I 1 (5™) = B(n— D - NIPH(S) (B.1)
kes
InD(jO, cos gy S Z Joj D+2 (J1s -y Jim1s Jidtdy - -5 Jr3S)
ZSJoichn 1G04 S™) (B.2)
kes

= bjo(n =D —r =L, jri S)

The notation St} here removes or ‘pinches’ the k—th propagator from the ordered set

S ={1,...,n}. The Feynman parameter integral in Eq. (B.2) is defined:

P31, ..., §r S) = (=1)"T'(n — %)/l_lalzZ (1 — sz> Zjy o %, (Rz)%_n (B.3)
i=1 k=1

R? is defined:

n

1
R2 = —5 Z ZiSiij — 1€ s (B4)
4,j=1

The kinematic matrix S;; associated with the loop is defined:

S,-j:(ri—rj)z—m?—m?, (B5)
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Appendix A. Form factors

and is invertible for processes with non-ezceptional kinematics [46]. The two terms b;

and B are defined:
bi=> S, B=>b (B.6)
kcsS jeS

The case of exceptional kinematics occurs when B — 0!, which causes numerical
instability in the scalar integral representation. These kinematical configurations are
extremely rare in 2 — 2 processes, and can still be calculated within the pure form

factor representation by GOLEM95.

B.1 1- and 2—point form factors

The A and B form factors for the case n = 1,2 in Eqgs. (B.7) & (B.8) below can be
written purely in terms of UV—divergent scalar integrals Ill?Q(S).

AY(8) =I17(8)

' B.7
AVN(S) = — %IP(S) >
B*(S) = — %ﬁ () - ZbkllD(S{k})]
kesS
AX(8) =T3(5)
AZL(S) = 2(D — 1)b;B>X(S) - 3 S TP (5™ (B.S)

kesS
bj, b;
2,2 _ 1 2,2
Ajhjz (5) =2 <Sj1j2 - D lem) B5%(S)
1 _ _ bi, b, by
t B Z <bj18jzllc + bj28j1llc o %) IlD(S{k})

kes

B.2 3-—point form factors

The A and B form factors for the case n = 3 in Egs. (B.9) & (B.9) below are written in

terms of two UV—divergent scalar integrals IEQ(S ), and one IR—divergent scalar integral

!'Equivalent to the presence of inverse Gram determinants where detG = 0.
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B.3. 4—point form factors

TP (S).

BS) = - 55—y [I:?(S) =S bkzé’(s{k})]
kesS

(B.9)
1 1 _
B(S) = 55 —2b; B>2(S) + 5 > (SjkllgD(S{k}) + bkA?l(s{’f}))]
kes
A*0(9) = 13?(5)
APY(S) =2(D - 2)b; B*(S) = Y 3T (sH)
kes
AP (S) =28} B3*(S) + 2b;, (D — 1)B>(S S AT (ST
kes (B.10)
A3,3 (S) S— b]leQ B3,3(S) S 1 b]lbjs B3,3(S)
J1:J2,33 J132 B J3 J133 B J2
bj, 32 1 bbb\ 22 k
B %AJQJ.‘;(S) Z (Sjlk le > AJ27J3 (S{ })
kes

B.3 4-—point form factors

The form factors for n = 4 are given below in Egs. (B.12)—(B.14) below, and are
written in terms of a basis of three divergent scalar integrals 11[7)2’3(5) and one finite
scalar integral Zf +2(S). If using a purely D—dimensional basis is preferred, one can
use Eq. (B.1) to derive the substition

IP+2(8) = ﬁ Zf(S)—ZbkL?(S{k})] . (B.11)
keS
14 ):éﬁ 7P+2(S )+2Zka3’2(S{k})] (B.12)
kesS

1
BY3(5) = - SIPH(S)

13,0y 11 D42 1 17D ofk 1 3,1, olk
B}(S) = 55 0T T(S) + EZSjk 7P (St + 5ZbkAj (5t
keS kesS
» ) » (B.13)
, ) 1 D 2
Bj 5 (8) = — 3% [21;]13 (S) + 2bj, B;°(S) — E‘sz L TS)

S Z ( kjéAil S{k}) +‘Sk 1A3 I(S{k}) +2b Ai’fp(S{k}))]
kES
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AR0(8) =1L (9)
APYS) = = bZPT(S) = > ST (S

keS
AT (S) = 2bJ1B;l23(S) 2b;, B5°(S) — 81 TP T(S)
~ 5 2 [ScAn (5% + LAl (5]
keS
AL, 5(8) = [SMB;‘ﬂS) TS5BS + 8,1, B1 ()]
2 b BY, (9) + b1, BJ, (S) + b B (9)] (B.14)
~3 2 [ L (5
+ SkjiAffh(S{k})]
Ajfszj&ﬂ(s) 811123;24)4(5) + SJlJSB;l24J4(S) + SJ114B;124J3(S)
+ 830 B (S) + 85,1 B (S) + 85,1, B (S)

+g (317327]37j4)+g (327]17j37,74)
+ g™ (j3; g2, 91, a) + gM (Gas G2, G3, 51)

The function g**(j1; 2, 73, 74) used in the definition of A** is symmetric about {js <
Js <> ja}, and is defined:

=

g Gt s a) = 2 | <bi BLL,(S) = by BJSS, (9) = b B ()

2 (SBES) + 851, BENS) + 870, BEYS))

J2337 " J4 J2ja = J3 J3ja j2

1 1432 [ olk} 1 43,2 [ olk) (B.15)
BT 12 Z [SkMA]z Ja(S )+ SkJBA]%M(S )
kesS
1 43,2 k 1 3,3 k
+ SkJZAJ3 34(5{ }) <3b o _Skﬂ) AJ27]3734(S{ })H :
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Appendix C

Running MADGOLEM

1. Install MADGOLEM as described in the README.
2. Create a new working directory: cp Template nlo/ my_newprocess/.

3. cd my newprocess/.

4. Define the NLO-QCD process for calculation in Cards/proc_card.dat. If the
model to be calculated does not already have a set of MADGOLEM model
files (interactions-qgraf.dat, particles-qgraf.dat, vertez_ct.dat, selfenergy_ct.dat,
CT_list_mod.map) in ../Models/my_model/, these must be created!.

5. Run .bin/newprocess nlo to create the NLO-QCD process.

6. Run perl GOLEMproc/run_golem.pl to compute the analytical virtual correc-

tions and produce the numerical code.
7. Define the model parameter set (masses, widths, etc) in Cards/param_card.dat.
8. Define the runtime parameters (v/'S, PDFs, etc) in Cards/run_card.dat.

9. Run .bin/generate events nlo to begin numerical calculation by Monte Carlo

event generation; final results are output to index.html

10. Congratulations!

Tt is recommended to use the premade model files in ../Models/sm_nlo and ../Models/mssm_nlo as
examples, as well as FEYNRULES [81]
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