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Abstract In the present article, we have explored the pos-
sible existence of a traversable wormhole in the framework
of Finsler–Randers (F–R) geometry. In order to achieve this
goal, first, we have constructed gravitational field equations
for static, spherically symmetric spacetime with anisotropic
fluid distribution in F–R geometry. Next, we have written
the deduced form of field equations in the background of
Morris–Thorne wormhole geometry. To visualize the shape
of the wormhole, we have selected exponential shape func-
tion b(r) = r

exp
(
η
(

r
r0

−1
)) with the constant parameter η and

the throat radius r0 and depicted two-dimensional and three-
dimensional embedding diagrams corresponding to some
considered values of η and r0. Moreover, all essential require-
ments to build a wormhole shape have been examined for
the reported shape function. Next, We have analyzed worm-
hole configuration for three cases (I, II, III) corresponding to
three selected redshift functions. Furthermore, each case is
analyzed by dividing it into two models such as (i) Model-1
(for general anisotropic EoS pt = χpr ) and (ii) Model-2 (for
linear phantom-like EoS pr + ωρ = 0). In each model of
three cases, we have verified the validity of the wormhole
solution in F–R geometry by considering null, weak, strong
and dominant energy conditions. Also, the total amount of
averaged NEC-violating matter near the wormhole throat has
been analyzed by computing volume integral quantifier.

1 Introduction

In modern cosmology, based on several observational tests,
it has been observed that our current universe is in an expan-
sion phase in an accelerating way [1–6]. As a responsible
candidate, the so-called dark energy (DE) plays the main
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role behind this expansion. In GR [7], Einstein connects the
Riemannian geometry to gravitation by a system of equations
known as Einstein’s field equations. However, till today, GR
faces some problems regarding DE and direct exploration of
the current expanding universe. For this purpose, to perform
these problems, several DE models and modified theories of
gravities (MTG) have already been established [8–11]. In the
recent few years, various results from observable astrophys-
ical studies it has been shown that an anisotropic direction
of expansion of the universe may happen if the underlying
geometry is anisotropic. In this connection, a new interest-
ing alternative gravitational theory was established on gen-
eralized Riemannian geometry known as Finslerian geom-
etry. The most fundamental distinction of Finsler’s geome-
try is that it incorporates the concept of anisotropic intrinsi-
cally in the geometry of spacetime. The underlying space of
Finsler’s geometry is named Finsler space, a metric space.
The metric in this space is defined as a function F(x, y)
from a tangent bundle of a manifold to R1. Here F(x, y) is
a non-negative function, mathematically defined as the norm
instead of the inner product on a tangent bundle with the posi-
tion of spacetime coordinate x and a tangent vector y ∈ TxM
representing the velocity. Hence the Finslerian geometry is
dynamic geometry depending on position and direction, i.e.,
dynamical coordinates on a tangent bundle of a differentiable
manifold, whereas the Riemannian geometry is gravitational
geometry. In the framework of this type of geometry, sev-
eral researchers have studied different cosmological aspects
[12–20].

Now Finsler–Randers spacetime, originated by Randers,
is a special type of Finsler spacetime that govern by a gener-
alized Riemannian metric as

F(x, y) =
√
gi j yi y j + Aλy

λ. (1)

The physical significance of this metric describes as the addi-
tional extra term Aλyλ considered as the minimum cause of
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relativity violation, or deviation from isotropic to anisotropic
nature of spacetime, or violation of Lorentz symmetry. The
F–R spacetime gives a special interest to the investigation of
the Riemannian model/FRW model in a generalized Rieman-
nian spacetime because the introduction of vector field affects
the geometrical terms like curvature, metric and geodesics
and also acts as a dark energy fluid. There are a lot of research
works for the FRW metric that have already investigated F–
R spacetime successfully. Now, we want to focus on a brief
review of several research works regarding cosmological and
geometrical aspects in the following.

In Ref. [15], authors have first constructed gravitational
field equations in Randers-type metric corresponding to FRW
metric and studied several cosmological aspects, including
the Finslerian Raychaudhuri equation. The Lorentz invari-
ance violation and symmetries of Finsler–Randers space have
been studied in detail in Ref. [21]. A comparative study
between the F–R model and the DGP model has been done
in detail and concluded these two models are almost cos-
mological equivalent [22]. Finsler–Randers cosmology can
imitative a general dark energy scenario and also modified
gravity model, shown in the Ref. [23]. F–R cosmological
model corresponding to modified gravity has been studied in
[18], and also authors discussed all energy conditions in this
framework in detail. The extended Schwarzschild-like and
Schwarzschild De-Sitter solutions in Finsler–Randers geom-
etry and its geometrical applications have been explored by
constructing geodesic paths of a particle and as well as a com-
parison study between GR and S–F–R framework [24,25].
Also, from the dynamical system perspective, F–R cosmo-
logical model and its outstanding applications are included in
Ref. [26]. Dynamical analysis of several geometrical aspects
like geodesic, angular momentum, the energy of a moving
particle, deflection angle etc., is discussed in the Refs. [27–
29]. Based on the F–R metric, authors studied differential
geometry with remarkable applications, and also the Ray-
chaudhuri equation, as well as energy conditions, are dis-
cussed in detail in the Refs. [30,31].

Due to the strong gravitational field, it was considered
that the physical structure of the end status of a static, mas-
sive astrophysical object should be spherically symmetric. In
this connection, the interior spacetime of a compact object,
or compact star, is assumed as spherically symmetric space-
time. Here, for example, a compact object or star may be a
black hole, a white dwarf, or a neutron star to a strange star
etc. After the discovery of a new and appropriate approach
to gravitational theory based on the concept of curvature of
spacetime, known as Einstein’s General theory of relativ-
ity (GR) [7], the investigation of numerous exact solutions
of interior and exterior geometry become a new platform
of research in the scientific community till today. For this
purpose, the spherically symmetric spacetime that is able to
explore astrophysical phenomena regarding physical charac-

teristics and impact of compact objects has always achieved
one of the most interesting problems in particle astrophysics.

Now among compact relativistic objects, a more interest-
ing and ideological object (i.e., mathematically possible but
without observational evidence) is a wormhole. From the
physical point of view, a wormhole is described as a tunnel-
like structure that connects two different points of spacetime
or two points of two different spacetimes. Historically, the
notion of the wormhole was actually initiated by Flamm [32]
soon after the invention of the Schwarzschild solution [33].
The idea of these hypothetical shortcuts was first proposed by
Einstein and Rosen, popularly known as the Einstein–Rosen
bridge, in order to investigate the co-ordinate or curvature
singularity free for the Riessner-Nordstron solution [34,35]
and the Schwarzschild solution [36]. In a seminal work in
1962, Wheeler [37] first used the term wormhole and describe
the geometry of Schwarzschild wormhole and later Hawk-
ing [38] transformed this solution into Euclidean wormhole,
named as Einstein–Rosen bridge. After some years, it is
investigated by Wheeler and Fuller [39] that the Einstein–
Rosen bridge type of wormhole may not be stable because
when it connects two parts of the same universe, it will pinch
off very quickly than light or any particle moving slower than
light is not able to fall in from one exterior region to make it
to the other exterior region.

The idea of the static and spherically symmetric traversable
wormhole was first successfully explored by Morris and
Thorne [40] as a possible structure to freely traverse time
or interstellar. The intention of time or interstellar travel was
able to explain by imposing a special type of matter near
the throat that must push the wormhole wall apart and pre-
vents it from squeezing very quickly from gravitational col-
lapse. Hence, the fundamental constituents near the throat of
a traversable wormhole must be the exotic matter that violates
the null energy condition (NEC), at least in the neighbour-
hood of the throat. Thus in order to construct a traversable
wormhole configuration, the main issue is the violation of
energy conditions that claim the presence of exotic matter
near the throat of wormhole [41–44]. Moreover, Visser et
al. [41,45] revealed an important essential fact that the aver-
aged null energy condition (ANEC) must be violated in the
wormhole geometry, and the measurement of this type matter
should be infinitesimally small, named as the volume inte-
gral quantifier. Till today, there are a lot of research works
regarding physical aspects and as well as exact solutions for
different types of wormholes such as static wormhole [46–
50], dynamical wormhole [51,52] and rotating wormholes
[53,54] have already been developed by several authors.
Consequently, a lot of research works are done by assum-
ing the wormhole configuration supported by several types
of dark energy such as cosmological constant [55–57], phan-
tom energy [58–60], modified or generalized Chaplygin gas
[61–63]. Besides GR, a large number of wormhole models
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are developed in the framework of different modified the-
ories of gravities (MTGs). Here an interesting fact is that
in the context of MTGs for the construction of wormholes,
the exotic matter can be minimized or completely avoided.
Again except the Riemannian geometry, wormhole config-
uration has already been studied by several researchers in
the background of different geometrical gravitational the-
ories like Teleparallel geometry, non-commutative geome-
try and Finslerian geometry etc. Among these geometrical,
we want to concentrate on wormhole structure in Finslerian
geometry because of some interesting special consequences
in this geometry. First of all, Riemannian geometry is a spe-
cial type of Finslerian geometry, and it is dynamic, already
stated in detail in the early stage of this section [64]. Now
the exact solution of traversable wormhole in the Finslerian
framework was first successfully studied by Rahaman et al.,
[65] by constructing some redshift functions and shape func-
tions with the help of EoS. Recently, a wormhole solution
in Finsler geometry with f (R, T ) gravity has been explored
in the Refs. [66,67]. Also, traversable wormhole supported
by Phantom-like dark energy in the framework of Finslerian
geometry has been discussed by Singh et al. [68].

In the present study, our main goal is to construct grav-
itational field equations in the context of Finsler–Randers
geometry. For this purpose, we consider a static metric to
describe a spherically symmetric spacetime geometry with an
anisotropic fluid distribution. Next, our aim is to examine the
formation of Morris and Thorne [40] traversable wormhole in
F–R geometry. For this context, we are employing two EoS
to evaluate Rander terms such as general anisotropic EoS,
discussed in the Model-1 and phantom-like EoS, discussed
in the Model-2. A brief decoration of the rest portion of the
whole study is as follows: In the Sect. 2, we have included
a details construction of gravitational field equations in the
F–R geometry corresponding to a static, spherically sym-
metric spacetime. Next, the formation of Morris and Thorne
wormhole configuration has been discussed in the Sect. 3. In
this section, we have included a discussion of several aspects
like embedding surface, proper radial distance, the validity
of energy conditions etc., regarding wormhole configuration.
Further, in Sect. 4, we have analyzed averaged NEC for our
wormhole solutions. At the end section, i.e., Sect. 5, we have
reported some valuable conclusions from our whole discus-
sions.

2 Gravitational field equations for F–R metric

A Finsler space is governed by a differentiable function
F(x, y), also named as Finsler structure, defined on a tangent
bundle T M of a manifold M as

F(x, y) : T M → R

The function satisfies some following properties:

(i) F is smooth on ˜T M = T M \ {0}, regularity property.
(ii) F is a positive one dimensional homogeneous func-

tion F(x, λy) = λF(x, y) with λ > 0, homogeneity
property, where x ∈ M and y = dx

dτ
are the respective

representation of position and velocity.
(iii) The n × n Hessian matrix [64]

gμν ≡
(

1

2
F2
)

yμyν

(2)

is positive-definite at every point of T M \ {0}, referred
as strong convexity property, where the notation ()yμ ≡

∂
∂yμ ().

A special type of Finsler space the so-named the Finsler–
Randers space [69], defined by the metric function of the
form as

F(x, y) = α(x, y) + β(x, y), (3)

where

α(x, y) =
√
gi j yi y j , (4)

β(x, y) = uλy
λ, (5)

and gi j (x) is the fundamental metric tensor corresponding
to Riemannian affine connection. Hence as a consequence,
we can say that the geometrical structure of F–R space is
obviously a generalization of Riemannian geometry.

Here the spatial coordinates are comoving the time coor-
dinate describes the proper time surveyed by the comov-
ing observer. The vector field yμ = dxμ

ds describes the four
tangent vectors that represent the velocity of a comoving
observer towards a suitable family of world lines (i.e., paths
of fluid flow) in a locally anisotropic universe. The arclength
s ≡ is the proper time. So we have yμ = (1, 0, 0, 0).

uλ represents a weak primordial vector field with |uλ| � 1
and uλ = (u0, 0, 0, 0) with u0(r). Here uλ is a covector.
Now using the Hessian of F , the metric for the Finslerian
spacetime can be defined as follows:

fμν(x, y) = 1

2

∂2F2

∂yμ∂yν
(x, y). (6)

By simplifying we can derive [15,24] in the following form

fμν = aμν + 1

4α
(uμyν + uν yμ) − β

α3 yμyν + uμuν (7)

where

aμν(x, y) = F

α
(x, y)gμν(x). (8)
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With respect to the metric of Finslerian spacetime the usual
definition of Christoffel symbols are as follows

�i
jk(x, y) = 1

2
f ir (x, y)

[
fr j,k(x, y) + frk, j (x, y) − f jk,r (x, y)

]
. (9)

And the corresponding Cartan tensor defined by E. Cartan as

Ci jk = 1

2

(
∂ fi j
∂yk

)
. (10)

Here it is important to mention that the tensor quantity Ci jk

plays the role of the torsion tensor in the Finslerian geometri-
cal framework. Thus a Finsler space becomes a Riemannian
space when Ci jk = 0 and vice-versa.

Now, the osculating Riemannian metric can be defined for
the case of a connection between a convenient Finsler metric
and Riemannian metric as [14,70]

rμν(x) = fμν(x, y(x)). (11)

The corresponding Christoffel symbols are

rkλμ(x) = �k
λμ(x, y) + Ck

μρ(x, y)
∂yρ

∂xλ
(x)

+Ck
λρ(x, y)

∂yρ

∂xμ
(x)

−akσ (x, y)Cλμρ(x, y)
∂yρ

∂xσ
(x). (12)

The full expression of Cartan’s torsion tensor can be easily
defined as [71]

Cμνλ = 1

2

[ 1

α
S(μνλ)(gμνuλ)

− 1

α3Sμνλ(yμyνuλ) − β

α3Sμνλ(gμν yλ)
]
. (13)

All term of the above equation is proportional to the the field
uλ thus Cμνλ ≈ 0. So the approximation form of Christoffel
components are

Ak
λν(x) ≈ �k

λν(x). (14)

The curvature tensor can be defined as

Lk
λμν = Ak

λν,μ − Ak
λμ,ν + Aρ

λν A
k
ρμ − Aρ

λμA
k
ρν. (15)

Ricci tensor

Lμν = Lκ
μκν. (16)

Scalar curvature

L = f μνLμν. (17)

Let us considered a static spherically symmetric metric as

ds2 = eζ dt2 − eψdr2 − r2(dθ2 + sin2θdφ2), (18)

where ζ and ψ are arbitrary functions of radial coordinate r
only.

So we have

gi j (x) = diag
(
eζ ,−eψ,−r2,−r2sin2θ

)
(19)

Utilizing the Eq. (7), we can easily compute the following
relations between Finslerian ( fμν) and Riemannian (gμν)
metric coefficients with {μ, ν = 0, 1, 2, 3}.
f00 = g00 + u0g00

2
√
g00

+ u2
0

f11 = g11

(
1 + u0√

g00

)

f22 = g22

(
1 + u0√

g00

)

f33 = g33

(
1 + u0√

g00

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

Now, by imposing the conditions u′′
0 ≈ 0 and u′2

0 ≈ 0 and
putting the metric coefficients gi j , given in the Eq. (19), the
nonzero components of Ricci tensor (Lμν , defined in the
Eq. (15)) can evaluated as follows:

L00 = e−ψ

8r

[
eζ/2u′

0

(
4 + r(2ζ ′ − ψ ′)

)

+2eζ
(
ζ ′(4 + r(ζ ′ − ψ ′)

)+ 2rζ ′′)
]
, (21)

L11 = 1

8r

[
8ψ ′ + e−ζ/2u′

0

(− 8 + 5r(2ζ ′ + ψ ′)
)

−2r
(
ζ ′2 − ζ ′ψ ′ + 2ζ ′′)

]
, (22)

L22 = e−ψ

8

[
− 8 + 8eψ − 4r(ζ ′ − ψ ′)

+2re−ζ/2u′
0

(− 7 + r(ζ ′ + ψ ′)
)]

. (23)

L33 = sin2 θL22. (24)

Now the energy–momentum tensor for describing Finslerian
anisotropic matter distribution can be given for a comoving
obserever as

Tμν(x, y) = (ρ + pt )yμyν

−pt fμν(x, y) + (pr − pt )zμzν, (25)

where yμ are fluid 4-velocity vector and zμ are radial 4-
vector. So the components of Tμν can given as follows

T00 = ρ f00

T11 = −pr f11

T22 = −pt f22

T33 = −pt f33

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(26)

The trace is

T = ρ − pr − 2pt . (27)
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Based on the Asanov research [14], the action for the oscu-
lating Riemannian spacetime can be defined as

I =
∫

L(x, y(x))
√−g(x, y(x)) d4x, (28)

where L(x, y(x)) is the osculating Ricci scalar in the context
of Finslerian geometry.

Now using the variational principle for the above action
(28), the field equations of Einstein’s GR corresponding to
our model can be written as follows

Lμν = 8πG
(
Tμν − 1

2
Tgμν

)
. (29)

So the componentwise field equations can be written as

e−ζ−ψ

[
eζ/2u′

0

(
4 + r(2ζ ′ − ψ ′)

)

+2eζ
(
ζ ′(4 + r(ζ ′ − ψ ′)) + 2rζ ′′)

]

= 32πGr(ρ + pr + 2pt ), (30)

e−ψ

[
8ψ ′ + e−ζ/2u′

0

(− 8 + 5r(2ζ ′ + ψ ′)
)

−2r
(
ζ ′2 − ζ ′ψ ′ + 2ζ ′′)

]
= 32πGr(ρ + pr − 2pt ),

(31)

e−ψ

r

[
− 8 + 8eψ − 4r(ζ ′ − ψ ′)

+2re−ζ/2u′
0

(− 7 + r(ζ ′ + ψ ′)
)]

= 32πGr(ρ − pr ). (32)

Solving the above field Eqs. (30)–(32), the explicit expres-
sions of ρ, pr and pt can be evaluated as follows:

ρ(r) =
e−ψ

(
u′

0e
− ζ

2 r
(
2rζ ′ + rψ ′ − 4

)+ 2rψ ′ + 2eψ − 2
)

16πGr2 , (33)

pr (r) = e− ζ
2 −ψ

(
rζ ′ (u′

0r + 2eζ/2
)+ 3u′

0r − 2eζ/2
(
eψ − 1

))

16πGr2 , (34)

pt (r) = e− ζ
2 −ψ

(
u′

0

(−4rζ ′ − 5rψ ′ + 2rψ ′ + 6
)+ 2eζ/2

(
2rζ ′′ + (ζ ′ − ψ ′) (rζ ′ + 2

)))

64πGr
. (35)

3 Wormhole model

In this section, our goal is to examine the formation of a
traversable wormhole in the context of F–R geometry. For
this purpose, we first recall a brief review of traversable
wormholes based on the Morris and Thorne proposition
for wormhole description. To represent such type wormhole

geometry, first, we consider the following static, spherically
symmetric line element [40]

ds2 = e2�(r)dt2 − dr2

1 − b(r)
r

− r2(dθ2 + sin2 θdφ2) , (36)

where, �(r) and b(r) are the gravitational redshift function
and the shape function, respectively.

Now from the physical point of view, to depict the hypoth-
esised picture of a wormhole by the metric (36), the function
b(r) should be in a form such that it connects two asymp-
totically flat regions of spacetime. Here the minimum value
attained by b(r) is called the throat of the wormhole. As the
function b(r) depicts the shape of the wormhole, it is named
by the shape function.
According to Morris and Thorne, a traversable wormhole
with r0 as the radius of the throat will be depicted by the
metric (36), then the shape function must maintain the fol-
lowing restrictions

• Throat condition: b(r0) = r0 and 1− b(r)
r > 0 for r > r0.

• Flaring out condition: b′(r0) < 1 at r = r0.
• Asymptotically flatness condition: b(r)

r → 0 for r → ∞.

Motivated from the valuable research works on Cosmo-
logical model done by several authors [15,16,18,22,23,26,
27,71] in F–R geometry, we have defined the Morris–Thorne
wormhole metric in the context of F–R geometry, defined by
the metric (3) i.e., may be named by Morris–Thorne–Finsler–
Randers metric as

F(x, y) =
√
gi j yi y j + uλy

λ, (37)

where

gi j (x) = diag

[
e2�(r),− 1

1 − b(r)
r

,−r2,−r2 sin2 θ

]
. (38)

In the ’Appendix’, we have reported a details discussion
regarding the computation of field equations corresponding
to the metric (37).
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Now, the field equations (30)–(32) for the metric (37)
reduce to the following forms

ρ(r) = e−�(r)
(
b′(r)

(
u′

0r + 2e�(r)
)+ u′

0b(r)
(
3 − 4r�′(r)

)+ 4u′
0r
(
r�′(r) − 1

))

16πGr2 , (39)

pr (r) =
(

1 − b(r)
r

)
e−�(r)

(
− 2b(r)e�(r)

r−b(r) + 2r
(
u′

0r + 2e�(r)
)
�′(r) + 3u′

0r
)

16πGr2 , (40)

pt (r) = 1

64πGr

⎛
⎝
(

1 − b(r)

r

)
e−�(r)

⎛
⎝2e�(r)

((
2r�′(r) + 2

) (−rb′(r) + 2r(r − b(r))�′(r) + b(r)
)

r(r − b(r))
+ 4r�′′(r)

)

−u′
0

(
r
(
3b′(r) + 8r�′(r) − 6

)+ b(r)
(
3 − 8r�′(r)

))

r − b(r)

)⎞
⎠ . (41)

In the present work, let us choose the shape function b(r)
in the following form

b(r) = r

exp
(
η
(

r
r0

− 1
)) , (42)

where η ia a constant parameters and r0 is the radius of worm-
hole throat. Next, in order to scrutinize the essential require-
ments of a wormhole shape function, several plots have been
drawn for some considered values of η in Fig. 1 correspond-
ing r0 = 1 and Fig. 2 corresponding to r0 = 2. From these
Figures, it is observed that throat condition, flaring out con-
dition, and asymptotically flatness condition are fulfilled by
our considered shape function b(r) with chosen values of η

and r0.

3.1 Embedding surface

For a better visualization of the wormhole geometry, pre-
sented by Eq. (36), we have illustrated embedded two-
dimensional and three-dimensional diagrams for the shape
function, stated in Eq. (42). Since our wormhole geometry
is spherically symmetric, we have used an equatorial slice,
represented by θ = π

2 , and fixed a moment of time by
t =constant, without loss of generality. We have presented
this type of hypersurface by H : θ = π/2, t = constant and
hence in this hypersurface, dθ = 0 and dt = 0. So, for this
connection, we may write the reduced form of the wormhole
metric (36) as

ds2
H = − dr2

1 − b(r)
r

− r2dφ2. (43)

In the cylindrical co-ordinates the above metric (43) equiv-
alent to the following form

ds2
H = −dZ2 − dr2 − r2dφ2. (44)

Now, in three-dimensional Euclidean space the embedding
surface characterize by Z = Z(r), so, the reduced form of
the metric for this surface may be written as [72]

ds2
H = −

[
1 +

(
dZ

dr

)2
]
dr2 − r2dφ2. (45)

Now comparing the Eqs. (43) and (44), we can represent the
embedding shape function Z(r) as follows

dZ

dr
= ±

√(
1 − b(r)

r

)−1

− 1. (46)

Utilizing the Eq. (46), we have depicted embedded 2D dia-
gram in Fig. 3 and embedded 3D diagram in Fig. 4.

3.2 Proper radial distance

In the proper radial co-ordinate system, the wormhole metric
(36) can be written as [72,73]

ds2 = e2�(l)dt2 − dl2 − r(l)2
(
dθ2 + sin2 θdφ2

)
. (47)

Now the proper radial distance of the wormhole is given by

l(r) = ±
∫ r

r0

(
1 − b(r)

r

)− 1
2

dr, (48)

where the ‘±’ comes for the both mouths of wormhole.
In Fig. 5, we have illustrated the proper radial distance

while the radial coordinate r ≥ r0. Moreover, in Tables 1
and 2, we have calculated the approximate numerical values
of proper radial distance l(r) and embedding surface function
Z(r) of the wormhole for the first quadrant at several radial
coordinate r ≥ r+

0 . And it is observed that the values of l(r)
are slightly more than Z(r) at any radial coordinate r .

3.3 Energy conditions

The energy conditions are defined by a set of inequalities
among the thermodynamical parameters like ρ, pr , pt . These
conditions originated from Raychaudhuri equations, which
represent the action of congruence and the attractive nature of
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Fig. 1 Behavior of b, b
r , b′, b − rb′ against the radial coordinate r with r0 = 1

gravity for timelike, spacelike, or lightlike curves [74]. The
energy conditions are mainly used as the fundamental tools
to predict the nature of a strong gravitational field because the
geodesic structure of spacetime may be described perfectly
by these conditions. Moreover, one can analyze the realis-
ticness of matter distribution and hence the possible exis-
tence of wormhole geometry by utilizing these conditions.
An interesting fact is that the energy conditions are purely
geometrical concepts, and their origin is not dependent on
the theory of gravity (for more details, see the Ref. [75]).
Here we will emphasize only four distinct kinds of energy
conditions, whereas, in GR, seven different types of energy
conditions are analyzed [76]. Since the whole of our current
discussion is performed with anisotropic fluid, the energy
conditions are given as follows:

• NEC (Null energy condition): ρ + pr ≥ 0, ρ + pt ≥ 0.
In tensor form NEC is defined as Tμνkμkν ≥ 0 with
null-like vector kμ.

• WEC (Weak energy condition): ρ ≥ 0, ρ + pr ≥ 0,
ρ + pt ≥ 0. In tensor form WEC defined as TμνUμU ν ≥
0 with time-like vector Uμ.

• SEC (Strong energy condition): ρ + pr ≥ 0, ρ + pt ≥
0, ρ + pr + 2pt ≥ 0. In tensor form SEC defined as

(
Tμν − T

2 gμν

)
UμU ν ≥ 0 with the trace of the energy–

momentum tensor Tμν i.e., T = ρ − �i pi .
• DEC (Dominant energy condition): ρ ≥ 0, ρ −|pr | ≥ 0,

ρ−|pt | ≥ 0. In tensor form DEC defined as TμνUμU ν ≥
0 and TμνUμ is not space-like.

Now, the physical meaning of the above energy conditions
i.e., NEC, WEC, SEC and DEC may be described as follows:

(i) The WEC implies the observer’s measurements along
any time-like vector about energy density (ρ) must be
always positive i.e., ρ ≥ 0.

(ii) The SEC implies that the gravitational field should
always attractive i.e., may predict a strong gravitational
field.

(iii) DEC states that the measurements of energy flux by any
observer is time-like or null-like and must be always
non-negative i.e., ρ ≥ 0.

(iv) The basic requirements of SEC and WEC is NEC i.e.,
WEC ⊂ NEC and SEC ⊂ NEC.

Therefore, if the NEC is hold then the SEC and WEC are auto-
matically hold but the reverse need not always true. Again
we have DEC ⊂ WEC ⊂ NEC and hence we can say DEC
implies both the NEC and the WEC, while the reverse doesn’t
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Fig. 2 Behavior of b, b
r , b′, b − rb′ against the radial coordinate r with r0 = 2

Fig. 3 Embedding two-dimensional diagram plots corresponding to the relation (46) with the shape function (42) for the throat radius r0 = 1 (left
panel) and r0 = 2 (right panel)

need to be true in each case. Moreover, DEC need not imply
the SEC. Now, a basic aspect of traversable wormhole i.e.,
wormhole with the exotic matter violates NEC in the context
of GR [41]. Also, in order to describe a wormhole geometry
the violation of SEC is necessary. Thus again if the NEC is
violated then all other standard energy conditions are also
violated.
By a bouncing Universe, we may treat a Universe that under-
goes a collapse, attain a minimum and later on expands [77–

81]. In classical cosmology, it has been observed that such
bounce may not be possible for FRW universe if ρ + 3p > 0
i.e. active mass is positive with perfect fluid’s energy density
ρ and pressure p [82]. Thus, FRW Universe undegoing a
bounce with minimum at which the SEC must be violated.
However, the violation of SEC is necessary but not suffi-
cient condition. In the early Universe, some bouncing mod-
els may be produced based on the violation of WEC [79].
Again, the violation of WEC is also a necessary condition
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Fig. 4 Embedding three-dimensional diagram plots corresponding to
the relation (46) with the shape function (42) for the throat radius r0 =
1 (left panel) and r0 = 2 (right panel). Here the colors indicated as
η = 0.1 → ♠, η = 0.3 → ♠, η = 0.5 → ♠, η = 1 → ♠

to obtain wormhole solutions. Therefore, there must have
an obvious technical connection between wormhole solu-
tions and cosmological bounce. In the Refs. [83,84] authors
have discussed the existence of wormhole solutions around
the cosmological bounce. So, as a final remark we can say
a bounce may be occur in the Universe when WEC, NEC,
SEC are not hold at some short distant interval. Hence, we
can notice the bouncing conditions for F–R spacetime [31] as
ρ + 3p < 0 and ρ + p < 0 corresponding to isotropic fluid
as well as ρ + pr < 0, ρ + pt < 0 and ρ + pr + 2pt < 0
for anisotropic fluid distributions.

Since the appropriate matter distribution required to create a
wormhole is still an open problem in the scientific commu-
nity, so, we have considered a general anisotropic matter dis-
tribution is given by Eq. (25). Here the stress of anisotropic
force can be represented by the parameter � = pt − pr .
Physically the nature of this stress is represented as for
� < 0 (i.e., negative), the resulting anisotropic stress is
directed inward, and wormhole geometry becomes an attrac-
tive nature, whereas for � > 0 (i.e., positive) it is directed
outward and geometry becomes in repulsive nature.

3.3.1 Two models

Now, in order to verify the wormhole formation in F–R geom-
etry, we consider two different types of matter content, which
are discussed in two models apart in the following:

• Model-1: Let us consider the anisotropic matter distri-
bution obeys the following relation [85]

pt = χpr , (49)

where χ , anisotropic parameter may be a constant ( 
=
1, otherwise it becomes isotropic) or a function of radial
co-ordinate r . Putting the analytical expressions of pr
and pt , derived in the respective Eqs. (40) and (41), in
the above relation (49), we have derived the following
explicit form of u′

0 as

u′
0 = 1

r (3r (b′(r) + 4χ − 2) + 3(1 − 4χ)b(r) + 8r(χ + 1)(r − b(r))�′(r))
×
(

4e�(r)
(
r
(

2r
(
r�′′(r) + �′(r)

(
r�′(r) − 2χ + 1

))− b′(r)
(
r�′(r) + 1

) )+ b(r)

× (r (�′(r)
(−2r�′(r) + 4χ − 1

)− 2r�′′(r)
)+ 2χ + 1

) ))
(50)

For simplicity, we have taken the easiest form χ = W1rn ,
where W1 and n are some constants. Throughout the
graphical representation corresponding to this model,

Fig. 5 Behavior of l(r) against radial coordinate r corresponding to the shape function (42) for the throat radius r0 = 1 (left panel) and r0 = 2
(right panel)
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Table 1 Some approximate
numerical values of the proper
radial distance l(r) and the
embedding surface Z(r) for
different variation of η

corresponding to the wormhole
throat r0 = 1kpc

r(kpc) l(r) Z(r)

η = 0.1 η = 0.3 η = 0.5 η = 1 η = 0.1 η = 0.3 η = 0.5 η = 1

1.1 2.00167 1.15759 0.898159 0.637739 1.99833 1.15182 0.890705 0.627198

2 6.37739 3.74342 2.94762 2.17008 6.17298 3.56092 2.71218 1.83821

3 9.09406 5.42563 4.34015 3.31491 8.79597 4.91006 3.67643 2.38814

4 11.2303 6.80783 5.52807 4.36092 10.6828 5.86254 4.31529 2.69154

5 13.0747 8.05040 6.62982 5.37707 12.2320 6.59903 4.77628 2.87009

6 14.7381 9.21345 7.68786 6.38292 13.5609 7.19215 5.12088 2.97724

7 16.2769 10.3266 8.72185 7.38505 14.7302 7.68067 5.38309 3.04198

8 17.7242 11.4068 9.74204 8.38584 15.7763 8.08861 5.58454 3.08119

9 19.1015 12.4644 10.7541 9.38613 16.7231 8.43234 5.74018 3.10496

10 20.4235 13.5060 11.7614 10.3862 17.5876 8.72374 5.86080 3.11937

Table 2 Some approximate
numerical values of the proper
radial distance l(r) and the
embedding surface Z(r) for
different variation of η

corresponding to the wormhole
throat r0 = 2kpc

r(kpc) l(r) Z(r)

η = 0.1 η = 0.3 η = 0.5 η = 1 η = 0.1 η = 0.3 η = 0.5 η = 1

2.1 2.86921 1.63504 1.26755 0.898159 2.82725 1.63095 1.26228 0.890705

3 8.98159 5.22876 4.08383 2.94762 8.90705 5.09968 3.91721 2.71218

4 12.7548 7.48684 5.89524 4.34015 12.544 7.12184 5.42436 3.67643

5 15.6863 9.28315 7.36823 5.52807 15.299 8.61293 6.50437 4.31529

6 18.1881 10.8513 8.68031 6.62982 17.5919 9.82012 7.35285 4.77628

7 20.4192 12.2804 9.89847 7.68786 19.5861 10.8406 8.04783 5.12088

8 22.4605 13.6157 11.0561 8.72185 21.3655 11.7251 8.63058 5.38309

9 24.3602 14.8835 12.1725 9.74208 22.9805 12.5041 9.12645 5.58454

10 26.1493 16.1008 13.2696 10.7541 24.464 13.1981 9.55255 5.74018

the constants W1 and n are considered as −0.1 and 0.5
respectively.

• Model-2: In this model, we consider the matter part obeys
the linear equation of state (EoS) as follows

pr + ωρ = 0, (51)

whereω is a positive function of radial co-ordinate r . Now
for ω(r) < −1 then it represents Phantom energy EoS,
which have already discussed in the Ref. [68]. Utilizing
the analytical expressions of ρr and pr , evaluated in the
respective Eqs. (39) and (40), in the above relation (51),
we have derived the explicit form of u′

0 as follows

u′
0 = 2e�(r)

(−rωb′(r) + 2r(b(r) − r)�′(r) + b(r)
)

r (rωb′(r) + 3ωb(r) + 2r(2ω + 1)(r − b(r))�′(r) − 3b(r) − 4rω + 3r)
. (52)

In similar way of Model-1 for simplicity, we have also
considered ω = W2rm and the constants W2 and m are
taken as 3 and 2 respectively throughout the graphical
representation corresponding to this model.

3.3.2 Some specific forms of gravitational redshift function

In order to get the energy density and pressure, we assume
three cases of gravitational redshift function �(r).

Case-I: �(r) = constant = K .
Due to the choice of the redshift function �(r) = constant
= K , we get the energy density and pressure in Model-1 and
Model-2 in the following:
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Model-1:

ρ(r) =
e
η− ηr

r0

(
−2r2

0 (2χ + 3)

(
e
η
(

r
r0

−1
)

− 1

)
− r0ηr

(
2(6χ + 1)e

η
(

r
r0

−1
)

− 8χ + 1

)
+ η2r2

)

24πr0Gr2

(
2r0(2χ − 1)

(
e
η
(

r
r0

−1
)

− 1

)
− ηr

) , (53)

pr (r) =
r0

(
2e

η− ηr
r0 − 2

)
+ ηr

(
e
η− ηr

r0 − 2
)

8πGr2

(
ηr − 2r0(2χ − 1)

(
e
η
(

r
r0

−1
)

− 1

)) ,

(54)

pt (r) =
χ
(
r0

(
2e

η− ηr
r0 − 2

)
+ ηr

(
e
η− ηr

r0 − 2
))

8πGr2

(
ηr − 2r0(2χ − 1)

(
e
η
(

r
r0

−1
)

− 1

)) .

(55)

Model-2:

ρ(r) =
r0

(
−e

η− ηr
r0

)
+ ηr

(
3 − 2e

η− ηr
r0

)
+ r0

8πGr2

(
r0(4ω − 3)

(
e
η
(

r
r0

−1
)

− 1

)
+ ηrω

) ,

(56)

pr (r) =
ω
(
r0

(
e
η− ηr

r0 − 1
)

+ ηr
(

2e
η− ηr

r0 − 3
))

8πGr2

(
r0(4ω − 3)

(
e
η
(

r
r0

−1
)

− 1

)
+ ηrω

) ,

(57)

pt (r) =
e
η− ηr

r0

(
6r2

0 (ω − 1)

(
e
η
(

r
r0

−1
)

− 1

)
+ r0ηr

(
2(ω − 3)e

η
(

r
r0

−1
)

+ ω + 3

)
− η2r2ω

)

32πr0Gr2

(
r0(4ω − 3)

(
e
η
(

r
r0

−1
)

− 1

)
+ ηrω

) . (58)

In the case-I, to verify energy conditions corresponding
to our wormhole solutions we have demonstrated sufficient
plots thats are included in Figs. 6 and 7 for the respective
Model-1 and Model-2.

• For the Model-1, from Fig. 6 and Table 3, we have
observed that energy density (ρ) is positive for r ∈
[1,∞]. The NEC is violated partially as ρ + pr ≤ 0
for all r ∈ [1,∞] whereas ρ + pt ≥ 0 for all r ∈ [1,∞].
So, it is obvious that WEC is violated partially. Also, SEC
violated as ρ + pr + 2pt ≤ 0 for η = 0.3, 0.5, 0.7, 1.
Moreover, DEC violated partially because of ρ−|pr | ≤ 0
for all r ∈ [1,∞]. So, the energy conditions like NEC,
WEC, SEC, DEC are not appropriately satisfied near the
wormhole throat for the Model-1 corresponding to our
solutions.

• Again for the Model-2, from Fig. 7 and Table 3, we have
observed that ρ is positive for all r ∈ [1,∞] and the NEC
is not satisfied partially ρ + pr ≤ 0 for all r ∈ [1,∞]
whereas ρ + pt ≥ 0 for all r ∈ [1,∞]. Hence WEC is
violated partially in this model. The SEC is violated as
ρ + pr + 2pt ≤ 0 for all r ∈ [1.6,∞] corresponding
to η = 0.5 and for all r ∈ [1.6,∞] corresponding to
η = 0.7, 1. Also, SEC violated partially for η = 0.1, 0.3.
The DEC is completely violated as ρ − |pr | ≤ 0 and
ρ − |pt | ≤ 0 for all r ∈ [1.6,∞]. So, as a result NEC,
WEC, SEC and DEC are violated again in the Model-2
corresponding to our solutions.

Case-II: �(r) = log
(

ξ
r + 1

)
.

Due to the choice of the redshift function�(r) = log
(

ξ
r + 1

)
,

(ξ a constant) we get the energy density and pressure in
Model-1 and Model-2 in the following:

Model-1:

ρ(r) =
(
e
η− ηr

r0

(
− 2r2

0

(
e
η
(

r
r0

−1
)

− 1

)

×
(

ξ2(2χ + 1)

(
16e

η
(

r
r0

−1
)

− 9

)
+ 2ξr

(
(8χ + 4)e

η
(

r
r0

−1
)

+ 1

)

+r2(2χ + 3)
)

− r0ηr
(
r2
(

2(6χ + 1)e
η
(

r
r0

−1
)

− 8χ + 1

)

+ξ2
(

2(6χ − 5)e
η
(

r
r0

−1
)

− 8χ + 13

)

+2ξr

(
4χ

(
3e

η
(

r
r0

−1
)

− 2

)
+ 3

))

+η2r2 (3ξ2 + r2 + 4ξr
) ))/

×
(

8πr0Gr2(ξ + r)

(
2r0

(
e
η
(

r
r0

−1
)

− 1

)
(ξ(2χ − 7)

+r(6χ − 3)) − 3ηr(ξ + r))

)
, (59)
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Fig. 6 Behavior of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | against the radial coordinate r corresponding to �(r) = K

pr (r) = e
η− ηr

r0

(
ηr

(
r2
(

6e
η
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r
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− 3
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− 9
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(
2r0

(
e
η
(

r
r0

−1
)

− 1

)
(ξ(2χ − 7)

+r(6χ − 3)) − 3ηr(ξ + r)) , (60)

pt (r) = χe
η− ηr

r0

(
ηr

(
r2
(

6e
η
(

r
r0

−1
)

− 3

)

+3ξ2
(

2e
η
(

r
r0
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− 1

)
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(
4e

η
(

r
r0

−1
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− 1

))
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r0

−1
)

− 1

)(
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16e
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(

r
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−1
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− 9
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6e

η
(
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+ 3r2
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×8πGr2(ξ + r)

(
2r0
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e
η
(

r
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−1
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− 1
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Fig. 7 Behavior of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | against the radial coordinate r corresponding to �(r) = K

Model-2:

ρ(r) =
e
η− ηr

r0

(
r0

(
e
η
(

r
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− 1

)(
ξ2
(

16e
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r
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) ,

(62)

pr (r) = −
ωe

η− ηr
r0

(
r0

(
e
η
(

r
r0

−1
)

− 1

)(
ξ2
(

16e
η
(

r
r0

−1
)

− 9
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+ 8ξre
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r
r0
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) ,

(63)
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Fig. 8 Behavior of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | against the radial coordinate r corresponding to �(r) = log
(

ξ
r + 1

)

pt (r) =
(
e
η− ηr
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(
2r2
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e
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− 1
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(
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(
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)
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(

r
r0

−1
)

+ ω + 3

)

−ξ2
(

2(5ω + 3)e
η
(

r
r0

−1
)

− 13ω − 3

)

−2ξr

(
4e

η
(

r
r0

−1
)

− 3ω − 1

))

−η2r2ω
(
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)))/(
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×
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(
e
η
(

r
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)

− 1

)
(ξ(8ω − 1)

+r(4ω − 3)) + ηrω(ξ + r))

)
. (64)

In this case, we have scrutinized all required energy con-
ditions by illustrating several plots in Figs. 8 and 9 corre-
sponding to the Model-1 and Model-2 respectively.

• From Fig. 8 and Table 4 corresponding to the Model-1,
we have noticed that energy density (ρ) is positive for
r ∈ [1,∞]. The NEC is partially violated because of
ρ + pr ≤ 0 for all r ∈ [1,∞]. Although ρ + pt ≥
0 for all r ∈ [1,∞] however, the SEC is violated as
ρ+ pr +2pt ≤ 0 for all r ∈ [1,∞] corresponding to η =
0.3, 0.5, 0.7, 1 except η = 0.1. So, SEC is not satisfied
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Fig. 9 Behavior of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | against the radial coordinate r corresponding to �(r) = log
(

ξ
r + 1

)

in this model. As NEC is violated partially, the WEC
obviously partially violated. Moreover, DEC is violated
partially as ρ − |pr | ≤ 0 for all r ∈ [1,∞]. Therefore,
NEC, WEC, SEC and DEC are not satisfied properly in
the Model-1 corresponding to our wormhole solutions.

• Again From Fig. 9 and Table 4 for the Model-2, we have
noticed that ρ ≥ 0 for all r ∈ [1,∞]. Next the NEC is
partially violated as ρ + pr ≤ 0 for all r ∈ [1,∞] and
hence WEC is also partially satisfied as WEC ⊂ NEC.
Further ρ + pr2pt ≤ 0 for all r ∈ [1,∞] corresponding
to η = 0.5, 0.7, 1 but ρ+pr2pt ≥ 0 for all r ∈ [1,∞] for
η = 0.1, 0.3. So, we can say the SEC violated partially
in this model. Again, DEC is violated completely as ρ −
|pr ≤ 0| for all r ∈ [1,∞] and ρ−|pt ≤ 0| for the ranges
of r , given in the Table 4 with details. So, as a result,
we have NEC, WEC, SEC and DEC are not satisfied
properly corresponding to our wormhole solutions in this
model.

Case-III: �(r) = e−γ /r .
Due to the choice of the redshift function �(r) = e−γ /r , (γ a
constant) we get the energy density and pressure in Model-1
and Model-2 in the following:
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(
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(70)

In this case, for the better understanding of energy con-
ditions, we have drawn several plots, which are depicted in
Figs. 10 and 11 corresponding to the Model-1 and Model-2
respectively.

• For the Model-1, after scrutinized Fig. 10 and Table 5,
we have energy density (ρ) is positive for all r ∈ [1,∞].
The NEC is partially violated because of ρ + pr ≤ 0 for
r ∈ [1,∞] and hence WEC is also violated partially for
each selected values η = 0.1, 0.3, 0.5, 0.7, 1. Further
the SEC is not satisfied as ρ + pr + 2pt ≤ 0 for all
r ∈ [1,∞] corresponding to η = 0.3, 0.5, 0.7, 1 but
for η = 0.1 ρ + pr + 2pt ≥ 0 and ρ + pr ≤ 0 for
each of η = 0.1, 0.3, 0.5, 0.7, 1 with r ∈ [1,∞]. Also,
the DEC is partially violated as ρ − |pr | ≤ 0 for all
r ∈ [1,∞]. Thus in this model, energy conditions are
not properly hold near the throat corresponding to our
proposed wormhole solutions.

• After examined Fig. 11 and Table 5, we have noticed
that ρ ≥ 0 for all r ∈ [1,∞]. Next ρ + pr ≤ 0
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Fig. 10 Behavior of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | against the radial coordinate r corresponding to �(r) = e−γ /r

for all r ∈ [1,∞] and corresponding to each of η =
0.1, 0.3, 0.5, 0.7, 1 and hence the NEC as well as WEC
is violated partially. Further ρ + pr + 2pt ≥ 0 for all
r ∈ [1,∞] with η = 0.1, 0.3 but for η = 0.5, 0.7, 1,
ρ + pr + 2pt ≥ 0 and as well ≤ corresponding to the
range of r have reported in details in the Table 5. So, we
can say the SEC is not satisfied in this model. Again,
the DEC is completely violated as both of ρ − |pr |
and ρ − |pt | are ≤ 0 for all r ∈ [1,∞] and each of
η = 0.1, 0.3, 0.5, 0.7, 1. Therefore, in the Model-2 the
all of NEC, WEC, SEC, DEC are not hold appropriately
near the throat of our proposed wormhole solutions.

4 Average null energy condition (ANEC) violating
matter

In this section, we will discuss the “volume integral quanti-
fier”, which basically provides the information about the total
amount of exotic matter required to maintains the wormhole
structure. According to Visser et al., this quantity only related
to ρ and pr but not to tangential pressure pt and is defined
in the following integral form [76]

Iv =
∮

[ρ + pr ] dV = 2
∫ ∞

r0

4πr2 (ρ + pr ) dr, (71)

where dV = r2 sin θdrdθdφ. By imposing a cutoff of the
energy–momentum tensor at R ≥ r0, we can rewritten the
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Fig. 11 Behavior of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | against the radial coordinate r corresponding to �(r) = e−γ /r

integral (71) as

Iv = 8π

∫ R

r0

(ρ + pr ) r
2dr, (72)

where r0 is the throat radius. Now, putting the expression
of ρ + pr in the above Eq. (72), one can straightforwardly
evaluate the integral Iv . Here an important fact that when
R → r0 the integral Iv must be → 0. Due to the compli-
cated explicit expression of Iv , we examined the nature of
the integral against r graphically, included in Figs. 12, 13
and 14. From these figures, we have observed that ANEC is
violated near the wormhole throat for Mode-1 and Model-2
in each of cases—I, II, III. So, this nature of Iv confirms the
existence of exotic matter near the wormhole throat, and we
can minimize the total amount of exotic matter by changing
the values of our model parameters. Therefore, our proposed
spacetime geometries may be demonstrated the existence of
traversable wormhole geometry.

5 Discussions and conclusions

In the present article, we have explored our goal in two
parts: firstly, gravitational field equations in Finsler–Randers
geometry are constructed for a static, spherically symmet-
ric line element, and secondly, the formation of traversable
wormhole has been examined in this geometry. To the best
of our knowledge, this is the first attempt at the construc-
tion of gravitational field equations in F–R geometry cor-
responding to spherically symmetric metric and examin-
ing traversable wormhole configuration in this geometry.
For this purpose, we have deduced the modified field equa-
tions corresponding to Morris–Thorne wormhole geometry.
Next, we have selected the shape function as in the form
b(r) = r

exp
(
η
(

r
r0

−1
)) with arbitrary constant parameter η

and radius of wormhole throat r0. For a better visualization
of wormhole shape, we have included two-dimensional and
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Fig. 12 Behavior of Iv against radial coordinate r for the case-I corresponding to the Model-1 (left panel) and Model-2 (right panel)

Fig. 13 Behavior of Iv against radial coordinate r for the case-II corresponding to the Model-1 (left panel) and Model-2 (right panel)

Fig. 14 Behavior of Iv against radial coordinate r for the case-III corresponding to the Model-1 (left panel) and Model-2 (right panel)

three-dimensional embedding diagrams in Figs. 3 and 14.
The significant role of the parameter η for our wormhole
configuration has been explored for five considered values
like η = 0.1, 0.3, 0.5, 0.7, 1. Furthermore, an interesting fact
that our wormhole configuration has been analyzed corre-
sponding to three redshift functions �(r) = constant = K ,

�(r) = log
(

ξ
r + 1

)
and �(r) = e−γ /r , shortly named

as Case-I, Case-II and Case-III respectively. And each of
these three cases was analyzed by dividing into two models
viz. Model-1 corresponding to the general anisotropic EoS

pt = χpr and Model-2 corresponding to the linear phantom-
like EoS pr + ωρ = 0. Importantly, for the judgement of
NEC, WEC, SEC and DEC, we have drawn a large but suffi-
cient no. of figures (Figs. 6, 7, 8, 9, 10, 11) for both models by
considering the wormhole throat radius r0 = 1. Also, for a
better understanding of energy conditions, we have reported
behaviors of ρ, ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr |
and ρ − |pt | etc. w. r. t. radial coordinate r . near the worm-
hole throat in tabular forms like Tables 3, 4 and 5. Moreover,
we have explored an essential discussion like ANEC regard-
ing the minimum amount of exotic matter near the worm-
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hole throat. Now some fruitful results of our whole study are
reported below as follows:

From Figs. 3 and 4, we have confirmed that our proposed
shape function (42) satisfied all necessary requirements to
form the shape of a wormhole corresponding the respective
throat radius r0 = 1 and r0 = 2. Because the conditions like
Throat Condition, Flaring out condition, and Asymptotically
flatness condition hold good for each of selected values η =
0.1, 0.3, 0.5, 0.7, 1. Also, in Fig. 5, we have included the
plots of proper radial distance l(r) from the throat to ∞ and
the numerical values of l(r) and embedding surface function
Z(r) at some radial distance r are reported in the Tables 1
and 2.

For the three cases, i.e., Case-I, II, III, the obtained results
show that NEC, WEC, SEC, and DEC are not satisfied appro-
priately at the neighbourhood of the wormhole throat corre-
sponding to both models. It is important to mention that the
fundamental requirement for the formation of a traversable
wormhole is fulfilled by the existence of matter that must
be completely different from ordinary matter, the so-named
as exotic matter. Again the presence of exotic matter may
be confirmed by the violation of energy conditions, espe-
cially NEC. Therefore the requirements for the existence of
a traversable wormhole corresponding to our proposed model
are fulfilled as the energy conditions are not satisfied near the
wormhole throat. Based on the figure profiles 12, 13 and 14,
it is concluded that NEC is violated near the throat, and hence
the proposed wormhole is supported by a small amount of
exotic matter.

In the present work, we have delivered an accurate con-
struction of gravitational field equations in F–R geometry.
Also, we have achieved a detailed set of solutions in the ana-
lytic approach and visualized 2D and 3D diagrams of worm-
hole shape function (42). Finally, it is concluded, based on
the overall study, that our proposed wormhole model is viable
and realistic.
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Appendix

Morris–Thorne traversable wormhole metric [40] has already
been described in details by several authors [65–67]. Now,
we want to represents Morris–Thorne wormhole metric in
the context of Randers type Finslerian geometry i.e., Finsler–
Randers (F–R) geometry. For this purpose, first we have stud-
ied the Refs. [15,16,18,22,23,26,27,71] and observed ‘how
cosmological models are developed based on the FRW cos-
mological metric. Motivated by these refs., we may write the
Morris–Thorne wormhole metric in the context of F–R geom-
etry i.e., may be called by Morris–Thorne–Finsler–Randers
metric as

F(x, y) =
√
gi j yi y j + uλy

λ, (73)

where

gi j (x) = diag

[
e2�(r),− 1

1 − b(r)
r

,−r2,−r2 sin2 θ

]
. (74)

Here �(r) ≡ the redshift function and b(r) ≡ the shape
function of the wormhole structure.

By using the relations, given in the Eq. (20) and impos-
ing the conditions u′′

0 ≈ 0 and u′2
0 ≈ 0, we can obtain the

non-vanishing components of the Ricci tensors (Lμν) corre-
sponding to the above metric (73) as

L00 = e�(r)

8r2

[
u′

0

(−rb′(r) + 4r(r − b(r))�′(r) − 3b(r) + 4r
)

−4e�(r)
(
�′(r)

(
rb′(r) + 2r(b(r) − r)�′(r) + 3b(r) − 4r

)

+2r(b(r) − r)�′′(r)
)]

, (75)

L11 = e−�(r)

8r2(b(r) − r)

[
u′

0r
(−5r

(
b′(r) + 4(r − b(r))�′(r)

)

−3b(r) + 8r) − 4e�(r)
(
r
(
b′(r)

(
r�′(r) + 2

)

+2r(b(r) − r)
(
�′′(r) + (�′(r)

)2)

−b(r)�′(r)
)

− 2b(r)
)]

, (76)

L22 = 1

4

[
u′

0e
−�(r) (rb′(r) + 2r(r − b(r))�′(r) + 6b(r) − 7r

)

+2

(
b′(r) + 2(b(r) − r)�(r)′ + b(r)

r

)]
, (77)

L33 = sin2 θL22, (78)

Now, it is important to mention that Morris–Thorne worm-
hole metric is also a spherically symmetric metric. Thus, in
the similar way of the construction of field equations (30)–
(32), we can easily construct the non-trivial field equations
corresponding to Morris–Thorne wormhole metric (36) in
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Fisler–Randers geometry utilizing the Eqs. (29) and (25).
Next after solving these field equations, we have written the
system of Eqs. (39)–(41).
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