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Curvature of a neutron star
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Introduction

In the universe, neutron stars(NSs) are ex-
cellent laboratories for determining the equa-
tion of state (EOS) of cold dense matter. We
can not create such a high density in terrestrial
laboratory, so a neutron star is and the only
object, which can provide much information
on high-density nature of the matter. But it is
not an easy task to deal with the neutron star
for it’s complex nature, as all the four funda-
mental forces (strong, weak, gravitational and
electromagnetic) are active. For high gravi-
tational field, the general theory of relativity
is used, where exist a set of invariant curva-
ture, as they are scalars. They can be formed
from the Riemann, Ricci, and Weyl tensors.
These invariant curvatures describe the phys-
ical properties of the space-time. Using these
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FIG. 1: The ratio of surface curvatures of neutron
stars and the Sun as a function of the NSs masses
for different EOSs.
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FIG. 2: The ratio of normalized curvature pro-
file (r) and the surface curvature C(R) of the
neutron stars for various EOSs.

definition, we calculate the curvature[1] of the
neutron star.

Results and Discussions

We employ the EOSs[2] to calculate the
mass and radius profile of the static (non-
rotating) neutron star. We solve the Tolmann-
Oppenheimer-Volkov (TOV) equations which
are written as:

AP(r) _ _[E(r) + PO)|[M(r) + 4mr® P(r)]
dr r2(1 - 25

dM (r)
o (2)

using G=c=1. Where, &(r), P(r) and M(r)
are the energy density, pressure and mass pro-
file respectively as a function of radial dis-
tance r. These differential equations solved
for the given boundary conditions £(0) = &,
M(0) =0,P(R) =0, and M(R) = M. Next,

= 4nr2E(r),
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we calculate the full contraction of the Rie-
mann tensor (Kretschmann scalar)

1
K2=Mﬂ+2j2—§R2 (3)

where, W? is the full contraction of the Weyl
tensor, defined as

4 (6M (r)
3 3

vpo 2
W2 = CHveee,, . = — k€M) (4)

The full contraction of the Ricci tensor is
J? == R R" = r*[EX(r) +3P%(r)] (5)
and the Ricci scalar is

R(r) = H(E(r) — 3P(r)),
(6)

with k = 87. We noticed that the components
of the Ricci tensor R, and the Ricci scalar R
vanish outside the star. Because at the surface
of the star, the pressure P and energy density
& vanishes. The only nonvanishing component
of the Riemann tensor contributes at the sur-
face. Thus the full contraction of the Riemann
tensor is a suitable measure of the curvature
for the space-time than the Ricci scalar and
the Ricci tensor[1].

In Fig.1, we have plotted the ratio of the
surface curvatures of neutron star with the
Sun (Ko = 3.0 x 107!7 km~2) as a function
of the NSs masses for different EOSs. Mass of
the NS in the case of G2 parameter is found
in the region of current observations. The sur-
face curvature of the solar system is smaller by
14 order[3] of magnitude then the NSs curva-
ture. The NSs surface curvature K ~ 3-4 x
104K has been obtained for massive NSs in
the range of 1.97< M/Mg <2.8. The small
variation in Kp ~1-2 x 104K of canonical
neutron stars predicted by the EOSs. Notice
that for larger massive star (as predicted by

NL3 type interaction) has less surface curva-
ture as compared to the smaller massive star
given by G2 type force parameter. This is
more clear in the Fig. 2, which gives the com-
plete profile of the normalized curvature of the
neutron stars of masses between 1.4 Mg and
1.9 Mg. The normalized curvature K(r) ~3.0-
3.6 K(R) is noticed to be larger near the centre
of the star (See left panel of Fig. 2) and sud-
denly decreases when it goes away from the
centre. This means that the curvature of the
neutron star in the core is larger, because of
the existence of quark like particles. The nor-
malized curvature is lower in the case of 1.9
Mg with an exception with the prediction of
NL3 set. This effect is due to the higher com-
pressibility and symmetry energy of this force
parameter.

Summary and Conclusion

We have calculated the curvature of NSs us-
ing the square root of the full contraction of
the Riemann tensor. We found the NSs sur-
face curvature KC(R) is very large of the order
10 comparison to the Solar system and also
the complete picture of the normalized cur-
vature found to be very large near the center
of the star. We noticed a significant effect of
compressibility and symmetry energy on the
curvature of neutron star.
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