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ABSTRACT Electricity theft can lead to enormous economic losses and cause operational and security
problems for electricity networks and utilities. Most current research has focused on electricity theft detection
in the consumption sector. However, the high penetration rate of distributed generation (DG) can lead to an
increase in power theft attacks in this sector via smart meter manipulation. This study is an extension of
prior works focused on electricity theft detection in the consumption and generation domains of a smart grid
environment with DG. This study proposes a novel electricity theft detection framework based on quantum
machine learning (QML). The elegant field of QML has been used to demonstrate that data classification
becomes more efficient in higher-dimensional spaces. An extensive numerical study was conducted to
determine the type of QML architecture that can perform well and efficiently in electricity theft detection
cases. The technique presented here has not yet been extensively studied in the domain of energy theft
detection. Extensive experiments were conducted to assess this approach, and an accuracy of 0.87 was
achieved with respect to the classical consumption domain, whereas an accuracy of 0.977 was achieved
with respect to the net metering domain.

INDEX TERMS Distributed generation, net metering, photovoltaic (PV) electric energy, power theft
detection, quantum machine learning, smart grid.

I. INTRODUCTION

Smart grids incorporating renewable energy sources (RESs)
are innovative breakthroughs that use new RES technologies
to transform a conventional power grid into a clean, valu-
able, and resilient system. Advanced metering infrastructure
(AMI), where smart meters (SMs) are installed at consumers’
homes to transmit power consumption data to the utility
provider on a regular basis for load monitoring and billing,
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is one of the most crucial parts of recent smart grids [1],
[2], [3]. Recent smart grids have tended to produce the
majority of their electricity from RESs to reduce greenhouse
gas emissions and transition to a more sustainable electricity
system [4], [5].

Solar power is one of the most widespread RESs is renew-
able energy sources. Many houses have installed photovoltaic
(PV) panel electricity generators. The consumption meter-
ing system, the sole metering system that utilities employ
for residential customers without access to RESs, transmits
electricity-usage data to the utility provider.
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On the other hand, homeowners who use PV energy can
take advantage of two metering schemes, feed-in tariffs
(FITs) and net metering, which enable them to sell the excess
electricity they generate [4], [5], [6]. The two FIT policies that
are currently the most prevalent are the fixed FIT and the feed-
in premium, which can be characterized as either independent
of or dependent on the market price for electricity, which
arises from the deliberated electricity market structure [7].

Only one SM is utilized in the net metering system to
report the difference between the electricity generated by
the consumer and that consumed [4]. The meter reading is
negative when the amount of power generated exceeds the
amount of power consumed, and positive if the opposite is
true. Consumers are reimbursed for negative values and taxed
for positive ones.

Customers who are dishonest can take advantage of these
metering systems by providing false readings to gain unlaw-
ful profits; that is, they can submit lower consumption values
to lower their bills [1], [8]. Similarly, fraudulent clients may
report greater PV generation values in the FIT system to
improve their financial gains [4]. Utilities worldwide are
currently experiencing problems with the reporting of erro-
neous consumption or generation data, resulting in significant
financial losses. It is estimated that worldwide losses from
electricity theft totaled $96 billion annually [9]. Therefore,
it is critical, from both economic and social perspectives,
to effectively detect electricity theft.

Moreover, false consumption or generation values can
negatively affect the performance of the grid, not only
by causing financial losses, but also by harming network
integrity because the reported readings are systematically
used for energy management decisions [10]. Owing to the
increasing number of incorrect readings worldwide, that is,
falsely reported readings in smart grid AMI, several strategies
for detecting power theft attacks have been proposed in the
literature [6], [10], [11], [12], [13], [14], [15], [16].

Before discussing the proposed approach based on quan-
tum machine learning (QML), power theft detection using
QML was proposed in ref. [17] so far. In [17], the first study
on this topic, the results presented were preliminary. Addi-
tionally, owing to the small sizes of the test and validation
sets, the accuracy achieved by the authors was 55% for the
test set and 75% for the validation set, which is considered
a rather poor performance in the field of power theft. The
quantum classifier described in [17] shares similarities with
the quantum node (QNODE) proposed here. The proposed
QNODE provides enhanced customizability by allowing the
selection of the number of blocks and entangling layers.
Furthermore, the proposed QNODE is incorporated between
classical layers, creating a hybrid deep learning network that
combines the strengths of classical and quantum domains.
In the noisy intermediate-scale quantum (NISQ) era, where
the number of qubits is limited, hybrid computation is crucial.
In addition, much higher accuracy was achieved. In com-
parison with [17], instead of using one performance metric,
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five were calculated; instead of restricting to 64 days of data,
1096 days of data were considered; and instead of six qubits,
16 qubits were examined.

In the present study, a second serious contribution is made
to the aforementioned topic by introducing the use of quan-
tum deep learning (QDL) to investigate the identification of
false reading attacks in both consumption metering systems
and net-metering systems utilizing well-established bench-
marked datasets with embedded power theft scenarios from
prior studies [13], [16].

The emerging field of QML has been used to devise
algorithms that are capable of speeding up the learning pro-
cess and have crucial importance in real-life applications
because they have the potential to deliver a practical quantum
advantage. QML algorithms, compared with the basic linear
algebra subroutines, such as those solving certain types of
linear equations (the quantum version known as the Harrow-
Hassidim-Lloyd (HHL) algorithm), finding eigenvectors and
eigenvalues, and performing principal component analysis
(PCA), exhibit exponential/polynomial speedups [18], [19],
[20], [21], [22], [23]. QML algorithms can learn from smaller
amounts of data, process more complex structures, and handle
noisy data more effectively. This is particularly useful in the
context of energy production and consumption databases,
where noisy datasets are prevalent [22], [23], [24].

QML is a rapidly emerging field that combines the princi-
ples of quantum computing with traditional machine learning
algorithms. With QML, certain types of calculations can be
performed much faster than with classical computers, making
QML especially useful for solving complex problems, such as
optimization, pattern recognition, and clustering.

In a QML neural network, the traditional neurons found
in the layers of a classical deep learning neural network
are replaced with qubits and quantum gates, which work in
conjunction with quantum measurements to serve as activa-
tion functions. The three main building blocks of any QML
algorithm are data encoding, unitary evolution of the sys-
tem, and state readout performed through measurements [22],
[23], [24], [25], [26].

Data are typically input into a quantum model through
sequences of quantum gates. The data are encoded into the
initial state of the qubits, and a quantum circuit is then used to
perform operations on the data [23], [24], [25]. There are var-
ious methods for encoding classical data into quantum states,
such as amplitude, phase, and basis encoding [23], [24], [25],
[26], [27], [28], [29]. The choice of the encoding method
depends on the specific quantum algorithm used and the type
of data used as input. In this study, we chose to use angle
embedding, which encodes N features into the rotational
angles of n qubits, where N <= n. Quantum embedding
uses classical data and projects it to a high-dimensional
Hilbert space in which a higher degree of separation between
data classes is desired in comparison to the original coordi-
nate system. This type of encoding was successfully used
in [23]. Additionally, by training quantum embedding to
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obtain the greatest possible separation between the data clus-
ters in the Hilbert space (a technique known as ‘“quantum
metric learning’’), paving the way for the development of
more robust quantum classifiers. It is known that data clas-
sification becomes easier by moving to higher-dimensional
spaces when QML is utilized. A good example is the XOR
classification problem, which cannot be solved with sup-
port vector machines (SVMs) in two-dimensional space, but
can be solved easily by moving to three-dimensional space.
This is one of the rationales for the introduction of the
QML algorithm. Another rationale is to conduct an extensive
numerical study to determine the types of QML architecture
that can perform efficiently in electricity theft detection.

The energy industry and smart grids frequently employ
noisy datasets; thus, this research uses QML to enhance clas-
sification models for these datasets [23], [25], [26], [27], [28],
[29]. The three main advantages of QML are as follows [23],
[24], [25], [26], [27], [28], [29], [30]:

1. Improvements in runtime leading to earlier final results.

2. Learning enhancements that increase the capacity of
associative or content-addressable memories.

3. Improvements in learning efficiency when less training
information or simpler models are required to achieve
the same results, or when more complex relationships
can be learned from the same data.

The most important contributions of the present work can

be summarized as follows:

1. An advanced QML approach is proposed to analyze
electricity theft in the consumption and net-metering domains
of a smart grid.

2. Using this software package, three different fundamental
QML designs were examined: hybrid neural networks, para-
metric quantum circuits, and data reuploading.

3. A novel machine learning (ML) approach, referred to
as full hybrid QML (FHQML), was developed for the clas-
sification problem of power theft, utilizing a combination
of techniques, such as hybrid neural networks, parametric
circuits, and data-reuploading.

4. It was shown that using QML, data classifica-
tion becomes more efficient in higher-dimensional spaces.
An extensive numerical study was conducted to determine
the type of QML architecture that can perform well and
efficiently in electricity theft detection cases.

The remainder of this paper is organized as follows.

Section II presents an overview of related literature.
Section III describes the well-established datasets and power
theft scenarios used. Section IV presents the novel quantum
machine learning approach applied in this study. Section V
presents a comparison of the FHQML approach with other
promising classical approaches, and the results obtained.
Finally, in Section VI, the article is concluded and possible
future work is discussed.

Il. RELATED RESEARCH WORK
Only a few research papers in the literature have exam-
ined electricity theft detection in the generation domain,
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while the majority of previous research has mostly con-
centrated on power theft detection in the consumption
domain. Studies conducted to detect electricity theft can be
divided into four categories: game theory-based methods,
power grid analysis-based methods, hardware-based meth-
ods, and machine learning-based methods [31]. Physical
and cyber-data attacks are the two main nontechnical loss
(NTL) attack types in smart grids. The use of strong mag-
nets, illegal tapping, reversing meters, splicing pipes or wires
to bypass meters, and meter malfunction are examples of
physical attack techniques. Eavesdropping, denial of service,
covert attacks, malware injection, and false data injection
attacks (FDIAs) are a few examples of cyberattacks. Attacks
can result in service interruptions, infrastructure destruction,
energy and information theft, and other outcomes [32].

A. POWER THEFT DETECTION IN CONSUMPTION
METERING DOMAIN

In the presence of smart meters, a new data analysis technique
for the detection and localization of NTLs performed by
unauthorized connections of loads to distribution networks
was proposed in [33].

A hidden electricity theft (HET) attack that uses the
newly developed multiple pricing (MP) method was pre-
sented in [34].

The objective of the study in [35] was to identify malicious
users using a small number of monitoring tools within the
shortest possible detection time.

The use of temperature sensors has been suggested as a
new way to enhance the calculation of technical losses (TLs),
leading to a better estimate of NTL in [36]. A new method for
locating potential energy theft locations using voltage drop
differences was also described.

A multitask feature-extracting fraud detector (MFEFD)
and a deep learning-based model were created to recognize
electricity fraud in an advanced metering system [37].

SVMs are used in conjunction with voltage sensitivity
analysis, power system optimization, and other techniques
to accurately identify NTLs in the distribution grid under
various circumstances [38].

Because the value of the electricity theft loss (ETL) should
be more correlated to the meter readings of energy thieves
than to those of honest consumers, the authors in [39] for-
mulated the problem of identifying electricity theft as a
time-series correlation analysis problem that does not require
a linearity assumption of attack modes or any cost of training.

In [40], a deep learning-based method was proposed to
extract sophisticated features from vast amounts of smart-
meter data.

In [41], a deep convolutional neural network (CNN) is used
efficiently to distinguish between periodic and nonperiodic
energy consumption while maintaining the basic characteris-
tics of the power consumption data.

In [11], a wide and deep CNN model was tested on
a realistic power consumption database made available by
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the State Grid Corporation of China (SGCC). The results
demonstrated that the proposed wide and deep CNN struc-
ture outperforms other well-known techniques, such as linear
regression (LR), random forest (RF), Wide CNN, SVM, and
CNN.

A conditional deep belief network (CDBN) technique for
real-time false data injection (FDI) attack detection was pro-
posed in [12].

In [13], using the dataset ETD 2022, [42], five machine
learning approaches, i.e., k-nearest neighbor (KNN), random
forest (RF), decision tree (DT), bagging, and ANN, were used
to construct intelligent autonomous power theft detection
techniques.

In [43], synthetic binary discriminator models (SYNBDM)
and legacy unsupervised models (LUM) were introduced
for electricity theft detection in smart homes, utilizing
fine-grained appliance consumption data to distinguish
between normal and malicious usage.

In [44], parameter estimation and power quantities of an
unbalanced distribution line and a hybrid general regression
neural network model equipped with multirun optimization
(GRNN-MRO) were developed for power theft detection.

In [45], a practical privacy-preserving electricity-theft
detection scheme was presented, and the impact of the detec-
tion period was explored through communication overhead
analysis.

B. POWER THEFT DETECTION IN FEED-IN-TARIFF (FIT)
DOMAIN

In [6], a variety of cyber-attacks that alter reliable data from
the SMs of DG units in a way that imitates malicious cus-
tomers stealing electricity were presented. The application
of deep feed-forward, deep recurrent, and deep convolutional
recurrent neural networks has been investigated to construct
a deep learning power theft detection method.

In [14], the research in [6] was extended and an anomaly
detector was suggested for identifying power theft in dis-
tributed generation that is trained solely on benign data.

In [15], a deep learning-based theft detector was pro-
posed, which captures the temporal properties in a time-series
dataset using the gated recurrent unit (GRU) neural network
model.

To identify false-reading assaults in the FIT system’s gen-
erating domain, Krishna et al. [4] presented several strategies
for developing custom anomaly detectors based on ARIMA
and Kullback-Leibler divergence (KLD).

C. POWER THEFT DETECTION IN NET-METERING DOMAIN
Reference [16] is the first attempt to investigate this problem
in the net-metering domain, which uses a single smart meter
to indicate the difference between the electricity generated
and consumed. By analyzing a genuine dataset of power
generation and consumption, a benign dataset for the net
metering system was created and used to achieve successful
power theft incident detection via deep learning techniques.
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IIl. DATASETS AND POWER THEFT SCENARIOS
GENERATOR

A. DATASET ORIGIN

The data used in this study for detecting electricity theft in the
consumption domain were the same as those used in [13]. The
dataset is from the Open Energy Data Initiative (OEDI, [42])
platform, which is a central repository for high-quality energy
research data provided by the U.S. Department of Energy
Programs, Offices, and National Laboratories.

The dataset includes the actual hourly energy consumption
for 16 different three-phase connection consumer types over
a period of a year for a number of consumers.

A dataset from the work in [16] was used to detect power
theft in the net metering domain. The largest electricity
provider on Australia’s east coast, Ausgrid, released this pub-
licly accessible dataset [46]. Actual measurements of power
generation and consumption at a half-hour sampling for a
group of consumers located in Sydney and the region of New
South Wales with PV solar panels installed on their roofs
are included in the Ausgrid dataset. These measurements
were taken between July 1, 2010, and June 30, 2013. Each
consumer has two SMs: one SM used to track electricity con-
sumption, and the other SM used to track electricity generated
by the PV solar panels. Additionally, the Ausgrid dataset
contains information on the generation capacity or Cmax,
which represents the maximum amount of electricity that can
be produced by each consumer’s solar panels in an hour. The
dataset also contains the location of each consumer and a cat-
egory indicating whether an SM reading is for consumption
or generation, day, and season.

Information about solar irradiance and temperature was
gathered from SOLCAST [47] using consumer locations
given in the Ausgrid dataset.

B. DATA PREPROCESSING

Anomalous readings were removed from the consumption
and net metering databases, and a clean dataset was created.
Despite the fact that all participants are honest customers,
equipment malfunctions and mistakes, such as those involv-
ing the SM and PV solar panel inverters, can result in
unintentionally anomalous readings (outliers). To reduce the
variance of the training data and produce a well-trained
machine learning model, it is legitimate and standard practice
to remove these outliers from the dataset.

For every customer in the net metering database, the
readings for the generation SM and consumption SM were
subtracted to obtain net readings. As the amount of electricity
purchased/injected by/to the utility at each time instant is
equal to the difference between the electricity consumed and
the electricity generated by the consumer at that time instant,
these readings correspond to the readings that would be
recorded if the two SMs were replaced by a single net meter-
ing smart meter. Eventually, a clean dataset of 31 consumers
was produced with one-hour sampling net meter values for
1096 days between July 1, 2010, and June 30, 2013. For both
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datasets, the data were further divided into training, valida-
tion, and test sets at a ratio of 75/15/10, respectively. The
training, validation, and test sets are then normalized to bring
all feature values to a common scale, ensuring that each fea-
ture makes a fair contribution to the detector’s classification.
Table 1 presents the features of each dataset.

TABLE 1. Dataset features.

OEDI dataset
Electricity (kW)

Ausgrid dataset
Net meter readings (kW)

Fans (kW)
Solar irradiance (kW) Cooling (kW)
Heating (kW)
% Temperature (°C) Interior lights (kW)
% Interior equipment (kW)
[}
w Day Gas (kW)
Season Heating (kW)
Crrax (KW, maximum capacity of Interior equipment gas
installed solar panel) (kw)
Water heater (kW)
Binary value indicating whether Multiclass value
g there is electricity fraud or not indicating whether there
8 (benign/malicious) is electricity fraud or not

(benign/malicious)

C. POWER THEFT SCENARIOS GENERATOR

A set of energy theft cyberattacks was created and imported
into the datasets for both the consumption and net-metering
domains, because malicious samples are not publicly
available.

As described in the relevant research studies [1], [13], [48],
[49], [50], [51], six different types of the most frequent fraud
were considered, and two additional scenarios were examined
to further consider stochasticity in the consumption domain.
These are the various forms of theft that certain customers
might engage in. A notable drop in electricity consumption
during the day constitutes the first type of theft (T;). The
consumption is multiplied by a number randomly determined
between 0.1 and 0.8 to estimate this reduction. The second
type of theft (T) occurs when the power usage drops to zero
at a random time instant and for a random duration. The
third type of theft (T3) is similar to the first type, except
that each consumption value (per hour) is multiplied by a
dynamic, randomly determined number between 0.1 and 0.8.
A randomly determined portion of the average consumption
is produced in a dynamic manner to create the fourth type
of electricity stealing case (T4). The average consumption
is presented in the fifth theft type (T5) and the readings are
reversed in the sixth electricity theft type (Tg). The seventh
type of electricity theft (T7) is similar to the second type of
theft (T3), but the consumption drop is a random percentage
of the real consumption, that is, it starts at random time
instants and occurs for random time durations. In the eight
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types of theft (Tg), abrupt instantaneous drops in consump-
tion occurred at random time instants. An electricity theft
generator was created that made it possible to produce these
eight categories of electricity theft in a random manner for
the database.

The following is a formal representation of the suggested
method for producing the eight different types of electricity
theft: Consider the following daily electricity consumption
vector (X): X ={X1,X2,X3,...... , X24 }, where x; is the hourly
consumption reading for i = 1...24; then, the eight electricity
theft types can be created as shown in Table 2.

TABLE 2. Power theft scenarios in the consumption domain.

Input: X, Output: Ty; where N=1,2,...,6

T\ (xi) = a-x;, a: randomly determined in (0.1, 0.8)

0,
Tax) = Boss Bi={
T3(xi) = i'Xi, yi: randomly determined in (0.1, 0.8)

timeggre < i < timegpg
Otherwise

T4(xi) = yi-mean(X), v;i: randomly determined in (0.1,0.8)
Ts(x;) = mean (X)

Te(Xi) = X4+

& , time < i< time,
o) = 8r%i & = { 1l e Otherwieszd

&;: randomly determined in (0.1, 0.8)
0 At time t
Ts(x) =Gxi, G = { 1 Otherwise
*timegr: randomly determined in (0, 23-time,)
Duration: random (time,g, 24)
timee,g = timeg,+duration
time,f>= 4 time instants

Both the choice of theft duration and the reduction factor in
different theft types involve a random element. This method
summarizes the actions of most thieves. They wanted to
reduce their reported consumption reading for an arbitrary
amount of time. To perform multiclass classification, these
categories were applied to the dataset for this study in a fair
and random manner.

The detection of false reading attacks in net metering
systems differs from that in traditional metering systems.
In consumption-metering systems, the detector can be cali-
brated to the consumer’s consumption habits, whereas in FIT
systems, the detector can be calibrated to the solar PV panel
generation patterns of the customer to spot false readings.
Detecting false-reading attacks in net metering systems is a
more complex task because of the impact of various factors,
such as the behavior of building occupants, solar irradiation,
and solar PV panel generation capacity on net meter readings.
To address this challenge, a new detection approach that con-
siders both consumption and generation patterns is required.
The investigation of attacks specific to net metering systems
is essential for the following reasons.

In attacks on the consumption-metering system, the
attacker’s goal is to reduce the metered values while repli-
cating the consumption pattern. In contrast, attacks on FIT
systems aim to increase the metered values of electricity
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TABLE 3. Power theft scenarios in the net metering domain.

# Attack Consumption>Generation Consumption<Generation
. bt * TRt' tstart st= tend {_max(pt * max,lTRtL tstart st=s tend
1 Intermittent { TR;, Otherwise TR, Otherwise
2 Scaling a*TR, —min(|B * TR:|, Couax)
i Continuous -based a*TR, —min(|f; = TR;|, Cnax)
4 I_{l;zt;rdy My, * min(PR,TR,) —M,,max(INR|, |TR,|)

generation while imitating the generation pattern. How-
ever, when generating fraudulent readings for net metering
systems, attackers must consider both consumption and gen-
eration patterns to gain financial advantages.

Therefore, a series of subtle attacks has been proposed to
mimic the behavior of malicious customers [16]. The authors
of [16] practically modeled these attacks as clever attackers
that wish to modify the true readings into false readings for
binary classification, making it challenging for the utility to
identify the attack. Table 3 lists these attacks.

To benefit financially from the net metering system, attack-
ers aim to increase their reported net values when the power
consumed is less than the power generated (negative read-
ings), and decrease their reported values when the power
consumed is greater than the power generated (positive
readings).

The suggested attacks can also be categorized as inter-
mittent or continuous attacks. In intermittent attacks, the
attacker presents false readings during some time windows
and genuine readings during other time windows to deceive
the detector. However, in continuous attacks, the attacker
presents false readings continuously to maximize gain.

Attack #1, which deceives for a random time period begin-
ning at tya and ending at teng while otherwise reporting
the correct measurements, is a common type of intermittent
attack. Within the deception period, the attacker submits a
value equal to the larger of a significant percentage (p;) of
the maximum solar PV generation capacity (Cmax) or the
absolute value of the current true reading (|TR;|) when the
power consumed is less than the power generated (negative
readings), and provides a modified version of the current true
reading (|TR;|) reduced by a time-varying factor b, during
positive reading intervals (positive readings). Three attacks
based on either scaling or history have been proposed in
the context of continuous attacks. In scaling-based attacks,
the attacker scales both positive and negative readings up
and down, without considering the values of earlier measure-
ments. In a history-based attack, the attacker uses previous
readings to calculate the incorrect value.

In Attack #2, the attacker deceives the system by constantly
reporting a version of |TR;| that is decreased by a factor
of a when the readings are positive, and a version that is
increased by a factor of 8 when the readings are negative.
As shown in Table 3, the attack assumes that the reported
value does not exceed Cmax, which is represented by the term
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—min(|B * TR;| , Cyax)-Here, a is a randomly determined
value between 0 and 1 and B is a randomly determined value
greater than 1.

Attack #3 is also a type of scaling-based attack; however,
in contrast to Attack #2, both downscaling and upscaling
randomly determined parameters & and 8 depend on time.

In Artack #4, a method based on historical data, the attacker
deceives the system by submitting the highest value between
|TR;| and the last recorded negative reading (NR) during
negative reading intervals, and the lowest value between | TR; |
and the last reported positive reading (PR) during positive
reading intervals. In Attack #4, factors Mj, and M», serve
as masks rather than scaling factors to prevent reporting the
exact same reading in consecutive time slots and misleading
the detector. The values of M|, and M>, are slightly less than
1 and slightly higher than 1, respectively.

The attacker plugs the genuine readings into equations that
correspond to the proposed attacks instead of reporting the
true values directly. Consequently, these equations provide
false readings that the attacker provides to the utility company
to obtain illegal financial gain.

IV. THE PROPOSED FULL HYBRID QUANTUM DEEP
LEARNING NEURAL NETWORK ELECTRICITY

THEFT DETECTOR

In this section, the QDL model used in this study is described
in detail. In this model, quantum layers are sandwiched
between classical layers. This model is implemented using
Pennylane, a Python-based tool for QML, and the optimiza-
tion of hybrid quantum-classical computations [52]. The full
code of the QDL model used in this study can be found
in [53]. Before proceeding to describe several architectures
that serve as building blocks to form QDL, the authors
attempt to justify why they have chosen QDL as a spe-
cific architecture for the power theft classification problem.
As mentioned in the introduction, unbalanced noisy datasets
are prevalent in power theft classification problems. In ref.
[54] the detailed benchmarking of quantum architectures
(which are similar to QDL) against the best classical counter-
parts for both synthetic and real-world unbalanced datasets
is presented. It has been demonstrated that the QDL-like
architecture serves as an excellent framework for tackling
classification issues in unbalanced datasets that have non-
convex boundaries. Moreover, in [54], through extensive
numerical studies, it was shown that in the presence of high
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FIGURE 1. Block diagram flowchart of the proposed FH-QVC-DRC classifier where a QUC-DRC circuit of n-blocks is inserted between the feeding

classical layer and the classical decision layer.

noise in the dataset, the quantum QDL-like deep learning
model performs better than the corresponding classical mod-
els. These findings provide a rationale for using the QDL
architecture for the power theft detection method presented
here. The quantum layer of the proposed QDL is as follows.
The core of the quantum layer is a quantum variational
circuit(QVC) consisting of two parts (angle embedding,
entangling layers), as shown in Fig. 1.

The first part is an angle-embedding layer that encodes the
output of a classical neural layer (feeding layer) to the qubits
using angle rotation encoding. One of the main advantages of
angle embedding is that it can be performed in a constant time
with parallelism; each qubit will go through a rotation gate in
parallel. The second part comprises a series of CNOT and
rotational gates with trainable parameters. Using one gate to
encode each qubit reduces noise, which is important in noisy
intermediate-scale quantum (NISQ) computers, as multiqubit
gates are more prone to noise and are harder to implement.
In addition, angle embedding is intuitive and simple to imple-
ment. These two parts create the blocks. The third part is
the measurement stage in which the quantum output of the
previous stages is converted into classical information that
can be fed into the next classical layer. QML architectures
can be recovered (for low to moderate amounts of noise) by
simply training quantum neural networks for more epochs.

Essentially, by adding more blocks to a QVC, the data
are reintroduced into the quantum circuit. This technique is
known as the data-reuploading circuit (DRC) [26], [27], [54],
in which a new deep learning NN model called QVC-DRC is
obtained.

The last decision layer consists of only one layer of neurons
with a sigmoid activation function. The architecture defined
and described above is illustrated in Fig. 1.

A more detailed description of the FH-QVC-DRC deep
learning neural network architecture can be found in [23]
and [54]. Further details on the optimization process, loss
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function, etc., to train the quantum layer and a comparison
with the classical deep learning model can also be found
in [23] and [54]. Next, the QVC-DRC was sandwiched
between an arbitrary number of classical NN layers to obtain
the full hybrid (FH) QVC-DRC model. The constraint is that
the classical layer before the QVC-DRC should have the same
number of neurons as the number of qubits in the QVC-DRC.

These references also provided a very detailed benchmark
of quantum architectures against the best classical counter-
parts for both synthetic and real-world unbalanced datasets.
In [23] and [54] demonstrated that the FH-QVC-DRC deep
learning architecture is an excellent framework for addressing
classification issues in unbalanced datasets. Moreover, in [54]
demonstrated that in the presence of high noise in the dataset,
the quantum FH-QVC-DRC deep learning model performed
better than the corresponding classical models.

Limitations regarding the necessary computer power have
set the upper limit for the number of qubits to 16, owing to
run-time constraints. The training epoch for the QVC-DRC
needs approximately one hour on a PC with 64 GB of RAM
and an AMD Ryzen7 processor [23]. Specifically, Fig. 5 in
ref. [23] illustrates the training time as a function of the
total number of qubits and the number of blocks in the
data re-uploading approach. To ensure a justifiable compar-
ison, the quantum and classical deep-learning models were
trained for the same number of epochs, which was set to
250. This value was selected after observing that the quantum
deep learning models tended to overfit after 250 epochs,
on average. Nonetheless, the classical deep learning model
exhibited slight enhancement when the training was extended
to 3,500 epochs.

The batch size of the FH QVC-DRC was reduced to
16 training examples per iteration owing to the memory
restrictions. The optimizer used was a stochastic gradient
descent (SGD) optimizer, and the loss function was a binary
cross-entropy. For consistency, the same training, validation,
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and test datasets were used in all simulations. For every
specified configuration, the average outcome scores were
extracted over the simulations.

The scalability of the proposed quantum machine learning
(QML) approach for handling large-scale smart-grid deploy-
ment is a critical consideration. The FH QVC-DRC model
offers scalability because classical layers can take up a heavy
computational load; thus, the quantum layer is not currently
restricted by large datasets. When more qubits are available,
more computational load can be directed to the quantum layer
by removing the classical layers.

V. EFFECTIVE POWER THEFT DETECTION RESULTS AND
DISCUSSION

This section presents detailed experimental results for the
proposed power theft detection approach with respect to the
classical approaches in the consumption and net metering
domains using the proposed FH-QVC-DRC QML. The FH-
QVC-DRC algorithm was developed, applied, and run using
Pennylane [52], a framework for differentiable open-source
quantum computer programming. It is worth mentioning that
PennyLane offers three different methods for implementing
noise in quantum circuits: classical parametric randomness,
PennyLane’s built-in default mixed device and plugins for
other platforms. Quantum circuits can operate on various
backends, some of which have their own programming
languages and simulators. PennyLane interfaces with these
languages via plugins, such as Cirq and Qiskit. To satisfy the
present research requirements, methodical hyperparameter
tuning was performed to analyze the effect of changing the
number of repeating units in the data-reuploading approach,
number of epochs, batch size, qubits, and number of strongly
entangling units on the area under receiver operating charac-
teristic curve (AUC/ROC) metric (see below).

A. CLASSIFICATION EVALUATION METRICS

Accuracy (ACC), F1 score, precision or positive predictive
value (PPV), recall or sensitivity or hit rate or true-positive
rate (TPR) is a critical metric in classification tasks that
assesses the model’s ability to correctly identify positive
incidents, and area under the receiver operating characteristic
curve (AUC/ROC) are the classification metrics used here to
numerically assess the findings. These metrics are defined
by equations (1)—(4) as follows and are calculated for each
classification case using the corresponding confusion matri-
ces, that is, tables with two rows and two columns that report
the number of true positives (TP), false negatives (FN), false
positives (FP), and true negatives (TN) [13], [15]:

TP+ TN

Accuracy = (D

TP + TN + FN + FP
2TP
Fl= ——— 2)
2TP + FP + FN
.. P

Precision = —— 3)

TP 4 FP
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TP
Recall = —— @
TP + FN

The confusion matrices created in this work yielded four
types of results:

(1) True positive (TP) is the dishonest consumer correctly
classified as dishonest.

(2) A false negative (FN) is a dishonest consumer incor-
rectly classified as honest.

(3) FP (false positive) is the honest consumer incorrectly
classified as dishonest.

(4) TN (true negative) is an honest consumer correctly
classified as honest.

A small drop in the metric’s maximum values defined
above was observed after 10 qubits in the QVC-DRC layer,
and no significant change was observed if the number of
blocks was more than three, as shown in Figs. 2 and 3,
respectively. In this study, simulations were performed and
the corresponding results are presented for a 3 blocks and
10 qubits FH QVC-DRC structure in the following. The
observed decrease in recall below 3 blocks/10 qubits is due
to the model being underparameterized, indicating a need for
additional trainable parameters to improve its performance.
Generally, increasing the number of qubits allows for the
creation of more complex entangled states, which are essen-
tial resources in quantum computing and quantum machine
learning. These entangled states enhance the model’s capacity
to capture intricate patterns, thereby improving overall recall.
Moreover, changing the number of epochs may improve sen-
sitivity (recall) and other performance metrics.
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FIGURE 2. Metric values vs. number of qubits for 3 blocks.

B. COMPARATIVE RESULTS OF THE FH-QVC-DRC DEEP
LEARNING CLASSIFICATION METHOD WITH CLASSICAL
APPROACHES APPLIED IN THE CONSUMPTION

DOMAIN CASE

In Tables 5, 6, and 7, the results of applying the FH-
QVC-DRC QML approach, LSTM [55], XGBoost [56],
LightGBM [57], and CatBoost [58] classical approaches can
be seen for all classes of consumers and per class for the
first six power theft scenarios (PT6) and for all power theft
scenarios (PT8) for power theft detection in the consumption
domain. To select the appropriate hyperparameters for every

VOLUME 13, 2025



K. Blazakis et al.: Power Theft Detection in Smart Grids Using Quantum Machine Learning

IEEE Access

1
0.99 _ bl L T D PP 5}
PP Y )
098 “" e ccccommcooo=0
=]
097 7
L 2
5096 44
= 4
@ 0.95 b
b= 22
0.94 »°
2 @ Accuracy <@ Precision @ Recall-® F1-score<®@ AUCROC
0.93
1 2 3 4 5
No of Blocks

FIGURE 3. Metric values vs. number of blocks for 10 qubits.

classification algorithm, trial-and-error was applied to tune
the hyperparameters. The FH-QVC-DRC model architecture
was set as close as possible to that of the classical neural
network structure. The structures of both the classical LSTM
and the quantum model are shown in Table 4. Several acti-
vation functions were examined, and it was observed that
the best classification performance was achieved with the
Softmax activation function. Similar or equal performances
were observed with the Tanh activation function.

TABLE 6. Comparative results per class for the first 6 power theft

scenarios (PT6).

FH-QVC- LSTM XGBoost LightGBM CatBoost
DRC
AC F1 AC F1 AC F1 AC F1 AC F1
C C C C C
Full serv. 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
rest. 6 5 4 3 6 3 6 S 6 3
Hospital 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
6 6 4 5 5 2 5 4 5 2
Large hotel 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
6 4 5 3 5 2 3 2 4 1
Large 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
office 6 5 5 4 6 3 4 3 6 4
Medium 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
office 6 4 4 3 4 1 4 3 5 3
Midrise 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8
apart. 5 2 4 0 0 6 1 0 4 0
Outpatient 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
5 4 3 2 3 0 3 2 7 4
Primary 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
school 7 6 5 4 6 3 6 5 8 5
Q. serv. 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
res. 7 5 5 2 7 4 7 6 7 4
Sec. school 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
7 S 4 3 5 2 5 4 7 3
Small hotel 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
8 6 6 4 6 3 4 3 6 3
Small 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
office 7 6 4 3 7 4 7 6 7 4
Stand- 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
alone retail 8 6 5 3 6 3 7 6 7 4
Supermark 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
et 8 6 S 4 6 3 6 S 6 3
Strip mall 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
7 6 5 3 6 3 7 S 6 4
Warehouse 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
6 5 4 5 4 0 5 4 5 2

TABLE 7. Comparative results per class for all the 8 power theft scenarios

(PT8).
TABLE 4. Structure of LSTM and FH-QVC-DRC deep learning classifiers.
FH-QVC- LSTM XGBoost LightGBM CatBoost
DRC
LSTM FH-QVC-DRC AC FlAC  FI_AC T ACFI AC FI
C C C C C
Hyperparameters Hyperparameters Fullsev. 08 08 08 08 08 08 08 08 08 08
Laver Number  Activation Laver Number Activation rest. 7 6 4 0 6 5 6 5 7 4
Y of units  function Y of units function Hospital 0% 08 08 07 05 08 05 08 05 08
Input 10 ReLU Input 10 ReLU Largehotel 08 08 08 07 08 08 08 08 08 08
7 5 2 9 4 3 4 3 5 2
Dense 25 ReLU Dense 25 ReLU Large 08 08 07 07 08 08 08 08 08 08
Dense 10 ReLU Dense 10 ReLU office 4 4 8 6 3 2 4 3 4 2
QVC- Medium 08 08 08 07 08 08 08 08 08 08
Dense 10 ReLU 10(qubits) - office 7 s 0 7 6 5 6 s 6 4
DRC Midise 08 08 07 07 08 08 08 08 08 08
Output 2 Softmax Output 2 Softmax apart. 4 3 9 6 3 1 2 1 3 1
Outpatient 08 08 08 08 08 08 08 08 08 08
7 6 3 0 5 4 5 4 6 5
Primary 08 08 08 07 08 08 08 08 08 08
school 9 6 1 9 7 5 7 6 7 5
3 . Q. serv. 08 08 08 08 08 08 08 08 08 08
TABLE 5. Average results for all power theft detection classes examined res. 9 7 5 P 3 7 3 7 3 6
for the first 6 (PT6) and for all the 8 (PT8) power theft scenarios. Sec.school 08 08 07 06 08 08 08 08 08 08
4 3 2 9 4 3 4 4 4 1
Smallhotel 08 08 08 07 08 08 08 08 08 08
8 7 0 7 6 5 6 6 6 4
ACC Fl Small 08 08 08 07 08 08 08 08 08 08
PT6 PTS8 PT6 PT8 office 5 5 0 7 6 4 6 5 5 3
Stand- 08 08 08 08 08 08 08 08 08 08
FH-QVC-DRC 0.87 0.87 0.86 0.86 aloneretail 6 6 2 0 5 4 5 5 5 3
LSTM 0.84 0.81 0.83 0.78 Supermark 08 08 08 08 08 08 08 08 08 08
et 9 8 5 2 6 5 6 5 7 5
XGBoost 0.85 0.85 0.82 0.84 Swpmall 08 08 08 07 08 08 08 08 08 08
LightGBM 0.85 0.85 0.84 0.85 Wareh, 078 058 038 097 068 048 068 058 058 038
arehouse . R .. . .. . . . . ..
CatBoost 0.86 0.85 0.83 0.83 5 6 0 7 4 2 5 4 4 2

C. COMPARATIVE RESULTS OF THE FH-QVC-DRC DEEP
LEARNING CLASSIFICATION METHOD WITH CLASSICAL
APPROACHES APPLIED IN THE NET-METERING

DOMAIN CASE

Photovoltaic (PV) systems are installed on rooftops, in build-
ings surfaces or in open spaces of /nearby urban areas,
allowing homeowners to generate electricity from sunlight
with moderate investment cost. This PV produced elec-
tricity can be used even directly to cover the household’s
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electricity needs, to be stored in batteries for later use
while the excess electricity can be fed into the grid, all
the above through net metering. Adding the effect of an
eventual wind system would require additional relevant
metrics on the power flow and quality. In Table 3 above
the power theft scenarios in the net-metering domain are
presented.

The structure of the FH-QVC-DRC classifier architecture
is presented in Table 8. In Table 9, the results of the FH-QVC-
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DRC-QML approach and the LSTM, CatBoost, XGBoost,
and LightGBM classical approaches are presented for every
stage of the net-metering domain. To select the appropriate
hyperparameters for every classification algorithm, trial-and-
error was applied to tune the hyperparameters. Six types
of data from distinct sources were used. The initial data
source consisted of fine-grained net readings obtained over a
day. Fine-grained values of irradiance and temperature were
the second and third input data, respectively, obtained for
the same day. The remaining input data consisted of Cmax
values, day, and season. Additionally, the detector is created
in three stages, each of which considers more input data to
enhance the detection performance of the proposed detector.
Stage 1 examines only net readings as the input data type.
Stage 2 considers Stage 1 input data as well as the temper-
ature and irradiance (three inputs in total). Finally, Stage 3
considers all the input data from Stages 1 and 2 in addition
to the Cmax, day, and season (six inputs in total). The cor-
relation coefficients between all the input data are shown in
Fig. 4.

k() 097

©5 0 05 1 A5 0 05 1 45 05 0 05 4 15 45 0 05 4 45 0 _ 05 1
Readings Irradiance Temperature max Day

FIGURE 4. Correlation coefficients between all inputs.

TABLE 8. Structure of the FH-QVC-DRC model for the net-metering
application.

Hyperparameters
Layer Number Activgtion
of units function
Input 24 Linear
Dense 128 Linear
Dense 128 Sigmoid
Dense 128 Sigmoid
Dense 256 Sigmoid
Dense 18 ReLU
10
QVC-DRC (qubits) )
Output 2 Softmax

D. COMPARATIVE RESULTS AND DISCUSSION

Comparing the simulation results from Table 5, Table 6,
and Table 9 with the corresponding results from the studies
in [13], [16], [59], and [60], it is clearly observed that the
proposed FH-QVC-DRC QML approach has similar or even
better results in every metric. The runtime, capacity, and
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TABLE 9. Results for the net-metering domain application.

Accuracy  Precision®*  Recall Fl-score AUC/ROC
FH-QVC-DRC

Stage 1 0.962 0.988 0.958 0.973 0.981

Stage 2 0.963 0.989 0.960 0.974 0.982

Stage 3 0.977 0.991 0.962 0.976 0.983

LSTM

Stage 1 0.928 0.931 0.928 0.929 0.938

Stage 2 0.930 0.935 0.930 0.932 0.940

Stage 3 0.948 0.951 0.948 0.949 0.946
CatBoost

Stage 1 0.952 0.956 0.952 0.954 0.950

Stage 2 0.956 0.959 0.956 0.957 0.952

Stage 3 0.972 0.972 0.972 0.972 0.956
XGBoost

Stage 1 0.958 0.986 0.960 0.973 0.954

Stage 2 0.958 0.987 0.960 0.973 0.954

Stage 3 0.973 0.984 0.972 0.978 0.960
LightGBM

Stage 1 0.945 0.985 0.946 0.965 0.945

Stage 2 0.946 0.985 0.947 0.966 0.946

Stage 3 0.961 0.983 0.968 0.975 0.951

learning efficiency of the FH-QVC-DRC QML approach can
be found in [23].

Concerning power theft detection in the consumption
domain, the FH-QVC-DRC QML has better average results
(Table 5) for all metrics, for both the PT6 and PTS8
approaches, when compared with the LSTM, CatBoost,
XGBoost, and LightGBM algorithms.

Compared with relevant studies [13], [59], [60], which
utilized the same dataset and the same power theft scenarios
(PT6), the FH-QVC-DRC QML approach has better results
in relation to [13] and [59] and equivalent results with [60].
More specifically, the proposed FH-QVC-DRC approach
achieved an ACC of 0.87 and an Fl-score of 0.86. In the
Table 11 of ref. [13] an ACC of 0.8500 and F1-score of
0.8406 were achieved. In ref. [59] an ACC of 0.7006. Table 1
and Table 2 of ref. [60], ACC of 0.8800, and F1-score of
0.8549 were achieved.

Concerning power theft detection in the net-metering
domain case presented for the first time in ref. [16]
(Table 9 of [16]), the FH-QVC-DRC QML approach has
slightly improved results for Stage 1 and similar results for
Stages 2 and 3 (Table 9). Comparing the FH-QVC-DRC
QML approach with the LSTM, CatBoost, XGBoost, and
LightGBM approaches, the FH-QVC-DRC QML approach
yielded better results for almost all metrics and stages
(Table 9). The greater values for the AUC/ROC met-
ric of the FH-QVC-DRC QML approach compared with
the other approaches of the present study, shows that it
has the best performance in distinguishing between the
benign and malicious samples combined with the rest
metrics.

Furthermore, the improved stage 3 results for all the
applied algorithms and almost every metric demonstrate
that the detectors can create a more complex classification

VOLUME 13, 2025



K. Blazakis et al.: Power Theft Detection in Smart Grids Using Quantum Machine Learning

IEEE Access

boundary between benign and malicious samples by consid-
ering additional important features.

Even a small metric improvement can remarkably decrease
financial losses for the electricity provider, which is inter-
preted as enhanced power theft detection (e.g., improve-
ment achieved in the recall metric) and fewer consumer
inspections needed (e.g., improvement achieved in precision
metric).

Because of the similar datasets and power theft scenarios
with the research in [13], [16], [59], and [60], the comparisons
are credible regarding the consumption and net metering
domains.

While classical methods such as XGBoost, CatBoost,
and LSTMs are powerful, the motivation for exploring a
quantum-based approach lies in its potential for scalability,
speed and the ability to handle complex data structures dif-
ferently than classical models [61].

QML algorithms use quantum mechanics with its inherent
unusual effects to process information more efficiently, estab-
lishing QML as a promising new paradigm [19]. Here the
intuition is as follows: if small quantum information proces-
sors can produce statistical patterns that are computationally
difficult to be produced by a classical computer, then they can
also recognize patterns that are equally difficult to recognize
classically.

The classification metrics calculated by equations (1)—
(4) above are certainly influenced by dataset variability,
hyperparameter sensitivity and inherent quantum circuit
noise. To mitigate these uncertainty factors, a rigorous
dataset preprocessing pipeline, including outlier removal,
feature normalization, and the generation of synthetic power
theft scenarios based on established fraudulent behav-
ior models is ensured. Figs. 2 and 3 above demonstrate
how the model performance trends to stabilize beyond
10 qubits and 3 quantum blocks, indicating that perfor-
mance gains plateau due to the quantum circuit’s struc-
ture. The dataset preprocessing and refinement process
was carefully designed to preserve real-world data char-
acteristics while eliminating anomalies that could skew
model performance, ensuring that the obtained results accu-
rately reflect the detection capabilities of the proposed
approach.

While the performance difference in accuracy may appear
marginal in some cases (e.g., Tables 5, 9), this study aims
to investigate whether quantum machine learning (QML) can
provide an alternative path for achieving competitive results
in power theft efficient detection based on future quantum
hardware improvements.

The box 1 table of ref. [62] presents a summary of quantum
speedups obtained in QML computing compared with their
classical counterparts.

The execution time for the FH-QVC-DRC model on the
simulator per epoch and per training step for an increas-
ing number of total qubits and for an increasing number of
blocks with a constant number of 8 qubits is given in the
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Fig. 5 of ref. [23]. Indicatively, for 3 blocks and 10 qubits
which is the case here the time per epoch is approximately
50 sec while the time per training step is approximately
0.3 sec using an Intel core i7 processor. The average cal-
culation time of the above algorithms, using the same case
studies/data for their evaluation, is given in the Table 10
below, while their corresponding precision is given in
Table 9.

TABLE 10. Calculation times w.r.t precision*.

Time per epoch Time per training

Model (sec) step (sec)
FH-QVC-DRC
(Quantum) ~50 ~0.30
LSTM ~5-20 ~0.03-0.10
XGBoost ~2-10 ~0.01-0.05
LightGBM ~1-8 ~0.005 -0.03
CatBoost ~3-12 ~0.01-0.04

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, a novel approach called full hybrid-quantum
variational circuit-data reuploading circuit (FH-QVC-DRC),
developed by combining techniques such as hybrid-neural
networks and quantum variational, data reuploading, and
parametric circuits, is proposed for the first time to detect
electricity theft in the consumption and net-metering domains
in smart grids. The full FH-QVC-DRC approach was tested
for efficient power theft detection by running simulations
on quantum simulators, and compared with assessed related
works (i.e., [13], [16], [59], [60]) on power theft detection in
conventional power grids and net-metering domains. More-
over, to support the hypothesis for the need for quantum
ML over classical ML, a comparison with the well-known
classical LSTM and state-of-the-art algorithms CatBoost,
XGBoost, and LightGBM was performed. The performance
of the proposed approach compared with the previously pub-
lished related works [13], [16], [59], [60] reveals that with
the QML approach a high accuracy is achieved, i.e. 0.87
(see Table 5) in the classical consumption domain, whereas
0.977 (see stage 3, Table 9) in the net metering domain.
The size, skewness, and noise of each dataset, as well as
their differences in attributes, and the fact that net meter-
ing underwent binary classification, whereas consumption
underwent multiclass classification, caused the results from
the net-metering domain to differ from those from the con-
ventional consumption domain. Smart grid metering systems
are adopted worldwide, where homes are equipped with SMs
to report fine-grained readings to electric utility companies
for billing, monitoring, load forecasting, and energy manage-
ment. In this paper, we show how the reported readings can
be checked using a QML-based detector to efficiently identify
electricity theft.

Regarding data privacy, many research works in the lit-
erature have shown that detecting electricity theft while
preserving customers’ privacy is feasible. One approach is
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to encrypt the reported readings received from the customers
before sending and registering them, as shown in [45]. QML
is a powerful framework that holds significant promise for
accelerating ML algorithms and routines [61], [62], [63],
[64]. In ref. [54] the authors also reported higher results
with the QML model than with its classical counterpart in
certain classification cases. These results show that they are
not needed as many ‘‘stable” qubits as one believes to reach
a quantum ML advantage. Given the rapid advancements
in quantum computing (hardware and software), the acces-
sibility and applicability of the proposed methodology are
competitive.

In future work, quantum machine learning will be applied
to imbalanced datasets that are prevalent in every aspect of
classification problems [64]. It would also be challenging
to run simulations on an actual quantum computer (IBM,
Amazon Bracket, Regetti) to determine how actual hardware
noise affects the results. This step could also be achieved on
the quantum emulator by using Kraus operators applied to
common noise channels, such as depolarizing channels, spin-
flips, amplitude damping, and phase damping [65], [66].

It is crucial to consider that the errors and noise in qubits
and quantum gates are significant obstacles to scalable uni-
versal quantum computers. Therefore, it is beneficial to
examine how the results are affected by implementing noise
models for realistic quantum backends.

Generally, a noisy quantum system is described by the
open system model, whereas the system dynamics within the
Born-Markov approximation are governed by the Lindblad
master equation for the density matrix of the system [65].
Another approach for describing different noise channels is
based on Kraus operators, which are the most general physi-
cal operations acting on density matrices [66].

Sensitivity to input errors such as adversarial robustness
is a significant issue in quantum classifiers [67], [68]. The
robustness of the FH-QVC-DRC QML architecture intro-
duced in this study is a topic for future research. However,
as demonstrated in [68], practical quantum classification
tasks classify a subset of encoded states by using common
qubit encoding schemes. For such tasks, the concentration of
the measure phenomenon can be used to derive the robustness
of any quantum classifier when the distribution of states to be
classified can be smoothly generated from a Gaussian latent
space.

It is worth noting the need to assess the full hybrid
quantum algorithm examining the case where industry and
domestic loads are mixed in equal proportions and to
examine single/three-phase connection consumer cases [69],
[70], [71].

Implementing QML in the NISQ era faces limitations
related to data quality and availability due to technologi-
cal issues in converting classical information to quantum
information (e.g., noisy qubits, limited qubit count), which
exacerbates the problems of poor quality or insufficient
data.
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In [72], the authors suggested that hybrid models (such as
the one proposed in the present paper), which combine quan-
tum and classical computation, can leverage the strengths
of both worlds. For instance, classical circuits can be used
for feature extraction and data handling, whereas quantum
methods can efficiently perform optimization [62].

Moreover, QML has the theoretical potential to use less
data than classical machine learning (CML) methods in cer-
tain scenarios. For instance, in quantum chemistry [73], QML
algorithms can efficiently simulate molecular structures and
predict chemical properties using fewer data points. Simi-
larly, in optimization problems, quantum algorithms such as
the Quantum Approximate Optimization Algorithm (QAOA)
[74] can find optimal or near-optimal solutions faster and
with less data than the classical algorithms. Finally, Quan-
tum embeddings have the potential to encode large datasets
into quantum states more compactly than classical counter-
parts [75]. This efficient data encoding can lead to better
utilization of available data and faster convergence of the
learning algorithms.

Studies have shown that hybrid Neural Networks often
require a comparable or even lower number of training
epochs than their classical counterparts to achieve similar
performance [23]. Regarding actual quantum experiments
on quantum backends (AWS Braket, Rigetti, IBMQ, IonQ):
execution time depends on queue wait times, quantum gate
execution times (typically in microseconds) and measure-
ment overhead. A single forward pass (circuit execution) for
4 qubits can take milliseconds to seconds.

As quantum hardware advances, training costs decrease
and QML algorithms become more viable in domains where
classical ML algorithms face scalability bottlenecks.

Quantum models offer the potential for rapid inference,
especially in hybrid quantum-classical architectures while
these advantages will gradually be realized as quantum hard-
ware progresses.

These advantages are owing to the quantum properties
of superposition and entanglement in quantum computing,
which enable a more efficient exploration of the solution
space and a more compact representation of complex data
structures.

REFERENCES

[1] P. Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection in
AMI using customers’ consumption patterns,” IEEE Trans. Smart Grid,
vol. 7, no. 1, pp. 216-226, Jan. 2016.

[2] A. Arif, T. A. Alghamdi, Z. A. Khan, and N. Javaid, “Towards
efficient energy utilization using big data analytics in smart cities
for electricity theft detection,” Big Data Res., vol. 27, Feb. 2022,
Art. no. 100285.

[3] Y. Zhu, Y. Zhang, L. Liu, Y. Liu, G. Li, M. Mao, and L. Lin, “Hybrid-
order representation learning for electricity theft detection,” IEEE Trans.
Ind. Informat., vol. 19, no. 2, pp. 1248-1259, Feb. 2023.

[4] V. B. Krishna, C. A. Gunter, and W. H. Sanders, “Evaluating detec-
tors on optimal attack vectors that enable electricity theft and DER
fraud,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 4, pp. 790-805,
Aug. 2018.

VOLUME 13, 2025



K. Blazakis et al.: Power Theft Detection in Smart Grids Using Quantum Machine Learning

IEEE Access

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

N. Bhusal, M. Gautam, R. M. Shukla, M. Benidris, and S. Sengupta,
“Coordinated data falsification attack detection in the domain of dis-
tributed generation using deep learning,” Int. J. Electr. Power Energy Syst.,
vol. 134, Jan. 2022, Art. no. 107345.

M. Ismail, M. F. Shaaban, M. Naidu, and E. Serpedin, “Deep learn-
ing detection of electricity theft cyber-attacks in renewable distributed
generation,” [EEE Trans. Smart Grid, vol. 11, no. 4, pp. 3428-3437,
Jul. 2020.

A. C. Marques, J. A. Fuinhas, and D. P. Macedo, “The impact of feed-
in and capacity policies on electricity generation from renewable energy
sources in Spain,” Utilities Policy, vol. 56, pp. 159-168, Feb. 2019.

M. L. Ibrahem, M. Mahmoud, M. M. Fouda, F. Alsolami, W. Alasmary,
and X. Shen, “Privacy preserving and efficient data collection scheme for
AMI networks using deep learning,” IEEE Internet Things J., vol. 8, no. 23,
pp. 17131-17146, Dec. 2021.

PR Newswire. 96 Billion is Lost Every Year to Electricity Theft. Accessed:
Jan. 2023. [Online]. Available: https://www.prnewswire.com/news-
releases/96-billion-is-lost-every-year-to-electricity-theft-3004534 1 1.html
M. M. Buzau, J. Tejedor-Aguilera, P. Cruz-Romero, and A. Gémez-
Expésito, “Detection of non-technical losses using smart meter data
and supervised learning,” [EEE Trans. Smart Grid, vol. 10, no. 3,
pp. 26612670, May 2019.

Z. Zheng, Y. Yang, X. Niu, H.-N. Dai, and Y. Zhou, “Wide and deep
convolutional neural networks for electricity-theft detection to secure
smart grids,” IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1606-1615,
Apr. 2018.

Y. He, G.J. Mendis, and J. Wei, “Real-time detection of false data injection
attacks in smart grid: A deep learning-based intelligent mechanism,” /IEEE
Trans. Smart Grid, vol. 8, no. 5, pp. 2505-2516, Sep. 2017.

S. Zidi, A. Mihoub, S. M. Qaisar, M. Krichen, and Q. A. Al-Haija,
“Theft detection dataset for benchmarking and machine learning based
classification in a smart grid environment,” J. King Saud Univ.-Comput.
Inf. Sci., vol. 35, no. 1, pp. 13-25, Jan. 2023.

M. Shaaban, U. Tariq, M. Ismail, N. A. Almadani, and M. Mokhtar, “‘Data-
driven detection of electricity theft cyberattacks in PV generation,” IEEE
Syst. J., vol. 16, no. 2, pp. 3349-3359, Jun. 2022.

M. Ezeddin, A. Albaseer, M. Abdallah, S. Bayhan, M. Qaraqe, and
S. Al-Kuwari, “Efficient deep learning based detector for electricity theft
generation system attacks in smart grid,” in Proc. 3rd Int. Conf. Smart Grid
Renew. Energy (SGRE), Mar. 2022, pp. 1-6.

M. M. Badr, M. 1. Ibrahem, M. Mahmoud, M. M. Fouda, F. Alsolami,
and W. Alasmary, “Detection of false-reading attacks in smart grid net-
metering system,” IEEE Internet Things J., vol. 9, no. 2, pp. 1386-1401,
Jan. 2022.

L. Xue, L. Cheng, Y. Li, and Y. Mao, “Quantum machine learning
for electricity theft detection: An initial investigation,” in Proc. IEEE
Int. Conf. Internet Things (iThings) IEEE Green Comput. Commun.
(GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart
Data (SmartData) IEEE Congr. Cybermatics (Cybermatics), Dec. 2021,
pp. 204-208.

W. Qi, A. I. Zenchuk, A. Kumar, and J. Wu, “Quantum algorithms for
matrix operations and linear systems of equations,” Commun. Theor. Phys.,
vol. 76, no. 3, Mar. 2024, Art. no. 035103.

Y. Du, X. Wang, N. Guo, Z. Yu, Y. Qian, K. Zhang, M.-H. Hsieh,
P. Rebentrost, and D. Tao, “Quantum machine learning: A hands-
on tutorial for machine learning practitioners and researchers,” 2025,
arXiv:2502.01146.

P. Rebentrost, A. Steffens, I. Marvian, and S. Lloyd, “Quantum singular-
value decomposition of nonsparse low-rank matrices,” Phys. Rev. A, Gen.
Phys., vol. 97, no. 1, Jan. 2018, Art. no. 012327.

S. Stein, Y. Mao, J. Ang, and A. Li, “QuCNN: A quantum con-
volutional neural network with entanglement based backpropagation,”
in Proc. IEEE/ACM 7th Symp. Edge Comput. (SEC), Dec. 2022,
pp. 368-374.

S. A. Stein, B. Baheri, D. Chen, Y. Mao, Q. Guan, A. Li, S. Xu,
and C. Ding, “QuClassi: A hybrid deep neural network architecture
based on quantum state fidelity,” in Proc. Mach. Learn. Syst., 2022,
pp. 251-264.

N. Schetakis, D. Aghamalyan, M. Boguslavsky, A. Rees,
M. Rakotomalala, and P. R. Griffin, “Quantum machine learning for
credit scoring,” Mathematics, vol. 12, no. 9, p. 1391, May 2024.

VOLUME 13, 2025

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

[40]

[41]

(42]

[43]

(44]

(45]

K. Blazakis, Y. Katsigiannis, N. Schetakis, and G. Stavrakakis, “One day
ahead wind speed forecasting based on advanced deep and hybrid quantum
machine learning,” in Proc. Ist Int. Conf. Frontiers Artif. Intell., Ethics
Multidisciplinary Appl., Athens, Greece, Sep. 2023, pp. 155-168.

M. Schuld and N. Killoran, “Quantum machine learning in feature Hilbert
spaces,” Phys. Rev. Lett., vol. 122, no. 4, Feb. 2019, Art. no. 040504.

A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, “Data
re-uploading for a universal quantum classifier,” Quantum, vol. 4, p. 226,
Feb. 2020.

A. Pérez-Salinas, D. Lépez-Nuifiez, A. Garcifa-Sdez, P. Forn-Diaz,
and J.I. Latorre, “One qubit as a universal approximant,” 2021,
arXiv:2102.04032.

S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, “Quantum embed-
dings for machine learning,” 2020, arXiv:2001.03622.

Z. Li, J. Peng, Y. Mei, S. Lin, Y. Wu, O. Padon, and Z. Jia, “Quarl:
A learning-based quantum circuit optimizer,” in Proc. ACM Program.
Lang., vol. 8, Apr. 2024, pp. 555-582.

F. Phillipson, “Quantum machine learning: Benefits and practical exam-
ples,” in Proc. QANSWER, Jan. 2020, pp. 51-56.

Z. Yan and H. Wen, ‘“‘Performance analysis of electricity theft detection
for the smart grid: An overview,” IEEE Trans. Instrum. Meas., vol. 71,
pp. 1-28, 2022.

M. G. Chuwa and F. Wang, “A review of non-technical loss attack models
and detection methods in the smart grid,” Electr. Power Syst. Res., vol. 199,
Oct. 2021, Art. no. 107415.

L. M. R. Raggi, F. C. L. Trindade, V. C. Cunha, and W. Freitas,
“Non-technical loss identification by using data analytics and customer
smart meters,” IEEE Trans. Power Del., vol. 35, no. 6, pp. 2700-2710,
Dec. 2020.

Y. Liu, T. Liu, H. Sun, K. Zhang, and P. Liu, “Hidden electricity theft
by exploiting multiple-pricing scheme in smart grids,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 2453-2468, 2020.

X. Xia, Y. Xiao, and W. Liang, “SAI: A suspicion assessment-
based inspection algorithm to detect malicious users in smart
grid,” IEEE Trans. Inf. Forensics Security, vol. 15, pp.361-374,
2020.

H. O. Henriques, R. L. S. Corréa, M. Z. Fortes, B. S. M. C. Borba, and
V. H. Ferreira, “Monitoring technical losses to improve non-technical
losses estimation and detection in LV distribution systems,” Measurement,
vol. 161, Sep. 2020, Art. no. 107840.

T. Hu, Q. Guo, X. Shen, H. Sun, R. Wu, and H. Xi, “Utilizing unlabeled
data to detect electricity fraud in AMI: A semisupervised deep learn-
ing approach,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 11,
pp. 3287-3299, Nov. 2019.

G. M. Messinis, A. E. Rigas, and N. D. Hatziargyriou, ‘A hybrid method
for non-technical loss detection in smart distribution grids,” IEEE Trans.
Smart Grid, vol. 10, no. 6, pp. 6080-6091, Nov. 2019.

P. P. Biswas, H. Cai, B. Zhou, B. Chen, D. Mashima, and V. W. Zheng,
“Electricity theft pinpointing through correlation analysis of master and
individual meter readings,” IEEE Trans. Smart Grid, vol. 11, no. 4,
pp. 3031-3042, Jul. 2020.

X.Lu, Y.Zhou,Z. Wang, Y. Yi, L. Feng, and F. Wang, ““Knowledge embed-
ded semi-supervised deep learning for detecting non-technical losses in the
smart grid,” Energies, vol. 12, no. 18, p. 3452, Sep. 2019.

E. U. Haq, C. Pei, R. Zhang, H. Jianjun, and F. Ahmad, “Electricity-
theft detection for smart grid security using smart meter data: A
deep-CNN based approach,” Energy Rep., vol. 9, pp.634-643,
Mar. 2023.

OEDI. Open Energy Data Initiative Platform. Accessed: Sep. 2022.
[Online]. Available: https://data.mendeley.com/datasets/c3c7329tjj/1

O. A. Abraham, H. Ochiai, M. D. Hossain, Y. Taenaka, and
Y. Kadobayashi, “Electricity theft detection for smart homes: Harnessing
the power of machine learning with real and synthetic attacks,” IEEE
Access, vol. 12, pp. 26023-26045, 2024.

A. Sen and N.-C. Yang, “Power theft detection using advanced neural
network in three-phase distribution systems,” IEEE Trans. Instrum. Meas.,
vol. 73, pp. 1-10, 2024.

Z. Zhao, G. Liu, and Y. Liu, “Practical privacy-preserving electricity
theft detection for smart grid,” IEEE Trans. Smart Grid, vol. 15, no. 4,
pp. 4104-4114, Jul. 2024.

61523



IEEE Access

K. Blazakis et al.:

Power Theft Detection in Smart Grids Using Quantum Machine Learning

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Ausgrid. Solar Home Electricity Data. Accessed: Sep. 2022. [Online].
Available:  https://www.ausgrid.com.au/Industry/Our-Research/Data-to-
share/Solar-home-electricity-data
Solcast. Accessed: Sep. 2022.
com/historical-and-tmy/

A. Takiddin, M. Ismail, U. Zafar, and E. Serpedin, “Deep autoencoder-
based anomaly detection of electricity theft cyberattacks in smart grids,”
IEEE Syst. J., vol. 16, no. 3, pp. 41064117, Sep. 2022.

R. Punmiya and S. Choe, “Energy theft detection using gradient boosting
theft detector with feature engineering-based preprocessing,” IEEE Trans.
Smart Grid, vol. 10, no. 2, pp. 2326-2329, Mar. 2019.

S. K. Gunturi and D. Sarkar, “Ensemble machine learning models for the
detection of energy theft,” Electric Power Syst. Res., vol. 192, Mar. 2021,
Art. no. 106904.

A. A. Almazroi, F. S. Alsubaei, N. Ayub, and N. Z. Jhanjhi, “Inclusive
smart cities: IoT-cloud solutions for enhanced energy analytics and safety,”
Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 5, pp. 1-10, 2024.

V. Bergholm et al., “PennyLane: Automatic differentiation of hybrid
quantum-classical computations,” 2018, arXiv:1811.04968.
OML in Smart-Grids. Accessed: Sep. 2023. [Online].
https://github.com/nsansen/QML-in-smart-grids

N. Schetakis, D. Aghamalyan, P. Griffin, and M. Boguslavsky, ‘“‘Review
of some existing QML frameworks and novel hybrid classical-quantum
neural networks realising binary classification for the noisy datasets,” Sci.
Rep., vol. 12, no. 1, p. 11927, Jul. 2022.

A. Gao, F. Mei, J. Zheng, H. Sha, M. Guo, and Y. Xie, “Electric-
ity theft detection based on contrastive learning and non-intrusive load
monitoring,” IEEE Trans. Smart Grid, vol. 14, no. 6, pp. 4565-4580,
Jun. 2023.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785-794.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T. Liu,
“LightGBM: A highly efficient gradient boosting decision tree,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 30, Dec. 2017, pp. 3146-3154.

L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“CatBoost: Unbiased boosting with categorical features,” in Proc. 32nd
Int. Conf. Neural Inf. Process. Syst., 2018, pp. 1-11.

S. Abbas, I. Bouazzi, S. Ojo, G. A. Sampedro, A. S. Almadhor,
A. A. Hejaili, and Z. Stolicna, “Improving smart grids security: An active
learning approach for smart grid-based energy theft detection,” IEEE
Access, vol. 12, pp. 1706-1717, 2024.

F. Mohammad, K. Saleem, and J. Al-Muhtadi, ‘‘Ensemble-learning-based
decision support system for energy-theft detection in smart-grid environ-
ment,” Energies, vol. 16, no. 4, p. 1907, Feb. 2023.

A. Abbas et al., “Challenges and opportunities in quantum optimization,”
Nature Rev. Phys., vol. 6, pp. 718-735, Oct. 2024.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195-202,
Sep. 2017.

D. Leykam and D. G. Angelakis, ‘“Topological data analysis and machine
learning,” Adv. Phys., X, vol. 8, no. 1, Apr. 2023, Art. no. 2202331.

A. Melnikov, M. Kordzanganeh, A. Alodjants, and R.-K. Lee, “Quantum
machine learning: From physics to software engineering,” Adv. Phys., X,
vol. 8, no. 1, Dec. 2023, Art. no. 2165452.

H. Carmichael, ‘“Master equations and sources 1,”” in An Open Systems
Approach to Quantum Optics, vol. 4. Berlin, Germany: Springer-Verlag,
1991.

M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Infor-
mation. Cambridge, U.K.: Cambridge Univ. Press, 2010.

H. Liao, I. Convy, W. J. Huggins, and K. B. Whaley, “Robust in practice:
Adversarial attacks on quantum machine learning,” Phys. Rev. A, Gen.
Phys., vol. 103, no. 4, Apr. 2021, Art. no. 042427.

N. Liu and P. Wittek, “Vulnerability of quantum classification to adver-
sarial perturbations,” Phys. Rev. A, Gen. Phys., vol. 101, no. 6, Jun. 2020,
Art. no. 062331.

S. Janthong, R. Duangsoithong, and K. Chalermyanont, “‘Feature extrac-
tion of risk group and electricity theft by using electrical profiles and
physical data for classification in the power utilities,” ECTI Trans. Comput.
Inf. Technol. (ECTI-CIT), vol. 18, no. 1, pp. 51-63, Jan. 2024.

[Online]. Available: https://solcast.

Available:

61524

[70]

(71]

(72]

(73]

(74]

[75]

S. Janthong, K. Chalermyanont, and R. Duangsoithong, “Unbalanced data
handling techniques for classifying energy theft and defective meters in
the provincial electricity authority of Thailand,” IEEE Access, vol. 11,
pp. 4652246540, 2023.

S. Janthong, K. Chalermyanont, and R. Duangsoithong, “Comparison
of feature extraction methods for classifying energy theft and defective
meters in automatic meter reading,” in Proc. IEEE Int. Electr. Eng. Congr.
(iEECON), Mar. 2023, pp. 49-53.

M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, ““Chal-
lenges and opportunities in quantum machine learning,” Nature Comput.
Sci., vol. 2, no. 9, pp. 567-576, Sep. 2022.

Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferova,
I. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis,
and A. Aspuru-Guzik, “Quantum chemistry in the age of quantum com-
puting,” Chem. Rev., vol. 119, no. 19, pp. 10856-10915, Aug. 2019.

K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea,
A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke,
W. Mok, S. Sim, L. C. Kwek, and A. Aspuru-Guzik, “Noisy intermediate-
scale quantum algorithms,” Rev. Mod. Phys., vol. 94, no. 1, Feb. 2022,
Art. no. 015004.

M. A. Khan, M. N. Aman, and B. Sikdar, “Beyond bits: A review of quan-
tum embedding techniques for efficient information processing,” IEEE
Access, vol. 12, pp. 46118-46137, 2024.

KONSTANTINOS BLAZAKIS received the
Diploma degree in applied mathematical and
physical sciences from the National Technical
University of Athens (NTUA), in 2010, and the
M.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the Technical University
of Crete (TUC), in 2016 and 2024, respectively.
His research interests include machine learning,
data mining, wind and solar forecasting, power
theft detection, smart grids, and electric vehicles.

NIKOLAOS SCHETAKIS received the B.S. degree
from the University of Crete, in 2008, and the M.S.
degree from the Technical University of Crete,
Crete, Greece, in 2012, where he is currently pur-
suing the Ph.D. degree.

Since 2022, he has been the CEO of Quan-
tum Innovation Pc. His current research interests
include classical and quantum machine learning,
computer vision, and reservoir computing.

MAHMOUD M. BADR received the B.S. and
M.S. degrees in electrical engineering (electron-
ics and communications) from Benha University,
Cairo, Egypt, in 2013 and 2018, respectively,
and the Ph.D. degree in electrical and computer
engineering from Tennessee Tech University, TN,
USA, in 2022.

He is currently an Assistant Professor with the
Networks and Computer Security: Cybersecurity
Department, College of Engineering, State Univer-

sity of New York (SUNY) Polytechnic Institute, USA. He also holds the
position of a Lecturer Assistant with the Faculty of Engineering at Shoubra,
Benha University, Egypt. His research interests include machine learning,
blockchains, cryptography, 5G networks, and smart grids.

VOLUME 13, 2025



K. Blazakis et al.: Power Theft Detection in Smart Grids Using Quantum Machine Learning

IEEE Access

DAVIT AGHAMALYAN has worked in many dif-
ferent areas of quantum physics. Joining CQT’s
Ph.D. Programme, in 201 1, he completed his thesis
on “Atomtronics: Quantum Technology with Cold
Atoms in Ring Shaped Optical Lattices.” After
graduating, he moved to France for a postdoctoral
stint, where he worked on cold atom collisions.
He returned to CQT, in 2017, as a Research Fel-
low. Then, he was part of a collaboration between
CQT and A%STAR’s Institute of High Perfor-
mance Computing on quantum optical systems. Later, he has moved his
quantum expertise into machine learning. He joined Singapore Management
University, in July 2020, as a Research Scientist. He had been exploring
the potential of quantum machine learning to make better predictive models
for credit scoring. Currently, he is with the Axstar’s Institute of High Per-
formance Computing (Department of Materials Science and Engineering),
where he is working in quantum optics, quantum machine learning, and on
quantum control of many-body quantum systems.

KONSTANTINOS STAVRAKAKIS received the
Diploma degree from the School of Electrical and
Computer Engineering, National Technical Uni-
versity of Athens (NTUA), in 2022.

Recently, he has been a Software Engineer spe-
cializing in both classical and quantum machine
learning with Alma Sistemi Srl, Rome, Italy. His
current research interests include the development
and optimization of quantum algorithms and the
integration of classical machine learning tech-
niques with emerging quantum computing technologies.

VOLUME 13, 2025

GEORGIOS STAVRAKAKIS received the Dip-
loma degree in electrical engineering from the
National Technical University of Athens (NTUA),
» Greece, in July 1980, the master’s (D.E.A.) degree
in automatic control and systems engineering from
INSA, Toulouse, France, in July 1981, and the
Ph.D. degree in automatic control and systems
engineering from ‘“Paul Sabatier” University-
Toulouse-III, France, in January 1984.

He was a Research Fellow with the Robotics
Laboratory, NTUA (1985-1988), and a Visiting Scientist with the Institute
for Systems Engineering and Informatics/Components Diagnostics & Relia-
bility Sector of the EC-Joint Research Center (JRC), Ispra, Italy (September
1989-September 1990). He was the Vice President of the Hellenic Cen-
ter of Renewable Energy Sources (www.cres.gr), from November 2000 to
April 2002. He has been a Full Professor in systems engineering with the
Electrical and Computer Engineering School, Technical University of Crete
(www.ece.tuc.gr), Greece, since November 1995. He performed prototype
and advanced engineering research in automation, systems safety and relia-
bility analysis, real-time industrial processes, fault monitoring and diagnosis,
modeling and diagnosis in bioengineering systems, Al intelligent DSS-deep
learning NN applications in modeling, forecasting, classification in medical
diagnosis, power systems, power theft detection, renewable energy sources
(RES) forecasting, modeling and automation, smart and micro grids, energy
storage and increased RES penetration in non-interconnected power grids,
energy efficiency, and building energy management systems (BEMS).

61525



