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Abstract

A great number of theoretical results are known about log Gromov—Witten invariants
(Abramovich and Chen in Asian J Math 18:465-488, 2014; Chen in Ann Math (2)
180:455-521, 2014; Gross and Siebert J Am Math Soc 26: 451-510, 2013), but few
calculations are worked out. In this paper we restrict to surfaces and to genus 0 stable
log maps of maximal tangency. We ask how various natural components of the moduli
space contribute to the log Gromov—Witten invariants. The first such calculation (Gross
et al. in Duke Math J 153:297-362, 2010, Proposition 6.1) by Gross—Pandharipande—
Siebert deals with multiple covers over rigid curves in the log Calabi—Yau setting.
As a natural continuation, in this paper we compute the contributions of non-rigid
irreducible curves in the log Calabi—Yau setting and that of the union of two rigid
curves in general position. For the former, we construct and study a moduli space
of “logarithmic” 1-dimensional sheaves and compare the resulting multiplicity with
tropical multiplicity. For the latter, we explicitly describe the components of the moduli
space and work out the logarithmic deformation theory in full, which we then compare
with the deformation theory of the analogous relative stable maps.
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1 Introduction

Let X be a smooth surface, let D be an effective divisor on X and denote by Dy, the
smooth part of D. An A'-curve on (X, D) is a proper irreducible curve C on X such
that the normalization of C \ D is isomorphic to A!. We calculate the contributions
of the following curves to the genus 0 log Gromov—Witten invariants of maximal
tangency:

(A) Corollary 1.12: Under the assumption that X is a projective rational surface,
Kx + D ~0and P € D¢y, an A'-curve C which is smooth at P = C N D.

(B) Theorem 1.14: The sum of two immersed A!-curves Z, Z, with (Kx +D).Z; =
0, intersecting at P € Dgp, in a general way. Note that Z; and Z; are rigid as
Al-curves, see the proof of [21, Proposition 4.21(2)].
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In the proof of (A), we study a moduli space of “logarithmic” 1-dimensional sheaves,
which shows an intriguing analogy with the case of K3 surfaces as described in Sect.
2.1. For (B), we give a rather concrete description of a space of stable log maps and
its deformation theory. Section 2 illustrates (A) and (B) and describes some future
directions. Section 6 describes (B) in detail through an example and compares it with
the case of relative stable maps.

There are two natural and well-studied geometries to which our results apply:

(1) The setting of the tropical vertex [24] consisting of appropriate blow ups of toric
surfaces at smooth points of the toric boundary, as summarized in Sect. 2.2.6.

(2) Log K3 surfaces (X, D) for X a del Pezzo surface and D € | — Kx| smooth.
Despite recent breakthroughs [6,8,9,20,21,23], many aspects of their enumerative
geometry remain mysterious. Section 2.3 describes one such open problem.

For both (1) and (2), Corollary 1.12 and Theorem 1.14 calculate the contributions to
the invariants of typical zero-dimensional components of the moduli spaces.

Section 2.2 contains a fully worked out example that illustrates (A) and (B) and
includes some new computations.

1.1 Idealized geometries

Gromov—Witten invariants were devised as a virtual count of curves in projective
or compact symplectic manifolds. However, their relationship with actual counts of
curves, even when understood, is often quite subtle.

Let Y be a Calabi—Yau (CY) threefold and consider its genus 0 Gromov—Witten
(GW) invariants Ng(Y) for B8 € Hy(Y, Z). They are rational numbers in general, and
BPS numbers ng(Y) were proposed as underlying Z-valued invariants. They were
originally defined via the recursive relationship

1
Np(¥) =" 5 k(Y. (1.1)
kI

Still, even in the case of a compact Y, typically the BPS numbers ng (Y) are enumerative
only in low degrees, in the sense that they agree with the count of rational curves. For
example, if Y is a general quintic threefold, then n,4(Y) equals the number of rational
curves of degree d only when d < 9. For larger degrees, the story is more subtle.

Equation (1.1) is derived by postulating that ¥ symplectically deforms to an ide-
alized geometry Y where all rational curves are infinitesimally rigid, i.e. have normal
bundle O(—1) & O(—1). If such a curve is in class 8, then its contribution to N;g ()7)
forl € Nis given by 1/ 3 [5,32,41,59], leading to the above formula. By deformation
invariance one would then conclude that ng(Y) is a count of rational curves in Y.
While the existence of such an idealized geometry is unknown, it is remarkable that
the so defined ng(Y) are integers [27].

Assume instead that Y is the local Calabi—Yau threefold given as the total space
Tot Ox (K x) of the canonical bundle over a del Pezzo surface X. Then the enumerative
interpretation of the local BPS numbers ng(Kx) := ng(Y) is even more mysterious.
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Not only is their relationship to counts of rational curves in Y previously not known,
they also are alternating negative with interesting divisibility properties [20, Conjec-
ture 1.2]. As an illustration, the BPS numbers for local P? in degrees d up to 6 are
3, —6, 27, —192, 1695, —17064, all of which are divisible by 3d, a conjecture which
was proven in [8] based on [9,23].

An interpretation of ng(Kyx), which also makes it clear why they are integral,
was given using moduli spaces of sheaves. Denote by Mg 1(X) the (smooth) moduli
space of (—Kx)-stable 1-dimensional sheaves of class 8 and of holomorphic Euler
characteristic 1 on X, andlet w := —Kx - 8. By [13,29,53-55], the genus 0 local BPS
invariants can be identified with the topological Euler characteristics of Mg 1(X):

ng(Kx) = (=" 'e(Mg 1(X)).

Another interpretation comes from log geometry. Based on the predictions of [52],
in [20,21] we started a program to show that (—1)w_lnﬁ(KX)/w is a count of log
curves in the surface X, namely that it equals the log BPS invariants of Definition 1.7.
Let D be a smooth anticanonical curve on X. Denote by M,g(X , D) the moduli space
of genus 0 basic stable log maps [1,17,25] in X of class 8 and of maximal tangency
with D, see Sect. 4. From this space one defines the log Gromov—Witten invariants
N, g(X, D), which virtually count Al-curves, i.e. curves C such that the normalizations
of C \ D are isomorphic to A'.

While there are a great number of theoretical results about log Gromov—Witten
invariants, there are very few worked out examples. One of the aims of this paper is
to remedy to that shortcoming. Our two main results will apply to a broad range of
computations. One such application is [6].

The stable log maps can meet D in a finite number of points and for such a point
P € D, one can consider ; (X, D), the log GW invariant at P. We say the triple
(X, D, P) is an idealized log CY geometry for B if NﬁP(X, D) equals the number
of Al-curves of class 8 at P. The advantage of the log setting is that for generic P
and general D, the expectation is that (X, D, P) is idealized. The disadvantage is that
there always are points P where (X, D, P) is not idealized, so looking at idealized
geometries only captures a part of the moduli space of stable log maps.

At this point, one may define the log BPS numbers as the number of A!-curves
in an idealized log CY geometry, which conjecturally is equivalent to Definition 1.7.
The next step then is to understand how Al-curves contribute to N/ s(X, D) in non-
idealized log geometries. Unlike the CY case, there are countably many ways in which
Al-curves contribute to (higher degree) log GW invariants. The case of multiple covers
over rigid integral curves was treated in [24, Proposition 6.1]. In this paper we treat
the next two cases: of non-rigid A!-curves and of two rigid distinct A'-curves glued
together. We expect that combining these 3 cases will lead to a solution of the general
case.

In non-idealized geometries, passing from A!-curves to virtual counts is related to
surprisingly interesting geometry. For example, in [21, Proposition 1.16] we proved
that the contribution of multiple covers over rigid A!-curves to the log BPS numbers is
given as the Donaldson-Thomas invariants of loop quivers. In the first part of this paper,
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we introduce a certain moduli space MMZg of sheaves of maximal intersection,
which can be regarded as a logarithmic analogue of Mg 1(S). Using MMIg, we
show that Al-curves in (X, D) share the same properties as rational curves in K3
surfaces.

Let us start with a maximally tangent stable log map of the simplest type, namely
f :P' - C c X with f immersed and C an integral rational curve maximally
tangent to D. Such a curve contributes 1 to J\/};(X , D). In other words, the naive
multiplicity of the A'-curve C \ D is the correct multiplicity. Let us consider possible
degenerations of f. For example, by deforming D, two log maps with image curve
nodal cubics might collapse to one log map with image curve a cuspidal cubic. Then
the Al-curve C \ D is not immersed and it contributes 2 to 8(X, D). More generally,
we show (Corollary 1.12) that an integral rational curve C maximally tangent to D
and smooth at D contributes its natural stable map multiplicity to Ng(X, D), i.e. the
log structure introduces no new infinitesimal deformations.

In the second part of this paper, we give an in-depth description of the log defor-
mation theory of stable log maps obtained by gluing two A!-curves. If C; and C, are
distinct immersed integral rational curves maximally tangent to D at the same point,
smooth at that point and intersect there in a general way, then they will contribute to
Nic1+1¢,1(X, D), a contribution we calculate in Theorem 1.14. We compare it to the
case of relative stable maps and find that the log structures more finely distinguish
between the possible maps.

1.2 Overview of methods

The moduli space Mﬂ (X, D) admits a finite forgetful morphism to the moduli space
of stable maps [60], and it is natural to ask about the interplay between infinitesimal
deformations of the underlying stable maps and infinitesimal deformations of the log
structures. While this is difficult to answer in general, we get explicit solutions in terms
of topological data for certain components of dimension 0. In this paper, we compute
the contributions of such 0-dimensional components of Mf; (X, D) to the associated
log Gromov—Witten invariants and log BPS numbers.

The 0-dimensional components of Mﬂ (X, D) we consider here fall into two cat-
egories. The simplest components are built from A'-curves C of class S. In the first
part of this paper, we deal with such curves.

The arguments are modelled on the case of K3 surfaces. Let S be a K3 surface, y
a curve class on S and C a rational curve of class y on S. Then the multiplicity of

Cis e(ﬁo(C )), the Euler characteristic of the compactified Jacobian WO(C )of C,
by [22] (see also [7]). Let us elaborate a little. For a rational curve C we consider the
moduli space Mo o(C, [C]) of genus O stable maps to C, which is a thickened point
corresponding to the normalization map n : P! — C.Letl(C) := [(Mp,o(C,[C])) be
its length. Since C has only planar singularities, it follows that (C) is equal to m(C),
the degree of the genus O locus in the versal deformation space of C ([22, Theorem
1]), which in turn is equal to e(ﬁO(C )) by [22, Theorem 2].

As a curve on a surface S, the natural multiplicity would be (Mo o(S, ), n), the
length of the moduli space of genus 0 stable maps to S at n, and it is equal to /(C) if S
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is a K3 surface ([22, Theorem 2]). The key fact used in the proof is the smoothness of
the relative compactified Jacobian over the complete linear system (at the points over
C), or equivalently, of the moduli space M,, 1(S) of stable 1-dimensional sheaves of
class y, proven in [44].

Remark 1.1 Let C be a projective rational curve with planar singularities and 7 :
C — C its minimal unibranch partial normalization([7, 3.2]), i.e. the partial normal-
ization with C unibranch such that any unibranch partial normalization factors through
7t. Then m(C) = m(é‘) holds ([7, Proposition 3.3], [22, §1]). In particular, if C is
immersed, i.e. the differential of n is nowhere vanishing, then there are no infinitesimal
deformations and m(C) = 1. In general, m(C) is a product over the singularities of
C of factors depending on the analytic type ([22, §1], [7, Proposition 3.8], [49]). See
[7, §4] for explicit calculations.

Now we return to the case of an Al-curve C in (X, D), with Kx + D ~ 0,
P =CND € D¢y and P € Cgy. Denote by n : P! — C the normalization map.
Then n gives an isolated point in the moduli space of log stable maps. One of our
main results, Corollary 1.12, states that n contributes /(C) to the log Gromov—Witten
invariant. This follows from two facts: (i) the infinitesimal deformations of # as a log
map can be identified with the infinitesimal deformations of the underlying stable map
preserving the maximal tangency condition, and (ii) such infinitesimal deformations
of n factor scheme-theoretically through C.

For the proof of (ii), we introduce a certain moduli space MMZg of sheaves of
maximal intersection, which can be regarded as a logarithmic analogue of M, 1(S).
Just as in the case of K3 surfaces, we show the smoothness of MMZg (Theorem
1.11), from which we deduce that infinitesimal deformations of n as a log map factor
through C. This might give a glimpse into a logarithmic version of sheaf-theoretic
methods in curve counting [35,42], in analogy to the interpretation of genus O BPS
numbers as Donaldson-Thomas invariants. Also, the relation between Mg 1(X) and
MMIg will be the subject of further investigation.

Before explaining how these results relate to the local BPS numbers, let us introduce
a little more general setting. Let X be a smooth projective surface. In the first part of
this paper, we will often require X to be regular, by which we mean that its irregularity
h!(Oy) vanishes. We denote by D an effective divisor on X. We will sometimes require
additional conditions on X and D.

Definition 1.2 Assume X is regular, let P € D and let 8 € Hy(X, Z) be a curve class.
Consider the linear system |Ox (8, P)| of curves of class 8 that meet D maximally at
P (see Definition 1.9) and let L C |Ox (8, P)|. We consider the following condition
onL:

Condition (e) Every rational curve C € L that is unibranch at P is in fact smooth at P.

In the setting of Theorem 1.3 below, we expect Condition (e) to hold for general
choices of (X, D).

From Corollary 1.13 we derive an enumerative meaning of the local BPS numbers
ng(Kx) subject to Conjecture 1.8 ([21, Conjecture 1.3]). This is a BPS version of the
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log-local principle pursued in [10-12,45,56,58]. Notice that Conjecture 1.8 is proven
for X = P? in [8] based on [9,23], and for any del Pezzo surface and classes of
arithmetic genus < 2 in [20,21].

Theorem 1.3 (Log-local principle for BPS numbers) Let X be a del Pezzo surface, let
D be a smooth anticanonical curve on X and let P € D be B-primitive (Definition
1.5). Then there is a finite number of rational curves in |Ox (B, P)|. Assume that:

e Conjecture 1.8 holds for X. (For example when X = P? by [8,9], or for arithmetic
genus < 2 by [20,21]).
e Condition (e) holds for |Ox (B, P)|.

Then
ng(Kx)=(=DFP=1@-D) > 1O (1.2)
CelOx (B, P)|

rational and
unibranch at P

Note that [(C) = e(Pic (C)) by [22].

Note that each component of Mﬁ (X, D) with tangency at a S-primitive P comes
from an (irreducible) A!-curve, explaining the terms /(C) in Equation (1.2).

The other category of zero-dimensional components consists of stable log maps
C — X with image consisting of two distinct rational curves Z; and Z,, each maxi-
mally tangent to D at P. This situation occurs very often for a non-S-primitive point
P. For example, if there are two Al-curves Z, and Z, in the class B which meet D at
the same point P, then their sum contributes to Mzﬂ (X, D).

In this case, C consists of three components, two mapped to Z; and Z, and one
mapped to P. It is not straightforward to see what log structure C should have, unlike
the case treated in the first part. Moreover, it turns out that the moduli spaces of stable
log maps and relative stable maps are not isomorphic in the neighborhood of such a
map, although they are guaranteed to give the same numerical invariants by [3].

As the second main result of this paper, we calculate in Theorem 1.14 the number
of such log maps and the contributions of each to the log Gromov—Witten invariants in
terms of intersection data, subject to genericity conditions. The proof involves a rather
concrete (and long) calculation on infinitesimal families of log maps. We explicitly
separate the infinitesimal deformations coming from the underlying stable maps from
the ones coming from the log structure and explicitly describe both. This result sheds
light on the interplay of the log structures with the underlying stable maps.

Now let us give a little more detailed explanation on what we are going to deal
with.

1.3 Log BPS numbers

Let X be a smooth projective surface and let 8 € Hy (X, Z) be a curve class. We write
w = B - D and assume that w > 0. If X is regular, then there is a unique L € Pic(X)
such that ¢y (L) is Poincaré dual to 8. By 8|p we mean L|p € Pic¥ (D). For X regular,
set

D(B) :={P € Dy : Blp = Op(wP) in Pic*(D)}. (1.3)
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Remark 1.4 (1) If D is an elliptic curve, D(f) is a torsor for Pic’(D)[w] ~ Z/wZ x
ZJwZ (cf. [21, Lemma 2.14]).

) If D = Uf:] D; is the decomposition into irreducible components and D(8) # @,
then D(B) C D;, for a unique ig and B|p; ~ 0 fori # iy.

Part (2) is true because if P € D(B) and P € D;,, then from S|p = Op(wP) we
see that B|p, = Op, fori # io. In particular, 8|p, cannot be of the form Op, (w P)
for any P € D; for degree reasons, and so D(8) C D;,.

Definition 1.5 Let P € D(B). Then P is S-primitive if there is no decomposition
into non-zero pseudo-effective classes B = B’ + B”, with 8- D > 0 and such that
P € D(B)).

Proposition 1.6 (Proposition 4.11 in [21]) Assume that X is a del Pezzo surface and
that D is a smooth anticanonical curve on X. If the pair (X, D) is general, then there
is a B-primitive point P € D(p).

If (X, D) is alog smooth pair, denote by NVg (X, D) the genus 0 log Gromov—Witten
invariant of maximal tangency and class B of (X, D), whose definition we review in
Sect. 4. If X is regular, D is smooth and p,(D) > 0, then D(p) is a finite set and the
moduli space decomposes into a disjoint union according to P € D(f):

~ —P
Mg (X, D) = U Mg (X, D).
PeD(B)

Hence we can define the contribution N/ ﬁP (X, D) from each P so that
Np(X. D)= ) N{(X.D)
PeD(B)

holds.
We often take D to be anticanonical. Note that a regular surface with a nonzero
anticanonical curve is rational by Castelnuovo’s criterion.

Definition 1.7 Assume that X is rational and D is smooth anticanonical, and let P €
D(B). The log BPS number at P, mg, is defined recursively via

_1)k=Dw/k
P _v D P
NE X, D)= ——5——mjp,
kIB
memQ:OﬁP¢qu
Conjecture 1.8 (Conjecture 1.3 in [21]) For all P, P’ € D(B),

p_ P
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Equivalently, for P € D(p),

np(Kx) = (=1)PP~1 (8- Dymy.

What makes this highly nontrivial is that M; (X, D) canbe quite different according
to the local geometry of D near P (see [21, §§6.1] and §§2.3). Conjecture 1.8 was
proven for P? in [8,9] using [23].

Definition 1.9 Assume that X is regular and P € Dgy. We denote by || the linear
system of curves of class § and set

|Ox (B, P)| :={C € |B| : C|p 2 wP as subschemes of D},
as well as its open subsets
|Ox (B, P)|°:={C € |B| : C|p = wP as subschemes of D}
and
|Ox (B, P)|°° :={C € |B] : C|p = wP as subschemes of D and C is integral}.

Moreover, we write

1
Pa(B) = 5,3(,3 +Kx)+1

for the arithmetic genus of members of |B].

Remark 1.10 For arational X with smooth anticanonical D, notice that the set of ratio-
nal curves in |Ox (B, P)|° is identified with the set of rational curves in |Ox (8, P)|.
For a regular surface X, a curve D on X and a B-primitive point P € D(), note that
every member of |Ox (B, P)|° is an integral curve, i.e. |Ox (8, P)|° = |Ox (8, P)|*°.
Note however that if a curve C € |B]| contains the component D; of D passing through
P, then C € |Ox (B, P)|but C ¢ |Ox (B, P)|°.

In Sect. 3 we construct certain moduli spaces, denoted MMZ g and MMT g , SSO-
ciated to any smooth surface X and a curve D on it. These moduli spaces parametrize
certain sheaves supported on integral curves and having “maximal intersection” with
D. For MMT g with P € Dgp, the additional condition is imposed that the tangency
is at P. If X is regular and the Abel map of D is immersive at P (e.g. if D is integral
with p,(D) > 0 or D is anticanonical in rational X; see Lemma 3.8(3)), then, by
Lemma 3.8(2), MMZIg decomposes scheme-theoretically as a disjoint union

MMIp= [] MMIf.
PeD(B)
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Theorem 1.11 (=Theorem 3.12) Let X be a smooth projective rational surface, D an
anticanonical curve on X and P € Dgy. Then MM g and MMZI g are nonsingular
of dimension 2p,(8) = % — w + 2.

Consequently, the relative compactified Picard scheme over |Ox (B, P)|°° is non-
singular at a point [F)] over [C] if F is an invertible Oc-module near P (o
equivalently, F|p = Oclp).

|OO

We use this theorem to calculate the contribution of an A!-curve to the log Gromov—
Witten invariant. The simplest components in the moduli space of genus 0 basic stable
log maps consist of (possibly thickened) points. We will mainly be concerned with
the case (Kx + D). = 0, since otherwise the virtual dimension is nonzero. Then,
one such case arises from an irreducible A'-curve. The following result, proven in
[21] subject to Theorem 1.11 (and Lemma 3.8(2)), calculates the contribution of such
a point to Ng (X, D).

Corollary 1.12 (Proposition 1.7(3) in [21]) Let X be a smooth projective rational
surface and D an anticanonical curve. Let C be an irreducible rational curve of class
B maximally tangent to D at P € D(B). Denote the normalization map byn : P! — C
and assume that C is smooth at P. Then n contributes [(C) = [(Mp,o(C, [C])) to
Ng(X, D).

Consequently, we have:

Corollary 1.13 (Proposition 1.7(5) in [21]) Let X be a del Pezzo surface and D a
smooth anticanonical curve on X, and let P € D(B) be B-primitive. Assume that
|Ox (B, P)|° satisfies Condition (e). Then

—P
mp =1(My (X, D)) = Z 1(C).
CelOx (B.P)I°

rational and
unibranch at P

In Corollary 1.13, Condition (e) is needed to ensure that the compactified Picard
variety of C is contained in MMZg.

1.4 Contribution of curves with two image components

In the second part of this paper, Sects. 4 and 5, we consider another type of zero-
dimensional component, where the images of the stable log maps consist of two
maximally tangent rational curves.

Theorem 1.14 Let (X, D) be a pair consisting of a smooth surface and an effective
divisor. Denote by Mﬂ = M,g (X, D) the moduli stack of maximally tangent genus 0
basic stable log maps of class B to the log scheme associated to (X, D).

Let Z1 and Z> be proper integral curves on X satisfying the following:

(1) Z; is a rational curve of class B; maximally tangent to D,
(2) (Kx + D). =0,
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(3) Z1 N D and Z> N D consist of the same point P € Dgy, and
(4) The normalization maps f; P! — Z; are immersive and (Z1.Zr)p =
min{dy, dy}, where d; = D.Z;.

Writed) = dey, d» = dey withged(ey, ex) = 1. Then there are d stable log maps in
Mﬁ] +p, Wwhose images are Z1 U Z», and they are isolated with multiplicity min{ey, e>}.

When X is projective and (X, D) is log smooth, then these curves contribute
min{d;, da} to the log Gromov—Witten invariant Nﬂ1+ﬂz (X, D).

Remark 1.15 In Theorem 1.14, the condition that (Z;.Z>) p = min{d;, d»} means that
Z1 and Z, are assumed to intersect generically at P. We expect that this condition is
satisfied for general D when Z| # Z».

If di # d», then as a consequence of the immersivity of f; and maximal tangency,
Z1 and Z; are smooth at P and the condition (Z.Z)p = min{dy, d»} holds. In the
case di = dr = d, in analytic coordinates x, y near P with D = (y = 0), we can
write Z; = (y = aixd +---). Then (Z1.Z>) p = min{dy, d»} translates into a; # a.

An example where this condition is obviously not satisfied is the case Z| = Z>. In
this case, the space of log maps with image cycle Z| 4+ Z,, as well as its contribution
to the log Gromov—Witten invariant, is quite different ([24, Proposition 6.1]).

Remark 1.16 In the different setting of the degeneration formula [2,16,30,33,34,48],
the terms d; and d; occur as the number of log lifts. For us, d is the number of ways
of endowing the underlying stable map with a log structure. And min{eq, e»} is the
length of the corresponding points of Mm +62-

It is illuminating to compare Theorem 1.14 with the analogous result [51] for the
relative stable maps of [33,34]. Whereas there is only one relative stable map with
multiplicity min{d;, d»}, there are d log maps each with multiplicity min{ey, e>},
making the same contribution as expected by [3]. This illustrates that there can be
several ways of associating a log map to a relative map.

Theorem 1.14 is illustrated by Example 6.1, which the reader may consider as the
running example for the second part of this paper. We fully work out the same example
in the language of relative stable maps [33,34] in Example 6.2 following [51].

2 lllustration of the main results

We illustrate the two main results, Corollary 1.12 and Theorem 1.14. The examples
below may form the basis of future research directions.

2.1 Analogy with K3 surfaces

Assume now that X is a del Pezzo surface and that D is smooth anticanonical. Let
B € Ha(X, Z) be the class of an integral curve, denote by p,(8) its arithmetic genus
and choose P € D(B) to be B-primitive. Then the linear system |Ox (8, P)| is of
dimension p,(B) [21, Proposition 4.15].

Denote by S a K3 surface and let y be a curve class of arithmetic genus 4. In
analogy to Definition 1.7, one associates genus 0 BPS numbers ry 5, to y, see [47].
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Remarkably [31], rp,, depends only on £ (and the genus O reduced Gromov—Witten
invariant of class y depends only on y? and the divisibility of y in Hy(S, Z)). Choose
a complete linear system L of curves of arithmetic genus /. Then L is h-dimensional
as is |Ox (B, P)|. Under the assumption that all curves in L are integral, rp ;, is given

as the sum of /[(C) = e(ﬁO(C)) for C arational curve in L ([7,18,22,61]). This is in
perfect analogy to Corollary 1.13.

By [21, Lemma 4.10], saying that P is B-primitive amounts to P being of maximal
order in the group structure on D arising from choosing a suitable element of D(f)
as zero element. Keeping track of the order of P is analogous to keeping track of
the divisibility of y as an element of H(S, Z). So requiring P being B-primitive
corresponds to y being primitive as an element of Hy(S, Z). And if y is primitive,
then ro ; also agrees with the genus 0 reduced Gromov—Witten invariant of class y.

In [21], we calculated mg for B-primitive P and p,(B) < 2. We found (Theorems

1.8 and 1.9) in these cases that m% depends only on the intersection number e(S) — 1
for n the number of line classes [ with ./ = 0. Similarly, ro ; only depends on the
intersection number 8 - B = 2h — 2 [31].

The analogy carries over to SYZ fibrations. For K3 surfaces, [36,37] proves that
counts of Maslov index 0 disks with boundary on a SYZ-fiber correspond to tropical
curves in the base. In the case of P2, the analogous correspondence [23] is between
log BPS numbers and tropical curves in the scattering diagram.

2.2 Fully worked out example and comparison with tropical multiplicity

Armed with Corollary 1.12 and Theorem 1.14, we can compute genus 0 maximal
tangency log Gromov—Witten invariants of low degrees by explicitly finding all the
stable log maps that contribute and weighting them with their multiplicity. We fully
work this out in one example adapted from the tropical vertex [24] and compare it
with the analogous tropical picture.

One of the features of log Gromov—Witten theory is that each stable log map admits
a tropicalization coming from the domain curve. These tropical curves carry multiplic-
ities that are related to the log structure. In this, it is different from the multiplicities of
Corollary 1.12, which come from the stable maps. This example illustrates this differ-
ence in the case of cuspidal cubics. Classically their multiplicity is given by Corollary
1.12. On the tropical side, while we may guess what cuspidal tropical cubics are (mov-
ing Py, ..., Psin Figs. 1 and 2 leading to vertices of valency > 3), it is not clear what
their multiplicities are and the example considered might give some insight into that.

In addition, we consider the contributions to the log invariants of reducible curves
in Sects. 2.2.3 and 2.2.4. One may write down the corresponding reducible tropical
curves and stipulate what their tropical multiplicity is. We leave that to future work
and simply find the tropical curves in a generic situation.

Start with P> with anticanonical boundary a cycle of 3 disjoint lines D = Di+Dy+
Dyi. We blow up 3 smooth points Py, P>, Pz on 51 and 3 smooth points P4, Ps5, Pson
52 leading to 6 exceptional divisors E;;,i = 1,2, j = 1, 2, 3. The resulting surface
S is a weak del Pezzo surface. We choose as its anti-canonical boundary the strict
transform of D, namely D = Dy + D> + Doy with D; ~ H — Z?’:l E;j for H the
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pullback of the hyperplane class in P?. Let 8 = 3H — Zi’ ; Eij be the anticanonical
curve class, which is of arithmetic genus 1. We compute the invariant Ng(S, D) of
genus 0 curves of class 8 maximally tangent to D, necessarily meeting D at a smooth
point of Dy;.

We first compute Ng(S, D) classically. We use the fact that by [24, Proposition
5.3], Ng(S. D) equals the virtual count of rational curves in P2 of class 3H passing
through P, ..., Ps and maximally tangent to Doy;.

The classical count consists in finding all the rational cubics contributing to the
count and weighting them by their multiplicities of Corollary 1.12 and Theorem 1.14.
Provided they are smooth at the point of contact with Dy, nodal cubics have multi-
plicity 1 and cuspidal cubics have multiplicity 2. More interesting contributions arise
when the point of contact is not smooth.

By dimensional reasons, there are only a finite number of possible points of contact
P with Dyy. Let Cq and C; be two maximally tangent rational curves passing through
P1, ..., Ps each and meeting Doy at Q1 : z = z1 and Q7 : 7 = Zzp, respectively,
where z is a coordinate with (D1 U D) N Dyye = {0, oo}. We take the relationship

(Ci—E—--—E¢)—(C,—E;—---—Eg) ~0Oon S,
which restricts to
301 — 302 ~ 0 € Pic®(Dgy U Dy U Dy) ~ C*
to obtain that

(z1/22)° = 1

as the condition for 3Q 1 —3 Q> to be a principal divisor on Dgy U D1 U D5 (explicitly,
the divisor of the rational function equal to (z —z1)3/(z — z2)> on Dy and identically
equal to 1 on D U D). Thus, the possible points of contact form a torsor for ©3 and
in particular there are 3 of them.

We fix P one of these points of contact and compute the invariant N, ; (S, D) at
P. Then the cubics passing through Py, ..., Ps and maximally tangent to Dgy at P
form a pencil and all pass through Pgs. Resolving the base points, we obtain an elliptic
fibration Y that is a surface of Euler number 12. The resolution is obtained by blowing
up S at P and then blowing up 2 more times in succession at the unique point over P
in the strict transform of Dg,;. Denote the exceptional divisors E1, E, E3 according
to the order of blow up.

We find all the rational cubics that contribute to the count. The cubic D 1+ 52 + Dout
does not contribute to N/ 8(S, D). Its proper transform Fy is a fiber of Y, a cycle of
3 P!s with Euler number 3. By the same argument as in [11, Section 5.3], the pencil
contains a unique member corresponding to a cubic C that is singular at P. Unlike
[11, Section 5.3], C can have up to three branches at P:

(1) C may be irreducible and nodal at P. Then it does not contribute to Ng(S, D).
(2) C may be cuspidal at P. Then it contributes 1 to Ng(S, D) by [21, Proposition
4.21(2)].
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(3) C may be reducible and nodal at P. Then it is the union of a conic tangent to
Doyt at P and a line passing through P. By Theorem 1.14, C contributes 1 to
Ng(S, D).

(4) C is the union of three lines passing through P. This is a case that Theorem 1.14
does not cover. We compute its contribution to be 3 below.

In all cases, we will see that
N (S. D) =6,
so that

Np(S, D) =3 x 6=18.

2.2.1 Cisirreducible and nodal at P

Assume first that Py, ..., Pg are general (within the restriction of lying on 51 U 52),
so that C is nodal at P, with one branch tangent to Doy The cycle of 3 Pls consisting
of the strict transforms of C, Ej and E» gives a fiber F; of Y. There is a kind of
symmetry between Fy and Fj: Contracting E3, Doy and either 51 or 52, we get the
dual picture. The fiber F has Euler number 3 and does not contribute to the count. All
other curves in the fibration are either smooth cubics, which have Euler number O or
rational cubics smooth at P. Nodal cubics have Euler number 1 and cuspidal cubics
Euler number 2. They all contribute to N/ s(S, D).
So if C is nodal at P, by the additivity of Euler numbers,

./\/ﬁP(S, D) = #{ nodal cubics } 4+ 2 #{ cuspidal cubics } = e(Y) — e(Fp) — e(F;) = 6.

For specific choices of Pj, ..., Pg, cuspidal cubics smooth at P appear. For exam-
ple, let Doy be the line at infinity, let D be given by y + 1 = 0 and let D be given by
x+y+1=0.Take Py, ..., Ps to be the intersections of y2 = x3 with D and D.
Then y? = x3 is a cuspidal cubic smooth at Doy that contributes 2 to N/ 8(S, D). As
in the case of regular Gromov—Witten theory, this is the example of two nodal cubics
coming together in a deformation to form a cuspidal one.

2.2.2 Cis cuspidal at P

If C is cuspidal at P, then F7, the strict transform of C joined with E| and E; is a
chain of 3 P!s, of Euler number 4 and leading to a different fibration Y. Nonetheless,

N, ﬁP (S, D) = (Contribution of C) + #{ nodal cubics } 4 2 #{ cuspidal cubics }
=1+4+eY)—e(Fy) —e(F)) =6.
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2.2.3 Cis reducible and nodal at P

Assume that Py, P>, P4, Ps are general. Denote by C» one of the two conics that pass
through Py, P>, P4, Ps and are tangent to Doy. Denote by P the point of intersection
of C» with Dgy¢. Choose L a general line passing through P and denote by P3 and Pg
its points of intersection with Dy and D, respectively.

Given these choices of Py, ..., Pg, the singular cubic in the pencil is given by
C, U L. It contributes 1 to N/s (S, D) by Theorem 1.14. As a fiber F of Y it becomes
a cycle of 4 P's of Euler number 4. Then

./\/'é) (S, D) = (Contribution of C, U L) + #{ nodal cubics } 4 2 #{ cuspidal cubics }
=14eY)—e(Fy) —e(F;) =6.

2.2.4 C has three branches at P

Assume that Py, ..., Pg are such that the lines joining P; mod 3 all meet at P € Dy;.
Then the union of these lines L1 U Ly U L3 is the singular member of the pencil.
Denote by Contr$-P)(1, 1, 1) the contribution of L1 U L, U L3 to Ng(S, D). InY,it
yields a tree of 5 Pls, Fy, of Euler number 6. By deformation-invariance,

6 :N;(S, D) = Contr'>P)(1, 1, 1) + #{ nodal cubics } + 2 #{ cuspidal cubics }
=Contr>P) (1,1, 1) 4+ e(Y) — e(Fy) — e(F;) = Contr(1, 1, 1) + 3.

We conclude that Contr(S:?) (1, 1, 1) = 3. Moreover, among the other curves con-
tributing, there are either 3 nodal cubics smooth at P or 1 nodal cubic and 1 cuspidal
cubic. The former case can be verified by looking at P? with its toric boundary and
the pencil

a(Z3 + X3 + Y3 +3X%Y +3XY?) + bXYZ,
for [a : b] € PL.
2.2.5 Tropical count

We next compute the same invariant tropically. To do so, we unwind the tropical
computation of [24]. In fact, N, 6(S, D) = 18 is computed in [24, Section 6.4] from a
scattering diagram computation. The tropical count is the count of tropical curves in
the fan of P2, weighted by their tropical multiplicity, that have only one ray of weight
3 going into the direction corresponding to Doy, and 3 rays each of weight 1 coming
from fixed directions corresponding to Dy and Dy. We refer to tropical correspondence
results and multiplicity calculations to [43,46,57] and especially [39,40] for incidence
conditions along the toric boundary as is the case here. Here we content ourselves
with describing the tropical curves and computing their multiplicity. If we choose
P1, ..., Pg as in Fig. 1, solving the combinatorial problem leads to the 3 tropical
curves of Figs. 1 and 2. Their multiplicity is given by the product of the multiplicities
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P / Dout

Py

P

Py Ps D, Pg

Fig.1 A tropical curve of multiplicity 12 in the fan of P?

3
3 3y
Py Dou Py Dout
Py Py
P3 P3
5] BI
Py Ps D> Pg Py Ps D Pg

Fig.2 Two tropical curves of multiplicity 3 each in the fan of P2

of the 3-valent vertices and are indicated in the figures. One of them has multiplicity
12, the other two each have multiplicity 3. We thus recover N s(S, D) =18.

The tropical curves come from the tropicalization of the domain curves. This process
is insensitive to the singularities of the image curves, which is what is picked up by
the stable map multiplicity of Corollary 1.12.

One may move around the points Pp, ..., Ps as in the classical case and find
reducible tropical curves. This may lead to an understanding of what their multiplicity
should be.
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2.2.6 Generalization

More generally, one could consider the following setting of the tropical vertex [24]:
start with a toric surface X, choose a prime toric divisor Dy and denote the other
prime toric divisors by D1, ..., D,. For a curve class 8, choose an intersection profile
P = (Py,...,P,) for ordered partitions P; = p;1 + --- pi;; and |[P;| = B - D;. We
further choose distirlct points x;1, ..., Xj; € Di \Ujx;D ;. We blow up the x;; leading
to the surface v : X — X with exceptional divisors E;j;. Choose as anticanonical
curve D the strict transform of the toric boundary of X. Then the curve class 8 =
v¥(B) — Y1, lele pijEij on X meets D only in smooth points of Doy

The invariants NE(JN( , D) can be computed by the scattering diagrams/tropical

methods of [24]. Proposition 5.3 in [24] expresses N g()? , 5) in terms of invariants
of X, maximally tangent to Dy, and with incidence conditions along Dy, ..., D,.
The latter can be computed by finding their associated tropical curves and tropical
multiplicities as in [40]. In fact, by [24, Proposition 4.3], for generic choices of x;;,
the higher-dimensional components of the moduli space only consist of multiple covers
whose contributions are computed by [24, Proposition 6.1]. Then Corollary 1.12 gives
the contribution of the remaining zero-dimensional components. If the x;; are not
generic, there can be more complicated contributions such as Contr®>?)(1, 1, 1) as in
Sect. 2.2.4.

It is informative to compare with the invariants of maximal tangency with each
boundary component as studied in [10-12,45], for any cluster variety. To obtain a
problem of virtual dimension 0, we need some insertions. If these are point inser-
tions with psi classes, then [38, Proposition 6.1] guarantees that the invariants are
enumerative for generic choices of points. The case of log K3 surfaces leads to more
complicated components of the moduli space and we turn to it now.

2.3 Applications of Theorem 1.14 and future directions

The components that occur in M,g(X , D) are classified by [21, Corollary 2.10] (see
Proposition 5.1). Outside of the calculations of this paper, the only other components
whose contribution to log Gromov—Witten invariants is known are multiple covers
over rigid maximally tangent rational curves [24, Proposition 6.10].

Knowledge of the contributions of some components would allow for new enu-
merative calculations. As an illustration, consider (X, D) = (P2, E) for E an elliptic
curve, and the log BPS numbers m 5 y of degree SH € Hp (P?, Z) of Definition 1.7 for
P € D(5H). According to Conjecture 1.8 (proven in [8,9]), mg y is constant whether
P is a flex point or a 5 H-primitive point. For the latter, m g) y = 113/is an actual count
of rational curves with multiplicities given by Corollary 1.12.

Take now P to be a flex point. Denote by ks the number of degree 5 rational curves
maximally tangent to D at P. Cf. [21, Section 6] and [50], provided D is general,
in lower degree there are 1 flex line, 2 nodal cubics and 8 nodal quartics. Taking the
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description of [21, Section 6], we have that

mby =113 =DT® 4+ 8.3 min{4, 1} + 2 - Contr®5)(3, 12) 4 ks
=54+24+2. Contr(Pz'E)(fi, 12) + ks.

Here DT?) is the 5th 2-loop quiver invariant, which is the contribution of 5 : 1 mul-
tiple covers over the flex line to mg g [21, Proposition 6.4]. The term 3 - min{4, 1}
is the contribution according to Theorem 1.14 of the 3 stable log maps with image
(fixed quartic)U(flex line). Contr®*B) (3, 12) is the unknown contribution of the com-
ponent whose general points correspond to stable log maps P! UP! UP! — P? with
the central component collapsed, the first component an immersion into one of the
nodal cubics and the third component a 2 : 1 cover over the flex line.

So knowing Contr(Pz’E) (3, 1%) one would be able to calculate k5. In fact, local BPS
numbers are calculated through local mirror symmetry [19] and so are the m 5 y via
Conjecture 1.8 (proven in [8,9]). Hence, knowing the contributions of each component
of Mﬁ (X, D) corresponding to stable log maps with reducible image would recursively
allow to calculate kg, the number of rational degree d curves maximally tangent to
a flex point, for all d. Moreover, the same analysis holds for counts of maximally
tangent rational curves at any other point P € D(dH).

For a more in depth analysis of the above situation we refer to [6].

2.3.1 The case of 3 components

We saw in Sect. 2.2.4 that for the surface (S, D), Contr>:?)(1, 1, 1) = 3. This may
give insight as how to generalize Theorem 1.14 to more complicated components. We
leave this to future work.

3 Nonsingularity of the relative compactified Picard scheme

We start with a couple of lemmas that might belong to common knowledge.

Lemma 3.1 If X is a regular surface, a connected component of Hilb(X) containing
a curve C is nonsingular and coincides with |C]|.

Proof Let A be a complete linear system and C a member of A. The first order
deformations of C in Hilb(X) are given by

Homo, (Zc, Oc) ~ Homp, (Ox(—C), Oc) = H*(Oc(C)).

From the short exact sequence 0 — Ox — Ox(C) — O¢c(C) — 0 we obtain the
exact sequence

0 — HY(Ox) > H(Ox(C)) - HY(Oc(C)) — H' (Ox) = 0.
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The space H(Ox(C))/H(Oy) can be regarded as the tangent space of A at C, and
this exact sequence shows that the natural map 7c A — T¢Hilb(X) is an isomorphism.
Since A is projective and nonsingular (by definition) and is embedded into Hilb(X),
it can be identified with a connected component of Hilb(X). O

For a curve class 8, let Mg(X) denote the moduli space of stable 1-dimensional
sheaves of class 8 on X with respect to a certain polarization. In the following, we
will mainly consider sheaves F' that can be regarded as torsion-free sheaves of rank
1 on integral curves of class 8. Such a sheaf F defines a point [F'] € Mg(X) for any
polarization.

Lemma 3.2 Let X be a smooth surface, B a curve class with Kx.f < 0 and C an
integral curve of class B. If F is a torsion-free rank 1 sheaf on C, then Mg(X) is
nonsingular of dimension B> + 1 at [F).

Proof The first order deformations of F in Mg(X) are described by Ext bx (F,F).We
have chg(F) = 0 and by the Riemann-Roch theorem one calculates

2
> (=1)! dimExt}, (F.F)
i=0

—c1(F)? + 2chg(F)cha(F) + cho(F)*x (Ox)
= —c1(F)* = —p*.

By stability of F' (or, rather, by the arguments for the proof of stability), Homp, (F, F)
= C. Moreover, Extéx (F, F)isdualto Homp, (F®0, Ox(—Kx), F), and the latter
is 0 by the inequality x (F ® o, Ox(=Kx)) — x(F) = —Kx.C > 0 and the stability
of F. O

Lemma 3.3 Let C be an integral curve on a smooth surface X and F a torsion-free
sheaf of rank 1 on C. Then locally near [ F'], the Chow morphism Mg(X) — Hilb(X)
lifts to an isomorphism of a neighborhood of [ F] in Mg (X) to an open set in Pic(C/H),
where H is the connected component of Hilb(X) containing [C] and C is the universal
subscheme over 'H.

Proof First, take a deformation of F in Mg(X): Let T be a scheme over C,0 € T a
point, and F a coherent sheaf on X x T which is flat over T, such that 7y = F and
JF; is stable for any geometric point ¢ of 7. We may replace T by a neighborhood of
0 (actually, it suffices to take 7' to be a neighborhood of [F] in Mg(X)), and we have
the Chow morphism ¢ : T — H.

Let us show that, after shrinking 7 if necessary, the ideal of C7 in X x T annihilates
F . For this purpose, we recall the definition of the Fitting ideal of . Let R denote the
local ring of X x T at a point over 0 and M an R-module corresponding to F. Since
F is pure of dimension 1 and F is flat over T, by [26, Proposition 1.1.10], M has a
two-step resolution

O—>R”—¢>R”—>M—>O.
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The Fitting ideal is locally generated by det ¢, and is globally well-defined, indepen-
dent of the local resolution of F. It is immediate to see that the Fitting ideal defines the
flat family of subschemes C7 corresponding to the Chow morphism 77 — Hilb(X).
Now det ¢ certainly annihilates M, since on R" it can be written as the composition
of ¢ and its adjoint. Hence F can be regarded as a family of sheaves on Cr.

Note that F; is a torsion-free sheaf on (Cr), for any geometric point ¢ of T, since a
torsion subsheaf would destabilize F;. By shrinking 7', we may assume that (C7); is
integral for any 7, and then JF; is of rank 1 since its first Chern class is 8. We therefore
obtain a morphism T — Pic(C/H).

Conversely, if G is a family of rank 1 torsion-free modules on a family of integral
curves Cr for some T — “H, then it can be considered as a family of stable sheaves
on X over T.

These correspondences are inverse to each other, and isomorphisms between fam-
ilies also coincide. Thus we have a local isomorphism of the moduli spaces. O

We will use the following theorem on relative compactified Picard schemes.

Theorem 3.4 [4] Let C/S be a projective family of integral curves of arithmetic genus
Pa that can be embedded into a smooth projective family of surfaces over S. Then its
relative compactified Picard scheme is flat over S and the geometric fibers are integral
locally complete intersections of dimension p,.

We return to the setting of a smooth surface X and a curve D on X. For a curve
class g, let us denote D. by w, which we assume to be positive. For a scheme T over
C, we consider the following condition (*) on a coherent sheaf 7 on X x T

(a) Fisflat over T, and for each geometric point ¢ of T, F; is a torsion-free sheaf of
rank 1 on an integral curve C; of class 8, not contained in D.

(b) There exists a section o : T — Dgy X T — X x T with Flpxr = Oy.o(T) a5
Opxr-modules, where w - o (T') is the closed subscheme of D x T defined by the
w-th power of the ideal sheaf of o (T) C D x T.

We will later see that o is unique.

Lemma 3.5 For a sheaf F satisfying condition (*), the following also holds:

e Inaneighborhood of each point of o (T), the sheaf F is isomorphic to the structure
sheaf of the family of curves induced by the Chow morphism.

Also, the conditions rankc, F; = 1 and C; ¢ D follow from the rest of the conditions.

Proof From F|pxr = Oy.o(r) and Nakayama’s Lemma, F is generated by 1 element
near any point of o (T'), giving rise to a surjective homomorphism Oy 7 — F locally.
The kernel contains the ideal of the associated family of curves, and from the torsion-
freeness, they coincide. O

Definition 3.6 (1) We define a moduli functor MMZg (for “modules with maxi-
mal intersection”) on the category of schemes over C as the sheafification of the
presheaf

T — {F | Fisasheafon X x T satisfying the condition (x)}/ =,
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where = denotes isomorphisms of coherent sheaves on X x T.

(2) For P € Dy, we define MMT g as the subfunctor of MMZg parameterizing
families where o can be locally taken to be the constant section T = P x T —
D¢y, x T.

(3) We define a moduli functor MZg of integral curves on X of class 8 with maximal
intersection with D: For a scheme T over C, an element of MZg(T) is a closed
subscheme Z of X x T, flat over T, with fibers integral curves of class 8 such that
the intersection of Z and D x T isw - o(T) forasectiono : T — Dgy, X T.

(4) For P € Dy, we define MT g as the subfunctor of MZ g parameterizing families
where o can be taken to be the constant section with value P.

Lemma 3.7 (1) The functor MMZLg is represented by a locally closed subscheme of
Mg(X), and MMZ g is represented by a closed subscheme of MMZg.

(2) The functor MZLg is represented by a locally closed subscheme of Hilb(X), and
MT g is represented by a closed subscheme of MZg.

(3) We may also regard MMZIg (resp. MMI g ) as an open subscheme of
Mpg(X) Xuibx) MIg (resp. Mg(X) XHilb(x) MIg), or of the relative com-
pactified Picard scheme over M1g (resp. M1 g ).

(4) There exist unique morphisms MMZIg — D and MIg — D representing
sections o such that F|pxt = Oy.o(1) locally over T and Z|pxr = w - o (T).
These morphisms commute with the Chow morphism.

The spaces MMZL ,13) and MT g are the scheme theoretic inverse images of P by
these morphisms.

Proof First we prove (1) and (4) for MMZg. Proofs of (2) and (4) for MZg are
similar.

In Mg(X), the condition (a) in (*) is an open condition. The condition that F is
generated by one section near D is also open, so these conditions define an open
subscheme M° of Mg(X).

Let F be a family in M° over T. In a neighborhood of o (T'), F is isomorphic to
the structure sheaf of a flat family of curves, which is a family of principal divisors.
Hence, locally over T, the restriction F|px7 is isomorphic to the structure sheaf of
a flat family of 0-dimensional subschemes of D of length w. This family can also be
described as the one defined by the annihilator of F|p« 7, hence is determined by F.

Thus we have a morphism M° — Hilb"¥ (D), the latter being isomorphic to the
symmetric w-th power D™ of D. We claim that subschemes of the form w P are repre-
sented by the diagonal set A € D™ with the reduced induced structure. To show this,
we can work with the formal neighborhood of P since we are concerned with infinites-
imal deformations of 0-dimensional subschemes. In a formal coordinate x on D, the
Hilbert scheme can be described as the spectrum of C[[ay, . . ., a,,]] with the universal
subscheme x* — ajx*~! + ... + (=1)"a,, = 0. The diagonal set A, as a reduced

closed subscheme, is given by a; = zlu (al/w)i (i =2,...,w). Consider a family

over a complete local ring R, corresponding to ¢ : Spec R — Spec C[[ay, ..., ayl]
given by a; = r;. If it satisfies the condition (b), with o correspondingto x +— r € R,
then x¥ — rix”~! 4 ... 4+ (=1)¥r, is equal to (x — r)* (this follows from the fact
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that the coefficients of x°, x!, ..., x¥~! are the coordinates of the representing space,
or more concretely, by writing x¥ — rix?¥ =1 4+ ... 4 (=1)¥r, = (unit)(x — r)* and
. . . . wy ;.
using Weierstrass preparation theorem). This means that r; = <i > rrii=1,...,w)
and ¢ factors through A.
Thus MMZj is the scheme theoretic inverse image of A.
In the calculation above, r is determined by (rq, ..., ry): Specifically, r = ri/w.

This shows the existence and uniqueness of MMZg — D as in (4), and MMT ;3) =

MMIg xp P follows from the definition of MMZT g .
(3) follows from the description above of families in MMZg as families in M°
whose support curves have maximal intersection with D. O

Lemma 3.8 Assume that X is a regular surface.

(1) The space MTIE can be identified with |Ox (B, P)|°° considered as a nonsingular
B
variety.
(2) Assume furthermore that the Abel map of D is immersive at P and C belongs to
MZ g . Then, in a neighborhood of [C], the morphism MZ1g — D representing
the intersection point is scheme-theoretically the constant map with value P.
Consequently, if the Abel map of D is immersive at each P € D(B),

Mzgy= ] Mz}
PeD(p)

and

MMIg= [] MMI}
PeD(p)

scheme theoretically, and M1g can be identified with ]_[PeD(ﬁ) |Ox (B, P)|°° and
MMZg can be considered as an open subscheme of the relative compactified
Picard scheme over | | p.pg) 10x (B, P)|.

(3) Ifh°(Op) = 1 and P € Dqy, the following are equivalent:

(a) The Abel map of D is immersive at P.
(b) h°(D,Op(P)) = 1.
(c) wp has a global section nonzero at P.

In particular, the Abel map of D is immersive at P if either h°(Op) = 1 and the
component Dy of D containing P satisfies pa(Do) > 0, or Kx + D ~ 0.

If D is connected and reduced, we can show that the conditions of (3) are equivalent to
saying that the Dy is not a loosely connected rational tail of D (cf. Step II of the proof
of [15, Theorem D]). For more about the immersivity of the Abel map of reduced
Gorenstein curves we refer to [15] and [14].

Proof (1) Set-theoretically, this is obvious. Let [C] be a point of MZ g . By Lemma
3.1, the component of Hilb(X) containing C can be identified with |C|. Taking a
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basis o, . .., pq of H(Ox(C)) with ¢ corresponding to C, |C| has natural local
coordinates (s, ..., Sg) near the point [C] and MZ g is defined by the vanishing of
wo + s1¢1 + -+ sqpq on wP as a section of Oy, p(C). This gives linear equations
onsi,...,Sq, and MT g can be scheme-theoretically identified with |Ox (8, P)|°°.

(2) Let [C] be a point of MZg with P = C N D and Z the family corre-
sponding to a small neighborhood T of [C]. By Lemma 3.1, there is a morphism
T — IP’(HO((’)X(C))) for which Z is the pullback of the universal curve C. Taking
the pullback of the universal curve by U := H°(Ox(C)) \ {0} — P(H*(Ox(C))),
we have a universal section of Oy« (C x U) defining the family of curves Cyy and
hence an isomorphism Oy (Cy — (C x U)) = Oxxy. By taking the pullback by a
local lift T — U and restricting, we have Opxr(w - o(T) — w(P x T)) = Opxr,
where o is as in (b) of (*).

Letu : Dgyy — Pic(D) be the “Abel morphism”, defined roughly by O — Op(Q),
and [w] : Pic(D) — Pic(D) the multiplication-by-w morphism. Then the above
isomorphism shows that [w] o # o o is a constant map, where we regard o as a
morphism 7" — D.

From the assumption that u is immersive at P and the étaleness of [w], we see that
o is the constant map with value P. Thus the family Z — T belongs to MZ g . Since
MMZIg — D factors through MZg, the assertion on MMZg also holds.

(3) The exact sequence 0 — Op — Op(P) — Op(P) — 0 induces

0= HYOp) 5 HYOp(P) — TpD % Tio, (pyPic(D).

and so (a) and (b) are equivalent.
From the exact sequence 0 — wp(—P) - wp — wp|p — 0 we have a long
exact sequence

H(wp) = H(wplp) — H'(wp(—P)) 5 H'(wp),

and g is the Serre dual to f. Thus (c) is also equivalent.

If po(Dp) > 0, then | P| consists of one point since otherwise it would give an
isomorphism D = P!. Thus we have H(Dy, Op,(P)) = C = H(Dy, Op,), hence
(b) holds.

If Kx + D ~ 0, then (c) is obvious. For an anticanonical curve D(# 0) on a rational
surface X the fact that h°(Op) = 1 (and h' (Op) = 1) is standard: This follows from
the long exact sequence associated to 0 — Ox(—D) = Ox(Kx) - Ox — Op —
0, using Serre duality. O

Recall that, if a class in Extéx (F, F) is represented by an extension 0 — F 5

F —ﬁ> F — 0, then the corresponding deformation over C[e]/g2 is given by F with

the action of ¢ on F defined as « o 8.

Lemma3.9 Let P € Dgy be a point, x a local parameter on D at P, and F =
Op.p/(x™). Then a first order deformation of F as a coherent sheaf on D is given
by (Op.p ® Clel)/(x¥ — g(x)e, &%) for a unique polynomial g € C[X] of degree



61  Page 24 of 51 J. Choi et al.

< w — 1. The corresponding extension is isomorphic to

0= Op.p/x®) % (Op.p ®Clel)/(x" — g)e, €2 B> Op p/(x*) — 0,

where a(f) = fe and B is the reduction modulo e.

Proof As in the proof of Lemma 3.7, a small deformation of F is equivalent to the
deformation of the supporting scheme, and we may replace Op_p by C[[x]]. Then the
assertion follows from the description of Hilbert schemes of points on a smooth curve
as symmetric powers. O

Remark 3.10 1Inthe following, we describe the tangent spaces of MMZ g and MMZT g
as the images of the natural maps Exté,)X(F, F(—(w — DP)) — Exté,)X(F, F)
and Ext}ox (F,F(—D)) — Ext}ox(F , F), respectively. In the former, we allow the
intersection point to move along D. In the case of our main concern, the intersec-

tion point does not move in D by Lemma 3.8, and the tangent spaces coincide.
We use Extbx (F, F(—D)) to prove our main result here, but a similar proof using

Exté)X(F, F(—(w — 1)P)) is also possible.

Lemma 3.1 Let [F] be a point of MMT} for P € Dgn.

(1) The tangent space of./\/l./\/lIf;J at [F] is naturally isomorphic to the image of the
natural map Exth(F, F(-D)) - Ext}ox (F, F).

(2) Define F(—(w — 1)P) := Ker(F — F|w—1)p), where (w — 1) P is the closed
subscheme of D defined by (Tpcp)* .
Then the tangent space of MMZ1g at [ F] is naturally isomorphic to the image of
the natural map

Extéy, (F, F(—=(w — 1)P)) — Bxty, (F, F).

Note that, if the supporting curve C of F is smooth at P, F(—(w — 1) P) can also
be described as F @, Oc(—(w — 1) P).

Proof We begin by observing that Tor?x (F,Op) = 0. This follows from the exact
sequence

0 — Tor*(F, Op) — F(~D) — F,

since the final map is immediately seen to be injective by the local form of F near D.
We will use this vanishing without comment in the remainder of the proof to conclude
that short exact sequences ending in F' remain exact after restriction to D.

(1) Take a tangent vector of /\/l/\/ll'g at[Flandlet0 - F — F — F — 0 be
the corresponding extension.

The restriction0 — F|p — I:“|D — F|p — 0isasplitextension, so let GC I:"|D
be the image of a splitting. Then we have a commutative diagram with exact rows and
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columns:

0
G———=Flp
0 Flp Flp Flp 0

Flp —=(F|p)/G

The sheaf F(— D) is the kernel of F — F|p, so if we write F’ for the inverse image
of G in F, we have a commutative diagram with exact rows:

0——= F(—D) }] I
F F

0 F

Ov

where the top row is the kernel of the natural surjection from the bottom row to the
bottow row of the preceding commutative diagram. Thus our extension comes from a
class in Ext}, (F, F(=D)).

Conversely, if we are given an element of Ext}gx (F,F(—D)),let0 > F(—D) —

F’ — F — 0 be the corresponding extension. By push-out, we obtain a sheaf F' and
a commutative diagram with exact rows as above, where the lower row represents the
induced class in Extbx (F, F). By restricting to D, we have a commutative diagram
with exact rows:

=S

~.
e S

0—— F(=D)lp

ti

0 Flp

D Fip 0

|

D Flp 0.

3

Here i is 0, and therefore tl}e induced map Im(j) — F|p is an isomorphism. Thus
the lower row is split, and F gives a tangent vector to MMT g .
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(2)Let0 — F — F — F — 0 be an extension corresponding to a tangent vector
of MMZIg at[F]. By restriction, we have 0 — F|p — Flp— Flp— 0 satisfying
Flp = Oyp.

We take a local parameter x of D at P, and identify finite-length modules over
Op, p with those on C[[x]].

The section o in the definition of MMZg can be written as x = ae, a € C. Then,
with ¢ = wa, we have FlD = C[[x, €]]/(x® — cx¥~l¢). Here the map F|p — F|D
is the map induced from the map e : Flp — F|p;s > es, where (FlD)/ker(e) is
identified with F|p. Explicitly, itis given by f(x) mod (x¥) — f(x)e mod (x* —

cexWlg g2y, y
Write G = I;‘,’fl - (Flp) = (x*1/(x") and let G be the C-subspace of
Cl[x, €]/ (x¥ — cx¥~ ¢, £2) with a basis 1, X, ..., x*~!, x¥~lg. Then the latter is

also a C[[x]]-submodule, since x - x¥~! = x¥ = cx®~lg and x - x¥~lg = x¥e =
cx®—1g2 = 0, and they fit in a commutative diagram with exact rows and columns:

0 0
0 G G Flp 0
0 Flp Flp Flp 0

Flw-1np —= (F|p)/G

0 0.

The invers~e ima~ge of G in F is exactly F(—(w — 1) P). If we write F’ for the inverse
image of G in F, we have a commutative diagram with exact rows:

0——= F(—(w—1P) F' F
F F

0 F

and F comes from Ext, (F, F(=(w—1)P)).
Conversely, given an element of Ext}ox(F, F(—(w—1)P)),let0 > F(—(w —

1)P) — F' — F — 0 be the corresponding extension. We obtain a sheaf F by push-
out, and a commutative diagram with exact rows as above, the lower row representing
the induced class in Extéx (F, F).Restriction to D gives a commutative diagram with
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exact rows:

00— F(—(w—1P)p F'Ip Flp 0
| I
an

0 F|p Fl|p 0.

This induces an exact sequence 0 — Im(i) — Im(j) — F|p — 0, and we see by a
local calculation that Im(7) is of length 1 and is annihilated by x.

Let us identify the lower row with the exact sequence in the Lemma 3.9. We have
to show that g(x) = cx®~! for some ¢ € C. Since Im(j) maps surjectively to
F|p, it contains an element of the form 1 + h(x)e, and we have x¥ - 1 + h(x)e =
g(x)e € Im(}j). Since it is mapped to 0 € F|p, we have g(x)e € Im(« o i). By the
remark in the previous paragraph, we have xg(x)e = 0 in C[[x, e]]/(x" — g(x)ée).

If we write g(x) = "' cix’, this amounts to Y""?¢;ixitle = 0. Since
1.%,...,xv=1, & X¢, ..., xwlg form a C-basis of C[[x, £]]/(x¥ — g(x)e, £2), we
have ¢c) = - - - = ¢y—2 = 0, which shows our assertion. O

Theorem 3.12 (=Theorem 1.11) Let X be a smooth projective rational surface, D an
anticanonical curve on X and P € Dgy. Then MMZg and MMT g are nonsingular
of dimension 2p,(8) = B* — w + 2.

Consequently, the relative compactified Picard scheme over |Ox (B8, P)|°° is non-
singular at a point [F)] over [C] if F is an invertible Oc-module near P (o
equivalently, F|p = Oc|p).

|OO

Proof Let [F] be a point of MMZ g with support curve C. Since |B]| contains C,
which is integral by the definition of MMZF, the dimension of MZf is pa(C) by
the remark after [21, Definition 4.16]. (Note that [21, Proposition 4.15] holds for a
rational surface S, E € | — K| possibly reducible or non-reduced, 8 a curve class
containing C with h°(Oc)=1and P € E(B).) By Theorem 3.4 and Lemma 3.7(3),
MMT g is of dimension 2 p,(C) at [F]. Thus it suffices to show that the dimension
of the tangent space at [F] is 2p,(C).

To see this, we note that the tangent space is the image of Extéf)x (F,F(—D)) —>

Ext}ox (F, F) by the previous lemma. Consider the natural exact sequence

Homo, (F, F(=D)) — Homp, (F, F) — Homp, (F, F|y,p)
% Extl, (F, F(~D)) — Exth (F, F).

The first term is 0, the second term is C, and the third is of dimension w. Thus the
rank of § is w — 1, and we have only to show that Ext}ox (F, F(—D)) has dimension
B>+ 1.

Riemann-Roch theorem tells us that Z?ZO(— 1) dim Ext‘bx (F, F(-D)) = —p2,
and we already have Homp, (F, F(—D)) = 0. Since —D ~ Ky, we have
ExtéX(F, F(—=D)) = ExtéX(F, F®Ox(Kx)). Thisis dual to Homp, (F, F), which
is C, thus yielding the assertion.
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The second assertion follows from Lemma 3.3, 3.7 and 3.8. O

Remark 3.13 This theorem can be seen as a partial logarithmic analogue of the unob-
structedness of sheaves on K3 surfaces [44].

It might also be possible to think of the discreteness of D(f8) as analogous to the
obstructedness of divisor classes in the moduli space of Kéhler K3 surfaces.

4 Basic stable log maps

In this section, we recall some definitions and facts about basic stable log maps from
[1,17,25] and [21, Section 2]. We restrict to maps of genus 0 with 1 distinguished
marked point, target varieties endowed with log structure coming from a divisor. The
general practice in log geometry is to underline log schemes to denote the underlying
scheme. We only follow this convention when we wish to emphasize the distinction.
See [57] for an introduction to log geometry.

Let X be a smooth variety and D a divisor on X. We will consider a stable log map
f maximally tangent to D at a smooth point of D, and study the local structure of the
moduli space at [ f]. This depends only on a neighborhood of Im f, so we may assume
that D is smooth and connected. We view X as the log scheme (X, Mx) endowed
with the divisorial log structure associated to D. Let 8 € H2(X, Z) be a curve class.

4.1 Basic 1-marked genus 0 stable log maps to a smooth pair

For a log scheme (X, M), the monoid homomorphism M x — Ox will be denoted
by «.

Definition 4.1 Let (C/W, {x1}) be a 1-marked pre-stable log curve (in the sense of
[25, Def. 1.3]) over a log scheme W and (C/W, {x}, f) a stable log map to X over
W (i.e., f : C — X is alog morphism

f

C———X

L

W —— SpecC

and i is a stable map over W, see [25, Def. 1.6]).
It is called a stable log map of maximal tangency of genus 0 and class g if the
following hold for any geometric point w of W:

(1) Cy is of arithmetic genus 0 and (f)«[Cp] = B
(i) f(x1(w)) € D, and the natural map

NZ (X, Mx) — Mc, @) = Mcey /0 =N,

where Q = /Vw,u-), is given by 1 — D.g.
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In many cases, the condition (ii) follows from the rest of the conditions ([21, Propo-
sition 2.9], Proposition 5.1).

Remark 4.2 (1) Inthe language of [25, Def. 3.1], this is the case g = 0, k = 1, the data
“A” provided by 8, Z1 = D and s € I'(D, (m‘%’)*) given by M‘;’)" ~Zp —>
Zp, 1 — D.B.

(2) The log structure on X is defined in the Zariski topology. Also, we work with
genus 0 domain curves, and the base scheme W will mainly be the spectrum of
a finite dimensional local algebra over an algebraically closed field containing C,
and in that case it suffices to consider log structures in the Zariski topology.

Now we recall the definition of basicness (minimality) for stable log maps in the
case of our concern, i.e. genus 0 stable log maps of maximal tangency to a log scheme
associated to a smooth pair. See [25, §§1.4] for the general case.

Let W = Spec « for an algebraically closed field « 2 C and let (C/W, {x1}, f)
be the 1-marked genus O stable map of class 8 that underlies a maximally tangent
stable log map. Let 7 : C — W denote the structure morphism. Denote the nodes
of C by Ry, ..., R, the irreducible components by Co, ..., C, and their generic
points by no, ..., nx. We choose maps g1, g2 : {l,...,k} — {0,...,k} such that
Ri = Coiiy NCoiiy-

We consider data (Q, Mc, ¥, ¢), where

e ( is a fine saturated (fs) monoid without invertible elements, regarded as a sheaf
on W,

e M is a fs sheaf of monoids on C, and

o Y : P 0 — Me, @ : f‘lmx — M are local homomorphisms (i.e. non-
invertible elements are mapped to non-invertible elements).

Here My is the ghost sheaf of the log structure on X, but M is a priori just a general
sheaf of monoids satisfying the conditions above.

We require that (Q, Mc¢, ¥) endows C with the structure of a pre-stable log curve
on the level of ghost sheaves, i.e.,

e Y is an isomorphism ong_\ {x1, Ry, ..., Ry},
e there is an isomorphism M¢ y;, — QO @ N compatible with ¥ (which is unique),
and

e for each i, there is an element pg, € Q \ {0} such that, if we consider the
homomorphism N — Q; 1 +— pg, and the diagonal map N — N2 and take
the pushout, there is an isomorphism Mc g, = Q @y N? characterized by
the condition that the generization map /\_/lc,R,. — mc,,}g.l_ @ = Q@ is given by
(g, (a1,a2)) —> g +aj - pr;.

In fact, these conditions are satisfied for the ghost sheaves and their homomorphisms
obtained from a stable log map.

Assume that f(x;) € D. We may also assume that {i | f(R;) € D} ={l1,...,k}
and {i | f(n;) € D} ={0, ..., k"} after renumbering.

Definition 4.3 The type of (Q, Mc¢, v/, ¢) as above is the element

k/
u:(ux,,uR],...,uRk,)eNxZ
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defined as follows.

e N > u,, is the image of 1 by the map
~ —12 s Pxy o A ~
N= (f " Mx)y — Mcxy — Mcx/Q =N,
e 7 > ug, is characterized by the equality
UR; - PR; = (pﬂgz(i) (Xi,Z) - Qﬂngl(,-) (Xi,l) € Qs

where y; j = 1 e N = (f”ﬂx)ngjm if gj(i) < k" (i.e. f(ng;i)) € D), and
Xi,j = 0 otherwise.

Given a stable map f as above and a type u, we define a monoid QP®¢, We

regard Z¥ x 7K'+ ag the direct product of Z, one copy for each of Ry, ..., Ry and
10 - - ., M. In this additive group, let e}, ..., e,’{,, €0s-- s el/c’,, be the standard basis,
e,’{/,, IR e the zero vector and

_ L) oo n
AR =UR - € T €g1) T €
i K +gi(1)+1 K +gi(2)+1
=(..., UR;s  ovns 1, e -1, )

where the component 1 or —1 does not appear if g; (1) > k” or g;(2) > k”. Then let
R be the saturation of the subgroup generated by ag,, ..., ag, . We define Qbasic o
be the saturation of the image of the natural map

N x N+ (78 % ZK" 1y .

If we change the numbering of R;, n; and the maps g; in a compatible way, there
is a canonical homomorphism between the corresponding monoids. For example,
exchanging g1 (i) and g (i) reverses the sign of u g, , hence that of ag, and thus R does
not change.

Definition 4.4 ([25, Definition 1.20, Proposition 1.19]) Let (C/W, {x1}, f) be a sta-
ble log map over an fs log point W = (Spec k, M) and let u denote its type. Then
it is called basic if the induced homomorphism f~'My — M is universal in
the category of maps of the ghost sheaves of type u from f~!My. This is equiv-
alent to the condition that the natural homomorphism Q"¢ — My, induced by
(PRys ++ s PRy s Pno (1)« .. @y, (1)), is an isomorphism.

A stable log map (C/W, {x1}, f) over a general fs log scheme W is called basic
if, for any geometric point w — W, the induced log map over w is basic.
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|u, |
|utg, | ks o)

Fig.3 Tropical curve

4.2 Moduli

By [25, Theorem 0.1] the stack of basic stable log maps to X is an algebraic log stack,
which is locally of finite type. By [25, Theorem 0.2], imposing genus 0, class 8 and
maximal tangency with D cuts out a proper Deligne-Mumford stack Mlg (X, D), which
admits a virtual fundamental class, thus yielding the log Gromov—Witten invariant
Ng(X, D) of maximal tangency of (X, D). In fact, by [60, Corollary 1.2], the forgetful
morphism from Mﬂ (X, D) to the moduli space of genus 0 stable maps of X of class 8
is finite. In what follows, we analyze special components of M,g (X, D) corresponding
to log maps whose images have two irreducible components.

The log structure at the nodes gives rise to tropical curves. We illustrate it by the
example that will be relevant in the next section, cf. Corollary 5.2. Consider a chain
of smooth rational curves Cy, Cop, C2 meeting successively in nodes. We map it to
(X, D) by collapsing Cp to P € D and mapping C; and C; each to a rational curve
in X meeting D only at P in maximal tangency. This gives a “tropical curve in R”
as in Fig. 3. All edges are parallel, weighted and satisfy the balancing condition, see
Corollary 5.2. For more details, see also [21, Section 2].

5 Proof of Theorem 1.14

In this section, we prove Theorem 1.14.

5.1 Maximally tangent genus 0 log maps with 2 non-collapsed components

The following gives a rough idea of what a genus 0, 1-marked stable log map looks
like.

Proposition 5.1 ([21, Corollary 2.10]) Let X be a divisorial log scheme given by a
smooth variety X and a smooth divisor D.

For a genus 0 stable log map f : (C/W,x1) — X with W = Spec C, assume the
following:

e w:=D.f,[C]>0andd; := D.f[C;] = 0 for any irreducible component C; of
C.
e IfC; is anirreducible component of C that is not collapsed by f, then f(C;) € D.

Then it is of maximal tangency, and the following holds.
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(1) f(C) N D consists of one point P.

(2) Ifthere is only 1 non-collapsed component, then C = P! and f*(D) = wx.

(3) If there are at least 2 non-collapsed components, and D. f.[C;] > 0 holds for
non-collapsed components, then C is given by adding C; = P! as leaves to a tree
C' of P! collapsed to P, with maps f; : C; — X satisfying f*(D) = d;(C; N C").

Now we consider the case where the image of f has 2 components. We employ the
notation of §§4.1. The following Corollary is a direct application of Proposition 5.1.

Corollary 5.2 Let X be a divisorial log scheme given by a smooth variety X and a
smooth divisor D.

For a genus 0 stable log map f : (C/W,x1) — X with W = SpecC, assume
that C has 2 non-collapsed components Cy and Cy with f(C;) ¢ D, that f | c, are
birational, and that f(C1) # f(C2).

Assume d; := D.f(C;) > 0 and let d = gcd(dy, da) and e; = d;/d. Then the
following holds.

(1) C is a chain of smooth rational curves Cy, Co and Cy in this order, Co mapping
to a point P € D, and we have (f|c;)*D = d;R; fori = 1,2, where R; = C; N Cy.

We think of Cy as the “first” component at R, R, i.e. we set g1(1) =0, g2(1) = 1
and g1(2) =0, g2(2) = 2.

(2) With the notation in §§4.1, the homomorphism on the log structure at the ghost
level is given by g, (1) = (0, (dr, 0)), ¢, (1) = (0, (d2, 0)) and ¢y, (1) = di - pr, =
dy - pR,. The type of f is given by u = (uy,, ug,, uRz)_z (d + dy, —dy, —dy).

(3) The stable log map f is basic if and only if My is isomorphic to N and,
identifying My with N, PR, = €2, PR, = e1 and ¢,, (1) = deje;. The last condition
can be replaced by “either pgr, = e2, pr, = €1 or ¢p, (1) =dejer.”

5.2 Coordinates and log structures

In the rest of this section, we make the following assumptions, which are part of those
in Theorem 1.14 after taking a neighborhood of Z; U Z5.

Assumptions 5.3 Let (X, D) be a pair of a smooth variety and a smooth divisor. Let
Z1 and Z, be proper integral curves in X satisfying the following:

(1) Z; is arational curve of class B; maximally tangent to D,
(3) Z1 N D and Z> N D consist of the same point P, and

@) Zy # Z».
Write d; = de; = D.Z; with gcd(el, er) = 1.

We will study the deformation space of stable log maps by an explicit calculation.
As a preparation, let us fix coordinate systems.

In order to deal with the deformations of C, we make it stable by adding marked
points. The moduli scheme M 5 of 5-marked genus O stable curves has a point cor-
responding to our curve C = C; U Cy U C3, with markings x3, x3 € C1, x1 € Cp and
X4, X5 € Cz.



Sheaves of maximal intersection and multiplicities of... Page 33 of 51 61

C1 C2

X X.
2 \&ZIO ZZOJ/ 4

X3 &, 711 221 P45
\ 212 22/
L 4 CO
\ X1 /

Fig.4 Coordinates along C

Notation 5.4 As aformal scheme supported by 1 point, we have the following descrip-

tion for the formal neighborhood M of [(C, x1, ..., x5)] € My 5, the universal curve C
(which has the same underlying space as C) over M and the marked sections X, . .., X5
extending xi, ..., Xs.

(1) M is a formal 2-disk with coordinates w1 and ;.
(2) C=Uj VU Ul UL, where

o U = A}, ={(zi0, u1. n2)},

o Uy = {(zi1, zi2, 11, 2))|zinzio = wi} C A3y,

e {zjo # 0} C U and {z;1 # 0} C U; are patched by z;o = 1/z;1, and

e {7120 # 0} C Uy and {z220 # 0} C U, are patched by z12 = 1/z22 (and
211 = W1222, 221 = H2212)-

We denote the point (z;1 = z;» = 0) by R;.
(3) The marked sections are X1 : (z12 = 1) onUy, X2 : (z19 = 0) onL{{,)E3 iz =1
only, X4 : (z21 = 1) on Uy and X5 : (z20 = 0) on Uf;.
We denote the central fiber of U; by U;, that of X1 by x1, etc. Fori = 1 or 2, write C;
for C; \ R; and C; for the corresponding open subspace of C. Figure 4 illustrates the
notations for the coordinates at the central fiber.

Lemma 5.5 Let S = Spec R where R is a local finite-dimensional C-algebra with a
basis {ry, ..., ry}, and Cs the curve induced from C by a morphism S — M.
Identifying the underlying topological spaces of C and Cs with that of C, let U be
an open neighborhood of R; in Uj;.
Then any element F of O¢,(U) can be uniquely written as

n
k k k
F= Z’”k {FO( ) +Z11F1( ') + Zi2F2( )(Zi2)} ,
k=1

where FY e C, F(zi1) € Oc,(U N C;) and FF (zi2) € Oc, (U N Cy). Here, if i
is e.g. 1, we regard Oc, (U N Cy) as a subring of Ocg(U) using the projection map
U, — Spec C[z11], etc.
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Proof This basically follows from z;1z;2 = w; and flatness (or an explicit calculation).
[}

Notation 5.6 The standard log structures on M and C are the divisorial log structures
defined by the degeneracy locus and its inverse image and the sections. We replace the
log structure at x», . . ., X5 with the one induced from M. They are explicitly given as
follows.

o Muro = [1355—0 K50} o> With & (i) = je1 and a () = pa.

o Mc.r, = Ugh.e=o Z?lz?zﬂgog,kl and Mc g, = [g c=0 Zglzgzﬂfoé,zez’
with a(z;;) = z;j.

o Mo, = L5 oo 2"RERS O, with a(2) = 212 1.

e Atother points, M¢ = [ [75,_o 1] Mg@é.

The structure homomorphism and the generization maps are given by the following
rule:

e [; at various points are identified.

e u; maps to z;1z;2 € Mc g;.

o If{j, j'} = {1, 2},z;j and z;;» generizes to z;; and l‘viZ,-;l on{z;j # 0}.z generizes
tozpp — 1.

The parameter spaces we will be concerned with are of the following form.

Notation 5.7 For a nonnegative integer n and m(s) € s - C[s]/ (s”“), let S, m(s) be
the log scheme (S, M) defined as follows.

e S =35, =SpecC[s]/(s"t1).
e M =N x (’)j, with a(k, u(s)) = m(s) u(s).

For coprime positive integers ry, r» and invertible functions u1(s), u>(s) € (’)§, let

Covm(s). (1.1 (5)). (2,12 (5)) denote the log scheme over S, ,(5) obtained from C by taking
the fiber product with the log morphism S, ,,(sy — M defined by p; — (r;, u; (s))
(and u; > m(s)"u;(s)) in the category of log schemes.

Lemma 5.8 Write S for S, m(s) and Cs for Cp m(s),(r1,u1(5)), (ra,us(s))- Then S and Cs are
fs log schemes and Cs /S with the induced section is a 1-marked pre-stable log curve.
As a scheme, it is represented as in Notation 5.4 with j; replaced by m(s)"'u;(s).
The induced log structure can be described as follows. (We use the same symbols
for points and functions on C and Cg etc.)

o Mso = [IgZom?Og o, with a(m) = m(s).
_ 00 a b ,.cmx _ 00 ri—=1 _a _b . cmx .
o Meg g, = Uap.e=02i120m O p. = Lap=o L=y 2i12m Of g, subject to
the relation z;1z;2 = m" u; (s), with a(z;;) = z;j.
o Mcyn = a0 2“m O witha(z) =z — 1.
. _ o0 a X
o At other points, Mcg = [1,2om*O¢..

The structure homomorphism and the generization maps are given by the following
relations:
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e m at various places are to be identified.
o If{j,j'y =1{1,2}, zij and z;j» generizes to z;; and m’iui(s)zl.;l on{z;j # 0}. 2/
generizes to 712 — 1.

Proof One thing that is not so obvious is that the fiber product in the category of log
schemes is a fs log scheme in this case, but this is a known fact in the study of moduli
of log curves. In fact, the ghost sheaf at R; is the pushout

ﬂs GBMM MC,RI =N D2 N3

defined from N2 — N; (a,b) — ria + b and N> - N3; (a,b) — (a,a,b).
This is isomorphic to the submonoid of N2 generated by (r1, 0), (0,71) and (1, 1)
(corresponding to Z11, 212 and m, respectively). 0O

Notation 5.9 Let (wy, wa, ..., wy) be étale coordinates on an affine open neighbor-
hood W of P in X such that w; = 0 defines D in W.

Let f@ : P! — Z; C X be the normalization map. We may assume that co ¢
SN~ w).

For i = 1 or 2, we identify the domain of ) with C;, and by extending to C¢ by
a constant map, we obtain a stable map fp : (C,x;) — X. Denote fo_l(W) by V,
and then we have Co C V (and in particular Ry, Ry € V) and x3, x5 ¢ V. We define
Ai(zi1) and Bji(zi1),i = 1,2, by

wi > 2 Az, Aizin) € O, (VN CHY,
wj > Bji(zi1),  Bji(zi) € Oc;(VNCy), 2=<j=<N.

By the assumptions, we have B;;(0) = B;2(0). We write

Vo =U; NU,,
Vi=VnU\x),
Vo =V N(Uz\ x1),

and denote the corresponding open subspaces of C by V and V.

5.3 Calculation

Recall that Mﬂ = Mﬂ (X, D) is the moduli stack of maximally tangent genus 0 basic
stable log maps of class S to the log scheme associated to (X, D).

We consider S = S, := Spec C[s]/ (s”+l ). This will be sufficient since the tangent
space to M,g is at most 1-dimensional as we will see later. (If fact, most of what we
state below generalize to the spectrum of any local finite-dimensional C-algebra.)

When referring to a base change of something to S, we sometimes drop S, e.g. we
write just V; for (V;)s.

Lemma 5.10 Let (Cs/S, {x1}, f) be a basic stable log map over S such that the cycle
theoretic image of the central fiber is Z1 + Z.
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(1) One can identify the restriction f |O to the central fiber with fy constructed in

Notation 5.9. There exist m(s) = Y j_; m©sk and u;(s) = Y}_, ul(-k)sk such
that Cs/S is isomorphic t0 Cy m(s),(ea,u1(s)), (e1,u2(s))/ Sn,m(s)- (Note that e> comes

first.)

(2) Via an isomorphism as in (1), the log map f gives rise to

A € Oc, V), i=1,2
Byi,....Byi € Oc,(V), i=1,2,

with z?{fii = zl(-l{A,- mod (s) and B'jl- = Bj; mod (s), characterized by the condition
that

dl' n
(f|V,-)bwl =z;Ai,
(ih),-)*wj:éji j=2,...,N.

Here, w| is wy considered as a local section of M.
Conversely, such data uniquely determines f (under the conditions described in
the next lemma).

Proof (1) By Corollary 5.2 (1), we can identify i|0 with fy. By Corollary 5.2 (3),
M o = N and hence S is isomorphic to S, ,,,(s) for some m(s).

Since the central fiber has 3 components, by [28], (modulo adding 4 sections and
then subtracting), Cys is induced from some log morphism S — M. By Corollary 5.2
(3), p maps to ez and u, maps to e; at the level of ghost sheaves. Thus S — M is of
the asserted form.

(2) By Corollary 5.2 (2), (fy, )>w is of the form as above.

For the converse: By the compatibility of f* and f°, we have ( flyv)wy =
z?{ﬁi. Since wi, ..., wy are étale coordinates on W, this determines fly. If
J : V — C denotes the inclusion map, then O¢, — j: Oy, is injective, and therefore
A~,~, Bzi, el BN,' determine f. O

By Lemma 5.5, we can expand A,- and I;?i as
n
= k k k
A = Zsk [AEO) + ZilAfl)(Zil) + ZizAfz) (Zi2)}
k=0

n
~ k k k
Bji = Zsk [B](-,-é + ZilB](i;(Zil) + ZIZB](-i;(ZiZ)}
k=0
with
(k) p(k)
Ajp Bjip € C,
k k
A i), B (i) € Oc, (Vi N Ci) = Oc,(V N Ch),

1

A (2i2), BY (212) € Ocy (Vi N Co) = Oc, ((U; N Co) \ x1).
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Let us write down the conditions for these data to actually give a log map.
Lemma 5.11 The above data give a family in Mﬁ if and only if the following hold.

(a) (w1 on V) Zl_zd'ul(s)dlﬁl = zz_dzuz(s)dzfiz on Vo \ x1, and it extends to a
function on Vy with vanishing order dy + dz along X1.

(b) (wa,...,wyonVy) Forj=2,...,N, Bjilypg = szlvo\xl, and it extends
toa regular function at x1.

(c) (wy,...,wy on C}, C5)  The morphism V N C; — S given by z?{/i,- and
Ezi, cel, BM extends to a morphism C; — X.

Proof We first show that the conditions are necessary:
For (a), on V) we have z1; = mezzl_zlul (s) and zo; = melz2_2lu2(s), and so

.-
A = mPe M)Ay,

25 Ay = mP12 5P uy (5)%2 Ay,

These must be equal, so we have the first assertion. At x1 it is equal to m@€1¢2(z/)41+4z .
(unit), hence the second assertion. It is obvious that (b) and (c) must hold in order to
define f.

The conditions are also sufficient: From (a), by the equalities above we have
z‘fiﬁl = zg% As on Vy \ x1, and it extends to x;. Together with (b) and (c), these
data give a stable map f. By (a), we can lift it to a log map by sending w to z’fllﬁl,
z21A2 and md¢1e 4 )dl tdy (unit) at Ry, Ry and x1, respectively. O

Let co be a da-th roots of (—1)417% A1(0)/A(0) and set ¢, := 277 =1/ for
p=1,...,dy — 1. The following theorem proves Theorem 1.14.

Theorem 5.12 Let (X, D) and Z; be as in Assumption 5.3 and f(i), A;, Bji be as in
Notation 5.9. For n < min{ey, ez}, let S, s and C, p = C,,,_g,(%]),(el,cp) be as defined
in Notation 5.7.

(1) The underlying pre-stable curve of C, /Sy s is the trivial family.
(2) The functions

A= Aizn) + A0 [ =z 1}
Bji = Bji(zi1)

define a stable log map f, , : C, , — X, whose underlying stable map is the
trivial family.

(3) The stable log maps fo,, and fo , are isomorphic if and only if p = p" (mod d).
Each fy,, has no nontrivial automorphisms.

(4) The stable log map f,. p gives a closed immersion of S, s into Mg.

(5) The stable log maps fo,p exhaust the maps whose image cycles are Z1 + Z».

(6) Under the assumptions of Theorem 1.14, the stable log map fminfe,,e>1—1,p gives
an isomorphism of Sminfe;,e,)—1 With a connected component.
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Proof (5) and (6) will be proven in the subsections that follow.

(1) Since e;, e2 > n, we have s¢' = s°2 = 0 in C[s]/(s"*!). Thus the underlying
pre-stable curve is trivial.

(2) We have z;1zi» = 0 from (1). Thus zfiﬂi = z;liA,-(z,-l), and these data give a
trivial stable map. In particular, the conditions (b) and (c) of Lemma 5.11 are clearly
satisfied.

Let us check Lemma 5.11 (a). We have u1(s) = 1 and u»(s) = ¢, and therefore,
on ),

a3 " A =" A + 25 0 {1 -2 1]
=2 410 + 77" 4 O | (1 - i) - 1]

= A10)z3" (1 — zpp) P+,

and, similarly,
2 ur ()2 Ay = Ay (0)2332 (1 — 20) 1 H2

Since ¢ = (—=1)417% A1 (0)/ A(0), they are equal.

Clearly they vanish to order d; + d5 at x7.

(3) Anisomorphismof fp, , and fp . is given by a compatible pair of isomorphisms
@ :Cop— Co,pand ¥ : So 5 — So.s-

The morphism ¢ : €, e Co, » underlying ¢ is the identity, since f 0.p and f 0.p
are stable and Z; # Z, by assumption. Therefore there exist functions f(z12) with
f1(0) = 1 such that ¢z} = z11f1(z12), and f2(z11) with f2(0) = 1 such that
9’212 = 212 fa(211).

On the other hand, ¥ is determined by a nonzero complex number y such that
Vm = my.

Then we have

z11z12f1212) f2(z11) = ¢"(211212)
=y’ (m®)

=m2y*.

Thus fij = fo =1and y© = 1.
Similarly, there exist functions gi(z22) with g;(0) = 1 such that <pb121 =
22181(222), and g2(z21) with g2(0) = 1 such that 9”22, = 22282(221).

22122281(222)82(221) = ¢’ (221222)
=y’ (mcy)

=myc,.
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Thus gy = go = 1 and ¢, = y“¢,. Thus ¢p/c)y is an ex-th root of 1, and p = p

(mod d) follows. We can easily see that the converse is also true.

In the case p = p’, the calculation above shows gpbz,-j = z;j and Vv’m = m, and
therefore that fj , has no nontrivial automorphisms.

(4) By (3), Mg is an algebraic space near [ fo, ,|. Therefore, the assertion is clear if
n = 0.If n > 1, the truncation fi , is nontrivial, since a(m) # 0. Thus S, — Mg
has nonzero tangent map, and it is a closed immersion by Nakayama’s Lemma. O

5.4 Central fiber

Now we prove Theorem 5.12 (5). Thus we set n = 0 in this subsection.

We know that the curve is as in Lemma 5.10 (1) with n = 0 and the maps are given
by data as in Lemma 5.10 (2) satisfying the conditions of Lemma 5.11. Here m(s) = 0
since it is in the maximal ideal. Note that by replacing m (which does not affect m (s))
we may suppose that u; = 1.

For the expansions of A; and Bj,-, the condition of Lemma 5.10 (2) states

i, 40 0 0 d;
Z,~1(A,g )+ ZilAgl)(Zil) + ZiZAEQ)(ZiZ)) = z;,A4i(zi1),

Bﬁ»% + ZilBJ(-?; (zin) + ZiZB]((,-)%(ZiZ) = Bji(zi1)

on V;. From the first equality and z;1z;> = 0, we have Al@ + z,-lAg?) (zi1) = Ai(zi1)
and in particular A”’ = 4;(0). Thus it remains to show that A;(0) + zi24'Y (zi2) =
A; (0)(1 — zj2)@+92 and that us is one of cp, the latter being equivalent to u;lz =
(=DNF A1(0)/ A2(0).

In fact, for the function Ai%)(zlz) € Clzi2, 1/(z12 — )], Lemma 5.11 (a) says
that A;(0) + Z12A(1%) (z12) is regular also at zj» = 1. Therefore Aﬁg) (z12) is in fact a

polynomial. Similarly for Ag;) (z22). Restricting to Vy so that z;; = 0 and z21 = 0, by
Lemma 5.11 (a) we have

A1(0) + 2240 (z12) = 207 - 252U (A2(0) + 22 A%) (222))
= uP 720 (A20) + 25 AN @), 5.1)

and it follows that this is a polynomial of degree d; + d». It also must have vanishing
order dy +da at 212 = 1, and therefore A(0) + 21241 (z12) = A1 (0)(1 — z12) D1t
By symmetry we also have A;(0) + ZzzA;%) (222) = A2(0)(1 — z22)M1+% and (5.1)
implies that (—1)Y17%2A,(0) = ungz(O). (This is basically the same calculation as
we did in the proof of (2).)
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5.5 Extending deformations

Now we make the same assumption as in Theorem 1.14. In particular N = 2, and we
denote By; by B; etc. We may assume that

B/(0) # 0. (5.2)

In fact, since Z; is smooth at the intersection point P, this always holds if d; > 1. If
d; = 1, this holds after changing coordinates if necessary.
By symmetry, assume that d; < d». Recall that d; = de; with gcd(ey, e2) = 1.

Lemma 5.13 Theorem 5.12 (6) (and hence Theorem 1.14) is reduced to the following
claims.

(A) If ey = 1, any extension of fo, p to Sy is trivial.

(B) If e1 > 2, the set of extensions of fo,p to S1 forms an (at most) 1-dimensional
vector space.

(C) For ey > 2, the family f,,_1,, cannot be extended to a family over S,,.

Proof Since fp, , has no nontrivial automorphisms, Mg is an algebraic space near f{ .
If e; = 1, itis areduced point by (A).

If e; > 1 the tangent space is 1-dimensional by (B). Thus the moduli space is étale
locally a closed subspace of Spec Cls]. If it contains S, , our family f, 1 , induces
amap:¢: S, 1 — S, such that f, 1 , is isomorphic to the pullback by ¢ of a basic
stable log map over S, , and its tangent map is nonzero since m(s) = s # 0 mod s2.
By composing with an automorphism of S,,, we may assume that ¢ is the standard
closed immersion, and we would have an extension of fi, 1, to S,,. O

So, for 1 < n < ey, we consider the family f,,_; , and study its extensions to S,.
We write

vi=mb

and we have

vs ifn=1,

m(s) =
s) vs +m®Ws" andv=1 ifn>2,

ui(s) =1+ uﬁ")s",

us(s) =cp+ ugn)s",

A = Aiz) + AiO){(1 — i) — 1)
—l—S"(AEg) + ZilAfY)(Zil) + ZizAfg) (zi2))s

Bi = Bi(zi1) + s"(BY + zi1 BY (zi1) + z2BY (zi2))

with s"T1 = 0, and see when the conditions of Lemma 5.11 are satisfied.
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We have

z11z12 = m(s)?ui(s)
= p?25®
221222 = m(s)“ uz(s)

el 61
=Cpu s

Lemma 5.14 Condition (b) of Lemma 5.11 holds if and only if the following hold:

n) _ pn)
By = By
and
Bg)(zm Bg)(O) and B(n)(zzz) Bé’i)(o)
with

B, (0)cpv" ifn = ey,
0 otherwise,

B3 (0) = {

B(")(O) _ Bi (0" ifn=es, ie,n=e =€ =1,
2 0 otherwise.

Proof Lemma 5.11 (b) says that

B1(0) + s"(BYY) + z12B\3 (z12)) + s B} (0)v? 2},
= By(0) + 5" (B + 273 BY (z71)) + s B5 (0)c,p v 210,

and that both sides are extendable to z;2 = 1.

From the regularity at 71> = 1, we see that Bi(; ) (zi2) are polynomials, and compar-
ing the coefficients, we obtain the assertion.

For the other implication, note that B1(0) = B>(0) is assumed. O

We have a natural trivialization C; = €7 x § = (P'\ {0}) x S given by the functions
zio and z;1. Then the morphism CiO NY — X by data A; and Bj; can be considered
as a deformation of f (i)lclf’n% Since it is trivial modulo s” and (s")2 = 0, we obtain
a vector field v; € I'(CP NV, (f(i))*Tx) to X along f(i)|ci°mv- Specifically, if ¢ is
a local regular function on X we can write (ilc;)*(/) = (fD)*¢ + s"D(¢p). Then it
is easy to check that D defines a derivation (f|cony)™'Ox — Oceny, hence a
section v; € T(CP NV, (fD)*Ty).

By the same reasoning, if the condition (c) of Lemma 5.11 holds, then v; extends
to a section in I'(C?, (f)*Tx).
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Let us explicitly write down v;. On C} NV, from sl =0,z10 = zl_ll v925°? and
e>» > n we have

AL =z A1) + 5" AT + 20 AT @) + 522 T (= (1 + da) A (0)v®

and
By = Bi(z11) + " (B(n) + 21131(7)(111))-
Thus we have
v1 =21 (AJG + 20 (Y (@), + (BIY + 20 B} (211)) 9w,
if n < ey and

v = 2@ (= (d 4 d) AT O + AW + 2114 (211)) 8w,
+(Bf8) +ZIIB{’})(Z11))3w2

ifn=e(ilen=e =e =1).
Similarly we have

v2 = 22 (A + 221 AL (221)) 0y + (B + 221 BYY (221)) 0
if n < ey and

V2 = 25 (23] (—(dy + d2) A2(0))cpv" + AN + 221 ASY (221))Buy
+(BY + 221 B (221)) 00

ifn =ey.
Recall that we are making the same assumptions as in Theorem 1.14.

Lemma5.15 Let & be the Oc-submodule of (f®)*Tx generated by
(f)*Tx(—log D) and Tc,.

(1) The sheaf &; can also be described as the Oc, -submodule of (f ))* Ty generated
by (fD)*Tx (—log D) and 2" 8, at R;.

(2) If the condition (c) of Lemma 5.11 holds, then v; extends to a global section of
&i.
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(3) There is a commutative diagram with exact rows and columns as follows.

0 0

0 — T, (—log R;) —= (f)*Tx(—log D) —= Oc¢,(—=1) —=0

0 Tc, & Oc,(—1) —=0
C C
0 0

(4) The natural map T'(T¢;) — T'(&;) is an isomorphism.

Proof (1) Direct calculations.

(2) As explained right after the definition of v;, if we assume Lemma 5.11 (c), then
v; extends to a section of (f@))*Ty over C;. Note that (f(i))*TX|Cio =& e, as
can be seen from (f)*Ty(—log D) C & < (fV)*Tx.

We see that v; also belongs to (&;) g, from our explicit description of v; and (1),
and we have the assertion.

(3) The first homomorphism in the first row is injective with an invertible cokernel
since £ is a log map which is immersive (although the immersivity at R; is not
needed here). From (Kx + D).Z; = 0 we see that the cokernel is Oc, (—1). Then
the assertion is easy to prove.

(4) follows from (3).

m}

Thus we have global vector fields a; (z11)9;;, and a2(z21)9;,, on Cy and C5 respec-
tively such that

v1 = a1 (z1)(fM)idy,,, v2 = a2(221) (fF @iy,

Comparing at R;, we have

) 0 ifn < e, (5.3)
a = .
! —%v” ifn=e (ie.n=e =e =1),
) 0 ifn <ey,
a =
2 —d'szdchv” ifn=e,

a1(0)B;(0) = BY,
a2(0)B5(0) = BYY. (5.4)
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We also have B(j) = B by Lemma 5.14.
Lemma5.16 Ifn = ey, then v = 0.

Proof Ifn = e; = ep,thentheyareall 1.By (Z|.Z,)p = d we have Al(O)(Bé(O))d #*
AZ(O)(Bi (0))4. Also, cf, = A1(0)/A>(0) by definition. From these we obtain v = 0.

If n = e; < e, then we have a1(0) = 0, and then v = 0 as we have Bé(O) #0
(since dy > 2 and C; is smooth at the point of intersection P). O

Proof of Lemma 5.13 (C) We are considering the casen = e; > 2,50 v = mM =1 by
our setup. But we also have v = 0 by Lemma 5.16, which yields a contradiction. O

Lemma 5.17 The deformation of the underlying prestable curve is trivial, B( )(112) =
B3 (222) = 0, and a1 (0) = a(0) = 0.

Proof If n = ey, then v = 0 by Lemma 5.16, and from equations (5.3) and (5.4)
we have a1(0) = a2(0) = 0 in any case. Similarly, from Lemma 5.14 it follows that

B}y (z12) = BS (z22) = 0.
The deformation parameters of the underlying curve are

m(s$)?uy(s) = v2s? = 0and m(s) uz(s) = c,v°'s =0,

forv =0ifn = e; and 5! = 5°2 = 0 if n < e;. So the deformation of the curve is
trivial. O

Since a;(0) = 0, a1(z11)9;,, and az(z21)9z,, define an automorphism of an over
S,, and by untwisting we may assume that the underlying stable map is a trivial
deformation, i.e. v| = v, = 0, or more explicitly,

AT =A@ = By = BV 1) = Ay = Af (221) = By = By (z21) = 0.

Lemma 5.18 Assuming A(lr(l)) = A%) 0, condition (a) of Lemma 5.11 implies
A (212) = ASY (z22) = 0 and dyu{" = dicy '

Proof Again noting that either v = 0 or s°! = 5“2 = 0, and also that z;; = z21 =0
on V), we have

)M A = A0 (1 — 2D Fh

+s zlz'(A(") +z12A(1’§)(Z12)+d1A1(0)M§n)(1 z12)112)
and

z;zdzuz(s)dzjz =A2(O)cd222—2d2(1 — 2yt

"2 253 (A +202A5) (222) +d2 A2 0)c, uy” (1-220) %)

on Vo \ {x1}.
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By the regularity condition at zj2 = 1 from Lemma 5.11 (a), A (z,z) are polyno-
mials. The equality in Lemma 5.11 (a) is equivalent to

ALY + 22A (212) + di A1 O (1 — z1p) @+
= R AR + 215 AR @) + da A2 ) g (i — DU,

and from this we see that deg(A{}) + 2124} (z12)) < di + d». Similarly, deg(A%}) +
ZzzAgé) (z22)) < di + d>. From the condition on the vanishing order at x, we see that

AYZ)) +Z12A§? (z12) = Ago)(l —zip) itz A(”) +122Agﬁ) (z22) = A%)(l —zpp) itz
with

A +di A Ou = (DI AY + dac, A Ou”).

But A(l'(')) = A('Z)) = 0, so that A(")(zlz) = A (122) = 0 and thus
diA Ol = (—1)ditd2ed dzc’]Az(O)u(") ie.diu” = dycy ul". O

Proof of Lemma 5.13 (A) and (B) By Lemma 5.17, the curve Cs, /S, is trivial and we
may assume that

A%) = Aﬁ)(zn) = A%)(le) =0,
By = BV (zi1) = B}y (z12) = 0,
AW = AV (z21) = AV (z22) = 0,
B = B (221) = BY(z22) =0,

i.e. A; and B; are constant with respect to s.
Letm' :=m(1 + (ui")/ez)s”), then we have

u(”)
a(m') = a(m) (1 + Ls") = a(m)
e

and
muq(s) = (m')*2.

So, if we replace m by m’, we see that m(s) does not change and that u(") = 0. By
Lemma 5.18, u(")
either.

If n = e; = 1, we also have v = 0, and the deformation is trivial.

If n = 1 < ey, this says that the only deformation parameter is v. O

= 0. Since A; and B; do not depend on m, they do not change
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6 Example: comparison between stable log maps and relative stable
maps

Example 6.1 We illustrate by an example the difference in our setting between the
moduli space of stable log maps and the relative maps of [33,34]. For this example
the divisor is normal crossing, so the more appropriate moduli space is the one of
[48], but since the calculations are local, it is not relevant.

Start with P? with its toric boundary D = L; U L, U L3. Choose P € L1 a smooth
point of D. Choose some local coordinates w1, wy around P such that L is given by
wy = 0 and P = (0, 0). We consider Z{ and Z} two general smooth conics tangent
to L1 at P. For example, consider the conics given near P by

Zy: (wp —DP4ws—1=0,
Zy: 2wy —2)* + w3 —8=0.

In particular, (Z{.Z5)p = 2 and Z| and Z} meet in 2 other points. Also, we may

assume that Z| U Z), is disjoint from the torus-fixed points. Write Py, ..., Pg for the
distinct points of intersection of (Z] U Z}) \ P with Ly U L3.
Let X be the blowup of P2 in Py, ..., Pg with exceptional divisors E7, ..., Eg and

by abusing notation slightly we denote by D the proper transform of L U L, U L3.
Let Z; and Z, be the proper transforms of Zi and Zé. Then Z; and Z; satisfy the
hypotheses of Theorem 1.14 for (X, D) and Z;+Z, isintheclass § = 4H —Z?Zl E;,
where H is the pullback of the hyperplane class.

Consider the chain of P's given by C = C; Ug, CoUg, C2 with R; nodes with local
equations 711212 = 0 and z21z22 = 0, where z;1 are local coordinates for C; (i = 1, 2)
and z;» are inhomogeneous coordinates on C satisfying z12z20 = 1 on Cp \ {R1, R2}.
The nodes R; and R; are the points at infinity of the projective completion of the
affine curve z12z220 = 1. Choosing parametrizations of Z; and Z, there is only one
1-marked stable map f : C; UCo U Cy — X with f C = Z| 4+ Z, which underlies
a stable log map of maximal tangency. Locally near - P and for fi = flcis

223, 2211
iz =\5—-5—],
TR

823, 8221
f(z21) = , .
21%1 +1 2151 +1

and Cp is mapped to P.
By Theorem 5.12, we have two nonisomorphic stable log maps over f each of which

has multiplicity 1 in Mg. In what follows, we illustrate the log structure assuming
n=0.
Pulling back along f; as in Notation 5.9,

2
wi = 25 Ai(zi),



Sheaves of maximal intersection and multiplicities of... Page 47 of 51 61

so that we have Ai(z11) = 2/(z3, + 1) and Ax(z21) = 8/(2z3, + 1) with
A1(0)/A2(0) = 1/4.

The base is S = Spec C with log structure Mg = ]_[Zozo meC*, with a(m®) = 0°.
At each node of C, the log structure Mc g, is [ [77, .—o z;‘lzﬁ’szOé’Ri subject to the
relation z;1z;2 = mu; with a(z;;) = z;;. Up to isomorphism, we may set u; = 1.

Near P, let w; be the unique lift of w; to M x. Recall that x; is the marked point.
By Theorem 5.12, near R; away from x|, we have

2
flb(w) = z%l (Z%IT +2((1 —z12)* = 1)) ,

fr(w) = 23, ( +8((1 —z20)* — 1)) .

2z%1 +1

By the generization maps to Cy, sending z;1 to mu; zl._zl respectively, they have to agree
on Co \ {R1, R>, x1}. Thus,

mz 5 (2((1 - Z12)4)) = m*u3z), (8(1 - Z22)4)

aszj1 = 0on Co\{R1, R>, x1}. Since 212222 = 1, we conclude up = £1/2. Therefore
we have two stable log maps.

Example 6.2 Let us look at the relative side. Since we work locally near Z1 U Z;, we
may think of D as smooth. Before proceeding with the example, we quickly recall
some of the notation and ideas of the theory of relative stable maps, referring the reader
to [33] for more detail.

In the theory of relative stable maps to X, the target space X is allowed to deform
in a specific family over A” to singular limits X[rn]. The central fiber X[n] is a chain
of n + 1 smooth components obtained by gluing X to P'-bundles Py, ..., P, over D.
The gluings are along D C X and sections of the ;. There are n singular divisors
Dy, ..., D, in X[n]. The divisor D is the intersection of X and IP;, while Dy, is the
intersection of P, and IP; for k > 1. We will describe X[1]¢ in more detail below.

If f: C — Xln]o is a relative stable map, then no component of C is mapped
into any Dy. Furthermore, there is the predeformability condition: if p € f~1(Dy),
then p is a node of C. One component C; of C containing p satisfies f(C;) C Pr_1,
while another such component C; satisfies f(C;) C Py, with an obvious modifi-
cation if k = 1. Then the predeformability requirement is that mult, ( |a (Dy)) =
mult, (f |a~ (Dg)). For the predeformability of a family of maps, we require a little
more ([33, Definition 2.9, Lemma 2.4, Definition 2.3]). In the case at hand, we explain
the condition later.

In the current case, it turns out to be sufficient to consider X[1]g, the central fiber
of the blow-up of X x Al along D x {0}. This is also obtained by gluing X and the
P!-bundle P(Np,x & Op) over D.

We can describe X [1]o explicitly as follows. Let X, = A%\ (L,UL3), where LoUL3
is the union of two distinct lines that will correspond to Ly U L3 C P2. Consider
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A3 with coordinates w;, wo, v; and projection p : A3 > A? given by wy, wy, let
X' = p~ UX) NV(wiv) and U = (L N X)) x Al € A? with coordinates wy, uj.
Then we may think of X[1]y as covered by open sets X', U and X \ D: The open sets
(v #0) C X’ and (u; # 0) C U are identified by ujv; = 1, and (w; # 0) C X' is
identified with an open subset of X \ D in a natural way.

We have a projection map 7 : X[1]g — X with |y, = p|x’, which identifies
(vi = 0) C X’ with X{; and contracts U to D. The divisor (u; = 0) C U will be
considered as the boundary divisor.

Let S = Spec Cl[s]/ (sz). We will define a nontrivial family of relative stable maps
Cs — X[1]o whose central fiber, composed with 7, gives f in the previous example.
To do this, we take Cs to be the family of curves defined by ;| = s and uy = s/4
(hence z11z12 = s and 221220 = s/4) and give a stable map Cs — X[1]p over S such
that the following hold:

e (pullback of the boundary) The pullback of (11 = O) is4-Xxy. }
° (predeformablhty) Near R;, one can write w| = zllA,, v = leB with Al,

invertible and A; B; € C [s1/(s%).

Once such a family of relative stable maps is obtained, it is nontrivial since Cg is a
nontrivial deformation.
We set

12—t o B +1

1 9 1 - —7
2 +1 (1 —zp)*
~ 8(1 — z20)* ~ 273, + 1
A2 = 2—7 B2 = %7
275, + 1 (1 —2z2)
2z11 +s(4z11 4+ 2z12)
wy = near Rp,
le + 1
8221 + 5823, —4+2
wy = 221 + 5(8z3, 222) near Ra.
2221 +1

These data give a stable map Cs — X[1]o. In fact, let )V C Cg be the open subscheme
supported on f ! (X) \ {x1}. We first see that the two sets of w1, v; (defined from A;

and B as above) and w; coincide on Co \{R1, Rz, xl} and glve a morphism } — A3
On Cp \ {Rl,Rz,xl} Z“Al = 23,Ay = 0, 22,81 = z3,/(1 — z12)* is equal to
122 Bz = 122 /(1 — Z22) , and the two expressions for w; are

2211 454z —4+2z1) 2525 +5(4523,)2 — 4+ 2210)
2 +1 (s75)% + 1
=5Qzp, —4+2z12)
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and

8221 + 5825, —44+222) 8(s/M)25 + 5(8((s/4)25,)? — 4+ 22)

223, + 1 2((s /425, )2 +1
5225, — 4+ 222),

which are equal. Note that we have w;|¢, = 0 by reduction modulo s, as it should be.
Since wjv; = zl.zlzl.z2AiBi = 0, we have a morphism f’:V — X',
On VN (Ci\ Ry),

(w1 ) — 223, —8s111’ 2711 +4s(z3 — 1) ’
Z%l +1 Z%l +1

and this is the reparametrization of fj by z11 — z11 — 2s(z%] + 1). Similarly, the
restriction of f " to VN (Ca \ Ry) is given by the reparametrization of f3 by z21 >
201 —(1/2)s(2221 +1). This implies that f’ extends to a morphism Cg \ {x;} — X[1]o.
(We may also verify that w; and w satisfy the equation for Z!.)

On Cy \ {Ri1, R2}, we have u; = (v))~! = (1 — 112)4/1%2, so f/ extends to a
morphism Cg — X[1]p, and the condition on the pullback of the boundary is satisfied.
Predeformability also holds since A131 =2and A2 32 =8.

It follows from the main result of [51] that the corresponding point of the moduli
space of relative stable map is actually isomorphic to S = Spec C[s]/(s%), in contrast
to the 2 reduced points in the moduli space of basic stable log maps.
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