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Abstract. The pole mass and width of the Delta resonance are calculated in the relativistic
chiral effective field theory approach. We choose a systematic power-counting procedure

by applying the complex-mass scheme (CMS).

1 Introduction

At low energies, the chiral perturbation theory (ChPT) [1–3] provides a successful description of

the strong interaction of pion and nucleon-based effective field theory (EFT) of quantum choromody-

namics (QCD). Inclusion of heavy and especially resonant degrees of freedom in EFT becomes more

complicated to set up a systematic counting scheme [4]. Power counting violating imaginary terms

cannot be absorbed by the use of traditional renormalization schemes. Therefore, we can apply CMS

to restore a systematic counting scheme [5].

In the current study, we determine the mass and width of the delta resonance in relativistic chiral

EFT up to order O(q3). We write the most general effective Lagrangians as [6, 7]

L = L0 +LπΔ +LπNΔ +L(2)Δ , (1)

L0 =Ψ̄(i /D − mN0)Ψ − ψ̄μP
3
2
[
(i /D − mΔ0)gμν

− i(γμDν + γνDμ) + iγμ /Dγν + mΔ0γμγν
]
P

3
2ψν,

(2)

where N denotes nucleon isospin doublet with bare mass mN0. ψν are the vector-spinor isovector-
isospinor Rarita Schwinger fields of the Δ resonance [8] with bare mass mΔ0, P

3
2 is the isospin-3/2

projector [9].
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Figure 1. One-loop self energy diagrams of the delta. The dashed, straight, and double lines correspond to pion,
nucleon and delta, respectively.

L(1)
πΔ
= − ψ̄μ P

3
2 ΛA,n

μν P
3
2ψν,

≡ − ψ̄μ P
3
2

{
(i /D − mΔ0)gμν + iA(γμDν + γνDμ)

+
i

n − 2[(n − 1)A
2 + 2A + 1]γμ /Dγν

+
mΔ0

(n − 2)2 [n(n − 1)A
2 + 4(n − 1)A + n]γμγν

+
gΔ1
2
/uγ5gμν +

gΔ2
2
(γμuν + uμγν)γ5

+
gΔ3
2
γμ/uγ5γν

}
P

3
2ψν,

(3)

L(1)
πNΔ = gΔψ̄μ,i P

3
2

i j (g
μν + z̃γμγν)uν, j Ψ + h.c, (4)

L(2)
Δ
= −cΔ1 Tr(χ+) ψ̄μ,i P

3
2

i j g
μν ψν, j. (5)

We can write the bare parameters of the Lagrangians (3), (4) and (5) in renormalized parameters

and counterterms as

mΔ0 = zΔ + δzΔ, m0 = m + δm, cΔ1,0 = cΔ1 + δc
Δ
1 , ...

where zΔ is the complex pole of the delta propagator in the chiral limit, and m is the mass of the

nucleon in the chiral limit. We use the renormalized mass parameters in the free propagators and

improve the counterterms perturbatively.

The contributions to the delta self-energy up to order O(q3) from loop diagrams are shown in

Fig. 1.

To determine the complex pole position z for the delta propagator we solve the equation (where s
corresponds to square root of z in Ref. [9])

z − zΔ + 4cΔ1 M2 − Σ̃1(z2) − zΣ6(z2) = 0, (6)

the pole of delta resonance up to third order is given by

z = zΔ − 4cΔ1 M2 +
(
Σ(a) + Σ(b)

)∣∣∣
/p=zΔ

− (
Σ
(a)
Sub
+ Σ

(b)
Sub

)∣∣∣
/p=zΔ

. (7)
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Figure 2. Contributions of the renormalized loop diagrams for real and imaginary part of the pole of delta
resonance depending on the pion mass.

We use the numerical values of the parameters as mN = 0.94 GeV, Mπ = 0.14 GeV, zΔ = (1.21 −
i
2
0.10) GeV, Fπ = 0.09 GeV, gA = 1.26 GeV, g1 =

9
5
gA GeV and gΔ = 1.127 GeV. Explicit

contributions to the pole of delta resonance are

z =
[(
1.210 − i

2
0.100

)
− 0.078 cΔ1 +

(
0.015 − i

2
0.0024

)]
GeV. (8)

We compare the two power counting schemes the CMS and the small-scale expansion (SSE) [6]

in Fig. 2. The contributions are represented depending on pion mass to the real and imaginary part

of the pole. The red line stands for the results in SSE and the blue line is for the results in CMS.

If one uses the SSE the chiral corrections to the real part of the pole are slightly larger in the entire

0 < Mπ < 0.3 GeV range.
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