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ABSTRACT

Simulating particle interactions within high-energy physics detectors is essential for inter-
preting experimental data and advancing our understanding of fundamental physics. Calorime-
ters measure particle energies through cascades known as showers, but their complex re-
sponses and the computational intensity of traditional simulation tools like Geant4 pose
significant challenges. These are further compounded in Aigh-granularity calorimeters, which
consist of millions of cells yet register energy deposits in only a sparse subset, rendering
tull-scale simulations impractical.

'This thesis addresses the need for efficient and accurate calorimeter simulations by develop-
ing novel generative machine learning models that leverage the inherent sparsity and point-
like nature of calorimeter data. Initial efforts using woxe/~based generative adversarial net-
works (GANs)—which model data in a discrete grid structure—encountered scaling issues
due to data sparsity and high dimensionality. By shifting to a point cloud representation, the
CaloPointFlow model was developed, marking the first application of point cloud genera-
tive techniques to calorimeter simulation. This approach reduces data complexity by treating
showers as collections of points in space rather than densely populated grids.

Although CaloPointFlow marked a significant advancement, limitations such as inadequate
point-to-point information exchange and difficulties in modeling discrete coordinate posi-
tions were observed. To overcome these challenges, CaloPointFlow II introduced DeepSer-
Flow, a novel normalizing flow architecture that enables direct interactions between points,
capturing complex dependencies within the data. Additionally, a new dequantization strat-
egy called CDF-Dequantization was implemented to better map discrete cell positions to
continuous space, along with a mitigation strategy to handle multiple energy deposits per

cell.

Despite these improvements, purely point cloud-based models struggled to ensure one hit
per calorimeter cell. To resolve this, CaloHit was introduced, a hybrid approach that com-
bines voxel-based and point cloud methodologies. CaloHir first generates a hitmap to iden-
tify active cells using a voxel-based method and then predicts the energies of these hits with
a point cloud-based model. This two-stage process effectively addresses the primary limita-
tions of previous models by ensuring that all calorimeter cells are sampled without replace-
ment and that the one-hit-per-cell constraint is maintained.

Evaluations of these models demonstrated their potential to accurately reproduce calorime-
ter showers while significantly reducing computational resources compared to traditional
methods. Preliminary tests of the CaloHit approach showed promising results, indicating
the feasibility of scaling this method to more complex and higher-dimensional datasets.

In conclusion, this thesis contributes to the advancement of calorimeter surrogate modeling by
introducing and refining innovative generative models that effectively handle the complexi-
ties of high-granularity, sparse data. The proposed methods lay the groundwork for scalable,
efficient, and experimentally validated simulation tools. Future work will focus on further
improving these models, exploring more sophisticated techniques such as diffusion models or
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conditional flow matching, and validating their performance in real experimental settings.
'The developments presented here hold significant potential for enhancing the efficiency and
accuracy of particle physics simulations, ultimately aiding in the pursuit of new discoveries

in the field.



ZUSAMMENFASSUNG

Die Simulation von Teilchenwechselwirkungen in Hochenergiephysik-Detektoren ist ent-
scheidend, um experimentelle Daten zu interpretieren und das Verstindnis der fundamenta-
len Physik voranzutreiben. Kalorimeter messen die Energie von Teilchen durch Kaskaden,
die als Showers bekannt sind, jedoch stellen ihre komplexen Reaktionen und die rechnerische
Intensitdt traditioneller Simulationswerkzeuge wie Geant4 erhebliche Herausforderungen
dar. Diese Herausforderungen werden bei hochgranularen Kalorimetern, die aus Millionen
von Zellen bestehen, aber nur in einem spirlichen Teil Energieeintrige registrieren, noch
verstirkt, was Vollsimulationen zunehmend unpraktikabel macht.

In dieser Arbeit wird die Notwendigkeit effizienter und genauer Kalorimetersimulationen
durch die Entwicklung neuartiger generativer maschineller Lernmodelle adressiert, die die in-
hirente Sparsitit und punktartige Natur von Kalorimeterdaten nutzen. Erste Ansitze mit
voxelbasierten generativen adversarialen Netzwerken (GANs), die Daten in einer diskreten Git-
terstruktur modellieren, stiefen aufgrund von Datenlicken und hoher Dimensionalitit auf
Skalierungsprobleme. Durch den Wechsel zu einer Punktwolken-Darstellung konnte Calo-
PointFlow, das erste Modell, das generative Techniken fiir Punktwolken auf Kalorimeter-
simulationen anwendet, entwickelt werden. Dieser Ansatz reduziert die Datenkomplexitit,
indem Showers als Sammlungen von Punkten im Raum behandelt werden, anstatt als dicht
besetzte Gitter.

Obwohl CaloPointFlow einen bedeutenden Fortschritt darstellte, zeigten sich Einschriankun-
gen wie unzureichender Informationsaustausch zwischen den Punkten und Herausforderun-
gen bei der Modellierung diskreter Koordinatenpositionen. Um diese Probleme zu beheben,
wurde mit CaloPointFlow II eine neuartige Normalizing-Flow Architektur namens Deep-
SetFlow eingefiihrt, die direkte Interaktionen zwischen Punkten erméglicht und komplexe
Abhingigkeiten in den Daten erfasst. Zusitzlich wurde eine neue Dequantisierungsstrategie
namens CDF-Deqguantisierung implementiert, um die Zuordnung zwischen diskreten Zell-
positionen und kontinuierlichem Raum zu verbessern, sowie eine Strategie entwickelt, um
das Problem mehrerer Energieeintrige pro Zelle zu 16sen.

Trotz dieser Verbesserungen hatten rein punktwolkenbasierte Modelle Schwierigkeiten, si-
cherzustellen, dass jede Kalorimeterzelle nur einen Treffer erhilt. Zur Losung dieses Pro-
blems wird in dieser Arbeit CaloHit vorgestellt, ein hybrider Ansatz, der voxelbasierte und
punktwolkenbasierte Methoden kombiniert. Zunichst wird mit einer voxelbasierten Me-
thode eine Hitmap zur Identifikation aktiver Zellen generiert und anschlieffend werden die
Energien dieser Treffer mit einem punktwolkenbasierten Modell vorhergesagt. Dieser zwei-
stufige Prozess behebt die Hauptbeschrinkungen vorheriger Modelle, indem sichergestellt
wird, dass alle Kalorimeterzellen ohne Wiederholung abgetastet werden und die Ein-Treffer-

pro-Zelle-Bedingung eingehalten wird.

Die Bewertung dieser Modelle zeigte ihr Potenzial, Kalorimeter-Showers genau zu repro-
duzieren und dabei den Rechenaufwand im Vergleich zu traditionellen Methoden erheblich
zu reduzieren. Vorliufige Tests des CaloHiz-Ansatzes zeigten vielversprechende Ergebnisse
und deuten darauf hin, dass dieser Ansatz auf komplexere und hoherdimensionale Daten-
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satze skalierbar ist.

Abschlieflend trigt diese Arbeit zur Weiterentwicklung der Surrogatmodellierung von Kalo-
rimetern bei, indem innovative generative Modelle eingefihrt und weiterentwickelt werden,
die die Komplexitit hochgranularer, spirlicher Daten effektiv bewiltigen. Die vorgeschla-
genen Methoden schaffen eine Grundlage fir skalierbare, effiziente und experimentell va-
lidierte Simulationswerkzeuge. Zukiinftige Arbeiten werden sich auf die weitere Verbesse-
rung dieser Modelle, die Erkundung fortschrittlicherer Techniken wie Diffusionsmodelle oder
bedingte Flow Matching-Verfahren und die Validierung ihrer Leistung in realen experimen-
tellen Umgebungen konzentrieren. Die hier vorgestellten Entwicklungen bieten erhebliches
Potenzial zur Steigerung der Effizienz und Genauigkeit von Simulationen in der Teilchen-
physik und tragen letztlich zur Entdeckung neuer Erkenntnisse in diesem Bereich bei.
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INTRODUCTION

'The fundamental objective of physics is to deepen our understanding of the underlying struc-
ture of the universe. In particle physics, research focuses on investigating elementary particles
to uncover the principles governing their interactions. The Standard Model has been remark-
ably successful in describing and predicting fundamental forces, offering an unprecedented
level of precision. One of its most significant achievements is the discovery of the Higgs
boson, a milestone that marks a pivotal advancement in the development of the Standard

Model.

However, despite its experimental precision and theoretical coherence, the Standard Model
remains incomplete, as it fails to account for several phenomena, including dark matter and
gravitation. Contemporary collider experiments, such as those conducted at the LHC, still
hold the potential for groundbreaking discoveries. To realize these discoveries, the experi-
ments must analyze recorded collision data and compare the results with theoretical predic-
tions, a highly complex task.

Particle physicists rely extensively on Monte Carlo simulations to address this challenge. A
tull LHC experiment simulation begins with event generation, which involves calculating
the initial collision and hard processes to predict the primary particles produced. The next
step in the simulation chain is hadronization, which models the formation of hadrons. This
process results in a cloud of particles that traverse the detector, requiring the entire detector
response to be accurately modeled.

This entire simulation chain requires a substantial amount of computational time and re-
sources, with the simulation of calorimeters—used to measure the energy of the produced
particles—consuming a significant fraction of these resources.

A calorimeter is a large detector volume designed to measure the energy of particles passing
through it. Calorimeters can detect cascades of secondary particles produced by incoming
particles, commonly referred to as showers. Simulating these showers requires sophisticated,
multi-step computational techniques, with Geant4 (Allison et al. [Geant4] 2003) being one
of the most commonly employed simulation toolkits for this purpose.

Although Geant4 provides unparalleled precision, it is also highly computationally demand-
ing, often requiring seconds per event on a conventional CPU. Given these limitations, the
feasibility of conducting comprehensive, intricate detector simulations for every event is be-
coming increasingly questionable (Albrecht et al. 2019; Boehnlein et al. 2022; Zurbano Fer-
nandez et al. 2020).

Generative machine learning models are designed to learn and sample from the underlying
distributions of datasets. Over the past decade, numerous novel generative models have
emerged. The introduction of Generative Adversarial Networks (Goodfellow et al. 2014)
and Variational Autoencoders (Kingma & Welling 2013a) has enabled the generation of
complex, multi-dimensional data. Additionally, Normalizing Flows (Papamakarios et al.
2021) have gained recognition for their ability to model complex distributions through a



sequence of invertible transformations. Most recently, Diffusion Models (Sohl-Dickstein
et al. 2015) have also gained significant attention.

These generative models have been applied across a wide range of particle physics appli-
cations, particularly in the context of fast simulations for calorimeters. Initially, Genera-
tive Adversarial Networks (Paganini et al. 2018a) were the primary focus of research, with
Variational Autoencoders (Buhmann et al. 2020) and Normalizing Flows (Krause & Shih
2021) also explored. More recently, Diffusion Models (Mikuni & Nachman 2022, 2024)
have emerged as a new area of interest in this field. The majority of these models are based
on a fixed data geometry, where a calorimeter is represented by a set of voxels—the three-
dimensional equivalent of pixels—with each voxel corresponding to a calorimeter sensor.
High-granularity calorimeters, such as the proposed upgrade for the CMS hadron calorime-
ter (CMS Collaboration [CMS] 2017), consist of millions of cells, necessitating the develop-
ment of models capable of handling such large datasets. However, in most particle showers,
only a subset of these cells typically receive energy deposition.

My initial approach to employing generative models for calorimeter showers involved con-
structing a Generative Adversarial Network-based model for high-granularity calorimeters.
The primary challenge was the sparsity of the showers, which proved difficult to learn and
reproduce effectively, leading to suboptimal early solutions. Most voxel-based approaches
have since adopted a method developed by Krause et al., where small amounts of energy
are distributed across all empty cells to mitigate sparsity, allowing non-sparse showers to be

learned. The sparsity is then reintroduced by applying an energy threshold.ld.

An alternative methodology was developed by leveraging the sparsity of the dataset to ad-
vantage. Rather than modeling all cells, the focus was shifted to modeling the distribution
of hits, transforming the data structure into a point cloud. This approach offers several ad-
vantages. First, the need to model all empty cells is eliminated, making it feasible to simu-
late very high-granularity calorimeters. Second, it allows for easier adaptation to complex
detector geometries. However, the generative modeling of point clouds presents a greater
challenge than traditional voxel-based methods. The CaloPointFlow model (Schnake et al.
2022) was one of the first point cloud-based generative models developed for calorimeter
simulations. The PointFlow architecture was adapted specifically for this purpose, resulting
in a novel model.

Subsequent publications and research within the field have since been published (Acosta et
al. 2023; Buhmann, Diefenbacher, Eren, et al. 2023; Buhmann, Gaede, Kasieczka, et al. 2023;
Kich et al. 2023). Several disadvantages of the point cloud-based approach were identified,
leading to the development of a second, updated version of the model, CaloPointFlow II
(Schnake et al. 2024), to address these issues. This version incorporates a new point cloud
normalizing flow architecture and a novel dequantization strategy.

In addition, a novel hybrid approach, termed Ca/oHit, is introduced to address the primary
limitation of point cloud-based models. A proof of concept is presented to demonstrate the

feasibility of this approach.

This thesis is organized as follows: It begins with an overview of the Standard Model (Chap-
ter 2) as the foundation of particle physics, followed by a review of high-energy physics, the
CMS experiment, and the Large Hadron Collider (LHC) (Chapter 3). Subsequently, an

overview of calorimetry and its simulation using Geant4 is provided (Chapter 4). The fun-
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damental concepts of machine learning are then introduced (Chapter 5), followed by the
construction of the generative models utilized in this investigation (Chapter 6). The main
chapter (Chapter 8) delves into the CaloPointFlow architecture, detailing the model’s train-
ing process and sampling techniques. The feasibility of the CaloHit approach is also demon-
strated (Chapter 9). The model’s performance is evaluated, comparing the updated version
to the original. The thesis concludes with a summary and outlook (Chapter 10).



THE STANDARD MODEL OF PARTICLE
PHYSICS

'The Standard Model (SM) of particle physics is a comprehensive Quantum Field Theory
(QFT) that describes all known elementary particles and their interactions. It encompasses
the electromagnetic, weak, and strong forces. The SM extends the concept of gauge invari-
ance, initially postulated for the electromagnetic field in Quantum Electrodynamics (QED),
to include other fields. The validity of the Standard Model has been reinforced by numerous
predictions that were later confirmed, most notably the discovery of the top quark in 1995,
the tau neutrino in 2000, and the Higgs boson in 2012. Moreover, the Standard Model
accurately predicted the properties of weak neutral currents as well as the W and Z bosons.

However, the Standard Model is not without limitations. While the SM is theoretically self-
consistent, it remains an incomplete theory of all fundamental interactions. It does not fully
explain the observed asymmetry between baryons and antibaryons, nor does it incorporate
a comprehensive theory of gravity or account for the observed accelerating expansion of the
universe. Additionally, the SM lacks a viable dark matter candidate and fails to adequately
address neutrino oscillations and their non-zero masses.

2.1 Historical Context and Development

The landscape of QFT underwent significant transformations between the 1950s and the
early 21st century. This period marked the development and consolidation of what is now
known as the Standard Model of particle physics. In 1954, Chen-Ning Yang and Robert
Mills introduced gauge theory for non-Abelian groups, extending the scope of gauge theory
beyond Abelian groups, such as those found in Quantum Electrodynamics, to encompass
the complexities of strong interactions (C. N. Yang & Mills 1954).

In 1961, Sheldon Glashow made a significant contribution to the evolution of the Standard
Model by combining electromagnetic and weak interactions (Glashow 1961). This theoreti-
cal advancement paved the way for further unification within the model. In 1967, Weinberg
1967 and Salam 1968 incorporated the Higgs mechanism (Englert & Brout 1964; Guralnik
et al. 1964; Higgs 1964) into the electroweak interaction, building on the foundation laid
by Glashow. This development gave the electroweak interaction its current form. Empirical
support for the electroweak theory came with the discovery of neutral weak currents via Z

boson exchange at CERN by Hasert et al. 1973.

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 marked a
major milestone in particle physics, confirming key predictions of QFT.

'The term ”Standard Model” was first introduced by Pais and Treiman 1975 in the context of
electroweak theory, which at that time included four quarks (Cao 1998). This term encap-
sulates the framework that describes the fundamental forces and particles of the universe,
representing decades of theoretical development and experimental validation.



2.2 PARTICLES OF THE STANDARD MODEL

2.2 Particles of the Standard Model
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Figure 2.1: Diagram of the Standard Model of Particle Physics, adapted from Galbraith (2013) and

using quantities from Hagiwara et al. (2002). Uncertainties have been omitted for readability.

The Standard Model of particle physics classifies fundamental particles into two main groups:
bosons and fermions. Bosons, characterized by integer spin, obey Bose-Einstein statistics,
while fermions, with half-integer spin, follow Fermi-Dirac statistics. The model includes 12
fermions, divided into two categories: six quarks and six leptons. These fermions are further
organized into three generations, ordered by their mass and lifetime.

The lepton family consists of three doublets: the electron (e) and the electron neutrino (v,),
the muon () and the muon neutrino (V”), and the tau (1) and the tau neutrino (v,). Lep-
tons are massive particles, while neutrinos were initially assumed to be massless in the SM.
However, the discovery of neutrino oscillations suggests that neutrinos possess small but
non-zero masses. Leptons interact through the electromagnetic and weak forces, carrying
both electric and weak hypercharges. Neutrinos, which have no electric charge, interact only
through the weak force. The muon and tau are unstable and decay, while neutrinos of all
generations are stable but rarely interact with baryonic matter.

Quarks, another category of fermions, are also divided into three generations: up (1) and
down (d) quarks, charm (c) and strange (s) quarks, and top (f) and bottom (b) quarks. Up-
type quarks (1, ¢, t) have an electric charge of +2/3, while down-type quarks (d, s, b) have a
charge of =1/3. Quarks are unique in that they carry a color charge and interact via the strong
force, leading to the phenomenon of color confinement. This interaction enables quarks to
form composite particles, such as mesons (composed of a quark and an anti-quark) and
baryons (composed of three quarks). The two lightest baryons, protons and neutrons, are
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made up of quarks and interact both electromagnetically and through the weak interaction.

In the SM, force-carrying particles are the bosons. The model includes four gauge bosons
with spin 1, which act as force carriers. The electromagnetic interaction is mediated by mass-
less photons (y), while the weak interaction involves the massive bosons W* and Z°. The
strong interaction is governed by massless gluons (g), which exist in eight varieties. Unlike
fermions, gauge bosons do not obey the Pauli exclusion principle.

A central component of the SM is the Higgs boson (H), a scalar spin-0 particle. Proposed by
Peter Higgs in 1964, the Higgs boson is essential for the mass acquisition of gauge bosons
and charged fermions through the Higgs mechanism, which is associated with the sponta-
neous breaking of electroweak gauge symmetry. This scalar particle has no intrinsic spin and
interacts with itself due to its mass.

2.3 Gauge Invariance

'The Standard Model is characterized by its particle content and inherent symmetries. Ac-
cording to Noether’s theorem (Noether 1918), any continuous symmetry in a Lagrangian
corresponds to the existence of a conserved current. This theorem asserts that the Lagrangian
remains unchanged under the equations of motion. The SM is a non-Abelian field theory,
meaning it is a gauge-invariant or gauge-symmetric field theory, where gauge transforma-
tions—transforming the field into another form—do not alter any measurable quantity. Con-
sequently, symmetry transformations within the SM are non-commutative.

Local gauge invariance is central to the SM, as the model is defined by the symmetry group
SUB)c ® SUR2). ® U(1)y,

where the subscripts denote color, left-handedness, and hypercharge, respectively.

2.4 Electroweak Theory

2.4.1  Quantum Electrodynamics

Quantum Electrodynamics is the first QFT applied to physics problems, explaining the
interaction of charged particles via the emission and absorption of virtual photons. QED is
notable for being renormalizable, that is, infinity terms in mathematical computations are
absorbed by the virtual photons. Its symmetry group is U(1), characterizing it as an abelian
gauge theory and the QFT counterpart of classical electrodynamics.

The Lagrangian of the relativistic spin-1/2 Dirac fermion is given by

£ = P)(iytd, — my(x), (2.1)
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where 1(x) is the Dirac spinor, ¥* denotes the Dirac matrix, and 1(x) is defined as {f(x))°.
This Lagrangian is not invariant under local U(1) gauge transformations, 1’ (x) = €@y (x).
To maintain gauge invariance, a new spin-1 field, A,(x), the photon field, is introduced. It
transforms

1
Au(x) = Ay(x) + thﬁ(x). (2.2)
'The Lagrangian for QED (Feynman 1950)

<z :gDirac + C-CZEM + %nt
=P(x)(iy#d,, — m)ip(x)

1
- ZFyv(x)F”V(-x)
+ eq Ay ()P yHP(x),

consists of three terms: a relativistic term for fermionic spin-1/2, denoted as £, 2 gauge

(2.3)

invariant kinetic term, denoted as Zgy, and an electromagnetic interaction term, denoted

as e

Here m is the lepton mass,  is the lepton field, F,, = d,A, — d, A, represents the elec-
tromagnetic field tensor, and g is the charge. Since all leptons carry the same absolute elec-
tromagnetic charge, only one field tensor, 1, is considered. The electromagnetic coupling
strength is defined by the fine structure constant (o = ¢2/4m), which is the strength of interac-
tion between charged particles and photons. The mass term of the photon field, 1/2m? A uA,
would not be gauge invariant, therefore the photon has to be massless.

2.4.2 Electroweak Unification

The 1960s brought a change in the understanding of weak interactions. The previously ac-
cepted V-A theory was replaced by the theory of electroweak interaction. This new theory
unifies two of the four fundamental forces of nature: the electromagnetic and weak interac-
tions. The unification occurs above an energy of 246 GeV, a value derived from the effective
Fermi theory (Langacker 1986). The theory was developed by Glashow 1961, Weinberg
1967, and Salam 1968.

'The local gauge group theory is SU(2); ®U(1)y. Similar to QED, the weak interaction can be
described by requiring local invariance under transformations in SU(2) Here, the generator
of the weak interaction T is an element of the associated algebra of the gauge group SU(2); .

It can be expressed in the basis of the Pauli matrices as T = So. The weak coupling constant
is gw. This interaction is known as weak isospin, which couples only with left-handed fields.

In order to achieve flavor-changing properties, the left-handed fermions and right-handed
antifermions are arranged in an isospin doublet The weak hypercharge serves as the elec-
tromagnetic generator of U(1)y. The mediators in this scenario are three W gauge bosons
W1, Wy, W3 of the weak isospin and B of the weak hypercharge, all of which are initially

massless.

The electroweak symmetry would be broken by the masses of the observed gauge bosons
W=, Z, and y. The Higgs mechanism allows such terms through spontaneous symmetry

7
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breaking. Notably, the electromagnetic charge remains unaffected by the Higgs mechanism,
while the photon and the bosons are mixed by the generators,

In contrast, W* is a combination of Wy and W,

The Lagrangian of the electroweak theory is therefore given by
& = ,E”g + Ef + ,%”y + £, (2.4)

where 7 is the interaction between vector boson fields. The kinetic term #f accounts for
left and right-handed fermions, -, describes Yukawa couplings connecting matter and the

Higgs field, and &, describes the Higgs field interaction with the gauge boson field.

2.4.3 Electroweak Unification

'The 1960s marked a shift in the understanding of weak interactions. The previously accepted
V-A theory was replaced by the theory of electroweak interaction, which unifies two of the
four fundamental forces of nature: the electromagnetic and weak interactions. This unifica-
tion occurs above an energy scale of 246 GeV, a value derived from effective Fermi theory
(Langacker 1986). The theory was developed by Glashow 1961, Weinberg 1967, and Salam
1968.

'The local gauge group governing the electroweak interaction is SU(2); ® U(1)y. Similar to
QED, the weak interaction is described by requiring local invariance under transformations

in SU(2):

¢ — exp|igwa(x)T|o. 2.5)

Here, the generator of the weak interaction, T, is an element of the associated algebra of the

. . . . 1
gauge group SU(2),, and can be expressed in the basis of the Pauli matrices as T = S0. The
weak coupling constant is denoted as gyy. This interaction, known as weak isospin, couples

only with left-handed fields.

In order to achieve flavor-changing properties, left-handed fermions and right-handed an-
tifermions are arranged in an isospin doublet:

()

'The weak hypercharge serves as the electromagnetic generator of U(1)y. The mediators in
this interaction are three W gauge bosons Wy, W;, W3 of the weak isospin, and B of the weak
hypercharge, all of which are initially massless.

Electroweak symmetry is broken by the masses of the observed gauge bosons W*, Z, and
y. The Higgs mechanism facilitates this symmetry breaking through spontaneous symmetry
breaking. Notably, the electromagnetic charge remains unaffected by the Higgs mechanism,
while the photon and the bosons are mixed by the generators as follows:

y ) _ [ cosOy sinOy)( B
(ZO)_(—sinGW cos@w)(ws)‘ (2.7)



2.4 ELECTROWEAK THEORY

In contrast, the W* bosons are combinations of W; and Wj:

W= = L (Wl + le) . (28)

V2
The Lagrangian of the electroweak theory is given by:
&= Zg + c.?f + Ey + £, (2.9)

where gg describes the interaction between vector boson fields, . f accounts for left- and
right-handed fermions, -, represents the Yukawa couplings connecting matter and the

Higgs field, and %}, describes the Higgs field’s interaction with the gauge boson fields.

2.4.4 ‘The Higgs Mechanism

The Higgs mechanism (Englert & Brout 1964; Guralnik et al. 1964; Higgs 1964) explains
how particles acquire mass, relying on the concept of symmetry breaking. Its Lagrangian is
given by:

DCZHiggs = (Dy¢)+(DP¢) - V(Gb)/ (210)
where ¢ is a complex doublet under SU(2); . This doublet can be expressed as:

- H{5)-3(:2)

The potential V(¢) in the Lagrangian is defined as:

V(9) = 129" + A (0'0)
where 1 is the mass of the complex scalar field, and A describes the self-interactions of the
two complex doublets.

2
, (2.12)

'The shape of the Higgs potential V(¢) has degenerate minima, as shown in Figure 2.2.
Electroweak symmetry breaking arises from selecting a vacuum state away from the unstable
point at ¢’ = 0. The field configuration minimizes V when ¢* = 0 and ¢° = v, leading

to the vacuum expectation value of the field:

(Pl = % (2) (2.13)

Small perturbations around this minimum lead to:

1 0
<(P>O = E (U + h(x))r (214)

where hi(x) denotes the Higgs field. Using the measured values of myy and g, the vacuum
expectation value of the Higgs field is predicted to be v = 246 GeV.

A direct consequence of this mechanism is the observable Higgs boson. Its most precise mass
measurement to date is my = 125.38 +0.14 GeV/c?, as measured by the CMS collaboration
(CMS 2020), through a combination of the four-lepton decay channel (H — ZZ — 4I) and
the diphoton decay channel (H — ).
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Figure 2.2: Diagram of the Higgs potential V(¢p). Adaptation of Riebesell (2022).

2.5 Quantum Chromodynamics

Quantum Chromodynamics (QCD) describes the strong interaction, initially proposed by
Gell-Mann (1961, 1964) and Zweig 1964, introducing the concept of quarks. Originally,
three species of quarks were identified, later termed colors. QCD explains the interactions
between particles that carry color charge.

Gluons are massless, neutral particles that mediate the force between color-charged particles
in QCD. Notably, gluons can also interact with other gluons. Gluons and quarks are never
observed in an unbound state, a phenomenon known as color confinement.

The Lagrangian of QCD remains invariant under arbitrary global transformations of the
SU(3)¢ group in color space. This global symmetry is extended to a local one through the
introduction of QCD covariant derivatives:

D, =9, +ig.,T°G., (2.15)

where T* represents the eight generators of the SU(3)c symmetry group, and G, denotes
the eight gauge boson fields corresponding to the gluons, indexed by a =1, ..., 8. The QCD

Lagrangian is therefore expressed as:
1 T
ZQep = ‘Zvawa tq [W“Dy - mq]‘% (2.16)
which describes the interaction between the quark field g and the anti-quark field 7. The first
term of the Lagrangian explains the kinematics of gluon fields and their self-interaction,

while the second term includes the free Dirac fermion term and the interaction between
quarks and gluons.

10
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Figure 2.3: 'The evolution of a,(Q). The figure was created by CMS Collaboration (2015). For

further details, please refer to this reference.

The coupling constant @; of QCD is defined as:

(2.17)

where A is the QCD scale, approximately 200 MeV. The coupling constant is not fixed
but varies with the energy scale Q, a phenomenon known as the running of the coupling
constant. This variation has been precisely measured in experiments, such as those conducted
by CMS (see Figure 2.3). At high energies (Q > A), corresponding to small distances, the
coupling decreases, enabling perturbative calculations. This phenomenon in QCD is known
as asymptotic freedom.

At smaller distances, quarks and anti-quarks form bound states known as hadrons, resulting
in a diverse collection of mesons and baryons.

2.6 Limitations of the Standard Model

Several phenomena remain unexplained by the Standard Model, prompting investigations
into physics beyond the SM. Below is a summary of key phenomena:

The hierarchy problem pertains to the question of why gravity is significantly weaker than the
electroweak force. This issue is linked to the unexpectedly low mass of the Higgs boson com-

pared to predictions from the Standard Model. The discrepancy necessitates fine-tuning and

11
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suggests the existence of new physics beyond the SM. The Higgs boson lacks the symmetry
protections that other particles enjoy, making its mass susceptible to large variations.

Matter-antimatter asymmetry poses a significant challenge in cosmology and particle physics.
According to the Standard Model, matter and antimatter should have been created in nearly
equal amounts, which is contradicted by the universe’s predominant matter composition, as
confirmed by astronomical observations. This asymmetry cannot be explained by the small
amount of CP violation in the SM alone, and no significant antimatter signatures, such as
gamma rays from annihilation events, have been observed.

Dark matter and dark energy account for approximately 95% of the universe’s mass-energy
content and present major challenges to the SM. Dark matter, inferred from galactic rota-
tion rates and gravitational effects that exceed what can be explained by visible matter, has
no candidate particle in the SM. Hypothetical particles such as WIMPs, axions, and sterile
neutrinos are being explored. Meanwhile, dark energy, which drives the universe’s accelerat-
ing expansion and is exemplified by the cosmological constant problem, cannot be explained
by current physical laws. This suggests the need for alternative theories or modifications to
general relativity.

Neutrino oscillations—the phenomenon of neutrinos changing flavor as they travel through
space—represent a significant departure from the Standard Model’s original assumption of
massless neutrinos. This was first indicated by discrepancies in solar and atmospheric neu-
trino observations and later confirmed by experiments such as Super-Kamiokande and the
Sudbury Neutrino Observatory. The discovery of neutrino mass raises important questions
about the nature and scale of neutrino mass and its implications for our understanding of
the early universe and fundamental forces.

Beyond these issues, the Standard Model faces further limitations, emphasizing the need
for an extended or entirely new theoretical framework. One major shortcoming is the fail-
ure to fully incorporate gravity into the model. Additionally, the lack of clarity regarding
neutrino mixing angles and CP violation in the quark sector suggests that the SM could be a
low-energy approximation of a more fundamental theory. Detected irregularities in certain
particle decays and properties—such as the anomalous magnetic moment of the muon—further
indicate the existence of physics beyond the Standard Model. The search for a more com-
prehensive theory continues to drive both experimental and theoretical research in particle

physics.

12



HIGH ENERGY PHYSICS EXPERIMENTS

The pursuit of High Energy Physics (HEP) has always aimed to unravel the fundamental
nature of the universe. Experimental HEP focuses on observing physics at the smallest pos-
sible scales. To make an object visible, it must interact with other objects, typically through
the interference with light (photons). The resolving ability of a photon, or any particle, is
determined by its wavelength. According to de Broglie 1923, the relationship between the
wavelength (A1) and the momentum (p) is given by:

h
A== (3.1)
p
This equation implies that achieving higher resolution (smaller A) requires higher momen-
tum and, consequently, higher energy.

As discussed previously, particle physics is fundamentally governed by Quantum Field The-
ory. In QFT, particles are considered excitations or guanta of underlying fields. Energy is
required to excite these quanta, which, according to Einstein 1905, can be expressed as:

E = mc?. (3.2)

To generate heavy fundamental particles, such as the Higgs boson or the top quark, substan-
tial energy is necessary.

The early universe was characterized by exceedingly high energy levels, similar to those recre-
ated in modern particle accelerators. These high-energy environments offer insights into the
early universe and allow for investigations into its origin.

Particle accelerators are essential to HEP and are designed to operate at increasingly higher
energies. The most powerful of these is the LHC, which accelerates and collides bunches of
protons. These collisions enable scientists to probe the fundamental nature of the universe,
providing insight into the conditions and processes that shaped the early universe.

3.1 Scattering Experiments

The simplest process in QED is the scattering of electrons and positrons (e*e™ scattering).
This process offers a straightforward method to discover new particles in accelerators. The
total cross-section of the scattering is proportional to the square of the electromagnetic cou-
pling strength a?.

For instance, at tree-level in QED, the total cross-section for e*e™ — utu~ is given by:
) ) g uosg y

4 a? 86.8 nb
o= -n— R ———-, (3.3)
3 s 5[GeVY]

where s is the square of the total energy in the center-of-mass frame.
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Figure 3.1: Graphical representation of the ratio R, illustrating the total cross section of electron-
positron annihilation into hadrons relative to muons. The figure is by Ezhela et al. (2003). In that
reference, there is also a comprehensive description of the methodology for extracting the R ratio.

Resonances at specific energies hint at the existence of particles with an invariant mass equal
to +/s. Figure 3.1 shows the ratio:

o(e*e” — hadrons, s)

R(s) = (3.4)

olete- - putu,s)
representing the cross-section as a function of /s, providing insight into these resonances.

'This figure demonstrates one of the notable successes of particle physics experiments in the
past century.

Synchrotron radiation is emitted when charged particles are accelerated to relativistic speeds
and forced to travel in curved paths by magnetic fields. As the particles are bent in their
trajectories by the collider magnets, they emit synchrotron radiation, which leads to energy
loss. The energy loss per revolution is proportional to *, where:

E
=—. (3.5)
V= e
To achieve high-energy collisions in a circular collider, it becomes necessary to select particles
with a high mass to minimize the energy loss due to synchrotron radiation. A natural choice
tor this purpose is to accelerate protons.

3.2 Physics of Proton-Proton Collisions

The LHC primarily collides protons to explore fundamental particles. Historically, other par-
ticles have also been used in collider experiments. For instance, electron-positron colliders,
such as the Large Electron-Positron Collider (LEP) (CERN 1984), which previously occupied
the same tunnel as the LHC, and proton-electron colliders, such as DESY’s Hadron-Electron

14
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Ring Accelerator (HERA) (Maidment 1986), played crucial roles in probing the structure of
the proton.

Protons are not fundamental particles; they are composed of quarks and gluons, collectively
referred to as partons. The proton’s charge and baryon number are determined by its valence
quarks. Specifically, a proton consists of two up quarks and one down quark, classifying it
as a hadron. In addition to these valence quarks, sea quarks—quark-antiquark pairs sponta-
neously created and annihilated through vacuum fluctuations—also exist. The strong force
binding quarks within the proton is mediated by gluons.

Understanding the structure of protons is essential for analyzing proton-proton (pp) colli-
sions. The internal structure of the proton has been extensively studied, notably at facilities
such as HERA (Abramowicz et al. 2015) in the pre-LHC era. During collision processes,
the transferred momentum Q is used to probe the proton’s inner structure. The momentum
of the proton is shared among its constituent partons, and this distribution is described by the
variable Bjorken-x, which represents the fraction of the proton’s total momentum carried by
a specific parton. Bjorken-x quantifies each parton’s contribution to the proton’s momentum
during a given interaction, influencing the energy transfer and collision outcomes.

The center-of-mass energy of two colliding partons (V) depends on the proton collision
energy (4/s) and the partons’ momentum fractions (x; and x,). The Parton Density Functions
(PDFs) describe the probability of finding a parton of a particular type with a given momen-
tum fraction X at a specific momentum transfer Q. These PDFs are specific to each type of

parton.
10- NNPDF4.0 NNLO Q= 3.2 GeV 10- NNPDF4.0 NNLO Q= 100.0 GeV
2 g/10 Z g/10
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0.0 g . r 0.0 . : r
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Figure 3.2: 'The NNPDF4.0 NNLO PDFs at Q = 3.2 GeV (left) and Q = 100 GeV (right). For
more details, see the reference and source of the figure Ball et al. (2021).

Figure 3.2 presents examples of PDFs for momentum transfers at Q = 3.2 GeV (left) and
Q =100 GeV (right) (Ball et al. 2021). These examples show that interactions in pp collisions
are predominantly influenced by valence quarks at higher x values and by sea quarks and
gluons at lower x values.

'The cross-section for a specific final state X in a proton-proton collision, o,,_,x, can be
calculated using collinear factorization (Collins 2023). This process involves the convolution
of the PDFs f; and f; with the parton interaction cross-section G, where i and j represent
the flavors of the initial state partons. The total cross-section is then obtained by integrating
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over the momentum fractions x; and x,, and summing over all possible initial state parton
flavors:

o= 25 [[| S s P61, 32, ) iy (.6
i

In this equation, f;(x1,4?) and f (2, g%) are the PDFs for partons of flavors i and j, carrying

momentum fractions x; and x, of the protons, evaluated at the factorization scale g2. The
term G;;(x1, X2, q%) is the hard scattering cross-section of the parton interaction.

3.3 'The Large Hadron Collider

The LHC is the most powerful particle accelerator in existence and represents a pinnacle
of achievement in particle physics. Located beneath the France-Switzerland border near
Geneva, the LHC operates under the auspices of European Organization for Nuclear Research
(CERN, Conseil européen pour la Recherche nucléaire) and occupies the tunnel that once
hosted LEP. This engineering marvel spans 26.7 kilometers and ranges in depth from 45
to 175 meters below the surface, enabling two proton beams to travel in opposite directions
within adjacent vacuum tubes.

While the LHC primarily accelerates protons, it is also capable of accelerating heavy ions.
'This is achieved using superconducting radio frequency cavities that accelerate the particles,
as well as superconducting magnets that maintain their circular trajectories and focus the
beams along the tunnel. The proton acceleration process begins by extracting protons from
hydrogen molecules through ionization. These protons are then accelerated through a series
of precursors to the LHC, including the LINAC 2, the Booster, the Proton Synchrotron
(PS), and the Super Proton Synchrotron (SPS). Through this process, proton energies are
gradually increased to 450 GeV before they are injected into the LHC, where they are further
accelerated to the final energy of 6.8 TeV.

Protons collide in bunches at intervals of 25 ns, contributing to the LHC’s high luminosity
and interaction rate. The luminosity (L) and cross section (0) determine the number of
particle interactions per unit time:

dN

dt
'The LHC hosts four primary experiments, as shown in Figure 3.3: ATLAS (A Toroidal
LHC ApparatuS) (ATLAS Collaboration [ATLAS] 2008) and CMS (Compact Muon
Solenoid) (CMS 2008), which are multipurpose detectors designed to study a variety of
physical processes and search for new phenomena; ALICE (A Large Ion Collider Experi-
ment) (ALICE Collaboration [ALICE] 2008), which specializes in heavy ion collisions to
study the quark-gluon plasma and provides insights into the state of the universe shortly after
the Big Bang; and LHCb (Large Hadron Collider beauty) (LHCb Collaboration [LHCDb]
2008), which focuses primarily on studying B hadrons and investigating the mechanisms of
CP violation.

Lo. (3.7)

In 2012, the LHC made a major discovery with the detection of the Higgs boson (ATLAS
2012; CMS 2012), marking a milestone in understanding the fundamental structure of mat-
ter.
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Figure 3.3: 'The Large Hadron Collider ring, surrounded by the logos of the LHC experiments:
ATLAS, CMS, LHCb, and ALICE.

The LHC was designed to achieve a maximum center-of-mass energy of 4/s = 14 TeV
and a luminosity of L = 10 X 10% cm™2s~!. Luminosity allows the calculation of particle
collision rates, and the instantaneous luminosity of the LHC varies according to the specific
requirements of each experiment:
NNy
L=f——r, (3.8)
4mno,0,

where f is the collision frequency, N, and Nj, are the number of particles in bunches a and
b,and o, and 0, are the transverse beam sizes in the x- and y-directions, respectively.

The primary vertex (PV) is the point where hard scattering events occur within a proton-
proton (pp) bunch crossing. Accurately associating particle tracks and energy deposits with
the PV, while minimizing contamination from secondary collisions (known as pile-up), is
a key challenge. This challenge arises from the multiple inelastic pp-collisions expected in
each bunch crossing.

3.4 'The CMS Experiment

The CMS Experiment

The CMS detector is a multipurpose apparatus designed to study proton-proton collisions at
a center-of-mass energy of 14 TeV. It has a cylindrical design that encircles the interaction
point, with a radius of 15m and a length of 21.6 m. The CMS is engineered to record
and analyze the wide spectrum of particles produced during collisions, including providing
indirect detection of neutrinos.

The detector consists of several sub-detectors, each designed for specific tasks in particle
identification and measurement. These sub-detectors include a tracker, an Electromagnetic
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Calorimeter (ECAL), a Hadronic Calorimeter (HCAL), and a muon system. The supercon-
ducting solenoid magnet, with a diameter of approximately 6 m and a field strength of up
to 3.8T, is positioned between the muon chambers and the HCAL. Figure 3.4 provides a
visualization of the overall detector structure.

CMS DETECTOR STEEL RETURN YOKE

Total weight + 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter :15.0m Pixel (100x150 pm) ~16m? ~66M channels
Overalllength  :28.7m Microstrips (80x180 ym) ~200m? ~9.6M channels
Magneticfield :38T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A.

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
~" Silicon strips ~16m* ~137,000 channels

\ FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels

Figure 3.4: An overview of the CMS detector and its subdetectors. The figure is adapted from Ref.
CMS (2019).

3.4.1  Coordinate System and Conventions

To describe the functionality and structure of the CMS sub-components, we first introduce
the coordinate system used in the CMS experiment, along with other relevant physical con-
ventions.

The CMS experiment employs a right-handed Cartesian coordinate system, with its origin
at the collision point of the proton beams. The z-axis points along the beam direction, the
y-axis points upwards, and the x-axis points towards the center of the accelerator. The radial
distance 7 is measured from the interaction point at the center of the detector. The polar
angle O is defined relative to the z-axis, while the azimuthal angle ¢ spans the x-y-plane.

In particle physics analysis, it is essential to use variables that are Lorentz invariant under
boosts along the z-axis. One such quantity is the transverse momentum:

pr = \JP3 + P (3.9)

The azimuthal angle ¢ remains Lorentz invariant under boosts along z, unlike the polar
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angle 0. To address this, pseudorapidity 7 is introduced as an alternative:

n=-In (tan(g)). (3.10)

Differences in 1 are Lorentz invariant under boosts in z. The angular separation between
two objects in the detector is defined by AR, which is derived from invariant quantities:

AR = J(AN)2 + (AD)2. (3.11)

3.4.2 Tracking Systems

The CMS tracking system is an assembly of silicon-pixel and silicon-strip detectors arranged
in concentric layers around the interaction point. This system detects and tracks charged
particles by generating measurable signals as the particles pass through sensitive silicon
diodes. Using advanced pattern recognition techniques, these signals—referred to as tracker
hits—are combined to reconstruct particle tracks with high precision.

'The CMS tracking system consists of two main components: a high-resolution pixel detector
near the interaction point, and a larger, less granular tracker surrounding the pixel detector.
'The pixel detector comprises four layers in the barrel region and three layers in each endcap,
with the first pixel layer positioned just 2.9 cm from the LHC beam. This proximity, coupled
with the pixel size 0f 100 pm X150 pm, significantly enhances the precision of primary vertex
reconstruction. The outer tracker, made of silicon strips, extends over 5m in length and
encompasses approximately 200 m? of silicon.

3.4.3 Electromagnetic Calorimeter

The ECAL is one of the core subdetectors of the CMS detector. For a detailed explanation of
electromagnetic calorimeters, see Section 4.3.1. The ECAL consists of 75,848 lead tungstate
(PbWOQy) crystals and is designed for precise measurement of electron and photon energies.
It is a homogeneous calorimeter with a dense, radiation-hard structure, ensuring excellent
energy resolution and fast response. Its primary function is to fully contain and measure the
energy of electromagnetic showers initiated by electrons and photons.

The ECAL is divided into two main components: the ECAL Barrel (EB) and the ECAL
Endcaps (EE). The EB comprises two half-cylinders, each made up of 18 super-modules.
Each super-module contains 1,700 crystal bars and covers a significant solid angle with a
granularity of 0.0174[1]x0.0174[¢]. The EB spans a solid angle up to |77| = 3, although there

is a gap in the instrumentation between 1.479 < |1]| < 1.653, which affects the reconstruction
of electrons and photons (CMS 2008).

Lead tungstate crystals were chosen for their short radiation length (X = 0.89 cm), high
density (p = 8.29 g/cm3), and small Moliére radius (R, = 2.2 cm), which are crucial for
transverse shower containment. The rationale behind these choices will be discussed in
greater detail in Chapter 4. This configuration allows for the collection of over 81
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When an electron or photon passes through the ECAL, it emits energy through bremsstrahlung
and pair production of ¢*. The scintillators measure the photon energy using photodiodes,
with the relative energy resolution 0/E, where ¢ represents the resolution and E is the mea-

sured energy (in GeV') (CMS 2008):

o 2.8% 0.12%
== ® @ 0.3%. 3.12
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3.4.4 Hadron Calorimeter

The purpose of the HCAL in the CMS detector is to measure the energy of hadrons. For a
detailed explanation of hadron calorimeters, see Section 4.3.2. It complements the ECAL by
focusing on particles that interact via the strong force. The HCAL is designed to capture and
measure the energy of hadrons, such as protons, neutrons, and pions, that undergo inelastic
reactions with the detector material, creating hadronic showers.

Hadronic showers are more complex than electromagnetic showers due to their varied inter-
action mechanisms and the types of secondary particles produced. The spatial development
of these showers is characterized by significant fluctuations, often resulting in missing en-
ergy. Accurately measuring hadronic showers is thus a challenging task. Notably, hadrons
may begin interacting within the ECAL, depositing around 30

'The HCAL is positioned between the ECAL and the superconducting magnet, with its de-
sign shaped by the constraints of the magnet’s geometry. The HCAL operates as a sampling
calorimeter, consisting of alternating layers of brass absorbers and scintillating plastic tiles,
allowing it to effectively measure energy from both charged and neutral hadrons.

'The HCAL is segmented into four regions: the central barrel (HB), the outer barrel (HO),
the endcaps (HE), and the forward region (HF). The HB, HO, and HE regions have a
granularity of 0.087[n] x 0.087[¢], providing broad coverage. In contrast, the HF region
offers a finer angular resolution of 0.0175[n] x 0.0175[¢], tailored for detecting particles in
the forward direction.

'The scintillators produce light, which is collected by 1 mm diameter optical fibers that shift
the wavelength for efficient light transmission. The HCAL has an average depth of about 11
hadronic interaction lengths (A;), allowing it to absorb and measure the energy of penetrating
hadronic showers effectively.

However, the HCAL has a significantly lower energy resolution compared to the ECAL.
The energy resolution (CMS 2008) is given by:

115.3%
= ———=®5.5%, (3.13)

o
E ~ VE[GeV]

where 0/E represents the relative energy resolution and E is the energy measured in GeV.
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3.4.5 Solenoid

The’S’in CMS stands for the superconducting solenoid, which is critical for the detector’s
ability to accurately measure and identify particles. The solenoid’s cylindrical magnet coil
has a diameter of 6 meters, a length of 12.5 meters, and weighs 220 tons. It generates a
magnetic field of up to 4 Tesla inside the coil, storing approximately 2.6 GJ of energy.

'The magnetic field produced by the CMS bends the trajectories of charged particles in the
transverse plane. This curvature is essential for measuring particle momenta with high pre-
cision, thereby improving particle identification and reconstruction. The process is governed
by the Lorentz force equation, F = q(v X B), where q represents the particle’s charge, U its
velocity, and B the magnetic field. For accurate estimation of a particle’s charge and momen-
tum, it is crucial that the magnetic field within the detector is precisely known, especially in
the inner regions where particle trajectories are meticulously recorded.

'The magnet coil is made from an alloy of niobium and titanium (NbT1i), which has super-
conducting properties allowing it to conduct a nominal current of approximately 19.14 kA.
To maintain these superconducting properties, the magnet is cooled using a cryostat system
that employs liquid helium to reach a temperature of 4.7 Kelvin.

3.4.6  The Muon System

'The "M” in CMS stands for muon, as the muon system is a cornerstone of the detector. This
system is crucial for detecting muons, which are commonly produced in high-energy physics
interactions, including the decay of heavier particles. These events are of great interest as
they may reveal new physics. Muons, with a mass of 105.7 MeV, are less likely to interact
with the calorimeters compared to other particles, allowing them to pass through the inner
components of the detector nearly unscattered and reach the muon chambers, which form
the outermost layer of the CMS detector.

The muon system is designed to identify muons and measure their momentum with high
precision. It works in conjunction with the CMS’s superconducting solenoid magnet, which
bends muon trajectories in the transverse plane, improving momentum measurement. The
system incorporates several technologies: Drift Tubes (DTs) in the barrel region (|1]| <1.2),
Cathode Strip Chambers (CSCs) in the endcap regions (1.0 < |r]| < 2.4),and Resistive Plate
Chambers (RPCs). The DTs and CSCs are essential for muon identification and momentum
measurement, while the RPCs, with excellent timing capabilities, provide a robust triggering
system, despite having relatively less precise position measurements (CMS 2008).

'The muon spectrometer can detect muons within a pseudorapidity range of |r]| < 2.4. The
design includes multiple measuring planes per station—12 in the barrel and 6 in the endcap
regions. This enables the reconstruction of a global track by combining hits from both the
inner tracker and the muon stations.

Muon momentum is estimated by analyzing the sagitta of its trajectory. Combining data

from the inner tracker and muon stations results in exceptional momentum resolution. This
integrated approach allows the CMS to achieve a momentum resolution of approximately 1
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3.4.7 beTrigger System

Collisions in the CMS detector occur at a frequency of approximately 40 MHz, generating
40 million events per second. Each event involves around 25 simultaneous proton-proton
interactions, producing data volumes averaging 1 MB per event. This results in a total data
rate of about 40 TB per second, far exceeding the available storage capacity of the CMS
collaboration. Consequently, an efficient filtering system is required to manage this massive
data influx, and this is achieved through the trigger system.

'The trigger system plays a crucial role in data pre-selection by identifying and recording only
potentially interesting events for further analysis, effectively reducing the data volume to a
manageable level. Storing every event is impractical, so the trigger system is designed to
filter out irrelevant or less significant events.

CMS employs a two-stage trigger system to refine this process. The first stage, known as
the Level-1 (L1) trigger, operates using programmable hardware processors and can pro-
cess data at rates of up to 100 kHz. 'This stage rapidly evaluates incoming data for specific
particle signatures or characteristics, such as identifying muons within the muon system, to
determine whether an event warrants further scrutiny.

After the L1 trigger, the High-Level Trigger (HLT) performs a more detailed and com-
prehensive reconstruction of the event using data from all detector components. The HLT
employs algorithms similar to those used in later data analysis to ensure that only events
meeting specific selection criteria are saved for in-depth study. This stage reduces the event
rate from 40 MHz to a more manageable 200 Hz to 1 kIHz, balancing the need for compre-
hensive data capture with storage constraints. Unlike the L1 trigger, the HLT uses sophisti-
cated algorithms executed on a computing farm composed of tens of thousands of standard
CPU cores. This allows for thorough event analysis before data is stored for long-term usage
and full event reconstruction.
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CALORIMETRY

The measurement of particle energy is a fundamental aspect of a wide range of particle
physics experiments. Calorimeters are a category of detectors specifically designed for this
purpose. In modern experiments, their role includes accurately reconstructing four-vectors
and determining the energy flow in complex event signatures, such as jets and missing trans-
verse energy.

Calorimeters measure the energy of incident particles through a destructive process. As
particles pass through the material of the calorimeter, they interact with it and produce a
cascade of secondary particles, known as a shower. Figure A illustrates an example of such a
shower.

Figure 4.1: Image of a high-energy electron shower. The figure is adapted from (S. Lee et al. 2018).

This particle avalanche generates detectable signals within the calorimeter, allowing for the
measurement of the total energy of the incident particle. It is important to note that the sum
of the measured energy can differ significantly from that of the original particle. Additionally,
the development of the particle cascade is strongly influenced by the type of incident particle,
as each particle induces specific interactions within the calorimeter. These aspects will be
examined in greater detail in the subsequent sections.

4.1 Interactions of Particles with Matter

4.1.1  Electromagnetic Interactions

Electrons and positrons deposit energy in material primarily through ionization and Bremsstrahlung
(Kolanoski & Wermes 2016). Ionization occurs when these particles transfer energy to
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4.1 INTERACTIONS OF PARTICLES WITH MATTER

atoms, leading to excitation or the ejection of atomic electrons. This process dominates at
lower energies. Conversely, at higher energies, Bremsstrahlung becomes significant. Bremsstrahlung
refers to the radiation emitted when a charged particle is decelerated by the Coulomb field
of an atomic nucleus. At high energies, Bremsstrahlung losses dominate, increasing linearly
with energy, whereas ionization losses grow logarithmically with particle energy (Workman
et al. [PDG] 2022). Figure 4.2 illustrates the energy deposition of electrons and positrons

at different energies.
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Figure 4.2: Tllustration of the different energy loss fractions of electrons and positrons when passing
through lead (PDG 2022).

For heavy charged particles, such as muons or charged hadrons, ionization and excitation
dominate energy loss, as Bremsstrahlung is suppressed by the particle mass (1/m*). The
Bethe-Bloch formula provides the average energy loss per unit distance for heavy charged
particles:

_<d_E> = K22§l [11 % - @ . (4.1)

_ P2
dx A2 12 P

At low particle energies, the 1/8? term dominates, resulting in a fixed range for particles that
lose energy primarily through ionization. The Bragg peak represents the point of maximum
energy deposition, located near the end of this range. This is depicted in Figure 4.3.

Photons interact with matter through several processes, including the photoelectric eftect,
Rayleigh scattering, the Compton effect, and pair production (Wigmans 2018). The cross
section of a photon interacting with gold is shown in Figure 4.4. At low energies, the photo-
electric effect dominates, with the cross-section proportional to E~3, resulting in the ejection
of an electron from an atomic shell. At higher energies, Rayleigh scattering, a coherent
elastic scattering where the photon is deflected without energy loss, and the Compton ef-
fect, where a photon scatters off a free or quasi-free electron, become more significant. The
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Figure 4.3: Graphical representation of the stopping power of muons in copper as a function of
momentum, illustrating various energy loss mechanisms and transitions, adapted from PDG (2022).

cross-section for the Compton effect is proportional to 1/E, making it dominant between
a few hundred keV and around 5 MeV. Pair production occurs when the photon’s energy
exceeds twice the electron mass, allowing the creation of an electron-positron pair in the
Coulomb field of a nucleus, which absorbs the recoil to conserve momentum. This process
cannot occur in a vacuum (Wigmans 2018). At energies around 10 MeV, photons can excite
atomic nuclei to resonant states, leading to the emission of nucleons and high-energy pho-
tons, though the cross-section for nuclear interaction is small compared to pair production.
Hadronic interactions with atomic nuclei occur primarily via incident hadrons.

4.1.2 Hadronic Interactions

The electromagnetic interactions of charged hadrons are primarily governed by ionization,
with Bremsstrahlung playing a much smaller role in energy deposition. The main mechanism
tor energy loss in hadronic interactions occurs through inelastic hard scattering with the
nuclei of the traversed material, mediated by the strong force. In these interactions, the
incident hadron transfers a significant portion of its momentum to the nucleus, which can
lead to various nuclear reactions.

Spallation is the most common outcome of hadronic interactions and is characterized as
a two-stage process involving an initial intranuclear cascade, followed by an evaporation
phase (Wigmans 2018). During the intranuclear cascade, the incident hadron interacts
quasi-freely with atomic nucleons, initiating a series of scatterings. The hadron scatters off
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Figure 4.4: Tllustration of the different cross-section fractions for photons interacting with gold
(Miyamoto & Horikawa 2008).

quasi-free nucleons within the nucleus, causing these nucleons to propagate further and
scatter other nucleons. Some of these nucleons may escape the nucleus, and if the incident
energy is high enough, the cascade may lead to nuclear fission. The intranuclear cascade gen-
erates a variety of particles within the nucleus, some of which escape and propagate through
the surrounding medium.

During the cascade, pions and other unstable hadrons are produced. The particles that escape
the nucleus and propagate through the medium typically have energies in the GeV range
(Fabjan & Gianotti 2003).

The evaporation phase follows the cascade. In this stage, the excited nucleus de-excites
through the isotropic emission of free nucleons and photons. These particles generally have
energies around 1 MeV. After the evaporation phase, the remaining energy in the nucleus is
released through photon emission. Notably, neutral pions—constituting approximately one-
third of all pions produced during spallation—decay almost instantly (with a mean lifetime
at rest of approximately 10716 s) into a pair of photons.

The determination of hadronic cross sections relies on phenomenological models and em-

pirical measurements, as Quantum Chromodynamics (QCD) is not well described in the
low-energy regime, where most hadronic interactions occur.
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4.2 Development of Particle Showers

As particles pass through a material, they lose energy due to interactions with the atoms in
the medium. This lost energy is transferred to secondary particles, which collectively form a
particle shower. Only certain types of particles reach the calorimeters before decaying. Elec-
trons, positrons, and photons (¢*, ¥) induce electromagnetic showers, while charged and
neutral hadrons—such as pions (7%), kaons (K*, K°), protons (p), and neutrons (1)—pro-
duce hadronic showers. In contrast, muons (i) exhibit minimal showering due to their weak
interactions with the medium, and neutrinos (v) are even less likely to interact, rarely pro-
ducing detectable showers in calorimeters.

Given the complexity and variety of interactions involved in particle shower formation, it is
impractical to trace all interactions at the microscopic level. Therefore, for most calorimetry
applications, a macroscopic description of shower development is used. This approach em-
phasizes the general characteristics of the showers, such as their longitudinal and transverse
development, rather than accounting for every individual interaction.

4.2.1  Electromagnetic Cascades

Figure 4.5: Illustration of the development of an electromagnetic shower.

Electromagnetic cascades are fundamental phenomena that occur when high-energy elec-
trons, positrons, or photons penetrate dense matter. The initiation and development of
these cascades are primarily governed by two processes: Bremsstrahlung and pair produc-
tion. Bremsstrahlung is the dominant mechanism for electrons and positrons (e*), resulting
in the creation of photons. Conversely, pair production predominates for photons (y), lead-
ing to the generation of new e* pairs. These secondary particles in turn produce additional
particles, initiating a cascade with decreasing energies. This multiplicative process culminates
in the formation of a particle shower, as illustrated in Figure 4.5.
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4.2 DEVELOPMENT OF PARTICLE SHOWERS

As e* penetrate a material, they lose energy. To quantify this energy loss, the concept of
radiation length (Xj) is introduced. X, represents the average distance over which a high-
energy electron loses approximately 63.2

_ T716A
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where Z is the atomic number and A is the mass number of the nucleus, making X, a
material-dependent parameter. The longitudinal development of an electromagnetic shower
is proportional to In(E), indicating that the shower length increases with the logarithm of
the initial energy of the particle.

For photons, the interaction length (A,;,) is defined as the mean free path before a ) de-
cays into an e* pair. At high photon energies, the y interaction length is approximately
proportional to 7/9 of the radiation length Xj.

The energy density per depth segment of a longitudinal shower can be approximated by
a gamma distribution. The multiplication of shower particles ceases when the particles’
average energy drops to the critical energy €., where energy losses due to ionization and
Bremsstrahlung balance out. This critical energy is material-dependent and inversely pro-
portional to the atomic number Z, as shown by:

610 MeV

_ 610 MeV 43
€= 7124 (43)

For example, the critical energy for electrons passing through lead is approximately 7 MeV.
Unlike electrons, muons in the GeV energy regime predominantly lose energy via ionization,
resulting in a critical energy much higher than that of electrons.

'The multiplication of particles within the cascade scales roughly with Eg/e., and the cascade
growth diminishes as the average electron energy falls below €.. The transverse develop-
ment of the shower, relative to the main propagation axis, is caused by multiple scattering
of low-energy electrons in the Coulomb fields of atoms and back-scattering from Compton
scattering, which contribute to the transverse spread of the shower.

'The Moliere radius (R,,) is introduced as a measure of this transverse spread. It defines the
radius of a hypothetical cylinder around the shower axis that contains 90

X,
R,, =21.2MeV =2, (4.4)

€

4.2.2 Hadronic Cascades

'The development of hadronic showers is significantly more complex than that of electromag-
netic showers, largely due to the multitude of interactions associated with the strong force.
In contrast to the limited number of processes in electromagnetic showers, hadronic showers
involve various mechanisms during their evolution (Wigmans 2018). A key factor in this
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complexity is the nuclear interactions experienced by the struck nucleus, as opposed to elec-
tromagnetic showers, where only the small binding energy of electrons to nuclei is relevant

(Wigmans 2018).

Charged hadrons lose part of their energy via ionization as they traverse a medium, eventually
producing high-energy secondary particles through inelastic processes. For neutral hadrons,
it is primarily the inelastic processes that dominate, highlighting a distinct difference in en-
ergy deposition mechanisms between charged and neutral hadrons (Fabjan & Gianotti 2003;
Wigmans 2018). The distance between successive hadronic interactions is characterized by

the hadronic interaction length (Fabjan & Gianotti 2003).

'The nuclear interaction length within an absorber medium refers to the average distance a
high-energy hadron travels before undergoing a nuclear interaction. This is analogous to
the mean free path for high-energy photons (Wigmans 2018). The probability of a particle
traveling a distance ¢ in the medium without inducing a nuclear interaction provides insight
into the interaction dynamics.

'The total cross-section for nuclear interactions, 0, is inversely related to the nuclear inter-
action length, A, and directly proportional to the atomic weight A of the nuclei involved.
'This relationship is given by:

A
Otot = N—

, (4.5)
AAint

where N4 is Avogadro’s number. The cross-section is influenced by both the size of the
projectile and the target nuclei, with the cross-section of the target scaling with the square
of its radius. The nuclear interaction length A, scales with A3 when expressed in units of

g cm™~2 (Wigmans 2018).

Secondary hadrons produced in these inelastic collisions propagate through the detector
until they are absorbed, contributing to the ongoing development of the shower. During nu-
clear spallation, hadrons can decay into photons and neutral pions, which in turn decay into
photons before engaging in hadronic interactions. This results in a portion of the hadronic
shower energy being converted into an electromagnetic sub-shower. The fraction of energy
transferred to the electromagnetic component increases with the energy of the incoming

hadrons (Fabjan & Gianotti 2003).

'The electromagnetic component of a hadronic shower is subject to considerable fluctuations,
as the fraction of electromagnetic energy depends on the initial processes at the start of the
shower (Wigmans 2018). Moreover, hadronic showers tend to have a much larger spatial
extent than electromagnetic showers, particularly in materials with a high nuclear charge.
'This difference arises from the variations in the cross-sections for electromagnetic and strong
interactions.

Unlike electromagnetic showers, not all of the energy from a hadronic shower is detectable.
Some shower products—such as delayed photons, soft neutrons, and the binding energy of
hadrons and nucleons—are invisible to traditional energy measurement techniques. Fur-
thermore, hadronic showers exhibit significantly larger spatial expansion compared to elec-
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tromagnetic showers, especially in materials with a large nuclear charge. These differences
underscore the distinct nature of hadronic showers (Wigmans 2018).

4.3 Calorimeter

Calorimeters are instruments used to measure the energy of incident particle showers through
their interactions within the calorimeter material. Their design and operational principles
are specifically tailored to absorb particles and determine their energy. There are two pri-
mary types of calorimeters: electromagnetic and hadronic, each optimized for measuring
different types of particle interactions. This distinction arises from the differing interaction
mechanisms and resulting shower shapes, as discussed in the preceding sections.

Calorimeters are further classified into two types based on their construction and energy
measurement method: homogeneous and sampling calorimeters.

Homaogeneous calorimeters use a single material to both absorb the incident particles and gen-
erate a measurable signal. These calorimeters typically utilize heavy inorganic scintillation
crystals or non-scintillating Cherenkov radiators to measure the energy of incoming par-
ticles. The material must provide a clear and measurable response to particle interactions,

enabling precise energy measurements (PDG 2022).

Sampling calorimeters are constructed with alternating layers of active and passive materials.
'The passive layers scatter and slow down the particles, spreading them out to ensure a more
uniform energy deposition across the active layers. The active layers then generate a signal
through processes such as ionization or scintillation, which allows the energy deposited by
the particle shower to be measured. Passive layers often consist of heavy metals like lead, iron,
copper, or uranium, chosen for their high density and atomic number, which enhance particle
absorption. Active layers, on the other hand, may use liquid noble gases or organic and
inorganic scintillators, selected for their ability to produce a measurable signal in response

to particle interactions (PDG 2022).

4.3.1  Electromagnetic Calorimeter

Electromagnetic calorimeters are essential tools in high-energy physics experiments for pre-
cisely measuring the energy of electrons, positrons, and photons. The construction and per-
formance of these devices are heavily influenced by the depth of the material required to fully
absorb the incident particles. A notable example is the crystal ECAL at the CMS detector,
which has a depth of 23 cm. This corresponds to approximately 26 radiation lengths (X;),
optimizing the calorimeter to effectively contain electromagnetic showers within a compact
volume. 'The depth is crucial, as it is designed to accommodate the full extent of particle
showers, ensuring that the calorimeter captures the total energy of the incident particles.

'The performance of electromagnetic calorimeters can be quantitatively described by their
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relative energy resolution, expressed as:

-2 oves (4.6)

E +E E
where @ represents the square sum of the individual components contributing to the resolu-
tion. This equation includes three primary terms: the stochastic term, the constant term, and
the noise term.

'The stochastic term accounts for fluctuations in the number of charged tracks within the ac-
tive medium, which significantly affects the overall resolution. In sampling calorimeters, this
term is influenced by the thickness of the absorber (t) in units of radiation length (Xj) and
varies inversely with the square root of the incident energy (E). This relationship emphasizes
the impact of shower development and the geometry of the calorimeter on its energy res-
olution, assuming that the number of charged tracks in individual layers are independently

distributed and follow a Gaussian distribution (Amaldi 1981).

The noise and leakage term arises from electrical noise during the signal processing phase,
contributing a baseline level of uncertainty to the energy measurement.

'The constant term represents energy-independent effects, such as inhomogeneities in the de-
tector structure, fabrication inaccuracies, temperature gradients, and radiation damage. These
factors can introduce systematic uncertainties, impacting the calorimeter’s resolution and un-
derscoring the importance of meticulous design and construction practices to minimize their

effect (Fabjan & Gianotti 2003).

4.3.2 Hadronic Calorimeter

Hadronic calorimeters face unique challenges in accurately measuring the energy of hadronic
showers due to the nature of the interactions occurring within them. Unlike electromagnetic
showers, where nearly all the energy is detectable, hadronic showers include components
such as delayed photons, soft neutrons, and the binding energy of hadrons and nucleons,
which are invisible to standard energy measurement techniques (Fabjan & Gianotti 2003).
This results in a systematically lower signal for hadrons compared to electrons, affecting the
calorimeter’s ability to accurately measure hadronic energy.

The efficiency of energy measurement in hadronic calorimeters is often quantified by the
ratio of the response to electrons (e) and hadrons (/), denoted as e/h. Ideally, this ratio
should equal one for a calorimeter to be considered compensating, meaning it would deliver
equivalent signals for both hadrons and electrons (Wigmans 2018). However, achieving
compensation is inherently difficult due to the internal properties of the calorimeter, which
influence the e/h ratio but cannot be measured directly. Instead, the e/m ratio, representing
the signal response to electrons and pions, is used as a proxy to estimate e/h through the
relationship:

e e/h 47

T 1= fem—e/l (4.7)
where f., denotes the fraction of the electromagnetic shower component, and its value

depends on the energy of the incident pion (Wigmans 2018).

31



4.4 GEANT4

Compensation is critical for improving both the linearity and resolution of hadronic calorime-
ters. Non-compensating calorimeters suffer from non-linear responses, as the proportion
of the electromagnetic component of the shower increases with the energy of the incident
particle, leading to stronger signals for higher-energy particles. This non-linearity, coupled
with fluctuations in the electromagnetic shower component, can significantly degrade the
calorimeter’s resolution. Therefore, achieving compensation, where e/h is close to 1, is a vital
design goal for hadronic calorimeters, leading to more accurate and reliable energy measure-

ments (Fabjan & Gianotti 2003; Kolanoski & Wermes 2016; Wigmans 2018).

To approach compensation, strategies focus on reducing the electromagnetic signal while en-
hancing the hadronic signal. Utilizing absorber materials with high nuclear charge effectively
diminishes the electromagnetic component. This reduction occurs because a substantial por-
tion of the electromagnetic shower energy is absorbed through low-energy photons, which,
in materials with high nuclear mass, generate electrons that fail to reach the active medium
and thus do not contribute to the signal. Conversely, increasing the hadronic fraction in-
volves enhancing the detection of cold evaporation neutrons. Since the energy transfer from
neutrons is inversely proportional to the nuclear mass (A) of the material, neutrons can tra-
verse a passive medium with minimal energy loss and efficiently transfer their energy to an
active medium with a lower A or one containing hydrogen. Mechanisms such as varying
the thicknesses of active and passive layers or enriching the active medium with hydrogen
aim to boost the signal from the nuclear components of the shower, thereby improving the
overall performance and accuracy of the hadronic calorimeter.

4.4 Geant4

Geant4 is a simulation toolkit that provides a platform for simulating the passage of particles
through matter (Geant4 2003, 2006, 2016). Geant4, short for "Geometry and Tracking,”
offers a comprehensive framework for conducting such simulations.

The simulation process begins with establishing the environment, which involves defining
the geometry of the calorimeter. This step specifies the shapes, sizes, and arrangement of
the detector components. Next, the detector materials are defined, typically requiring the
selection of both active materials, such as plastic scintillators, and passive materials.

A critical step in the process is defining the list of physical processes to be simulated. This list
determines the types of interactions that will be modeled within the environment. Central to
any simulation is the primary particle, which requires the configuration of a primary particle
generator. This generator can source particles from an external simulator.

Finally, the simulation is executed. This involves configuring specific actions that influence

various stages of the run, including individual events and the stepping mechanism that dic-
tates how the simulation advances step by step.
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4.4.1  Geometry

In Geant4, geometry is defined through a hierarchical, component-based approach, allowing
for efficient and flexible design of detector setups. Complex structures are broken down into
smaller, reusable components. For example, a single detector module can be defined once
and then instantiated multiple times in different locations within a broader experimental
setup.

Geant4 differentiates between logical volumes and physical volumes in its geometry definitions.
Alogical volume specifies the material properties and shape of a given component, serving as
a blueprint. In contrast, the physical volume determines the exact position and orientation
of the component within the overall geometry. This distinction allows multiple physical
volumes to share the same logical volume definition but differ in placement and orientation.

'The organization of volumes in Geant4 follows a hierarchical structure, where a volume may
contain other volumes. The outermost volume is referred to as the mother volume, while the
volumes it contains are called daughter volumes. The positioning of daughter volumes relative
to their mother volume simplifies the placement of detector components in the simulation.

To enhance the efficiency of tracking particles through complex geometries, Geant4 employs
voxelization techniques. This involves dividing the mother volume into smaller regions, or
voxels, which reduces the computational complexity of navigating large volumes.

'The complete geometry is enclosed within a wor/d volume, which serves as the outer boundary
of the detector setup. All other volumes are nested within this world volume. The Geant4
coordinate system is right-handed, with its origin typically located at the center of the world
volume. This configuration ensures consistency and precision when defining and navigating
the geometry throughout the simulation.

4.4.2 Materials

In the Geant4 simulation environment, the properties of materials dictate how particles
interact during the simulation. Each material in Geant4 is defined based on its constituent
chemical elements, which are characterized by their atomic number Z and atomic mass A.
A material may consist of one or more elements or molecules, and is described by several
key properties, including its density, state (solid, liquid, or gas), and the proportions of its
constituent elements.

Materials in Geant4 can be defined as pure elements, such as lead or iron, or as compound
materials, like water (H,O). In the case of compound materials, the components are mixed in
specific proportions, although they are not chemically bound together. Additionally, Geant4
provides access to a comprehensive database of predefined materials, utilizing data from the
National Institute of Standards and Technology (NIST) database, which simplifies material

definition.

In Geant4, the density of a material is expressed in grams per cubic centimeter (g/cm®), and
it plays a crucial role in determining how particles interact with the material, influencing
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processes such as scattering and absorption. Furthermore, the temperature and pressure of a
material can be specified. Geant4 also allows for the definition of isotopes, which is beneficial
for simulating materials that are isotopically enriched.

4.4.3 The Sensitive Detector

In the Geant4 framework, the term sensitive detectors refers to components that capture and
record detailed information about particle interactions within specified materials during a
simulation. While calorimeter literature typically refers to such components as active materi-
als, Geant4 defines them as sensitive detectors, integral to detecting hits, energy deposition,
and other relevant quantities. The processing of data from these detectors can be customized
to meet the specific goals of the simulation.

Sensitive detectors are linked to Jogical volumes, representing the materials within the simula-
tion. This association enables the detection of interactions occurring within defined volumes.
During each simulation step, information about particles—such as position, energy, and mo-
mentum within the sensitive volume—can be extracted and recorded.

The primary data collected by sensitive detectors are known as Aizs. A hit corresponds to a
single interaction event within the sensitive detector and provides critical information such
as the location and energy deposited by a particle at a specific point within the detector.

In Geant4, scoring refers to the process of collecting, analyzing, and consolidating data from
sensitive detectors. Scoring allows for calculating various metrics, including total energy
deposition, the number of hits, track length, and other relevant parameters.

4.4.4 Physics Lists

In Geant4, the physics /ist defines the set of physical processes that particles undergo during
a simulation. It specifies how particles interact with materials, the types of interactions that
can occur, and how these interactions are modeled within the simulation environment. Es-
sentially, the physics list provides instructions to Geant4 on which physical processes to apply
as particles traverse different materials, encompassing interactions such as electromagnetic
scattering, ionization, hadronic interactions, decay processes, and more.

'The selection of physical processes and models in the physics list significantly influences
both the accuracy and computational efficiency of the simulation. A well-chosen physics list
strikes a balance between these factors, tailored to the specific requirements of the simulation.
'The physics list starts by defining particles such as electrons, photons, protons, neutrons, and
others. For each particle, the list outlines a set of processes that describe how it interacts
with matter. These processes are typically categorized into several types, including electro-
magnetic processes, hadronic processes, decay processes, and optical processes.

'The choice of models for a given process depends on factors such as the energy range and type
of interaction. For instance, in hadronic physics, different models are used for low-energy
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interactions, like neutron thermal scattering, compared to high-energy interactions, such as
those involving quark-gluon plasma formation.

Geant4 offers a variety of predefined modular physics lists that cover a broad range of ap-
plications, catering to diverse simulations in fields such as high-energy physics and medical
physics. For more specialized use cases, users have the option to create custom physics lists,
allowing for precise control over the specific processes and models included. This customiza-
tion capability is especially valuable in non-standard cases, enabling an optimal balance be-
tween computational performance and physical accuracy.

4.4.5 Primary Particle Generators

In Geant4, Primary Particle Generators define how a simulation begins by setting the initial
conditions for the particles introduced into the simulation environment. The primary particle
generator allows users to specify various attributes of these particles, including their type,
energy, position, and direction.

4.4.6  he Structure of a Simulation

To illustrate the simulation process in Geant4, consider a sampling calorimeter setup, where
an electron traverses air and passes through alternating layers of passive material (lead) and
active material (scintillator), a common calorimeter configuration.

At the start of the event, Geant4 initializes the simulation by creating data structures for stor-
ing information about tracks, hits, and interactions. The primary particle generator produces
an electron with specified initial conditions such as energy, position, and direction.

The electron is then converted into a #rack, representing its path through the detector. This
track is divided into szeps, with each step corresponding to the distance traveled between
interaction points or boundaries between materials.

As the electron moves through the air, it follows a straight path unless interactions occur. The
interactions are determined based on the cross sections for the particle’s specific conditions,
such as energy or type. As the electron progresses, it may ionize air molecules, generating
secondary electrons (delta rays) or emit bremsstrahlung photons if decelerating in the electric
field of the molecules, resulting in energy loss.

For each secondary particle generated, a new track is created. Secondary particles are added
to a stack for further processing during the event. All tracks are processed similarly to the
primary electron. After each step, Geant4 assesses whether the electron or any secondary
particle should continue based on remaining energy and the distance to the next interaction
point or boundary.

Upon reaching the lead layer, the system detects the boundary crossing and updates the

material properties associated with the track. The electron interacts with the denser lead,
undergoing multiple scattering and producing more secondary electrons and bremsstrahlung
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photons due to lead’s high atomic number. These secondary particles are assigned new tracks
and propagated accordingly. If bremsstrahlung photons are of sufficiently high energy, they

may undergo pair production, creating electron-positron pairs, which are tracked as well.

Once the electron enters the scintillator layer, Geant4 identifies the material change. In the
scintillator, the electron excites and ionizes molecules, emitting scintillation light. This light
is detected by the sensitive detector, which records the energy deposition as a Aiz.

'The electron continues to traverse alternating lead and scintillator layers, losing energy through
ionization and bremsstrahlung in the lead, while depositing energy in the scintillator. Ad-
ditional secondary particles, such as delta rays and bremsstrahlung photons, are created and
tracked independently.

As the electron’s energy decreases and falls below a predefined threshold, the track is termi-
nated, and no further steps are processed.

At the end of the event, Geant4 gathers all hits recorded by the sensitive detector. These hits
include data such as energy deposition and time of occurrence. The total energy deposited
in the scintillator layers is then calculated, providing a measure of the electron’s total energy
loss as it passed through the material. The simulation results are subsequently saved or used
for further analysis.
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Traditionally, in the field of Machine Learning (ML), individual features within a dataset
were manually crafted, requiring domain expertise and bespoke feature design tailored to
each specific application. However, the advent of deep learning, a subset of ML, has revolu-
tionized the handling of complex, high-dimensional data. Unlike traditional methods, deep
learning represents a form of representation learning, where machines are presented with raw
data and autonomously tasked with discovering the necessary features for a given task. This
is achieved through the composition of non-linear layers, which progressively refine the rep-
resentations into higher levels of abstraction. This approach enables machines to learn from
unstructured, low-level data and extract discriminative, high-level features. Deep learning
models, particularly those based on Neural Network (NN)s, have demonstrated remarkable
success across various tasks, often surpassing traditional ML algorithms (LeCun et al. 2015).

5.1 Density Estimation

Many problems in ML can be understood as alignment problems, where the objective is
to infer a distribution that is unknown a priori and for which the density cannot be directly
evaluated. The task is to approximate this distribution using a machine learning model, essen-
tially aligning the model distribution with the true distribution inferred from data samples.

Several common scenarios can be framed as alignment problems. For instance, in regression,
the goal is typically to infer a one-dimensional distribution. In c/assification, the aim is to
infer the parameters of a binary distribution. Generation tasks, on the other hand, involve
modeling complex, multi-dimensional distributions and generating new samples from this
learned distribution.

In each of these cases, a set of samples (x;, yi)?_l is provided, where y; are instances of a
random variable Y that follows an unknown distribution p} (ylx), conditioned on a variable

X. The objective is to model this distribution using the model’s distribution p,, (y X, 6),which
is conditioned on X and the model’s parameters 0. In ML terminology, x; refers to the data
points, and y; represents the labels. The primary task is to infer the label distribution given

the input data.

5.1.1 KL Divergence and Maximum Likelihood

When viewed as a distribution alignment problem, the objective is to minimize the difference
between the true data distribution, py (ylx), and the model distribution, p, (y X, 9). A widely
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used measure of the divergence between two distributions is the g1sKL:

x,G))sz;(ylx)log?(—yjfg)dy. (5.1)

py\Y

Dt (g1 (y})| |y (v

It is important to note that the Kullback-Leibler (KL) Divergence divergence is asymmetric,
meaning that Dyj, (p; (ylx)”py(y g )) # Dy, (py(y *(ylx)). Minimizing the KL

divergence divergence with respect to the model’s parameters, 0, is mathematically equiva-
lent to maximizing the likelihood of the observed data:
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Since the true data density pj (y|x) and its expectation value are not directly accessible, it be-

comes necessary to approximate the expectation of ,0). Given a sample set (x;,1;)"
y to app P Py P inYi),_4

from the target distribution p}y (y|x), the expectation value can be approximated as:

<Py(

n

o)) = w2l

x;,0). (5.3)

5.1.2 Mean Squared Error

In the context of regression tasks, it is often assumed that the labels follow a locally Gaussian
distribution with a constant variance 0. The task of the model is to predict the expected
mean parameter ((x, @) of this normal distribution. Minimizing the KL divergence diver-
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gence for this problem leads to the following derivation:
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'This result is known as the Mean Squared Error (MSE), a widely-used loss function in ma-
chine learning. By minimizing the MSE, the assumption is made that the underlying data

is locally normally distributed with a constant variance o2.

5.1.3 Binary Cross-Entropy

In a basic binary classification task, the possible outcomes are typically represented as iy €
{0,1}. As a result, the output distribution py(y , ) must follow a Bernoulli distribution.
This distribution is characterized by a single parameter p(x, 8), which is inferred from the
data x and the model’s parameters O:

1-p(x,0) fory=0
py(vlx, ):{p(x’p ' (55)

0) fory=1
As discussed previously, minimizing the KL divergence divergence is equivalent to maximiz-
ing the log-likelihood of the model’s predictions, which further translates into minimizing
the binary cross-entropy loss function:

1 n
<10gPy( )>* ;Z;logpy( ,0)
y =
1 n
= = 2 |vilogpa(yi = 1|, 0) + (1 - y) log py(y; = O}, ) (5.6)
i=1
% 3 [vilog(p(x, ) + (1 - y) log(1 - p(x, 0))].

IR
—_

Thus, binary cross-entropy serves as an effective and widely-used loss function for binary
classification tasks.
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In the case of classification tasks involving multiple classes, the output must represent the
probabilities of each class. This is achieved using the soffmax function:

exp(x)

Y 5.7
T, ep(x) 7

o(x) =

which ensures that the outputs, which can range from —oo to 00, are normalized to be non-
negative and sum to 1, thereby producing valid probability distributions.

5.1.4 The General Case

'The commonly used loss functions—MSE and binary cross-entropy—are both derived from
the KL divergence divergence, assuming specific target distributions. Similarly, other loss
functions can be formulated by tailoring the assumptions to different types of distributions.
In a more general scenario, pyf (y|x) may represent a complex multidimensional distribution,
where the dimensions of Y are interdependent and exhibit correlations. Addressing this
added complexity necessitates more sophisticated modeling techniques. Further exploration
of this issue will be presented in Chapter 6, which discusses approaches to eftectively handle
such intricate distributions.

'The next section will outline suitable architectures designed to address these tasks.

5.2 Multilayer Perceptron

In ML, the primary objective is to construct a predictor F that maps an input X to an output
Y, which is represented as:

F: X-Y. (5.8)

There are various techniques to create such predictors. In the context of deep learning, this
multivariate function, denoted as Y(X), is constructed through a layered composition of
affine transformations and non-linear functions. For each layer /, let olll ..., 6l denote the
non-linear activation functions applied at every layer. The affine transformation at layer [ can
be expressed as:

0%; ra ol (Wlha + b[”) , (5.9)

where WU and bl represent the weight matrix and bias for the I-th layer, respectively. This
defines a Deep Predictor as a composite mapping, formally expressed as:

Vix— (G%],b 0.0 G%],b) (x). (5.10)
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'The structure of the model is captured through a computational graph. For the i-th node in
the I-th layer, the following computations are performed:

Nl
=St =
=
o ._ [l
N
= 0—1[‘1] (E Wl[]!]a][l_ll + bl[l]]/ (512)
j=1
aldl = x (5.13)
?(X) — a[L], (514)

where N is the number of nodes in the I-th layer. The final output Y(x) is computed after
passing through all layers.

5.3 Backpropagation

Backpropagation is a technique used to optimize NN, enabling precise adjustment of model
parameters to improve prediction accuracy. The objective of a NN is to minimize the func-
tion:

Z: (Y(X),Y) - [0,), (5.15)

which measures the difference between the predicted output Y(X) and the actual output
Y. Optimization seeks to minimize £ by adjusting the model’s parameters, denoted by 6,
moving through the parameter space toward the minimum of #. The first-order Taylor
expansion of the loss function provides an approximation:

dZ(0)
20

For small values of A0, the leading-order term suffices. The optimal direction of parameter
update occurs when A is antiparallel to the gradient of the loss function, d.#/96. The

parameter update rule can therefore be expressed as:
dZ(0)

0
where 7 is a small positive scalar known as the learning rate, typically treated as a hyperpa-
rameter.

F(0 +AO) ~ Z(0) + A@. (5.16)

0—-0-1

(5.17)

'The parameters 0 are iteratively updated until a predefined minimization criterion is met.
This approach, based on gradient computations, is commonly referred to as Steepest Descent
or Gradient Descent (Cauchy 1847).

Within NN, backpropagation applies by calculating the chain of derivatives for layer [ as:

9
o= — (5.18)

[n-
82j
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Ul

where z;" is the input to the activation function at node j in layer I. The derivatives of the
loss function with respect to the weights and biases can then be calculated as:

1<

[n_[1-1]
=0:"a (5.19)
[ j Tk
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= 5]1.1_ (5.20)
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Given that z; " is dependent on z;, the relationship is:
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]
'Thus, the expression for 6][11 becomes:
[1+1]
m_ [+ 010 1l
& = ;—:1 oWy o (2. (5.23)

As indicated by (5.12), the computation of al’l depends on the values of al/"1l. Therefore,
the computation of the entire predictor proceeds in a forward pass through the network.
The gradient for layer [ requires the gradient from layer [ + 1, meaning that a backward pass
through the computation graph is needed to propagate errors backward. This forms the
core of the backpropagation algorithm, which utilizes the chain rule of calculus to efficiently
compute gradients. Importantly, this method ensures that computing the gradients is no
more computationally expensive than the forward pass.

'The concept of minimizing error via gradient descent predates NNs and dates back to the
1960s (Amari 1967; Bryson 1961; A. Bryson & Ho 1969; A. E. Bryson & Denham 1961,
Dreyfus 1962; Kelley 1960; Pontryagin et al. 1961; Wilkinson 1965). These algorithms were
recognized for their efficiency, as deriving the derivatives was no more costly than computing
the forward evolution of the system (Schmidhuber 2015). Efficient error backpropagation
for arbitrary networks was introduced by Linnainmaa (1970, 1976), and Werbos 1981 first
applied these ideas to Neural Networks. The potential of backpropagation to produce mean-
ingful internal representations in deeper network layers was later demonstrated by Rumel-

hart et al. 1986.

5.4 Optimization Algorithms

Several algorithms have been developed for optimizing NNs. Gradient Descent, previously
discussed, updates parameters using the gradient of the loss function across the entire dataset.
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While effective, this method can be computationally expensive and impractical for large
datasets. As an alternative, Stochastic Gradient Descent (SGD) and its variations are widely
used in deep learning. SGD approximates the full gradient by computing it on a mini-batch,
arandomly selected subset of the dataset. This reduces computational overhead and increases
robustness against local minima, though it requires more steps to reach convergence.

One notable variation is SGD with momentum (Rumelhart et al. 1986), which introduces
an exponentially weighted moving average of gradients. This method incorporates not only
the current gradient but also prior updates, adding inertia to overcome local minima more
effectively. The update rule for parameters 0; in SGD with momentum is expressed as:

011 = 0; — 18141,

0.F (5.24)
g1 =Pg+1-P)=,

20,

where 0 < f <1 is a hyperparameter controlling the momentum’s influence.

To address varying gradient magnitudes across different parameters, RMSprop, introduced
by Hinton et al. 2014, dynamically adjusts learning rates based on a moving average of the
squared gradients. The update rule for RMSprop is:

n 0

5 20,
<gt+1> +€
2

<g?+1> =y <gt2> +(1-) (% ,

where 0 < v <1 controls the moving average.

011 =6, —

(5.25)

Adagrad (Duchi et al. 2011) offers a distinct approach, adjusting the learning rate individually
for each parameter based on its historical squared gradient. This method is particularly well-
suited for sparse data and gradients.

Adaptive Moment Estimation (Adam)(Kingma & Ba 2014) combines the benefits of RIM-
Sprop and SGD with momentum. By using bias-corrected estimates of the first and second
moments of gradients, Adam adaptively adjusts learning rates. The update rule for Adam is:

My

011=0;—1 3 t++€/
t+1

iy, = m; g

+1 = ’
=P
A Vi
Vit = 1-8, ,32’ (5.26)
0L

my,q = fm; + (1 - ) 70,

P
Vi = fove +(1 —52)(%) ,

where 0 < 81, B < 1 are hyperparameters that control the decay rates of the first and second
moment estimates.
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5.5 Convolutional Neural Networks

Convolutional Neural Network (CNN)s are a specialized category of NNs designed to process
data with a grid-like topology, such as images. The key concept behind CNNss is their ability
to recognize spatial hierarchies of features, which makes them particularly effective in tasks
involving images, where the arrangement of features, like edges or textures in images, is
essential for effective pattern recognition. By focusing on the spatial relationships within the
data, CNNs can identify patterns that might not be apparent when features are examined in
isolation.

The mathematical foundation of CNN:is lies in the convolution operation between two func-
tions. Given an input function x(t) and a kernel w(t), the convolution operation is defined
as:

(x * w)(t) = f x@)yw(t—a)da. (5.27)

In this context, a kernel refers to a small matrix of weights that moves across the input data,
performing the convolution to detect patterns within the data. The specific features identified
by the kernel, such as edges or textures, are determined by its size and the values of its weights.
When CNNs operate on discrete inputs, such as digital images, the convolution transforms
into a summation:

(xxw)(t) = Y, x(@w(t-a). (5.28)
a=—00
For multidimensional data, such as images, the convolution is applied across all dimensions
of the input. If I(7, j) represents a two-dimensional image and K(m, n) denotes the convolu-
tional kernel (filter), the two-dimensional convolution is expressed as:

(K=D)G,j) = Y, Y, 10— m,j-n)K(m,n). (5.29)

A notable feature of CNN's is sparse connectivity, achieved by applying small kernels instead
of fully connected layers. This reduces computational complexity and memory requirements.
Additionally, CNNs utilize weight sharing, where the same kernel is applied across different
regions of the input, which introduces #ranslational invariance. This ensures that the model
can detect patterns irrespective of their position in the input space.

In a convolutional layer, multiple kernels are applied to the input data, and the outputs are
passed through a non-linear activation function. Afterward, poo/ing operations are used to
reduce the spatial dimensions of the data while preserving critical information. Pooling is
commonly performed using max-pooling, which selects the maximum value in a region, or
average-pooling, which computes the average of the values within a region. These operations
reduce the size of the feature maps, enhance the model’s robustness to minor variations in the
input, and help prevent overfitting by lowering the number of parameters and computations.

'The origins of CNNs can be traced back to Hubel and Wiesel 1959, who discovered neurons
in the visual cortex that respond to specific regions in the visual field, leading to the hierarchi-
cal processing of visual stimuli. This inspired the development of CNNs. The introduction
of the Neocognitron by Fukushima 1980 formalized these principles into a computational
model for hierarchical feature detection.
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Advances in CNNs were further propelled by the adoption of backpropagation for train-
ing. Waibel et al. applied this technique in their Time Delay Neural Network for speech
recognition (Hampshire & Waibel 1989; Waibel et al. 1990). LeCun et al. 1989 demon-
strated the effectiveness of backpropagation-trained CNNs for tasks such as handwritten
digit recognition, highlighting the versatility and potential of CNNs for a wide range of

pattern recognition tasks.

5.6 Symmetries in Machine Learning

Incorporating prior knowledge of a problem’s structure is a fundamental strategy in design-
ing effective ML algorithms. 'This prior knowledge often manifests as Symmetries within
the problem’s representation, which can reduce the architectural complexity and improve
the model’s generalization performance (Cohen & Welling 2016). The earlier discussion
on CNN:ss offers a clear example of this principle. CNNs exploit the translation symmetry
inherent in image data. By aligning a NN’s architecture with these underlying symmetries,
the learning process is greatly simplified, enhancing both model efficiency and performance.

Symmetries can be incorporated into NNs by ensuring the network respects certain invari-
ances or equivariances. To explain these concepts, consider a function f : X — Y and a
symmetry group g, where Ty and Ty represent the actions induced by ¢ on the spaces X and
Y, respectively. A function is considered invariant under the action of g if:

f(Txx) = f(x) VxeX, (5.30)

meaning that the application of a symmetry transformation does not alter the function’s
output. This concept is visualized in Figure 5.1.

ANV
O

Figure 5.1: Illustration of Invariance of function f under the group g.

Conversely, a function exhibits Equivariance to g if the application of the group actions
commutes with the function:

f(Txx)=Tyf(x) VxeXandVf(x)eY. (5.31)

In this case, changing the order of applying ¢ and f does not alter the outcome. When
X =Y, this implies that T = Ty. This concept is illustrated in Figure 5.2.
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7| 1

Figure 5.2: Illustration of equivariance of function f under the group g.

5.7 Point Clouds

In various domains of physics, point clouds provide an effective means of representing data,
particularly when the data is best described as a collection of discrete points in space. These
representations capture both the spatial distribution and properties of physical phenomena.
This is especially relevant for the chapters that follow, where datasets are represented as
point clouds. In this study, calorimeter showers are modeled as point clouds rather than
voxel-based data, marking a significant methodological shift.

Point clouds consist of collections of points, each potentially carrying additional attributes
such as color, intensity, or vector direction. Importantly, these collections lack any inherent
order, making them permutation invariant. In other words, the representation of a point
cloud remains unchanged under any reordering of the points.

Mathematically, point clouds are treated as sets. A set can be formally defined as X = {x;}IL;,
where each x; € X represents a unique element within X, and n € N, is the cardinality of the
point cloud. For this study, uniqueness is not a critical concern and will not be further con-
sidered. A function f : X" — Y is considered permutation invariant if, for any permutation
71, it satisfies:

f ([xlfo/ R xn]) = f ([xT((l)l xn(Z)l ey xn(n)]) ’ (532)

where the elements of X" are represented as tuples. A function f : X" — 9" on a set is
considered permutation equivariant if the permutation commutes with f,

F(xray Xn@)y - Xn@w]) = [f @) @), fr@) (), ) fram (O] (5.33)

Functions acting on point clouds must also handle varying cardinalities since point clouds
can differ in size. Leveraging point clouds in machine learning requires NN architectures
capable of processing these unordered and structurally flexible datasets.

One useful way to conceptualize point clouds is to imagine them as graphs where each
point is treated as a node. Initially, these graph have no predefined edges, implying there
are no predetermined connections between nodes. As a result, each element of the set must
be treated as independent. The absence of predefined edges suggests that the relationships
between nodes must be learned. This approach aligns with the perspective articulated by
Bronstein et al. 2021. The subsequent section will explore two approaches to learning these
relationships.
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5.8 Deep Sets

Deep Sets (Zaheer et al. 2017) introduced one of the first NN architectures specifically de-
signed to handle sets by incorporating a permutation-invariant structure. This architecture ef-
tectively addresses the challenge of processing unordered data through a two-step approach.

In the first step, a Neural Network ¢ independently maps each element of the input set
X into a higher-dimensional latent space. This transformation is applied element-wise, en-
suring the process is independent of the order of the elements. After this transformation,
a permutation-invariant pooling operation, such as summation, mean, or max-pooling, is
applied across the transformed elements. This step reduces the set of high-dimensional rep-
resentations into a single aggregated form. Formally, this process can be expressed as:

€B<¢><x>} (5.34)

xeX

Xm—p

where P denotes the pooling operation and p represents the transformation applied to
the pooled output. The result is a compressed representation of the aggregated information,
suitable for subsequent tasks such as classification or regression.

From a graph-theoretical viewpoint, the Deep Sets architecture can be interpreted as aggre-
gating the information from all nodes into a single induced node, as illustrated in Figure 5.3.

N/

— T

Figure 5.3: Illustration of Deep Sets from a graph perspective. The black nodes represent the points
in the point cloud, while the red node represents the introduced information aggregation node.

This architecture can be extended to achieve permutation equivariance by transforming each
point in the set into a linear combination of the original point and the aggregated informa-
tion from the set:

x> B+ Ap [@qs(x)], (5.35)

xeX

where 8, A € R. A similar method was proposed by Buhmann, Kasieczka, and Thaler 2023,
who applied transformations to all points in the set by concatenating the aggregated infor-
mation with the original data.
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5.9 ATTENTION
5.9 Attention

'The concept of Attention was introduced by Vaswani et al. 2017 in their seminal paper, A¢fen-
tion is All You Need, which presented the Transformer architecture. This architecture centers
around the Attention mechanism, which has become pivotal in various NN models.

Originally designed for Natural Language Processing (NLP), the Transformer model was built
as a sequence-to-sequence model trained to predict subsequent elements in a sequence. Since
the Attention mechanism is permutation invariant, masking was introduced to prevent infor-
mation flow from later elements to earlier ones. In NLP, words are embedded into tokens,
though token embedding is not directly relevant to point clouds and will not be covered
here.

'The following description of Transformers and Attention is inspired by the work of J. Lee
et al. 2019 on Set Transformers, which explores how transformers can handle unordered col-
lections, such as point clouds.

In the graph view of point clouds, previously introduced, point clouds are treated as collec-
tions of nodes without predefined edges. In contrast, attention introduces a complete edge
set, connecting each node to all others. This setup allows the model to represent all relation-
ships between nodes without requiring prior knowledge of these relationships. Specifically,
this architecture is known as Se/f~Artention, in which all points in a cloud X are connected to
each other. This differs from Cross-Attention, where the relationship between two different
clouds X and Y is modeled.

Attention is computed by assigning learned weights to the edges between nodes. These
weights are calculated after mapping the point clouds into high-dimensional spaces known as

embeddings. Three types of embeddings—Query (Q), Key (K), and Value (V)—are calculated

as follows:

=[q:] € R><d q; = WQXZ‘ X; € RS WQ € RIxf
[kz] € Rmxd ki = WKyi y; € RS Wk € RI*8
[v;] € R™ v, = Wyy; Wy € RPXS

Q
K
v

Here, Wy, Wk, and Wy represent learned weight matrices, while x; and v; are individual
Q K Vv Iep g i Yi

points in the point clouds X and Y. These embeddings facilitate the computation of attention

weights that define the relationships between different points.

Attention is then computed as follows:
Att(Q K, V,w) = w (QKT) V, (5.36)

where w is an activation function. First, the dot product of all values ¢; in Q and k; in K is
calculated, which measures the alignment of the points in the latent space. This process is
referred to as “values attending to each other.” The resulting alignment matrix has dimensions
of n X m. When multiplied by V, this produces a new point cloud with the cardinality of
Q and the dimensionality of V, where each point is a linear combination of V with mixing

factors from w(QKT).
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5.9 ATTENTION

The activation function @ determines how much each vector in V contributes based on the
alignment scores from QK. The softmax function is commonly used, as the alignment scores
may vary widely, and softmax ensures non-negative contributions that sum to one. The scores
are scaled by the square root of the embedding dimension d to adjust for variance:

S e
NG TS e (ya)

'Thus, if w is the scaled softmax, the attention function becomes:

T
Att(Q,K, V) =0 (%] V, (5.37)

with the activation function @ omitted for simplicity.

The paper Attention is All You Need (Vaswani et al. 2017) highlights the use of multiple
independent linear representations of the input, called Aeads, in multi-head attention. After
applying attention, the results of the different heads are concatenated.

e
o

\

\
.\\./.

Figure 5.4: Illustration of Self-Attention. The black nodes represent the points in the point cloud.
Each node shares its information with every other node.

Figure 5.4 visualizes Self-Attention in the graph view. Self-Attention is permutation equiv-
ariant because

Att(PQ, PK, PV)
PQ(PK)T]
=g|———|PV
0 [ Vi
" [PQKTPT]

(5.38)

= P Att(Q,K, V).
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5.9 ATTENTION

Figure 5.5: Illustration of Cross-Attention. The black nodes represent the points in the point cloud.
Each node shares its information with every other node.

On the other hand, Cross-Attention, as visualized in Figure 5.5, is permutation-invariant,
as demonstrated by

Att(Q, PK, PV)
T
Q(PK) ) oy

=0

(5.39)

T
=0 Qi) |4
= Att(Q,K, V).

J. Lee et al. 2019 demonstrated that attention can map point clouds of varying cardinalities
to a fixed learned point cloud, potentially reducing the point cloud to a single point. In
this extreme case, attention can be interpreted as a permutation-invariant pooling operation,
similar to the Deep Sets architecture. If Q = 0, attention reduces to the following averaging
operation:

0-KT 1 1
A K, V)= V———V———E: - A4
tt(0, K, V) a( ] " v; (5.40)

Vd =

'The Induced Set Transformer model introduced by J. Lee et al. 2019 approximates full atten-
tion by using cross-attention on a smaller learned point cloud, which is then mapped back
to the original cloud.

50



GENERATIVE MODELS

6.1 Normalizing Flows

Building on the concepts introduced in Section 5.1, where specific cases like regression and
classification were discussed, this section addresses the general case of density estimation
using Normalizing Flow (NF)s. Here, the assumption of a locally Gaussian distribution is
lifted, enabling a more flexible approach to mapping between complex, continuous distribu-
tions.

Without assuming that the random variable X € R follows a local Gaussian distribution, con-
sider the problem of regressing X. To address this, an auxiliary random variable U, uniformly
distributed over the interval [0,1], is introduced. By applying the Cumulative Distribution
Function (CDF) Fx(X) to X, the variable can be mapped to U. The inverse of the CDF,
known as the quantile function F(U), then maps U back to X. A proof of this mapping
can be found in Section A.1.

Given two random variables X, Z € R, an invertible mapping f = Fx! o F; between any two
continuous distributions can be established by first applying the CDF of Z, F, and then
the quantile function of X, Fy!. This requires access to both the cumulative distribution and
quantile functions of the distributions.
'The probability of an infinitesimally small interval is considered:
p(xo < x < xp + dx) = p(xg) dx.
Applying the transformation f ~land preserving the probability interval, leads to:
p(xg) dx = p(xg < x < xp + dx)
=p(f00) <2< (o + d))

d -1
= p(zo <y<zg+ e dx] with zg := f(xg) (6.1)
X=X0

d -1
= p(2o) e

X=X(
By expanding f~!(xy + dx) using a Taylor series and neglecting higher-order terms, the

general one-dimensional change of variable formula is obtained:

df1
x) = p(z)——.
p@) =p@)—-
'This derivation, though illustrative, is a typical physicist’s loose derivation meant for visual-
ization, rather than being mathematically rigorous.

In the context of generative modeling, this framework extends to multidimensional distri-
butions. For multidimensional random variables X, Z € R", the change in dz introduces the
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6.1 NORMALIZING FLOWS

Jacobian determinant, which captures the scaling of infinitesimal volume changes under the
transformation f:

-1

)
det ™

p(x) = p(z) : (6.2)

Since neural networks are universal function approximators (Hornik et al. 1989), they can
be employed to approximate f. However, the network must satisfy the conditions of a dif-
teomorphism. Diffeomorphisms, being composable, allow for the construction of a com-
plex transformation f as a composition of simpler diffeomorphisms, f = f, o ... o f1. This
transformation can be optimized by maximizing the log-likelihood of mapping a complex
distribution to a simpler base distribution, enabling both density estimation in one direction
and sampling in the other.

This approach forms the basis of a model known as a NF (Tabak & Turner 2013; Tabak
& Vanden-Eijnden 2010). A visualization of a NF is presented in Figure 6.1. In essence,
NF's transform a simple base distribution into a more flexible one through a series of bijective
transformations. For further details and a comprehensive overview of common architectures
used in constructing NFs, refer to Kobyzev et al. 2021 and Papamakarios et al. 2021.

In the following sections, various architectures for constructing NFs will be examined. The
architecture choice is constrained by the requirement for the mapping to be a diffeomor-
phism and the need for efficient computation of the logarithm of the Jacobian determinant.

fi(zi1) f1(w)
O - OO - GG
fit@) fit@)

Figure 6.1: Visualization of a Normalizing Flow in one dimension.

6.1.1 Univariate Invertible Functions

In the univariate case, where the goal is to describe the probability distribution p(x) for a
one-dimensional variable x, a NF can be constructed using invertible mappings. For multidi-
mensional variables, x = (x;)L;, where each dimension is independent, the joint probability
distribution is expressed as p(x) = p(x7) ... p(x,,). In such cases, each dimension x; is treated
independently, and the invertible mapping is applied to each dimension separately. This map-
ping is composed of any invertible parameterized function f,(x), where the inverse function

f(;Jl must be accessible, and the derivative d f@/ dx must be computable.
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6.1 NORMALIZING FLOWS
Affine Functions

One of the simplest invertible functions is an affine mapping:

folx)=e"-x+B, ¢ ={a,p}. (6.3)

In this function, the scaling factor e* ensures that the function remains invertible by pre-
venting the scaling from being zero. Additionally, the logarithm of the absolute derivative
is straightforward to compute:

d
In

d—;" =Inle?| = a. (6.4)

Monotonic Rational Quadratic Splines

Another method for constructing invertible functions is the monotonic Rational Quadratic
Spline (RQS). These splines are defined within a bounded region (=B, B), where the spline
is applied, while outside this region, an identity transformation is used. The bounded region
is divided into K + 1 coordinates, denoted as {x®, y(k)}szo, referred to as 4nots. Each knot
k is associated with a derivative 6®, which must be positive to ensure the monotonicity of
the function. At the boundaries —B and B, the derivative is set to one in order to match the
identity transformation outside the domain, i.e., 60 = 5K =1,

'The quadratic monotone rational splines between two knots can be constructed by first defin-
ing the total slope between the knots as s®) = (y**1) —y®))/(x*+1) _x®)) The input variable is
expressed as the fraction of x between knots k and k+1, denoted &(x) = (x—x®)/(x*+D) (0
The rational quadratic spline, f®(&) = a®(£)/8M (&), within the k™ bin is given by:

a®E) - (y(k+1> - y<k>) [S(k)§2 +oMeEA - 5)]

= . 6.5
pU(E) 58 4 [60+D) + 500 - 250 ] £(1 - &) (6)
The derivative of the spline, df®(£)/dx, is given by
(s®) [+ D22 + 25051 - &) + 501 - )]
(6.6)

[ + [o0+D) + 50 — 250 ] (1 - (s)]2

The inverse function f~!(y) = &(x) = 2¢/(=b — Vb2 + 4ac) can be expressed in terms of the

parameters as follows:

@ = (5D — y ) [s0 = 50+ (y - y®) [6E+) + 56 - 250)], 6.7)
b = (5D — y®) 500 — (5 = y®) [ok+D) + 50 — 260, 6.8)
c=-s® (y-y®). (6.9)

Thus, the function f,,(x) is defined in a piecewise manner, with the parameters ¢ = {x®,y®, 50Nk
and B. The above formulation follows the notation and presentation of Durkan et al. 2019.
A rational quadratic spline for some arbitrarily chosen knots is illustrated in Figure 6.2.
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6.1 NORMALIZING FLOWS

Bl

-B 0 B

Figure 6.2: 'The black curve shows a monotonic rational quadratic spline for some arbitrary knots.
The knots are shown as black dots. The derivatives are not shown. The red curve is the inverse of the
spline.

Univariate Flows

To define the density of a univariate variable x, a composition of multiple univariate invert-
ible functions is constructed. Each of these functions is paired with a neural network that
predicts the parameters ¢ given the conditional features. These neural networks are trained
to maximize the probability of a sample of p(x) mapping to a base distribution. Several other
options for invertible univariate functions exist; for further details, refer to the review by Pa-
pamakarios et al. 2021. 'This section, however, only discusses the specific functions used in
this thesis.

6.1.2 Autoregressive Flows

In the case of a two-dimensional variable x = (xq, X;), where x; and x, are correlated, the

probability density p(x|c) can be factorized as:

p(xlc) = p(x1, x2lc) = p(x1lc) p(xalxq, ),

where c is an optional variable that x could be conditioned on.

First, the density p(x|c) is mapped using a univariate mapping f,,, . Here, in a slight abuse of
notation, 1 represents the parameters of the mapping, and ¢1(c) denotes the network that
generates these parameters with ¢ as the input. Subsequently, p(x,|x1, ¢) can also be viewed
as a univariate case. In this instance, xq is part of the conditional features. The variable is
transformed by a univariate function f,,, where the value of x; is provided as a conditional
feature @y (x1, C).
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6.1 NORMALIZING FLOWS

'The logarithm of the Jacobian determinant is then given by:

J
In |det 8_f

X

=In

=In

=In

det

&f P1

(9x1

o”f P1

8x1

2o
8x1
2

axl

+1In

. &fwz
(93(2

s
(9x2

(6.10)

afsz
83(2

Both derivatives d f (pi/ dx; are obtained by differentiating the univariate functions f,, with-
out differentiating the associated neural networks ¢;. Consequently, they are relatively straight-
torward to compute.

This approach can be extended to n variables (xy, ..., X,,) as:

p(xll ey xnlc) = P(x1|c) : P(x2|x1: C) e p(xn|x11 e s X1, C) .

For computing the logarithm of the Jacobian determinant, a triangular Jacobian is first de-

fined as:

g;

0 0 0
&x,-
f . f .
f‘PH—l f‘Pz+1 0 0
f 5 Ix; jxiﬂ
]Z.’]. =| %2 Yoia | (6.11)
Ix; Ixip1
: . . 0
fy Oy oy,
0-)X1' o &x]‘_z 0-)Xj_1 &x]
where the determinant of ]lf] is
i 9 f
det ]/, = P 6.12
et]}; y F (6.12)

Thus, the Jacobian of the transformation in this 7-dimensional case is:

(gf(Pi :iln%

&xi i1 8xi

n

I1

i=1

(6.13)

=1In

In

of
det £| =In |det]{n

The last equality holds because it is a required condition that all f,, be monotone univariate
functions. The order of the variables is arbitrary, allowing the mapping of multiple transfor-
mations to be composed, each with a difterent permutation of variables.

The transformation function f, (x1) is defined as f1(x1, ¢1(c)), where @1 depends only on
the conditioning variable ¢. For the second variable, the transformation f,,(x) depends on
both x1 and ¢, hence it is set as f5(x;, @o(x1,¢)). This pattern continues such that for the
i-th variable, the transformation function f, (x;) is defined as:

foixi) = filxi, pixi, 0)), (6.14)
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6.1 NORMALIZING FLOWS

where x_; = {xq, ..., x;_1} represents all preceding variables.

This sequential architecture allows the model to utilize any recurrent architecture, such as
Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber 1997), which can
take the current variable as input and predict the parameters for transforming the next vari-

able.

Recurrent architectures within autoregressive flows have been employed by Kingma et al.
2016 and Oliva et al. 2018. 'This approach requires 71 passes through the networks in both
directions; however, all necessary entries can be computed efficiently in one pass by masking
out all unavailable information. This masking technique was utilized by Germain et al. 2015
and further developed to create Masked Autoregressive Flow (MAF) by Papamakarios et al.
2017.

The inverse transformation is more challenging since the necessary information may not be
available. Therefore, evaluating the model recursively requires 7 passes through the network,
resulting in both fast and slow dimensions within the network.

6.1.3 Coupling Flows

=
IA
AN
N
—_

o]
i) —— f

Figure 6.3: Illustration of a coupling layer, in which the variable x is transformed. The first half of

its features x <[2] remain unchanged and are input to the network ¢, which provides the parameters
—L2

for the transformation f. The input to the transformation f are the second half of the features x>[g |
2

Instead of transforming each variable individually, variables can be transformed in groups,
with each group conditioned on another. This model family is referred to as Coupling Flows
(CFs) (Dinh et al. 2014, 2017). One common approach is to split the variable x into two
halves:

)=o) 6.15)

X |n| = {ngJH, ,xn}. (6.16)

2 2

'The probability density can then be expressed as

XSEJ’ C) (6.17)

P00 = oz ) = ol
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6.2 VARIATIONAL AUTOENCODER

by transforming one half based on the other half, which remains unchanged.

'The Jacobian of a CF has a triangular structure, which allows for efficient computation of
the logarithm of the transformation:

In

9f| []l 0 ) [5) o f,
det=—| =In|det| ;f =1ln Hl. H 9
” lejan] 1 el % (6.18)

2
- &f(Pi S 8f(ﬂi
R S
SHERA Y

Each transformation f,,, takes the form

foixi) = fz-(xz-, (pi(x<[gj,c)), Vie {EJ +1,... ,n}. (6.19)

To simplify, the same univariate transformation f and network ¢ can be applied to all vari-
ables x;:

f(p(xi) = f(xi, (P(xﬁm' C)) . (6.20)
The use of a CF layer allows for the prediction of the parameters of univariate functions ap-
plied to all transformed features using a single neural network. This provides flexibility in the
choice of architecture while maintaining consistent computational speed in both directions.
A visualization of such a layer in a CF is illustrated in Figure 6.3.

A variety of models based on coupling flows have been proposed for different applications

(Ho et al. 2019; Kim et al. 2018; Kingma & Dhariwal 2018; Prenger et al. 2019).

6.2 Variational Autoencoder

A Normalizing Flow can be considered a mapping between a data space x and a latent space
z. Since flows are bijective, they do not alter the dimensionality of the data. It is often as-
sumed that the data x resides on a manifold within the space in which it is defined, implying
the existence of a lower-dimensional representation in the latent space z. The goal of dimen-
sionality reduction is to create a more compact representation of the data while retaining
its essential information. This lower-dimensional representation facilitates the generation of
samples on the manifold and their expansion into the data space. Consequently, compressing
the data set is a desirable outcome.

Autoencoders (Baldi & Hornik 1989; Bourlard & Kamp 1988; Rumelhart et al. 1986) use
neural networks to learn compact representations of data in a lower-dimensional latent space
z. 'The data x is compressed (encoded) by one neural network, referred to as the Encoder,
and subsequently decompressed (decoded) by another neural network, called the Decoder,
back to the data space. This model is trained in an unsupervised manner by minimizing the
reconstruction error between the original data and the reconstructed data. However, unlike
the NF case, the latent representation in a standard autoencoder does not have a closed form.
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6.2 VARIATIONAL AUTOENCODER

As a result, it is not possible to directly sample from the latent representation, limiting its
suitability as a generative model.

A probabilistic formulation of the autoencoder is the Variational Autoencoder (VAE) (Kingma
& Welling 2013b; Rezende et al. 2014). In a VAE, a joint distribution p(x, z) is defined, from
which the distribution p(x) can be obtained by marginalizing out z:

p(x) = f p(x,z)dz = f p(X2)p(z) dz. (6.21)

Here, p(x|z) represents the likelihood, and the objective is to train the Decoder to maximize
p(x|z). It is necessary to define a prior distribution p(z) and to determine the posterior p(z|x).
However, p(z|x) is intractable because generating all possible values of the latent variable z
is not feasible.

To train VAEs, (amortized) variational inference (Blei et al. 2017; Jordan et al. 1999; Wain-
wright, Jordan, et al. 2008) is employed, whereby a function g(z|x) is introduced to approxi-
mate the posterior:

q(zlx) = p(z|x). (6.22)

'This approximation implies the need to minimize

q(ZIX)> _ <10 q(ZIX)P(X)>

Dy, (9(z0)|p(zlx)) = <log

PEPI/ PO2) ] o
p(x,z>> (6.23)
-1 _ .
og p(x) <og 225 .

ELBO

Here, the Evidence Lower Bound (ELBO) has been introduced. Maximizing the ELBO
minimizes the gap Dy, (q(zlx)”p(zIx)). The ELBO can be expressed as

_ (1og P2 _ |10, PX2)P(2)
ELBO‘<1gq<zlx>> ‘<1 e >

q(zlx) q(zlx)

_ o) (6.24)
= (log P(X|Z)>q(z|x) * <10g q(z|x) >q(z|x)

~ Dy, (9(z¥)[p(@)) -

'The VAE is optimized by maximizing the likelihood of the reconstruction while minimizing

= (log p(x|z) >q(zlx)

the KL divergence between the approximate posterior and the induced probability distribu-
tion on the latent variable z. For a trained VAE, the latent variable z ~ p(z) can be sampled
and decoded by the Decoder into the data space x.

"To minimize Dy, (q(zlx)”p(z)), it is necessary to sample from z. In order to train the VAE
using backpropagation, it is therefore necessary to differentiate through the sampling process,
which is not directly feasible. To address this issue, Kingma and Welling 2013b developed
the reparameterization trick. If q(z|x) is defined as a normal distribution ./ (i, 6), with p(x)
and 62(x) both predicted by the Encoder given a sample x, sampling from g(z|x) can be done
as

z=pu+o-€, withe~ . 7(0,1). (6.25)
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6.3 POINTFLOW

With this construction, backpropagation can be performed through g and o. If p(z) =
A(0,1), the KLL can be calculated as

Dy, (9z)|[p(2)) = Dy, (4 (4, 0%)]7(0,1))
1+12 1 (6.26)

202 2

= log(o) +

The formulation presented here represents the most basic case; however, it can be readily
extended to other cases, which are not discussed in this thesis as

6.2.1 Latent Normalizing Flows

One limitation of the VAE framework, as previously discussed, is the restriction of the prior
to a simple normal distribution .#"(0,1). This restriction also limits the flexibility of the

amortized posterior q(z|x), thereby constraining the minimization of the gap Dy, (q(zlx)”p(zlx)).

To introduce greater flexibility, a Normalizing Flow can be employed to transform the prior

distribution. Let f represent the mapping of the NF, which transforms the base variable
w ~ /(0,1), with z = f(w). The ELBO can then be restructured as

ELBO = (logp(xi2)), ., = Dkt (alip(2))
= (log p(x|z) + log p(z) — log g(z|x))

q(z|x)
= (logp(xlz) +logp(2)), . — 7 (4(zIx)) (6.27)
0 -1
:<1ogp(x|z)+1ogp(f-1(z))+1og det [];Z > - 7 (q(lx) .
q(zlx)

'Thus, the latent Normalizing Flow can be optimized in conjunction with the VAE. Here,

A (q(zlx)) represents the entropy of the approximate posterior. Given that it is normally
distributed, the entropy can be derived as

7 (a(aix)) = 5 (1 +log2m) + Y loga (628)
i=1

The concept of implementing a NF in this way was initially proposed by Rezende and Mo-
hamed 2015. However, our derivation does not directly follow theirs. By integrating NFs,
the flexibility and capability of the VAE are enhanced, enabling the modeling of more com-

plex data distributions and improving generative performance.

6.3 PointFlow

In this section, the components described in the preceding sections are integrated to con-
struct the model, which will be utilized primarily in the subsequent chapters. The PointFlow
model, originally developed by G. Yang et al. 2019, is based on continuous NFs. For this dis-
cussion, the focus is on the NFs detailed in Section 6.1, as they offer the advantage of faster
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6.3 POINTFLOW

generation times by avoiding the need to solve differential equations during sampling. A vari-
ant of the PointFlow model employing non-continuous NFs has been devised by Klokov et
al. 2020.

Consider a point cloud X as described in Section 5.7. PointFlow is designed as a VAE that
autoencodes the point cloud. Therefore, X must first be mapped to a latent representation
z using an Encoder. For a point cloud, the Encoder must be permutation invariant; thus,
a Deep Sets based Encoder is chosen. This involves first mapping the point cloud into a
high-dimensional space, followed by a pooling operation. While the original PointFlow
model used max pooling, mean pooling is chosen here. From this pooled high-dimensional
representation, the parameters u and o of the latent representation z are derived, allowing
for sampling of z as explained in Section 6.2. Additionally, a latent normalization flow is
included within the latent space, as described in Section 6.2.1.

Encoder > Z latent NF

point-wise NF

X; é X
Figure 6.4: Visualization of a the PointFlow training setup. The point cloud X is encoded with the

Encoder to z. The latent Normalizing Flow (NF) is trained on z. Conditioned on z the point-wise
NF learns the points individually.

To complete the model, a suitable Decoder is required to model p(X|z). The assumption
underlying the PointFlow model is that points are independent and identically distributed
(i.i.d.). Consequently, p(X|z) can be decomposed as

p(Xlz) = [[ pxile). (6.29)
i=1

A point-wise NF is used to model each p(x;|z), conditioned on the latent representation z.

latent NF — Z point-wise NF

x; €X

Figure 6.5: Visualization of a the PointFlow sampling setup. The latent NF samples z. Conditioned
on z the point-wise NF samples each points individually.

The model is trained to maximize the ELBO, thereby training both flows on maximum
likelihood and training the encoder to produce a high-quality latent representation. The
training setup is illustrated in Figure 6.4.
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6.3 POINTFLOW

To obtain a sample from the model, a latent representation z is first sampled from the latent
NEF, and then each point is sampled individually, conditioned on z. The sampling setup is
illustrated in Figure 6.5.

'This approach implies that there is no information exchange between the points during the
generation process, restricting the model to capturing only global correlations within the
point cloud, rather than one-to-one correlations between different points. This limitation
will be further discussed in Chapter 8. The original model by G. Yang et al. 2019 was de-

signed for point clouds sampled i.i.d. from a volume, thus not encountering this intricacy.
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FAST SIMULATION FORTHE CMS
CALORIMETERS

The CMS experiment relies extensively on simulations to analyze high-energy particle col-
lisions, assess detector performance, and enable precision measurements. Geant4 serves as
the primary framework for these simulations, providing highly accurate modeling of par-
ticle interactions with detector materials in what are known as Fu// Simulation (FullSim).
However, the computational cost of these full simulations increases significantly with ex-
perimental demands, such as finer detector granularity and higher luminosity. To address
this challenge, the CMS collaboration has developed and continually updates an alternative
framework known as Fast Simulation (FastSim), which simplifies or replaces certain aspects
of the simulation to achieve greater computational efficiency.

Recent efforts within the CMS FastSim group have focused on developing generative ma-
chine learning-based surrogate models intended to replace the current parametrized FastSim
algorithms. These models aim to further improve the speed and accuracy of the fast simula-
tion process.

'This chapter provides an overview of fast simulation techniques within the CMS framework.
It begins with a general description of FastSim, outlining its role in enhancing computational
efficiency by streamlining elements of the full simulation process. The discussion then nar-
rows to the specifics of calorimetry, examining the methods used to simulate particle inter-
actions with calorimeter components. Subsequently, the currently employed parametrized
model, based on the GFlash algorithm, is introduced, with an explanation of its functionality
and limitations. Finally, the chapter concludes with an outline of the approach to integrating
machine learning-based methods into the FastSim pipeline, highlighting how this innova-
tive strategy can significantly improve both the speed and accuracy of simulations.

7.1 Fast Simulation in CMS

FastSim is embedded within the CMS software framework and provides substantial im-
provements in simulation efficiency, achieving up to a 100-fold speed increase, or a 20-fold
increase when accounting for both simulation and reconstruction stages. FastSim is partic-
ularly valuable for tasks requiring extensive model scans, such as supersymmetry (SUSY)
searches, exotic particle studies, and systematic analyses for top quark measurements.

To ensure reliability, the results produced by FastSim are frequently validated against those
yielded by FullSim. While some discrepancies are expected due to the simplified method-
ology, these are closely monitored and minimized to maintain FastSim as a reliable tool for
physics analyses.

The FastSim process begins with the same generated particles as the FullSim, simulating en-

ergy deposits along particle trajectories to produce Simulated Hits (SimHits). The efficiency
of FastSim stems from its simplified framework, geometry, and parameterized material in-
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teractions. The input to FastSim is a list of particles from either the EventGenerator or
ParticleGun, each characterized by momentum and origin vertex. Particles are propagated
through the magnetic field to various CMS sub-detector volumes, where interactions may
occur. The CMS tracker geometry is approximated by infinitely thin cylinders and disks, with
materials placed on the surface. Each layer interaction is described by material thickness in
terms of radiation length and interaction length, and particle propagation is simplified using
an approximated magnetic field.

As particles pass through each sub-detector layer, interactions can produce secondary par-
ticles, which are then added to the list of particles continuing to propagate through the
detector.

FastSim also accounts for pile-up interactions—additional collisions occurring during the
same bunch crossing—by incorporating particles drawn from pre-generated files, added to
the event according to a Poisson distribution. The simulation considers various interactions,
including Bremsstrahlung, photon conversion, ionization energy loss of charged particles,
multiple scattering, and nuclear interactions. Additionally, electron, photon, and hadron
showering are parameterized in the electromagnetic and hadron calorimeters. The first five
processes are applied as particles traverse the thin tracker layers, while the latter are reserved
for the calorimeter simulation.

7.2 Calorimetry in CMS FastSim

7.2.1  Parametrized Model

For calorimeter shower simulation, CMS FastSim (Giammanco 2014) employs a parametrized
model based on the GFlash algorithm, originally developed by (Grindhammer & Peters
1993) for the H1 Experiment at HERA and later ported to Geant4.

In GFlash, the shower is sampled from the parameterized energy density distribution. The
particle’s track is followed in Geant4 until the first inelastic interaction, which defines the
shower starting point. From that point, GFlash takes over, parameterizing the subsequent
development of the shower. The longitudinal energy density distribution is numerically in-
tegrated, and energy is deposited perpendicular to the shower track according to the lateral
distribution density.

GFlash uses the average material properties of the volume in which the shower develops,
allowing for a simplified geometry. In the case of sampling calorimeters, an effective average
material property is defined, considering atomic number, charge number, radiation length,
absorption length, and mean density.

Electromagnetic and hadronic showers are modeled in Geant4 using the GFlash algorithm,
which parametrizes both longitudinal and lateral shower profiles for homogeneous and sam-

pling calorimeters.

In GFlash, the hadronic shower is divided into three components: the purely hadronic part,
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the 7¥ fraction from the first interaction, and the electromagnetic fraction produced through
subsequent interactions during shower development.

The total deposited energy of a shower is parametrized using the following distribution func-
tion:

Egp = f dE 1, (1) = f Egpf(1)dV (7.1)
14
where the condition
f Fydv =1 (7.2)
14
ensures normalization of the distribution.

'The volumetric separation of deposited energy dE,(r), is given by

dEgy(r) = Eqy f()dV = Egpf(2)dzf (r)drfo(P)dep (7.3)

where the function f(r) is factored into three independent functions, f, f,, and fy, repre-
senting the longitudinal, radial, and azimuthal energy distribution densities, respectively.

'The longitudinal energy distribution is modeled using three correlated gamma distributions.
For the lateral energy distribution, the radial energy density is described as

2rRZ,

—(r2 TRY) (7.4)

frr) =
where the free parameter Rgy scales with the interaction length for hadronic showers and
the Moliére radius for electromagnetic showers. The expected value and variance of Rg are
parametrized as a function of energy and shower depth.

The showers are assumed to be symmetric around the beam axis, resulting in a uniform
azimuthal distribution. The azimuthal distribution density is given by

1
fol@) = o (7.5)

For electron and photon showers, the GFlash parametrization treats the CMS ECAL as
a homogeneous medium. This approximation is justified due to the uniform structure of
the PbWO4 crystal calorimeters in CMS. The simulation process occurs in two stages: first,
the shower is modeled using the GFlash parametrization, and then the deposited energy is
integrated over two longitudinal slices, each with a thickness of one radiation length (Xj).

'The main advantage of GFlash over stepwise methods like Geant4 is its substantial speed
improvement. The computational cost of the GFlash model scales with the track length of
the primary particle, and thus with its energy. As the spatial extent of a particle shower
increases logarithmically with energy, the computational demand also increases, but at a
much slower rate compared to FullSim.

GFlash is capable of efficiently modeling both the longitudinal and lateral energy density dis-

tributions for hadronic and electromagnetic showers. The spatial extent of a particle shower
increases logarithmically with energy, as does the computational demand.
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7.2.2  Machine Learning Based Simulation

The current CMS FastSim framework samples SimHits from the predefined GFlash dis-
tribution. However, this distribution is simplified in ways that lead to inaccuracies. Factors
such as the particle angle or the extent to which the shower is contained within the calorime-
ters can alter the energy deposition distribution, but these factors are not fully captured in
the GFlash model. Additionally, the hadron calorimeter is treated as a single, simplified
volume, which does not reflect the true complexity of the detector. These limitations have
motivated the introduction of machine learning models, which have the potential to predict
SimHit distributions more accurately by accounting for specific local conditions within the
calorimeter.

When integrating machine learning into FastSim, two main strategies can be considered.
One option is to generate SimHits, following a similar approach to Geant4, where the model
aims to replicate the distribution of SimHits throughout the detector. The second option is to
directly target rec hits, focusing on the final energy deposits in the active detector materials.

In the Geant4 approach, SimHits are generated by sampling from a parameterized probabil-
ity distribution. Geant4 simulates the particle steps and places SimHits along the particle
tracks as they propagate through the detector. Adopting a machine learning strategy to
replicate these distributions would allow for greater flexibility and potentially better model-
ing accuracy. However, SimHits vary significantly depending on the material properties of
the detector, leading to discontinuities or gaps in the hit distribution. Moreover, the number
of SimHits generated per shower can be very large—up to 100,000—making the simulation
process computationally expensive, especially when only a fraction of these hits are eventually
used in the reconstruction process. While machine learning might not ofter a speedup over
the current method for SimHits generation, it promises improved accuracy and scalability.

Directly targeting Reconstructed Hits (RecHits), on the other hand, offers a more computa-
tionally efficient approach. By focusing only on the energy deposits in the active detector
volumes, the overall number of points that need to be modeled is significantly reduced. This
approach can simplify the simulation process, eliminating the need to map SimHits back to
active cells, which is both time-consuming and computationally expensive. However, chal-
lenges exist, such as ensuring that the model generates only one RecHit per cell and dealing
with gaps between active detector materials, particularly in the HCAL. These challenges will
require specific strategies to ensure accuracy and smoothness in the hit distribution. By di-
rectly targeting RecHits, the computationally expensive process of mapping SimHits back
to active volumes can be bypassed, thus improving overall efficiency.

Considering these factors, the preference leans toward directly targeting RecHits. By by-
passing the intermediate step of generating SimHits and focusing on the final data products
required for reconstruction, the simulation process can be simplified and accelerated. While
the normalizing flow models required to generate SimHits offer some flexibility, the direct
modeling of RecHits presents clear benefits in terms of both speed and precision, making it
the more efficient approach.

In conclusion, while both approaches—targeting SimHits or RecHits—offer unique advan-

tages, targeting RecHits presents a clear path toward greater computational efficiency and
precision. By directly modeling the final energy deposits in the detector’s active volumes,
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the overall complexity can be reduced, and the simulation process can be streamlined. The
remaining challenges, such as ensuring one hit per cell and addressing gaps between detector
materials, will be explored in detail in the following chapters, where the machine learning
models being developed and the strategies employed to overcome these hurdles will be out-

lined.
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This chapter examines the central contribution of this thesis, the CaloPointFlow (CPF) ar-
chitectural model. Initially, the CaloPointFlow I (CPF I) (Schnake et al. 2022) model was
developed, and subsequently, its updated version, CaloPointFlow II (CPF II) (Schnake et al.
2024).

'The models will not be presented in the order of their historic origins, with the first model
followed by the second. Instead, they will be presented together, with an explicit focus on
the differences and similarities between them.

This chapter is structured as follows: First, we conduct an analysis of the benefits of point
cloud representations in calorimeter simulation surrogate models (Section 8.1). Subsequently,
an overview of the CaloChallenge datasets will be presented ( Section 8.2). The subsequent
sections will describe the architecture (Section 8.3), the training process (Section 8.4), the
sampling process (Section 8.5), and the pre- and post-processing (Sections 8.6 and 8.7). Sec-
tions 8.3 to 8.7 are structured to first outline the common elements in both architectures and
then examine their differences. The chapter will conclude with an evaluation of both models
in comparison to Geant4 and to each other (Section 8.8).

8.1 Point Cloud Representation

In Section 4.4, the process by which Geant4 generates calorimeter showers is explained.
Geant4 uses a stepwise approach to model particle interactions within the material, resulting
in the generation of simulated hits along the particle paths. These simulated hits are then
assigned to volumes and clustered into energy deposits within the active material.

Most generative deep learning models have treated calorimeter showers not as point clouds
but as voxels (Hashemi & Krause 2023). This approach is primarily driven by the fact that
generative models were originally developed with image data in mind, and voxels are a nat-
ural extension of image data. By using voxels, existing machine learning research can be
leveraged.

In the early stages of this work, a progressively growing GAN was developed using voxelized
data. The idea was to fade in new layers in the generator and discriminator while increasing
the dimensionality of the data. However, this approach was not successful. The model was
unable to retain learned features from the early stages of training in the later stages. The
sparsity of the data posed a significant challenge; this sparsity changes dramatically as the
dimensionality is reduced or increased, making it difficult to learn the empty cells. Other
models also struggled with this sparsity (Paganini et al. 2018b). One possible solution to
deal with sparsity is to add uniform noise to all cells without energy and introduce a cutoft
energy in post-processing that sets all cells below that energy to zero. This approach was first
presented by Krause et al. 2022, and their preprocessing method has been adopted by several
models (Amram & Pedro 2023; Buckley et al. 2023; Cresswell et al. 2022; Ernst et al. 2023;
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Krause et al. 2022; Mikuni & Nachman 2022, 2024; Pang et al. 2023).

It is common practice to develop models using toy calorimeters that are small or have a regu-
lar geometry. However, this approach is not directly applicable to real calorimeter detectors,
which often have complex structures. One possible solution is to create a regular cylindrical,
highly granular volume in which the simulated hits can be clustered. This volume can then
be mapped onto the non-regular detector geometry, allowing models to learn this geome-
try. A major advantage of this technique is its versatility: by defining different mappings
between the cylindrical volume and a detector, it can be used for multiple detectors. An
alternative approach used by ATLAS (2018, 2022, 2024) is to divide the calorimeter into

several sections, each assigned a specific model.

In this work, another approach is taken. The calorimeter showers are represented by point
clouds, as defined in Section 5.7. This representation can be achieved by employing either
the simulated hits, which are inherently represented as point clouds, or the clustered energy
entries within calorimeter cells as points. The CaloPointFlow I (Schnake et al. 2022) model
was one of the first models to facilitate this approach, and others have also studied this
method (Acosta et al. 2023; Buhmann, Diefenbacher, Eren, et al. 2023; Buhmann, Gaede,
Kasieczka, et al. 2023; Kich et al. 2023).

Both voxel-based and point cloud-based representations have distinct advantages. The voxel-
based approach allows for the application of existing machine learning techniques, whereas
the point cloud-based approach provides a more precise representation of the sparsity and
irregular geometry.

8.2 Datasets

The datasets used in this chapter are the second and third dataset from the CaloChallenge
(Giannelli et al. 2022a). The first dataset was excluded due to its irregular geometry, which
would have introduced additional complexities in the dequantization process. Furthermore,
the calorimeter in the first dataset has a relatively small number of cells, resulting in low
sparsity of the showers. This characteristic makes our approach less advantageous for this
dataset.

Each dataset consists of 200,000 showers initiated by electrons, divided equally for training
and evaluation purposes. Each data point in the dataset contains the incident energy of the
incoming particle E;;, and the energy values in the cells of the calorimeter, denoted as

Ei,z,a,r- (81)

Here, i is the shower index in the dataset, ranging from 1 to n = 100, 000. The incident
energy is log-uniformly distributed between 1 GeV and 1 TeV.

Datasets 2 (Giannelli et al. 2022b) and 3 (Giannelli et al. 2022¢) are simulated using the
same physical detector, which consists of concentric cylinders with 90 layers of absorber and
sensitive (active) materials, specifically tungsten (W) and silicon (Si), respectively. Each sub-
layer consists of 1.4 mm of W and 0.3 mm of Si, resulting in a total detector depth 0f 153 mm.
'The detector’s inner radius is 80 cm.
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The readout segmentation is determined by the direction of the particle entering the calorime-
ter. This direction defines the z-axis of the cylindrical coordinate system, with the entrance
position in the calorimeter set as the origin (0, 0, 0). The voxels (readout cells) in both datasets
2 and 3 have identical sizes along the z-axis but differ in segmentation in radius (r) and angle

(a).

For the z-axis, the voxel size is 3.4mm, corresponding to two physical layers (W-Si-W-Si).
Considering only the absorber value of the radiation length 1 Xq(W) = 3.504 mm, the z-cell
size equates to 2 X 1.4 mm/3.504 mm = 0.8 X;. In the radial dimension, the cell sizes are
2.325 mm for dataset 3 and 4.65 mm for dataset 2. Approximately, considering the Moliere
radius of tungsten (W), this corresponds to 0.25R,, for dataset 3 and 0.5 R, for dataset
2. The minimum energy threshold for the readout per voxel in datasets 2 and 3 is set to

15.15keV.

The calorimeter geometry of Dataset 2 comprises 45 concentric cylindrical layers stacked
along the direction of particle propagation (z). Each layer is further divided into 16 angular
bins (@) and nine radial bins (r), resulting in a total of 45 X 16 X 9 = 6480 voxels.

Dataset 3 from the CaloChallenge features higher granularity compared to Dataset 2. Each

layer in Dataset 3 consists of 18 radial bins and 50 angular bins, resulting in a total of 45 X
50 X 18 = 40500 voxels.

Figure 8.1: Illustration of the CaloChallenge Coordinate System. A 3D outline of the first four
calorimeter layers is presented in the longitudinal direction z. Next to the calorimeter outline, the
front view one disk in z is presented. Each layer in z is a disk are segmented in the angular direction
@ and in the radial direction r. The segmentation here corresponds to the one find in Dataset 11. A
cartesian coordinate system of the dimensions (x, 1, z) is also presented.
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Figure 8.1 illustrates the coordinate systems of the detectors. Each coordinate of a cell in
the detectors is given as a tuple of discrete cell positions (z,a, ). For both datasets, the
longitudinal index z ranges from 1 to n, = 45. 'The angular index a ranges from 1 to
n, = 16 for Dataset II and n, = 50 for Dataset III. The radial index r ranges from 1 to
n, = 9 for Dataset II and 1, = 18 for Dataset III. The cell positions can also be expressed in
Cartesian coordinates * as

21«
X = rcos( ), (8.2)
na
277 -
y:rsin( T oz). (8.3)

In Figure 8.2, the average shower in all layers along the z-axis is shown, illustrating the
general detector behavior. The corresponding figure for Dataset 2, Figure B.16, is included
in Chapter B. These figures primarily differ in terms of granularity.

8.3 Architecture

'The underlying structure of both CaloPointFlow models is presented in this section, followed
by a discussion of the specific differences between the two versions.

The objective of these models is to generate point clouds with the probability density p(X),
where X € R™" represents the possible showers. The models discussed here are based on the
point flow model described in Section 6.3.

'The basic elements of the architecture are illustrated in Figures 8.5 and 8.6: Encoder, Latent-
Flow, PointFlow, and CondFlow. The training process requires encoding the entire shower
X using an encoder q(z|X), resulting in the latent representation z. The encoder is based
on the DeepSets architecture described in Section 5.8. It uses two Multi-Layer Perceptron
(MLP)s for its function. The first MLP maps each point to a 1024-dimensional space. The
dimensions of the layers in this MLP are shown in Table 8.1. The second MLP maps the
averaged high-dimensional point representation to a 128-dimensional latent space z. The
dimensions of the layers in this MLP are shown in Table 8.2. The latent representation is
mapped to two 128-dimensional variables, it and o. The latent z is then sampled using the
reparametrization trick, as described in Section 6.2.

Table 8.1: Dimensions of the layers of the MLPs used point-wise by Encoder.

Layer ‘Input 1 2 3  Latent
Dimensions‘ 4 64 128 512 1024

The LatentFlow model is introduced to capture the distribution p(z|#y;, Equm, Ein) of the
latent representation z conditioned on the number of hits 1y, the total energy E,,, and
the incident energy E;,. The LatentFlow is modeled as a Coupling Flow, as detailed in Sec-
tion 6.1.3, and utilizes eight transforms. In each transform, a randomly selected half of the

'The CaloChallenge utilizes the terms 1 and ¢ to denote the Cartesian coordinates. However, I have chosen to
refrain from using this nomenclature to prevent any potential confusion between 1 and the pseudorapidity.
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Figure 8.2: The average energy deposition of showers in all layers of z for Dataset 3 is illustrated. The
figure has been reproduced with the code provided by the CaloChallenge (Giannelli et al. 2022a).
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Table 8.2: Dimensions of the layers of the MLPs used globally by Encoder.

Layer ‘ Input 1 2 Latent
Dimensions | 1024 512 512 128

features is transformed. The transforms employ monotonic RQS, discussed in Section 6.1.1,
as their univariate functions. Each RQS transform consists of eight knots per dimension,
spread over the interval between -5 and 5. The parameters of these knots are determined by
MLPs. These MLP take as input all non-transformed features along with 1y, Eq.pm, and
E;,. Each MLP comprises three hidden layers, with their dimensions listed in Table 8.3.

Table 8.3: Dimensions of the layers of the MLPs used in the LatentFlow that provide the RQS

parameters.

Layer | Input 1 2 3 RQS param.
Dimensions | 67 512 512 512 1472

For the generation process, the number of hits 1, and the total energy E,,, must be known.
Therefore, an additional normalizing flow, termed CondFlow, is incorporated to model the
distribution p(1y,;es, EqumlEin), as illustrated in Figure 8.6. The CondFlow is structured as a
coupling flow and utilizes twelve transforms. Each transform employs a monotonic RQS as
its univariate function. In every transform, one of the variables is randomly selected for trans-
formation. The conditional MLPs take as input the non-transformed variable along with the
incident energy E;,. Each MLP consists of three hidden layers, with their dimensions listed
in Table 8.4.

Table 8.4: Dimensions of the layers of the MLPs used in the CondFlow that provide the RQS

parameters.

Layer ‘ Input 1 2 3 RQS param.
Dimensions ‘ 20r3 128 128 128 (2o0r1)-23

The decoder differs between the two models. In both models, it is based on a NF architecture
and is therefore referred to as the PointFlow. The PointFlow represents the distribution
P(X|Z, Mhitss Esuml Ein)'

8.3.1 CaloPointFlow I

In the point-wise NF PointFlow of the CaloPointFlow I architecture, all points are assumed
to be sampled i.i.d.,

Mhits

P(X|Zr Mhitss Esum/ Ein) = H P(xi|zr Mhitss Esum/ Ein) : (84)
i=1

This assumption significantly simplifies the modeling process, as it removes the need to
model interactions between points. However, this assumption does not fully align with real-
ity. For example, if one point has high energy, it influences the probability of other points in
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the shower also having high energy. Despite this limitation, the effectiveness of this approach
was investigated.

As discussed in Section 8.7, an additional issue arises from the lack of information exchange
between points. Since the points do not have knowledge of each other’s coordinates, multiple
points may end up having identical coordinates.

'The PointFlow is structured as a coupling flow, where each point is transformed individually
through a series of twelve distinct transformations. Each transformation utilizes monotonic
RQS as univariate functions with eight knots positioned between -5 and 5, and randomly
transforms two of the four variables associated with each point. The parameters of these
transformations are determined by MLPs. The dimensions of each MLPs are listed in Ta-
ble 8.5. The input to each MLP network includes the remaining two features of each point,
the latent representation z, fy,;, Equm, and Ej,.

Table 8.5: Dimensions of the layers of the MLPs used in the PointFlow of the CPF I architecture
that provide the RQS parameters.

Layer ‘ Input 1 2 3 RQS param.
Dimensions‘ 133 128 128 128 46

8.3.2 CaloPointFlow II

As previously described, one limitation of the PointFlow model for the intended application
is its assumption that the points are i.i.d.. To accurately model the physical processes, an
architectural design is required that does not impose this constraint and allows for informa-
tion exchange among the points as they undergo transformation. To address this challenge,

a NF architecture called DeepSetFlow (DSF) is proposed.

To facilitate the exchange of information, a Deep Sets architecture is employed within a
Coupling Flow. Each coupling layer within the DSF can be divided into two sections. The
first section aggregates information, as illustrated in Figure 8.3. The second section serves as
an information dissemination step, as shown in Figure 8.4.
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Figure 8.3: Illustration of the DeepSetFlow network aggregation step.
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Figure 8.4: Illustration of the DeepSetFlow network dissemination step.

In this section, the architecture will be described along with the figures. The PointFlow
model employs a point-wise CF that divides the features into two equal parts, with one half
undergoing transformation based on the other half. To achieve permutation equivariance,
each point must be treated identically. Consequently, half of the features of each point—the
identical features for each point—are selected to transform the other half.

A Deep Sets approach is employed, whereby the features that are not transformed are mapped
to a higher-dimensional space, as represented by the map box. The information is then aggre-
gated, as indicated by the aggr circle, through the application of a mean pooling operation
and further transformation of the aggregated features.

Table 8.6: Dimensions of the layers of the MLP used for the map of each point to a high-dimensional
space.

Layer ‘ Input 1 2 high-dim. space
Dimensions | 2 64 128 512

Specifically, for the CPF II model, a map is chosen consisting of a MLP with the struc-

74



8.4 TRAINING PROCESS

ture outlined in Table 8.6. 'The further transformation is also performed by a MLP, with
dimensions outlined in Table 8.7.

Table 8.7: Dimensions of the layers of the MLP used for further transformation in the aggr step of
the DSF.

Layer ‘ Input 1 aggr. space
Dimensions ‘ 512 256 128

Subsequently, the objective is to disseminate the information. Here, the approach is similar
to that employed with the PointFlow, where a point-wise CF is applied, symbolized by
the CF box. However, what distinguishes this approach is that the CF also receives the
aggregated information as an input, enabling an exchange of information between the points
during the transformation. The pooled representation, combined with the non-transformed
features and the conditional variables, serves as the input to the final MLP, which provides
the parameters for the transformation in the CF architecture. The dimensions of this MLP
are listed in Table 8.8.

Table 8.8: Dimensions of the layers of the MLPs used in the PointFlow of the CPF II architecture
that provide the RQS parameters.

Layer ‘ Input 1 2 3 RQS param.
Dimensions‘ 133 128 128 128 46

Graphically, the architecture resembles a central node that gathers information from all
nodes, distributes the information evenly, and is linear in the number of points.

'The DSF, the PointFlow in the CPF II architecture, comprises twelve transformations, each
employing a monotonic RQS univariate transformation with eight knots positioned between

-5 and +5.

The new flow architecture is capable of capturing the point-to-point correlations. This ap-
proach shares similarities with previous work by Buhmann, Kasieczka, and Thaler 2023,
who constructed the EPiC-GAN, a model that applied Deep Sets to create a permutation-
equivariant generative model. Mikuni et al. 2023 also employed a similar technique of infor-
mation aggregation within a diffusion model to learn point clouds.

In another instance, Kich and Melzer-Pellmann 2023 developed a model that combines all
information into a single node, referred to as the mean field. Their model’s main distinguish-
ing factor from previous ones is the use of cross-attention to update the information of the
mean field.

Finally, Liu et al. 2019 crafted a Graph NF. In creating a coupling layer for graphs, they

suggested the same feature-splitting across points as in the current model.
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Figure 8.5: A schematic view of the models training setup. The Encoder encodes the points into the
latent representation z. The LatentFlow is optimized to learn z, while the PointFlow is optimized to
learn the distribution of points x; conditioned on z.

8.4 Training Process

The data flow during the training process is visualized in Figure 8.5. The loss function of
the CaloPointFlow models is based on the loss function derived for the PointFlow model,
as detailed in Section 6.3. The loss function for the CaloPointFlow models is given by

&= <10g P(X|Z/ Rhitss Esum/ Ein)>q + <10g p(zlnhits/ Esum/ Ein)>q

Lrecon gprior (8 . 5)
+ <10g p(nhitS/ EsumlEin)> _%(Q(Zp())
Z,

cond

The loss function consists of four terms. The first term, £, represents the reconstruction
error of the shower X. Minimizing ..., is equivalent to generating hits of the shower with
a high likelihood. The second term, -Z},;;q, is the expectation value of the prior distribution
conforming to the approximated distribution of the encoder. Minimizing .2 ;.. ensures

that the latent vector z is generated with a high probability. The third comporll)ent, Z ond>
represents the loss of the CondFlow. Although the CondFlow could be trained separately,
it is trained alongside the entire model. The final term, /7 (4(z|X)), represents the entropy of
the encoded values and acts as a regularization term on the latent distribution. The entropy

is calculated as described in Equation (6.28).

In each training step, the data were preprocessed as described in Section 8.6. The entire point
cloud was encoded in z. The entropy and likelihoods of all flows were then computed. The
parameters of the models were updated using the Adam optimizer (Kingma & Ba 2014).
'The models were trained for 100 epochs.

The training process is identical for both models.
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Figure 8.6: A schematic view of the models sampling setup. First, the conditional variables E
and 11y, are generated. Then, the LatentFlow generates the latent representation z, which is used to
generate the points with the PoinsFlow.

8.5 Sampling Process

'The sampling process for the CaloPointFlow models is illustrated in Figure 8.6. Initially, the
sum of energy E, and the number of hits 71y,; are sampled by the CondFlow. Subsequently,
the latent variable z is sampled by the LatentFlow. The PointFlow then generates the shower
X, which consists of 1y, points, as determined by the CondFlow. Each generated point
undergoes post-processing, as described in Section 8.7.

The sampling process is identical for both models.

8.6 Pre-Processing

In the pre-processing stage, the dataset is formatted specifically for the models. As previously
mentioned, the provided voxelized dataset is converted into a point cloud dataset. Each
shower is represented by a combination of energy values e and coordinates (7, &, z), with
all points for which e > 0 included in the point cloud. Consequently, the resulting data
structure comprises lists of four-dimensional points of varying cardinalities, depending on
the number of hits #;,, in the shower.

The transformation of coordinates differs between the models discussed in subsequent sec-
tions. However, the energy transformation and conditional transformation are consistent
across both models.

Initially, each energy value e is divided by the total energy to obtain fractions, yielding values
between zero and one. These values are then min-max scaled and subjected to a logit trans-
formation, which spreads the values over the interval (—co, 00). This processing follows the

approach described by Krause and Shih 2021.

For the conditional variables, 1y, is dequantized by adding uniformly sampled noise be-
tween zero and one. These values are then divided by the square root of the incident energy,
based on the observation that the number of hits scales with the square root of the inci-
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dent energy. Subsequently, a log transformation is applied. Finally, the number of hits is
normalized to achieve a mean of zero and a standard deviation of one.

A similar transformation is applied to E,,. Initially, it is divided by E;;, followed by a log
transformation and normalization. The incident energy E;, is log-transformed and normal-
ized.

8.6.1 CaloPointFlow I

0.38

0.26

0.17 minmax(x + €) logit(ut)
P ——
0.11 [ minmax ()] sigmoid(y)

0.08

Figure 8.7: Visualization of an example for the classical dequantization process.

The generative models developed in Chapter 6 were primarily designed for continuous distri-
butions or distributions in continuous spaces. However, the coordinate positions in (z, a, 1)
are discrete values. The models presented thus far are not suitable for learning discrete values,
as they would treat them as delta distributions in space, making it challenging to learn the
different volumes of the delta peaks. Therefore, a strategy is required to effectively handle
these discrete values.

The strategy employed is referred to in the literature as dequantization (Dinh et al. 2017;
Salimans et al. 2017; Uria et al. 2014).

'The dequantization and its inverse process are visualized in Figure 8.7. The objective is to
reversibly lift the discrete distribution to one defined on a continuous space. To illustrate,

consider a discrete distribution X with the indices 1 to 5. For this example, assume that the
Probability Mass Function (PMF) is

p(x;) = m; = [0.38,0.26,0.17,0.11,0.08]. (8.6)

The first step in dequantization is to add uniformly distributed noise, e ~ U(0,1) (Uria et al.
2014). Next, the values are min-max scaled to constrain them within [0, 1]. To expand them
to the full space, the logit transformation is applied (Dinh et al. 2017) to the values, resulting
in Y, thus transforming the support from the interval [0,1] to (=00, c0).

'The continuous distribution Y can then be learned using one of the models described above.
For generation, a sample from Y is obtained from the model, and the dequantization pro-
cess is inverted by first applying the sigmoid transformation, which is the inverse of the
logit transformation, followed by inverting the min-max scaling, and finally applying a floor
operation. The dequantization and its inverse process are visualized in Figure 8.7.
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One issue that arises is that if the probability masses of different indices differ, this leads to
different heights in the resulting distribution hypercubes, resulting in a non-smooth distri-
bution. This makes it difficult for the model to learn these discontinuous areas. To address
this, Ho et al. 2019 introduced variational dequantization. Instead of assigning uniform
noise, this technique incorporates an additional normalizing flow that learns and applies
structured, non-uniform noise to the data, effectively increasing the modeling complexity.

For the pre-processing stage of the CaloPointFlow I model, the coordinate positions in
(z,a,r) are dequantized as described above. Uniform noise u ~ U(0,1) is added to each
dimension of the discrete index value, and the values are divided by the size of the cells in
that dimension. This ensures that all values fall between zero and one.

In initial attempts, difficulties were encountered in modeling the symmetry around a. This
was due to the fact that, in the datasets, one value of « is assigned to the first index, and the
last index is adjacent to the first. This posed a challenge for the dequantization strategy, as
applying the logit transformation would result in the last index being spread to +co and the
first index being spread to —co.

To address this issue in the modeling process, a coordinate transformation is performed
from the dequantized (&, 7) coordinates in polar form to Cartesian coordinates. The values
are then shifted and scaled as follows:

/ (8.7)

(8.8)

Subsequently, a logit transformation is applied, and the values are normalized.

8.6.2 CaloPointFlow II

In the pre-processing stage for the CaloPointFlow II model, the coordinates are not trans-
formed to Cartesian form. Instead, the rotational symmetry of the calorimeter is leveraged,
and the points are generated without an a-component. Therefore, in the pre-processing step,
the a-component of each shower is removed, as explained in Section 8.7.2.

For the remaining coordinates, a newly developed dequantization strategy called CDF-Dequantization
is employed. This method was developed for this thesis and is published in Schnake et al.
2024.

In typical circumstances, normalizing flows transform complex distributions into a normal
distribution. The proposed approach here is to dequantize all discrete distributions into a
normal distribution, ensuring that the marginal distributions are inherently aligned while
allowing the model to learn correlations between features.

In Section 6.1, the transformation of one-dimensional distributions was discussed. Specifi-
cally, how a given distribution A can be transformed into another distribution B. This trans-
formation is achieved by applying the CDF of A, followed by the inverse CDF of B, Fgl oF,.
For a bijective mapping between two distributions, access to both the CDF and inverse CDF
of each distribution is required.
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Figure 8.8: Visualization of an example for the CDF-Dequantization process.

The sigmoid and logit functions are the CDF and inverse CDF of a logistic distribution,
respectively. However, it is evident from Figure 8.9 that the logistic and normal distributions
exhibit notable differences in their tails.

1011 — 1 ]
— Logistic(a=0,p=1)

— Normal(p=0,6=1)

-10 -5 0 5 10

Figure 8.9: Comparison of the logarithmic declines of the logistic and normal distributions.

'The CDF of a standard normal distribution is given by

1+ erf(%]], (8.9)

where erf(x) is the error function. Conversely, the quantile function of the standard normal
distribution, often referred to as the probit function, is

1
P///(X)ZE

FA(y) = V2erf 12y - 1), (8.10)
where erf ! (x) is the inverse error function.
By substituting the standard CDF and probit function with the sigmoid and logit combina-
tion, U(0,1) can be directly transformed into the normal distribution. The remaining task is

to transform the discrete distribution into U(0,1).

The inverse process will be addressed initially, which transforms U(0, 1) into a discrete dis-
tribution. If the PMF is available, the interval [0, 1] can be divided into discrete intervals
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based on the PMF, and each sampled value u ~ U(0,1) can be discretized according to the
index of the interval it falls into. This forms a surjective mapping where intervals in [0, 1] are
associated with specific discrete values. However, this mapping is not injective and therefore
not bijective or directly invertible.

Nielsen et al. 2020 demonstrated how VAEs, normalizing flows, and surjective mappings can
be integrated into a unified framework. They showed that surjective mappings can be used if
a sufficient stochastic inverse is found. Within this framework, Nielsen et al. demonstrated
that adding uniform noise can be interpreted as a stochastic inverse of the floor operation,
denoted as | x]. This implies that p(x|z) = 0, |,). Its stochastic inverse, q(z|x), has support in
FBx)={x+u|uel0,1]].

In our specific case, the PMF can be described as p(x;|u) = 6(Fx(x;) < u < Fx(x;;1)), which
is a delta function that triggers if u is located in the interval [Fy(x;), Fx(x;;1)]. Its stochastic
inverse, q(ulx;), has support over

B =

ulFx(x;) < u < Fx(xip1)}

Fx(x;) +ul0 < u < Fx(x;41) — Fx(x)}
Fx(x;) + ul0 < u < p;}

Fx(x;) +u-pilu € [0,1]}

(8.11)

— —— —— ——

Therefore, the stochastic mapping can be composed as Px(x;) = Fx(x;) + u - p;, where
u~ Uu(,1).

If all p; are available, this transformation provides a mapping from discrete data to a uniform
distribution. The values of p; can be approximated by counting the frequencies of x; in the
data, thereby obtaining a straightforward approximation.

In conclusion, a relatively simple transformation has been devised to map discrete data to a
normal distribution. This considerably simplifies the task of the normalizing flow, which is
now solely responsible for learning the correlations in the data, rather than the general shape.
For a visual representation, refer to Figure 8.8.

'The algorithms for both directions of the CDF-Dequantization are provided below.

Algorithm 1 Forward Transformation (X — /)
for x; € X do
sample u ~ U(0,1)
y; = F}(CDF(x;) + PDF(x;) - u)
end for

Return Y = {y; ... y,,}

Algorithm 2 Inverse Transformation (/" — X)
fory; € Ydo
up = F (y;)
x; = find first CDF > u;
end for
Return X = {x; ... x,,}
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8.7 Post-Processing

In the post-processing stage, the generated data are transformed back to the voxelized format.
Initially, the values sampled by the CondFlow are transformed by reversing the normaliza-
tion and applying the exponential function. Specifically, E,, is multiplied by E;, and 71y
is multiplied by v/E;,. The number of hits 1y, is discretized by applying the floor operation.

The post-processing of the points is specific to each individual model and is described in
detail in the corresponding sections. Generally, the energy values are first unnormalized,
followed by the application of a sigmoid function. The min-max scaling is then reverted,
and the point clouds are transformed back into voxelized datasets. For each point, the voxel
at the corresponding coordinate is assigned the point’s energy value, while all other voxels
are set to zero energy.

One significant challenge of the CaloPointFlow architecture is that the coordinates are not
unique, allowing multiple points to have the same coordinates. This issue is a fundamental
limitation of the point cloud approach.

In cases where multiple points have the same coordinate, one point is randomly selected, and
all others are discarded. Although this strategy reduces the number of hits compared to the
generated points, it addresses the problem to some extent. After assigning the energy values
to the voxels, each value is scaled by E,,. This scaling ensures that the total energy remains
consistent despite the discarding of points.

8.7.1  CaloPointFlow I

In the post-processing stage, the coordinate values are initially unnormalized and subse-
quently transformed using a sigmoid function. The Cartesian coordinates are then converted
back to polar coordinates as defined in Equations (8.2) and (8.3):

x=2x" -1, (8.12)

=2y -1, (8.13)

o = Fean2, ) (8.14)
21

r=.Jy? + 22 (8.15)

'The coordinates (7, &, z) are scaled in proportion to the dimensions of the dataset. A floor
operation is then applied to each dimension to discretize the values.

8.7.2 CaloPointFlow II

In the post-processing stage for CPF II, the generated z and r values of the dataset are
quantized as explained in Section 8.6.2. One of the main issues with the first model was
its inability to enforce the constraint of only one hit per cell, due to PointFlow’s lack of
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awareness of the positions of other points. This issue is mitigated by allowing point-to-point
information exchange within the DSF architecture.

To simplify the model’s task, the constraint is relaxed by considering the showers to be sym-
metric around the z-axis in the a coordinates, resulting in a flat distribution in . Ignoring
any potential inner shower structure, random positions are assigned in a. If there are more
points than available cells, these points are discarded. This allows for up to 16 points with
the same (z, 7) coordinates in Dataset II and up to 50 in Dataset III.

'This approach confines the model to datasets with rotational symmetry, without accounting
for any inner a distribution. While this constraint is acceptable for electron showers due
to their homogeneity, it would not be suitable for hadronic showers. The improvements
resulting from this approach will be discussed in the next section.

8.8 Evaluation

The evaluation of surrogate models in particle physics is a task of considerable complexity
(Butter et al. 2019; Das et al. 2023; Kansal et al. 2023). This inherent complexity is also
evident in calorimeter surrogate models, where no single metric can sufficiently assess model
performance. In real calorimeters employed by experiments, performance evaluation often
relies on high-level variables such as jet variables and b-tagging performances, which assist in
evaluating the impact on analyses (ATLAS 2022). However, for the CaloChallenge datasets,
access to such variables is limited, necessitating the estimation of performance based on more
general criteria.

To evaluate the performance of the CPF models, a set of metrics has been defined. Specifi-
cally, the simulated showers generated by Geant4 are compared to those generated by both
CaloPointFlow models in order to assess the quality of the CPF samples. The objective is
for the CPF samples to be indistinguishable from the Geant4 samples.

All models are inherently uncertain. In the absence of direct access to these uncertainties,
the bootstrapping method (Efron 1979) is employed to estimate errors. Bootstrapping is
a statistical method used to estimate the distribution of a metric by resampling the data
with replacement, assuming the dataset is representative of the entire distribution. Multiple
bootstrap samples are generated from the original dataset, each created by randomly selecting
data points with replacement.

'The generated and simulated datasets each consist of 100,000 showers. For each simulation
model, 1,000 bootstrapped datasets are sampled, each containing 100,000 showers. The aver-
age value and standard deviation for the considered metrics are then measured and reported.
When dealing with comparison metrics calculated on two datasets, a combination of 1,000
bootstrapped samples is used to obtain the values for the metrics.

To estimate the internal uncertainty of the Geant4 simulation and to identify potential av-
enues for improvement, a comparison of 1,000 combinations of Geant4 bootstrap samples is
conducted. This approach allows for an estimate of the internal uncertainty associated with
the finite Geant4 sample.
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One of the difference measures used in the literature is the Normalized Difference (ND):

ND(v,, vp) = (8.16)

+Ub

which is a dimensionless quantity used to measure the relative difference between two values,
v, and vy, It is particularly useful when values have different scales, as is often the case with
the quantities investigated. The ND is employed in a variety of disciplines, including remote

sensing and ecology (Robinson et al. 2017).

The use of the ND is preferred over the relative difference (v, — v,)/v}, due to the absence of
true values in our simulations, making a symmetric difference measure a more suitable choice.
Additionally, ratios such as v,/v;, are avoided, as they introduce different scaling for values
below and above 1. The ND is used in the following sections for comparing histograms of
models and data.

To ascertain the discrepancy between two given histograms, a x? test is defined to compare
two histograms (Cramér 1946; Gagunashvili 2007; Pearson 1904). The test hypothesis is that
of homogeneity. The two histograms, with entries /1y ; and hj ;, have indices i representing
the different bins. The total number of entries are H; = 2?:1 hy;and H, = 2?:1 hy ; for n
different bins. If both histograms originate from the same distribution with frequencies p;,
the best likelihood estimator of p; is

s _ ity
Pi H] + HZ '
Therefore, one can define:
X2 = i (hy,; - Hipy)? + i (hy,i — H,p)?
o Hip = Hp
1 E Hy(hy,; - Hle‘) + Hy(hy,; — Hyp;)?
HlHZ i=1 ﬁi
1 zn: H2H2 , — 2H, Hyhy iy + HEH2, (8.17)
- HH, & hyi+ hy,

i (Hahy,i - thz,i)2
" HiH, hyi+hy,

i=

For our purposes, only histograms with the same cardinality, H; = Hj, are compared. In this
case, Equation (8.17) simplifies to:

n
(h,i = i)
x2 =\ LT (8.18)
l; hy;i+hy;

X2 follows approximately a x2_; distribution (Cramér 1946) since the total number of entries
is fixed. Equation (8.18) is also known as the triangular discrimination or harmonic mean
divergence in the statistics literature (Topsoe 2000). In some high-energy physics literature,
it is referred to as the Separation Power (Diefenbacher et al. 2020; Nachman 2016). 'This
measure has the advantage of being a distance measure ranging between 0 and 1, where 1
indicates no overlap between the histograms, and 0 denotes total agreement.
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Figure 8.10: Cell energy distributions for Dataset II (left) and Dataset I11 (right) comparing Geant4,
CPF 1 and CPF I models. The upper graphs show the normalized entries of the cell energy values,
binned logarithmically. The entries are normalized to sum to 1. The middle graphs show the same
data as the upper graphs, but with a logarithmic scale on the y-axis. The lower graphs show the ND
between the models andGeant4. The red band shows the in-sample uncertainty of Geant4.

8.8.1 Cell Energy

The description of each calorimeter shower is defined in terms of the energy values in the
cells of the calorimeter, denoted as

Ei,z,a,r- (819)

Here, i represents the shower index in the dataset, ranging from 1 to n = 100, 000. For both

datasets, the longitudinal index z ranges from 1 to 1, = 45. The angular index & ranges from

1 to 1, = 16 for Dataset II and 1, = 50 for Dataset III. The radial index 7 ranges from 1 to
+ =9 for Dataset 11 and #, = 18 for Dataset I11.

The marginal distribution of all E; , , , values is illustrated in Figure 8.10. The values are
binned between the cutoff energy of E_;, = 1515keV and the upper limits, which are
defined as 2500 MeV for Dataset II and 800 MeV for Dataset I11. These bounds are set
such that approximately 99.99% of all energy values fall below them. An overflow bin is
included to capture all energy values above these thresholds. To evaluate the performance
of the CPF models, a set of metrics has been established. A logarithmic binning approach
is employed to accommodate the extensive range of values, with the entries subsequently
normalized so that the sum of all 100 bins is equal to 1. The left side of the figure presents
the results for Dataset 11, while the right side shows the results for Dataset I11. Given the
considerable number of entries, the error bars on the normalized entries are negligible and
not visible.

For CPF I, the values are shifted with respect to Geant4, which is not the case for CPF 1L
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This discrepancy can be attributed to the occurrence of double hits, which will be discussed in
detail in Section 8.8.3. CPF II accurately models the cutoff energy due to the displacement
of energy values, ensuring that no values fall below the cutoff. Additionally, CPF II has
significantly fewer entries in the overflow bin compared to CPF 1. The normalized difference
band for Geant4 data is very narrow, and the CPF values do not achieve optimal agreement.
This is further evidenced by the X? in Table 8.9, where CPF II results are two orders of
magnitude higher than the possible mean values from Geant4, while CPF I results are as
much as four orders of magnitude away.

Tuble 8.9: X2 for all three models in both datasets of the histograms shown in Figure 8.10.

Dataset | Geant4 CPFI  CPFII

1I 026 £016 2150+20 594+1.3
III 018+014 2340+20 25.7+0.38

8.8.2 Relative Energy Sum
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Figure 8.11: Relative energy sum distributions for Dataset II (left) and Dataset I11 (right) comparing
Geant4, CPF 1, and CPF 1l models. The upper graphs show the normalized entries of the energy
sum, linearly binned. The entries are normalized so that the sum of all bins equals 1. The middle
graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis. The
lower graphs show the ND between the models and Geant4. The red band shows the in-sample
uncertainty of Geant4.

'The sum of energy E; iy, is calculated by summing over the indices:

My Ny Ny

Ei,sum = 2 2 2 Ei,z,a,r' (820)

z=1a=1r=1
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In Figure 8.11, a histogram of the energy sum divided by the incident energy is shown:

E i,sum

= (8.21)

i,in

This division is performed because the energy sum scales approximately linearly with the
incident energy. As a result, the resulting quantity is largely independent of the incident
energy.

The histograms for both Dataset II (left) and Dataset III (right) in Figure 8.11 demonstrate
that the energy sums are consistent between the datasets, differing only due to statistical
fluctuations resulting from their different granularity. Since both CPF I and CPF II use a
CondFlow with identical architecture, no significant difterences are observed between them.

Overall, the histograms do not exhibit substantial discrepancies between the Geant4 simu-
lations and the CPF models.

Upon examining the ND, all values from the CPF models have uncertainties that overlap
with the uncertainty band of Geant4, as shown in the lower halves of the figures. In Ta-
ble 8.10, the X? for the histograms in Figure 8.11 is presented. The CPF models exhibit a
X? nearly an order of magnitude greater than that of the Geant4 dataset, suggesting poten-
tial areas for improvement. The limitations in generation quality are attributed to the dataset
size.

Tuable 8.10: X? for all three models in both datasets of the histograms shown in Figure 8.11.

Dataset | Geant4 ~ CPFI  CPFII

I 303+77 208+18 214+19
III 305+8.0 229+20 198+18

8.8.3 Number of Hits

'The number of hits 7; ;s quantifies the number of voxels in the calorimeter with an energy
value greater than zero. Formally, it is defined as

hit(Ei,z,a,r) — {3) Zsfi,z,a,r > Emin (822)
n, n, "y

N hits = Z E E hit(Ei,z,a,r) . (823)
z=1a=1r=1

Therefore, max(#; 1,;¢) is equal to the total number of voxels in the calorimeter dataset.

Figure 8.12 presents the distribution of 11, The histogram bins are linearly spaced between
0 and the 99.99th percentile of the distribution, with an additional overflow bin capturing
values above this threshold. The distribution of 1y, peaks at a low value for both datasets
and then decreases until reaching an upper limit of approximately 5200 for Dataset II and
17000 for Dataset III. There are very few events with values above these limits.
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Figure 8.12: Number of hits distributions for Dataset II (left) and Dataset III (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show the normalized entries of the number
of hits, linearly binned. The entries are normalized so that the sum of all bins equals 1. The middle
graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis. The
lower graphs show the ND between the models and Geant4. The red band shows the in-sample
uncertainty of Geant4.

Both models reproduce the general shape of the distribution; however, CPF I does not
achieve the higher values observed in the Geant4 data. Similarly, CPF II underestimates
the number of hits for Dataset I, although it performs better with the larger Dataset I11.
This discrepancy arises from the occurrence of double hits in the CPF models, where mul-
tiple points share the same coordinate. For both models, only one value per coordinate is
retained, and all other points with the same coordinate are discarded, resulting in a lower
number of hits.

In contrast, the CPF II model generates only the z and r coordinates and assigns the & in-
dex randomly, allowing more possibilities and reducing the likelihood of discarding points.
Points are discarded only when 7,, indices with the same (z, r) coordinates are reached. Since
1, is significantly higher in Dataset 111, fewer points are discarded. In addition, CPF Il incor-
porates a point-to-point information exchange mechanism, allowing points to communicate
their positions and align accordingly, which potentially improves model performance.

Tuble 8.11: X? for all three models in both datasets of the histograms shown in Figure 8.12.

Dataset | Geant4 CPFI  CPFII

1I 98.2+13.7 18800200 2720+70
III 98.6+13.9 7830+100 304 £33
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Point cloud models are optimal for sparse data, as expected from high granularity calorime-
ters. Dataset I, however, is not sparse and therefore does not represent a typical example.
'The CPF 11 model benefits from this difference, resulting in clearly improved performance.

'The number of hits also provides insight into the observed shift in the cell energy distribution.
Both the number of points generated and the energy sum of the shower are produced by
CondFlow, and during post-processing, all points are scaled to the energy sum. A reduction
in the number of points results in excessive scaling of the remaining points, thereby altering
the fractional distribution and explaining the shift in the energy distribution.

8.8.4 Average Energy Sum
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Figure 8.13: Average energy in each longitudinal layer z for Dataset II (left) and Dataset I1I (right)
comparing Geant4, CPF 1, and CPF II models. The upper graphs show the average energy values in
MeV. The middle graphs present the same data as the upper graphs but with a logarithmic scale on
the y-axis. The lower graphs show the ND between the models and Geant4. The red band shows the

in-sample uncertainty of Geant4.

The total energy in a longitudinal layer z is defined as

My Ty

Eio= Y D Eizar (8.24)

a=1r=1

The average energy in a layer z is then computed as

S|

n
E, ==Y E.. (8.25)
i=1
The average energy sum in each longitudinal layer z for both datasets is presented in Fig-
ure 8.13. The average shower energies closely approximate a gamma distribution, and both
CPF models follow this distribution pattern. However, CPF 1 shows a greater deviation
from Geant4 compared to CPF 11, with this discrepancy becoming more pronounced in the
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second dataset. This deviation cannot be sufficiently explained by the uncertainties on the
average energies.

When examining the ND values, it is evident that CPF 1I performs significantly better in
the first and last indices, which correspond to regions of lower average energies. In the high-
energy region, specifically between indices 11 and 16, CPF 11 values align more closely with
the Geant4 error band. This suggests that the second model more accurately captures the
overall average longitudinal energy distribution.

'The improved performance of CPF 11 is attributed to the utilization of the CDF-Dequantization
method, as described in Section 8.6.2. This method facilitates a more precise modeling of
the different indices within the datasets.
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Figure §.14: Average energy in each angular layer  for Dataset 11 (left) and Dataset 111 (right)
comparing Geant4, CPF 1, and CPF II models. The upper graphs show the average energy values in
MeV. The middle graphs present the same data as the upper graphs but with a logarithmic scale on
the y-axis. The lower graphs show the ND between the models and Geant4. The red band shows the

in-sample uncertainty of Geant4.

The total energy in each angular layer « is defined as

This quantity for both datasets is presented in Figure 8.14. Since the showers should be in-
variant under rotations around a, the energy distribution is expected to be flat. Both models
exhibit this feature. Originally, the CPF I model encountered issues in modeling, which
necessitated switching to Cartesian coordinates. As observed, the distributions now match.
For the CPF II model, & coordinates are randomly assigned, ensuring a flat distribution by
construction. For Dataset II, the ND plots indicate a slight shift in the generated data. In
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Figure 8.15: Average energy in each radial layer r for Dataset II (left) and Dataset I1I (right) com-
paring Geant4, CPF 1, and CPF 1I models. The upper graphs show the average energy values in
MeV. The middle graphs present the same data as the upper graphs but with a logarithmic scale on
the y-axis. The lower graphs show the ND between the models and Geant4. The red band shows the

in-sample uncertainty of Geant4.

the third dataset, there is nearly perfect agreement between the averages and uncertainty in
ND, leaving minimal room for improvement.

The total energy in each radial layer 7 is defined as

n; Mg

Ei,r = 2 2 Ei,z,a,r-

z=1a=1

In Figure 8.15, the average energy sum in the radial layers 7 is presented as

n
S,
i=1

The energy distribution decreases with increasing r, and both CPF models capture this trend.
The CPF I model exhibits lower energy in the first index and an overshoot at the higher
indices, which is clearly visible in the ND plots and is even more pronounced in the third
dataset. For the CPF II model, only minor discrepancies are observed in the first index,
with most ND values aligning well with the Geant4 data. This demonstrates the improved
performance due to the CDF-Dequantization method.

E =

S |-

8.8.5 Energy Sum Distribution

'The analysis of the energy sums in each index (z, @, and 7) has thus far focused exclusively on
the mean values, leaving the full marginal distribution of E,, E,,, and E, unexplored. Each
index value is associated with a distinct marginal energy distribution, and it is imperative to
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evaluate the accuracy with which these marginal distributions are modeled. Although the
individual histograms of these marginals will not be analyzed or presented in this section,
they will be provided in Chapter B for reference.

Instead, the X? is calculated for each histogram, and the results are combined into a single
graph. The binning for each histogram consists of 50 logarithmically spaced bins covering the
interval between the 0.01th percentile and the 99.99th percentile, with additional underflow
and overflow bins beyond these limits. Uncertainty is estimated by calculating the X? over
1,000 bootstrapped samples. For instance, in Figure 8.16, a total of 2 X 3 X 45 X 1,000 =
270, 000 histograms were computed. A lower separation power indicates better performance.
To establish a lower bound for the X?, it is computed between different bootstrapped Geant4
histograms, which helps quantify the potential for further improvement.
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Figure 8.16: X2 of the energy histograms in each longitudinal layer z for Dataset 11 (left) and Dataset
111 (right). The histograms used to calculate the separation power are shown in Figures B.4 to B.6 for
Dataset 11 and Figures B.7 to B.9 for Dataset I11. The values for both CPF models are shown as blue
and dark gray points, respectively, with error bars indicating the standard deviation of the separation
power. The red error band illustrates the uncertainty in the Geant4 data.

In Figure 8.16, the separation power in the longitudinal layer z is presented. Overall, CPF 11
exhibits a lower separation power than CPF I, indicating better performance. By examining
the averages in Figure 8.13, better separation is expected in the central region with higher
energy values than in the tails. This behavior is observed for CPF I in both Dataset I and
Dataset III. However, CPF II does not follow this pattern. In Dataset II, CPF II performs
worst in the first and last indices, with no clear pattern in between. In Dataset 111, the sepa-
ration power for CPF Il initially decreases and then remains relatively stable. Nevertheless,
all separation powers are significantly higher than the Geant4 band, indicating room for
improvement.

The X in the angular dimension is presented in Figure 8.17, where no differences are visible
in individual bins, as expected due to rotational symmetry. Interestingly, the CPF 1 model
outperforms the CPF II model in this aspect. It is hypothesized that this discrepancy is due
to the random assignment of @ in CPF I1.

Finally, Figure 8.18 shows the X? for the radial layers r. Here, CPF 1I demonstrates much
lower separability from Geant4 compared to CPF 1. In Dataset II, the separation power for
CPF I remains mostly constant, while CPF II shows an initial decrease followed by stability.
These values are relatively close to the Geant4 band. In Dataset 111, both CPF I and CPF 11
start with similar separation powers, with CPF 11 slightly better. However, as the radial index
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Figure 8.17: X2 of the energy histograms in each azimuthal layer & for Dataset 11 (left) and Dataset
111 (right). The histograms used to calculate the separation power are shown in Figures B.1 and B.2
for Dataset 11 and Figures B.12 to B.15 for Dataset I11. The values for both CPF models are shown
as blue and dark gray points, respectively, with error bars indicating the standard deviation of the
separation power. The red error band illustrates the uncertainty in the Geant4 data.
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Figure 8.18: X? of the energy histograms in each longitudinal layer r for Dataset 11 (left) and Dataset
111 (right). The histograms used to calculate the separation power are shown in Figure B.3 for Dataset
1l and Figures B.10 and B.11 for Dataset I11. The values for both CPF models are shown as blue and
dark gray points, respectively, with error bars indicating the standard deviation of the separation power.
'The red error band illustrates the uncertainty in the Geant4 data.

increases, CPF 11 exhibits a decrease in separation power, while CPF I shows an increase.

Overall, CPF 1I provides a better model for the marginal energy sum distributions compared
to CPF I, demonstrating its superior performance in this aspect.

8.8.6 Shower Centers

To gain a deeper understanding of the internal structure of the showers within the detector,
the distribution of the shower center in the longitudinal z direction is analyzed. Specifically,
the shower center in the longitudinal z direction is defined as
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E:Z 1 Ei,z

E; i,5um

(l’li,Z = ’ (826)

which represents the average z coordinate of all hits in the shower, weighted by their energy.

In Figure 8.19, a histogram of the shower centers i, in the longitudinal direction is presented,
utilizing a linear binning scheme with 100 bins spanning from the 0.1th percentile to the
99.9th percentile of the distribution, and including both overflow and underflow bins.
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Figure 8.19: Shower centers y, in longitudinal direction z for Dataset II (left) and Dataset I1I (right)
comparing Geant4, CPF I, and CPF II models. The upper graphs show histograms of the shower
centers. The middle graphs present the same data as the upper graphs but with a logarithmic scale
on the y-axis. The lower graphs show the ND between the models and Geant4. The red band shows
the in-sample uncertainty of Geant4.

'The Geant4 distribution exhibits an exponential rise, which saturates into a plateau between
z = 8 and z = 15, followed by an exponential decline at higher values. Notably, there is no
significant difference in the Geant4 distribution between Dataset 11 and Dataset I11.

In comparing the models, CPF Il demonstrates superior performance compared to CPF 1
overall. For Dataset II, CPF I shows a noticeable shift in the rising flank, with the plateau
region not being well modeled. Although CPF I improves in capturing the falling distri-
bution, it struggles with accurately modeling the plateau region, particularly near the end,
where it overshoots. In contrast, CPF II effectively models the rising distribution and accu-
rately captures the underflow bin. Within the plateau region, CPF 11 reaches the uncertainty
level of Geant4. However, CPF 11 slightly undershoots in the falling distribution and the
overflow bin. Overall, CPF II models the shower centers in the z direction reliably.
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Tuble 8.12: X2 for all three models in both datasets of the histograms shown in Figure 8.19.

Dataset | Geant4 CPFI  CPFII

II 97.8£145 2870+100 429 +37
II1 97.9£13.6 3850110 677 £48

In Dataset I11, CPF I again displays a shifted increase similar to that observed in Dataset I1.
Both edges of the plateau are overshot, and the decline is initially too gradual. Meanwhile,
CPF II mostly aligns with the Geant4 uncertainty in the central region, although it exhibits
worse performance in the tails, particularly in the overflow bin.

In summary, CPF II provides a more accurate representation of the shower centers in the z
direction across both datasets, although there are still areas, particularly at the distribution
tails, where further improvements are needed.

The analysis of the shower center can also be extended to the radial r direction. The shower
center in this direction is defined as

2121 r- Ei,r

ir =
H Ei,sum ’
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Figure 8.20: Shower centers y, in radial direction r for Dataset II (left) and Dataset 111 (right)
comparing Geant4, CPF I, and CPF II models. The upper graphs show histograms of the shower
centers. The middle graphs present the same data as the upper graphs but with a logarithmic scale
on the y-axis. The lower graphs show the ND between the models and Geant4. The red band shows
the in-sample uncertainty of Geant4.

which represents the average r coordinate of all hits in the shower, weighted by their energy.
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In Figure 8.20, the distribution of the shower centers i, in the radial direction is presented,
employing the same binning strategy as used for ,—100 linear bins spanning from the 1st
to the 99th percentile, including overflow and underflow bins.

The distribution increases until it peaks at r = 2 for Dataset II and 7 = 3.4 for Dataset
III, with the different peak positions explained by the varying granularity in 7 between
the datasets. Following the peak, the distribution exhibits an exponential decline for both
datasets.

The CPF I model, however, demonstrates a peak that is too wide in the outer regions of
the detector, failing to closely follow the Geant4 distribution. In contrast, CPF II more
accurately captures the peaking structure, particularly in Dataset II, although it slightly over-
estimates the peak in Dataset III. Additionally, the distribution before the peak is somewhat
too flat, and there are more entries in the underflow bin. However, the decline after the peak

is well modeled by CPF II.

The shift of the shower center peak towards the outer regions in CPF I is likely due to the
high probability of double hits in the central coordinates, where most hits in the shower
occur. The discarding of these hits in CPF I reduces the energy in the center of the detector,
leading to the observed shift. This issue is less pronounced in CPF II, which exhibits fewer
double hits and thus provides a more accurate representation of the shower center in the
radial direction.

Overall, CPF II offers better modeling of the shower centers in the radial direction across
both datasets, although some discrepancies remain, particularly in the flatness of the distri-
bution before the peak and the performance in Dataset III.

Tuble 8.13: X? for all three models in both datasets of the histograms shown in Figure 8.20.

Dataset | Geant4 CPFI CPFII

II (1.00 £0.15) x 107®  (4.92 +£0.04) x 1071 (6.50 + 0.48) x 1073
111 (9.98 £1.46) x10™*  (6.71 £0.04) x 10™1  (1.54 + 0.08) x 1072

The evaluation of the shower centers can also be extended to the Cartesian coordinate frame,
specifically in the x and y directions. First, an auxiliary energy sum is introduced by summing
over the z index:

Ei,a,r = Z Ei,z,a,r~ (8.27)
'The shower center in the y direction is then defined as

g ny 2n-a T
Zazl Erzl rcos ( 1y ) Ez,a,r
Hiy = :

(8.28)

E i,sum

In Figure 8.21, the distribution of the shower center in the y direction is presented. The his-
togram is binned into 100 linear bins spanning from the 1st to the 99th percentile, including
both overflow and underflow bins.
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Figure §.21: Shower centers i, in direction y for Dataset 11 (left) and Dataset 111 (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show histograms of the shower centers. The
middle graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis.
'The lower graphs show the ND between the models and Geant4. The red band shows the in-sample

uncertainty of Geant4.

Due to the position of the incident particle, the center of the shower is expected to peak at
y = 0. The distributions for both models reflect this expectation, with the peaks centered at
y = 0 and falling off exponentially in both the positive and negative directions.

For Dataset 11, the CPF I model accurately captures the peak, though it slightly underesti-
mates the mass in the tails on both sides. In contrast, CPF II produces a peak that is too
high, resulting in even less mass in the tails, clearly indicating that CPF I outperforms CPF
II in this aspect. For Dataset 111, a similar structure is observed, although here, CPF I also
exhibits a peak that is too high. It is noteworthy that CPF I models the center of the energy
distribution in the ¥ coordinate more effectively, particularly for Dataset II.

Tuble 8.14: X2 for all three models in both datasets of the histograms shown in Figure 8.21.

Dataset | Geant4 CPF1 CPFII

I (1.00 £ 0.15) x 107 (2.00 £ 0.08) x 1072 (6.33 + 0.15) x 1072
111 (9.96 +1.45) x10™* (431 £0.12) X102 (8.48 £ 0.16) x 1072

'The shower center in the x direction is also analyzed, where the x coordinate is defined as

271-04]

) (8.29)

x:rcos{
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The shower center in the x direction is defined as

Hy ny, . 21 T
DINPD I rsm( oy ) Eigr

i x 3 (8.30)
i,sum
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Figure 8. 22: Shower centers 1, in direction x for Dataset II (left) and Dataset I1I (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show histograms of the shower centers. The
middle graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis.
'The lower graphs show the ND between the models and Geant4. The red band shows the in-sample
uncertainty of Geant4.

In Figure 8.22, the distribution of the shower center in the x direction is presented, using
the same binning strategy as for .

Since the shower should be invariant under rotation, the distribution of the shower center
in the x direction is expected to mirror that of the y direction. This expectation is confirmed,
as the same behavior is observed in both directions.

Overall, CPF I models the shower center in both the ¥ and x directions better than CPF
II. This is likely because the data were transformed and learned in the Cartesian coordinate
frame with CPF I, making the model more sensitive to this coordinate system.

Tuble 8.15: X2 for all three models in both datasets of the histograms shown in Figure 8.22.

Dataset | Geant4 CPF1 CPFII

11 (9.99 £1.42) x107*  (1.72 £ 0.08) x 1072  (6.46 + 0.15) x 1072
111 (9.99 +1.42) x10™* (456 £0.12) X102 (8.60 + 0.17) x 1072
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8.8.7 Shower Width
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Figure 8.23: Shower width ¢, in direction z for Dataset 1I (left) and Dataset III (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show histograms of the shower centers. The
middle graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis.
'The lower graphs show the ND between the models and Geant4. The red band shows the in-sample

uncertainty of Geant4.

The evaluation of the shower characteristics also includes the analysis of the shower width.
'The shower width in the z direction is defined as

N, By
i = Jiz‘bl =2 (8.31)

i,sum

In Figure 8.23, the distribution of the shower width in the z direction is presented. The
binning is selected to match that used for the mean values. For both datasets, the Geant4
distribution increases to approximately 6 and then exhibits an exponential decline. However,
both datasets reveal a misalignment in the shower width for the CPF I model, with the peak
shifted to higher values. Conversely, the CPF II model accurately captures the distribution in
Dataset 11, while its performance decreases in Dataset I11. The CPF II model also adequately
models both tails in Dataset III, whereas in Dataset 11, the right-side falling tail is slightly
underestimated. Overall, the CPF II model demonstrates superior performance, which is
further supported by the lower X2 values, as presented in Table 8.16.

Tuble 8.16: X2 for all three models in both datasets of the histograms shown in Figure 8.23.

Dataset | Geant4 CPF1 CPF1I

11 (10.00 £1.40) x 10™*  (1.67 £0.02) x 101 (4.90 + 0.40) x 1073
111 (9.97 £1.39) x10™*  (1.83+£0.03) x10™!  (1.37 £ 0.07) x 1072
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Figure 8.24: Shower width o, in direction r for Dataset II (left) and Dataset III (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show histograms of the shower centers. The
middle graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis.
'The lower graphs show the ND between the models and Geant4. The red band shows the in-sample

uncertainty of Geant4.

The distribution of the width in the r direction, defined as

2”1 r2. E.
Giy = J e T (8.32)

E

i,sum

is shown in Figure 8.24. The shower width in the 7 direction exhibits a similar shape to that
in the z direction, peaking at approximately 1.75 for Dataset II and 3.5 for Dataset 111. The
same pattern is observed in the CPF models, including the peak shift for CPF 1. Table 8.17
presents the X? for these histograms, highlighting the significantly lower X for the CPF 11
model compared to CPF L.

Tuble 8.17: X2 for all three models in both datasets of the histograms shown in Figure 8.24.

Dataset | Geant4 CPF1 CPFII

II 991+13.8 39200+400 111070
III 101 £14 50900 £ 400 1850+ 80

In Cartesian coordinates, the width in the y direction is defined as

2
27
DIt (r cos ( naa)) “Eiar )
Oiy = — iy (8.33)

E i,sum
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Figure 8.25: Shower width o, in direction y for Dataset 11 (left) and Dataset 111 (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show histograms of the shower centers. The
middle graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis.
'The lower graphs show the ND between the models and Geant4. The red band shows the in-sample
uncertainty of Geant4.

The shower width in the y direction is presented in Figure 8.25. Similarly, the width in the
x direction is defined as

o

2
(2
o B (r sin (Z_a)) “Eiayr
E

Ojx = —uz. (8.34)

i,sum

The corresponding width in the x direction is shown in Figure 8.26. No discernible differ-
ences are observed between the x and y directions, which is expected due to the rotational
symmetry of the shower. The behavior observed in the # and z directions is similarly re-
flected in the y and x directions, indicating a consistent performance pattern across these

dimensions.

Tuble 8.18: X? for all three models in both datasets of the histograms shown in Figure 8.25.

Dataset | Geant4 CPFI  CPFII
II | 987+14.3 39200+300 110070
111 101 £14 50900 £400 1850 + 80
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Figure 8.26: Shower width o, in direction x for Dataset II (left) and Dataset I1I (right) comparing
Geant4, CPF I, and CPF 1I models. The upper graphs show histograms of the shower centers. The
middle graphs present the same data as the upper graphs but with a logarithmic scale on the y-axis.
'The lower graphs show the ND between the models and Geant4. The red band shows the in-sample

uncertainty of Geant4.
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Figure 8.27: Pearson correlation coefficients p in direction z for Dataset II comparing Geant4, CPF
I, and CPF II models. Upper row shows correlation coefficients. Lower row shows the ND of the

correlation coefhicients
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Tuable 8.19: X? for all three models in both datasets of the histograms shown in Figure 8.26.

Dataset ‘ Geant4 CPF1 CPF 11

I1 100 +14 39900 +400 1170 + 60
I11 100 +14 50300 +400 1860 + 90
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Figure §.28: Pearson correlation coeflicients p in direction z for Dataset III comparing Geant4, CPF
I, and CPF II models. Upper row shows correlation coeflicients. Lower row shows the ND of the
correlation coefficients

8.8.8 Layer Correlation Coefficients

In a calorimeter, the energy deposited in different layers is expected to exhibit correlations,
reflecting the underlying physics of particle showers. To evaluate the capability of the CPF
models in capturing these correlations, the Pearson correlation coefficient, Pz 20 between
two longitudinal layers z; and z; is studied. The correlation coefficient is defined as follows:

E., (8.35)

S, AE;AE;
Pry = e (8.36)
VEL ABL B AL,

AEi,Zj = EiZ' -

]

Here, z;, z € [1,1n,]. Figure 8.27 presents Pz2 for Geant4, CPF I, and CPF II for Dataset
II. Figure 8.28 shows the same for Dataset II1. The top row of the figure shows the average

correlation coefficients over 1,000 bootstrapped samples, while the bottom row displays the
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ND calculated from 1,000 combinations. Since both Dataset II and Dataset III share the
same longitudinal segmentation, the results are consistent between these datasets.

For the Geant4 data, the highest correlations are observed between adjacent layers, with cor-
relations decreasing as the distance between the layers increases. This behavior is consistent
with the localized nature of particle showers. Both CPF models generally follow this pat-
tern; however, certain layers in both models exhibit visibly lower correlations, deviating from
the expected pattern. This deviation is more pronounced in the CPF II model.

To quantify the overall agreement between the models and Geant4, the Frobenius norm of
the ND of the correlation matrices is computed:

Frob(p, o) = J 21 22]1 (ND(p2y 0 ,5)) (8.37)
zj=1 2=

'The results, shown in Table 8.20, indicate that the CPF I model better captures the corre-
lations within the calorimeter than CPF II. The Frobenius norms clearly demonstrate that
CPF I has a closer match to the Geant4 correlation structure, reflecting its superior perfor-
mance in modeling these essential correlations. The reason for the better performance of
CPF I is not entirely clear; it is possible that the more complex architecture of the DSF
could benefit from additional training volume.

Table 8.20: Frobenius norm of the ND between the p values fo all three models in both datasets of
the histograms shown in Figure 8.24.

Dataset | Geant4  CPFI CPFII

II 1.32 £0.05 3.47 x0.65 5.28 x1.46
II1 1.29 £0.02 3.74 +0.69 12.56 £0.90

8.8.9 Classifier Scores

A classifier is trained to distinguish between simulated Geant4 data (Geant4) and the gen-
erated samples from the CPF (CPF). This approach is understood as a two-sample test
(Lopez-Paz & Oquab 2016). The classifier is trained using binary cross-entropy (refer to
Section 5.1.3), and an ideal classifier therefore predicts the probability function

p(x|Geant4)p(Geant4)
p(x|Geant4)p(Geant4) + p(x|CPF)p(CPF)

f(x) = p(Geant4|x) = (8.38)

Since two samples of the same size are taken, it is assumed that p(Geant4) = p(CPF),
simplifying the expression to

3 p(Geant4|x)
~ p(Geant4|x) + p(CPF|x)

f(x) (8.39)
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From this, the transformation can be constructed as

p(Geant4|x)
f(X)  p(Geantdl)+p(CPFlx)
1 _f(x) - 1— p(Geant4]|x)
p(Geant4|x)+p(CPFlx)
p(Geant4|x)
_ p(Geant4})+p(CPFIy) (8.40)
= T p(CPRm)
p(Geant4|x)+p(CPFlx)
p(Geant4|x)

p(CPFlx)

'This expression represents the likelihood ratio, which, according to the Neyman-Pearson
lemma (Neyman & Pearson 1933), is the most powerful test in binary hypothesis testing.

For calorimeter simulation surrogate models, classifier scores have been proposed as a metric
by (Krause & Shih 2021), and (Das et al. 2023) demonstrated their utility in the context
of particle physics generative models. To facilitate better comparability with other models,
the CaloChallenge classifiers (Giannelli et al. 2022a) are employed in this evaluation. Two
classifiers are utilized: the low-level classifier and the high-level classifier.

'The low-level classifier classifies each shower based solely on the energy values E; , , ,. The
high-level classifier incorporates low-level information along with additional features such
as Equn/Einy thzs s by, P> 02, 01, 0y, O, and the sparsity, defined as

Nhits

sparsity =1 — .
11,1,

'The Receiver Operating Characteristic (ROC) curve plots the true positive rate as a function
of the false positive rate. The classifier score is reported as the Area Under the Curve (AUC),
where a random classifier yields an AUC of 0.5, and a perfect separation results in an AUC
of 1.0.

To obtain reliable results, ten randomly initialized classifiers are trained. The AUC scores
tor both low-level and high-level classifiers are presented in Table 8.21. The results indicate
that the CPF II model consistently achieves lower classifier scores compared to the CPF I
model, implying that the CPF II model is harder to distinguish from the Geant4 sample.
Nevertheless, the classifier is able to reasonably distinguish between the CPF II results and
the Geant4 results, despite the challenges discussed above.

Table 8.21: Low Level and High Level CaloChallenge Classifier AUC Scores for CPF I and CPF
II for Dataset II and Dataset III.

Dataset | Model |  low level high level

CPFI | 0.945+0.004 0.927 +0.003
CPF1II | 0.826 +£0.006 0.785 + 0.009

CPFI | 0.786 +0.019 0.947 + 0.003

II

1 CPF1II | 0.709 £ 0.040 0.934 + 0.003
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8.8.10 Ablation Study

To assess the impact of individual modifications on the performance of the CPF II model
in comparison to the CPF I model, an ablation study was conducted. The CPF II model
incorporates several alterations relative to the CPF I model. To evaluate the contribution of
each modification, the performance of different model variations was incrementally assessed.

'The study compared the following models:

* The base CPF I model (CPFI).
* The CPF I model incorporating the DSF approach as defined in Section 8.3.2 (+DSF).

* 'The CPF I model incorporating the DSF approach and the random assignment of the
a coordinate as described in Section 8.7.2 (+3d).

* 'The complete CPF II model, which includes the DSF approach, random assignment
of a, and CDF-Dequantization as described in Section 8.6.2 (CPF II).

'The evaluation was conducted using Dataset II, focusing solely on the CaloChallenge clas-
sifier scores. Each model variant was trained with 10 different initializations for 10 epochs.
Subsequently, a classifier was trained for each variation to determine the AUC scores for

both low-level and high-level classifiers.

The results, presented in Table 8.22, report the average AUC scores for the different model
variations, and these scores are also illustrated in Figure 8.29. The study demonstrated a
consistent decrease in the average AUC score with each incremental modification, indicating
an enhancement in model performance. However, the variance also increased, suggesting
that the additional features may require more extensive training.

Although some performance improvements were within the margin of error, particularly in
the transition from ”+3d” to the complete CPF II model, an overall performance enhance-
ment was observed when considering both classifiers together. This improvement exceeded
the margin of error, thereby confirming the effectiveness of the modifications introduced in

the CPF II model.

Table 8.22: The average CaloChallenge classifier AUC scores, low level and high level, are presented
for the different model variations.

Model ‘ low level high level

I 0.966 +0.001 0.945 +0.001
+DSF | 0.960 +0.001 0.928 + 0.002
+3d 0.892 £0.002 0.881 + 0.003
I 0.874 +0.004 0.833 + 0.002
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Figure 8.29: The average CaloChallenge classifier AUC scores, low level and high level, are presented
for the different model variations.

8.8.11 Timing

'The primary objective of surrogate models in particle physics is to expedite the generation of
calorimeter showers. Consequently, timing is a critical factor in their evaluation. However,
providing a definitive assessment of the generation speed is challenging due to several fac-
tors. The generation time is heavily dependent on the specific hardware employed and the
model settings. Furthermore, the models can be further optimized to enhance their speed.
In addition, direct access to the Geant4 simulation times and the corresponding hardware
configurations is unavailable, which limits the comparability of the results.

According to Buckley et al. 2023, the Geant4 simulation time for Dataset IT and III is on the
order of100's. In comparison, the CPF models require approximately 1.5 ms on an NVIDIA
A100 GPU and around 50 ms on a single core of an AMD EPYC 7543 CPU to produce
one shower. These findings demonstrate that the surrogate models operate several orders
of magnitude faster than Geant4. Thus, speed is not the limiting factor in the generation
process; instead, the focus should remain on enhancing the quality of the generated samples.
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In the previous section, the primary issues encountered with two point flow-based calorime-
ter surrogate models were discussed, particularly the challenge of learning coordinates in a
continuous space and mapping them back to discrete positions. This approach introduces sig-
nificant complications, especially in ensuring accurate tracking of which positions are already
occupied. As a result, multiple points may be erroneously mapped to the same coordinate,
creating conflicts in position assignment. While existing strategies offer partial solutions
to mitigate these issues, they do not fully resolve the conflicts inherent to this architectural
approach. Consequently, a more effective solution is required to address these limitations
and ensure reliable simulation outcomes.

In this section, a novel architecture is proposed to prevent the aforementioned problems
entirely. This architecture, termed the CaloHit approach, represents a hybrid solution that
integrates voxel-based and point cloud-based strategies. The core idea is to decouple the
generation process into two distinct phases: one responsible for generating hit positions and
another for assigning energies to these hits. By definition, the hit positions are discrete,
while the energies remain continuous. This separation ensures that the challenges associated
with conflicting positions in continuous space are avoided, allowing for a more accurate and
reliable simulation outcome.

To implement this, two complementary models are introduced: one based on a voxel ap-
proach to generate hit positions, and another that uses a point flow-based method for energy
assignment. The first step in this approach involves establishing the mathematical framework
to effectively manage the hit map, utilizing the Gumbel-dequantization technique developed
in this work. This method ensures that the discrete hit positions are handled efhiciently while
maintaining the continuous nature of energy distribution.

This architecture is then illustrated using a case study on a small dataset, specifically the
smallest dataset from the CaloChallenge. This section details the design of two models based
on the CaloHit approach, demonstrating how these models effectively address the issues
identified in the previous architecture. Finally, potential extensions of this architecture are
discussed, outlining the next steps and identifying any remaining challenges in the current
stage of the research.

9.1 Dataset 1: Photon-Initiated Showers

To evaluate the CaloHit approach, the first dataset from the CaloChallenge, derived from
the ATLAS Geant4 Open datasets, was used. The CaloChallenge provides two datasets:
one where the incident particle is a photon and another where the incident particle is a
pion. In this study, the analysis is restricted to the photon dataset, referred to as Dataset I,
while the pion dataset is excluded from the investigation. Dataset I represents a voxelized
configuration of the current ATLAS detector, specifically within the 7 range of 0.2 to 0.25
(ATLAS 2022). The detector geometry is cylindrical, with the coordinate system illustrated
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9.I DATASET 1: PHOTON-INITIATED SHOWERS

Figure 9.1: Segmentation of the 5 layers in Dataset 1. The radius of all layers is set to the same size
for easier visualization. The distance between the layers is also arbitrary.

in Figure 8.1. The incident photons propagate along the z-axis, and the detector is divided
into five layers, each containing a varying number of radial and angular bins. Segmentation
details are provided in Table 9.1 and Figure 9.1, resulting in a total of 368 voxels.

The dataset records energy depositions within each voxel in units of MeV. The energies of the
222 with energy depositions distributed across 15 distinct
levels, each separated by powers of two. For each energy level, the dataset includes 10,000
events, except at the highest energies, where fewer events are available due to the extended

incident particles range from 28 to

simulation time required for large showers. In total, 2x121,000 events are recorded. Half
of these events were split into training and validation sets, while the remaining half was
reserved for testing.

Table 9.1: Nominal binning for photons with 0 < 7 < 1.3 range.

Layer | r edges [mm)] | a bins

1 0,5,10,30,50, 100,200, 400, 600 |1

) 0,2,4,6,8,10,12,15,20, 30, 40, 50, 10
70, 90,120, 150, 200

3 0,2,5,10,15,20,25,30,40,50,60,80, |
100, 130, 160, 200, 250, 300, 350, 400

4 | 0,50,100,200, 400, 600 |1

5 | 0,100,200, 400, 1000, 2000 |1
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9.2 GUMBEL-DEQUANTIZATION
9.2 Gumbel-Dequantization

In designing the generative model for the hit distribution within the calorimeter, the objec-
tive is to sample hit cells while ensuring that each hit position is unique, thereby avoiding
the overlap issues identified in earlier models.

To accomplish this, a dequantization strategy that allows for sampling from discrete distri-
butions without replacement is required. This objective is achieved through the application
of the Gumbel Top-k trick (Kool et al. 2019; Vieira 2014). The Gumbel-Dequantization
technique offers several advantages. In principle, developing a model that samples without
replacement requires generating output probabilities for each class. For each sample, the
model must predict the probabilities while ensuring that previously sampled classes have a
probability of zero, thereby preventing repeated selections. This approach presents signifi-
cant challenges, as recalculating the probabilities for each sample requires traversing n paths
through the network, where 7 represents the number of samples. Furthermore, the model
must handle a dynamically changing output space for each combination, which adds to the
complexity of development.

'The Gumbel-Dequantization technique simplifies the process of sampling without replace-
ment by directly predicting the order in which elements are selected, thereby eliminating the
need for multiple recalculations and reducing the complexity of the model architecture.

'This approach is referred to as dequantization because, in the output space, each data point is
represented by values p; € {0,1}, with }} p; = n. The goal is to transform these discrete values
into continuous ones, making them amenable to learning through one of the previously
discussed models.

Before delving into the details of this technique, it is important to introduce the following

concepts: the Gumbel distribution, the Gumbel Max trick, the Gumbel Top-k trick, and,
finally, the Gumbel Top-k dequantization technique.

9.2.1  Gumbel Distribution

[faou=0p=1)
04 +

-2.5 2.5 5

A

Figure 9.2: Gumbel PDF with y = 0and g = 1.
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'The Gumbel distribution (Gumbel 1935, 1941), denoted as G(, f), is characterized by two
parameters, the location parameter u € R and the scale parameter § € Ryg. A random
variable following to this distribution is represented as G, g.

'The PDF of the Gumbel distribution is given by

8up0) = % exp(~(x - )/p - exp(~(x - w)p)) 0.1)
and the CDF is
Gup(x) = exp(— exp(—(x — p)/B))- (9.2)
The inverse of the CDF is expressed as
G () = p = Bln (= In(w)). (9.3)

9.2.2 Gumbel-Max Trick

Consider a categorical distribution Cat(7) that is defined over N classes. Each category i
within this distribution is associated with a corresponding probability 7t;, where i € {1, ..., N}.
For the more general case where the probabilities are not normalized, 71; can be expressed in
terms of unnormalized probabilities x; as

Xi

2jEN Y

T = (9.4)

'The Gumbel-Max trick enables exact sampling from a categorical distribution Cat(7), since

I = argmax {In Xj + g(i)} ~ Cat(m). 9.5)

Here, ¢) ~ G are i.i.d. random variables for all i in N, and the probability of selecting
any category i is exactly ;. It follows that

Inx; +g0) = g(j) (9.6)

In x;’

'The derivation of the probability P(I = i) = 7; follows from the work of Huijben et al. 2023.
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I =iholds if g, , > 8inx; Vj e N~ {i}. Since all 8iny; are i.i.d., it can be factorized as

PU=0= [ gua@ [T plany <2

JEN\(i}
= f Sinx;1(2) H exp(— exp(ln Xj - Z)) dz
- jEN\{i}
= f exp (ln x;—z—exp(lnx; — z)) exp (— E exp(x]- - Z)) dz
— jEN\{i}
o 9.7
= f exp (Inx; — z) exp [— E exp(ln Xj— Z)] dz 0.7
- jEN
=x; f exp(—z) exp [— exp(-z) E xj) dz
-0 JEN
- _ i
2ien i
= Tik.

9.2.3 Gumbel-Top-k Trick

The Gumbel-Top-k trick extends the Gumbel-Max trick to allow for the selection of k <
n categories without replacement. Given an (ordered) sample without replacement from
Cat(m), denoted as I, ..., I, the probability of any realization iy, ..., iy is given by

(9.8)

where N, = N \ {iy, ..., 1,1} represents the domain without replacement for the m-th
sampled element.

'The conditional probability for selecting the k-th element, given the previous selections, is
expressed as

Py = iglly =11, ..., Irq = ix1)

= (ik = arg max Qi [l =iy, i1 = ik—l)

i€EN
=P |1 = arg max gy, ;| Max gy, y; < Qinx
ieN; TN, T k= (9.9)
=P (ik = arg max glnxi]
i€ENg
__ %
EZENk xl
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The Gumbel-Top-k trick can be proven by induction on k. Assuming the result holds for
k —1, the k case is demonstrated as follows:

P(Il = il/'“rIk = lk) = P(Ik = iklll = il/ "‘/Ik—l = ik—l)

- P(ly =1y, .0y Igog = Gjq)
k-1
= 11 (9.10)

The base case k = 1 corresponds to the Gumbel-Max trick. The derivation presented here
follows the approach by Kool et al. 2019.

9.2.4 Gumbel-Dequantization

[feup=1)

75 -5 -25 25 5

A

Figure 9.3: Gumbel PDF with g = 0 and = 1.

'The data consists of samples drawn without replacement. For example, withn = 3and k = 2,
the possible samples are {(1,1,0),(1,0,1),(0,1,1)}. The output space for the model can be
defined to represent the probabilities of each class, utilizing the softmax function. Forn = 3,
the output is represented as (711, 7y, 73).

A challenge arises during the sampling stage. By using the Gumbel top-k trick, the un-
normalized log probabilities are manipulated by adding values sampled from the Gumbel
distribution. Formally, this is expressed as:

2 3
(]'ngl +g 1) logxz +g(2) logx3 +g(3 ) = (glogxl’gfoéxZ’gl(og);x;;) (9'11)

Consider an extreme example where only one valid option exists in the data, such as (1,1, 0).

The distorted unnormalized probabilities are (¢, g@, g(s) ). The last value poses a problem,
as a center of —oco is not defined. To address this, a small probability € is introduced for

incorrect sampling, resulting in probabilities of (g, ¢, g(3) )-

In real datasets, where multiple combinations exist, this sampling and value-setting process
is applied to each value, thus achieving dequantization. The inverse process, quantization,
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involves selecting the top-k values. There is always a minor probability (corresponding to
the value of €) of selecting an incorrect value, which is accepted.

The dequantized values can then be learned as before. For visualization purposes, the densi-
ties of the Gumbel distribution around 0 are presented, with loge = -7, in Figure 9.3.

9.3 CaloHit Model

9.3.1 Energy Layer Flow Model

The first component of the CaloHit Model is the Energy Layer Flow, designed to learn the
joint distribution of the summed energies and the number of hits in the five longitudinal
layers of the calorimeter detector. This model is crucial due to the varying granularity across
the detector layers, which results in significantly different distributions of hits and energy
in each layer. Accurately modeling these distributions is essential for capturing the complex
energy deposition patterns within the detector, which, in turn, affects the overall performance
of the simulation.

'The architecture of the Energy Layer Flow model is inspired by the CaloFlow architecture,
which also begins with a model that captures the layer-wise distributions. A coupling flow is
incorporated to transform a 10-dimensional feature vector, consisting of the energies and the
number of hits in each of the five layers (i.e., five layer energies plus five layer hit counts). The
coupling flow is well-suited for capturing complex dependencies and interactions between
these features.

To condition the model on the incident energy of the particle, an embedding table is used to
map each discrete incident energy value to a 32-dimensional vector. The dataset contains 15
discrete incident energy values, and each is represented by a unique embedding vector. This
embedded incident energy vector captures the specific characteristics associated with each
energy level and allows the model to adapt its transformations accordingly.

'The Energy Layer Flow model incorporates a coupling flow with 12 sequential transforma-
tions. Each transformation applies a univariate monotonic RQS, allowing for flexible and
expressive transformations of the data. In this setup, transformations with 16 knots span-
ning the relevant data range are utilized, enabling the model to capture complex, nonlinear
relationships within the features.

The parameters of the coupling flow are predicted by a series of MLPs. The dimensions of
the layers in these MLPs are detailed in Table 9.2. The input layer receives the concatenation
of the five conditioning features (either energies or number of hits) and the 32-dimensional
embedded incident energy vector. The MLPs then process this input through successive
layers of increasing dimensions, culminating in the parameters required for the coupling
transformations. The final layer outputs the parameters for the transformations applied to
the other five features.

'The number of hits in each layer is dequantized using the CDF-Dequantization method, as
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Table 9.2: Dimensions of the layers of the MLPs used in the Energy Layer Flow.

Layer ‘ Input 1 2 3 4 'Transf. Param.
Dimensions ‘ 5+32 64 128 256 256 5 x 47

described in Section 8.6.2. This technique facilitates handling discrete variables within the
flow-based model by mapping them into a continuous space, allowing the flow transforma-
tions to be applied.

One challenge faced by the model is learning the zero-energy entries, which are common
in layers with no energy deposition. The model tends to struggle with zero energies due to
the nature of the transformations applied. To mitigate this, a small amount of noise is added
to each layer with zero energy. This noise follows a log-normal distribution with a standard
deviation of 1073, Since layers with zero energy also have zero hits (1, = 0), these layers
can be easily identified for noise addition.

'The layer energies undergo several preprocessing steps before being input to the model. First,
they are min-max scaled to map the energies into a specific range, typically between 0 and
1. Next, a logit transformation is applied. The logit transform is defined as

logit(x) = log (1%) , (9.12)

which maps the scaled energies from the interval (0,1) to the real line. Finally, the energies
are normalized by standardizing them to have zero mean and unit variance.

'The Energy Flow model serves as a foundational step in the CaloHit Model, providing the

layer-wise energy and hit distributions that are essential for the subsequent modeling of
individual hits within the detector.

9.3.2 Hit Flow Model

'The second model, termed the Hiz Flow, is designed to learn the distribution of hits within
a shower event. The architecture of this model is also based on a coupling flow.

'The output of the model consists of the Gumbel-dequantized values for the 368 calorimeter
cells, representing whether each cell is hit.

To Gumbel-dequantize the hits,a Gumbel-distributed value is sampled for each cell in each
data point. If a cell is not hit, the value is shifted by minus 7. The distribution is then
normalized in each dimension.

'The model is conditioned on the incident energy, as well as the number of hits and energies
in each layer. Each input feature is mapped to a 128-dimensional context space. The mapped

input features are summed to construct the conditional vector.

'The Hit Flow model incorporates a coupling flow with eight sequential transformations.
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Each transformation facilitates a univariate monotonic RQS transformation with four knots
spanning the range between -5 and +5.

The parameters of each transformation are predicted by an MLP. The MLPs receive as in-
put half of the features (those not being transformed) and the transformed incident energy
vectors. The dimensions of the layers used in the MLPs are shown in Table 9.3.

Table 9.3: Dimensions of the layers of the MLPs used in the Hit Flow.

Layer ‘ Input 1 2 3 4 Transf. Param.
Dimensions | 185+32 512 512 512 512 185-11

A relatively simple coupling flow architecture has been chosen for this model to present the
overall concept of the CaloHit model.

'The process of sampling from the Hit Flow model involves several steps. First, 368-dimensional
vectors are sampled from the coupling flow. The predicted number of hits in each layer is
then used to determine how many cells in the calorimeter were hit during the event.

Finally, the normalization of the residual values is reversed to restore their original scale. For
each layer, the top-ny,;, cells are set to one, while all remaining cells are set to zero.

9.3.3 Energy Per Hit Model

'The Energy Per Hit model is designed to predict the energy values associated with each hit
coordinate in a calorimeter shower. This model operates under the assumption that each
energy value is independent of the others, thereby allowing for a simplified architecture that
is both efficient and fast, albeit with the limitation of not capturing interactions between
energy values.

'The Energy Per Hit model employs a univariate flow featuring four sequential transforma-
tions. The first and last transformations are monotonic affine transformations, which provide
linear shifts and scaling to the energy values. The two middle transformations are monotonic
RQS transformations. The rationale for this setup is that the affine transformations adjust
the scale and shift of the distribution of features, allowing the rational quadratic splines to
perform more effective transformations within their defined range.

'The model includes a single MLP to process all conditional features and map them into a
shared latent space. All parameters of the univariate transformations are affine mappings of

the latent vector. The dimensionality of the MLP is provided in Table 9.4.

Table 9.4: Dimensions of the layers of the MLP used in the Energy Per Hit Flow.

Layer ‘Conditional 1 2 3 4 5 Latent
Dimensions | 1024 512 256 128 64 64 64
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'The model conditions the energy predictions on both global and local features. The global
teatures include the input energy, the total number of hits, the energies of all layers, and
the overall hit profile within the shower. The specific coordinate of the hit is used as a local
feature. The global features are embedded into higher-dimensional spaces. The input energy
and number of hits are embedded into 1024-dimensional vectors, while the hit profile is
mapped into a 1024-dimensional space by an affine transformation. The energies in each
layer and the coordinate of the hit are also embedded into a 1024-dimensional space. All
global information is added to the embedded coordinate vector. These vectors are then used
as the inputs for the MLP.

'The generated energy predictions are first divided by the energy sum. The energies are then
min-max scaled within each voxel, resulting in a distribution bounded between 0 and 1.
Subsequently, a logit transformation is applied, and the values are normalized. This process
mirrors the approach used in the Carlo Flow architecture, ensuring consistency with previous
models while adapting it to the unique requirements of energy prediction.

9.4 Evaluation

'The evaluation of the CaloHit architecture follows a structure similar to that employed for
the CaloFlow model. Simulated showers generated using Geant4 are directly compared to
those generated by the CaloHit model, with the objective of making the CaloHit model’s
output indistinguishable from the Geant4 simulations. As in previous evaluations, the boot-
strapping approach (Efron 1979) is employed to assess the uncertainties. Specifically, 1,000
bootstrapped datasets, each containing 121,000 points, are evaluated. Differences between
datasets are reported using the Normalized Difference, and the X? is reported for all his-
tograms.

9.4.1 Cell Energy

'The calorimeter showers are defined in terms of the energy values E; , , ,, where the index
i ranges from 1 to n = 121,000, representing individual showers. The z index denotes the
layer of the cell, with values ranging from 1 to n, = 5. The angular («) and radial () indices
vary depending on z, and their maximum values 11, and 7, are detailed in Table 9.5.

Table 9.5: The maximum of the index j defined as 1; as depedent on z.
The marginal distribution of the E; , , , values is shown in Figure 9.4. A total of 100 bins
are set logarithmically between the 1st and the 99th percentile, including both overflow and

na(z)  1,(2)
8

1
10 16
10 19
1
1

5
5

Ul A W N N
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Figure 9.4: Cell energy distributions for Dataset I comparing Geant4 and the CaloHit model. The
left graph shows the normalized entries of the cell energy values, binned logarithmically. The entries
are normalized to sum to 1. The right upper graph shows the same data as the left graphs, but with
a logarithmic scale on the y-axis. The right lower graph shows the ND between the models and
Geant4. The red band shows the in-sample uncertainty of Geant4.

underflow bins. The marginal energy distribution shows a slight shift between the models,
and the ND of the CaloHit model overlaps with the Geant4 uncertainty band. This indi-
cates that the CaloHit model does not perfectly model the energy distribution, with the X?
remaining within a factor of two of the Geant4 values, as illustrated in Table 9.6.

Tuble 9.6: X2 for Geant4 and the CaloHit model on Dataset 1 of the histograms shown in Figure 9.4.

Geant4 CaloHit
(9.81 £1.44) x 107*  (3.47 £0.33) x 1073

9.4.2 Energy Sum

The energy sum E; g, is defined as follows:

1y Mp(2) 1y(2)
Ei,sum = Eirzraﬂ"
z=1 a=1 r=1

In Figure 9.5, a histogram of the energy sum normalized by the incident energy is presented:

Ei,sum (9 13)

Ei,in ‘ .
'The binning consists of 100 linearly spaced bins between the 1st and 99th percentiles, includ-
ing both overflow and underflow bins. The distribution peaks slightly below 1, indicating a
small discrepancy.
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Figure 9.5: Energy sum distributions for Dataset I comparing Geant4 and the CaloHit model. The
left graphs show the normalized entries of the energy sum, linearly binned. The entries are normalized
so that the sum of all bins equals 1. The right upper graphs present the same data as the left graphs
but with a logarithmic scale on the y-axis. The right lower graph show the ND between the models
and Geant4. The red band shows the in-sample uncertainty of Geant4.

The CaloHit model closely replicates the overall distribution, although minor mismodeling
is observed near the center. The tails of the distribution generally align with Geant4 within
the margins of error. This alignment is further confirmed by the X2, shown in Table 9.7,
which remains within a factor of four above the Geant4 baseline.

Tuble 9.7: X2 for Geant4 and the CaloHit model on Dataset 1 of the histograms shown in Figure 9.5.

Geant4 CaloHit
(9.82 £1.44) x10™*  (2.59 + 0.10) x 1072

9.4.3 Number of Hits

'The number of hits #; i, as defined in Equation (8.23), is shown in Figure 9.6. This metric
quantifies the number of voxels in the calorimeter that register an energy value greater than
the threshold energy. The distribution of #; ;s ranges from scenarios with no hits to cases
where all cells are hit. The histogram exhibits a crowded spectrum, with the bin representing
the entire detector being hit containing the most entries.

Distinct peaks are observed within the distribution, corresponding to different discrete in-
cident energies in the spectrum. The CaloHit model reproduces the overall shape of the
distribution relatively well. No significant mismodeling is visible.

The X?, as shown in Table 9.8, provides a quantitative measure of these discrepancies. De-

spite the overall good agreement, the X? indicates that there is room for improvement in the
model’s ability to replicate the fine structure observed in the Geant4 data.
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Figure 9.6: Number of hits distributions for Dataset I comparing Geant4 and the CaloHit model.
'The left graph shows the normalized entries of the number of hits, linearly binned. The entries are
normalized so that the sum of all bins equals 1. The right upper graph shows the same data as the
left graphs, but with a logarithmic scale on the y-axis. The right lower graph shows the ND between
the models and Geant4. The red band shows the in-sample uncertainty of Geant4.

Tuble 9.8: X2 for Geant4 and the CaloHit model on Dataset 1 of the histograms shown in Figure 9.6.

Geant4 CaloHit
(9.74 £+1.43) x10™*  (2.98 £ 0.31) x 1073

The number of hits also reflects the observed shifts in other metrics, such as the cell energy
distribution. Both the number of points generated and the total energy sum are determined
by the model, and during post-processing, the energy of all points is scaled to match the total
energy sum. If the number of points is reduced, the remaining points are scaled excessively,
leading to distortions in the energy distribution, which are reflected in the number of hits.

9.4.4 Average Energy Sum

The total energy in a longitudinal layer z is defined as

My Ty

Ei, = 2 2 Eizopr (9.14)

a=1r=1

The average energy in a layer z, E., is computed using Equation (8.25). The average energy
sum in each longitudinal layer z for Dataset I is presented in Figure 9.7.

The distribution of average energies across the layers reveals a prominent feature: the energy
deposited in the central layer, z = 3, is significantly higher than in the other layers.

The CaloHit model demonstrates strong performance in modeling the energy distribution
across all longitudinal layers. The average energy values closely align with the Geant4 data,
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Figure 9.7: Average energy in each longitudinal layer z for Dataset I comparing Geant4 and the
CaloHit model. ‘The left graph shows the average energy values in MeV. The right upper graph
presents the same data as the left graph but with a logarithmic scale on the y-axis. The right lower
graph shows the ND between the models and Geant4. The red band shows the in-sample uncertainty
of Geant4.

particularly at the central energy peak where the energy deposition is highest. In most lay-
ers, the CaloHit model effectively replicates the energy deposition observed in the Geant4
simulations, indicating a high level of accuracy in capturing the expected energy patterns.

A slight discrepancy is observed in the final layer, where the CaloHit model marginally
underestimates the energy compared to the Geant4 data. This minor difference is reflected
in the Geant4 values, which remain low across all layers but show a small increase in the final
layer. Despite this slight deviation, the overall agreement between the CaloHit model and
Geant4 is excellent, suggesting that the model effectively captures the energy distribution
throughout the detector.

9.4.5 Energy Sum Distribution

In contrast to the previous analysis, which focused solely on the mean values of energy sums,
this section investigates the complete distribution across all five longitudinal layers. This
detailed approach provides a better understanding of how the CaloHit model captures the
energy distribution within each layer, highlighting specific areas where the model may excel
or require improvement.

For the first index (z = 1) in Figure 9.8, no significant shift in the energy values is observed.
This indicates that the CaloHit model accurately replicates the energy distribution in this
layer. The entire distribution is well-modeled, as is particularly evident in the ND plot, which
shows no significant deviations from the Geant4 reference data.

For the second index (z = 2), shown in Figure 9.9, the energy distribution reveals multiple
peaks. The CaloHit model captures the general shape of the distribution effectively.
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Figure 9.8: Distribution of the energy sum in the first index in longitudinal direction z for Dataset I
comparing Geant4 and the CaloHit model. The left graph shows the average energy values in MeV.
'The right upper graph presents the same data as the left graph but with a logarithmic scale on the
y-axis. The right lower graph shows the ND between the models and Geant4. The red band shows

the in-sample uncertainty of Geant4.
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Figure 9.9: Distribution of the energy sum in the second index in longitudinal direction z for Dataset
1 comparing Geant4 and the CaloHit model. The left graph shows the average energy values in MeV.
'The right upper graph presents the same data as the left graph but with a logarithmic scale on the
y-axis. The right lower graph shows the ND between the models and Geant4. The red band shows

the in-sample uncertainty of Geant4.
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Figure 9.10: Distribution of the energy sum in the central index in longitudinal direction z for
Dataset I comparing Geant4 and the CaloHit model. The left graph shows the average energy values
in MeV. The right upper graph presents the same data as the left graph but with a logarithmic scale
on the y-axis. The right lower graph shows the ND between the models and Geant4. The red band

shows the in-sample uncertainty of Geant4.

The central index (z = 3), depicted in Figure 9.10, shows a combination of a bulk section and
several peaks. The CaloHit model accurately models this distribution, performing as well as
in the other indices. The bulk section is reasonably captured, and the peaks are well-matched,
with the model nearly perfectly aligning with the Geant4 data.
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Figure 9.11: Distribution of the energy sum in the fourth index in longitudinal direction z for
Dataset I comparing Geant4 and the CaloHit model. The left graph shows the average energy values
in MeV. The right upper graph presents the same data as the left graph but with a logarithmic scale
on the y-axis. The right lower graph shows the ND between the models and Geant4. The red band

shows the in-sample uncertainty of Geant4.

For the fourth index (z = 4), illustrated in Figure 9.11, the energy distribution is reasonably
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well-modeled by the CaloHit model, although some discrepancies are present that are not
observed in the Geant4 data. The model exhibits a tail towards lower energies that is not
present in the Geant4 data, as seen in the underflow bin.
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Figure 9.12: Distribution of the energy sum in the last index in longitudinal direction z for Dataset
1 comparing Geant4 and the CaloHit model. The left graph shows the average energy values in MeV.
'The right upper graph presents the same data as the left graph but with a logarithmic scale on the
y-axis. The right lower graph shows the ND between the models and Geant4. The red band shows

the in-sample uncertainty of Geant4.

The energy sum distribution for the last index (z = 5) is presented in Figure 9.12. Here, the
CaloHit model performs relatively well; however, a noticeable tail towards lower energies
is observed compared to the Geant4 data. This shift results in the model peaking in the
underflow bin.

The X? values for all z layers, shown in Figure 9.13, confirm the observations made in the
individual layer analyses. The X is less than one order of magnitude higher than the ex-
pected band for the Geant4 data. While the CaloHit model generally captures the energy
distribution well, there remains room for improvement, particularly in the tails in the last
two layers.

9.4.6 Shower Centers

In Figure 9.14, the histogram of shower centers y, is presented. The Geant4 distribution ex-
hibits a characteristic exponential rise, peaking just before z = 3, followed by an exponential
decline. This pattern reflects the distribution of energy within the detector, with the peak
corresponding to the densest region of energy deposition.

The CaloHit model replicates this distribution accurately, with only minor differences ob-
served in the underflow and overflow bins, which are slightly smaller. This agreement is
further emphasized in the ND plot, where no significant deviations from the Geant4 refer-
ence are evident.
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Figure 9.13: X2 of the energy histograms in each longitudinal layer z for Dataset 1. The histograms
used to caleulate the X2 are shown in Figures 9.8 to 9.12. The values for the CaloHit model are shown
as blue with error bars indicating the standard deviation of the X2.The red error band illustrates the
uncertainty in the Geant4 data.
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Figure 9.14: Shower centers 1, in longitudinal direction z for Dataset I comparing Geant4 and the
CaloHit model. The left graph shows the histogram of the shower centers. The right upper graph
presents the same data as the left graph but with a logarithmic scale on the y-axis. The right lower
graph shows the ND between the models and Geant4. The red band shows the in-sample uncertainty
of Geant4.
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Tuble 9.9: X2 for Geant4 and the CaloHit model on Dataset 1 of the histograms shown in Fig-
ure 9.14.

Geant4 CaloHit
(9.79 £1.42) x10™*  (2.87 £0.29) x 1073

The X2, shown in Table 9.9, quantitatively supports these observations. The X? values are
not significantly higher for the CaloHit model, indicating that there is no substantial room
for improvement in replicating the shower centers in the z direction.

9.4.7 Shower Width
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Figure 9.15: Shower width o, in direction z for Dataset I comparing Geant4 and CaloHit model.
'The left graph shows the histogram of the shower width. The upper right graph presents the same
data as the left graph but with a logarithmic scale on the y-axis. The lower left graph shows the ND
between the models and Geant4. The red band shows the in-sample uncertainty of Geant4.

'The shower width in the longitudinal z direction is a critical metric for evaluating the spread
of energy within a calorimeter shower. It is defined in Equation (8.31). This formula quanti-
fies the standard deviation of the energy distribution along the z axis, providing insight into
how concentrated or dispersed the energy is within a given shower.

The distribution of the shower width ¢, for Dataset I is presented in Figure 9.15. The Geant4
distribution typically increases to a plateau before gradually decreasing, with a pronounced
peak on the plateau. This shape reflects the expected distribution of energy spread across the
longitudinal direction, where the showers maintain a consistent width before tapering off.

'The CaloHit model demonstrates behavior similar to that of Geant4. The distribution closely
follows the Geant4 reference, indicating that the CaloHit model effectively captures the
energy spread within the showers, particularly in the region where the distribution stabilizes.

'The ND plot further illustrates this agreement, showing no significant deviations between
the CaloHit model and the Geant4 reference data. This agreement is quantitatively reflected
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in the X? values, as shown in Table 9.10. The X? for the CaloHit model is only slightly higher,

indicating good performance in modeling the shower width compared to Geant4.

Tuble 9.10: X? for Geant4 and the CaloHit model on Dataset I of the histograms shown in Fig-
ure 9.15.

Geant4 CaloHit
(9.89 £+1.41) x10™*  (2.52 +0.03) x 107!

9.4.8 Correlation Coefficients

ND(CaloHit, Geant4)
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Figure 9.16: Pearson correlation coefficients p in direction z for Dataset II comparing Geant4, CPF
I, and CPF II models. Upper row shows correlation coefficients. Lower row shows the ND of the
correlation coefficients

To assess the internal consistency of the energy deposition within the calorimeter, the Pear-
son correlation coefficients Pz between different longitudinal layers, z; and z, are exam-
ined. The correlation coeflicient, which quantifies the linear relationship between the energy
deposits in two layers, is defined in Equation (8.36).

In Figure 9.16, the correlation coeflicients [ for Dataset I are presented, comparing
Geant4 with the CaloHit model. The Geant4 data exhibit the highest correlations between
adjacent layers, which gradually decrease as the distance between the layers increases. This
pattern reflects the localized energy deposition within the particle showers. The CaloHit
model generally captures this trend but shows some discrepancies, particularly in the outer
layers where the correlations deviate more significantly from the Geant4 data.

To quantify these discrepancies, the Frobenius norm of the ND of the correlation matrices is
computed, providing a measure of the overall difference between the model and the reference

data. The equation is given in Table 9.11.

Table 9.11: Frobenius norm of the ND between the p values for the Geant4 dataset and Calohit
model shown in Figure 9.16.

Geant4 CaloHit
(7.69 +3.76) x 1072 (5.01 +0.44) x 1071
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9.4.9 Classifier Scores

In evaluating the performance of calorimeter simulation surrogate models, classifier scores
are utilized as a key metric. As discussed in Section 8.8.9, these scores are derived using
binary classifiers that differentiate between simulated showers generated by the CaloHit
model and those produced by Geant4. Two types of classifiers are employed:

1. Low-level classifier: 'This classifier relies solely on the energy values E;, , , within
each shower.

2. High-level classifier: This classifier incorporates both the low-level energy values and
additional features, such as the ratio Ey, /E;,, the shower centers (1, 1,, Ly Uy), the
shower widths (0, 0, 0, 0,), and the sparsity.

'The classifiers’effectiveness is assessed using the AUC, with a score of 0.5 indicating random
classification and 1.0 representing perfect separation between the two distributions.

For Dataset I, the classifier scores are presented in Table 9.12. The high AUC scores for
both low-level and high-level classifiers indicate that the classifiers can almost perfectly dis-
tinguish between the CaloHit-generated samples and those from Geant4.

Table 9.12: Low Level and High Level CaloChallenge Classifier AUC Scores for the CaloHit model
on Dataset I.

low level high level
0.9871 £ 0.0177 0.8268 + 0.1046

'The near-perfect scores observed in the low-level classifier are likely attributable to its sen-
sitivity to subtle features. Although the high-level classifier demonstrates improved perfor-
mance, it still does not achieve perfect accuracy, suggesting that some residual discrepancies
between the datasets remain detectable. This indicates that, despite the improved alignment
of energy distributions, further refinement of the CaloHit model is necessary to minimize
these detectable differences, particularly at higher classification levels.
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CONCLUSION

This thesis has presented a comprehensive investigation into calorimeter surrogate models
facilitating point clouds, particularly focusing on the CaloPointFlow and CaloHit models.

'The research began with the development of generative models based on voxelized calorime-
ter data by initially experimenting with a progressive growing approach, starting with a low
granularity representation and progressively increasing the granularity until reaching high-
resolution calorimeter shower data.

However, it quickly became apparent that scaling this approach posed significant challenges.
The primary issue was that in highly granular calorimeter data, the showers exhibit consid-
erable sparsity. When attempting to downscale the granularity by clustering the cells, this
sparsity became altered, complicating the modeling process. Despite various attempts, a
convincing strategy to effectively manage this sparsity could not be devised.

In response, a different approach was pursued, interpreting the calorimeter showers as point
clouds and exploring point cloud generative models. This led to the development and publi-
cation of one of the first models utilizing this methodology: the CaloPointFlow architecture.

Nevertheless, this model had limitations. The most significant drawback was the absence of
a mechanism for direct point-to-point information exchange within the architecture. Addi-
tionally, the coordinate positions of the points were discrete, but the model was designed for
continuous data, necessitating a mapping between discrete and continuous spaces. A major
challenge arose from the data structure itself, which allowed only one hit per calorimeter
cell, a constraint that was difficult to model accurately.

To address these limitations, the second iteration, the CaloPointFlow II architecture, was
developed. This version introduced a new normalizing flow architecture for point clouds,
named DeepSetFlow, which incorporates deep sets within the coupling layers to facilitate
point-to-point information exchange. A novel dequantization strategy, CDF-Dequantization,
was also implemented, significantly improving the mapping between discrete cells and con-
tinuous space. Additionally, a mitigation strategy specifically designed to address the multi-
ple hit problem was employed.

A thorough evaluation of both models was conducted, employing a bootstrapping approach
to assess uncertainties and identify areas for improvement. Although substantial progress
was made, the issue of multiple hits per cell persisted, and efforts continued to design an
architecture that inherently produced only one hit per cell.

This effort culminated in the development of the CaloHit architecture, which represents a
hybrid approach combining aspects of both point cloud-based and voxelized methods. The
generation process was divided into two stages: first, generating the hitmap using a vox-
elized approach, and second, generating the energies for the hits using a point cloud-based
approach. In this model, the positions of the points were predetermined, and only the ener-
gies were generated, allowing effective sampling of all calorimeter cells without replacement
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using the Gumbel Top-k trick.

Preliminary tests of this approach, conducted on a basic model with the first dataset from
the CaloChallenge, demonstrated its potential. This approach appears highly promising,
but scaling it to handle higher dimensionality remains a challenge, particularly in terms
of scaling the hitmap approach. A proposed future direction involves developing a low-
granularity hitmap for all calorimeter cells, learning the hit regions, and focusing only on
the hit cells for high-resolution modeling. This would enable the development of a sparse
super-resolution approach. Furthermore, while the current energy model is relatively simple,
incorporating more sophisticated models, such as those based on diffusion or conditional
flow matching, could potentially enhance performance. Finally, it will be essential to test this
approach in a real experimental setup to evaluate its performance, speed, and usability. With
turther refinement, this hit-based approach could offer a robust solution to the challenges
encountered in calorimeter surrogate modeling.

In conclusion, this thesis has laid the groundwork for new directions in calorimeter surro-
gate modeling by introducing and iteratively refining models that leverage point cloud and
voxelized data representations. The pursuit of a robust, scalable, fast, and experimentally vali-
dated calorimeter surrogate model remains an open challenge, but the progress made in this
thesis represents a meaningful step towards that goal.
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INVERSE TRANSFORMATION

A.1 Inverse Transformation for continuous distributions

Let’s consider X as a random variable that has a cumulative distribution function (CDF)
represented as Fx(x) = P(X < x). The CDF of a random variable is an essential element
in probability and statistics, as it provides the probability that a random variable will take a
value less than or equal to a specific value.

By the properties of the CDF, we know that if x < y, then Fx(x) < Fx(y), because the
probability that X is less than or equal to x is always less than or equal to the probability that
X is less than or equal to y. Moreover, Fy is strictly increasing where the probability density
function Px(x) > 0, indicating that the probability increases as the value of X increases.

Now, let’s suppose that Fy is strictly increasing. Then, for any u € (0,1), the equation
F(x) = u has exactly one solution. We denote this solution as x = Fy}(u), where F3! is the
inverse function of Fy. In such a situation, we can say that

D3 (1) = inflx|Fx(x) > u} = inflx|Fx(x) = u} = F3}(u) (A.1)

This shows that the Smirnov transformation is essentially the inverse of the CDEF, provided
Fy is strictly increasing.

Furthermore, the inverse function Fy is also strictly increasing on the interval (0, 1). This is
because if Fy is strictly increasing, then the inverse function will also preserve this property.

Let’s now define a new random variable Y = F)_(l(ll). For this random variable, we can
express the cumulative distribution function of U as Fy(Fx(x)) = P(U < Fx(x)) = Fx(x).

Given that Fy! is strictly increasing, we can proceed and apply this property to our inequality.
Specifically, P(U < Fx(x)) = P(FRH(U) < Fl(Fx(x))). Since Fg!(Fx(x)) simplifies to x,
this can be re-written as P(Fi(U) < x) = P(Y < x) = Fy(x). Hence, we have derived that
Fy(x) = Fx(x).

In conclusion, given these results and by the definition of the equality of random variables,
we can say that X = Y.

As we've established, the equality X = Fx!(U) and its inverse U = Fx(X) provide an invert-

ible mapping between the standard uniform distribution and any continuous distribution
without gaps.
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A.2 INVERSE TRANSFORMATION FOR DISCRETE DISTRIBUTIONS

A.2 Inverse Transformation for discrete distributions

Suppose X is a discrete random variable with p; = P(X = x;) fori € 1, ..., n, where p; is the
probability that X equals x; and 7 is the total number of possible outcomes. The cumulative
distribution function Fx(x,,) is given by Zzn pi-

Let’s consider an arbitrary interval [a, b] such that 0 < a < b < 1. In the standard uniform
distribution, the probability that U falls within this interval is

Pa<U<b)=PU<b-PU<a)=b-a. (A.2)

Now, for all indices i < j, we have 0 < Fx(x;) < Fx(xj) <1 due to the properties of the
cumulative distribution function. Consequently, the probability that U lies between Fy(x;)
and Fy(x;y1) equals P(Fx(x;) < U < Fx(xi41)) = Fx(xi41) — Fx(x;) = pis1. This probability
is precisely the probability that the discrete random variable X equals x;, 1.

Based on these results, we can construct the following function that acts as the inverse trans-
form for the discrete distribution

X1, ifU pr(xl)

ifo(xl) < u < Fx(XZ)

o5 () = ¥ (A3)

Xns ifPX(xn—l) <u=< PX(xn)

In other words, @5 (1) assigns the value x; to u if it falls within the interval [Fx(x;_1), Fx(x;)]-
With this piece-wise defined function, we can express the inverse transform as

q){(l(u) = inf{xz-lu < Px(xl')} (A4)

which provides us with the required mapping from the standard uniform distribution U
to the discrete random variable X. Hence, we have successfully demonstrated the inverse
transform method.
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ADDITIONAL RESULTS

B.1 Marginal Energy Distributions

In Figures B.1 to B.6 show marginal distributions of E,, E,, E, for all possible values in
Dataset 2 and 3. Each figure follows the typical design of this thesis. Comparisons are made
between Geant4, CPF I, and CPF II. The upper sections of the figures present histograms
of the values, where the lines follow the average of bootstrapped datasets, and the error bars
show the standard deviation for bootstrapped datasets. The red dashed area shows the value
for Geant4, the blue line indicates the value for CPFI, and the dark grey line represents
the value for CPFII. Error bars are provided for each data point; however, in some cases,
the error bars are so small that they are not visible. The lower half of the figures presents
the ND as defined in Equation (8.16). The red areas illustrate the anticipated value for the
ND of Geant4 bootstrapping samples in relation to one another. The blue dots represent
the observed values of the ND between the CPF I and Geant4 data, while the dark grey
values indicate the ND between the CPF II and Geant4 data. For enhanced visual clarity,
we slightly moved the values for CPFI and CPFII left and right so that they do not overlap.

This adjustment is solely for better visibility and has no other implications.
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B.I MARGINAL ENERGY DISTRIBUTIONS

Fraction of showers
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