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ABSTRACT

Context. The mass distribution of merging binary black holes is generically predicted to evolve with redshift and to reflect systematic
changes in their astrophysical environment, stellar progenitors, and/or dominant formation channels over cosmic time. Whether this
effect is observed in gravitational-wave data remains an open question, however, and some contradictory results have been reported.
Aims. We study the ensemble of binary black holes within the latest GWTC-3 catalog released by the LIGO-Virgo-KAGRA Collab-
oration. We systematically searched for a possible evolution of their mass distribution with redshift.
Methods. We specifically focused on two key features in the primary mass distribution of a binary black hole: (1) an excess of 35 M�
black holes, and (2) a broad power-law continuum ranging from 10 to &80 M�. We determined whether one or both of these features
were observed to vary with redshift.
Results. We found no evidence that either the Gaussian peak or power-law continuum components of the mass distribution change
with redshift. In some cases, we placed somewhat stringent bounds on the degree of the allowed redshift evolution. Most notably, we
found that the mean location of the 35 M� peak and the slope of the power-law continuum are constrained to remain approximately
constant below redshift z ≈ 1. The data remain more agnostic about other forms of a dependence on redshift, such as the evolution
in the height of the 35 M� excess or the minimum and maximum black hole masses. We conclude that a redshift-dependent mass
spectrum remains possible for all cases, but it is not required by the current data.
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1. Introduction

The LIGO-Virgo-KAGRA Collaboration (LVK, Aasi et al.
2015; Acernese et al. 2015; Akutsu et al. 2021) has published
the detection of 90 gravitational-wave signals from merging
compact binaries (Abbott et al. 2023a) to date. This growing
body of gravitational-wave observations provides ever more
detailed information about the properties of compact binary
mergers (Abbott et al. 2023b; Callister 2024) by offering a cen-
sus of their masses, spins, and the merger rate in the local Uni-
verse.

The majority of the observed gravitational waves originates
from the mergers of stellar-mass binary black holes in the rel-
atively local Universe. Gravitational-wave observations are not
limited to the local Universe, however; the detection horizon
of the Advanced LIGO and Virgo network now extends to or
beyond redshift z ≈ 1 (Abbott et al. 2023a; Capote et al. 2025).
In addition to studying the demographics of local compact
binary mergers, we therefore have an opportunity to study how
these demographics systematically evolve over cosmic time. The
merger rate of binary black holes, for example, is observed
to increase with redshift (Abbott et al. 2023b; Callister & Farr
2024; Edelman et al. 2023), and binary black holes that merged
at earlier cosmic times may have had different spin distri-
butions than those that merge today (Biscoveanu et al. 2022;
Heinzel et al. 2024).

? Corresponding author: max.lalleman@uantwerpen.be

Within this context, a commonly asked question is whether
the mass distribution of merging black holes evolves with red-
shift. A redshift-dependent mass distribution is a generic and
robust astrophysical prediction that arises from a variety of
effects in a variety of different astrophysical scenarios. We
describe the scenarios below.

Isolated binaries: The efficiency of massive black hole
formation and merger is expected to depend sensitively on
the metallicities of the progenitor stars (Belczynski et al.
2010, 2016; Chruslinska et al. 2018; Mapelli et al. 2019;
Santoliquido et al. 2020; van Son et al. 2025). The overall evolv-
ing chemical enrichment of the Universe may therefore pro-
duce systematic shifts in the masses of merging black holes,
with more massive black holes preferentially arising from
low-metallicity stars that are prevalent at larger redshifts. In
the extreme limit, Population III stars that formed at high
redshifts from pristine primordial gas may even avoid pair-
instability (Woosley & Heger 2021) and collapse to yield mas-
sive black holes that fall in or above the pair instability “mass
gap” (Liu & Bromm 2020; Tanikawa et al. 2021) (although
see Costa et al. 2023). The correlations between the masses and
evolutionary delay times of the binaries formed in isolation may
also impart a redshift dependence to the black hole mass spec-
trum. Low-mass binaries, for example, may be more prone to
unstable mass transfer that leads to a common envelope, and they
might merge more rapidly than high-mass binaries that evolve
via stable mass transfer and cause an observed shift towards
lighter black holes with higher redshift (van Son et al. 2022).
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Mergers in dense clusters: Black holes that merge in glob-
ular clusters, young star clusters, and/or nuclear clusters (e.g.,
Portegies Zwart & McMillan 2000; Downing et al. 2010, 2011;
Rodriguez et al. 2015) are also affected by metallicity-dependent
stellar evolution, although they are dynamically influenced
by many-body encounters. They may therefore exhibit a
redshift-dependent mass distribution (Mapelli et al. 2021, 2022;
Torniamenti et al. 2024). Dense clusters can also foster the
assembly of massive black holes via repeated hierarchi-
cal mergers (Antonini & Rasio 2016; Fishbach et al. 2017;
Antonini et al. 2019; Gerosa & Fishbach 2021; Zevin & Holz
2022; Mahapatra et al. 2025). These hierarchical mergers pref-
erentially occur early in the lifetime of clusters, such that the
masses of merging black holes are again systematically higher
at high redshifts (Antonini & Rasio 2016; Ye & Fishbach 2024;
Torniamenti et al. 2024).

Active galactic nuclei: Black hole mergers may instead be
produced in the accretion disks of active galactic nuclei (AGN;
McKernan et al. 2012; Bellovary et al. 2016; Stone et al. 2017;
Ford & McKernan 2022). Merger products may themselves
become trapped in the accretion disk, which leads to pos-
sibly large numbers of hierarchical mergers that build up
ever more massive black holes. Massive hierarchical merg-
ers become increasingly prevalent late in the lifetime of an
AGN (Delfavero et al. 2024), possibly yielding a redshift-
dependent mass distribution.

Multiple formation channels: Finally, the evolution of the
black hole mass function with redshift may arise simply from the
presence of multiple binary formation channels. Different forma-
tion channels generically predict distinct black hole mass distri-
butions and naturally vary in prevalence as a function of redshift.
As mixture fractions between formation channels evolve, so
does the overall mass distribution (e.g., Antonini & Rasio
2016; Zevin et al. 2021; Wong et al. 2021; Mapelli et al. 2022;
Torniamenti et al. 2024; Fishbach 2025).

Some authors (Farr et al. 2019; Mastrogiovanni et al. 2021)
have also discussed the possibility of measuring the Hubble
expansion H0 using gravitational-wave sirens, assuming a cer-
tain mass-redshift dependence of the binary black hole mass
distribution, regardless of its dependence on redshift. The pre-
cise shape and redshift dependence of the mass distribution is
important because it helps us to break the degeneracy between
the source mass and redshift and influences the inference of cos-
mological parameters.

Motivated by these predictions, several studies have searched
for a redshift evolution in the observed black hole mass spec-
trum. The results differed sometimes. Fishbach et al. (2021)
searched for a redshift dependence in the maximum observed
black hole mass using binary black holes from the second
Gravitational-Wave Transient Catalog, GWTC-2 (Abbott et al.
2021a). On the other hand, van Son et al. (2022) investigated the
relative prevalence of stable mass transfer versus common enve-
lope evolution among isolated binaries by searching GWTC-2
data for a resulting redshift-dependent mass distribution among
binary black holes (Abbott et al. 2021a). Both studies yielded
null results. The study performed by Fishbach et al. (2021) was
later repeated by the LVK Collaboration using additional data
from GWTC-3 (Abbott et al. 2023b). No redshift dependence
was reported. Ray et al. (2023) and Heinzel et al. (2025) instead
employed flexible non-parametric methods that were based on
the discretization of the population into a large number of piece-
wise constant bins, to measure the black hole mass distribution
across a range of redshifts. Although this increased model flexi-
bility translated into large uncertainties in the high-redshift mass

distribution, neither study found a correlation between the black
hole masses and redshifts.

On the other hand, Karathanasis et al. (2023) instead argued
that current gravitational-wave data favor a large systematic shift
toward higher masses between z = 0 and z = 1. They interpreted
this result as a metallicity dependence in the pair-instability
supernova limit for black hole masses (Heger & Woosley
2002; Farmer et al. 2019). More recently, Rinaldi et al. (2024)
obtained similar conclusions by identifying an even more dra-
matic evolution of the black hole mass distribution with redshift,
such that the most common black hole masses shifted from ∼10
solar masses in the local Universe to ∼50 M� at z = 1.

Because of the difference that exists in the literature, our
goal in this paper is to revisit the question of whether cur-
rent gravitational-wave data indicate a redshift-dependent black
hole mass distribution. Previous analyses with nonparamet-
ric models (Ray et al. 2023; Heinzel et al. 2025; Rinaldi et al.
2024) nominally minimized the systematic biases, but were
in turn subject to elevated statistical uncertainties. Conversely,
previous analyses performed with stronger modeling assump-
tions (Fishbach et al. 2021; van Son et al. 2022; Abbott et al.
2023b) greatly restricted the possible ways in which a redshift-
dependence mass distribution might show itself. Rinaldi et al.
(2024) hypothesized that their result was not previously
observed precisely because previous analyses adopted models
that were incapable of fitting their particular manner of redshift
evolution.

Our goal is to bridge the gap between these approaches by
measuring the redshift evolution of the black hole mass func-
tion using parametric models (to minimize the statistical uncer-
tainty) that are nevertheless significantly more flexible than those
adopted in previous work (that minimized systematic uncertain-
ties). Gravitational-wave data confidently support the existence
of two features in the black hole mass spectrum: an excess of
mergers with primary masses m1 ≈ 35 M�, and a broad power-
law continuum ranging between 10 to 80 M� (Abbott et al.
2021b, 2023b; Tiwari 2022; Edelman et al. 2023; Farah et al.
2023; Callister & Farr 2024). We focus on each of the features
in turn and determine whether either or both exhibit any red-
shift dependence in their parameters. We adopt an approach that
is expected to be able to recover the redshift evolution identi-
fied by Rinaldi et al. (2024) and Karathanasis et al. (2023), if it
exists. We find that current data show no evidence for a redshift-
dependent binary black hole mass distribution and in some cases
place informative limits on the degree of the allowed evolution.
However, although no evidence for a redshift evolution is found,
we note that current results do not exclude a redshift dependence
either: Future analyses with expanded gravitational-wave cat-
alogs could reveal (or further limit) evidence for a cosmically
varying black hole mass distribution.

The remainder of this paper is organized as follows. In
Section 2 we describe our analysis and include the precise mod-
els we used to search for and constrain a redshift-dependent mass
spectrum. In Section 3 we present and discuss our resulting con-
straints for the redshift dependence of the mass distribution, and
in Section 4, we discuss the mass-dependence of the merger rate.
Finally, we conclude and discuss the astrophysical implications
of this work in Section 5.

2. Methods and data

The primary mass distribution of merging binary black holes is
well characterized by the superposition of a Gaussian peak near
m1 ≈ 35 M� and a broad power-law distribution p(m1) ∝ mα

1 ,
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Fig. 1. Cartoon illustrating the possible manners, as considered in this work, in which the primary mass distribution of a binary black hole might
evolve with redshift. As illustrated in the left panel, we consider the possibilities that the location, width, and/or height of the 35 M� excess evolve
with redshift (see Sect. 3.1). As illustrated on the right, we allowed for the evolution of the height, slope, and endpoints of the power-law continuum
(see Sect. 3.2).

with α ≈ −3.5. We therefore adopted the following parameteri-
zation as a baseline model for the primary mass distribution of
the black hole (Talbot & Thrane 2018; Abbott et al. 2021b):

p(m1) ∝

 A (1 − fp) mα
1 + B fp e

−(m1−µm)2

2σ2
m (Mmin ≤ m1 ≤ Mmax)

0 otherwise.
(1)

Here, α is the slope of the power-law component and µm and
σm are the mean and standard deviation, respectively, of the
Gaussian component. The hyperparameter fp governs the rela-
tive height of each component, and A and B are normalization
constants. The goal of this work is to investigate a possible red-
shift dependence in Eq. (1). Concretely, we mainly focus on two
questions:
1. Whether the inferred hyperparameters of the Gaussian

excess (its mean, variance, and height) vary with redshift,
and

2. whether the inferred hyperparameters of the power-law con-
tinuum (its boundaries, its slope, and/or the fraction of events
in the continuum) vary with redshift.

These two scenarios are illustrated schematically in Figure 1,
which shows a varying Gaussian peak (left) and a varying power-
law continuum (right).

2.1. Modeling a redshift-dependent mass distribution

In order to answer the above questions, we promoted the hyper-
parameters in Eq. (1) to functions of redshift. In particular, we
allowed the hyperparameters of interest to vary as sigmoids.
This enabled a flexible and smooth transition between low- and
high-redshift values. In particular, when Λ signifies an arbitrary
hyperparameter (e.g. α and µm), then we assumed that Λ evolves
as

Λ(z) =
Λhigh − Λlow

1 + exp
[
− 1

∆zΛ
(z − z̄Λ)

] + Λlow. (2)

where Λlow is the hyperparameter value at redshift z � z̄Λ and
Λhigh is the value that is asymptotically approached at z � z̄Λ.
The transition occurs across a redshift interval with a width ∆zΛ

centered at z̄Λ.

2.2. Defining the differential merger rate

Together with the (redshift-dependent) primary mass distribu-
tion, we simultaneously measured the secondary mass distribu-
tion of the binary black hole, the spin distribution, and the overall
evolution of the merger rate with redshift. Our full model for the
source-frame merger rate of binary black holes took the form
R(m1,m2,χ1,χ2; z)

=
dN

dVc dts dm1dm2dχ1dχ2
(m1,m2,χ1,χ2; z)

= Rref
f (z)

f (0.2)
φ(m1|z)

φ(20 M�|0.2)
p(m2)p(χ1)p(χ2),

(3)

The above quantity denotes the number of mergers per unit of
comoving volume dVc, per unit source frame time dts, and per
unit source parameters. The function φ(m1|z) encodes the pri-
mary mass distribution at a given redshift. This is given by
Eq. (1), with additional smoothing factors that truncate the mass
distribution at sufficiently low and high values Mmin and Mmax,

φ (m1| z) =


p (m1|z) exp

(
−(m1−Mmin(z))2

2δm2
min(z)

)
, (m1 < Mmin(z))

p (m1|z) exp
(
−(m1−Mmax(z))2

2δm2
max(z)

)
, (m1 > Mmax(z))

p (m1|z) (else)

. (4)

Here, p(m1|z) is as given Eq. (1), but the hyperparameters are
promoted to functions of redshift, as described in Section 2.1.
Similarly, the hyperparameters that control the truncation of the
mass distribution, such as Mmin and Mmax and the widths of the
smoothing exponentials δmmin and δmmax, were also regarded as
functions of redshift using the aforementioned sigmoid formal-
ism.

Within Eq. (3), the function f (z) captures the overall (mass-
independent) evolution of the merger rate with redshift. If merg-
ing black holes are of stellar origin, then the merger rate is
likely to qualitatively trace cosmic star formation, which ini-
tially rises as a function of redshift before it peaks and decreases
at higher redshift (Madau & Dickinson 2014; Madau & Fragos
2017). Accordingly, we adopted a model (Fishbach et al. 2018;
Callister et al. 2020),

f (z) =
(1 + z)αz

1 +

(
1+z
1+zp

)αz+βz
, (5)
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which grows as f (z) ∝ (1 + z)αz at z � zp and decreases as
f (z) ∝ (1 + z)−βz at z � zp.

We also assumed a power-law distribution for the secondary
mass of the binary, such that (Fishbach & Holz 2020)

p(m2|m1, βq) ∝
1 + βq

m1+βq

1 − M1+βq

min

mβq

2 . (6)

In principle, we might additionally have included the power-law
slope βq among the parameters we allowed to vary with redshift,
when doing so, however, only uninformative constraints, and so
for simplicity exclude variation in βq in the analyses discussed
in Section 3. Our models for the probability distributions of the
component spins χ1 and χ2 are described in Appendix A. The
overall normalization of the merger rate is captured in Eq. (3) by
Rref , which is the differential merger rate evaluated at z = 0.2 and
m1 = 20 M�. These reference points correspond to locations at
which the differential merger rate is reasonably well measured,
which improves the sampling efficiency when the model hyper-
parameters are inferred. Beyond algorithmic efficiency, however,
the choice of the reference point does not affect our results. Dif-
ferent reference points would simply alter the posterior on Rref
by a multiplicative constant.

2.3. Data and likelihood

We considered all binary black hole events in the LIGO-Virgo-
KAGRA Collaboration GWTC-3 catalog (Abbott et al. 2023a)
with false alarm rates below one per year. When a binary black
hole population is described by hyperparameters Λ, the likeli-
hood of an observed gravitational-wave catalog is (Loredo 2004;
Taylor & Gerosa 2018; Mandel et al. 2019; Vitale et al. 2020)

pBBH ({di} |Λ) ∝ e−Nexp(Λ)
Nobs∏
i=1

∫
p (di|λ)

dN
dλ

(Λ)dλ. (7)

Here, Nobs is the total number of gravitational-wave observa-
tions, with the data represented by {di}

Nobs
i=1 , and Nexp(Λ) is the

total number of expected mergers (observed or unobserved) that
are predicted to occur over the given observation period. In the
above likelihood, λ signifies the individual parameters (com-
ponent masses, spins, redshift, etc.) of each binary; the likeli-
hood of the i’th gravitational-wave event given parameters λ is
denoted p(di|λ). The quantity dN/dλ(Λ) is the detector-frame
rate of gravitational-wave events, which is related to the source-
frame rate in Eq. (3) by

dN
dλ
≡

dN
dm1 dm2 dz dχ1 dχ2

=
dVc

dz
Tobs

1 + z
R(m1,m2,χ1,χ2; z),

(8)

where the factor (1 + z)−1 transforms from detector-frame into
source-frame time, Tobs is the observing time, and dVc/dz gives
the comoving volume per unit redshift.

In practice, we evaluated Eq. (7) not as an integral over the
event likelihoods, but instead via Monte Carlo averages over dis-
crete posterior samples for each event. For the sets of samples
{λ} ∼ p(λ|di) drawn from each event posterior, Eq. (7) may be
approximated via

pBBH ({di} |Λ) ∝ e−Nexp(Λ)
Nobs∏
i=1

〈
dN/dλ(λi)

ppe(λi)

〉
samples

, (9)

where ppe(λi) is the prior used during parameter estimation and
〈·〉samples indicates an average taken over posterior samples of a
given event.

The search selection effects are captured by the expected
number of detections, Nexp(Λ), given by

Nexp(Λ) =

∫
dλPdet(λ)

dN
dλ

(λ|Λ), (10)

where Pdet(λ) is the probability of detecting an event with event
parameters λ. This integral, can also be approximated as a Monte
Carlo average over simulated signals injected into and recovered
from gravitational-wave data. Given a total number Ninj of such
injections, each drawn from a parent distribution pinj(λ),

Nexp(Λ) ≈
1

Ninj

Nfound∑
i

dN/dλi

pinj(λi)
, (11)

where the summation runs over the subset of successfully recov-
ered injections. More information about the exact data we used
in our analysis can be found in Appendix B.

3. Evolution of the black hole mass spectrum with
redshift

As discussed previously, the primary mass distribution of the
binary black hole can be phenomenologically modeled as two
pieces: (i) a Gaussian excess situated on top of (ii) a broad
power-law continuum. We searched for the redshift evolution
within each of these features in turn. In Section 3.1 we first
explore the degree to which the Gaussian peak evolves with red-
shift. In Section 3.2 we then examine a possible redshift evo-
lution in the power-law continuum1. In Section 4 we reverse
our perspective and instead analyze GWTC-3 data in search of
a mass dependence in the redshift distribution of binary black
holes.

3.1. Variation in the Gaussian excess with redshift

The Gaussian excess observed in the primary mass distribution
of a binary black hole is governed by three parameters: the mean
of the peak µm, its standard deviation σm, and the mixing frac-
tion fp that controls its relative height. We varied each of these
hyperparameters as a function of redshift, as in Eq. (2), using the
priors described in Appendix A.

Figure 2 shows our resulting constraints on the redshift-
dependent mass distribution when the Gaussian peak was
allowed to evolve. In particular, we show the probability distri-
bution of primary masses taken at two different redshifts: z = 0.2
(upper panel) and z = 0.75 (lower panel).

Fig. 2 shows that the location of the peak is constrained to
remain reasonably stationary across the full range of redshifts
we considered. Specifically, µm can shift by no more than 17%
between z = 0 and z = 1, at a credibility of 90%. At the
same time, the height of the peak is less well constrained; a
more pronounced and growing 35 M� peak at higher redshift
is not excluded by the current observations. This growth is not
required, but it indicates that current gravitational-wave catalogs
contain no affirmative evidence for a redshift-dependent peak.

1 Note that, because fp controls the prominence of both the power-law
and Gaussian components of the primary mass distribution, the analyses
in Sects. 3.1 and 3.2 are not strictly independent of one another.
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z = 0.2

95% interval

z = 0.75

95% interval at z = 0.2

95% interval

Fig. 2. Inferred primary mass distribution of a binary black hole, when
the Gaussian excess at ∼35 M� evolves with redshift. Upper panel:
Inferred primary mass distribution at z = 0.2. Green traces illustrate
individual draws from our hyperposterior, and the solid black lines
mark the 95% credible bounds. Lower panel: Primary mass distribution
inferred at z = 0.75. For comparison, the dashed black lines illustrate
the 95% credible bounds from the upper panel at z = 0.2.

An alternative view of our results is given in Fig. 3, which
shows our posteriors on the relevant hyperparameters themselves
as a function of redshift. Specifically, the top, middle, and lower
panels show our posteriors on the location µm(z), width σm(z),
and logarithmic height of the peak log fp(z).

In all three cases (and for µm(z) and log fp(z) in particu-
lar), our posteriors are constrained away from our priors in a
broad range of redshifts. At face value, however, the interpreta-
tion of these measurements is ambiguous: It is unclear whether
we meaningfully measured these parameters across a range of
redshifts or if we only succeeded in measuring them at z ≈ 0,
with the high-redshift posteriors constituting simply a prior-
dependent extrapolation of these low-redshift bounds.

To answer this question, we show the conditional priors on
each parameter as dotted magenta curves, given our posteriors at
z = 0. These curves illustrate the remaining redshift dependence
allowed by our prior, when it is informed by data at z = 0 alone,
and the curves accordingly demonstrate the degree to which low-
redshift information is or is not being extrapolated to high red-
shifts.

By comparing our posterior on µm(z) to this conditional prior,
we see that the posterior is constrained well away from the con-

Fig. 3. Inferred values of the hyperparameters characterizing the mean
(top), standard deviation (middle), and height (bottom) of the Gaus-
sian peak in the black hole mass spectrum as a function of redshift. In
each panel, the green traces mark individual hyperposterior samples,
and the solid and dot-dashed black curves indicate 95% credible pos-
terior bounds and medians, respectively. The dashed cyan lines analo-
gously illustrate 95% credible prior bounds. Finally, the dotted magenta
curves indicate 95% credible prior bounds on each parameter when it is
first conditioned on the measured posteriors at z = 0.

ditional prior at high redshifts. The conclusion that µm(z) must
remain relatively constant therefore is a feature of the data and
not an artifact of our prior. Our posterior on σm(z), on the other
hand, is marginally constrained away from the conditional prior,
but it is apparent that additional data are required before we can
obtain informative constraints on the width of the 35 M� peak
with redshift. Our lower bound on log fp(z) is in turn strongly
constrained away from the conditional prior, such that we can
confidently conclude that the 35 M� peak does not shrink with
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z = 0.2

95% interval

z = 0.75

95% interval at z = 0.2

95% interval

Fig. 4. As in Fig. 2, but the power-law continuum of the binary black
hole primary mass spectrum evolves with redshift.

redshift. In contrast, the upper bound on log fp(z) coincides with
the conditional prior, such that any apparent growth in the 35 M�
peak (e.g. the lower panel of Fig. 2) purely is a prior effect.
As shown by the conditional priors, the results at z ≥ 0.5 are
not just extrapolations from z = 0, but the results at z ≈ 1 are
probably extrapolations from an intermediate redshift. A corner
plot showing the full posterior on the hyperparameters governing
µm(z) is given in Appendix C.

3.2. Evolution of the power-law continuum with redshift

Next, we instead studied whether the observed binary black
holes exhibited evidence for a redshift-dependent power-law
continuum. This continuum is defined by a set of six parameters:
a power-law index α, the truncation points Mmin and Mmax, the
mass scales δmmin and δmmax over which the truncation occurs,
and the relative height of the continuum given by 1 − fp.

Figure 4 shows the resulting constraints on the black hole
primary mass distribution at z = 0.2 (upper panel) and z = 0.75
(lower panel). As in Fig. 2, the figure shows no systematic evi-
dence that the black hole mass distribution evolves with redshift.
The only noticeable difference in p(m1) between the high and
low redshifts is the possible change in the height of the power-
law continuum (which is compensated for by an equal and oppo-
site change in the height of the Gaussian peak). We cannot rule
out a redshift variation on scales finer than we can currently
probe with the existing data.

Fig. 5. As in Fig. 3, but showing posteriors on the redshift-dependent
hyperparameters that characterize the power-law continuum. Specifi-
cally, we show posteriors on the power-law slope (top), mixing fraction
(middle), and the location below which the mass distribution is trun-
cated (bottom). The posteriors on other parameters (e.g. the maximum
black hole mass and high- or low-mass truncation scales) are uninfor-
mative and are not shown here.

In Fig. 5 we plot posteriors on relevant hyperparameters as
a function of redshift. We specifically show redshift-dependent
constraints on the continuum power-law index α(z), the log mix-
ing fraction, log fp(z), and the minimum mass Mmin(z) below
which the primary mass distribution is truncated. Our posteri-
ors on other parameters, such as the maximum black hole mass
Mmax and truncation scale lengths, do not deviate from their cor-
responding conditional priors and are therefore not shown.

The power-law index α(z) is well measured across a range
of redshifts that is bounded confidently away (both above and
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below) from the conditional prior. At the same time, there is
no evidence for a systematic shift in this slope. Interestingly,
the power-law index appears to be marginally better constrained
at higher redshifts than at low redshift. We attribute this to the
fact that the power-law slope is strongly informed by high-
mass mergers. Because these are rare, they are primarily seen
at higher redshifts. The fact that these events are observed sets
a lower bound on α(z) at high z, as a sufficiently negative α(z)
would predict too few observable events. In contrast, very few
high-mass mergers have been identified at low redshift. This
can be explained simply by their overall rarity combined with
a nonevolving mass distribution, but it can also be explained by
a more negative α(z) acting in the local Universe. Altogether, we
find that α is permitted to vary by up to 31% between redshifts
z = 0 and 1 at 90% credibility.

The posterior on the mixing fraction fp(z) is quite similar in
behavior to that shown in Fig. 3. It is bounded above the condi-
tional prior given by the measured continuum and peak heights at
z = 0. It therefore remains possible that the height of the power-
law continuum decreases with redshift (offset by an increase in
the height of the Gaussian peak), but the data show no affirmative
evidence of this behavior. Finally, there is very little informa-
tion regarding the evolution of Mmin with redshift. Its posterior
shifts very little relative to the conditional prior on Mmin(z), but it
remains possible for Mmin to both rise or fall with redshift. Cor-
ner plots showing the full posterior hyperparameters that control
log fp(z) and α(z) are given in Appendix C.

4. Variation in the black hole redshift distribution
with mass

In Section 3 we explored the constraints on the systematic evo-
lution of the primary mass distribution of the binary black hole
with redshift, but we found no evidence for any evolution. This
is not the only way to frame this observational question, how-
ever. The merger rate of binary black holes is known to rise as
a function of redshift. Therefore, instead of asking whether the
black hole mass distribution depends on redshift, this question
can be inverted to ask whether the increase rate in the merger
rate depends on the mass.

These two questions are not independent of each other. How-
ever, different astrophysical scenarios may be better modeled by
one approach than by the other (a redshift-dependent mass distri-
bution versus a mass-dependent redshift distribution). Different
binary formation channels (e.g. stellar clusters, a common enve-
lope, or stable mass transfer) are generically expected to trace
different redshift-dependent merger histories. If the observed
binary black hole population is itself composed of systems from
several such channels, each of which dominates in a different
mass regime, then the resulting redshift-dependent merger rate
may naturally be well modeled by Eq. (5) but with hyperparam-
eters that vary as a function of mass.

To explore this possibility, we followed the same method as
in Section 2 but inverted the roles of mass and redshift. Specifi-
cally, we elevated the parameters αz, βz, and zp that characterize
the redshift-dependent merger rate (see Eq. (5)) to be functions
of primary mass: αz(m1), βz(m1), and zp(m1). Each of these were
modeled as sigmoids,

Λ(m1) =
Λhigh − Λlow

1 + exp
[
− 1

∆mΛ
(m1 − m̄Λ)

] + Λlow. (12)

Analogous to Eq. (2), Λ stands for one of the hyperparameters
{αz, βz, zp}, with Λ(m1) transitioning from Λlow at masses m1 �

Fig. 6. Constraints on the power-law slope αz that governs the evolution
of the volumetric binary black hole merger rate with redshift (top) and
the peak redshift zp beyond which the merger rate turns over (bottom),
each as as function of primary mass. As in Figs. 3 and 5, the black lines
show the 95% credible posterior bounds, the dashed cyan lines mark
prior bounds, and the dotted magenta curves illustrate prior bounds after
they were conditioned on the best-measured posteriors at m1 = 35 M�.

m̄Λ to Λhigh at m1 � m̄Λ across an interval of scale width ∆mΛ.
Our full model for the redshift-dependent merger rate becomes

R(m1,m2,χ1,χ2; z)

= Rref
f (z|m1)

f (0.2|20 M�)
φ(m1)

φ(20 M�)
p(m2)p(χ1)p(χ2);

(13)

(compare to Eq. (3)).
In Fig. 6 we show the resulting posteriors on the low-redshift

power-law slope αz(m1) and the peak redshift zp(m1) as a func-
tion of m1. The data are entirely uninformative regarding the
high-redshift slope βz(m1) and we therefore do not show a poste-
rior on this parameter. Our posterior on αz(m1) in the upper panel
shows very marked behavior. At low primary masses αz(m1) is
broadly constrained to lie between −4.1 ≤ αz ≤ 4.3 at 95% cred-
ibility. The posterior then undergoes a rapid transition around
35 M�, such that αz(m1 = 35 M�) is bounded between 0.7 and
5.1 at 95% credibility. The posterior subsequently slightly broad-
ens again at higher masses. This behavior is expected. By virtue
of search-selection functions, a large number of binaries with
m1 ≈ 35 M� are observed out to large distances, which provides
a reasonably precise measurement of αz in this mass range. In
contrast, only a few low-mass binaries are observed, and those
that are detected lie at low redshifts. We therefore currently have
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little information about αz for low-mass events. The nonzero
number of detected massive binaries at large redshifts also yields
a lower limit on αz for high-mass events, although with some-
what broader uncertainties that are set by the relatively small
number of these events.

Analogously to Figs. 3 and 5, the dotted magenta curves
show conditional priors on αz(m1). In these previous figures,
we showed priors conditioned on measurements at z = 0, at
which redshift we obtained the most precise measurement of
the black hole mass distribution. In this context, it is clear that
the black hole redshift distribution is most precisely measured
at m1 ≈ 35 M�. We accordingly conditioned priors at this loca-
tion, which resulted in the waist that appears in the upper panel
of Fig. 6. The deviation between our αz(m1) posterior and the
conditional prior indicates additional information in the data. At
high masses, the data disfavor low or negative values of αz. At
low masses, although the posterior and conditioned prior largely
coincide, the posterior is nevertheless pushed to slightly smaller
values of αz. This might indicate a distinct redshift evolution of
low- and high-mass binary black holes.

The lower panel of Fig. 6 similarly shows our prior, posterior,
and conditional prior on zp(m1). The peak redshift is bounded
away from zero in the 30–50 M� range because very many events
are observed in this mass range. Otherwise, the posterior is
largely uninformative and closely followes the conditional prior
at lower and higher masses.

Despite the nontrivial constraints on αz(m1), we found no
requirement on the whole that the black hole redshift distribu-
tion varies as a function of mass. The current data remain consis-
tent with a population whose merger rate evolves synchronously
across the full mass range, with single, universal values of αz and
zp. Additional results are discussed in Appendix C, including
corner plots that illustrate full posteriors on the hyperparameters
governing αz(m1) and zp(m1).

5. Conclusion

We have systematically surveyed current gravitational-wave data
for a redshift-dependence in the mass spectrum of binary black
holes. We found no evidence for a correlation between the black
hole masses and redshifts, and the present-day data are consis-
tent with a primary mass spectrum that remains stationary with
redshift.

In some cases, we identified nontrivial constraints on the
degree of the redshift evolution allowed by current data. We
found in Sect. 3.1 that the location of the 35 M� peak in the black
hole primary mass spectrum remains relatively fixed across a
broad range of redshifts; its mean can shift by only 17% or less
between z = 0 to z = 1. Similarly, we found in Sect. 3.2 that the
slope of the power-law continuum is approximately constant out
to redshift z ≈ 1. It varies by less than 31% from z = 0 to z ≈ 1.
These constraints may already be sufficient to rule out theoretical
models that predict a large-scale evolution of black hole masses
with redshift. At the same time, systematic variation in the black
hole masses with redshift is not excluded. For example, the cur-
rent data are still consistent with scenarios in which the height
of the 35 M� peak rises or falls somewhat considerably with red-
shift (see Sect. 3). We emphasize, however, that this evolution is
not a requirement of the data.

These results differ from the conclusions drawn
by Karathanasis et al. (2023) and Rinaldi et al. (2024), but
are consistent with results of other analyses (Fishbach et al.
2021; van Son et al. 2022; Abbott et al. 2021a; Ray et al. 2023;
Heinzel et al. 2025). The ultimate source of this disagreement is

unclear to us. In preparing our results, we found that spurious
redshift evolution might be introduced if we did not check for
and control the poor convergence in the Monte Carlo integrals
[e.g. Eqs. (9) and (11)] that appear in the population likeli-
hood (Farr 2019; Essick & Farr 2022; Talbot & Golomb 2023).
It is possible that similar issues might have been responsible for
previous claims of mass-redshift correlations. While our work
reached its final stages of preparation, we were additionally
made aware of a complementary study that applied the method
of Sadiq et al. (2024) to explore the redshift variation in the
black hole masses (Sadiq et al. 2025). This study reported
no statistically significant evidence for an evolving mass
distribution with GWTC-3. This is consistent with our results.

We note that, although we adopted a more flexible model
than previous parametric analyses, we nevertheless assumed that
the black hole mass distribution is well described by the mixture
of a power law and a Gaussian. This necessarily introduces some
degree of systematic uncertainty. Although this model matches
the most confident features in the black hole mass distribution,
there are also signs that the mass distribution is somewhat more
complex, with a narrower global maximum near 10 M� and
a possible steepening at very high masses. It is possible that
the redshift dependence in these additional features might be
missed in our current analysis. Future work might correspond-
ingly adopt a more complex model to target these features.

Although the current data do not yet indicate a correlation
between black hole redshifts and mass (subject to the above
caveat), it would be surprising if no correlation were fundamen-
tally present because these correlations may arise in very many
different ways (see Sect. 1). Instrumental upgrades and contin-
ued commissioning leading up to and during the current LIGO-
Virgo-KAGRA O4 observing run increase the distance to which
binary black holes can be detected and the precision with which
they can be characterized (Capote et al. 2025), and we antici-
pate that future catalogs may yet reveal a black hole mass spec-
trum that changes over cosmic time. If a mass-redshift corre-
lation remains unobserved, however, the astrophysical implica-
tions of a null result become increasingly important. A mass dis-
tribution that is known to remain constant over a wide range of
redshifts may indicate that binary black holes experience very
long time delays between their formation and eventual merger.
This would wash out the time varying conditions present at their
birth. This might indicate that the formation of massive black
holes is much less dependent on stellar metallicity than typically
expected (e.g., van Son et al. 2025), and/or that metal-poor envi-
ronments remain prevalent even at late cosmic times. Finally, it
would likely indicate that no more than one formation channel
contributes non-negligibly to the observed population of black
hole mergers.

Data availability

Code used to perform this study is made available on
GitHub at [https://github.com/maxlalleman/bbh_
mass_distribution_redshift_variation_inference],
and datasets comprising our results are available on Zenodo at
https://zenodo.org/records/14671139.
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Appendix A: Spin Models and Prior Information

In this appendix we provide more details regarding our spin
models (not discussed in the main text) and the priors adopted
on our hyperparameters during our population inference.

We assume that dimensionless component spin magnitudes
are independently and identically modeled as truncated Gaus-
sians:

p(χi) =

√
2
πσ2

χ

e−(χi−µχ)2/2σ2
χ

Erf
(

1−µχ√
2σ2

χ

)
+ Erf

(
µχ√
2σ2

χ

) , (A.1)

with mean µχ and variance σ2
χ. Similarly, we assume that

cosine spin-orbit misalignment angles are distributed as trun-
cated Gaussians centered at cos θ = 1:

π(cos θi) =

√
2
πσ2

u

e−(cos θi−1)2/2σ2
u

Erf
(
−2√
2σ2

u

) , (A.2)

with variance σ2
u to be inferred from the data.

Table A.1. Priors adopted on the hyperparameters used in our analyses.

Hyperparameter Prior

log(Rref · Gpc3 yr) U(-2, 1)
α N(−2, 3)

log( fp) U(-6, 0)
βq N(0, 3)
αz N(0, 4)
β U(0, 10)

zp U(0.2, 4)
Mmin U(5 M�, 15 M�)
Mmax U(50 M�, 100 M�)
µm U(15 M�, 60 M�)
σm U(1.5 M�, 15 M�)

log(δmmin/M�) U(−1, 0.5)
log(δmmax/M�) U(0.5, 1.5)

Λhigh & Λlow Identical prior to p(Λ) above
log(∆zΛ) U(-1, 1)

z̄Λ U(0, 0.8)
log(∆mΛ/M�) U(-1, 3)

m̄Λ U(20 M�, 75 M�)

Notes: U(a, b) indicates a uniform prior normalized between a and b,
and N(a, b) a Gaussian prior with mean a and standard deviation b.
When varying a given hyperparameter as a function of mass or redshift,
priors on the asymptotic values are identical to the priors listed in the
upper portion of the table. When varying the mean of the Gaussian peak
in the black hole mass spectrum, for example, we adopt p(µm,low) =
p(µm,high) = p(µm) = U(15 M�, 60 M�).

Table A.1 lists the priors used in our analysis. When explor-
ing redshift variation in a given mass hyperparameter Λ, iden-
tical priors p(Λhigh) and p(Λlow) are placed on the asymptotic
high- and low-redshift values. The same is true when conversely
exploring mass variation in hyperparameters governing the black
hole redshift distribution. We note that, when transition redshifts
zΛ were allowed to extend beyond zΛ = 0.8, we encountered
extreme sampling difficulties related to poorly-converged Monte
Carlo averages. We therefore impose a prior that limits zΛ ≤ 0.8.

Appendix B: Data

This appendix details the exact datasets used in our analy-
sis. We take as inputs the binary black holes contained in the
GWTC-3 catalog (Abbott et al. 2023b) released by the LIGO-
Virgo-KAGRA Collaboration. In particular, we select all bina-
ries detected with false alarm rates below one per year, except
for two events (GW190814 and GW190917) that are known
to be population outliers (Abbott et al. 2020, 2023b); these are
excluded from our analysis. Parameter estimation samples for
each binary black hole are accessed through the Gravitational-
Wave Open Science Center2 (Vallisneri et al. 2015; Abbott et al.
2021c, 2023c) or via Zenodo3. For events first published in
GWTC-1 (Abbott et al. 2019), we use the “Overall posterior”
samples. For events first published in GWTC-2 (Abbott et al.
2021a), we adopt the “PrecessingSpinIMRHM” samples, while
we use the “C01:Mixed” samples4 for events first published in
GWTC-3 (Abbott et al. 2023b).

As described in the main text, selection effects are calculated
using Monte Carlo averages over sets of mock signals injected
into and recovered from gravitational-wave data. We adopt the
injection sets described in Abbott et al. (2023b). For injections
performed in the O3 observing run, we consider them detected
if they are recovered with a false-alarm rate below one per year in
at least one search pipeline, matching our event selection criteria
above. Injections performed in O1 and O2 only have network
signal-to-noise ratios, not false alarm rates; for these events we
demand that detected events have signal-to-noise ratios above
10.

2 https://www.gw-openscience.org/
3 https://zenodo.org/record/5546663
4 https://zenodo.org/record/5546663
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Appendix C: Additional inference results

31.38+17.35
−14.06

35.28+15.57
−16.87

0.37+0.56
−1.08

0.39+0.36
−0.35

3.57+28.66
−32.67

Fig. C.1. Posteriors on the hyperparameters controlling the variation in µm with redshift. Specifically, we show the asymptotic low-redshift peak
location µm,low, the asymptotic high-redshift value µm,high, the logarithmic scale log(∆zµm ) over which the transition occurs, the transition location
zµm , and the derived posterior on the difference ∆µ = µm,high − µm,low. The blue dashed lines in the one-dimensional posterior give the priors placed
on each parameter.

In this appendix we present and discuss additional inference results from our analyses in Secs. 3 and 4, including corner plots
showing more detailed posteriors on our population parameters.

Figure C.1 shows our posterior on the hyperparameters governing redshift evolution of the Gaussian peak in the binary black
hole primary mass spectrum: the asymptotic low-redshift value µm,low, the high-redshift value µm,high, the transition redshift z̄µm ,
and the scale ∆zµm over which the transition occurs. For convenience, we also present the derived posterior on the difference
∆µm = µm,high − µm,low between the asymptotic peak locations. We see that, although redshift variation in the peak location is not
excluded, a nonzero value of ∆µ = µhigh − µm is not required, consistent with a nonevolving peak. Note that |∆µ| is permitted to be
large only when the scale length ∆zµm of the transition is also large, such that the peak location is still forced to remain relatively
constant over the range of observable redshifts. This same behavior also manifests as a strong anticorrelation between µm,low and
µm,high, which together must conspire to preserve µm ≈ 35 M� across the range of observable redshifts (see Fig. 3).

Similarly, Fig. C.2 shows our posterior on hyperparameters connected to redshift variation in the height fp of the Gaussian peak.
We specifically show the posterior derived in Sec. 3.2, although these results are extremely similar to the analogous constraints on
fp(z) derived in Sec. 3.1, as well as in Appendix D when varying all features in the black hole mass spectrum simultaneously. As
discussed in the main text, the net change ∆ log( fp) = fp,high − fp,low in the peak height with redshift is consistent with zero, although
with a preference for positive values (a rising peak) over negative values (a shrinking peak). As was the case with µm(z) in Fig. C.1,
any large changes in the peak height are generally required to occur over long scale lengths ∆zlog fp We also include in Fig. C.2
the posterior on the slope αz with which the overall merger rate increases with redshift. This parameter is somewhat anti-correlated
with ∆ log( fp) = fp,high − fp,low. This is expected: in order to correctly predict the observed number of 35 M� events at high redshifts
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1.96+3.18
−5.28

−3.47+2.45
−2.05

−2.11+1.87
−3.15

0.06+0.84
−0.89

0.44+0.33
−0.40

1.47+3.36
−5.45

Fig. C.2. Various one-dimensional and two-dimensional posteriors of the hyperparameters in our analysis relating to the variation in fp in the
power-law continuum are shown. The dark blue dashed lines in the one-dimensional distributions represent the priors. The hyperparameters shown
here are the (ascending) power-law index αz of the modeled merger rate, and hyperparameters connected to varying fp from Eq. (2). This includes
log( fp,low), log( fp,high), the width of the sigmoid log(∆zlog( fp)) and the middle of the sigmoid z̄log( fp).

without overpredicting the number of such events at low redshifts, the model can either posit that the overall merger rate grows with
redshift (large αz and small ∆ fp), or adopt a constant merger rate but invoke a growing peak (small α and large ∆ fp).

The same broad features are present in Fig. C.3, which presents the posterior controlling the power-law slope of the primary
mass spectrum. We again see a slight negative correlation between αlow and the ascending power-law index αz controlling growth
of the overall merger rate. Large αz will generally overpredict the number of massive events at high redshift, unless compensated
for by small ∆α. Conversely, large ∆α must in turn be compensated by small αz to guarantee less frequent massive mergers. We see
a preference for higher values of the sigmoid width log(∆zα) and higher values of the difference ∆α.

In Sec. 4 we reversed our approach and instead investigated mass-dependence in the binary black hole redshift distribution.
Figures C.4 and C.5 show posteriors on parameters governing mass evolution of the low-redshift slope αz of the merger rate and
the peak redshift zp, respectively. Figure C.4 exhibits a significant amount of structure. Exactly as discussed above, we see an
anticorrelation between the slope α of the black hole primary mass spectrum and any shifts ∆αz in the growth of the merger rate as
a function of mass. As illustrated in Fig. 6, the data also marginally favor positive ∆αz, although ∆αz = 0 remains quite consistent
with observation. The posterior on the transition point mαz exhibits a somewhat striking peak near 33 M� (this behavior too can be
seen in Fig. 6); if there exists a transition in αz, it is likely to be centered at this location. This behavior, however, could simply
be a consequence of the fact that a large number of observations occur near this mass, making this the point where αz(m1) is best
constrained. Whether this posterior feature is real or just due to the relative underabundance of higher- and lower-mass events will
require more data to determine. Figure C.5, in contrast, is relatively featureless, other than a preference against very low values of
zp,low and zp,high.
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1.96+3.18
−5.28

−4.71+3.30
−3.17

−3.47+2.87
−3.08

0.20+0.72
−1.01

0.40+0.36
−0.35

1.31+5.40
−6.15

Fig. C.3. Posteriors of the hyperparameters related to the variation in α in redshift are shown. The dark blue dashed lines in the one-dimensional
distributions represent the priors. The hyperparameters shown here are the (ascending) power-law index αz of the modeled merger rate, and then
hyperparameters connected to varying α from Eq. (2). This includes αlow, αhigh, the width of the sigmoid log(∆zα) and the middle of the sigmoid z̄α.
We also plot the difference between the high-redshift and low-redshift value ∆α, which now is a Gaussian, because the difference of two Gaussians
is once again a Gaussian distribution variable.
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−4.45+0.98
−3.25

1.36+3.96
−5.15

3.67+3.89
−4.59

36.78+33.82
−13.81

0.75+2.01
−1.58

2.81+6.19
−8.41

Fig. C.4. Posterior plots for varying the hyperparameters connected to αz. In this figure the power-law index of the primary mass distribution α,
the four hyperparameters connected to the variation in αz via Eq. (2), and the posterior difference ∆αz, are considered.
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1.36+3.96
−5.15

2.31+1.52
−1.70

2.27+1.56
−1.82

46.61+25.78
−23.48

1.08+1.73
−1.89

0.07+2.60
−2.64

Fig. C.5. Posterior plots for all hyperparameters connected to the variation in zp in m1 are shown. The dashed lines denote the one-dimensional
priors in the one-dimensional plots on top. The two-dimensional posteriors are shown in the corresponding row and column for the hyperparame-
ters. Hyperparameters in this figure include the ascending power-law index αz, the four hyperparameters connected to varying zp via Eq. (2), and
the difference between the high- and low-redshift value of zp.
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m1 = 20M�

m1 = 50M�

m1 = 80M�

Fig. C.6. Three slices of the differential merger rate consisting out of
the power-law analysis samples but viewed at a different m1 are shown.
Above, we show m1 = 20 M�, in the middle m1 = 50 M� and below m1
= 80 M�.

An alternative view of our results from Sec. 3.2 is given in
Fig. C.6. In this figure, we show our posterior on the redshift-
dependent merger rate (Eq. (13)) evaluated at three different pri-
mary mass values. The absolute merger rates in each panel reflect
the overall shape of the mass distribution, which favors low-mass
mergers, and uncertainties increase toward both higher masses
and higher redshifts. At the same time, the merger rates in at each
of the three masses are seen to rise in unison with one another,
with no mass-dependent deviations.

Appendix D: Simultaneously varying the Gaussian
peak and power-law continuum

In Secs. 3.1 and 3.2, we independently allowed the Gaussian
peak and power-law components of the black hole primary mass
spectrum to vary with redshift. For completeness, we have also
repeated our analysis but simultaneously allowing all hyperpa-
rameters governing the black hole mass distribution to evolve
with redshift.

When simultaneously varying both the Gaussian peak and
the power-law continuum in this manner, results are unchanged
relative to those presented in Sec. 3. In Fig. D.1, we show pos-
teriors on the three most-informed parameters, the power-law
slope and the Gaussian’s mean and height, as a function of red-
shift. These posteriors exhibit the same trends identified in the
main text above (compare with Figs. 3 and 5), with no require-
ment that any systematically vary with redshift. We also show in
Fig. D.2 the corresponding posteriors on the primary mass dis-
tribution, as measured at redshifts z = 0.2 and z = 1; compare
with Figs. 2 and 4, in which the Gaussian peak and power-law
continuum are varied separately.
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Fig. D.1. The traces of three hyperparameters from the all-varying anal-
ysis, where the blue lines are the sample traces, the dot-dashed black
line is the median value of the traces, the solid black lines are the 95%
confidence intervals and the magenta dotted lines are the conditional
priors. The top panel shows the power-law continuum index α, the mid-
dle panel the location of the Gaussian excess µm and the bottom panel
shows the fraction of events in the peak log fp.

z = 0.2

95% interval

z = 0.75

95% interval at z = 0.2

95% interval

Fig. D.2. The primary mass distribution is shown for two different red-
shifts: z = 0.2 and z = 0.75, where the solid black lines show the 95%
confidence intervals for the traces at that redshift, while the dashed
black lines in the lower panel show the same lines but for z = 0.2 for
visual comparison.
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