

New CP Violation Results from Combined ***BABAR+Belle*** Measurements & Search for Invisible Dark Photon Decays at ***BABAR***

Markus Röhrken ^a
*California Institute of Technology
 1200 East California Boulevard
 Pasadena, CA 91125
 USA*

We present the results of a novel analysis campaign, which combines the final data samples collected by the B factory experiments ***BABAR*** and ***Belle*** in single physics analyses to achieve a unique sensitivity in time-dependent CP violation measurements. We present new results on $\sin(2\beta)$ and $\cos(2\beta)$ by a time-dependent Dalitz plot analysis of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays. A first evidence for $\cos(2\beta) > 0$, the exclusion of trigonometric multifold solutions of the Unitarity Triangle and an observation of CP violation are reported. In addition, a low-energy, high-intensity collider search for light dark matter particles by the ***BABAR*** experiment is presented. New results of a search for invisible decays of the dark photon are reported. No dark photon is observed and constraints on dark sector models are set.

1 New CP Violation Results from Combined ***BABAR+Belle*** Measurements

The B factory experiments ***BABAR*** and ***Belle*** established CP violation in the neutral B meson system^{1,2}. In particular, the ***BABAR*** and ***Belle*** experiments precisely determined the parameter $\sin(2\beta)$ ³ by time-dependent CP violation measurements, where the angle β of the CKM Unitarity Triangle is defined as $\arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$ and V_{ij} denotes the CKM matrix element of quarks i, j ⁴. The determination of β from the measurements of $\sin(2\beta)$ results in the trigonometric ambiguity, β and $(\pi/2 - \beta)$, on the CKM Unitarity Triangle.

An elegant approach to resolve this ambiguity is provided by $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays and $h^0 \in \{\pi^0, \eta, \omega\}$ denoting a light neutral hadron. The $D \rightarrow K_S^0\pi^+\pi^-$ decay exhibits a rich and complex interference structure involving various intermediate CP and flavor eigenstates contributing to the three-body final state. Exploiting the knowledge of the variations of the relative strong phases as a function of the $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz phase space enables to measure $\cos(2\beta)$ in addition to $\sin(2\beta)$ from the time evolution of the $\bar{B}^0 \rightarrow D[K_S^0\pi^+\pi^-]^{(*)}h^0$ multi-body final state⁵. Precise experimental knowledge of $\cos(2\beta)$ enables to resolve the trigonometric ambiguity on the CKM Unitarity Triangle.

In $\bar{B}^0 \rightarrow D[K_S^0\pi^+\pi^-]^{(*)}h^0$ decays, the time-dependent decay rate of neutral B mesons as a function of the weak CP violating phase β and the D^0 and \bar{D}^0 Dalitz plot amplitudes is:

$$g(\Delta t) = \frac{e^{\Gamma \Delta t}}{2} |\mathcal{A}_B|^2 [|\mathcal{A}_{\bar{D}^0}|^2 + |\mathcal{A}_{D^0}|^2] \mp (|\mathcal{A}_{\bar{D}^0}|^2 - |\mathcal{A}_{D^0}|^2) \cos(\Delta m \Delta t) \\ \pm 2\eta h^0 (-1)^L [\text{Im}(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^*) \cos(2\beta) - \text{Re}(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^*) \sin(2\beta)] \sin(\Delta m \Delta t) \quad (1)$$

^aroehrken@caltech.edu

The $q = +1(-1)$ denotes the b -flavor content when the accompanying B meson is tagged as a B^0 (\bar{B}^0). The Δt is the proper time interval between the decays of the two B mesons in an $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^0\bar{B}^0$ event. The D^0 and \bar{D}^0 decay amplitudes are represented by $\mathcal{A}_{D^0} := \mathcal{A}(m_+^2, m_-^2)$ and $\mathcal{A}_{\bar{D}^0} := \mathcal{A}(m_-^2, m_+^2)$ and are functions of the Lorentz-invariant Dalitz plot variables $m_+^2 := (p_{K_S^0} + p_{\pi^+})^2$ and $m_-^2 := (p_{K_S^0} + p_{\pi^-})^2$. The L is the orbital momentum of the Dh^0 or D^*h^0 systems, where we only consider $D^* \rightarrow D\pi^0$ decays in the presented analysis, and η_{h^0} is the CP eigenvalue of the h^0 .

Measurements of $\sin(2\beta)$ and $\cos(2\beta)$ by time-dependent Dalitz plot analyses of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays are experimentally challenging. The involved B and D meson branching fractions are low [$\mathcal{O}(10^{-4})$ and $\mathcal{O}(\leq 10^{-2})$, respectively], and the measurements have to cope with low reconstruction efficiencies and large backgrounds due to many neutral particles in the final state and due to sizable contributions from $e^+e^- \rightarrow q\bar{q}$ ($q \in \{u, d, s, c\}$) continuum events. In addition, determining the $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz amplitude model from data is technically demanding. The *BABAR* and *Belle* collaborations have previously performed time-dependent Dalitz plot analyses of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays^{6,7,8}, but neither experiment alone was sensitive enough to establish CP violation. Some of the results were located outside of the physical region of the parameter space⁶, and the measurements used different Dalitz plot amplitude models^{6,7}, which complicates the combination of the individual results.

At the 52nd Rencontres de Moriond, we presented new results on $\sin(2\beta)$ and $\cos(2\beta)$ obtained by a time-dependent Dalitz plot analysis of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays. The presented analysis combines the large final data samples collected by the *BABAR* and *Belle* experiments in a single measurement. This novel combined approach enables for a unique sensitivity to $\cos(2\beta)$ by the increase in statistics and by applying common assumptions and the same $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz amplitude model to the data collected by both experiments. The analysis is performed in two steps. First, the $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz plot amplitude model is extracted from a high-statistics charm data sample collected by *Belle*. Second, $\sin(2\beta)$ and $\cos(2\beta)$ are measured by a time-dependent Dalitz plot analysis of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays reconstructed from *BABAR* and *Belle* data. The analysis is briefly described in the following.

1.1 Extraction of the $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz plot amplitude model from *Belle* charm data

The $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz plot amplitude model is directly obtained from data using a high-statistics $e^+e^- \rightarrow c\bar{c}$ sample corresponding to 924 fb^{-1} collected at or near the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances with the *Belle* detector. $D^{*+} \rightarrow D^0\pi_s^+$ with $D^0 \rightarrow K_S^0\pi^+\pi^-$ decays are reconstructed, where the positive (negative) charge of the slow pion emitted from $D^{*+} \rightarrow D^0\pi_s^+$ decays determines the flavor of the neutral D meson as D^0 (\bar{D}^0). The signal and background yields are estimated by two-dimensional fits of the D^0 candidate mass and of the $D^{*+}-D^0$ mass-difference $\Delta M_{D^{*+}-D^0}$ distributions. A yield of 1217329 ± 2015 signal decays is obtained. The signal purity is about 94%.

As Dalitz plot amplitude model for $D \rightarrow K_S^0\pi^+\pi^-$ decays a combination of the K-matrix approach⁹ for the $\pi\pi$ S -wave, the LASS parametrization¹⁰ for the $K\pi$ S -wave and an isobar ansatz is chosen. In the isobar ansatz, the P - and D -waves are modeled by Breit-Wigner lineshapes and account for 14 intermediate two-body resonances. The Dalitz plot amplitude model parameters are estimated by an unbinned maximum likelihood fit using the flavor-tagged D^0 sample with the signal probability density function constructed from the Dalitz plot amplitude model with a correction to account for reconstruction efficiency variations in the Dalitz plot phase space due to experimental acceptance effects and an additional term to account for wrong flavor-tags of D mesons. The background is modeled using distributions taken from the M_{D^0} and $\Delta M_{D^{*+}-D^0}$ data sidebands. The $D \rightarrow K_S^0\pi^+\pi^-$ distributions reconstructed from *Belle* $e^+e^- \rightarrow c\bar{c}$ data and projections of the Dalitz fit are shown in Fig. 1. The obtained $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz plot amplitude model parameters are used as input for the time-dependent Dalitz plot analysis of

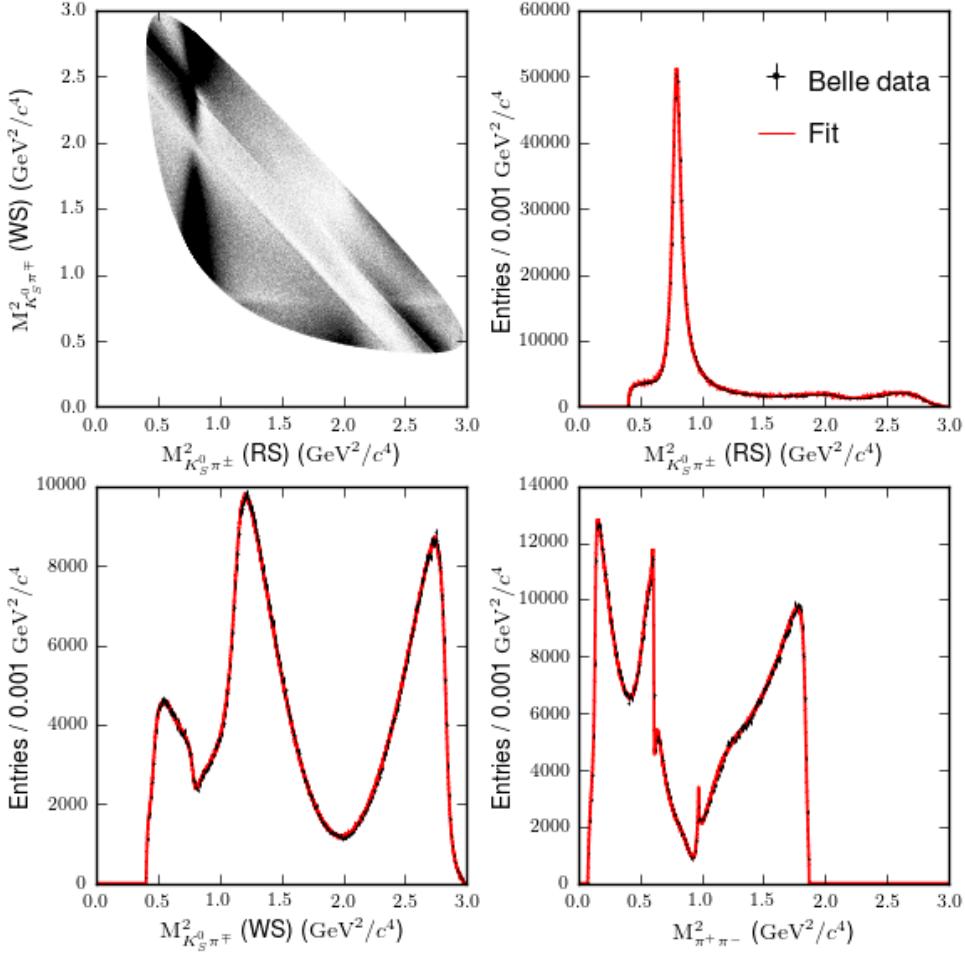


Figure 1 – Preliminary result of the Dalitz fit using the high-statistics flavor-tagged sample of $D \rightarrow K_S^0 \pi^+ \pi^-$ decays reconstructed from $e^+ e^- \rightarrow c\bar{c}$ events collected by Belle. The $D \rightarrow K_S^0 \pi^+ \pi^-$ Dalitz amplitude model accounts for 14 intermediate two-body resonances. The $\pi\pi$ and $K\pi$ S-wave contributions are modeled by the K-matrix and LASS approaches, respectively.

$\bar{B}^0 \rightarrow D^{(*)} h^0$ with $D \rightarrow K_S^0 \pi^+ \pi^-$ decays combining *BABAR* and Belle data described below.

1.2 Time-dependent Dalitz plot analysis of $\bar{B}^0 \rightarrow D^{(*)} h^0$ with $D \rightarrow K_S^0 \pi^+ \pi^-$ decays

The combined *BABAR*+Belle analysis of the B meson decay is performed using data samples that contain $(471 \pm 3) \times 10^6$ $B\bar{B}$ pairs recorded with the *BABAR* detector at the PEP-II asymmetric-energy $e^+ e^-$ (3.1 on 9 GeV) collider at SLAC and $(772 \pm 11) \times 10^6$ $B\bar{B}$ pairs recorded with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ (3.5 on 8 GeV) collider at KEK collected at the $\Upsilon(4S)$ resonance. The similar performance of the two detectors allows a coherent analysis strategy and the use of almost identical selection requirements in the two data sets. The analysis benefits from the techniques established in the previous combined *BABAR*+Belle CP violation measurement of $\bar{B}^0 \rightarrow D_{CP}^{(*)} h^0$ decays¹¹.

The light neutral h^0 is reconstructed in the decay modes $\pi^0 \rightarrow \gamma\gamma$, $\eta \rightarrow \gamma\gamma$ and $\pi^+ \pi^- \pi^0$, and $\omega \rightarrow \pi^+ \pi^- \pi^0$. Neutral D mesons are reconstructed in the decay mode $D \rightarrow K_S^0 \pi^+ \pi^-$, and neutral D^* mesons are reconstructed in the decay mode $D^* \rightarrow D\pi^0$. Neutral B mesons are reconstructed in the decay modes $\bar{B}^0 \rightarrow D\pi^0$, $D\eta$, $D\omega$, $D^*\pi^0$ and $D^*\eta$.

The signal and background yields are determined by three-dimensional unbinned maximum likelihood fits to the distributions of the observables M'_{bc} , ΔE and NN'_{out} . The fit model accounts for contributions from $\bar{B}^0 \rightarrow D^{(*)} h^0$ signal decays, cross-feed from partially reconstructed $\bar{B}^0 \rightarrow$

D^*h^0 decays, background from partially reconstructed $B^+ \rightarrow D^{(*)0}\rho^+$ decays, combinatorial background from $B\bar{B}$ decays, and background from $e^+e^- \rightarrow q\bar{q}$ ($q \in \{u,d,s,c\}$) continuum events. In total, $\bar{B}^0 \rightarrow D^{(*)}h^0$ yields of 1129 ± 48 events for *BABAR* and of 1567 ± 56 events for *Belle* are obtained, respectively.

The time-dependent Dalitz plot analysis of $\bar{B}^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_S^0\pi^+\pi^-$ decays to extract $\sin(2\beta)$ and $\cos(2\beta)$ is performed by maximizing the log-likelihood function constructed from both experiments:

$$\ln \mathcal{L} = \sum_i \ln \mathcal{P}_i^{\text{BABAR}} + \sum_j \ln \mathcal{P}_j^{\text{Belle}}, \quad (2)$$

The \mathcal{P} are p.d.f.s describing the proper time interval distributions, and the indices i and j denote the events reconstructed from *BABAR* and *Belle* data, respectively. The signal p.d.f.s are constructed from Eq. 1 convoluted with experiment specific resolution functions to account for the finite vertex resolution and including the effect of incorrect flavor assignments. The Dalitz plot amplitude model parameters are fixed to the results of the $D \rightarrow K_S^0\pi^+\pi^-$ Dalitz plot fit described above. Free parameters in the fit are $\sin(2\beta)$ and $\cos(2\beta)$, and the preliminary result of the measurement is:

$$\begin{aligned} \sin(2\beta) &= 0.80 \pm 0.14 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \pm 0.03 \text{ (model)} \\ \cos(2\beta) &= 0.91 \pm 0.22 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \pm 0.07 \text{ (model)} \end{aligned} \quad (3)$$

The result of an alternative fit to measure directly the CP violating phase β is:

$$\beta = (22.5 \pm 4.4 \text{ (stat.)} \pm 1.2 \text{ (syst.)} \pm 0.6 \text{ (model)})^\circ \quad (4)$$

The evaluation of the experimental systematic uncertainties on the CP violation parameters follows the methods established in the previous combined *BABAR*+*Belle* measurement of $\bar{B}^0 \rightarrow D_{CP}^{(*)}h^0$ decays¹¹. The evaluation of the uncertainties on the CP violation parameters due to the applied Dalitz plot amplitude model follows approaches established before by *BABAR* in model-dependent measurements of the Unitarity Triangle angle γ using $B^\mp \rightarrow D^{(*)}K^{(*)\mp}$ decays with multi-body D decays^{12,13}.

The significance of the results on the CP violation parameters is estimated by a likelihood-ratio approach that includes the experimental systematic uncertainties and the Dalitz plot amplitude model uncertainties. The measured value of $\sin(2\beta)$ agrees within 0.7 standard deviations with the world average of $\sin(2\beta) = 0.691 \pm 0.017$ ¹⁴ measured from $b \rightarrow c\bar{c}s$ transitions. The first evidence for $\cos(2\beta) > 0$ is obtained by excluding the hypothesis of $\cos(2\beta) \leq 0$ at a confidence level of 2.45×10^{-4} , corresponding to a significance of 3.7 standard deviations. The measurement excludes the hypothesis of $\beta = 0^\circ$ at a confidence level of 3.60×10^{-7} , corresponding to a significance of 5.1 standard deviations, and CP violation is observed in $\bar{B}^0 \rightarrow D^{(*)}h^0$ decays. The measured value of β is in very good agreement with the world average of $(21.9 \pm 0.7)^\circ$ of the preferred solution of the Unitarity Triangle¹⁴. The second solution $(\pi/2 - \beta) = (68.1 \pm 0.7)^\circ$ is excluded at a confidence level of 2.31×10^{-13} , corresponding to a significance of 7.3 standard deviations. Thus the measurement reduces the trigonometric ambiguity of the CKM Unitarity Triangle.

2 Search for Invisible Dark Photon Decays *BABAR*

The origin and nature of dark matter are an important open problem of modern physics and subject of intense experimental and theoretical research. Dark sector models provide dark matter candidate alternatives to WIMPs and can exhibit a complex structure beyond that of the Standard Model (SM). A possible dark sector scenario is to extend the SM by an additional $U(1)$ gauge symmetry which introduces an additional boson A' as mediator^{15,16}. This so-called dark photon may have a gauge coupling of electroweak strength to dark matter, and it could be

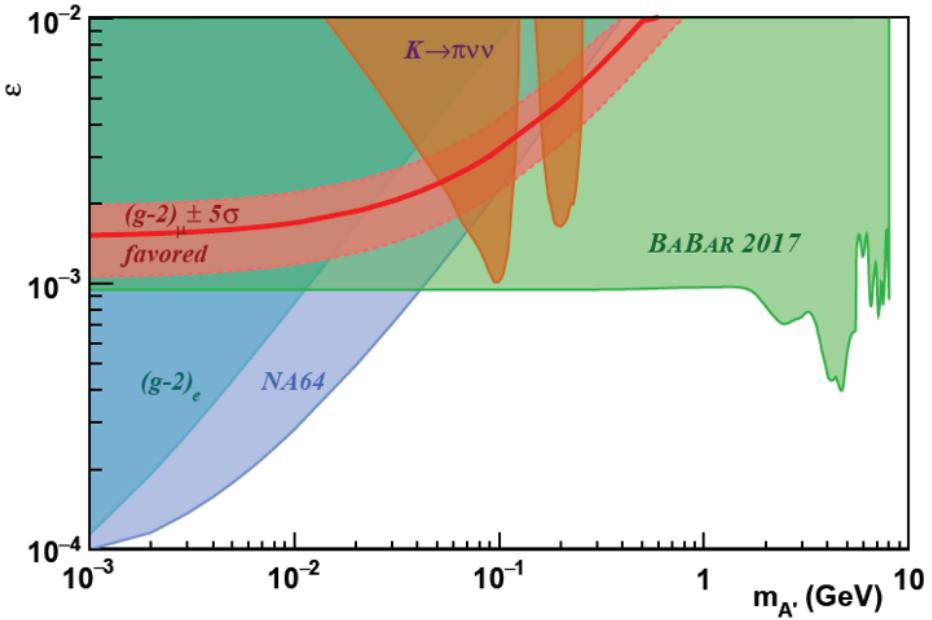


Figure 2 – Preliminary results (green area) for the upper limit on the mixing parameter ϵ at 90% confidence level as a function of the dark photon mass $m_{A'}$ and previous constraints on invisible dark photon decays.

possibly light with a mass in the sub-GeV regime. The dark photon may kinetically mix with the hypercharge of the SM with a mixing strength $\epsilon \ll 1$. Depending on the properties of the dark sector model such as the particle spectrum and the mass and the couplings of the dark photon, the dark photon will exhibit different decay modes. If there are lighter accessible dark sector states χ with $m_\chi < m_{A'}/2$, then the dark photon will predominately decay invisibly via $A' \rightarrow \chi\bar{\chi}$. Experiments at e^+e^- colliders are particularly suited to perform searches for invisible dark photon decays. The reaction $e^+e^- \rightarrow \gamma A'$ with $A' \rightarrow$ invisible can be probed by detecting a single monochromatic photon and nothing else in the e^+e^- annihilation.

At the 52nd Rencontres de Moriond, we presented new results of a search for invisible dark photon decays. The measurement uses an integrated luminosity of about 53 fb^{-1} collected by the *BABAR* experiment at the PEP-II asymmetric-energy e^+e^- at SLAC. The data was taken with dedicated single photon triggers employed during the last year of operation of *BABAR* at center-of-mass (CM) energies close to the $\Upsilon(2S)$, $\Upsilon(3S)$ and $\Upsilon(4S)$ resonances. The search strategy of the measurement is to select events with single photon final states accompanied by significant missing energy and momentum. Then the dark photon is probed by looking for a narrow peak in the missing mass defined as $M_{\text{miss}} = \sqrt{s - 2E_\gamma^* \sqrt{s}}$, where s is the square of the CM energy of the accelerator and E_γ^* is the energy of the detected photon in the CM frame. In the analysis, the main backgrounds originate from $e^+e^- \rightarrow \gamma\gamma$ events and from low-angle radiative Bhabha $e^+e^- \rightarrow \gamma e^+e^-$ events, in which the electrons and positrons escape the detector undetected. A Boosted Decision Tree classifier that combines information on the kinematics of the events and information on the detected electromagnetic showers is used to discriminate between signal and background events.

The dark photon signal is extracted by simultaneous fits to the distributions of the missing mass in independent regions of the data collected at different CM energies. No significant signal is observed. In the fits, the most significant signal obtained is at a dark photon mass of $m_{A'} = 6.22 \text{ GeV}$ with a local (global) significance of 3.1 (2.6) standard deviations, corresponding to a p -value of 1%. Using a Bayesian technique, upper limits on the mixing parameter ϵ at 90% confidence level are estimated as a function of $m_{A'}$. The preliminary results and a comparison to previous constraints on invisible dark photon decays are shown in Fig. 2. The measurement

significantly improves the experimental constraints on the mixing parameter ϵ and excludes a wide range of the parameter space allowed by dark sector models. In particular, the measurement rules out the dark photon interpretation of the $(g-2)_\mu$ anomaly¹⁷. A paper summarizing the measurement has been submitted to Physical Review Letters¹⁸.

3 Summary

The combined usage of the large *BABAR* and *Belle* data sets in single physics measurements enables for an unprecedented sensitivity in time-dependent CP violation measurements of neutral B meson decays. Using the final *BABAR* and *Belle* data samples, a time-dependent Dalitz plot analysis of $\bar{B}^0 \rightarrow D^{(*)} h^0$ decays with $D \rightarrow K_S^0 \pi^+ \pi^-$ decays has been performed. The preliminary results of the measurement are $\sin(2\beta) = 0.80 \pm 0.14$ (stat.) ± 0.06 (syst.) ± 0.03 (model) and $\cos(2\beta) = 0.91 \pm 0.22$ (stat.) ± 0.09 (syst.) ± 0.07 (model). The first evidence for $\cos(2\beta) > 0$ and an observation of CP violation in $\bar{B}^0 \rightarrow D^{(*)} h^0$ decays have been reported. The measurement directly excludes the trigonometric multifold solution of $(\pi/2 - \beta)$ and thus reduces the ambiguity of the CKM Unitarity Triangle.

The *BABAR* experiment has pioneered the low-energy, high-intensity collider search in various signatures of light dark matter and has put tight constraints on dark sector models. New results for the search for invisible decays of the dark photon have been presented, and no dark photons have been observed. Stringent constraints on the mixing parameter ϵ as a function of the dark photon mass $m_{A'}$ and an exclusion of the dark photon interpretation of the $(g-2)_\mu$ anomaly have been reported.

References

1. B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. Lett. **87**, 091801 (2001).
2. K. Abe *et al.* (*Belle* Collaboration), Phys. Rev. Lett. **87**, 091802 (2001).
3. Another naming convention ϕ_1 ($= \beta$) is also used in the literature.
4. N. Cabibbo, Phys. Rev. Lett. **10**, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. **49**, 652 (1973).
5. A. Bondar, T. Gershon and P. Krokovny, Phys. Lett. B **624**, 1 (2005).
6. P. Krokovny *et al.* (*Belle* Collaboration), Phys. Rev. Lett. **97**, 081801 (2006).
7. B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. Lett. **99**, 231802 (2007).
8. V. Vorobyev *et al.* (*Belle* Collaboration), Phys. Rev. D **94**, 052004 (2016).
9. S.U. Chung *et al.*, Ann. Phys. **507**, 404 (1995).
10. D. Aston *et al.* (*LASS* Collaboration), Nucl. Phys. B **296**, 493 (1988).
11. A. Abdesselam *et al.* (*BABAR* and *Belle* Collaborations), Phys. Rev. Lett. **115**, 121604 (2015).
12. B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. D **78**, 034023 (2008).
13. B. Aubert *et al.* (*BABAR* Collaboration), Phys. Rev. Lett. **105**, 081803 (2010).
14. Y. Amhis *et al.* (Heavy Flavor Averaging Group), arXiv:1412.7515 (2014).
15. P. Fayet, Phys. Lett. B **95**, 285 (1980), Nucl. Phys. B **187**, 184 (1981); B. Holdom, Phys. Lett. B **166**, 196 (1986); N. Borodatchenkova, D. Choudhury and M. Drees, Phys. Rev. Lett. **96**, 141802 (2006); D.P. Finkbeiner and N. Weiner, Phys. Rev. D **76**, 083519 (2007); M. Pospelov, A. Ritz, and M.B. Voloshin, Phys. Lett. B **662**, 53 (2008); N. Arkani-Hamed *et al.*, Phys. Rev. D **79**, 015014 (2009).
16. R. Essig *et al.*, arXiv:1311.0029 (2013), and references therein.
17. G.W. Bennett *et al.* (Muon $g-2$ Collaboration), Phys. Rev. D **73**, 072003 (2006).
18. J.P. Lees *et al.* (*BABAR* Collaboration), arXiv:1702.03327 (2017).