Quantum Computing

@IEEE Transactions on,
uantumEngineering

Received 25 October 2024; revised 15 April 2025; accepted 3 May 2025; date of publication 6 May 2025;

date of current version 30 May 2025.

Digital Object Identifier 10.1109/TQE.2025.3567322

Modeling and Performance Evaluation of
Hybrid Classical-Quantum Serverless

Computing Platforms

CLAUDIO CICCONETTI® (Member, IEEE)

National Research Council Institute of Informatics and Telematics, 56124 Pisa, Italy

Corresponding author: Claudio Cicconetti (e-mail: c.cicconetti @iit.cnr.it).

This work was supported in part by European Union — Next Generation EU through the Italian National Recovery and Resilience Plan
(NRRP), Mission 4, Component 2, Investment 1.3, under Grant CUP B93C22000620006, National Center for HPC, Big Data and
Quantum Computing “ICSC” under Grant CNO0000013, and in part by the European High-Performance Computing Joint Undertaking

(JU) under Grant 101018180 HPCQS.

ABSTRACT While quantum computing technologies are evolving toward achieving full maturity, hybrid
algorithms, such as variational quantum computing, are already emerging as valid candidates to solve
practical problems in fields, such as chemistry and operations research. This situation calls for a tighter
and better integration of classical and quantum computing infrastructures to improve efficiency and users’
quality of service. Inspired by recent developments in cloud technologies, serverless computing has recently
been considered a promising solution for this purpose by both industry and research. In this work, we define
a system model for a hybrid classical-quantum serverless system, with an associated open-source numerical
simulator that can be driven by production traces and stochastic workload models. We therefore describe
how we produced a public dataset using IBM Qiskit in a local and remote infrastructure, with a sample
application on optimization. The simulation results show initial insights on some distinguishing features of
the platform simulated, measured in terms of user and system metrics, for jobs with heterogeneous problem
sizes and priorities. We also report a few lessons we learned from developing the application with IBM Qiskit

serverless and running it on IBM Quantum backends.

INDEX TERMS High-performance computing (HPC), hybrid computing, quantum approximate optimiza-
tion algorithm (QAOA), quantum computing, quantum optimization, serverless computing, variational quan-

tum computing, variational quantum eigensolver (VQE).

PARAMETERS OF THE HYBRID CLASSICAL-QUANTUM
SERVERLESS COMPUTING SYSTEM SIMULATOR

Parameter Description

C Number of classical serverless workers in the
platform.

S Worker capacity, in number of operations/s.

(0] Number of quantum computers (QCs)
available.

Chax/Omax Maximum queue size for classical/quantum
tasks.

Interarrival ~ Average interarrival between consecutive jobs,
ins.

Priority Numeric priority value assigned to a job.

Policy Scheduling algorithm to select the next quan-
tum. One of FIFO (F), LIFO (L), Random (R),
and Weighted (W).

Duration Experiment duration.

Warm-up Duration of the period at the beginning of the
experiment during which metrics are not saved.

Repetitions Number of independent replicas performed.

I. INTRODUCTION

Quantum computing is an emerging technology with the po-
tential to revolutionize scientific research [1] and our indus-
try, economy, and whole society [2]. However, despite recent
significant investments and the growing trend of interest in
the scientific community [3], the technology is not yet fully
developed, with our current period being famously called
noisy intermediate-scale quantum (NISQ) era. A class of
applications that is particularly promising in the near term
is variational quantum computing [4], which is an iterative
method where “variational” parameters of a quantum appli-
cation are adapted through an optimization process running
in a classical computer. This technique can be used in many

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025

3101313

https://orcid.org/0000-0003-4503-4223
mailto:c.cicconetti@iit.cnr.it

@IEEE Transactions on,
uantumEngineering

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

classical
computing
intermediate result (classical)

classical

quantum
task

user

5 3 E quantum
E@ computing

intermediate result (quantum)

FIGURE 1. High-level representation of a traditional platform for
executing hybrid classical-quantum applications.

fields, including quantum machine learning (QML) [5],
operations research [6], and chemistry [7].

The simplified architecture of a typical platform for run-
ning variational quantum computing jobs is illustrated in
Fig. 1, showing the classical versus quantum task queues and
computing resources and highlighting the hybrid classical—
quantum nature of such a computing infrastructure. How-
ever, as the ecosystem of the quantum computing platform
providers becomes richer and the maturity of the solutions
they offer improves, we see a shift in the way platforms
are designed, operated, and made available to the users [8]:
software engineering is entering the field, with a promise to
make systems more scalable, efficient, and easy to use [9].
One of the improvements proposed is adopting a serverless
computing approach.

Serverless computing [10] is a mature technology in cloud
services that enables developers to write applications as col-
lections of elementary stateless functions calling one another.
The functions run inside lightweight virtualization abstrac-
tions, usually containers, and are automatically scaled up
when the demand for a given function increases, thereby
spawning more workers that run the same function to which
a load balancer dispatches invocations. On the other hand,
when there are fewer function invocations, the platform pro-
gressively reduces the number of workers, down to zero, if
necessary. System providers like serverless computing be-
cause of its inherent flexibility, which enables them to fine-
tune the use of resources efficiently [11]. Users enjoy the
programming model, called function as a service (FaaS),
which relieves them from all management tasks and enables
pay-per-use billing schemes [12].

A high-level serverless architecture for hybrid classical—
quantum computing is illustrated in Fig. 2. The computing
resources underneath are the same as those in Fig. 1, i.e.,
classical high performance computing (HPC) resources and
QCs, but the application now consists of functions run by
workers running in containers interacting with one another:
the input of a function is the output of its predecessor, starting
with a first invocation that was done by the user through
an online gateway. The application logic carried out by the
workers is also provided by the user as a container image

3101313

quantum
computing

classical computing

i

containers

result .
container

storage
platforms
gateway
result image, job
—)

user

FIGURE 2. High-level representation of a hybrid classical-quantum
serverless computing infrastructure.

or a script in one of the supported run-time environments.
One advantage is that the user does not need to remain active
while the job runs. Instead, they may retrieve the result from
an online storage system asynchronously, after checking the
job status.

The interest in serverless computing for quantum com-
puting applications is steadily increasing, as can be inferred
from the scientific studies reported in Section VI, and IBM
recently released Qiskit application programming interfaces
(APIs) for the execution of serverless jobs in their quantum
cloud services. However, there is a gap in the modeling and
optimization of such an emerging approach, which we fill in
this work. The rest of this article is organized as follows. In
Section II, we propose a system model of a hybrid classical—
quantum serverless platform for variational quantum com-
puting. In Section I1I, we report results obtained from bench-
marking experiments on a local Qiskit serverless deployment
and IBM Quantum, which are used to drive the numerical
simulations illustrated in Section IV, aimed at gathering an
initial understanding of the impact of job priorities and dif-
ferent policies to schedule quantum tasks. The limitations of
the current work and our lessons learned are discussed in
Section V. Section VI surveys the relevant state of the art
in the scientific literature. Finally, Section VII concludes this
article.

Il. SYSTEM MODEL
In this section, we illustrate the system model adopted. We
proceed stepwise, by first introducing our target application,

VOLUME 6, 2025

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

@IEEE Transactions on,
uantumEngineering

compilation and
target HW
optimization

operator
low-level representation

—>

high-level language
problem formulation

initialization

output post-
processing

solution:

final measurements

I:l Quantum computer task

Classical computer task

circuit quantum circuit |
initial parameters execution A
updated
measurements
parameters

update parameters

and parameters

FIGURE 3. General flow diagram of a variational quantum computing algorithm, where the different tasks execute on quantum (cyan) versus classical

(green) computing resources.

i.e., iterative quantum optimization, in Section II-A. Then,
we provide a mathematical formulation of a traditional mul-
tiserver problem in Section II-B to set the scene with com-
monly used notation, before explaining how to go from there
to the final serverless-oriented system model in Section II-C.

A. VARIATIONAL QUANTUM COMPUTING

As anticipated in Section I, in this work, we focus on a
class of hybrid classical-quantum applications under the um-
brella of variational quantum computing [13]. A high-level
schematic of such applications is illustrated in Fig. 3. The
flow begins with the user, represented in the leftmost part of
the picture, formulating their problem using a high-level lan-
guage, typically Python. Such formulation, for instance, can
capture an objective function to be optimized by complying
with some constraints (quantum approximate optimization
algorithm (QAOA) [6]) or model a physical system, such
as a molecule, for which the ground state needs to be found
(variational quantum eigensolver (VQE) [7]). The high-level
formulation needs to be converted into a suitable low-level
representation that depends on the target hardware. In the
following, we assume for simplicity of explanation the latter
to be a gate-based QC [14], in which case the low-level repre-
sentation would be a quantum circuit that depends on a set of
parameters, typically angles for rotating qubits along one of
the axes.! The resulting quantum circuit is then sent to a QC,
along with an initial configuration of the parameters based on
external/expert knowledge (or random data). After a single
execution of the quantum circuit, the qubits are measured.
This operation can be seen as the ground state of a certain
Hamiltonian, as resulting in the mapping from the high-level
problem formulation to the circuit representation. The mea-
surements allow a classical task to compute the energy/cost

Variational quantum computing can be used as well with adiabatic
QCs [15], in which case the low-level representation is the Hamiltonian
directly describing a solution to the problem of interest. See Section V-A
for a discussion on such an alternative.

VOLUME 6, 2025

compute cost and update parameters

pre c&u c&u| ... c&u post

qgce qgce .. |qce time

quantum circuit execution

FIGURE 4. Time sequence of a variational quantum algorithm job.

of the system and, by using classical techniques only, to
provide updated parameters for the quantum circuit to be
re-executed. These two steps are repeated until convergence
(or, in practice, a maximum number of iterations). At this
point, the final measurements and parameters are produced
as output: through postprocessing, they will provide the user
with a solution found.

The simplified time sequence of a single variational quan-
tum algorithm job is illustrated in Fig. 4, where pre in-
cludes all the preliminary operations, i.e., the mapping from
high-level language formulation to low-level representation,
compilation for the target hardware (i.e., transpilation), and
selection of a suitable initial set of parameters, while post
indicates any postprocessing that might be necessary after
all the iterations have been performed. The time and com-
plexity associated with each step vary wildly with the appli-
cation type and the size of the problem addressed, as well as
the classical or quantum hardware where the tasks run. In
Section III, we will provide figures obtained from experi-
ments run for a specific optimization application.

B. MULTISERVER PROBLEM FORMULATION

We now propose a standard formulation inspired by the well-
known problem of multiserver scheduling (e.g., [16]), which
would align well with the characteristics of a traditional plat-
form for executing hybrid classical-quantum applications,
such as that in Fig. 1. Even if this formulation cannot capture

3101313

@IEEE Transactions on,
uantumEngineering

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

2 2
ai +TZ’

1 S.)
I 0; 1

FIGURE 5. Example of a two-task job i, showing the job arrival time t'.‘,
the activation times of the two tasks (a] and a?), the task durations
(z} and 7?), and the job delay s;.

some specific features of a hybrid classical-quantum server-
less computing system under study (i.e., Fig. 2), we believe
it is useful to introduce the notation and guide the reader. As
illustrated in Fig. 5, we assume that the ith job arrives at time
t} and consists of n; tasks (in the example, itis n; = 2), which
must be executed sequentially. Each task can be executed
either on a classical computer (¢; = 1) or on a QC (¢; = 1),
and the execution of the task requires a duration t;, during
which it is not interrupted. The delay of the job §; would then
be the time between the job’s arrival and when the last task
has completed execution. Since the delay directly affects the
user’s experience, one reasonable objective is to minimize
the total delays of all the jobs, i.e.,

N
minZSi. 1)
i=1

An interesting case for this is to assume that the resources
are finite, i.e., there is a maximum number of classical tasks
C that can be executed in parallel, and, similarly, Q is the
maximum number of quantum tasks that can run in parallel.
Under this assumption, the multiserver classical-quantum
problem is to find the activation times a‘l.’ of any task j of
job i such that the constraints in (2) are not violated, which
ensures that any task is activated after it starts and that the
classical and server capacities are not exceeded.

al > tii Vi
al za /! Vi Vj=2
8 = q?i + 7 — tl.i Vi
ci-qi €10, 1} vi.j (2
cl+ql=1 _ Vi, j
Yoot Yp 16, johok)elef < € Vi, j
Y1 iy 16, J b Kald) < Q Vi, j

In (2), we use the indicator function I (i , J» h, k), which yields
1 when the two tasks activated at a{ and a];l are (partially)
overlapping in time, i.e., they are executed in parallel

1, aﬁfa{ga’;l—f—r}’fv
I, j, h, k) = i <al +1/ <df +1f 3)
0, otherwise.

A possible alternative formulation would be to minimize,
e.g., the classical capacity C under a constrained maximum

3101313

delay §"* associated with each job i

min C s.t.
2
{;Lamx o)
= 0 .

C. SERVERLESS SYSTEM MODEL

The formulation in the previous section does not capture
some key aspects of the hybrid classical-quantum serverless
computing system described in Section I and illustrated in
Fig. 2.

Observation 1: The formulation in Section II-B assumes
that the arrival times til of all the jobs are known at decision
time, which is typical of offline optimization processes. In
a production system, scheduling can be based only on the
currently active jobs, because, in general, there is no way to
know about future jobs. In other words, the true problem is
an online one. '

Observation 2: The duration tl.j of a task within a job is
now known beforehand. In some cases, it can be estimated
with some error margin. For instance, IBM Qiskit provides
an API to estimate the execution time of a quantum circuit
on a specific QC.? However, the application logic is usually
opaque to the serverless platform, because many times the
user may ship it in binary format inside a container image,
and generally even estimating a serverless task duration is
known to be challenging [17].

Observation 3: Container platforms commonly exploit
statistical multiplexing of concurrent tasks running in sepa-
rate containers. In other words, there can be more active con-
tainers than CPUs in the system: the CPU capacity may have
to be shared between independent applications. Therefore,
even if details about the classical application are fully known,
it is not possible to know beforehand the execution time as it
depends on the time-variable number of active tasks.

Observation 4: Serverless is subject to cold start [18]: the
execution time of a task may include a significant amount of
time to perform ancillary operations (e.g., load the container
image and set up the virtual network), which are needed
only if there is no container available that can already host
the same task. Again, this affects the capability of the plat-
form to infer the task’s execution time based purely on its
characteristics.

Observation 5: The number of iterations n; of a variational
quantum computing job is not known in advance because it
depends on the convergence of the classical optimization of
the “update parameters” task in Fig. 3, which in turn depends
on the methodology as well as the input data.

Based on these observations, in this work, we propose
a simulation model that better captures the distinguishing
features of a hybrid classical-quantum serverless computing
system. The model is described in the following and was

2Indeed, we use this feature in Section III.

VOLUME 6, 2025

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

@IEEE Transactions on,
uantumEngineering

made publicly available as open-source code under a permis-
sive MIT license on GitHub [19], with initial results reported
in Section IV.

In our model, the jobs’ arrival process follows a Poisson
distribution, with rate A. According to Fig. 4, each job per-
forms classical/quantum iteration tasks preceded by a prepa-
ration task and ending with a postprocessing task. Classical
tasks are characterized by the number of operations required,
whereas quantum tasks are characterized by the execution
time. Such a difference allows us to model the different na-
ture of classical versus quantum tasks: the former are exe-
cuted on containers on a shared pool of CPUs and the latter
are executed on dedicated QCs that, with current technology,
cannot exploit concurrency and statistical multiplexing [20].
The execution time ‘L'l.j (in seconds) of a classical task is

computed as the ratio between the number of operations Ni']
of that task and the effective operation rate (in number of
operations per second). The latter never exceeds the capacity
S of a single classical CPU, but can be less than that if there
are more active tasks than the total number C of CPUs, in
which case we assume that the capacity is spread evenly
across the tasks. Therefore, it is
J
v/ = S (5)
S -min {1, C/A}

assuming that the number of active tasks remains unchanged
until the task’s end; otherwise, it is adjusted accordingly.
Each job is also assigned a priority to differentiate jobs. For
example, this can be used to give fewer resources to jobs
from users who have used up all their quotas or to match
different pricing profiles. In the next section, we discuss our
methodology to create a dataset from which to randomly
draw the number of iterations, the number of operations of
classical tasks, and the execution time of quantum tasks.

Furthermore, a scheduler is needed to assign online the
quantum tasks to the Q available QCs. In this work, we con-
sider the following four well-known policies, whose impact
on the performance is assessed in Section IV.

1) FIFO: Schedule the oldest task.

2) LIFO: Schedule the newest task.

3) Random: Schedule a random task with even
probability.

4) Weighted: Schedule a random task, where each task is
assigned a probability to be selected proportional to the
task’s priority.

Finally, to prevent the system from becoming unstable,
i.e., queueing times growing arbitrarily, we perform a basic
admission control on the incoming jobs based on the current
status of the system. A new job is accepted only if the number
of classical tasks currently active does not exceed Cpax and
the number of quantum tasks, pending and in execution, does
not exceed Omax. After a job is accepted by the platform,
it is never interrupted to avoid wasting resources for partial
computations performed.

VOLUME 6, 2025

q0 Ry (d) Rz(03)
a Ry (1) Rz(14)

FIGURE 6. Example: 3-qubit quantum circuit used in the Qiskit
serverless experiments.

The full set of parameters available in the simulator is
reported in the Nomenclature.

1Il. QISKIT SERVERLESS EXPERIMENTS

This section describes the methodology adopted to create
a dataset that will be used as input for the simulations in
Section IV. We deployed a local serverless computing plat-
form following the instructions of the IBM Qiskit serverless
platform [21], which are provided to enable researchers to
replicate on their infrastructure a platform for developing
and testing their hybrid serverless computing applications
without accessing the IBM cloud production systems. Such
a platform uses Ray [22], which is a framework for the con-
current execution of artificial intelligence jobs, optimized for
programs written in the Python programming language, also
commonly adopted for quantum computing applications,
including in Qiskit. We deployed the cluster through the
Docker Compose tool [23], which automatizes creating and
managing multiple interacting Docker containers, but other
options are possible, including the use of Kubernetes [24]
and public cloud services. We used a high-end server for the
local installation, with Intel Xeon Silver 4410 T CPU and
1 TB of RAM.

We selected a target example application from Ham-
Lib [25], a library of qubit-based quantum Hamiltonians
intended for benchmarking quantum systems. In particular,
we selected the MaxCut problem, with random three-regular
graphs, for which 20 instances are provided for quantum
circuits ranging from 4 to 90 qubits.

We then developed the corresponding QAOA applica-
tion following a serverless pattern using the Qiskit library,
also saving timestamps on the occurrence of noteworthy job
events. In the client, running on the user end, we monitor
the time the job remains in a queued versus initialization
status. On the other hand, the function itself, executed by the
platform, determines the execution times of the classical and
quantum iteration tasks. The quantum circuit used includes
rotation and CNOT gates and was generated with the Qiskit
function EfficientSU2. For example, for three qubits,
the quantum circuit is reported in Fig. 6 and has 12 parame-
ters (1) that are initialized with random values and optimized
by a classical task at each new iteration.

In Table 1, we report the correspondence between all the
metrics plotted in this section and the identifiers used in the
datasets.

3101313

@IEEE Transactions on,
uantumEngineering

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

QUEUED INITIALIZING

120
1104
100 4

901

iié-}%éﬁa%ié

Transpilation time (ms)

801

4 6 8 10 12 14 16 18 20 22 24
n_qubits

1400 -

1200 A

1000 A

800 A

Number of iterations

600 A

400 A

n_qubits

20 A
154

10 A

[|
g : g?{.

T T T T T T T T

4 6 8 10 12 14 16 18 20 22 24
n_qubits

Classical task average execution time (ms)

0 | m— e

FIGURE 7. Local Qiskit serverless experiments, for problems instances with different sizes. (Top left) Time spent by a job while queueing and during
initialization. (Top right) Number of iterations needed (only until ten qubits, maximum number of iterations set to 1500). (Bottom left) Duration of the
transpilation of the quantum circuit. Bottom right: duration of a classical iteration.

TABLE 1. Correspondence Between the Values in Section IlI's Plots and
the Respective DATASETS/COLUMNS in the Repository [19]

Plot Dataset Column(s)

Figure 7 TL output_single QUEUED, INITIALIZING
Figure 7 TR | output_single num_iterations

Figure 7 BL | output_single run_transpile

Figure 7 BR | output_single avg_clas_iter_dur
Figure 8 output_series cost

Figure 9 L output_series time

Figure 9 R ibm_job_estimate | 4th column

In the Plot column: T = top, B = bottom, L = left, R = right.

In Fig. 7, we report the results obtained with our lo-
cal Qiskit serverless platform, with problem instances cor-
responding to quantum circuits from 4 to 24 qubits. With
bigger instances, the time to simulate quantum computing
tasks becomes unacceptable. In the top left plot, we show
the time during which the job appears with status QUEUED
and INITTIALIZING in the platform, which is needed for
the upload and initialization of the job’s function and the
setup of the run-time environment, including loading Python
libraries. As can be seen, such times are both independent of
the problem size. Since our local testbed was unused except
for the current experiment, and jobs were created back-to-
back (notin parallel), there was no additional queueing due to
concurrent/interfering computing processes. The other main

3101313

classical tasks performed are the transpilation of the quan-
tum circuit, which is performed only once and is reported
in the bottom left plot, and the operations related to solving
the classical minimization, performed at each iteration and
reported in the bottom right plot. The latter depends on the
specific algorithm adopted; in our experiments, we used con-
strained optimization by linear approximation, provided by
the SciPy library [26]. Both transpilation and optimization
increase with the problem size, in particular, the latter rather
steeply, but remains small compared to the duration of the
quantum task at each iteration, both in a QC and simulated
in a classical computer, as we show later. Finally, in the
top right plot, we show the number of iterations, which in-
creases significantly with the number of qubits; in fact, to
keep the overall duration of the experiments feasible, we set
a hard limit to 1500 iterations, which is also justified by the
following observation.

In Fig. 8, we show the effectiveness of the optimization
method used, measured as the relative difference between
the initial and final value of the cost function: the initial
value is given by a random configuration of the problem
variables, while the final value corresponds to the minimum
energy state found, unless the algorithm terminated early due
to exceeding the maximum number of iterations. As can be
seen, with four and six qubits, the solver is most effective,

VOLUME 6, 2025

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

@IEEE Transactions on,
uantumEngineering

1.01
?i

0.8

i,

[ee]

o
o

o
i
o]

Delta / initial cost

0.0 A

4 6 8 10 12 14 16 18 20 22 24
n_qubits

FIGURE 8. Local Qiskit serverless experiments, for problems instances
with different sizes: effectiveness of the variational quantum computing
algorithm, in terms of the difference between the initial and final cost
function value, normalized by the initial cost.

as the metric is close to 1. However, it rapidly decreases
even with eight and ten qubits, despite convergence being
reached before the maximum number of iterations is hit (see
again the top right plot in Fig. 7). Slow (or no) convergence
is a known issue of variational quantum computing, which
becomes especially relevant with current noisy QC hardware.
Even if solutions have been proposed for specific use cases,
e.g., [27], well-defined general best practices are not yet
available and go beyond the scope of this work.

In the left plot of Fig. 9, we show the execution time of
the quantum task at each iteration, simulated on a classical
computer. As expected, the time increases exponentially with
the quantum circuit size (note that the y-axis has a logarith-
mic scale), due to a corresponding exponential increase of
the state space to be managed. On the other hand, in the
right plot, we show the estimated time to execute the quan-
tum circuits of our test application, from 4 to 90 qubits, as
reported by the IBM Quantum platform for three different
backends with heterogeneous hardware characteristics. Exe-
cuting small quantum circuits on today’s quantum hardware
remains inefficient, as they can be simulated exactly on stan-
dard classical hardware in a fraction of the time. Notably,
and as confirmed by the right plot in Fig. 9, the execution
time of a quantum circuit on current devices depends only
marginally on the circuit’s size. This characteristic opens the
door to using quantum hardware for problem instances that
are intractable for classical algorithms. However, realizing
this potential hinges on overcoming significant research chal-
lenges, particularly in noise mitigation and the development
of logical qubits [28].

By performing a selection of MaxCut experiments on IBM
Quantum, we confirmed that the estimations returned pro-
vide an accurate representation of the actual time needed
to execute the quantum tasks. Queueing times, instead, are
wild and unpredictable since they depend on the number and
types of jobs pending execution on IBM Quantum, created

VOLUME 6, 2025

TABLE 2. Configuration of the Two Simulation Scenarios

Parameter Small Big
C 1 {1,...,6}
S 10° 107 or 109
Q 4 {1,...,6}
Chax 40 40
Qmax 40 40
Interarrival 600 s {150....,900} s
Num. qubits | U[{4,6,8,10}] | U[{4,8,12,16,20,24}]
Priority U[{1,2,4}] same
Policy all R
Duration 7 days 7 days
Warm-up 12 hours 12 hours
Repetitions 100 100

by other users worldwide, as well as their respective cred-
its/priorities and how they are managed by the inscrutable
IBM scheduling system. Full execution of the experiments
on IBM Quantum was not possible due to the monetary costs
associated with the use of the platform. The dataset we cre-
ated with our local infrastructure and emulated classical com-
puters required the execution of 258 880 quantum circuits,
corresponding to about 600 h of net QC usage. However,
the usage billed by IBM, called “actual usage,” also includes
QC overheads and is subject to rounding effects because of
a minimal quantum processing unit granularity; experience
suggests that with these type of experiments, it is about 7x
bigger than the net usage, which would yield a rough esti-
mate of 4200 h billed, costing up to US$ 12 million with a
Premium Plan [29].

IV. SIMULATION EXPERIMENTS
In this section, we analyze the results obtained with a numer-
ical simulator developed based on the model in Section II-C,
which is available as open-source in GitHub [19], as al-
ready mentioned, also including the scripts to perform all the
experiments in this section and to plot the results.

We carried out two simulation campaigns, whose parame-
ters are reported in Table 2.

1) Small uses the execution times obtained with the simu-
lation of a QC on classical hardware (left plot in Fig. 9),
normalized on the execution times estimated by IBM
Quantum (right plot in Fig. 9) by choosing the best
executor selected by the platform at the time when the
simulations have been performed. The name “small”
is because we focus on how the different scheduling
policies in Section II-C, i.e., FIFO (F), LIFO (L), Ran-
dom (R), and Weighted (W), affect the performance of
multipriority jobs. Indeed, each job entering the sys-
tem is assigned a random problem instance, from 4 to
10 qubits, and a random priority drawn in {1, 2, 4}.

2) Big focuses on how the provisioning of the system, in
terms of the number C of classical serverless workers
(and their computation capacity S) and the number Q
of QCs, affect the performance of the system, when
the load of average jobs entering the system varies.
When studying the provisioning of classical serverless

3101313

@IEEE Transactions on,
uantumEn glneerln g Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

104 4

backend
s ibm_torino
mmm ibm_brussels
1 ®=m ibm_nazca

14 1

Homo
HlH
i &

Estimated quantum circuit execution duration (s)

Quantum task execution time (ms)
g
}—l—{nmo

4 6 8 10 12 14 16 18 20 22 24 4 6 8 10 14 18 22 26 30 40 50 60 70 80 90
n_qubits n_qubits

FIGURE 9. (Left) Duration of a quantum iteration simulated on a classical computer in local Qiskit serverless experiments. (Right) Estimation of the time
needed for a single execution of the quantum circuit in our test application, provided by IBM Quantum for different backends: ibm_torino (Heron r1,
30 k Circuit Layer Operations Per Second (CLOP)), ibm_brussels (Eagle r3, 37 k CLOPS), and ibm_nazca (Eagle r3, 29 k CLOPS).

priority
—1
2
)
10° § 10°
)) o
c c
2 2
F=] s
3 3
% £
e 4 b 4
-_g‘ 10 -g‘ 10
num_qubits
— 4
1 o = 6
B 8
103 4 - = 10 103
F L R w F L R w
policy policy

FIGURE 10. Small scenario. Job execution time with different scheduling policies and grouped (left) per number of qubits and (right) priority.

workers, we reduced the worker capacity from 10° to classical tasks exceeding Cinax or the number of pend-
107 operations/s. For simplicity of analysis, we use ing quantum tasks exceeding Omax, divided by the total
homogeneous priority in this scenario and focus only number of jobs that requested to be admitted.

on the Random (R) scheduling policy. The name “big”

stresses that jobs use instances with up to 24 qubits.

A. SMALL SCENARIO

In the “small” scenario, we compare the scheduling policies
(in the x-axis in the plots) and focus on the job execution
time as the key performance metric, as reported in Fig. 10.
The drop probability (not shown) is comparable for all the
scheduling policies, with an average of 15%. In the left plot,
the job execution time is grouped by the number of qubits. It
increases with the problem size, mostly because of the corre-
lation with the number of iterations in the dataset (top right

Each scenario has been repeated 100 times, following a
Monte Carlo methodology. Most of the results are plotted
with box-and-whisker plots, showing the 25%, 50%, and
75% quartiles in the box, with whiskers extending to the
overall population of values, except for outliers plotted in-
dividually. We consider the following performance metrics.

1) Job execution time: The time between when a job en- plot in Fig. 7). We observe that F and L policies both yield a
ters the platform and when it is completely dispatched, significantly lower job execution time in the box values, i.e.,
i.e., all its tasks have been executed fully and in order. those in 25%—75% quartiles interval, than random policies R

2) Average classical tasks: Average number of active jobs and W. This can be explained as follows. With F, i.e., FIFO,
currently executing a classical task. once a job has its quantum task enqueued, no other jobs (new

3) Average quantum tasks: Average length of the queue or preexisting) can overrun it, which ensures that each task
of quantum tasks for active jobs. has to wait in queue for the full duration of its traversal: this

4) Drop probability: The number of jobs that are denied favors jobs with fewer iterations. The situation is flipped with
execution in the platform due to the currently active L, i.e., LIFO, where new quantum tasks entering the queue

3101313 VOLUME 6, 2025

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

@IEEE Transactions on,
uantumEngineering

are always preferred to older ones: jobs with a shorter iter-
ation duration will be favored in the long term because they
will visit the queue more frequently than others with longer
iteration execution times. Because of the bias of both policies
toward one job type or another, there is a high number of
outliers with a very high job execution time. On the other
hand, the randomized policies R and W exhibit substantially
lower tail job execution times because they do not suffer from
biases, as can be seen by the smaller population of outliers.
However, this comes at the expense of higher job execution
time for most jobs.

In the right part of Fig. 10, we show the same results
grouped by the job priority. The F, L, and R policies do not
consider this property of the jobs, and the job execution times
are the same for all the priorities. Instead, we designed W
to be priority-aware, since it schedules quantum tasks with
a probability proportional to the job’s priority value. The
results prove this simple mechanism to be effective, as the
job execution time is proportional to the respective priority
of jobs.

Take-away messages: Scheduling of quantum tasks in it-
erative variational quantum computing applications running
in a hybrid classical-quantum serverless infrastructure can
significantly affect the performance. In particular, random-
ized policies increase the average job execution times while
reducing tail values. Furthermore, we note that a simple
weighted randomized policy effectively differentiates jobs
with mixed priorities.

B. BIG SCENARIO

In this section, we illustrate the results obtained in the so-
called “big” scenario, which differs from the previous one
in the size of problem instances, which now go from 4 to
24 qubits. Furthermore, for simplicity of analysis, we as-
sign the same priority to all jobs and use a single policy
(Random,? which provides lower tail job execution times
compared to sorted alternatives), which allows us to assess
the performance with variable loads and resources.

First, we vary the number of QCs (Q), with a serverless
worker capacity that creates a bottleneck on the quantum
resources, i.e., S = 10°. In Fig. 11, we show the drop proba-
bility as a heat map to visualize at the same time the impact
of both Q and the load. As expected, the drop probability
decreases steadily when increasing Q for a given load. In
this respect, the simulation model can be used as a tool to
provision the resources of a hybrid classical-quantum server-
less system for jobs with given statistical characteristics or
following a trace-driven approach.

We now move to the case when classical resources are
scarce, by decreasing the serverless worker capacity to S =
107. In Fig. 12, we show a heat map of the drop probability
with varying load and number of serverless classical workers
(C). The drop probability increases with an increasing load,

3Since all the jobs have the same priority, Random and Weighted are fully
equivalent.

VOLUME 6, 2025

4.0

4.8

- 60

6.0

8.0

-40

Load (jobs/hour)
Drop probability (%)

12.0

20

24.0

FIGURE 11. Big scenario. Drop probability when varying the number of
QCs (Q) with different load conditions.

@
<
- -60y
3o >
29 2
3¢ -
Qo o
s 3
s o -40 &
©
3 g
-308
o
~
= 20
g 10
~N

FIGURE 12. Big scenario. Drop probability when varying the number of
serverless classical workers (C) with different load conditions.

as expected. However, when looking at the same metric with
constant load, the behavior is nonmonotonic: the drop prob-
ability is maximum with C = 1, then decreases sharply to a
minimum and increases again when adding further serverless
classical workers. This phenomenon can be explained by
delving into the internals of the simulated platform.

In Fig. 13, we show the average number of tasks, both clas-
sical (left) and quantum (right). Recall that, as explained in
Section II-C, we drop a new job if there are too many classical
or quantum tasks already active in the system, with Cpax =
Omax = 40 in this scenario. As C increases, the availability of
classical resources grows, which reduces the average number
of classical tasks currently being served but also increases the
average number of active quantum tasks. Such an interplay
between classical and quantum resources is inherent to the
hybrid infrastructure under study and leads to the nonmono-
tonic trend in Fig. 12. Finally, we show in Fig. 14 the exe-
cution time for a representative load (8 jobs/h). With C = 1,
the performance is worst, although not by a large amount,
due to the shaping of incoming jobs, which keeps the system
stable even at high loads. With C = 2, for which we have
the smallest drop probability (see Fig. 12), the job execution
time reduces significantly, although a nonnegligible amount

3101313

@IEEE Transactions on,
uantumEngineering

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

<
<

6.0 4.8

Load (jobs/hour)
8.0

Average classical tasks

12.0

24.0

6.0 4.8 4.0
|
a
S

Load (jobs/hour)
8.0

|
w
o

Average quantum tasks

T
N
o

12.0

24.0

=
o

FIGURE 13. Big scenario. (Left) Average classical versus (right) quantum tasks, when varying the number of serverless classical workers (C) with
different load conditions. It is Cnax = Qmax = 40. Based on how the admission control is defined in Section II-C, the average number of active classical or
quantum tasks may exceed the respective limit, but the sum of classical and quantum tasks can never exceed Cnax + Qmax-

[e] i
20

154

10 A

Job execution (hours)

FIGURE 14. Big scenario. Job execution time when varying the number
of serverless classical workers (C) with a load of 8 jobs/h.

of outliers remains on the upper bound. As the number of
classical serverless workers increases further (C > 2), the
25% and 50% percentiles of the job execution time (middle
line in boxes) initially decrease then increase again, while
the 75% percentile increases steadily; in any case, the outliers
disappear. This is because the interplay between classical and
quantum resources becomes progressively less relevant as C
increases until the system dynamics are dominated by the
queueing of quantum tasks only.

Take-away messages: Depending on the load characteris-
tics and availability of resources, there can be an interplay
between classical and quantum tasks leading to performance
trends nonmonotonic with the resources deployed, in terms
of the drop probability and job execution time. The simu-
lation model defined can capture these effects and be used
as a tool to provision a hybrid classical-quantum serverless
platform.

V. DISCUSSION

In this section, we discuss the limitations of the current work
(see Section V-A) and report some lessons learned during the
execution of the related research activities (see Section V-B).

3101313

A. LIMITATIONS

While the simulation model in Section II-C is generic, some
of the conclusions in this work may depend specifically on
the dataset used as input. As described in Section III, such a
dataset has been derived based on experiments run in a single
platform, i.e., IBM Qiskit serverless, which use Ray, in a lo-
cal computing infrastructure, complemented by quantum cir-
cuit job execution estimated by the IBM Quantum system. A
different combination of serverless platforms and QCs would
likely give different results, which might affect, at least quan-
titatively, some of the conclusions in this article. Further-
more, the dataset has been determined using a single ap-
plication, i.e., MaxCut problems with random three-regular
graphs: even if this can be considered representative of a
broad class of variational quantum computing algorithms,
it is an open question how much the simulation model and
conclusions remain valid with different applications (VQE,
QAOA, or others). Furthermore, as briefly introduced earlier,
a broad range of variational quantum computing algorithms
can be realized with analog QCs, such as those manufactured
by D-Wave [30] with up to 5000 qubits. With today’s tech-
nology, the latter supports many more qubits than gate-based
QCs, which can change the balance between the complexity
of classical versus quantum tasks. As part of our future work,
we will extend our research activities to include data from
the execution in analog QCs provided by Pasqal [31] to the
project HPCQC [32], funded by the European Commission
in the EuroHPC framework.

Concerning the simulation model, it is very far from the
level of maturity and complexity of modern serverless com-
puting simulators (e.g., [33]). For instance, we model in a
simplistic manner the effects of cold-start, while neglect-
ing the container platform and scheduling overhead, and the
costs incurred by data transfer, which in cloud computing
production systems have been shown to impact the perfor-
mance significantly [34]. This is because this work aims at
providing an initial understanding of the interplay between
classical and quantum tasks for a specific class of applica-
tions, i.e., variational quantum computing, with serverless

VOLUME 6, 2025

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

@IEEE Transactions on,
uantumEngineering

computing. Further research will be needed, backed up by
data acquired in realistic/production environments, to bet-
ter understand which factors from classical serverless com-
puting are worth incorporating into the system model and
which new aspects need to be prioritized for performance
assessment purposes.

B. LESSONS LEARNED (ABOUT IBM QISKIT SERVERLESS)
As it happens frequently, when performing experiments,
we encountered some findings about the tools used, which
we share with the community in the hope that they will
streamline future research activities in this area. First, de-
ploying a local Ray cluster as a set of Docker containers
following the instructions provided by IBM Qiskit serverless
(version 0.17.1) has been very straightforward and worked
out of the box. However, documentation was a bit scarce
on the customization of the setup, including for the de-
ployment of a “development” flavor with full monitoring,
which required acquiring familiarity with the individual tools
used, whose roles and connections had to be inferred from
Docker Compose configuration files and external online
resources.

Second, the local infrastructure allowed the development
of the test application without resorting to using IBM Quan-
tum resources, which has been immensely useful and re-
duced substantially the effort and pain associated with the
application development. However, the local infrastructure
is not pin-compatible with IBM Quantum. On the one hand,
there is a mismatch in the versions of the libraries used in
the local infrastructure versus IBM Quantum, which has led
to difficult-to-troubleshoot issues. For instance, the construc-
tor of the Session Python class had a different syntax,
which caused a run-time exception from within the server-
less worker; such failures are known to be difficult to debug
also in mature and production-ready classical serverless plat-
forms. On the other hand, the local infrastructure only im-
plements a fraction of the IBM Quantum modes of operation
and user management schemes, which required a frustrating
trial-and-error process to fully deploy the application.

Finally, IBM Quantum does not yet include a mode ded-
icated to serverless. Currently, the supported modes are job,
batch, and session [35]. Job and batch modes only allow
quantum computing operations, with the only difference be-
ing that in batch mode, it is possible to lock the QC for mul-
tiple operations. Whether or not this is beneficial depends on
cases, and the documentation provides some rules of thumb.
The session mode allows alternating between quantum and
classical operations and is intended for applications, such
as variational quantum computing. The details on how this
mode is handled in the backend are not disclosed by IBM, but
the documentation hints that quantum operations in a batch
can be prioritized to reduce the overall service time. The FaaS
programming model of serverless computing assumes that
functions are stateless elementary entities; therefore, using
the batch or session mode would invalidate the underlying

VOLUME 6, 2025

assumption. However, the job mode is associated with the
highest platform overhead and, in fact, is explicitly only in-
tended for short and sporadic executions.

Overall, IBM Qiskit serverless is a promising solution,
which however appears to be far less mature than other
streamlined options for the development and execution of
applications in IBM Quantum. By looking at the history of
serverless computing in cloud environments, we believe that
this pattern will eventually emerge as a dominating one, not
only at IBM, because of its benefits: flexibility, low devel-
opment barrier, and billing granularity, among the others.
However, there are still many aspects that have to be studied
in the specific context of quantum applications, which are
not fully covered by existing tools and prior literature, as
surveyed in the next section.

VI. RELATED WORK

The use of serverless platforms for quantum computing is not
new in the scientific literature. Grossi et al. [36] proposed a
framework to integrate cloud quantum computing services
with a local serverless platform using Apache Kafka as the
underlying mechanism for function invocation. A prototype
implementation has been tested with IBM QCs resulting in
a collection of lessons learned and best practices for future
implementations. Another framework, called QFaaS, was put
forward by Nguyen et al. [37], where they focused on soft-
ware engineering aspects and also provided tools for end
users, including a dashboard for monitoring the running jobs
and a command-line interface to support automation and
scripting. In this article, the authors showcase quantum ran-
dom number generation and the execution of Shor’s algo-
rithm on IBM QC:s. Finally, Stirbu et al. [38] studied the map-
ping between quantum resources and artifacts to the concepts
used in Kubernetes [24], a popular container management
platform used in many serverless computing environments.
None of the serverless platforms in the scientific literature
have been designed specifically or optimized for executing
variational quantum circuits.

Some initial studies have dealt with the modeling and
optimization of quantum computing resource scheduling.
Kaewpuang et al. [39] jointly optimized the time to tran-
spile and execute quantum circuits on heterogeneous QCs,
which, however, requires full knowledge of the quantum ap-
plication and is not designed for iterative tasks, such as in
variational quantum computing. Alvarado-Valiente et al. [40]
focused more specifically on the opportunity to load balance
between multiple quantum computing service providers and
they provide a software architecture and APIs for this pur-
pose; they tested their findings with IBM Quantum and Ama-
zon Braket QCs, showing the potential advantages for both
developers and users. A framework for benchmarking a hy-
brid classical-quantum platform was presented by Karalekas
et al. [41], where they also proposed optimizations for vari-
ational quantum computing algorithms tested in the Rigetti

3101313

@IEEE Transactions on,
uantumEngineering

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

quantum cloud services platform resulting in significant la-
tency improvements. Finally, concerning the tools for the
simulation of hybrid classical-quantum systems, we mention
iQuantum [42], which however does not model serverless
computing platforms.

We note that serverless computing is not the only option
under study to improve the scalability and usability of hy-
brid classical-quantum infrastructures. For instance, Marosi
et al. [43] proposed a reference architecture relying on tradi-
tional (nonserverless) principles that allow the seamless use
of cloud resources, in virtual machines or containers, through
a gateway providing users with the ability to interact with
JupyterLab notebooks [44], which is particularly appealing
as a learning platform. On the other hand, Claudino et al. [45]
showed how to use the XACC compilation framework [46]
to massively parallelize the simulation of quantum circuits
on classical hardware using NVIDIA’s cuQuantum [47]. Fi-
nally, a pure HPC approach has been adopted at the Oak
Ridge National Laboratory, as described in [48], to integrate
heterogeneous classical and quantum computing hardware to
support scientific applications, such as quantum many-body
dynamics and continuum mechanics simulations, in addition
to more common optimization and QML.

VIl. CONCLUSION

In this article, we have studied the opportunity of adopting
serverless computing to execute variational quantum com-
puting algorithms in a hybrid classical-quantum infrastruc-
ture. We have defined a system model emerging from obser-
vations on the differences between a traditional queueing-
based system and serverless computing, which has led to
the development of a numerical simulator, which was made
available as open-source to the community. To feed the simu-
lator, we performed experiments in a local infrastructure de-
ployed according to the IBM Qiskit instructions, with the use
case of an optimization MaxCut application from the public
HamLib benchmarks, where the execution time of quantum
circuits was estimated on different backends at IBM Quan-
tum. This has allowed us to derive a few lessons we shared.
A simulation study has been carried out and showcased the
most relevant system features, including how the choice of
quantum task scheduling affects the performance, with four
alternatives compared, the opportunity of assigning priority
to jobs, and the aspects related to the provisioning of classical
versus quantum resources, which depends on a nontrivial
interplay between the two. The limitations of our approach
have been outlined, together with a sketch of possible open
directions.

REFERENCES

[1] S. S. Gill and R. Buyya, “Transforming research with quantum com-
puting,” J. Economy Technol., Jul. 2024, Art. no. S2949948824000295,
doi: 10.1016/j.ject.2024.07.001.

[2] F. Bova, A. Goldfarb, and R. G. Melko, “Commercial applications of
quantum computing,” EPJ Quantum Technol., vol. 8, no. 1, Dec. 2021,
Art. no. 2, doi: 10.1140/epjqt/s40507-021-00091-1.

3101313

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

M. Coccia, S. Roshani, and M. Mosleh, “Evolution of quantum comput-
ing: Theoretical and innovation management implications for emerging
quantum industry,” IEEE Trans. Eng. Manage., vol. 71, pp. 2270-2280,
2024, doi: 10.1109/TEM.2022.3175633.

E. G. Rieffel et al., “Assessing and advancing the potential of
quantum computing: A NASA case study,” Future Gener. Comput.
Syst., vol. 160, pp.598-618, Jun. 2024, doi: 10.1016/j.future.2024.
06.012.

H. Baniata, “SoK: Quantum computing methods for machine learning
optimization,” Quantum Mach. Intell., vol. 6, no. 2, Dec. 2024, Art. no. 47,
doi: 10.1007/s42484-024-00180-1.

M.E. S. Morales, J. D. Biamonte, and Z. Zimboris, “On the universality of
the quantum approximate optimization algorithm,” Quantum Inf. Process.,
vol. 19, no. 9, Sep. 2020, Art. no. 291, doi: 10.1007/s11128-020-02748-9.
A. Peruzzo et al., “A variational eigenvalue solver on a photonic quan-
tum processor,” Nature Commun., vol. 5, no. 1, Jul. 2014, Art. no. 4213,
doi: 10.1038/ncomms5213.

T. S. Humble, A. McCaskey, D. I. Lyakh, M. Gowrishankar, A. Frisch,
and T. Monz, “Quantum computers for high-performance computing,”
IEEE Micro, vol. 41, no. 5, pp. 15-23, Sep./Oct. 2021, doi: 10.1109/
MM.2021.3099140.

S. Ali, T. Yue, and R. Abreu, “When software engineering meets quan-
tum computing,” Commun. ACM, vol. 64, no. 4, pp. 84-88, Apr. 2022,
doi: 10.1145/3512340.

S. Kounev et al., “Serverless computing: What it is, and what it is not?,”
Commun. ACM, vol. 66, no. 9, pp. 80-92, 2023, doi: 10.1145/3587249.
K. Rzadca et al., “Autopilot: Workload autoscaling at Google,” Proc.
15th Eur. Conf. Comput. Syst., EuroSys 2020, 2020, Art. no. 16,
doi: 10.1145/3342195.3387524.

Y. Li, Y. Lin, Y. Wang, K. Ye, and C.-Z. Xu, “Serverless comput-
ing: State-of-the-art, challenges and opportunities,” IEEE Trans. Services
Comput., vol. 16, no. 2, pp. 1522-1539, Mar./Apr. 2022, doi: 10.1109/
TSC.2022.3166553.

J.R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The theory
of variational hybrid quantum-classical algorithms,” New J. Phys., vol. 18,
no. 2, Feb. 2016, Art. no. 023023, doi: 10.1088/1367-2630/18/2/023023.
O. Ezratty, “Perspective on superconducting qubit quantum computing,”
Eur. Phys. J. A, vol. 59, no. 5, May 2023, Art. no. 94, doi: 10.1140/
epja/s10050-023-01006-7.

P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D.
Oliver, “Perspectives of quantum annealing: Methods and implementa-
tions,” Rep. Prog. Phys., vol. 83, no. 5, May 2020, Art. no. 054401,
doi: 10.1088/1361-6633/ab85b8.

1. Grosof, M. Harchol-Balter, and A. Scheller-Wolf, “WCFS: A new
framework for analyzing multiserver systems,” Queueing Syst., vol. 102,
no. 1-2, pp. 143-174, Oct. 2022, doi: 10.1007/s11134-022-09848-6.

C. Lin, N. Mahmoudi, C. Fan, and H. Khazaei, “Fine-grained perfor-
mance and cost modeling and optimization for FaaS applications,” IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 1, pp. 180-194, Jan. 2023,
doi: 10.1109/TPDS.2022.3214783.

H. Yuetal., “RainbowCake: Mitigating cold-starts in serverless with layer-
wise container caching and sharing,” in Proc. 29th ACM Int. Conf. Ar-
chitectural Support Program. Lang. Operating Syst., La Jolla, CA, USA,
Apr. 2024, vol. 1, pp. 335-350, doi: 10.1145/3617232.3624871.

“Paper code repository, tag v1.0.0,” Accessed: 15 Apr. 2025. [Online].
Auvailable: https://github.com/ccicconetti/serverless_quantum_sim

S. Niu and A. Todri-Sanial, “Enabling multi-programming mechanism
for quantum computing in the NISQ era,” Quantum, vol. 7, Feb. 2023,
Art. no. 925, doi: 10.22331/q-2023-02-16-925.

“Qiskit serverless,” Accessed: 15 Apr. 2025. [Online]. Available:
https://qiskit.github.io/qiskit-serverless/

“Ray,” Accessed: 15 Apr. 2025. [Online]. Available: https://www.ray.io/
“Docker composer,” Accessed: 15 Apr. 2025. [Online]. Available:
https://docs.docker.com/compose/
“Kubernetes,” Accessed: 15 Apr.
https://kubernetes.io/

N. P. Sawaya et al., “HamLib: A library of Hamiltonians for bench-
marking quantum algorithms and hardware,” in Proc. IEEE Int. Conf.
Quantum Comput. Eng., Bellevue, WA, USA, Sep. 2023, pp. 389-390,
doi: 10.1109/QCES57702.2023.10296.

“SciPy.,” Accessed: 15 Apr. 2025. [Online]. Available: https://scipy.org/

2025. [Online]. Available:

VOLUME 6, 2025

https://dx.doi.org/10.1016/j.ject.2024.07.001
https://dx.doi.org/10.1140/epjqt/s40507-021-00091-1
https://dx.doi.org/10.1109/TEM.2022.3175633
https://dx.doi.org/10.1016/j.future.2024.06.012
https://dx.doi.org/10.1016/j.future.2024.06.012
https://dx.doi.org/10.1007/s42484-024-00180-1
https://dx.doi.org/10.1007/s11128-020-02748-9
https://dx.doi.org/10.1038/ncomms5213
https://dx.doi.org/10.1109/MM.2021.3099140
https://dx.doi.org/10.1109/MM.2021.3099140
https://dx.doi.org/10.1145/3512340
https://dx.doi.org/10.1145/3587249
https://dx.doi.org/10.1145/3342195.3387524
https://dx.doi.org/10.1109/TSC.2022.3166553
https://dx.doi.org/10.1109/TSC.2022.3166553
https://dx.doi.org/10.1088/1367-2630/18/2/023023
https://dx.doi.org/10.1140/epja/s10050-023-01006-7
https://dx.doi.org/10.1140/epja/s10050-023-01006-7
https://dx.doi.org/10.1088/1361-6633/ab85b8
https://dx.doi.org/10.1007/s11134-022-09848-6
https://dx.doi.org/10.1109/TPDS.2022.3214783
https://dx.doi.org/10.1145/3617232.3624871
https://github.com/ccicconetti/serverless_quantum_sim
https://dx.doi.org/10.22331/q-2023-02-16-925
https://qiskit.github.io/qiskit-serverless/
https://www.ray.io/
https://docs.docker.com/compose/
https://kubernetes.io/
https://dx.doi.org/10.1109/QCE57702.2023.10296
https://scipy.org/

Cicconetti: HYBRID CLASSICAL-QUANTUM SERVERLESS COMPUTING PLATFORMS

@IEEE Transactions on,
uantumEngineering

[27]

(28]

[29]
[30]
[31]
(32]

(33]

[34]

[35]

[36]

[37]

(38]

E. Arute et al., “Hartree-fock on a superconducting qubit quantum
computer,” Science, vol. 369, no. 6507, pp. 1084-1089, Aug. 2020,
doi: 10.1126/science.abb9811.

Google Quantum Al Consortia, “Suppressing quantum errors by scaling
a surface code logical qubit,” Nature, vol. 614, no. 7949, pp. 676681,
Feb. 2023, doi: 10.1038/s41586-022-05434-1.

“IBM quantum computing pricing,” Accessed: 15 Apr. 2025. [Online].
Available: https://www.ibm.com/quantum/pricing

“D-Wave Quantum Inc.,” Accessed: 15 Apr. 2025. [Online]. Available:
https://www.dwavesys.com/

“SAS Pasqal,” Accessed: 15 Apr. 2025. [Online]. Available:
https://www.pasqal.com/
“High Performance Computer—-Quantum Simulator hybrid (HPCQS),”

Accessed: 15 Apr. 2025. [Online]. Available: https://hpcgs.eu/

A. Matricardi, A. Bocci, S. Forti, and A. Brogi, “Simulating FaaS orches-
trations in the cloud-edge continuum,” in Proc. 3rd Workshop Flexible
Resource Appl. Manage. Edge, Orlando, FL, USA, Aug. 2023, pp. 19-26,
doi: 10.1145/3589010.3594893.

Q. Liu, D. Du, Y. Xia, P. Zhang, and H. Chen, “The gap be-
tween serverless research and real-world systems,” in Proc. ACM
Symp. Cloud Comput., Santa Cruz, CA, USA, Oct. 2023, pp. 475-485,
doi: 10.1145/3620678.3624785.

“Introduction to Qiskit runtime execution modes,” Accessed: 15
Apr. 2025. [Online]. Available: https://docs.quantum.ibm.com/guides/
execution-modes

M. Grossi et al., “A serverless cloud integration for quantum computing,”
Jul. 2021, arXiv:2107.02007, doi: 10.48550/arXiv.2107.02007.

H. T. Nguyen, M. Usman, and R. Buyya, “QFaaS: A server-
less function-as-a-service framework for quantum computing,” Fu-
ture Gener. Comput. Syst., vol. 154, pp.281-300, May 2024, , doi:
10.1016/j.future.2024.01.018.

V. Stirbu, O. Kinanen, M. Haghparast, and T. Mikkonen, “Quber-
netes: Towards a unified cloud-native execution platform for hybrid
classic-quantum computing,” Inf. Softw. Technol., vol. 175, Nov. 2024,
Art. no. 107529, doi: 10.1016/j.infsof.2024.107529.

VOLUME 6, 2025

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

R. Kaewpuang, M. Xu, D. Niyato, H. Yu, Z. Xiong, and J. Kang,
“Stochastic qubit resource allocation for quantum cloud computing,” in
Proc. NOMS 2023-2023 IEEE/IFIP Netw. Operations Manage. Symp.,
May 2023, pp. 1-5, doi: 10.1109/NOMS56928.2023.10154430, iSSN:
2374-9709.

J. Alvarado-Valiente, J. Romero—Alvarez, E. Moguel, J. Garcia-Alonso,
and J. M. Murillo, “Orchestration for quantum services: The power of
load balancing across multiple service providers,” Sci. Comput. Program.,
vol. 237, Oct. 2024, Art. no. 103139, doi: 10.1016/j.scic0.2024.103139.
P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. da Silva,
and R. S. Smith, “A quantum-classical cloud platform optimized for varia-
tional hybrid algorithms,” Quantum Sci. Technol., vol. 5, no. 2, Apr. 2020,
Art. no. 024003, doi: 10.1088/2058-9565/ab7559.

E. Moguel, J. Rojo, D. Valencia, J. Berrocal, J. Garcia-Alonso, and J.
M. Murillo, “Quantum service-oriented computing: Current landscape
and challenges,” Softw. Qual. J., vol. 30, pp.983-1002, Apr. 2022,
doi: 10.1007/s11219-022-09589-y.

A. C. Marosi, A. Farkas, T. Maray, and R. Lovas, “Towards a quan-
tum - science gateway: A hybrid reference architecture facilitating quan-
tum computing capabilities for cloud utilization,” IEEE Access, vol. 11,
pp. 143913-143924, 2023, doi: 10.1109/ACCESS.2023.3342749

“Jupyterlab,” Accessed: 15 Apr. 2025. [Online]. Available:
https://jupyter.org/
D. Claudino, D. I. Lyakh, and A. J. McCaskey, “Parallel quantum comput-

ing simulations via quantum accelerator platform virtualization,” Future
Gener. Comput. Syst., vol. 160, Jun. 2024, Art. no. S0167739X24003054,
doi: 10.1016/j.future.2024.06.007.

“XACC,” Accessed: 15 Apr. 2025. [Online]. Available: https:/xacc.
readthedocs.io/

H. Bayraktar et al., “cuQuantum SDK: A high-performance library
for accelerating quantum science,” in Proc. IEEE Int. Conf. Quan-
tum Comput. Eng., Bellevue, WA, USA, Sep. 2023, pp. 1050-1061,
doi: 10.1109/QCE57702.2023.00119.

T. Beck et al., “Integrating quantum computing resources into scientific
HPC ecosystems,” Future Gener. Computer Syst., vol. 161, pp. 11-25,
Jul. 2024, doi: 10.1016/j.future.2024.06.058.

3101313

https://dx.doi.org/10.1126/science.abb9811
https://dx.doi.org/10.1038/s41586-022-05434-1
https://www.ibm.com/quantum/pricing
https://www.dwavesys.com/
https://www.pasqal.com/
https://hpcqs.eu/
https://dx.doi.org/10.1145/3589010.3594893
https://dx.doi.org/10.1145/3620678.3624785
https://docs.quantum.ibm.com/guides/penalty -@M execution-modes
https://docs.quantum.ibm.com/guides/penalty -@M execution-modes
https://dx.doi.org/10.48550/arXiv.2107.02007
https://dx.doi.org/, ignorespaces doi: ignorespaces 10.1016/j.future.2024.01.018
https://dx.doi.org/, ignorespaces doi: ignorespaces 10.1016/j.future.2024.01.018
https://dx.doi.org/10.1016/j.infsof.2024.107529
https://dx.doi.org/10.1109/NOMS56928.2023.10154430,
https://dx.doi.org/10.1016/j.scico.2024.103139
https://dx.doi.org/10.1088/2058-9565/ab7559
https://dx.doi.org/10.1007/s11219-022-09589-y
https://dx.doi.org/10.1109/ACCESS.2023.3342749
https://jupyter.org/
https://dx.doi.org/10.1016/j.future.2024.06.007
https://xacc.penalty -@M readthedocs.io/
https://xacc.penalty -@M readthedocs.io/
https://dx.doi.org/10.1109/QCE57702.2023.00119
https://dx.doi.org/10.1016/j.future.2024.06.058

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

