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Abstract. I apply the Hamiltonian reduction procedure to 4-dimensional spacetimes without isometries and
find privileged spacetime coordinates in which the physical Hamiltonian is expressed in terms of the conformal
two metric and its conjugate momentum. Physical time is the area element of the cross section of null hypersur-
face, and the physical radial coordinate is defined by equipotential surfaces on a given spacelike hypersurface
of constant physical time. The physical Hamiltonian is local and positive in the privileged coordinates. Ein-
stein’s equations in the privileged coordinates are presented as Hamilton’s equations of motions obtained from
the physical Hamiltonian.

1 Introduction

It is well-known that the true gravitational degrees of free-
dom of general relativity reside in the conformal two met-
ric of the spatial cross section of null hypersurfaces[1, 2].
Eliminating unphysical degrees of freedom by identifying
arbitrarily specifiable spacetime coordinates with certain
functions in phase space and thereby presenting the theory
in terms of physical degrees of freedom in the privileged
coordinates, free from constraints, is known as the ADM
Hamiltonian reduction[3–5]. Prof. Kuchař and others ap-
plied this procedure to spacetimes that admit two commut-
ing Killing vector fields, known as midi-superspace[6–8],
and showed that Einstein’s theory was equivalent to cylin-
drical massless scalar field theory propagating in the 1+1
dimensional Minkowski spacetime.

In this paper, we apply the ADM Hamiltonian reduc-
tion to general spacetimes of 4 dimensions under no sym-
metry assumption[9–13]. The area element of the spatial
cross section of a null hypersurface emerges as the phys-
ical time, and the physical radial coordinate is defined by
equipotential surfaces on a given spacelike hypersurface
of constant physical time. We present the fully reduced
physical Hamiltonian in these privileged coordinates[14],
which turns out to be local and positive. The momen-
tum constraints turn out to be simply the defining equa-
tions of the physical linear and angular momentum den-
sities in term of the conformal two metric and its conju-
gate momentum[6]; hence, there remain no constraints to
solve, and the theory becomes constraint-free. Moreover,
we find that our Hamiltonian reduction is self-consistent
because Hamilton’s equations of motion obtained through
this Hamiltonian reduction are identical to the Ricci-flat
equations in the privileged coordinates. As a by-product
of this Hamiltonian reduction, we found an independent
proof of topological censorship[15–20], which followed
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directly from one of the Einstein’s equations in these co-
ordinates.

2 The action in the (2+2) formalism

Let us recall that the metric in the (2+2) decomposition[1,
2, 9–13] of 4 dimensional spacetimes can be written as

ds2 = 2dudv − 2hdu2 + τρab
(
dya + A a

+ du + A a
− dv
)

×
(
dyb + A b

+ du + A b
− dv
)
. (1)

The vector fields ∂̂± defined as

∂̂± := ∂± − A a
± ∂a, (2)

where

∂+ = ∂/∂u, ∂− = ∂/∂v, ∂a = ∂/∂y
a (a = 2, 3), (3)

are horizontal vector fields orthogonal to the two-
dimensional spacelike surface N2 generated by ∂a. The
inner products of the horizontal vector fields are given by

< ∂̂+, ∂̂+ >= −2h, < ∂̂+, ∂̂− >= 1,
< ∂̂−, ∂̂− >= 0, (4)

which tells us that ∂̂− is a null vector field, and that ∂̂+ has a
norm −2h, which can be either positive, negative, or zero,
depending on the sign of h. In this paper, we choose the
sign −2h > 0 so that v = constant is a spacelike hypersur-
face. The metric on N2 is τρab, where τ is the area element
of N2 and ρab is the conformal two metric with det ρab = 1.

As was shown in Ref.[13], the Einstein’s equations can
be obtained from the variational principle of the following
action integral:

S =
∫

dvdud2y{πττ̇ + πhḣ + πaȦ a
+ + π

abρ̇ab

−“1” ·C− − “0” ·C+ − A a
−Ca}, (5)
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where the overdot ˙ = ∂−, and “1”, “0”, and A a
− are La-

grange multipliers that enforce the constraints C− = 0,
C+ = 0, and Ca = 0, which are given by

(i) C− :=
1
2
πhπτ −

h
4τ
π2

h −
1
2τ
πhD+τ +

1
2τ2 ρ

abπaπb

− τ
8h
ρabρcd(D+ρac)(D+ρbd) − 1

2hτ
ρabρcdπ

acπbd

− 1
2h
πacD+ρac − τR(2) + D+πh − ∂a(τ−1ρabπb)

= 0, (6)

(ii) C+ := πτD+τ + πhD+h + πabD+ρab

−2D+(hπh + D+τ) + 2∂a(hτ−1ρabπb + ρ
ab∂bh)

= 0, (7)

(iii) Ca := πτ∂aτ + πh∂ah + πbc∂aρbc − 2∂b(ρacπ
bc)

−D+πa − ∂a(τπτ) = 0, (8)

respectively. Here, R(2) is the scalar curvature of N2, and
the diffN2-covariant derivative[13] of a tensor density qab

with weight s is defined as

D+qab := ∂+qab − [A+, q]Lab = ∂+qab − A c
+ ∂cqab

−qcb∂aA c
+ − qac∂bA c

+ − s(∂cA c
+ )qab, (9)

where [A+, q]Lab is the Lie derivative of qab along A+ :=
A a
+ ∂a. For instance, the diffN2-covariant derivatives of the

area element τ and the conformal metric ρab, which are a
scalar density and a tensor density with weight 1 and −1
with respect to the diffN2 transformations, respectively, are
given by

D±τ = ∂±τ − A a
± ∂aτ − (∂aA a

± )τ, (10)
D±ρab = ∂±ρab − A c

± ∂cρab − ρcb∂aA c
± − ρac∂bA c

±
+(∂cA c

± )ρab. (11)

On the other hand, h is a scalar under the diffN2 transfor-
mations, whose diffN2-covariant derivative is given by

D±h = ∂±h − A a
± ∂ah, (12)

and the diffN2-covariant field strength F a
+− is defined as

F a
+− := ∂+A a

− − ∂−A a
+ − [A+, A−]a

= ∂+A a
− − ∂−A a

+ − A b
+ ∂bA a

− + A b
− ∂bA a

+ . (13)

The diffN2-covariant derivatives of the conjugate momenta
πτ, πh, πa, and πab, which are tensor densities of weights
0, 1, 1 and 2, respectively, are given by

D±πτ = ∂±πτ − A a
± ∂aπτ, (14)

D±πh = ∂±πh − A c
± ∂cπh − (∂cA c

± )πh, (15)
D±πa = ∂±πa − A c

± ∂cπa − πc∂aA c
± − (∂cA c

± )πa, (16)
D±πab = ∂±π

ab − A c
± ∂cπ

ab + πcb∂cA a
± + π

ac∂cA b
±

−2(∂cA c
± )πab. (17)

We note that because ρab has a unit determinant, its deriva-
tives satisfy the conditions

ρbc∂±ρbc = ρ
bc∂aρbc = ρ

bcD±ρbc = 0, (18)

and the conjugate momentum πab is traceless,

ρabπ
ab = 0. (19)

3 Hamiltonian reduction I: τ as physical
time

Let us define a potential function R and its conjugate mo-
mentum πR as

∂+R := −hπh, (20)
πR = −∂+ln(−h), (21)

respectively. The transformation from (h, πh) to (R, πR) is
a canonical transformation, as it changes the action inte-
gral by total derivatives only. If we impose the constraints
C+ = 0 and Ca = 0 and choose the Lagrange multiplier
A a
− = 0, then the action in Eq. (5) becomes

S =
∫

dvdud2y{πττ̇ + πRṘ + πaȦ a
+ + π

abρ̇ab −C−}

+ total derivatives, (22)

where the constraint C− in the new variables is given by

C− = −
1
2h
πτ∂+R − 1

4hτ
(∂+R)2 +

1
2hτ

(D+τ)(∂+R)

−1
h

D+(∂+R) +
1
h

(∂+R)∂+ ln(−h)

−1
h

(∂+R)A a
+ ∂a ln(−h)

−τR(2) +
1

2τ2 ρ
abπaπb − ∂a(τ−1ρabπb)

− 1
2hτ
ρabρcdπ

acπbd − τ
8h
ρabρcd(D+ρac)(D+ρbd)

− 1
2h
πacD+ρac = 0. (23)

The function h still appears in Eq. (23), but as h is related
to R and πR by Eqs. (20) and (21), the constraint function
C− given by Eq. (23) may be viewed as a function of the
new variables (τ,QI ; πτ,ΠI), where QI = (R, A a

+ , ρab) and
ΠI = (πR, πa, π

ab). Notice that the first term in Eq. (23)
is linear in πτ, and that all the remaining terms are inde-
pendent of πτ. Thus, the equation of motion for τ is given
by

τ̇ =

∫
dud2y

δC−
δπτ
= − 1

2h
∂+R. (24)

Now, recall that τ = τ(v, u, ya). If we solve this equation
for v, then v may be viewed as a function of (τ, u, ya) and
consequently, (R, A a

+ , ρab) may be regarded as functions
of (τ, u, ya). Therefore,

Ṙ = τ̇∂τR, Ȧ a
+ = τ̇∂τA

a
+ , ρ̇ab = τ̇∂τρab,

C− = −(
2h
∂+R

)τ̇C−, (25)

because ∂u/∂v = ∂ya/∂v = 0. Then, the action in Eq. (22)
becomes

S =
∫

dvdud2yτ̇{πτ + πR∂τR + πa∂τA a
+

+πab∂τρab + (
2h
∂+R

)C−}

=

∫
dτdud2y{πR∂τR + πa∂τA a

+ + π
ab∂τρab −C(1)}

=

∫
dτdud2y{

∑
I

ΠI∂τQI −C(1)}, (26)
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C− = −
1

2h
πτ∂+R − 1

4hτ
(∂+R)2 +

1
2hτ

(D+τ)(∂+R)

−1
h

D+(∂+R) +
1
h

(∂+R)∂+ ln(−h)

−1
h

(∂+R)A a
+ ∂a ln(−h)

−τR(2) +
1

2τ2 ρ
abπaπb − ∂a(τ−1ρabπb)

− 1
2hτ
ρabρcdπ

acπbd − τ
8h
ρabρcd(D+ρac)(D+ρbd)
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2h
πacD+ρac = 0. (23)
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Y a = constant
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R = constant
“equipotential” surface N2

�

�

τ = constant spacelike
hypersurface Στ

�

�
p

�

∂
∂Y a

∂
∂R

�

Figure 1. On R = constant surface N2 on Στ, Ya = constant is
chosen to be normal to N2 at each point p on Στ. In this case the
“shift" vector A a

+ is zero at p.

where we replaced dvτ̇ by dτ in the second line, and C(1)
is defined as

C(1) = −(
2h
∂+R

)C− − πτ. (27)

Notice that if we impose the constraint C− = 0, the func-
tion C(1) becomes

C(1) = −πτ. (28)

4 Hamiltonian reduction II: Fixation of
u = R and ya = Ya such that A a

+ = 0

The second step in the Hamiltonian reduction consists of
identifying arbitrarily specifiable coordinates u and ya as

u = R, (29)
ya = Ya (30)

such that the “shift" vector A a
+ is zero, i.e.,

A a
+ = 0. (31)

For the class of spacetimes whose spatial topology is either
N2×R or N2×S 1, where N2 is a compact two-dimensional
space with the genus g, the condition in Eq. (31) can al-
ways be met by relabeling N2 such that Ya = constant is
normal to u = constant at each point on Στ. If we continue
to label N2 this way, then the two dimensional “shift" A a

+

can always be made zero for the class of spacetimes un-
der consideration (see Fig. 1). Thus, we will work in the
coordinates XA := (τ,R, Ya), which satisfy the coordinate
conditions

∂XA

∂XB = δ
A
B . (32)

Then, it follows from Eq. (24) that

τ̇ = − 1
2h
> 0, (33)

which means that τ increases monotonically along the out-
going null vector field.

Hamilton’s equations of motion follow from the varia-
tional principle of the action integral in Eq. (26):

∂τQI =

∫
Στ

dud2y
δC(1)

δΠI
|u=R,ya=Ya , (34)

∂τΠI = −
∫
Στ

dud2y
δC(1)

δQI |u=R,ya=Ya , (35)

where QI = (R, A a
+ , ρab), ΠI = (πR, πa, π

ab), and Στ is a
spacelike hypersurface defined by τ = constant.

5 Main results

In the following, we present the main results of this paper.
Einstein’s evolution equations I

1.
∂R
∂τ
= 0⇒

τR(2) =
1
2
τ−2ρabπaπb − ∂a(τ−1ρabπb) (36)

(topological censorship)

2.
∂A a
+

∂τ
= 0⇒

τ−1πa = −∂aln(−h) (superpotential) (37)

3.
∂τ

∂τ
= 1 (trivial) (38)

4.
∂ ln(−h)
∂τ

= H − 1
τ

(superpotential) (39)

5.
∂πa

∂τ
= 2τ−1πa + (πbc +

τ

2
ρbdρce∂Rρde)∂aρbc

−∂b(2πbcρac + τρ
bc∂Rρac) (40)

(evolution equation of πa)

6.
∂πτ
∂τ
=

1
2
τ−2 + τ−2ρabρcdπ

acπbd

−1
4
ρabρcd(∂Rρac)(∂Rρbd) − 2τ−2∂a(hρabπb) (41)

(evolution equation of πτ)

Einstein’s constraint equations

7. C− = 0⇒ πτ = −H + 2∂R ln(−h)

−2h{τR(2) − 1
2τ2 ρ

abπaπb +
∂

∂Ya (τ−1ρabπb)} (42)

(definition of physical Hamiltonian)
8. C+ = 0⇒ πR = −πab∂Rρab (43)

(definition of physical linear momentum)
9. Ca = 0⇒ τ−1πa = −πbc∂aρbc + 2∂b(πbcρac)

−τ∂a(H + πR) (44)
(definition of physical angular momentum)

Superpotential ln(−h)

10. ∂τln(−h) = H − τ−1 (45)
11. − ∂Rln(−h) = πR (46)
12. − ∂aln(−h) = τ−1πa (47)

Integrability conditions

13. ∂R(τ−1πa) = ∂aπR (48)
14. ∂τπR = −∂RH (49)
15. ∂τ(τ−1πa) = −∂aH. (50)

In the above equations, H is defined by

H =
1
τ
ρabρcdπ

acπbd +
1
4
τρabρcd(∂Rρac)(∂Rρbd)

+πac∂Rρac +
1
2τ
≥ 1

2τ
. (51)

The evolution equations of ρab and πab can be found from
the reduced action principle

S ∗ =
∫
Στ

dRd2Y{πab∂τρab −C∗(1)}, (52)
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where C∗(1) is the restriction of C(1) to the coordinates u = R
and ya = Ya:

C∗(1) := C(1)|u=R,ya=Ya = −πτ
= H − 2∂R ln(−h). (53)

Einstein’s evolution equations II

16.
∂ρab

∂τ
=

∫
Στ

dRd2Y
δC∗(1)

δπab (54)

17.
∂πab

∂τ
= −
∫
Στ

dRd2Y
δC∗(1)

δρab
. (55)

The spacetime metric in these privileged coordinates be-
comes

ds2 = −4hdRdτ − 2hdR2 + τρabdYadYb. (56)

6 discussion

Let us discuss some key features of the Hamiltonian re-
duction discussed in this article.

(i) First of all, let us mention that the whole set of equa-
tions summarized in Section 5 is identical to the vacuum
Einstein’s equations

RAB = 0 (57)

for spacetimes whose metric is given by Eq. (56). Thus,
the whole procedure of the Hamiltonian reduction respects
general covariance, as it must, even though the final theory
is written in the privileged coordinates.

(ii) The integral of Eq. (36) over a closed two surface
N2 becomes

∫
N2

d2Yτ−2ρabπaπb = 16π(1 − g) ≥ 0, (58)

where g is the genus of N2. This identity states that, as long
as the out-going null hypersurface forms a congruence of
null geodesics which admits a cross section, the spatial
topology of that null hypersurface is either a two sphere
or a torus. This is a remarkably simple proof of topologi-
cal censorship, as it does not rely on assumptions such as
global hyperbolicity, asymptotic conditions, energy condi-
tions, and so on, either inside or outside the null hypersur-
face, which are normally assumed in the literature[15–20],
although a condition that no caustics exist on the null hy-
persurface is necessary for the existence of well-defined
cross sections of the null congruences.

(iii) The spatial integral of C∗(1) defined in Eq. (53) is
the sought-for physical Hamiltonian K of vacuum space-
times, haha

K :=
∫
Στ

dRd2YH ≥ 0, (59)

which is positive-definite in the privileged coordinates.
(iv) The logarithm of the conformal factor in the (τ,R)

subspace is the superpotential ln(−h), whose gradients
yield (H − τ−1,−πR,−τ−1πa) through Eqs. (45), (46), and

(47), respectively. The superpotential[6] is a local function
of XA = (τ,R, Ya), and is determined by the line integral

ln
h(X)
h(X0)

=

∫ X

X0

{(H − τ−1)dτ − πRdR − τ−1πadYa} (60)

along any contour from X0 to X in a given spacetime.
(v) The integrability conditions in Eqs. (48), (49), and

(50) are the consistency conditions, which follow from the
definition of the superpotential ln(−h).

(vi) We would like to emphasize that all the constraint
equations, C± = 0 and Ca = 0 in the privileged coordi-
nates, are solved in such a way that the constraints sim-
ply turn out to be the defining equations of the physical
Hamiltonian density πτ, the linear momentum density πR,
and the angular momentum density τ−1πa, as is summa-
rized in Eqs. (42), (43), and (44), respectively. Namely,
πR and H given by Eqs. (43) and (51) are functions of
(τ; ρab, π

ab), and the superpotential ln(−h) given by Eq.
(60) is a function of H, πR, and τ−1πa, which is again de-
termined by (τ; ρab, π

ab), up to an overall constant factor.
Thus, all the terms on the right-hand sides of Eqs. (42),
(43), and (44) are functions of (τ; ρab, π

ab). This means
that the constraints are completely solved for πτ, πR, and
τ−1πa in terms of the free, unconstrained data (ρab, π

ab).
(vii) If we define the total linear momentum ΠR and

total angular momentum Πa as

ΠR :=
∫
Στ

dRd2YπR, Πa :=
∫
Στ

dRd2Yτ−1πa, (61)

then we find, by integrating Eqs. (43) and (44),

ΠR = −
∫
Στ

dRd2Yπbc∂Rρbc, (62)

Πa = −
∫
Στ

dRd2Yπbc ∂

∂Ya ρbc. (63)

Eqs. (62) and (63) show that ΠR and Πa are the generat-
ing functions of translations of ρab and πab along ∂R and
∂/∂Ya. This justifies our interpretations of ΠR and Πa as
the total linear and angular momentum carried by the con-
formal two metric, respectively. Moreover, if no spatial
boundaries exist, then by virtue of the integrability condi-
tions in Eqs. (49) and (50), ΠR and Πa are conserved in
the time τ.
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then we find, by integrating Eqs. (43) and (44),

ΠR = −
∫
Στ

dRd2Yπbc∂Rρbc, (62)

Πa = −
∫
Στ

dRd2Yπbc ∂

∂Ya ρbc. (63)

Eqs. (62) and (63) show that ΠR and Πa are the generat-
ing functions of translations of ρab and πab along ∂R and
∂/∂Ya. This justifies our interpretations of ΠR and Πa as
the total linear and angular momentum carried by the con-
formal two metric, respectively. Moreover, if no spatial
boundaries exist, then by virtue of the integrability condi-
tions in Eqs. (49) and (50), ΠR and Πa are conserved in
the time τ.
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