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Hamiltonian reduction of Einstein’s equations without isometries
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Abstract. I apply the Hamiltonian reduction procedure to 4-dimensional spacetimes without isometries and
find privileged spacetime coordinates in which the physical Hamiltonian is expressed in terms of the conformal
two metric and its conjugate momentum. Physical time is the area element of the cross section of null hypersur-
face, and the physical radial coordinate is defined by equipotential surfaces on a given spacelike hypersurface
of constant physical time. The physical Hamiltonian is local and positive in the privileged coordinates. Ein-
stein’s equations in the privileged coordinates are presented as Hamilton’s equations of motions obtained from

the physical Hamiltonian.

1 Introduction

It is well-known that the true gravitational degrees of free-
dom of general relativity reside in the conformal two met-
ric of the spatial cross section of null hypersurfaces[1, 2].
Eliminating unphysical degrees of freedom by identifying
arbitrarily specifiable spacetime coordinates with certain
functions in phase space and thereby presenting the theory
in terms of physical degrees of freedom in the privileged
coordinates, free from constraints, is known as the ADM
Hamiltonian reduction[3-5]. Prof. Kuchat and others ap-
plied this procedure to spacetimes that admit two commut-
ing Killing vector fields, known as midi-superspace[6—8],
and showed that Einstein’s theory was equivalent to cylin-
drical massless scalar field theory propagating in the 1+1
dimensional Minkowski spacetime.

In this paper, we apply the ADM Hamiltonian reduc-
tion to general spacetimes of 4 dimensions under no sym-
metry assumption[9—13]. The area element of the spatial
cross section of a null hypersurface emerges as the phys-
ical time, and the physical radial coordinate is defined by
equipotential surfaces on a given spacelike hypersurface
of constant physical time. We present the fully reduced
physical Hamiltonian in these privileged coordinates[14],
which turns out to be local and positive. The momen-
tum constraints turn out to be simply the defining equa-
tions of the physical linear and angular momentum den-
sities in term of the conformal two metric and its conju-
gate momentum[6]; hence, there remain no constraints to
solve, and the theory becomes constraint-free. Moreover,
we find that our Hamiltonian reduction is self-consistent
because Hamilton’s equations of motion obtained through
this Hamiltonian reduction are identical to the Ricci-flat
equations in the privileged coordinates. As a by-product
of this Hamiltonian reduction, we found an independent
proof of topological censorship[15-20], which followed
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directly from one of the Einstein’s equations in these co-
ordinates.

2 The action in the (2+2) formalism

Let us recall that the metric in the (24+2) decomposition[1,
2, 9-13] of 4 dimensional spacetimes can be written as

ds® = 2dudv — 2hdu® + T, (dy” + A ldu + A “dv)
x (dy’ + Aldu+ A’ dv). (1)

The vector fields 31 defined as
Oy 1= 0. —ALd,, )
where

0, =0/0u, 0_=0/dv, 9,=0/0y" (a=2,3), (3)
are horizontal vector fields orthogonal to the two-
dimensional spacelike surface N, generated by d,. The

inner products of the horizontal vector fields are given by

< 3+, 3+ >=-2h, < 3+,3_ >=1,
<d_,b_>=0, 4

which tells us that d_ is a null vector field, and that &, has a
norm —2h, which can be either positive, negative, or zero,
depending on the sign of 4. In this paper, we choose the
sign —2h > 0 so that v = constant is a spacelike hypersur-
face. The metric on N, is 7p4p, Where 7 is the area element
of N, and p,, is the conformal two metric with detp,, = 1.

As was shown in Ref.[13], the Einstein’s equations can
be obtained from the variational principle of the following
action integral:

S = fdvdudzy{m"r + b+ A+ 71 pap
—“1”.C_—%0"-Cy — A C,), (5)

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 168, 02001 (2018)
Joint International Conference of ICGAC-XIII and IK-15 on Gravitation, Astrophysics and Cosmology

https://doi.org/10.1051/epjconf/201816802001

where the overdot " = d_, and “1”, “0”, and A# are La-
grange multipliers that enforce the constraints C_ = 0,
C; =0, and C, = 0, which are given by

h , 1 1

= =—m Dyt +

ab
27 272 el

. 1
(1) C_:= zﬂ'hﬂ'.,- - E
— L 0D Dspht) — —pappeanr

Sh +Mac +, 2hT a Ci

1 _
—ﬁﬂacDMac —TR@) + Dymy — 8,(t p 1)

=0, 6)

(i) Cy := D7 + 1, Doh + 7D pay
2D, (hmy, + D7) + 28,(ht™' p®r;, + p* 0, h)
=0, (7

(iii) C, 1= 0,7 + m0ah + 170 .ppe — 205 (0acr™)
-D,m, — 0,(tn;) =0, (8)

respectively. Here, Ry is the scalar curvature of N,, and
the diffN,-covariant derivative[13] of a tensor density g,
with weight s is defined as

D+qah = aJrqah - [A+3 q]Lab = 6+Qab - Afacqm)
_QCbaaAf - QacabA-f - s(acA-f)‘Zab’ 9

where [A, glLa 1s the Lie derivative of g, along A, :=
A_0,. For instance, the diffV,-covariant derivatives of the
area element 7 and the conformal metric p,;, which are a
scalar density and a tensor density with weight 1 and —1
with respect to the diff N, transformations, respectively, are
given by

D.1=0.7—-AL0,T— (0, AT, (10)
Dj:pab = 31,01117 - A;acPah - pcbaaAic - pacabAiC
+(6CA1—C)pab- (1 1)

On the other hand, # is a scalar under the diff NV, transfor-
mations, whose diffV,-covariant derivative is given by

D.h =0.h—Afd,h, (12)
and the diffN,-covariant field strength F_ ¢ is defined as
F.A:=0,A%-0_A"-[A,, A_]"
=0,A - Al - ALBA+ A EAL. (13)
The diffN,-covariant derivatives of the conjugate momenta
ey T, T,y and 7% which are tensor densities of weights
0, 1,1 and 2, respectively, are given by
Dinty = 0s7tr — AL Oy, (14)
Dymty = 0smy — ALy — (0:A L), (15)
Dymty = 0:7y = AL07, — M0,AL — (0 A,  (16)
D = 0.7 — AL + 79 AL + DAL
~2(0.A)n. (7

We note that because p,;, has a unit determinant, its deriva-
tives satisfy the conditions

P 0sppe = P"0uppe = P Dipre =0, (18)
and the conjugate momentum 7% is traceless,

P = 0. (19)

3 Hamiltonian reduction I: 7 as physical
time

Let us define a potential function R and its conjugate mo-
mentum 7z as

d:R := —hmy, (20)
g = =0,In(=h), 21

respectively. The transformation from (4, ;) to (R, g) is
a canonical transformation, as it changes the action inte-
gral by total derivatives only. If we impose the constraints
C,; = 0 and C, = 0 and choose the Lagrange multiplier
A% = (0, then the action in Eq. (5) becomes

S = fdududzy{ﬂﬁ + RR + AL + 1y — C_)
+ total derivatives, 22)

where the constraint C_ in the new variables is given by

C_= ﬂﬂ'TﬁJ,R 4_/1‘['(6+R) +%(D+T)(6+R)

1 1
5 D-(0.R) + +(9.R)d. In(~h)

1
~5 (O R)A (9, In(~h)

1
—7R? + ﬁpabnanh - 6,1(T_lp“b )

- ac_bd _ l
Zthahpcdﬂ T Sh

1
_E”acD+pac =0. (23)

The function £ still appears in Eq. (23), but as # is related
to R and 7rg by Egs. (20) and (21), the constraint function
C_ given by Eq. (23) may be viewed as a function of the
new variables (7, Q'; 7, I1;), where Q' = (R, A2, pap) and
Il; = (g, ., 7). Notice that the first term in Eq. (23)
is linear in 7, and that all the remaining terms are inde-
pendent of 7. Thus, the equation of motion for 7 is given
by

00D+ pac)(D+ppa)

sC_ 1
t= f dud®y T 4)
T

Now, recall that T = 7(v, u, y*). If we solve this equation
for v, then v may be viewed as a function of (7, u, y*) and
consequently, (R, A, p,») may be regarded as functions
of (t,u, y*). Therefore,

R=10:R, A = 10:AL, pap = T0:Pav-
2h
0.R

because du/dv = dy* /v = 0. Then, the action in Eq. (22)
becomes

Co =

yiC_, 25)

S = fdududZy‘i'{nT + MROR + m,0;A

2h

+71%0. pap +
T Pab (6+R

)C-}
= f drdud®y{ngd.R + 1,0.AL + 7 depap — Ci1y}

= f drduaﬂy{z 1,0.Q0" - Cy), (26)
1
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Y* = constant

T = constant spacelike
hypersurface X,

R = constant
“equipotential” surface N

Figure 1. On R = constant surface N, on X, Y = constant is
chosen to be normal to N, at each point p on X.. In this case the
“shift" vector A/ is zero at p.

where we replaced dvt by dr in the second line, and C)
is defined as

2h
Cq = _(&,_R)C_ - T (27)

Notice that if we impose the constraint C_ = 0, the func-
tion C(1y becomes
C(]) = —7;. (28)

4 Hamiltonian reduction ll: Fixation of
u=Rand y* =Y*suchthat A* =0

The second step in the Hamiltonian reduction consists of
identifying arbitrarily specifiable coordinates u and y“ as

u=R, (29)
y' =" (30)

such that the “shift" vector A/ is zero, i.e.,
Af=0. €1y

For the class of spacetimes whose spatial topology is either
Ny XRor NoxS!, where N, is a compact two-dimensional
space with the genus g, the condition in Eq. (31) can al-
ways be met by relabeling N, such that Y = constant is
normal to u = constant at each point on Z,. If we continue
to label NV, this way, then the two dimensional “shift" A *
can always be made zero for the class of spacetimes un-
der consideration (see Fig. 1). Thus, we will work in the
coordinates X* := (t, R, Y%), which satisfy the coordinate
conditions

x4
=% = 5p. (32)
Then, it follows from Eq. (24) that
t ! >0 (33)
tT=—-——
2h ’

which means that 7 increases monotonically along the out-
going null vector field.

Hamilton’s equations of motion follow from the varia-
tional principle of the action integral in Eq. (26):

1 » 0Cq)
0.0' = [auy Py (34)
I
oC
6,1’[1 = - fdl/ldzy (5Q(11) |u:R,ya:Yu, (35)
P

where Ql = (RvA_fspab)v HI = (ﬂR>7Taa7rab)’ and 2T is a
spacelike hypersurface defined by T = constant.

5 Main results

In the following, we present the main results of this paper.
Einstein’s evolution equations I
OR

1. —=0>
or

1
™Ry = ET_ZPabﬂaﬂb — 3,(t p% 1) (36)
(topological censorship)
0A7
or
7', = =0,In(=h) (superpotential) 37

=0=

3. ﬁ =1 (trivial) (38)
or

3 In(—h)
"ot
5. 7 2 4 (1 + P ppa)dupe

or 2
~0p(27" pac + 0" Orpac) (40)
(evolution equation of ;)
on, 1 ac_bd

6. P = ET_Z +T_2pabpcd7'[ Vs

1
—Zp“"pC%aRpac)(aprd) = 21720,(hp™my)  (41)

(evolution equation of ;)

1
= H — — (superpotential) 39)
T

Einstein’s constraint equations

7.C_=0>= m, = —H + 20g In(-h)

1, 0 | .4
“2WTR® — —p e, + S (o m)) (42)
(definition of physical Hamiltonian)
8.C, =0 = ng = —1Orpas (43)

(definition of physical linear momentum)
9.C, =0 =1, = —18,0pc + 20,7 puc)
—10,(H + 1g) (44)

(definition of physical angular momentum)

Superpotential In(—h)

10. 8.In(-h) = H — 77! (45)

11. — dgln(=h) = 7g (46)

12. =8 n(-h) = 17'x, 47)
Integrability conditions

13. Op(t 7', = Oumr (48)

14. 8, = —0rH (49)

15. 0.(t"'my) = —0,H. (50)

In the above equations, H is defined by

1 1
H = ;Pahpcdﬂ“ﬂbd + ZTpaprd(aRPac)(aprd)
1
— 2.
2t T 271
The evolution equations of p,, and 7 can be found from
the reduced action principle

+1OrPac + 5D

S* = f AR Y ("8 :pas — C{y)), (52)
21'
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where C(, is the restriction of C(y) to the coordinates u = R
and y* = Y%

Clyy = Cyluzryo=ys = —1t¢
S (53)

Einstein’s evolution equations Il

O0pab f >, 9CG)

16. — = |dRd"Y —— 54
or s, omab 54
oneb oCs

17. & :—dedZY&. (55)
or o 6pab

The spacetime metric in these privileged coordinates be-
comes

ds* = —4hdRdt — 2hdR* + TpadYdY?.  (56)

6 discussion

Let us discuss some key features of the Hamiltonian re-
duction discussed in this article.

(1) First of all, let us mention that the whole set of equa-
tions summarized in Section 5 is identical to the vacuum
Einstein’s equations

RAB = O (57)

for spacetimes whose metric is given by Eq. (56). Thus,
the whole procedure of the Hamiltonian reduction respects
general covariance, as it must, even though the final theory
is written in the privileged coordinates.

(i1) The integral of Eq. (36) over a closed two surface
N, becomes

f >yt p®n,m, = 167(1 — g) > 0, (58)

N>

where g is the genus of N,. This identity states that, as long
as the out-going null hypersurface forms a congruence of
null geodesics which admits a cross section, the spatial
topology of that null hypersurface is either a two sphere
or a torus. This is a remarkably simple proof of fopologi-
cal censorship, as it does not rely on assumptions such as
global hyperbolicity, asymptotic conditions, energy condi-
tions, and so on, either inside or outside the null hypersur-
face, which are normally assumed in the literature[15-20],
although a condition that no caustics exist on the null hy-
persurface is necessary for the existence of well-defined
cross sections of the null congruences.

(iii) The spatial integral of C(*l) defined in Eq. (53) is
the sought-for physical Hamiltonian K of vacuum space-
times, haha

K := f dRd*YH > 0, (59)
z
which is positive-definite in the privileged coordinates.
(iv) The logarithm of the conformal factor in the (7, R)

subspace is the superpotential In(—h), whose gradients
yield (H — ', —ng, =t~ 'x,) through Eqs. (45), (46), and

(47), respectively. The superpotential[6] is a local function
of X4 = (1, R, Y%), and is determined by the line integral

h(X) S -
n = |(H—-1")dr — ngdR — v~ ' m,dY"} 60
W) - i T 0

along any contour from Xy to X in a given spacetime.

(v) The integrability conditions in Eqgs. (48), (49), and
(50) are the consistency conditions, which follow from the
definition of the superpotential In(—#).

(vi) We would like to emphasize that all the constraint
equations, C. = 0 and C, = 0 in the privileged coordi-
nates, are solved in such a way that the constraints sim-
ply turn out to be the defining equations of the physical
Hamiltonian density 7., the linear momentum density ng,
and the angular momentum density 7~'7,, as is summa-
rized in Eqgs. (42), (43), and (44), respectively. Namely,
g and H given by Eqgs. (43) and (51) are functions of
(T3 pap» ), and the superpotential In(—4) given by Eq.
(60) is a function of H, g, and 7~'x,, which is again de-
termined by (t; pab,ﬂ“b), up to an overall constant factor.
Thus, all the terms on the right-hand sides of Egs. (42),
(43), and (44) are functions of (T;pab,n‘”’). This means
that the constraints are completely solved for 7;, 7z, and
771, in terms of the free, unconstrained data (0qp, 7).

(vii) If we define the total linear momentum Ilz and
total angular momentum I1, as

g := desznR, I, := defolna, (61)
p} po

-

then we find, by integrating Eqs. (43) and (44),

Mg = — f dARA*Y 1" Orppe, (62)
.

I, = - deszﬂbCip;,‘ (63)

¢ s, oy

Egs. (62) and (63) show that Il and I, are the generat-
ing functions of translations of p,; and 7% along dx and
0/0Y?. This justifies our interpretations of Il; and I, as
the total linear and angular momentum carried by the con-
formal two metric, respectively. Moreover, if no spatial
boundaries exist, then by virtue of the integrability condi-
tions in Eqgs. (49) and (50), I1{ and 11, are conserved in
the time 7.
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