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Abstract

In recent years, quantum network technology has been rapidly developing, with new
theories, solutions, and protocols constantly emerging. The breakthrough experiments and
achievements are impressive, such as the construction and operation of ultra-long-distance
and multi-user quantum key distribution (QKD) networks, the proposal, verification, and
experimental demonstration of new network nonlocality characteristics, etc. The results
of recent research on QKD and network nonlocality are summarized and analyzed in this
paper, including CV-MDI-QKD (continuous-variable measurement-device-independent
QKD), TF-QKD (twin-field QKD), AMDI-QKD (asynchronous MDI-QKD), the generaliza-
tion, sharing, and certification of network nonlocality, as well as the main achievements
and related research tools of full network nonlocality and genuine network nonlocality,
aiming to identify the current status and future development paths of the QKD and net-
work nonlocality.

Keywords: quantum key distribution; Bell nonlocality; Bell inequality; network nonlocality;
full network nonlocality; genuine network nonlocality

1. Introduction

In 1964, Bell derived Bell’s inequality [1] based on the local realism and implicit vari-
able hypothesis [2] proposed by Einstein et al. and the nonlocal phenomena [3] observed in
the microscopic world described by quantum theory, proving the existence of quantum
nonlocality and indicating the experimental conditions for verifying nonlocality, which
effectively promoted the development of quantum theory and experiments. The nonlocality
of quantum mechanics can be verified by witnessing the violation of Bell’s inequality, which
was first demonstrated in 1972 [4] with loopholes. In 1982, the experiment led by Aspect and
his group closed the localized loopholes and confirmed the quantum nonlocality [5], which
paved the way for the development of the quantum field. Quantum technologies have flour-
ished in recent years, such as quantum computing [6–8], quantum communications [9–11],
quantum sensing and measurement [12–14], and so on. In this paper, the advance of
quantum network nonlocality in recent years will be reviewed.

Quantum and network are seemingly two unrelated ideas, but when they are com-
bined together, they have been attracting widespread research attention, achieving fruitful
results [15,16], and providing hot topics to be studied continuously. At the beginning,
the concept of quantum networks was used in both the communication and comput-
ing fields. The gate arrays used in the quantum computing systems were once called
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quantum networks [17,18], which was used to describe the complexity and irregularity
of the connections in the gate arrays. In 1992, the first quantum key distribution (QKD)
experiment [19] was carried out successfully by Bennett et al., which made the rapid devel-
opment of quantum communication technology. Although the connotations of classical
communication and quantum communication are quite different, they can share the same
communication medium, like satellite [20], optical fiber [21], free space [22], and so on.
Therefore, it is natural for quantum technology to share the network with classical technol-
ogy [23], and quantum networks are gradually becoming exclusively used in the field of
quantum communication.

The basis of quantum network nonlocality is Bell nonlocality. Therefore, the char-
acteristics of standard Bell nonlocality are briefly introduced in Section 2. The progress
of quantum key distribution in recent years is summarized in Section 3. The integra-
tion of Bell’s theory and networks has introduced new connotations to nonlocality. The
progress of research on network nonlocality is summarized in Section 4. With the vigorous
growth of quantum communication technology, quantum networks based on traditional
Bell nonlocality have been limited in both scale and structure, which cannot effectively
solve the problems originating from complex networks. In 2022, the idea of full network
nonlocality [24] was proposed by A. Pozas Kerstjens et al., which is a powerful tool for
breaking through the limitations of classical correlation frameworks and will be reviewed
in Section 4.4. In Section 4.5, the progress of genuine network nonlocality correlated with
device-independent characteristics is reviewed.

2. Bell Nonlocality

Bell nonlocality was proposed by John Bell [1] to describe the non-classical correlations
between two or more spatially separated quantum systems, which is quantified through
Bell inequality (shown in Equation (1)), indicating that the measurement results of these
systems cannot be explained by classical local hidden variable (LHV) theory [25–27].

1 + p(x, y) ≥ |p(x, z)− p(y, z)| (1)

p(α, β) =
∫

Ω
ρ(λ)A(α, λ)B(β, λ)dλ (2)

Here, x ∈ X, y ∈ Y and z ∈ Z are measured by different observers, often named Alice,
Bob and Charlie, in a Bell test. Alice and Bob obtain α ∈ A and β ∈ B through Bell state
measurement (BSM), respectively. The experimentally accessible probability is the joint
probabilities denoted by p(x, y), p(x, z), and p(y, z), respectively. A hidden variable λ

is introduced in the LHV theory, and the probability distribution of λ satisfies ρ(λ) ≥ 0,
∫

Ω
ρ(λ)dλ = 1, λ ∈ Ω. To simplify the expression of Equation (2), p(α, β|x, y) is denoted

by p(α, β), while p(α|x, λ) and p(β|y, λ) are denoted by A(α, λ) and B(β, λ) with the
assumptions of the locality condition and the measurement independence [25].

Thus, the violation of Bell’s inequality proves the nonlocality of quantum mechanics. In
order to verify the nonlocality of quantum states, different types of Bell inequalities [28–30],
Hardy paradoxes [31–33], GHZ paradoxes [34,35], etc., have been proposed and demon-
strated by experiments [36–38]. Though several significant loophole-free experiments
have been verified [39–41], this issue is still being discussed in depth by the academic
community [26,27,42–45]. In 2024, Aiello proposed a new inequality-free method that
verifies Bell nonlocality by comparing correlation functions instead of using inequalities,
avoiding the counterfactual reasoning loopholes in traditional experiments and simplifying
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the falsification process of LHV theory. The joint probability distribution in Equation (2)
can be expressed by the Fourier series of periodic variables in Equation (3) [46].

p(x, y)

A(x + π, λ) = A(x, λ)

B(y + π, λ) = B(y, λ)
−−−−−−−−−−−−−−−→

∫

Ω
ρ(λ)F(x, λ)F(y, λ)dλ (3)

Here, x as well as y is the angle of the polarization analyzer with a period of π, which
is common equipment in the BSM. The function F can be expanded using Fourier series as
Equation (4).

F(θ, λ) =
+∞

∑
n=−∞

fn(λ)
e2jnθ

√
π

(4)

Here, fn(λ) are Fourier series coefficients dependent on λ.
Fourier series expansion is used as the main tool to represent the correlation func-

tions predicted by quantum mechanics and LHV theory, and the conflict between LHV
and quantum mechanics is proved through the inconsistency of their Fourier series co-
efficients, which provides a more intuitive and logically clear scheme to test the conflict
between LHV and quantum mechanics. The method does not require simultaneous mea-
surement of incompatible observations, making it easier to achieve in experiment, and
indicates that BSM with periodic variables [47,48] can use methods similar to Fourier
series expansion [49–52] to simplify the complexity in measuring Bell-type inequalities.
The Ramsey and Hahn echo experiments are used to measure the decoherence properties
of Bell states [47], where Ramsey interference experiments typically introduce periodic
signals (such as radio frequency pulse sequences), and the periodic adjustment of their time
parameters implies the use of periodic variables. The Mach–Zehnder interferometer is used
to realize Wheeler’s delayed-choice experiment [48], and the interference phenomenon
itself is a periodic manifestation.

3. Quantum Key Distribution

QKD is an important application of Bell’s nonlocality in network encryption transmis-
sion, which promises theoretic security based on the quantum theory [53–58]. According
to the physical properties of quantum state carriers, there are mainly two types of QKD
schemes, named discrete variable QKD (DV-QKD) [59] and continuous variable QKD
(CV-QKD) [60], respectively. DV-QKD is based on single-photon technology and protocols
of BB84 [61] and B92 [62], which support long-distance communications. CV-QKD is based
on the continuous regular component of the light field with a balanced detector in the
receiver, which supports high-speed communications. In this section, several mainstream
QKD schemes will be summarized and discussed.

3.1. CV-MDI-QKD

To remove detector side-channel attacks, the measurement device-independent QKD
(MDI-QKD) scheme was proposed in 2012 [63], which was subsequently subject to exten-
sive research and development. Continuous-variable MDI-QKD (CV-MDI-QKD) [64] is
preferred to discrete-variable MDI-QKD (DV-MDI-QKD) [65] due to the relatively low
difficulty in implementation and efficient measurements. The first CV-MDI-QKD system
built on optical fiber over 10 km, which can provide a security key rate (SKR) of about
0.19 bit/pulse, was reported in 2022 [66]. To raise the security key bitrate, the CV-MDI-QKD
systems with 10 GBaud and 8 GBaud symbol rates were demonstrated [67], which can
realize an SKR larger than 700 Mbit/s with high-order quadrature amplitude modulation
(QAM) over a 5 km optical fiber. The received signals are processed by an integrated re-
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ceiver (shown in Figure 1a) and offline DSP, which employs an electric pilot to estimate the
frequency and phase offsets between the transmitter and receiver. Integrated CV-MDI-QKD
can minimize the volume of the system and provide a solution to construct low-cost, highly
stable, and robust quantum communication networks. An integrated CV-QKD system
with an on-chip source, which is shown in Figure 1b, is demonstrated [68] and provides
an SKR of about 900 bit/s with the optical fiber about 100 km. After that, the loopholes
of the integrated light sources are analyzed in the CV-MDI-QKD system [69], such as the
noise leakage, spectrum attack, purity attack, and so on, and various countermeasures are
proposed at the same time. The integrated solutions for sending and receiving have been
implemented, making it possible to realize a fully integrated CV-MDI-QKD system. Of
course, a comprehensive analysis of the potential loopholes of the system is required.

  

(a) (b) 

Figure 1. Integrated photonic transmitter and receiver used in CV-MDI-QKD systems. (a) Integrated
receiver based on hybrid integration of silicon and GaAs with an area of 7.2 × 4.8 mm2. Reprinted
with permission from [67]. © Optical Society of America. The chip interacts with the outside
through surface grating couplers. (b) Integrated transmitter based on hybrid integration of Si3N4 and
compounds of III-V with a footprint of 2.4 × 1.27 mm2. The external cavity laser adopts butterfly-
shaped packaging. Reprinted with permission from [68]. © Photonics Research.

Optical pilot is a commonly used scheme for the synchronization of frequency and
phase between the distant sources but usually requires an additional fiber channel to realize
the optical phase-locked loop (OPLL) [66], which is shown in Figure 2a. Coarse wavelength
division multiplexing technology has been adopted [70], which multiplexes the reference
light and quantum signals in a single optical fiber and simplifies the QKD system (shown in
Figure 2b). Considering the problems faced by QKD systems in star network applications,
the asymmetric CV-MDI-QKD protocol was adopted, which realized an SKR of about
2.6 Mbit/s with a 20 MBaud symbol rate over 10 km of fiber. The SKR can be increased
efficiently by adopting high-order modulation and a higher symbol rate [67].

  

(a) (b) 

Figure 2. CV-MDI-QKD system with OPLL implemented by different schemes. (a) CV-MDI-QKD with
the OPLL between Alice and Bob, which is implemented by an additional fiber channel. Reprinted
with permission from [66]. © Optical Society of America. (b) CV-MDI-QKD with optical pilot. The
pilot output by the locking system is multiplexed with quantum signals. Reprinted with permission
from [70]. © IOP Publishing.
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3.2. TF-QKD

Twin-field QKD (TF-QKD) was proposed in 2018 [71] to break through the linear
boundary limitation of the repeaterless QKD system [72] and extend the transmission
distance of MDI-QKD systems beyond 500 km. The maximum transmission distance of the
TF-QKD reached 833.8 km in 2022 [73] and exceeded 1000 km in 2023 [74]. In order to over-
come the channel distortion of ultra-long optical fiber, various techniques were adopted
to improve the SKR and accuracy of the system [74], such as the sending-or-not-sending
protocol [75], the three-intensity decoy-state method [76], frequency stabilization technol-
ogy [77], and the actively odd-parity-pairing (AOPP) method [78]. MDI-QKD systems
typically require optical reference light [67,70] or optical phase-locking technology [73,74]
to monitor and compensate for frequency and phase offsets between remote lasers, which
will increase the complexity and noise of the system.

Several lightweight MDI-QKD systems have been demonstrated experimentally [79–82].
The local optical frequency comb (OFC) measurement method has been proposed [79] to
dismiss the fiber channel used for optical frequency dissemination [74]. A field test in
Shandong, China, between Jinan and Qingdao was carried out based on the OFC-TF-QKD
scheme [80] over 546 km of optical fiber, which was verified to support the asymmetric
channels (about 44 km of fiber length difference) and ease the deployment of the system.
Another field test in Germany was carried out between Kehl and Frankfurt over a 254 km
deployed commercial network [81]. The reference light generated by the central node
(Charlie) was distributed to the communication nodes (Alice and Bob) through quantum
mux/demux, and optical injection locking (OIL) technology was used to achieve the
frequency locking of the light sources. In order to maintain the coherence between signals
in long-distance coherent quantum communication, off-band phase stabilization technology
was proposed, which uses two optical signals with similar but different frequencies to
suppress channel phase disturbance. One of the optical signals acts as a pilot (reference
channel) and carries channel disturbance information after transmission. The channel
disturbance information is used to compensate for another optical channel (quantum
channel) and achieve coarse phase compensation. Replacing the superconductive nanowire
single photon detectors (SNSPD) with avalanche diodes (APD) operating at −30 ◦C brings
quantum communication systems closer to classical communication systems. A time
division multiplexing (TDM) scheme with a fast Fourier transform-based algorithm is
proposed to track the frequency and phase fluctuation in the TF-QKD system without
an additional phase-locking fiber channel [82], and a post-processing method is used to
reconcile the phase in the reference frame. The ratio between the reference frame and the
quantum frame may influence the synchronization performance and the SKR of the system.

3.3. AMDI-QKD

Most MDI-QKD systems operate in synchronous mode, requiring precise phase track-
ing and compensation throughout the entire network, which is difficult to achieve as the
scale of the quantum network increases. In the face of the issue, asynchronous MDI-QKD
(AMDI-QKD) has been proposed [83,84], demonstrated experimentally [85,86], and op-
timized [87,88]. In [86,89], separate lasers with an Allen deviation frequency better than
10−10 could be used to implement the twin-field QKD (TF-QKD) systems, which elim-
inates the frequency locking channel and improves the robustness of the systems. The
frequency stabilization method based on acetylene saturation absorption spectroscopy
not only successfully meets these stringent performance requirements (especially achiev-
ing extremely high frequency stability and minimal interlaser frequency difference) but
also avoids complex frequency locking techniques, such as complex optical phase-locked
loop [66] or heterodyne locking [90]. A field test in Zhejiang, China, with a symmetric
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link between Yiwu and Lishui and an asymmetric link between Jinhua and Lishui, was
carried out in 2024 [91], which is shown in Figure 3a. A strong light was used as a pilot and
transmitted in the same fiber channel as the quantum signal in the form of TDM, which was
used to estimate the frequency deviation introduced by lasers and optical fiber. A strong
reference light may introduce noise, which can be suppressed by a narrow band optical
filter. But the quantum transmission efficiency is inevitably affected by the TDM scheme,
which will shrink the effective SKR of the QKD system. Thanks to the technology of post-
measurement coincidence pairing, only the published quantum signal detection results
are used in the AMDI-QKD system to estimate the frequency offset between distant lasers,
which eliminates the dependence of the QKD on strong reference light and promotes the
quantum transmission efficiency, making full use of the duty cycle [92]. The experimental
scheme is shown in Figure 3b. By utilizing ultra-stable sources, the SKR of 1.03 Mbit/s
(150 bit/s) over a fiber channel of 100 km (504 km) can be achieved.

 

(a) (b) 

Figure 3. AMDI-QKD experiments with different schemes. (a) Field test of the AMDI-QKD system
between Jinhua and Lishui and between Yiwu and Lishui with the center node located in Wuyi.
Reprinted with permission from [91]. © Optical Society of America. (b) Lightweight AMDI-QKD
without optical reference light. The duty cycle of the quantum signals reaches 100%. Reprinted with
permission from [92]. © American Physical Society.

Several recent experimental results of MDI-QKD systems are listed in Table 1. The
integration solutions for CV-QKD tend to mature, which can effectively lower the difficulties
in deployment, operation, and maintenance of the systems. And the SKR of CV-QKD can
reach and exceed 1 Gbit/s by utilizing higher-order modulation patterns and higher clock
rates. The transmission distance and SKR of the TF-QKD can be further improved by
adopting super phase stabilization technology [93] to compensate for the phase fluctuations
induced by optical fiber, an integrated solution [94–96] to reduce losses at the transmitter
and receiver, and fast real-time dynamic calibration technology [97] to improve system
stability. To lower the complexity and promote the performance of the QKD systems,
new hybrid schemes have been proposed, such as the RFI-AMDI-QKD [87], QKD-KEM
protocol [98], PQC-QKD protocol [99], hybrid encoder [100], photonics-atomic system [101],
hybrid entangled photon pairs [102], and so on.
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Table 1. Several results of recent experiments on MDI-QKD systems.

Reference Scheme
Linewidth
of Laser

OFL/
Phase Locking

Security Key Rate Detector
Security
Level

[66] CV-QKD
2 kHz and
4 kHz

OPLL/
Real time

0.43 bit/pulse @5 km
(~21 kb/s)
0.19 bit/pulse @10 km
(~9.5 kb/s)

APD
High
(collective
attack)

[67] CV-QKD 100 Hz
Intradyne
detection/
Real time

0.093 bit/symbol
@5 km with 64 QAM
(0.746 Gb/s)
0.019 bit/symbol
@5 km with 32 QAM
(0.194 Gb/s)
0.035 bit/symbol
@10 km with 16 QAM
(0.351 Gb/s)

Integrated
PD

Very high
(multiple
attacks)

[70] CV-QKD 100 Hz
OPLL/
Real time

0.13 bit/symbol
@10 km (2.6 Mbit/s)

BD
High
(collective
attack)

[73] FP-TF-QKD
0.1 kHz
and 2 kHz

OPLL/
Real-time

8.75 × 10−12 bit/pulse
@833.8 km
(0.014 bit/s)

SSPD
Very high
(decoy state)

[74]
SNS-AOPP-
TF-QKD

US
OPLL/
Post-processing

3.11 × 10−12 bit/pulse
@1002 km
(0.0011 bit/s)

SNSPD

Very high
(decoy state
and
coherent
attack)

[79]
SNS-AOPP-
TF-QKD

US
Not needed/
Real-time

6.4 × 10−10 bit/pulse
@615.6 km (0.32 bit/s)

SNSPD
Very high
(decoy state)

[80]
SNS-AOPP-
TF-QKD

OFC
Not needed/
Real time

1.06 × 10−9 bit/symbol
@546 km (0.53 bit/s)

SNSPD
Very high
(decoy state)

[81]
SNS-AOPP-
TF-QKD

~100 Hz
OIL/
Real time

2.2 × 10−7 bit/pulse
@254 km (110 bit/s)

APD
Very high
(decoy state)

[82] NPL-TF-QKD 5 kHz
Not needed/
Post-selection

6.65 × 10−9 bit/pulse
@504 km (2.05 bit/s)

SNSPD
Very high
(decoy state)

[86]
SNS-AOPP-
TF-QKD

~100 Hz
Not needed/
Post-processing

9.67 × 10−8 bit/pulse
@502 km (~10 bit/s)

SNSPD
Very high
(decoy state)

[92] AMDI-QKD

US
Not needed/
Post-processing

6.015 × 10−8 bit/pulse
@504.67 km
(150.4 bit/s)

SNSPD
Very high
(decoy state)

100 Hz
4.004 × 10−5 bit/pulse
@201.88 km
(101.1 kbit/s)

OFL: optical frequency locking; US: ultra-stable; SNS: sending-or-not-sending; FP: four phase; NPL: no-phase-
locking; BD: balanced detectors; SSPD: superconducting single-photon detector.

3.4. Discussion

In MDI-QKD networks, the assumption of an independent source is one of the core
prerequisites for ensuring system security. If the light sources are not independent, side
channel attacks [103–107] may be carried out by manipulating the correlation between
different sources, which can compromise the security of quantum keys. But at the same
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time, the independent-source assumption is also a major factor limiting the deployment
and performance of QKD systems. In the face of imperfect devices, complex network
structures, and different user requirements, MDI-QKD schemes with asymmetric channels
and non-ideal light sources have been proposed and optimized [108–110]. The analysis
yield bounds are derived when different decoy intensity settings are used by the parties,
and the influence of the asymmetric channel and the intensity fluctuations of the sources
are considered to optimize the TF-QKD protocol [108]. An SNS-TF-QKD protocol based on
an asymmetric source was proposed, and the security of the protocol is guaranteed by the
mathematical constraints of the source parameters and proved by three virtual protocols
and reductions [109], which enhances the practicality and flexibility of the TF-QKD. Based
on it, the source parameters were optimized to increase the SKR of the asymmetric TF-QKD
systems. The asymmetric TF-QKD protocol was improved by the analysis of the intensity
fluctuation of the unstable sources and the statistical fluctuation of the quantum data
sizes [110], and the security of the system was verified through simulation. A full asym-
metric MDI-QKD scheme has been proposed [111], and the interference phenomenon of
multiple photons on a beam splitter under different temporal modes, including polarization
information, is investigated in this paper, and more details of asymmetric source communi-
cation in different modes of MDI-QKD are studied. The key rates of MDI-QKD systems
using weak coherent pulse sources [112,113] and spontaneous parametric down-conversion
sources [114,115] were modeled and simulated in three different scenarios (two symmetric
and one asymmetric). The simulation results indicate that the SKR with asymmetric sources
is always comparable to that with symmetric sources throughout the entire transmission
distance, which means the limitations of the MDI-QKD systems can be simplified, and a
practical solution for the asymmetric scenarios that are inevitably encountered in practical
applications is proposed.

Temporal mode matching [111] is the theoretical basis for analyzing and optimizing
the performance of MDI-QKD systems, and temporal photon interference processes with
different modes and quantities have been analyzed [116–119]. A theoretical framework
of stimulated Raman emissions for various physical systems has been established [116],
which provides a theoretical basis for qubit shaping in different physical systems, shows
how to improve the fidelity by optimizing the pulse shape, and provides a paradigm shift
from drive optimization [120] to temporal-mode optimization with a fixed drive. Temporal
mode matching has been used to describe the relationship between the dynamics of the
quantum emitter and the shape of the flying qubit [116]. By solving the time-dependent
coupling strength in the input-output theory, which is equivalent to temporal filtering, the
conditions for efficient high-fidelity transfer of quantum states can be found. The vacuum
state has been used to construct the virtual cavity in the input-output theory [121,122].
However, the vacuum state is not a logical state, which cannot support the error detection
in the heralding protocol [117,118]. Thus, the vacuum state in the three-level system is
replaced by the ground state, which is denoted by | g⟩D in Figure 4b. The temporal modes
processed by two shaping filters (as shown in Figure 4a), which are defined as normalized
boxcar functions, are orthogonal and overlap in time, allowing them to be independently
physically extracted and mapped to different quantum memories. The selected modes will
entangle in the frequency range of (ω1 – ω2) = 2 mπ/T, where m is an arbitrary integer and
T is the duration of the filter functions.

By applying this scheme in superconducting circuits, the matching hybridization of
symmetric and anti-symmetric modes is achieved, and the required photon temporal modes
are extracted from the waveguide (as shown in Figure 4b), achieving frequency-bin photon
encoding for the first time in the microwave frequency band. The frequency-encoded
photons can relieve the impact of birefringence on entanglement fidelity in quantum
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networks by replacing polarization-encoded photons [119,123]. The birefringence of the
optical fiber can be eliminated by using polarization-maintaining fiber, while that of the
cavity is inevitable. The frequency states of the photons will not be affected by time-
dependent polarization oscillations in the cavities, which can maintain high stability in the
transmission of quantum networks [119]. And the influence of the cavity birefringence can
be further mitigated by improving the temporal mode matching between the networking
nodes, such as the detuning of the lasers, the Rabi oscillation of the lasers, the coupling
strength between the atom and the cavity, and so on. The theoretical framework for atomic
cavity quantum networks was established and the generation process of two-phonon
interference entanglement was analyzed in depth. Two feasible experiment schemes were
proposed, which used the atomic fine-structure splitting of 40Ca+ and the hyperfine splitting
of 225Ra+ ions, respectively. Following this method, 11B3+ ions [124], as well as 87Rb, 211Fr
and 225Rb+ ions [125], can be used as the cavity.

  

(a) (b) 

Figure 4. Applications of superconducting circuits and temporal mode matching in quantum com-
puting networks. (a) Superconducting circuit for generating entangled photons. The temporal filters
f1(t) and f2(t) are imposed on the time trace, which is the record of the radiation of the emitter, to
match the input and output modes denoted by âin and âout. Reprinted with permission from [117].
© Springer Nature. (b) Superconducting circuit for generating frequency-bin encoded photons. The
emitter is hybridized by tuning the coupler into resonance with the qubit and emitting symmetric
and anti-symmetric modes at frequencies of ωS and ωA, respectively. Reprinted with permission
from [118]. © American Physical Society.

4. Network Nonlocality

QKD is a secure key sharing technology based on the principles of quantum mechanics,
while network nonlocality refers to the non-classical correlation exhibited by quantum
states in distributed networks, which cannot be reproduced through LHV theory. The
intrinsic relationship between QKD and network nonlocality is mainly reflected in the
fact that the network nonlocality is the core foundation and efficiency improvement re-
source for QKD security. The security of QKD relies on network nonlocality, especially
device-independent QKD (DI-QKD), which verifies device security by violating Bell’s
inequality [126]. Nonlocality of the network serves as a quantifiable resource to guide the
architecture design of QKD networks [127] and improve the efficiency of QKD [128].

After years of construction, many countries have established QKD networks for the-
ory and application research [74,80,91,129–135]. And to the best of our knowledge, the
quantum network between Beijing and Shanghai is the largest long-distance QKD system
built at present [134], which is composed of multiple metropolitan area networks and more
than 50 relays and integrates satellite links to realize 4600 km of quantum communication.
However, there are still some problems to be solved in QKD networks, such as the vul-
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nerability of qubits to environmental interference [107,136–140], which makes QKD less
compatible with existing optical fiber networks, the slow standardization process [141–143],
and increasingly serious information security problems [7,103–107,144,145]. The verifica-
tion of network nonlocality can prove the independence and non-classical distribution of
entanglement sources in quantum networks [62,146–159], which can avoid the potential
risk of deceptive attack [160–162] from intermediate nodes in traditional communication
systems. Furthermore, different network topologies can introduce correlations beyond the
classical limitation [163–167], revealing the potential of high-dimensional entanglement in
resisting channel distortion and improving SKR capacity, and alleviating the information
attenuation problem caused by decoherence in quantum networks [168–170].

Although there has been significant progress in the research of multi-user QKD net-
works [171–176] in recent years, bipartite QKD communication remains the main research
subject. How to efficiently construct QKD networks with complex topological structures
and effectively develop and utilize the quantum resources is currently an urgent problem to
be solved. The study on network nonlocality characteristics helps to understand the impact
of network topology on nonlocality and can construct more novel inequalities, providing
new ideas and impetus for the development of QKD networks. Networks with different
topologies have different roles in QKD networks. Star networks are used for access net-
works [129], mesh and cyclic networks are used for metropolitan area networks [134], and
chain networks are used for long-distance backbone networks [134]. Triangle networks are
most suitable for QKD models [177]. Tree networks can achieve hierarchical management
of key resources [178]. The progress of the network nonlocality is summarized in the
following aspects.

4.1. Generalized n-Locality Inequalities

Nonlocality is a process in which qubits maintain strong correlations even when sepa-
rated by large distances and no signaling. When entangled qubits are used in quantum
operations, the statistical correlations of the results will be inexplicable by classical means,
which is named nonlocality. In the early stages, research on network nonlocality usually
revolved around networks with a specific number of nodes and limited inputs. The nonlo-
cality of a star network with five nodes and four independent sources has been verified in
a bi-local scenario and beyond [179], which demonstrates that the device independence is
one of the characteristics of network nonlocality, proving the scalability of star networks.
However, there are many more nodes and sources in real-world networks, and the security
and stability issues after network expansion have not yet been thoroughly solved. The
proposal of generalized inequalities is beneficial for the research and development of quan-
tum networks. The generalized n-locality inequalities for star, chain, tree-tensor, and cyclic
topology are derived, respectively.

In [180], the number of the binary-outcome measurements in the edge nodes was
extended from two times to arbitrary times, which unveiled an interesting phenomenon.
When the number of measurements is larger than three, the non-n-locality in the star
network may be activated by multi-copies of a two-qubit entangled state, which provides
a general idea for stimulating or verifying network nonlocality. The generalization of
n-locality inequalities in chain networks is reported with an arbitrary number of inputs to
the edge nodes [181], which is quite similar to the process in star networks and shown in
Equation (5).

(βn)n−local ≤
⌊n/2⌋
∑
l=0

(

n

l

)

(n − 2l) (5)

Here, n is the dimension of the locality, and l is the binary-outcome observables per
party. When l is greater than three, higher-dimensional entanglement systems are needed
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to ensure inequality violation maximization. During the analysis of the nonlocality in
the chain network, a method named elegant sum of squares (SOS) [182] is adopted to
derive the optimal quantum violation value of inequalities, which is independent of the
dimensionality of the quantum system and suitable for customizing Bell inequalities for an
arbitrary given quantum state [183].

A triangle network can be treated as the simplest cyclic network in terms of struc-
ture. The generalized cyclic network nonlocality with any number of nodes has been
reported [184], with a new type of Bell inequality shown in Equation (6) to certify the gen-
uine network nonlocality, which will be reviewed in a subsequent section of this paper and
solves the nonlocality problem of even-cycle networks left in [185]. A device-independent
model has been proposed [184] to break through the limitations of the assumption on
independent sources, which is one of the major obstacles in quantum cryptography. The
previous method required assuming that the quantum source was independent and trust-
worthy, while devices in the actual network may be maliciously connected. The proposed
Bell inequality is very interesting, which is the sum of multipartite CHSH-type inequalities,
and the inequality will return to the conventional CHSH inequality when n is 2. This new
inequality solves the verification problem of complex network topology such as even-cycle
networks and is a great extension to previous research [185–187].

ωq = ∑
⌊ n

2 ⌋
i=1 Li ≤ 2 n

√
2 − 4

√
2 + 2 with the largest bound of 2 n

√
2 − 2

√
2 (6)

Here, ωq is defined as the quantum violation, Li denotes the summation of multipartite
CHSH-type quantities, and n is the dimension of the locality.

Increasing the number of binary measurements in each node is the general method to
generalize the Bell inequalities for tree-tensor networks [147] based on the analysis in [188].
The measurement times of edge nodes are greater than or equal to those of intermediate
nodes, and all of them are larger than two times. By generalizing the CHSH inequality to
the two-forked tree-tensor network, 6-local inequalities are constructed, and the inequality
violations under different entangled states are analyzed. The nonlocality for the tree-tensor
network with any number of forks has been further revealed [189] to be in the bipartite
quantum states. The generalized model, shown in Equation (7), is quite flexible, and can
transform into a two-forked tree, star, or chain network with specific configurations of the
network parameters.

∣

∣

∣
Ii1,i2,...,itn−1 ,0

∣

∣

∣

1
pn +

∣

∣

∣
Ij1,j2,...,jtn−1

,1

∣

∣

∣

1
pn ≤ 1 (7)

Here, pn is the number of end nodes, and the number of independent bipartite sources
is tn−1.

The real network topology is often a fusion of two or more network structures, such
as star networks with chain-like branches [190]. The parameters for determining the main
structure of a quantum network include the number of independent sources (denoted by S),
the number of entangled particles owned by each intermediate node (denoted by P), and the
number of edge nodes (denoted by E), which corresponds to a cyclic network when E equals
0. The generalized n-local inequality in the (S, P, E)-type quantum network, which can cover
multiple network topologies and for the first time achieves a decentralized and asymmetric
universal network architecture, has been obtained [191] and is shown below. The unified
description method of network topology can reduce ambiguity, making the expansion and
analysis of quantum networks more intuitive and flexible. The architecture model does not
emphasize the role of the central nodes, avoiding dependence on the central nodes. On
this basis, it is found that the nonlocality of quantum networks is only determined by the
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degree of entanglement of the sources and is independent of the choice of measurement
operation or the type of measurement operator, which is shown in Equation (8).

∣

∣

∣
I0
X

∣

∣

∣

1
p
+
∣

∣

∣
I1
X
′

∣

∣

∣

1
p ≤ 1 (8)

Here, X and X′ are the sets of inputs for the intermediate nodes, and p is the number
of the end nodes.

The Bell inequalities above are nonlinear, which can achieve the Tsirelson bound of
|Bn| ≤ n! in a non-n-locality scenario [192,193]. Thus, the nonlinear Bell inequalities
can describe the properties of entangled states more accurately compared to linear Bell
inequalities and are especially suitable for noisy quantum communication scenarios, which
is demonstrated by experiment in [194].

4.2. Sharing Network Nonlocality

The sharing of network nonlocality is a process of distributing and utilizing nonlocality
resources, such as entangled states, in quantum networks to support applications, such
as quantum communication and distributed computing. The sharing process typically
relies on network topology design, such as (n, m, p)-type frameworks [191], and protocol
optimization, such as entanglement swapping [151,195–203], which requires the coordi-
nation of multi-node measurement strategies, such as Pauli measurements [204,205], to
maintain nonlocality during the process. Nonlocality sharing in star [164,190], chain [206],
tree-tensor [207], and triangle networks [208,209] has been reported, respectively. The
number of users in star networks can be increased through chain-connected edge nodes,
which is the fusion of chain and star networks, and the network nonlocality is shared
via weak measurements in the intermediate nodes and strong measurements in the last
node [190]. The Munshi–Kumar–Pan (MKP) inequality in [180] and shown in Equation (9)
is suggested to be used to reveal the network nonlocality sharing when the number of
inputs is greater than three.

2m−1

∑
i=1

∣

∣

∣

∣

∣

n

∏
k=1

[

m

∑
xk=1

(−1)yi
xk Ak

xk

]

Bi

∣

∣

∣

∣

∣

1
n

≤
⌊ m

2 ⌋
∑
j=0

(

m

j

)

(m − 2j),

(

m

j

)

=
m!

j!(m − j)!
(9)

Here, n is the number of edge observers and the number of independent sources, m is
the number of dichotomic measurements performed by every observer. Ak

xk
is the binary-

outcome of the xk-th measurement performed by the k-th observer (∀xk ∈ [m], for any k,
and k ∈ [m]). Projective measurement has been proposed in [210,211] and used in [151] to
replace the weak measurement to share and maintain the nonlocality in the network. The
projective measurement is one of the strong measurements, which distributes nonlocality
through the network by using classical randomness sharing for any high-dimensional pure
state without breaking the entangled states and avoiding additional loopholes [103,104] by
weak measurements.

In the research of quantum nonlocality sharing, protocol optimization significantly
improves the sharing efficiency and security of nonlocality associations by improving en-
tanglement mechanisms [196–199,202,203,206,207], measurement strategies [151,206–211],
resource allocation [200], and network architecture design [201].

The entanglement protocol optimized for specific entangled states [198] and specific
network architectures [202,206,207] can improve the sharing efficiency and save network
resources. In response to the problems of weak measurement faced by the W state, an
entangled state purification method is proposed [198], which provides an improvement
idea for other weak measurement schemes [200].
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The all-optical entanglement-swapping scheme can avoid photoelectric conver-
sion [196,198] and simplify the swapping protocol and the structure of quantum relay [196].
Relevant experiments [203] have achieved entanglement swapping based on time-bin en-
coded photons with an average fidelity of 87%, which can support QKD applications. The
all-optical scheme is beneficial for further expanding the communication bandwidth of
quantum networks and has the potential to be directly extended to mixed entanglement and
many-body entanglement swapping [196,199]. The fidelity, denoted by F, of many-body
entanglement swapping can be calculated using Equation (10).

F = ⟨ΨT|ΨAB⟩ =
1√
PE

∑
k

λ3/2
k rE

kk, and ∑
ij

∣

∣

∣
rE

ij

∣

∣

∣

2
≤ 1 (10)

Here, PE is the probability of outcome for Eve, who is denoted by the superscripts and
subscripts of E, and λk > 0 are the Schmidt coefficients.

The realization of clock synchronization in all-optical entanglement schemes is quite
difficult [196–198]. A tree structure can be used in the clock distribution network, combining
a central controller with a layered network structure, to achieve time synchronization [202].
And the hierarchical distributed network is the foundation for optimizing the quantum
memory allocation and entanglement resource allocation at the link level [200,201].

Many-body entanglement is currently a hot topic in quantum research [212–216]. In or-
der to overcome the limitations of two-body entanglement swapping [217], the partitioned
general many-body states [199] and the sequential weak measurement method [208,209]
based on positive operator valued measurement (POVM) [218,219] have been proposed.
The protocol cost of [199] is determined by the third Rényi entanglement entropy [220,221]
of the partitioning, which is independent of system scale and supports fault-tolerant en-
tanglement swapping [222–224], making it suitable for large-scale QKD networks. The
sequential weak measurement method, by violating the Mermin inequality shown in
Equation (11) [208], can infinitely share nonlocality [209], which means a single Alice and
Bob can share nonlocality with any number of independent Charlies, breaking through the
upper bound of six Charlies in [208]. In addition, in the process of nonlocal sharing, the use
of projection measurement instead of weak measurement has been verified [151,210,211],
which can achieve Bell nonlocality sharing of any high-dimensional binary pure state [211].

Sm =
∣

∣

∣
Cm

000 + Cm
100 − Cm

010 + Cm
110 + Cm

001 − Cm
101 + Cm

011 + Cm
111

∣

∣

∣
(11)

Here, Equation (11) is the Svetlichny inequality for Alice, Bob, and the m-th Charlie.
The nonlocality sharing achieved through classical randomness sharing (probability

mixing of different projection measurement strategies) extends the research framework on
two-qubit states [210]. Another nonlocality called genuine non-signal nonlocality, which
can be shared an arbitrary number of times by the violation of the non-signal inequality
shown in Equation (12), has been detected [209]. The proof of the nonlocality sharing of
high-dimensional systems by adjusting the measurement operator inspires the serialization
implementation of other quantum protocols based on projection measurement, such as
quantum steering [225–227] and contextuality [228–230]. But the sharing of Svetlichny
nonlocality [231–235] in a setting of more than two Charlies with a single Alice and Bob is
still a problem not yet solved.

⟨X0Z0⟩+ ⟨Y0Z0⟩+ ⟨X1Y0⟩ − ⟨X0Y1Z1⟩+ ⟨X1Y1Z1⟩ ≤ 3

and
〈

XiYj

〉

= ∑
AB

(−1)A+BP
(

AB
∣

∣XiYj

) (12)
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4.3. Detecting/Verifying Network Nonlocality

A quantum network must hold a degree of nonlocality to ensure its ability to per-
form quantum functions, such as sharing [151,164,190,206–209,211] or recycling nonlocal-
ity [210,236]. The detection and verification of network nonlocality aim to verify whether
there are non-classical correlations in the network, usually by violating the n-local in-
equalities to prove that network behavior cannot be explained by LHV theory. Based
on mathematical inequalities and experimental verification, the strength of nonlocality
can be quantified by calculating the degree of quantum violation, which ensures that the
quantum communications are free from classical eavesdropping. The detection and veri-
fication of network nonlocality in different network topologies have been reported, such
as triangle [177,237–242], star [163,180,243,244], multi-star [245], chain [163,246,247], and
tree [153,248].

A set of nonlinear Bell-type inequalities has been proposed for triangle networks [237]
to detect non-tri-local correlations shown in Equation (13) by using Bloch matrix repre-
sentation [249,250] of the two-qubit state, which is generalized to a cyclic network with n
edges and n vertices.

√

∣

∣2α2
1 − α2

2

∣

∣+
√

∣

∣α6
1 − α4

1α2
2 + α6

2 + α2
1

(

3 − α4
2

)∣

∣ ≤ 23/2 for triangle network
√

∣

∣p2
[
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2 − (1 − p2)α

4
2
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√
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2

)∣

∣ > 23/2 for violation with state noise
∣

∣p2
3
(
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∣
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√
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2 − p4 − (1 − p4)α

4
2

]∣

∣+
√

p3
4

∣

∣

(

1 − α2
2 + 4α4

2

)∣

∣ > 23/2 for violation with measurement noise

(13)

Here, α1 and α2 are the measurement parameters with 1 > α1, α2 > 0, and α1
2 + α2

2 = 1.
And p2, p3, and p4 are noise parameters for state, channel, and measurement, respectively.

The product states do not support the detection of non-tri-locality in a network; thus,
the pure state detection scheme is suggested. And the non-tri-locality in the n-local star
network is analyzed [244] by involving stochastic local operations assisted with classic
communications. In the sequential n-local star network, the upper bound of the n-local
inequality is given in Equation (14).

B
(sequential)
n−star = 2

√

n

∏
i=1

(

W
( f )
i1

)2/n
+

n

∏
i=1

(

W
( f )
i2

)2/n
and ∀i, W

( f )
i1 ≥ W

( f )
i2 (14)

Here, W
( f )
i1 and W

( f )
i2 denote the ordered singular values of the correlation tensor of

the state.
A nonlocality certification method for triangle networks based on elegant joint mea-

surement (EJM) [251,252], which is also nonlocal [242], has been proposed [177] to reveal
the correlations between the symmetry of the measurement basis and quantum nonlocality.
A generalized EJM basis has been constructed to achieve continuous control from partially
entangled states to maximally entangled states. Non-tri-locality has been achieved in
triangle networks with only partial entanglement states [253,254] for the first time. The
probability criteria for non-n-locality have been derived by generalization to a closed poly-
gon network [177,237] shown in Equation (15), in which n ≥ 4. The nonlocality still exists
within the noise threshold (V ∈ (0.86,1)), by comprehensive analysis of the Werner state
and mixed state [177], which is consistent with the theoretical analysis of [237].

|I1,n|
1
2 + |I2,n|

1
2 ≤ 1 (15)

In order to optimize the allocation of network resources and explore the quantum
theory, the nonlocality minimization of triangle networks [238–240], which focuses on the
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scenario of triangle networks without inputs, has been studied in depth. Inflation [24] and
a neural network (an LHV net) have been used to verify the minimal quantum nonlocal-
ity [238], where inflation is used to generate Bell inequalities and the LHV net is used to
evaluate noise robustness. The coarse graining method [255–258] has been used to simplify
the output cardinality, which is adaptive to LHV-net and inflation. The critical visibilities of
different output cardinalities (3-3-3 and 3-3-2) have been derived. The variational Lovasz
local lemma [259,260] have been used to analyze the 2-2-2 triangle. The local model bound-
aries of symmetric distribution in the minimal triangle network have been characterized
thoroughly [240] by using Gröbner basis [261,262] and hybrid calculations, which can be
used to solve the problem of variable elimination in high-dimensional parameter space,
and different types of boundary models, as well as the corresponding Bell inequalities,
have been proposed. The cardinality of hidden variables can be reduced to three, instead
of six as in [263], which significantly reduces the complexity of LHV models.

The nonlocality without inputs in the minimal triangle network has been realized
experimentally for the first time in [239] with the arbitrary small level of independence
between sources, which supports the viewpoints proposed in [264], and the sketch of
the experimental setup is shown in Figure 5. The experiment was carried out by using a
single source of broadband multiplexed entangled-photon states [265–269] equivalent to
three independent entanglement sources, which proves that even with strongly correlated
classical sources, quantum nonlocality can still be observed.

 

Figure 5. The experimental setup for the implementation of the triangle network using a single
source of broadband multiplexed entangled-photon states. Reprinted with permission from [239].
© American Physical Society.

The correlator space of the symmetric, network-local distributions generated in the
minimal triangle scenario is constructed and depicted in [240], which represents the bound-
aries of multiple inequalities using multiple irregular faces within a triangular pyramid.
Several different distributions are presented in visual form in [240], where, GHZ is a shared
random bit distribution, W is the uniform mixture distribution, W is the inverse of W, U is
the uniform random distribution, and D+ and D− are two deterministic distributions, all of
which are related to the three symmetrized correlators defined in Equation (16).

E1 = ∑
a,b,c∈{−1,1}

ap(a, b, c), E2 = ∑
a,b,c∈{−1,1}

abp(a, b, c), E3 = ∑
a,b,c∈{−1,1}

abcp(a, b, c) (16)

Here, p(a, b, c) is the joint probability distribution of the binary output of a, b, and c.
To close the loopholes in detection, the high-dimensional photonics state of 2002 is

used instead of a single photon to enhance the tolerance of the system to the transmission
loss [241], which certifies noise robustness up to 10.3% single photon loss and full photon
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loss noise of 0.14%. The new framework is based on a complementary approach of linear
programming and neural network (LHV Net) [238,241] to validate the results, and its
noise model analysis ability is superior to the methods of token-counting and noise parity
token-counting [238,270,271]. But further analysis of the singular point found at η = 0.6
is needed.

Multi-star-shaped topology is commonly used in QKD networks [129,134]. The Bell-
type inequalities for multi-star networks have been proposed [272–274] and generalized in
strong locality assumptions [245], as shown in Equation (17).

2n−1

∑
s=1

∣

∣

∣
Iis1,...,is2m ,s

∣

∣

∣

1
m2 ≤

⌊n/2⌋
∑
p=0

(

n

p

)

(n − 2p) (17)

Here, m is the number of nodes in each layer of the star network and n is the number
of measurements in each node.

The optimal quantum violation can be achieved by multi-copies of entanglement when
the measurement exceeds three times, which is consistent with [180]. If a multi-star network
is divided by hierarchy, treating the core node as the root node, then the multi-star network
is transformed into a tree network, which is used to verify the nonlocality of the k-forked
tree network (k > 1), and the inequalities for a quantum network with multiple parties are
derived [153]. The n-local inequalities are generalized from bi-locality to multiple sources
with different inputs, and the optimal quantum violations of star and chain networks
are deduced using the SOS method [180,247]. A powerful tool of deep learning has been
introduced to detect the nonlocality in the chain network in the Werner state [275] with the
non-n-locality quantifier, which can collect data across different network scenarios [246],
which can be generalized to other types of networks.

Quantum networks are inevitably affected by noise, including entanglement gener-
ation noise, measurement error noise, and communication noise, which can be divided
into amplitude-damping noise and phase-damping noise [248,276]. The effects of different
noises are independent and additive, and the impact of measurement noise is the great-
est, followed by amplitude-damping noise. Entanglement generation noise is relatively
small, and especially the phase-damping noise does not disrupt the nonlocal correlations
solely [243,248]. The dynamics of communication noise can be analyzed, and the process
of the fidelity of the Bell states changing over time under the amplitude-damping and
phase-damping noise can be calculated using Equation (18) [276].

F|φ±⟩ =
1
4

(

2 + 2e−t(τ1+τ2) + 2e−
t
2 (τ1+τ2+4γ1+4γ2) − e−tτ1 − e−tτ2

)

F|Ψ±⟩ =
1
4

(

2e−
t
2 (τ1+τ2+4γ1+4γ2) + e−tτ1 + e−tτ2

)

∣

∣φ± 〉 =
1√
2
( |00 ⟩ ± |11 ⟩),

∣

∣Ψ± 〉 =
1√
2
( |01 ⟩ ± |10 ⟩)

(18)

Here, τ and γ are the attenuation rates of amplitude-damping noise and phase-
damping noise, respectively.

The entanglement generation noise is introduced by the imperfection of the quantum
gates [248], which will degenerate the purity of the entanglement states, and its influence
on the Werner state [177,181,237] and GHZ state [277] has been reported. The noise pa-
rameter threshold for quantum violations in the general domain has increased from 0.707
for bi-locality to 0.908 for tri-locality [181], which is quite similar to 0.892 in [237], which
means more measurements are needed to support high-dimension entanglement. The
measurement method will affect the degree of quantum violations; for example, the degree
of violation of CHSH inequality caused by projection measurement (approximately 2.108)
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is lower than that of non-sharp measurement schemes (approximately 2.263) [210]. Mean-
while, the selection of measurement basis vectors is also crucial. Both Werner states and
partially entangled states may achieve non-tri-locality under specific measurement basis
vectors, while other basis vectors may reduce or lose the nonlocality [177]. The GHZ states
are sensitive to noise, while the robustness of high-dimensional entangled cluster states is
higher [277,278]. The continuous variable cluster state quantum entanglement based on
integrated optical quantum chips has been achieved recently for the first time [279], and
the experiment scheme is shown in Figure 6.

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 6. Photographs of (a) chip carrier, (b) micro-resonator, and (c,d) single-mode waveguide.
(e,f) The experimental spectra and (g) setup for the generation and characterization of continuous-
variable multi-qumode entanglement. Reprinted with permission from [279]. © Springer Nature.
Lights at the frequencies of P0,±3 in (e) are selected as pumps, which are marked as the Polychromatic
pump in (g) with three different colors. And the lights at the frequencies of f±1,±2,±4,±5 in (f) are
selected as the local oscillator beams, which are marked as the Poly chromatic LO in (g) with
different colors.

The robustness of quantum networks to noise depends on the topology, size, and
entanglement distribution within the network [278]. The noise accumulation in cyclic
networks is the most severe, which will decline the nonlocality of the cyclic network
rapidly and disrupt the correlations between nodes. The ability of forked tree networks
to maintain entanglement in noisy environments is determined by the fork number of a
determinate forked tree network or the number of independent sources in the last layer
of the indeterminate forked tree networks [248]. When the fork number is larger than
14, the maintenance of entanglement is independent of the number of sources, which
means the number of sources can be increased to infinite [248]. While in the indeterminate
forked tree networks, the more sources in the last layer, the stronger the persistence of
entanglement [248]. In a white noise environment, a better noise level is needed to ensure
quantum violation when the input of edge nodes of a chain network reaches three or more,
which means more noise is introduced [181]. The star network has the strongest ability to
resist consistent noise [243]. The non-ideal characteristics of sources will introduce extra
phase noise, which will usually become more serious as the number of sources increases
and affect the violation of nonlocal inequalities.

However, the nonlocal inequality of star networks is independent of the number of
sources, which is theoretically immune to the noise introduced by sources [243]. Thus, the
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star networks gain higher priority in the construction of quantum networks. The network
topology will change with the number and distribution of sources. If the network topology
is unknown, how do you determine the topology and verify the existence of the network
nonlocality? The answer is the testing of Bell inequalities. The topological stability of
network nonlocality is demonstrated [280] by the rigidity of token counting [270] and
the neural network oracle [281] even if only a partial network is known or trusted. By
constructing more precise Bell-type inequalities and quantifying the minimum number of
quantum sources in a network, the distribution of quantum sources and classical sources can
be detected in quantum networks with the help of hierarchical nonlocality of the quantum
networks [282]. The improved Bell inequalities shown in Equation (19) provide more
accurate upper bounds of the inequality [152], achieving precise counting of the number of
quantum sources. At the same time, the l-level quantum network locality is generalized to
a network with an arbitrary topology and an arbitrary number of parties [282] on the basis
of [283].

|I|
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n + |J|

1
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n−l
2n , when l >

n

2
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⟩

A±
xi
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2

(19)

Here, l is the number of sources and n is the number of branches in a star network. Axi

represents the input of the i-th branch, while the outcome of B, the central node of a star
network, is represented by the subscripts 0 and 1.

Improving the quantum violation degree and accuracy of quantum networks can
effectively enhance the noise tolerance and application scenarios, such as constructing new
or modified quantum inequalities [163,166,284–286], improving testing schemes [45,287],
and optimizing entanglement source performance [93,239,288,289].

4.4. Full Network Nonlocality

Bell nonlocality in networks brings novel forms of entanglement to the forefront of the
physical process, which means the analysis of network nonlocality should not fall back on
the long-established ideas and tools for standard Bell inequality experiments. Thus, the
research on network nonlocality has turned out to be a formidable challenge that demands
new lines of thought. The violation of traditional Bell’s inequality in networks, such as
the bi-local inequality, only proves the existence of at least one non-classical source in the
network. While a quantum network usually consists of multiple independent sources that
can generate entangled particles and distribute them to a set of parties, which is quite
different from traditional Bell experiments with only one source and can generate new
quantum correlations. Before 2022, the representation of quantum network nonlocality
could easily revert back to the standard Bell’s nonlocality expression [290], making the role
of the network in quantum communication trivial, which is of course not the truth. To
solve this problem, a stricter definition, named full network nonlocality (FNN), has been
proposed [24]. FNN requires that all sources must be non-classical, which means that all
sources in the network cannot be simulated by classical variables, even if other sources
are no-signaling-limited, which is stricter than standard network nonlocality because it
excludes the possibility of any part of the network using classical sources and provides a
new perspective to understand the nonlocality in quantum networks. It is similar to adding
the harsh condition of fully connected [291] on the basis of traditional Bell nonlocality. The
most interesting thing is that they discovered the famous Branciard inequality [292] shown
in Equation (20), which is applied to star and chain networks with multiple sources, can be
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falsified by a single nonlocal source, indicating that there are loopholes within the existing
testing tools and highlighting the necessity of defining and studying FNN [24].

√

IAC +
√

IBC ≤ 1 (20)

Here, IAC is the correlation between Alice and Charlie, and IBC is between Bob
and Charlie.

To solve this loophole, a tight inequality is proved in a star network with three sources,
as shown in Equation (21) [24].

|I1|+ |I2|+ |I3|+ |I4| ≤ 1 (21)

Here, Ii (i = 1,2,3,4) is the correlation for the star network with three sources.
A star network with three branches has been constructed to analyze the characteristics

of FNN with new inequalities (called KGT inequalities [24,293,294], shown in Equation (22))
and the inflation method [295], which is used in causal inference with hidden local vari-
ables and has advanced capability of witnessing incompatibility compared to other causal
inference schemes [296,297]. When each source in the three-branch star network emits a
Werner state, the FNN can be achieved as long as the visibility exceeds 89.1% with the noise
tolerance of about 10.9% [24].

RC−NS = 2⟨A0B1C0⟩ − 2⟨A0B1C1⟩+ 2⟨A1B0C0⟩+ ⟨A1B0C1⟩ − ⟨B0⟩
+⟨C1⟩|⟨A1B0⟩+ ⟨B0C0⟩ − ⟨C0⟩| ≤ 3

RNS−C = 2⟨A0B1C0⟩ − 2⟨A0B1C1⟩+ ⟨A1B0C0⟩+ 2⟨A1B0C1⟩ − ⟨B0⟩+ ⟨A1⟩⟨A1B0⟩
+⟨A1⟩⟨B0C1⟩+ ⟨A1⟩⟨C0⟩ − ⟨A1⟩⟨C1⟩ − ⟨A1⟩⟨A1⟩ ≤ 3

(22)

With the help of violations of KGT inequalities, the FNN is experimentally demon-
strated in a bi-local scenario [293,298], both of which are based on the scheme of partial
BSM in the central node and single photon polarization analysis in the edge nodes. By opti-
mizing the test condition and process, multiple loopholes are closed and greater quantum
violations (3.321 and 3.356 for RC-NS and RNS-C, respectively) are achieved [298]. Then a
six-photon experiment is carried out to certify the FNN in a three-branch star network [299],
which is more complex than bi-local networks and requires stronger non-classical certifica-
tion, and the experimental setup is shown in Figure 7.

  

(a) (b) 

Figure 7. (a) The six-photon experimental setup to certify the FNN in a three-branch star network.
(b) The inflation of the three-branch star network. Reprinted with permission from [299]. © Springer
Nature. The red and blue dots in S1, S2 and S3 in (b) represent different polarizations, which are
denoted by e- and o-light in (a), respectively. The blue and red arrows in (b) represent the electrical
signals and optical signals, respectively.
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The central node performs GHZ projection measurement, and the branch nodes per-
form random basis measurements. FNN is successfully verified with the visibility of
0.882 [299]. The inflation method proposed in [24] is implemented in a more complex
form in experiments, and the corresponding inequalities are derived, which is a nontrivial
generalization of CHSH inequality [299]. In a quantum network, inflation is a technique
by which the sources and measurement devices of a network are copied several times and
arranged in different configurations, which introduces constraints that do not appear di-
rectly in the original network, especially the independence or cloning relationship between
different replicas. To some extent, inflation on the network is quite similar to adding a
garbage state in the quantum algorithm [300]. Other quantum technologies can also be
used to verify FNN, such as the experimental implementation of KGT inequality violation
based on hyper entanglement [301,302] and EJM [303].

In order to solve the difficulty of FNN verification in complex networks, the complex
network can be divided into subnets, and nonlinear inequalities corresponding to each
subnet can be designed. The violations of KGT inequalities can be achieved by measuring
the maximum entangled states and generalized Bell state to verify FNN [156]. For example,
in a four-party chain network, FNN is validated through adjacent tripartite subnetworks.
The verification of FNN in tree networks is realized by the hierarchical certification method,
which gradually transits from standard network nonlocality to FNN by distinguishing
the number of classical sources in the network [294]. In this process, in order to adapt to
different network scenarios, nonlinear inequalities are generalized hierarchically, and linear
inequalities are generalized to arbitrary lengths of chain networks. The Born rules [304,305]
can be used to reduce the inequality violation thresholds of FNN certification. Thus, the
FNN of a tree network is generalized to l-level quantum network nonlocality [152], which
means that at least l sources are required in the network to distribute classical physical
systems, and FNN corresponds to the special case of l = 1. The l-level quantum network
locality inequalities for k-forked tree networks, acyclic networks, cyclic networks, and gen-
eral networks are generalized [153] based on the hierarchical scheme proposed in [152] and
the method of maximal independent-node number, which is an NP-hard problem [306,307].
A Bell-type witness operator, which is hybridized by the Mermin operator [208,308] and
the CHSH operator [309], is proposed and shown in Equation (23) to unifiedly certify the
topology and nonlocality of the triangle network [146], which can identify five different
topologies of triangle networks, including the three-particle GHZ state. In the experiments
of different photonic triangle networks, the measurement results of different topologies
significantly exceeded the classical limits, such as the average measurement value of the
witness operator in a triangle network with three sources of entangled pairs, which can
reach 25.2077 ± 0.2106, while the theoretical limit is 18

√
2 ≈ 25.4558 [146].

B := 2[A0B0C0 + A0B0C1 + A1B1C0 − A1B1C1 + A2B2C2 + A2B3C2 + A3B2C3

− A3B3C3 + A4B4C4 + A5B4C4 + A4B5C5 − A5B5C5] + A0C0

+ A0C1 + A1C0 − A1C1 + B2C2 + B3C2 + B2C3 − B3C3 + A4B4

+ A5B4 + A4B5 − A5B5

(23)

Different sharing strategies of FNN are proposed and discussed in [294], including
passive and active sharing. The passive FNN sharing is impossible to achieve, while the
active sharing can be achieved, but it is sensitive to noise and requires deep collaboration
among intermediate observers. During the analysis, the maximum violation of KGT
inequalities in the bi-local scenario can reach 3.6055 in theory, which is better than the initial
value of 3.5355 [24].

Research on measurement dependence is a scientific method that reveals objective
laws by quantifying covariate relationships between variables and plays a very important
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role in the study of network nonlocality [310–312]. In [312], it is found that the relaxation
of the measurement selection independence of only one end party can classically simulate
the maximum quantum violation. In a star network with four parties and three sources,
it is only necessary to apply 92% measurement dependence to one of the end parties to
reproduce the maximum quantum violation of FNN. The middle party can manipulate the
entire network correlations by controlling the measurement dependence or randomness
of an end party [312], providing a new perspective for understanding security loopholes
in network communications. The optimization of the measurement scheme for FNN is
proposed, and new inequalities for star and chain networks are constructed and general-
ized [313]. The new scheme does not require EJM [303], but only two output measurements,
significantly improving the experimental friendliness. The quantum optimal violations are
derived through analytical methods without assuming quantum system dimensions, and
the device-independent self-testing [314–316] is supported during the process [313].

4.5. Genuine Network Nonlocality and Device-Independent QKD

The rigorous definition of genuine network nonlocality (GNN) [317], which has been
mentioned in previous papers [185], is proposed to distinguish unique nonlocal correlations
in quantum networks, especially in the multipartite entanglement scenarios, which are
inherent to the network rather than a simple expansion of standard Bell nonlocality. GNN
relies entirely on the network topology, which means the corresponding correlation cannot
be explained by the combination of decomposed smaller nonlocal resources and globally
shared random variables, and it is proved by self-testing that the network correlation can
exist independently of Bell nonlocality [317,318]. GNN is experimentally certified in a
multipartite quantum network that is subject to local operations and shared randomness
(LOSR) by the experiment of inequality violations by the four-photon GHZ state in an
inflated network [319].

The proposal of GNN provides a more reliable security foundation for QKD, espe-
cially in multi-party quantum networks [320,321]. Self-testing proposed in 2004 [322] is
an important tool for validating GNN [157,317,323] and is the core method for verify-
ing quantum devices within a black box framework [324,325], which relies solely on the
input-output statistical correlation of the device to uniquely characterize internal quantum
states and measurement operations, without the need for any prior calibration or internal
information [320]. Self-testing provides theoretical support for cryptographic protocols in
black box scenarios, ensuring security without relying on device trustworthiness, such as
DI-QKD [326]. The degree of key security is proportional to that of Bell inequality violation,
which directly relates Bell inequality to the security of QKD systems. Thus, the DI-QKD
protocol has been proposed [327–331] and demonstrated [126,332], which directly uses the
Bell inequality violation value to generate a key and provides security against the system
defects during implementation. Thus, the research on GNN and self-testing provides a
solid theoretical and experimental foundation for DI-QKD [157,310,323,333–338].

Improving the robustness of self-testing and studying security adversaries [339,340]
in untrusted scenarios, such as broadcast scenarios, are the key to implementing DI-
QKD. In broadcasting scenarios, untrusted receivers may eavesdrop on key information;
therefore, more comprehensive measurement methods and more accurate discrimination
bounds [341–343] are required. A protocol to certify the genuine multipartite correlations
in the GHZ state in a network with dishonest parties has been proposed, and the family of
N-partite Svetlichny inequalities is shown in Equation (24) [336,344,345].

∣

∣S±
N

∣

∣ ≤ 2N−1 in classical bound and
∣

∣S±
N

∣

∣ ≤ 2N−1
√

2 in quantum bound (24)
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And if SN and Sk are the values of the N-partite and k-partite Svetlichny inequality,
respectively, which are achieved by the same strategy, these two values should satisfy the
following inequality shown in Equation (25).

sk ≥
sN

2N−k
(25)

A lower bound on the extractability of the k-partite Svetlichny inequality is derived as
Equation (26).

FDI(sk) ≥ fksk − µk (26)

Then, the fidelity should be certified by an honest party with Equation (27).

F
|D|=N−k−1
DI ≥ fk

sN

2N−k
− µk (27)

Here, fk and µk are the coefficients that bound the extractability for the k-party
Svetlichny inequalities in the standard Bell scenario. The impact of noise on inequalities is
represented by µk. The STOPI (self-testing from operator inequalities) method [343,346,347]
is used to derive the device-independent lower bounds for fidelity, which ensures the
reliability of the certification even if some sources are maliciously controlled. Further, a
truly device-independent certification method is proposed [335], which relies solely on local
operations by generalizing the Hardy-type nonlocality arguments [342,348,349] without
the help of a network or measurements. The bound of the maximum success probability of
Hardy’s argument for the N-partite system is shown in Equation (28).

pmax =
tN(1 − t)N

1 − tN
(28)

Here, t is the positive root of xN+1 − 2x + 1 except for 1. The maximum success
probability of the tripartite Hardy argument in a device-independent scenario is 0.018
without noise, and the lower bound of 1-ε2/3, with noise parameter ε has been derived [335].
The tight upper bound of genuine nonlocality of four-partite has also been derived [234]
using the Seevinck–Svetlichny inequality [345,350], which belongs to the Svetlichny-type
inequality. The four-particle Seevinck–Svetlichny operator is defined as Equation (29).

SS4 = [A ⊗ B − A′ ⊗ B′]⊗ [(C − C′)⊗ D − (C + C′)⊗ D′]
−[A′ ⊗ B + A ⊗ B′]⊗ [(C + C′)⊗ D − (C − C′)⊗ D′]

(29)

Here, the observables are X = A, A′; B, B′; C, C′; D, D′. And the SS4 is bounded by the
inequality shown in Equation (30).

V(SS4) = max|⟨SS4⟩ρ| ≤ 4
√

2λmax, ⟨SS4⟩ρ = Tr(SS4ρ) (30)

Here, λmax is the largest singular value of the correlation matrix and ρ represents any
N-qubit state.

The bound for genuine nonlocality before local filtering is 0.707 and can be optimized
to 0.201 after filtering, both of which are derived in the presence of noise. And the hypoth-
esis of the Seevinck–Svetlichny operator bound for arbitrary N-particle state is shown in
Equation (31), which is proved by the generalized Svetlichny operator [351].

V(SSN) = max|⟨SSN⟩ρ| ≤
(√

2
)N+1

λmax (31)
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The entanglement-free nonlocality provides a physical basis for device-independent
solutions that do not require entanglement resources while avoiding the dependence on the
model of the quantum devices. In [317], genuine network quantum nonlocality without en-
tanglement is speculated to exist and is demonstrated in subsequent research [323,352–354].
By constructing different types of genuine hidden nonlocality and activating them with
the LOCC (local operations and classical communication) protocol, the existence of
entanglement-free genuine nonlocality is verified under specific conditions [355], such
as pure states and specific dimensions, which solves the issues raised in [317,356]. On
the other hand, measurements of genuine nonlocality can also be entanglement-free [357],
which means that self-testing without entanglement in the network can generate genuine
network quantum nonlocality using product states [323], and the effect of nonlocality
without entanglement can be combined with quantum nonlocality theory in a device-
independent framework [157,317].

Closing system loopholes is an important step in enhancing the security of DI-QKD
systems [358,359]. The certification of genuine quantum nonlocality often relies on the pure
states, which cannot be met in practical systems. Thus, the genuine tripartite certifications
with pure, GHZ-type, W-type, and mixed states are systematically analyzed [333] using the
all-versus-nothing method [360]. The triparty correlation is experimentally verified in a
photon network, which proves the existence of genuine LOSR triparty nonlocality with the
inequality of Equation (32), and the locality loophole is closed [334].

F := I
C1=1
Bell +

4Isame − 8
1 + ⟨C1⟩

≤ 2

I
C1=1
Bell := ⟨A0B0⟩C1=1 + ⟨A0B1⟩C1=1 + ⟨A1B0⟩C1=1 − ⟨A1B1⟩C1=1

Isame := ⟨A0B2⟩+ ⟨B2C0⟩

(32)

When measurement independence cannot be met, which is likely to occur during
actual measurement, quantifying the impact of measurement dependence on genuine
nonlocality testing can improve the security of the device-independent system. The mea-
surement dependence of the bipartite Bell test (CHSH) is expanded to the three-party
Svetlichky test [310], which reveals the ability boundary of the eavesdropper (Eve) to simu-
late the quantum nonlocality using classical systems and provides the critical condition
that genuine three-party nonlocality does not exist when measurement dependence exists
in Equation (33).

7Pup + Plow > 1 or 7Pup + Plow < 1 (33)

Here, P is the degree of measurement dependence, and Pup (Plow) is the max (min)
dependence in the tripartite Svetlichny test.

The assumption of independent and identically distributed (i.i.d) is a prerequisite
for many device-independent protocols [337], which should be certified to close the pre-
assumption loophole. The method for i.i.d certification proposed in [338] can accelerate
the process and improve the accuracy by using Martingale-based protocol [361] and PBR
protocol [362]. For example, only 10 experiments are needed to verify the negative lower
bound of 90% with 99% confidence.

Based on the research of multipartite nonlocality within the Svetlichny scenario [231],
the minimum requirement for detector efficiency is quantified for nonlocality testing under
different causal constraints, which are called T2 local and Svetlichny-type genuine nonlocal,
and the detection efficiency loophole is partially closed [363]. The efficiency of each detector
must be higher than 75% to violate the three-party locality in the T2 scenario with non-ideal
detectors, and the tolerance of background noise can reach 1.6%. In the Svetlichny-type
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genuine nonlocality scenario, the lower bound of detection efficiency drops to 88.1%,
significantly lower than that of 97% in [364].

The monogamy relation may only describe the entanglement between two parties in
the previous research [365], which cannot meet the demand for multi-party entanglement
in the multipartite scenarios and may introduce loopholes. The verification of monogamy
relation is extended from bipartite entanglement to multi-party scenarios based on the
results in [366] through new inequalities (Equation (6) mentioned above), which can verify
the information leakage in device-independent QKD networks using the inequality shown
in Equation (34), which is the upper bound of the predictive power of an eavesdropper
(Eve) to obtain the outcomes from legitimate parties [184]. The asymptotic secret-key rate
of multipartite DI-QKD systems is also derived.

DEve ≤ 2n − ωq − 2
√

2(α − ⌊α⌋)
2⌊α⌋

DEve = D

(

n

∏
i=1

P(ei|ai; x, zi),
n

∏
i=1

P(ei|zi)

) (34)

Here, ωq is defined in Equation (6), α = (2n − 1)/n, x is the input of the n-partite
network, and ei and zi denote the outcome and input of Eve for recovering the output ai of
the i-th node.

There are several hotspots in research of genuine nonlocality that can effectively
support DI-QKD. The survivability of genuine network nonlocality in different noisy
environments with different states is quite tricky [184,337,367,368]. The test methods of
genuine nonlocality need to be optimized and combined with neural networks to simplify
protocols and improve efficiency [369–375]. Genuine multipartite entanglement, which
is the key resource of DI-QKD, needs to be constructed by simplifying the complexity of
high-dimensional state manipulation with universal theoretical models and novel analytical
methods [376–379].

Finally, the development of DI-QKD is briefly summarized. The DI-QKD is the ulti-
mate solution for the security and transmission of keys [358]. But the realization of DI-QKD
is very tough because of the difficulty in maintaining high-quality entangled states between
remote locations with high detection efficiency [126]. Several proof-of-principle experi-
ments on the DI-QKD have been reported [126,326,332,380–382]. The key transmission
distance has increased from back-to-back [326,380,381] to several hundred meters [126,332]
and then to several tens of kilometers [382] by using quantum random number genera-
tion [383] and heralded entanglement [384]. To promote the transmission distance and
SKR of DI-QKD systems, several modified DI-QKD experimental schemes [385,386] and
tools [387,388] and simplified DI-QKD protocols have been proposed [389–391] and demon-
strated [392–394].

DI-QKD will continue to focus on improving protocols [331,395–398], reducing
detection thresholds [399], enhancing robustness [400], improving light source perfor-
mance [387,401], optimizing simplified versions of protocols [370,402,403], optimizing
quantum random number generators [404–407], and designing new experiments [408].

5. Outlook

In the last 3 years, significant achievements and breakthroughs have been made in
the research of QKD and network nonlocality, but there is still a significant gap from
its widespread application, and further exploration in theory and engineering solutions
is needed.
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In terms of theory, significant achievements have been made in the sharing [151,164,207],
certification [35,152,225], and generalization [147,181,191] of network nonlocality, espe-
cially in the proposal and verification of FNN [24,156,313] and GNN [166,234,371], the
construction and verification of new inequalities [245,286,309,379], and new verification
schemes [155,313], all of which provide rich quantum resources and tools for the develop-
ment of QKD. The proposal of new quantum network models [184,240] provides a special
basis for studying new quantum properties in networks. In terms of experiments, DI-
QKD is still in the exploratory stage, and optimizing protocols [399] and random number
generators [404] are currently the focus of research. The simplified version of DI-QKD
will be a hot topic in future research and is likely to achieve a key transmission distance
of over hundreds of kilometers [385]. MDI-QKD and TF-QKD are developing towards
integration [67,94,267], long-distance [134], multi-node [129], and high key rate [67], which
are also urgent requirements for engineering applications. Recently, the maximum trans-
mission distance of satellite-based QKD has exceeded 12,900 km [54], which is a real leap
towards long-distance secure quantum communication. It can be considered that the engi-
neering application of QKD has made significant breakthroughs and is moving towards
widespread applications.
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239. Meskine, O.; Šupić, I.; Markham, D.; Appas, F.; Boitier, F.; Morassi, M.; Lemaître, A.; Amanti, M.; Baboux, F.; Diamanti, E.; et al.

Experimental fiber-based quantum triangle-network nonlocality with a telecom AlGaAs multiplexed entangled-photon source.
PRX Quantum 2025, 6, 020313. [CrossRef]

240. Silva, J.; Pozas-Kerstjens, A.; Parisio, F. Local models and Bell inequalities for the minimal triangle network. arXiv 2025,
arXiv:2503.16654v1. [CrossRef]

241. Krivachy, T.; Kerschbaumer, M. Closing the detection loophole in the triangle network with high-dimensional photonic states.
arXiv 2025, arXiv:2503.24213v1. [CrossRef]

242. Elisa, B.; Victor, G.; Tamás, K.; Nicolas, G.; Renato, R. Exploring the local landscape in the triangle network. Phys. Rev. A 2025,
111, 052453. [CrossRef]

243. He, K.; Han, Y. Star network non-n-local correlations can resist consistency noises better. arXiv 2023, arXiv:2307.09293v2.
244. Kaushiki, M.; Biswajit, P. Revealing Hidden Non n-Locality In n-Local Star Network. arXiv 2025, arXiv:2506.19026v1.
245. Yang, Y.; Cao, H.; Cuo, Z.; Fan, Y. Generalized strong locality inequality for multi-star-shaped quantum networks. Phys. Scr. 2024,

99, 105244. [CrossRef]
246. Zhang, Y.; Hou, J.; He, K. Detecting nonlocal correlations in chain-shaped quantum networks via a deep-learning method. Phys.

Rev. A 2024, 110, 062609. [CrossRef]

https://doi.org/10.1080/09500340701639557
https://doi.org/10.1103/physreva.109.032615
https://doi.org/10.1038/s41467-023-40920-8
https://doi.org/10.1103/tyts-8v8j
https://doi.org/10.1007/s11128-013-0593-x
https://doi.org/10.1109/TIT.2024.3354319
https://doi.org/10.1007/s11128-018-2003-x
https://doi.org/10.1038/ncomms6886
https://doi.org/10.1103/PhysRevLett.124.120402
https://doi.org/10.1103/revmodphys.92.015001
https://doi.org/10.1103/physrevlett.132.100201
https://doi.org/10.22331/q-2023-03-17-953
https://doi.org/10.1103/physreva.107.012201
https://doi.org/10.1103/physreva.88.014102
https://doi.org/10.1103/PhysRevA.81.052334
https://doi.org/10.1103/physreva.92.032119
https://doi.org/10.1007/s10773-025-05925-7
https://doi.org/10.1140/epjd/s10053-023-00613-9
https://doi.org/10.1103/PhysRevResearch.5.013104
https://doi.org/10.1103/PhysRevA.106.042206
https://doi.org/10.1103/physreva.107.062413
https://doi.org/10.1103/PRXQuantum.6.020313
https://doi.org/10.48550/arXiv.2503.16654
https://doi.org/10.48550/arXiv.2503.24213
https://doi.org/10.1103/physreva.111.052453
https://doi.org/10.1088/1402-4896/ad740d
https://doi.org/10.1103/PhysRevA.110.062609


Entropy 2025, 27, 950 34 of 39

247. Munshi, S.; Pan, A. Characterizing nonlocal correlations through various n-locality inequalities in a quantum network. Phys. Rev.

A 2022, 105, 032216. [CrossRef]
248. Yang, S.; Hou, J.; He, K. Persistency of quantum non-multi-local correlations in noisy acyclic networks. Phys. Scr. 2024, 99, 055106.

[CrossRef]
249. Zhao, H.; Zhang, M.; Jing, N.; Wang, Z. Separability criteria based on Bloch representation of density matrices. Quantum Inf.

Process. 2020, 19, 14. [CrossRef]
250. Omar, G. Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 2016, 93, 062320. [CrossRef]
251. Nicolas, G. Entanglement 25 Years after Quantum Teleportation: Testing Joint Measurements in Quantum Networks. Entropy

2019, 21, 325. [CrossRef] [PubMed]
252. Ding, D.; Yu, M.; He, Y.; Ji, H.; Gao, T.; Yan, F. Quantum teleportation based on the elegant joint measurement. Phys. Lett. A 2024,

527, 129991. [CrossRef]
253. Charles, H.; Herbert, J.; Sandu, P.; Benjamin, S. Concentrating partial entanglement by local operations. Phys. Rev. A 1996, 53, 2046.

[CrossRef]
254. Madsen, L.; Usenko, V.; Lassen, M.; Filip, R.; Andersen, U. Continuous variable quantum key distribution with modulated

entangled states. Nat. Commun. 2012, 3, 1083. [CrossRef]
255. Toscano, F.; Tasca, D.; Rudnicki, Ł.; Walborn, S. Uncertainty Relations for Coarse-Grained Measurements: An Overview. Entropy

2018, 20, 454. [CrossRef]
256. Ian, G.; Lin, J.; Norbert, L. Numerical calculations of the finite key rate for general quantum key distribution protocols. Phys. Rev.

Res. 2021, 3, 013274. [CrossRef]
257. Devashish, T.; Norbert, L. Using cascade in quantum key distribution. Phys. Rev. Appl. 2023, 20, 064040. [CrossRef]
258. Pascual-García, C.; Bäuml, S.; Araújo, M.; Liss, R.; Acín, A. Improved finite-size key rates for discrete-modulated continuous-

variable quantum key distribution under coherent attacks. Phys. Rev. A 2025, 111, 022610. [CrossRef]
259. Andris, A.; Julia, K.; Or, S. A quantum Lovász local lemma. J. Appl. Comput. Mech. 2012, 59, 24. [CrossRef]
260. Bravyi, S.; Gosset, D.; Movassagh, R. Classical algorithms for quantum mean values. Nat. Phys. 2021, 17, 337–341. [CrossRef]
261. Takayama, N. Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math. 1989, 6, 147–160. [CrossRef]
262. Takuma, I.; Naoyuki, S.; Shigenori, U. Solving the MQ problem using Gröbner basis techniques. IEICE T. Fund. 2021, E104-A,

135–142. [CrossRef]
263. Rosset, D.; Gisin, N.; Wolfe, E. Universal bound on the cardinality of local hidden variables in net-works. Quantum Inf. Comput.

2018, 18, 0910–0926. [CrossRef]
264. Ivan, Š.; Jean-Daniel, B.; Nicolas, B. Quantum nonlocality in networks can be demonstrated with an arbitrarily small level of

independence between the sources. Phys. Rev. Lett. 2020, 125, 240403. [CrossRef]
265. Han, C.; Akio, Y.; Hidemi, T.; Kazuro, K. Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-

multiplexed entanglement distribution. Opt. Express 2008, 16, 16052–16057. [CrossRef]
266. Kang, D.; Ankita, A.; Amr, S. Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization

entangled photons. Opt. Express 2016, 24, 15160–15170. [CrossRef]
267. Alexander, M.; Lucas, M.; Karthik, V.; Muneer, A.; Saleha, F.; Lv, H.; Andrew, M.; Joseph, M. CMOS photonic integrated source of

broadband polarization-entangled photons. Optica Quantum 2024, 2, 254–259. [CrossRef]
268. Liang, S.; Cheng, J.; Qin, J.; Li, J.; Shi, Y.; Zeng, B.; Yan, Z.; Jia, X.; Xie, C.; Peng, K. Frequency-Division Multiplexing Continuous

Variable Quantum Dense Coding with Broadband Entanglement. Laser Photonics Rev. 2024, 18, 2400094. [CrossRef]
269. Jiang, Z.; Yan, W.; Lu, C.; Chen, Y.; Wen, W.; An, Y.; Chen, L.; Lu, Y.; Zhu, S.; Ma, X. Entanglement distribution over metropolitan

fiber using on-chip broadband polarization entangled photon source. arXiv 2025, arXiv:2503.07198. [CrossRef]
270. Marc-Olivier, R.; Salman, B. Network nonlocality via rigidity of token counting and color matching. Phys. Rev. A 2022, 105, 022408.

[CrossRef]
271. Pavel, S.; Sadra, B.i.; Nicolas, B. Partial Self-Testing and Randomness Certification in the Triangle Network. Phys. Rev. Lett. 2023,

131, 100201. [CrossRef] [PubMed]
272. Michael, F. A Bell inequality for a class of multilocal ring networks. Quantum Inf. Process. 2017, 16, 266. [CrossRef]
273. Xiao, S.; Guo, Z.; Cao, H.; Han, K.; Yang, Y. Nonlocality of star-shaped correlation tensors based on the architecture of a general

multi-star-network. Mathematics 2023, 11, 1625. [CrossRef]
274. Yang, Y.; Xiao, S.; Cao, H. Nonlocality of a type of multi-star-shaped quantum networks. J. Phys. A Math. Theor. 2022, 55, 025303.

[CrossRef]
275. Tohya, H.; Satoshi, I. Local and nonlocal properties of Werner states. Phys. Rev. A 2000, 62, 044302. [CrossRef]
276. Zhang, C.; Zheng, Z.; Fei, S.; Feng, M. Dynamics of quantum networks in noisy environments. Entropy 2023, 25, 157. [CrossRef]

[PubMed]
277. Maria, F.; Wolfgang, D. Influence of Noise in Entanglement-Based Quantum Networks. J. Sel. Areas Commun. 2024, 42, 1793–1807.

[CrossRef]

https://doi.org/10.1103/PhysRevA.105.032216
https://doi.org/10.1088/1402-4896/ad35f7
https://doi.org/10.1007/s11128-019-2504-2
https://doi.org/10.1103/physreva.93.062320
https://doi.org/10.3390/e21030325
https://www.ncbi.nlm.nih.gov/pubmed/33267039
https://doi.org/10.1016/j.physleta.2024.129991
https://doi.org/10.1103/physreva.53.2046
https://doi.org/10.1038/ncomms2097
https://doi.org/10.3390/e20060454
https://doi.org/10.1103/physrevresearch.3.013274
https://doi.org/10.1103/physrevapplied.20.064040
https://doi.org/10.1103/PhysRevA.111.022610
https://doi.org/10.1145/2371656.2371659
https://doi.org/10.1038/s41567-020-01109-8
https://doi.org/10.1007/BF03167920
https://doi.org/10.1587/transfun.2020CIP0025
https://doi.org/10.26421/QIC18.11-12
https://doi.org/10.1103/physrevlett.125.240403
https://doi.org/10.1364/OE.16.016052
https://doi.org/10.1364/OE.24.015160
https://doi.org/10.1364/opticaq.521418
https://doi.org/10.1002/lpor.202400094
https://doi.org/10.48550/arXiv.2503.07198
https://doi.org/10.1103/physreva.105.022408
https://doi.org/10.1103/physrevlett.131.100201
https://www.ncbi.nlm.nih.gov/pubmed/37739349
https://doi.org/10.1007/s11128-017-1716-6
https://doi.org/10.3390/math11071625
https://doi.org/10.1088/1751-8121/ac3f89
https://doi.org/10.1103/physreva.62.044302
https://doi.org/10.3390/e25010157
https://www.ncbi.nlm.nih.gov/pubmed/36673296
https://doi.org/10.1109/JSAC.2024.3380089


Entropy 2025, 27, 950 35 of 39

278. Coutinho, B.; Munro, W.; Nemot, K. Robustness of noisy quantum networks. Commun. Phys. 2022, 5, 105. [CrossRef]
279. Jia, X.; Zhai, C.; Zhu, X.; You, C.; Cao, Y.; Zhang, X.; Zheng, Y.; Fu, Z.; Mao, J.; Dai, T.; et al. Continuous-variable multipartite

entanglement in an integrated micro comb. Nature 2025, 639, 329–337. [CrossRef] [PubMed]
280. Boreiri, S.; Kriváchy, T.; Sekatski, P.; Girardin, A.; Brunner, N. Topologically robust quantum network nonlocality. Phys. Rev. Lett.

2025, 134, 010202. [CrossRef]
281. Kriváchy, T.; Cai, Y.; Cavalcanti, D.; Tavakoli, A.; Gisin, N.; Brunner, N. A neural network oracle for quantum nonlocality problems

in networks. npj Quantum Inf. 2020, 6, 70. [CrossRef]
282. Yang, S.; Hou, J.; He, K. Witnessing the distribution of sources in quantum networks via hierarchical nonlocality. Chin. Phys. B

2025, 34, 060303. [CrossRef]
283. Yang, S.; He, K.; Hou, J.; Ma, Z.; Fei, S.; Luo, M. Witnessing network topologies using quantum nonlocality. Phys. Rev. A 2024, 110,

032437. [CrossRef]
284. Chen, Y.; Yong, X.; Zheng, Z. The maximal violation of the Svetlichny inequality for “X” states and the extended GHZ states. Int.

J. Quantum Inf. 2024, 22, 2450031. [CrossRef]
285. Hu, D.; Li, M.; Guo, F.; Wang, Y.; Dong, H.; Gao, F. Tight upper bound of the maximal quantum violation of Gisin’s elegant Bell

inequality and its application in randomness certification. EPJ Quantum Technol. 2025, 12, 19. [CrossRef]
286. Abrol, P.; Singh, P.; Chakrabarty, I. Maximal secret reconstruction, teleportation and Bell’s inequality. Eur. Phys. J. D 2025, 79, 11.

[CrossRef]
287. Cildiroglu, H. Testing Bell-CHSH inequalities using topological Aharonov-Casher and He-McKellar-Wilkens phases. Ann. Phys.

2024, 465, 169684. [CrossRef]
288. Paganini, G.; Cuevas, Á.; Camphausen, R.; Demuth, A.; Pruneri, V. High-quality entangled photon source by symmetric beam

displacement design. APL Photonics 2025, 10, 031302. [CrossRef]
289. Giacomo, P.; Álvaro, C.; Robin, C.; Alexander, D.; Valerio, P. Polarization entangled photon-pair source in a dual displacement

interferometric configuration. In Proceedings of the SPIE Photonics Europe, 129930I, Strasbourg, France, 10 June 2024. [CrossRef]
290. Renou, M.; Trillo, D.; Weilenmann, M.; Le, T.; Tavakoli, A.; Gisin, N.; Acín, A.; Navascués, M. Quantum theory based on real

numbers can be experimentally falsified. Nature 2021, 600, 625–629. [CrossRef]
291. Guehne, O.; Toth, G.; Hyllus, P.; Briegel, H. Bell Inequalities for Graph States. Phys. Rev. Lett. 2005, 95, 120405. [CrossRef]

[PubMed]
292. Branciard, C.; Rosset, D.; Gisin, N.; Pironio, S. Bilocal versus nonbilocal correlations in entanglement-swapping experiments.

Phys. Rev. A 2011, 85, 032119. [CrossRef]
293. Emil, H.; Amélie, P.; Sadiq, M.; Mohamed, B. Experimental demonstration of full network nonlocality in the bilocal scenario.

arXiv 2022, arXiv:2201.06361v2. [CrossRef]
294. Cai, Z.; Ren, C. Full network nonlocality sharing in extended bilocal scenario via weak measurements with the optimal pointer. J.

Phys. A Math. Theor. 2024, 57, 195305. [CrossRef]
295. Wolfe, E.; Spekkens, R.; Fritz, T. The Inflation Technique for Causal Inference with Latent Variables. J. Causal Inference 2019,

7, 20170020. [CrossRef]
296. Henson, J.; Lal, R.; Pusey, M. Theory-independent limits on correlations from generalized Bayesian networks. New J. Phys. 2014,

16, 113043. [CrossRef]
297. Fritz, T. Beyond Bell’s theorem II: Scenarios with arbitrary causal structure. Commun. Math. Phys. 2016, 341, 391–434. [CrossRef]
298. Gu, X.; Huang, L.; Pozas-Kerstjens, A.; Jiang, Y.; Wu, D.; Bai, B.; Sun, Q.; Chen, M.; Zhang, J.; Yu, S.; et al. Experimental Full

Network Nonlocality with Independent Sources and Strict Locality Constraints. Phys. Rev. Lett. 2023, 130, 190201. [CrossRef]
299. Wang, N.; Pozas-Kerstjens, A.; Zhang, C.; Liu, B.; Huang, Y.; Li, C.; Guo, G.; Gisin, N.; Tavakoli, A. Certification of non-classicality

in all links of a photonic star network without assuming quantum mechanics. Nat. Commun. 2023, 14, 2153. [CrossRef]
300. Edward, B.; Alexander, I.; Qi, W.; Wu, J. Remarks on controlled measurement and quantum algorithm for calculating Hermitian

conjugate. arXiv 2025, arXiv:2501.16028.
301. Paul, G. Hyper-entangled states. J. Mod. Optic. 1997, 44, 2173–2184. [CrossRef]
302. Zhao, P.; Ying, J.; Yang, M.; Zhong, W.; Du, M.; Shen, S.; Li, Y.; Zhang, A.; Zhou, L.; Sheng, Y. Direct generation of multiphoton

hyperentanglement. Phys. Rev. Appl. 2025, 23, 014003. [CrossRef]
303. Huang, C.; Hu, X.; Guo, Y.; Zhang, C.; Liu, B.; Huang, Y.; Li, C.; Guo, G.; Gisin, N.; Branciard, C.; et al. Entanglement swapping

and quantum correlations via symmetric joint measurements. Phys. Rev. Lett. 2022, 129, 030502. [CrossRef]
304. Stoica, O. Born Rule: Quantum Probability as Classical Probability. Int. J. Theor. Phys. 2025, 64, 117. [CrossRef]
305. Arnold, N. The Born Rule—100 Years Ago and Today. Entropy 2025, 27, 415. [CrossRef] [PubMed]
306. Randy, K. Generalized uncertainty principles for quantum cryptography. arXiv 2023, arXiv:2302.01026. [CrossRef]
307. Veltheim, O.; Keski-Vakkuri, E. Optimizing quantum measurements by partitioning multisets of observables. Phys. Rev. Lett.

2025, 134, 030801. [CrossRef] [PubMed]

https://doi.org/10.1038/s42005-022-00866-7
https://doi.org/10.1038/s41586-025-08602-1
https://www.ncbi.nlm.nih.gov/pubmed/39972136
https://doi.org/10.1103/PhysRevLett.134.010202
https://doi.org/10.1038/s41534-020-00305-x
https://doi.org/10.1088/1674-1056/add507
https://doi.org/10.1103/PhysRevA.110.032437
https://doi.org/10.1142/S021974992450031X
https://doi.org/10.1140/epjqt/s40507-025-00325-6
https://doi.org/10.1140/epjd/s10053-025-00955-6
https://doi.org/10.1016/j.aop.2024.169684
https://doi.org/10.1063/5.0225901
https://doi.org/10.1117/12.3017509
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1103/PhysRevLett.95.120405
https://www.ncbi.nlm.nih.gov/pubmed/16197057
https://doi.org/10.1103/PhysRevA.85.032119
https://doi.org/10.48550/arXiv.2201.06361
https://doi.org/10.1088/1751-8121/ad41a5
https://doi.org/10.1515/jci-2017-0020
https://doi.org/10.1088/1367-2630/16/11/113043
https://doi.org/10.1007/s00220-015-2495-5
https://doi.org/10.1103/PhysRevLett.130.190201
https://doi.org/10.1038/s41467-023-37842-w
https://doi.org/10.1080/09500349708231877
https://doi.org/10.1103/PhysRevApplied.23.014003
https://doi.org/10.1103/PhysRevLett.129.030502
https://doi.org/10.1007/s10773-025-05979-7
https://doi.org/10.3390/e27040415
https://www.ncbi.nlm.nih.gov/pubmed/40282650
https://doi.org/10.48550/arXiv.2302.01026
https://doi.org/10.1103/PhysRevLett.134.030801
https://www.ncbi.nlm.nih.gov/pubmed/39927960


Entropy 2025, 27, 950 36 of 39

308. Sorella, S. Bell’s and Mermin’s inequalities, entangled coherent states and unitary operators. Int. J. Theor. Phys. 2024, 63, 227.
[CrossRef]

309. Sorella, S. A study of the violation of the Bell-CHSH inequality through a pairing mechanism. Int. J. Theor. Phys. 2024, 63, 43.
[CrossRef]

310. Li, R.; Li, D.; Wu, S.; Qin, S.; Gao, F.; Wen, Q. Tripartite Svetlichny test with measurement dependence. Front. Phys. 2024,
12, 1356682. [CrossRef]

311. Amit, K.; Debasis, S. Influence of joint measurement bases on sharing network nonlocality. Quantum Inf. Process. 2025, 24, 103.
[CrossRef]

312. Amit, K.; Debasis, S. Measurement dependence can affect security in a quantum network. Ann. Phys. 2024, 536, 2400123.
[CrossRef]

313. Munshi, S.; Pan, A. Device-Independent Full Network Nonlocality for Arbitrary-Party and Unbounded-Input Scenario. Phys. Rev.

Lett. 2025, 134, 210203. [CrossRef]
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