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With advances in quantum computing, new opportunities arise to tackle challenging calculations in
quantum field theory. We show that trotterized time-evolution operators can be related by analytic
continuation to the Euclidean transfer matrix on an anisotropic lattice. In turn, trotterization entails
renormalization of the temporal and spatial lattice spacings. Based on the tools of Euclidean lattice
field theory, we propose two schemes to determine Minkowski lattice spacings, using Euclidean
data and thereby overcoming the demands on quantum resources for scale setting. In addition,
we advocate using a fixed-anisotropy approach to the continuum to reduce both circuit depth and
number of independent simulations. We demonstrate these methods with qiskit noiseless simulators
for a 2 + 1D discrete non-Abelian D4 gauge theory with two spatial plaquettes.

I. INTRODUCTION

Inherent obstacles to classically simulating quantum
field theories motivate developing quantum computer [1–
3]. For lattice-regulated theories, the exponential Hilbert
space limits deterministic methods while stochastic meth-
ods grapple with sign problems. These sign problems ham-
per calculations at finite-density [4–7] and in Minkowski
spacetime [8, 9]. While large-scale, fault-tolerant quan-
tum computers will revolutionize our understanding of
nature, for the foreseeable future, quantum computers will
be limited to hundreds of non-error-corrected qubits with
circuit depths less than 1000 gates– the so-called Noisy
Intermediate-Scale Quantum (NISQ) era. Despite this,
toy calculations in high energy physics [10–18] and nu-
clear physics [19–21] have been performed using existing
quantum computers, representing the first step towards
quantum simulating field theories.

Alongside the necessary hardware improvements, theo-
retical questions must be resolved to fully utilize a digital
quantum computer. Due to the finite resources, one must
regulate the quantum field theory. This regularization
occurs in multiple steps: discretization, digitization, state
preparation, propagation, and evaluation. Each can intro-
duce new operators and potentially break symmetries. In
addition, quantum noise can be interpreted as additional
terms in the Hamiltonian. In order to recover the physi-
cal theory, the resulting effects from regularization and
quantum noises must be renormalized.

Following classical lattice field theory (LFT), it seems
natural to first regularize the theory by discretizing space-
time. Then one could represent the (Minkowski or Eu-
clidean) spacetime lattice in the qubits. This allows direct
access to the entire path integral. The authors of [22, 23]
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suggest this is useful for finite-density field theory. Alas,
the number of qubits scales with the spacetime volume
V which improves the scaling of eV in classical compu-
tations. For time-dependent field theories, the preferred
method is to use the Hamiltonian formalism. In this case,
the number of qubits scales with a spatial lattice. Dis-
cretization reduces spacetime symmetries and introduce
new operators into the LFT which are not present in
the continuum theory that modifies the nonperturbative
renormalization.

For efficient digital simulations, truncation of the local
lattice degrees of freedom is also necessary. Digitiza-
tion represents the task of formulating, representing, and
encoding QFTs for digital quantum computers. Some nat-
ural encodings exist for fermionic degrees of freedom [24–
26]. Further proposals discuss how to map lattice fermions
(e.g. Wilson and staggered) onto these encodings [27] or
use gauge symmetry to eliminate the fermions [28, 29].
The relative merits of each are only starting to be un-
derstood. The question of gauge boson digitization is
murkier, with complicated tradeoffs [30–38]. Digitizing
reduces symmetries – either explicitly or through finite-
truncations [39]. Care must be taken, as the regulated
theory may not have the original theory as its continuum
limit [40–45]. A particularly illustrative example of the
complications between truncations and renormalization
can be found in [46]. Prominent proposals for digitiza-
tion can be broadly classified [47] into: Casimir dynam-
ics [15, 39, 48–53] potentially with auxillary fields [54], con-
formal truncation [55], discrete groups [30, 31, 38, 56, 57],
dual variables [58–62], light-front kinematics [18, 63] loop-
string-hadron formulation [34, 64, 65], quantum link mod-
els [66–69], and qubit regularization [32, 33, 70].

Given a digitization, the next obstacle is initializing
strongly-coupled quantum states in terms of fundamental
fields. Much of the literature emphasized ground state
preparation [11, 71–77] but thermal and particle states
have been investigated [2, 13, 16, 17, 23, 78–90]. For
methods which construct states using regulated theories,
careful study of the renormalization to properly match
onto the physical limit is required [91, 92].
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Propagating for a time t requires the unitary operator
of U(t) = e−iHt – a generically dense matrix – which
cannot be efficiently constructed on a quantum computer.
Instead, it must be approximated. A common method
is trotterization, whereby U(t) ≈ (e−iH′ tN )N with an ap-
proximate Hamiltonian H ′. For some H, this allows for
efficient simulations [2, 54, 79–83, 93–95]. Most gauge the-
ory studies consider the Kogut-Susskind Hamiltonian [96],
but Hamiltonians with reduced lattice artifacts also ex-
ist [97, 98] and deserve study. Other approximations of
U(t) exist: QDRIFT [99], variational approaches [100–
102], Taylor series [103], and qubitization [104]. Initial re-
source comparisons have been performed for the Schwinger
model [105]. Approximating U(t) can be understood as
introducing t-translation violating operators into H ′.

There is little difficulty in evaluating the expectation
values of instantaneous hermitian operators. Observables
dependent on time-separated operators (e.g. parton dis-
tribution functions [63, 106, 107], particle decays [108],
and viscosity [109]) are more complicated. Naively, the
first measurement collapses the state, preventing further
evolution. Ways to overcome this include ancillary probe-
and-control qubits [85, 106, 110–112] and phase estima-
tion [20, 72]. For time-separated matrix elements, it is
yet unknown how to do nonperturbative renormalization
like RI/SMOM [113–115] on quantum computers.

Noisy quantum devices can also be viewed as introduc-
ing new operators. The best-studied examples of this are
related to gauge-violating operators [116–127]. Which op-
erators are introduced and which symmetries are broken
are both hardware and digitization dependent.

In this paper we investigate the renormalization of LFT
in Minkoswki spacetime due to trotterizing U(t). The
consequence of this will be shown to be the introduction of
a temporal lattice spacing, and new operators depending
upon it which vanish in the Hamiltonian limit.

In the continuum limit, Minkowski and Euclidean re-
sults are the analytic continuation of each other [128–130].
At finite at and finite statistics, this exact relation is com-
plicated, but approximate relations remain [9, 131–134].
While analytic continuation of lattice observables suffer
from signal-to-noise problems [92, 134–141], observables
suitable for scale setting have been studied [142, 143].
Since knowledge of a, at is required for any continuum
extrapolation, performing scale setting with classical com-
putations would significantly improve the common error
budget of quantum computations as the uncertainties for
scale setting could be reduced using Euclidean data. We
will explore two different schemes for performing analytic
continuation of the renormalized lattice spacings, and
demonstrate its capabilities for reliable Minkowski scale
setting through classical Euclidean computations.

A crucial part of our study is to explore how Minokowski
lattice observables computed with quantum circuits can
be extrapolated to the continuum in an efficient manner.
We will show that trotterized time-evolution can be un-
derstood as a Minkowski path integral on an anisotropic

lattice1. We present a toy model, a D4 gauge group in
2 + 1D with a two spatial plaquettes, to exemplify the
power of a fixed anisotropy trajectory to extrapolate quan-
tities to the continuum limit. This requires as a first step
to establish the scale setting for the lattice spacings, a, at,
that can profit from our analytic continuation schemes.

This paper is organized as follows. In Sec. II we briefly
review the Euclidean action lattice formalism and its
connection through the transfer matrix to the Hamil-
tonian formalism. In Sec. III we derive the trotterized
real-time evolution operator and relate it to the transfer
matrix. Based on this, we propose two schemes to obtain
Minkowski lattice spacings via analytic continuation and
advocate the use of a fixed-anisotropy approach to the
continuum. In Sec. IV, we discuss the systematic errors
from computing a, at via analytic continuation. Further,
in Sec. V we present numerical results in our toy model
for these techniques. Finally, we conclude in Sec. VI.

II. LATTICE BASICS

To understand how renormalization arises in quantum
simulations, it is useful to review the connection between
the Kogut-Susskind Hamiltonian [96] and the Euclidean
Wilson action. We summarize the derivation of [145] that
begins with the anisotropic Wilson action in Euclidean
time τ = it defined on a spacetime lattice:

SE = −βt
∑
t

Re TrUt − βs
∑
s

Re TrUs (1)

where i = t, s refers to temporal and spatial plaquettes Ui
formed from gauge links given by elements of the group.
The anisotropy comes from using different couplings for
spatial and temporal plaquettes, that can be written as

βt(a, a0) = a

g2
t (a, a0)a0

, βs(a, a0) = a0

g2
s(a, a0)a (2)

with βi(a, a0), gi(a, a0) depending nonperturbatively on
the temporal and spatial lattice spacings, a0, a.

The first step in the process of computing physical
observables from LFT is the determination of the lattice
spacings through scale setting. For simplicity we will
consider the isotropic case via βE ≡ βt = βs, a = a0 and
in analogy with Eq. (2), define βE = 2Ng−2

E for SU(N)
group. The anisotropic case merely requires performing
the procedure for both a, a0 independently. One scale sets
by computing a lattice quantity am(βE) where m has a
known physical value mphys (e.g. the pion mass). Any
lattice m(βE) differs from the true mphys by a dependent
errors, but for this one specific observable we set m(βE) =
mphys to obtain a dimensionful value for a

a = [am(βE)]
mphys (3)

1 This point was first mentioned in [144]
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With this, βE is removed from our theory and we can
speak only in terms of a. All other lattice masses can
then be written as amk(a) and their continuum values
can be predicted by computing them at multiple lattice
spacings and extrapolating to a→ 0 via

mphys
k

mphys = amk(a)
am(a) +O(an) (4)

When working with continuous gauge theories, there is
no theoretical issue with computing at arbitrarily small
a, but one is limited by computing resources due to topo-
logical freezing and critical slowing-down. On quantum
devices, the current resources require dramatic approxi-
mations of the continuous group. Here, we will consider
the discrete gauge theories. Certain discrete subgroups
of continuous groups are effective field theories for the
continuous groups [146, 147] which break down below
a minimum lattice spacing [30, 31, 38]. Therefore one
cannot take a of a discrete group arbitrarily close to zero.

Lattice quantities like am(βE) are obtained from
correlation functions, e.g. the temporal correlator
〈Oi(na0)Oj(0)〉. In the limit where the temporal length
of the lattice goes to infinity, this correlator becomes a
vacuum expectation value

〈Oi(na0)Oj(0)〉 =
∑
k

〈0|Oi|k〉〈k|Oj |0〉e−na0mk (5)

From these correlators, one extracts a0mk which corre-
spond to the lattice eigenenergies. For scale setting, one
usually wants the lowest energy state a0m1 of a specific
sector, which can be extracted from the sum by taking n
large:

〈Oi(na0)Oj(0)〉
= 〈0|Oi|1〉〈1|Oj |0〉e−na0m1 +O(e−na0∆E). (6)

with ∆E the energy gap between the lowest energy state
and the next lowest energy state.

An equivalent way of expressing the renormalized pa-
rameters is by defining the anisotropic parameter ξ ≡ a/a0
and considering ξ and a as independent parameters. By
allowing ξ 6= 1 and especially ξ � 1, lattice practi-
tioners have achieved great success with probing glue-
balls [148, 149], high temperature thermodynamics [150],
etc. As we approach the Hamiltonian limit (a0 → 0),
another couplings, g2

H = gsgt, and the speed of light,
c = gsg

−1
t , become useful. These bare couplings are re-

lated to each other in the weak coupling limit by [151, 152]

g−2
s (a, a0) = g−2

E (a) + cs(ξ) +O(g2
E)

g−2
t (a, a0) = g−2

E (a) + ct(ξ) +O(g2
E)

g−2
H (a, a0) = g−2

E (a) + ct(ξ) + cs(ξ)
2 +O(g2

E)

c(a, a0) =1 + ct(ξ)− cs(ξ)
2 g2

E(a) +O(g4
E) (7)

The ci(ξ) were computed perturbatively for SU(N) at
ξ =∞ for D = 4 in [151]. This was generalized in [152]
to arbitrary ξ and to arbitrary dimensions in [153].

For typical values of βi considered in simulations,
there are large corrections to these weak coupling re-
sults and thus nonperturbative determination of a, ξ is
required [154–156]. In pure gauge theory, one method
for the determination of ξ is made by comparing ratios
of spatial-spatial Wilson loops to spatial-temporal Wil-
son loops [157]. Once ξ is measured, a could be deter-
mined using standard methods such as the Sommer scale
r0 [148, 149, 158] or the Wilson flow [159, 160].

Euclidean lattice theories satisfying the reflection posi-
tivity have a well-defined Hamiltonian with real eigenval-
ues [128, 161]. To the derive this Hamiltonian, we first
define a transfer matrix, T (a, a0) which takes a state at
time τ , |τ〉, to |τ + 1〉. T is related to the action through
the partition function Z:

Z =
∫
DUe−SE = TrT (a0)N (8)

where N is the number of temporal lattice sites. It follows
that the matrix elements of T (a0) are [145]

〈τ+1|T (a0)|τ〉

=e
βs
2

∑
s

Re TrUse
βt
∑
{τ,τ+1}

Re TrUt
e
βs
2

∑
s

Re TrUs

≡T 1/2
V TKT

1/2
V , (9)

where we have symmetrically split the potential term. In
order to extract a Hamiltonian from T (a0), it is convenient
to have T (a0) only in terms of a single time slice. While
for Us this presents no issues, Ut couples the same link at
two times Uij(x, τ), Uij(x, τ + 1) via two time-like links
U0i(x, τ), U0j(x + 1, τ). Fixing into the temporal gauge,
U0i = 1, yields for the kinetic term in the action

SK = −βt
∑
{τ,τ+1}

Re TrUij(τ)U †ij(τ + 1) (10)

To proceed, we need to remove the dependence on U†ij(τ +
1) and express T (a0) in terms of operators. The link
operator is easy to define Ûij |τ〉 = Uij |τ〉. Therefore

T
1/2
V = e

βs
2

∑
s

Re Tr Ûs . (11)

For TK , we need an operator that changes a given link,

Rij(g)|τ〉 = |τ ′〉, where Uij → gUij (12)

this operator has the group property of Rij(g)Rij(h) =
Rij(gh). This gauge link translation can be used to define
a conjugate momentum to Ûij by performing a rotation
on Uij(x, τ + 1). With this, we write

TK =
∏
{ij}

TK,ij =
∏
{ij}

[∫
DgRij(g)eβt Re Tr g

]
, (13)
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where the product is over all spatial links Uij(τ). Any
group element can be written as g = eiω·λ where λi are the
adjoint generators, and Rij(g) = eiω·lij can be written
in terms of the generators lij for that representation.
Defining

∏
α(Dωα)J(ω) as the invariant group measure

with a Jacobian J , it is possible to rewrite TK(a0) as

TK,ij =
∫ ∏

α

(Dωα)J(ω)eiω·lijeβt Tr cos(ω·λ) (14)

This transfer matrix is exact for any a0. At the cost of a
sum over all character functions of the group, it can be
performed analytically. This is done in [112] and appears
practical for discrete groups. But for continuous group,
the summation is over infinite terms which is undesirable.

As a0 → 0 for unitary continuous group, Eq. (14) can
be expanded to O(ω2):

TK,ij =
∫ ∏

α

(Dωα)
(
1 +O(ω2)

)
eiω·lij+βt[Tr 1− 1

4ω
2+O(ω4)]

(15)

leaving Gaussian integrals. Integrating yields

TK = N e−β
−1
t

∑
{ij}

l2ij (16)

where N is an overall normalization. For discrete groups,
the contribution to TK is also dominated by group ele-
ments close to 1 when a0 → 0. However, since for discrete
group g cannot be arbitrarily close to 1, a naive limit
of taking a0 → 0 leads to degenerate spectrum for TK .
Special care has to be taken [162] to avoid this degeneracy
as we also show for the DN group in Appendix A.

Neglecting the normalization factor N , the final transfer
matrix T (a0) is given by

T (a0) = e
βs
2

∑
s

Re Tr Ûse
−β−1

t

∑
{ij}

l2ije
βs
2

∑
s

Re Tr Ûs .
(17)

Since T (a0) corresponds to the translation from τ to τ+1,
it can be used to define a Hamiltonian H(a0, a) These
steps form the link between SE and T (a0) in Fig. 1.

T (a0) ≡ e−a0H(a,a0). (18)

However, because lij and Ûij are non-commuting oper-
ators, writing Eq. (17) as a single exponential requires
application of the Baker-Campbell-Hausdorff (BCH) for-
mula:

etXetY etX = et(2X+Y )− t26 ([X,[X,Y ]]−[Y,[X,Y ]])+.... (19)

Using this, we obtain for H(a, a0):

H(a, a0) = 1
c(a, a0)a

(
g2
H(a, a0)

∑
{ij}

l2ij − g−2
H (a, a0)

∑
s

Re Tr Ûs

− 1
24

1
c2(a, a0)ξ2

∑
{ij},s

(
g2
H(a, a0)[2l2ij , [l2ij ,Re Tr Ûs]]− g−2

H (a, a0)[Re Tr Ûs, [l2ij ,Re Tr Ûs]]
)

+ . . .

)
(20)

For conciseness, we define certain Hamiltonian terms

HK(a, a0) = g2
H(a, a0)
c(a, a0)a

∑
{ij}

l2ij

HV (a, a0) = − 1
g2
H(a, a0)c(a, a0)a

∑
s

Re Tr Ûs (21)

It is important to emphasize that varying either a0 or
a requires an adjustment to c(a, a0) and gH(a, a0) to pre-
serve the scale setting condition. Taking the continuous-
time limit of the transfer matrix:

T (τ) ≡ lim
a0→0,N→∞

T (a0)N , (22)

the BCH terms in H(a, a0) vanish and we obtain the
Kogut-Susskind Hamiltonian [96], HKS ≡ − 1

τ log(T (τ))

(See Fig. 1):

HKS = 1
c(a)a

g2
H(a)

∑
{ij}

l2ij −
1

g2
H(a)

∑
s

Re TrUs

 .

(23)
Besides the ξ-dependent terms, another difference between
HKS and H(a, a0) is that c, gH only depend upon a in
Eq. (23), while in Eq. (20) they also depend on a0.

Historically, the Hamiltonian formalism with limited
success was used to evaluate lattice theory by computing
results analytically [163–166], variationally [167–170], and
with exact diagonalization [171]. In such cases, there was
no benefit to keeping a0 finite and therefore all were done
in the Hamiltonian limit. In contrast, quantum simula-
tions have good reasons to considering the Hamiltonian
at finite a0 as we demonstrate in the next section.
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SE T (a0) = e−a0H(a,a0) T (τ) = e−τHKS

HKS

SM U(at) = e−iatH(a,at) U(t) = e−itHKS

Ut ↔ l2ij a0 → 0, N →∞
discretize Na0 ← τ

− 1
τ log(T )

Ut ↔ l2ij at → 0, N →∞

trotterize Nat ← t −
1
it

log(U)

a
0
↔
ia
t

FIG. 1. Schematic of the relations between the various lattice and continuum functions discussed in this work.

III. TROTTERIZATION AND
TIME-EVOLUTION

The starting point for real-time evolution on quantum
computers is to define U(t) = e−iHt. For gauge theories,
one typically takes the lattice Hamiltonian to be HKS

in Eq. (23). This U(t) cannot be implemented easily on
quantum computers and must be approximated, resulting
in effects that have to be renormalized. Trotterization
discretizes the evolution into N = t/at steps formed of
products of eixiHj where different choices of xi ∝ at lead
to errors at different order of at and Hi are a decompo-
sition of H into mutually noncommuting terms. In the
case of HKS , there are two Hi = HK , HV , in which case
U(t) is approximated by

U(t) = e−iHKSt

≈ [eix1HV eix2HKeix3HV eix4HK · · · ]N +O(apt ). (24)

The number of terms and xi for a given O(apt ) error can
be derived by repeated applications of the BCH relation,
Eq. (19). In the case of O(a2

t ), this corresponds to

U(at) ≈ e−iatHV /2e−iatHKe−iatHV /2 (25)

Following Fig. 1, we see that we have essentially reversed
the path taken to derive HKS from T (a0). With this
approximation, we can ask, what Hamiltonian are we
actually evolving with respect to? Analogous to the
euclidean derivation of Eq. (20) from Eq. (17), we can
define

U(at) = e−iatH(at), (26)

finding

H(at) = HK +HV

− a2
t

24

(
[2HK , [HK , HV ]] + [HV , [HK , HV ]]

)
+ . . . (27)

By trotterizating U(t), we have introduced a temporal
lattice spacing at. One might be tempted to believe that
the renormalized at is a parameter that can be directly
tuned, but this is incorrect. This can be seen by inserting
Eq. (21) into Eq. (27), from which one observes that in the

same way as the Euclidean results, at is always multiplied
by [c(a, at)a]−1. Thus, changes in at are compensated by
modifying the bare speed of light. It it therefore natural
to define a lattice bare parameter which we can control
in simulations:

δt ≡
at

c(a, at)a
. (28)

Thus we find that at must be determined nonperturba-
tively by scale setting. Naively, at, a would be obtained
by performing a quantum simulation, which on near-term
hardware is likely to be noisy, and therefore the lattice
spacings will have large uncertainties. Since all other
lattice observables depend upon the scale-setting, mini-
mizing the uncertainties of a, at is crucial to the overall
program of quantum simulations of LFT. In practice,
keeping these uncertainties small require high statistics
of very deep circuits with error mitigation. Instead of
computing at, a on the quantum device, it is possible to
utilize classical Euclidean computations of a, a0 to scale
setting in a quantum computer.

If the Minkowski and Euclidean lattice Hamiltonians
were the same, we could trivially set a, a0 to a and at
– establishing a link between the lattice results in each
metric (See Fig. 1). However, the Hamiltonians only
match when at, a0 → 0, when they both reduce to HKS .
Instead, at finite at, a0 they differ as we show explicitly
in the following. In analogy to Eq. (28), we define the
quantity δτ ≡ a0

c(a,a0)a on the Euclidean side. With this,
we can recast T (a0) in Eq. (17):

T (δτ , g2
H) = e−δτHV /2e−δτHKe−δτHV /2 (29)

with the following Hamiltonian terms:

HK = g2
H

∑
{ij}

l2ij , HV = −g−2
H

∑
s

Re Tr Ûs. (30)

Taking δτ → iδt in Eq. (29), we analytically continue
T (δτ , g2

H), obtaining

U(δt, g2
H)= e−iδtHV /2e−iδtHKe−iδtHV /2 (31)

which we recognize as Eq. (25) written in terms of bare
parameters. From these, we can define the dimensionless
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Hamiltonians using only bare parameters:

H(δ, g2
H) = HK +HV

+ δ2

24

(
[2HK , [HK , HV ]] + [HV , [HK , HV ]]

)
+ . . . (32)

where δ = δτ , iδt depending on the metric signature. From
this we see that there are differing signs for the BCH terms
in real and imaginary time. Given that the Hamiltonians
differ, correlation functions and the scale setting observ-
ables atm and a0m must also differ even if we take δt = δτ .
But, these differences arise at O(δ2

t , δ
2
τ ) and vanish in the

continuous time limit, δt = δτ = 0.
One possible scheme for using a, a0 to determine a, at

would be to simply neglect these O(δ2
t , δ

2
τ ) errors and

assume the two sets of scales are equal for the same gH
and δτ = δt:

Scheme A : a(δτ , g2
H)→ a(δt, g2

H)
a0(δτ , g2

H)→ at(δt, g2
H) (33)

A benefit of this scheme is that only one set of Euclidean
couplings is simulated. While this scheme introduces an
O(δ2

t , δ
2
τ ) systematic error into the scale setting, one could

easily imagine it being tolerable compared to errors from
near-term quantum computers.

In principle, this systematic error can be reduced by
observing that if one takes δτ → iδt, then the two Hamil-
tonians agree. Formally, this means that the eigenvalues
mk(δt, g2

H) are the analytic continuation of mk(δτ , g2
H).

While the spatial correlators in Minkowski behave ex-
actly like the Euclidean ones of Eq. (5) with the re-
placement of mk(δt, g2

H), the temporal correlators require
a0 → iat

〈Oi(nat)Oj(0)〉 =
∑
k

〈0|Oi|k〉〈k|Oj |0〉e−inatmk (34)

where |k〉 are the Minkowski eigenstates. While the ex-
cited state contributions do not decrease with nat →∞,
provided that we can isolate a single scale setting param-
eter m then the lattice results atm(a, at) are the analytic
continuation of a0m(a, a0). This suggest that a scale
setting scheme with reduced systematic error is through
analytical continuation:

Scheme B : a(δτ → iδt, g
2
H)→ a(δt, g2

H)
a0(δτ → iδt, g

2
H)→ at(δt, g2

H) (35)

In contrast to Scheme A, this procedure requires the
determination of the lattice spacings at multiple values
of gH , δτ in the region around the desired lattice spac-
ings. With this set of values, one derives a fit function
for a(δτ , g2

H), a0(δτ , g2
H). This function can then be an-

alytically continued to Minkowski space, reducing the
nonperturbative BCH errors. The effectiveness of this
method, like all analytic continuations of lattice results,
depends sensitively on the statistics and fitting function,
as we will discuss later.

In the preceding discussion, the relation between the
lattice spacings depending upon the Hamiltonians being
analytical continuations of each other. Traditionally, Eu-
clidean calculations are performed with an action like
Eq. (1). Different actions correspond to different lattice
Hamiltonians. For the Wilson action, we observe that
H(a, a0) of Eq. (20) is not the exact lattice Hamiltonian
being computed, but arises only when we expand TK to
O(ω2). Thus, a systematic mismatch occurs if one tries
to scale set a, at with Wilson action results. Furthermore,
including the higher order ω terms from Eq. (1) leads
to a non-trivial dependence on δτ . This causes a non-
Hermitian Hamiltonian upon analytic continuation [172]
although this behavior may prove manageable [130]. In
contrast, using an action with a heat-kernel kinetic term
(the Laplace-Beltrami operator) [173] with a Wilson single
plaquette potential term, the higher order ω terms vanish
and the mapping is exact. Another approach to obtain a
Hermitian lattice Hamiltonian useful in Minkowski space
is obtained by analytic continuing the character expansion
of TK(δτ = δt, g

2
H) term-by-term [9, 172].

With observables computed at multiple at, a, one can
perform continuum extrapolations analogous to the Eu-
clidean calculations. Influenced by nonrelativistic results,
the literature has emphasized first approaching the Hamil-
tonian limit at → 0, then taking a→ 0. This procedure
introduces two inefficiencies. First, taking a continuum
limit as a two-step procedure requires m × n separate
simulations at m values of at for n values of a in the
(a, at) plane, extrapolating each fixed-a set to the at → 0,
and then extrapolating the remaining a-dependent results
to a → 0. Secondly, because uncertainty in the a → 0
extrapolation is controlled by how well each at → 0 ex-
trapolation is, one desires smaller at. This increases gate
costs ∝ δ−1

t .
Instead of first approaching the Hamiltonian limit, a

more efficient trajectory is to compute a set of points
a, at → 0 at fixed ξt. This clearly reduces the total
number of quantum simulations required. Additionally,
since only one extrapolation is performed lattice errors
are easier to control. This would allow larger at. We
thus expect the fixed-ξt trajectory to avoid deep quantum
circuits and suffer less from noise.

IV. THE ERRORS OF SCALE-SETTING IN
MINKOWSKI METRIC

Although the analytic continuation between Euclidean
and Minkowski scales proposed in Scheme B is for-
mally exact, in practice one can only perform the an-
alytic continuation from fits to discrete, noisy Euclidean
data a(δτ , g2

H), a0(δτ , g2
H). This leads to a signal-to-noise

problem when performing the analytic continuation [138].
Indeed, to achieve a certain precision the Euclidean data
has to be exponentially more accurate: intuitively, this is
because excitations caused by BCH operators decay ex-
ponentially in τ but oscillate in t. As a result, low-energy
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observables in Euclidean lattices tend to be less sensitive
to the variation of δ than their Minkowski counterparts.
Hence the analytic continuation is ill-posed [174]. For-
tunately, at small δ, the calculations with lower-energy
states are less influenced by the higher order BCH op-
erators, and hence one can reasonably tame the errors
intrinsic to the Euclidean data. This observation is of
crucial relevance for our scale-setting procedure.

On the other hand, the difference between Minkowski
and Euclidean renormalized lattice scales must be smaller
for smaller trotter steps δt,τ as both H(δτ , g2

H) and
H(iδt, g2

H) are closer to the same Hamiltonian limit.
This implies that there might be a parameter space
where Scheme A yields more accurate results for
Minkowski scale-setting, leading to question the feasibility
of Scheme B. In this section, we give upper bounds for
the scale-setting error of both schemes and discuss if the
advantage of analytic continuation of a given scheme is
balanced out by its errors.

Consider the bare eigenvalue λ(δτ , g2
H) ≡

a0(δτ , g2
H)mphys/δτ of H(δτ , g2

H). In real time, the
equivalent eigenvalue of H(iδt, g2

H) is λ(iδt, g2
H) ≡

at(δt, g2
H)mphys/δt. Let λm(δτ , g2

H) be the measured

values of λ(δτ , g2
H) on Euclidean lattices, with a deviation

from the theoretical value εA = |λm(δτ , g2
H)− λ(δτ , g2

H)|
from statistical errors of the measurement.

For δτ = δt, Scheme A approximates λ(iδt, g2
H) as

λm(δτ , g2
H) such that the error is given by

|λ(iδt, g2
H)− λm(δτ , g2

H)|
≤ |λ(iδt, g2

H)− λ(0, g2
H)|+ |λ(δτ , g2

H)− λ(0, g2
H)|

+ |λ(δτ , g2
H)− λm(δτ , g2

H)| (36)

where λ(0, g2
H) is the corresponding energy gap evaluated

in the continuous time limit δ = 0. The first two terms
on the RHS of Eq. (36) quantify the errors from the BCH
contributions. The last term is εA, the statistical error
of the Euclidean temporal scale at δτ . We obtain the
following constraint on the trotterization error according
to the Bauer-Fike theorem [175],

|λ(δ, g2
H)− λ(0, g2

H)| ≤ 2‖H(δ, g2
H)−H(0, g2

H)‖ (37)

At small δ, ‖H(δ, g2
H)−H(0, g2

H)‖ is dominated by the
leading order BCH commutators of order |δ|2.

‖H(δ, g2
H)−H(0, g2

H)‖ . |δ|
2

24
(
2‖[[HV , HK ], HK ]‖+ ‖[[HV , HK ], HV ]‖

)
≤ |δ|

2

3 Nlink(d− 1)dU‖l̂2‖
(
g2
H8‖l̂2‖+ g−2

H 2(d− 1)dU
)
≤ |δ|2

4(max δ)2M (38)

where d is the number of spacial dimensions, dU is the
dimension of the representation of the group element U
in HV , Nlink is the number of links in the spacial lattice,
and ‖l̂2‖ is the spectral norm of l̂2. We have introduced
additional definitions into the second line,

max δ ≡ min
{

g2
H

4(d− 1)dU
,

1
g2
H8‖l̂2‖

}
(39)

M ≡ 2Nlink(d− 1)dU‖l̂2‖max δ (40)

The inequality of Eq. (38) is only guaranteed within the
range |δ| < max δ because next to leading order commu-
tators are only negligible within such range, as shown
in Appendix B. Thus, Eq. (37) is bounded by M/2 for
|δ| ≤ max δ. Combining all the above definitions and
inequalities, the upper bound of temporal scale-setting
errors for Scheme A is

|λ(iδt, g2
H)− λm(δτ , g2

H)| .
(

δ2
t

max δ2 + εA
M

)
M (41)

which is bounded by M + εA for δ ≤ max δ. As M
quantifies the upper limit of the trotterization error in
Eq. (37) and also the error of Scheme A, we refer to M
as the error bound parameter from the BCH expansion.

As Scheme B requires the knowledge of the functional
dependence of the scales on gH and δτ , we assume that the
theoretical λ(δ, g2

H) is both analytic and even in power of
δ within the radius |δ| ≤ max δ, i.e. λ(δ, g2

H) = λ(−δ, g2
H).

This is based on the following perturbative argument:
for small |δ|, the BCH commutators H(δ, g2

H)−H(0, g2
H)

can be treated as perturbations to the Hamiltonian limit
H(0, g2

H). With the second-order trotterization, all the
non-vanishing BCH commutators depend on even orders
of δ. Therefore, perturbatively, the difference in the
spectra of H(δ, g2

H) and H(0, g2
H) should be analytic and

even in powers of δ order by order. One thus fits the
functional form λf (δτ , g2

H) for Euclidean temporal scales
in even powers of δτ . This guarantees that the analytic
continuation λf (iδt, g2

H) is real, thus avoiding nonunitarity
in the Minkowski metric.

Define εB as the maximum deviation of λf (δτ , g2
H) from

the theoretical λ(δτ , g2
H) across the Euclidean region, such

that |λf (δτ , g2
H)− λ(δτ , g2

H)| ≤ εB for all 0 < δτ ≤ max δ.
εB is affected by both the precision of the measurements
on the Euclidean data and the fitting procedure. Since the
computational resources required grow with decreasing δτ ,
|λf (0, g2

H)− λ(0, g2
H)| is likely to be the largest deviation.

The region δ ≤ max δ is defined such that O(δ4) terms
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FIG. 2. Ratio of the error bounds of Scheme B in Eq. (42)
to that of Scheme A in Eq. (41). The black line indicates
when the bounds are equal.

are at most equal to the O(δ2) terms. Therefore within
this region, a quartic λf (δτ , g2

H) should reasonably ap-
proximate λ(δτ , g2

H). By performing calculations at three
or more δτ each with εA, one would expect the value of
|λf (0, g2

H)− λ(0, g2
H)| and therefore εB to be larger than

εA only by an order-one factor. In addition, we will require
the condition in Eq. (C2): |λf (δ, g2

H)−λ(δ, g2
H)| ≤M+εB

in the whole complex plane satisfying |δ| < max δ. As
shown in Appendix C, we derive an upper bound on the
error of the temporal scale-setting for Scheme B:

|λ(iδt, g2
H)− λf (iδt, g2

H)| . εB

(
M + εB
εB

)ω(δt)
(42)

with 0 < ω(δt) = 4
π arctan δt

max δ < 1 following the Lemma
1 in [174].

The advantage of using Scheme B could be seen from
comparing the ratio of Eq. (42) to Eq. (41) when setting
εA = εB = ε. The error in Scheme A has a quadratic
dependence on δt. When ε/M � 1, the growth of the
errors in Scheme B is delayed with respect to that in
Scheme A, until δt is very close to max δ, as shown in
Fig. 2. It results that such advantage of Scheme B over
Scheme A requires ε/M < 0.053, where around ε/M =
0.053, the derivatives of the two prefactors respective to
δt are the same at δt = max δ. Ultimately, the overall
accuracy of the scale setting in both schemes is controlled
by the magnitude of the error bound parameter M. All
the above holds, unless the error bound parameter M is
too large such that simulations at very small δt values
are necessary to have the overall accuracy under control,
which are computationally very expensive.

The result that Scheme B performs better at small
ε/M ratio has clear physical interpretations. Correcting
BCH errors as Scheme B does via analytic continuation
becomes more important when the error bound parameter
M is larger. On the other hand, in the Scheme B,
the analytic continuation is sensitive to the Euclidean
precision ε as seen from Eq. (42), while Scheme A is

less affected. For Scheme B to yield a smaller error,
certain accuracy of the functional form λf (δτ , g2

H) has to
be achieved. This leads to the practical concern that a
large amount of resources on the Euclidean calculation
might be required at small couplings as the signals become
weaker. In addition, for the low energy states involved in
the scale-setting procedure, the error bound parameter
M could be smaller than the estimation using Eq. (39).
Therefore, we expect both Eq. (41) and Eq. (42) to be
conservative bounds, as one can confirm by comparing
Tab. I and Fig. 7. In such cases, a smaller error ε would
be required to obtain the same values of ε/M that govern
the suppression of the errors in Scheme B.

In Table I we estimate for D4 models with 2 and
3 spatial dimensions and different number of plaque-
ttes/number of links/different values of the bare coupling
gH , the largest possible trotter step compatible with 0.1
errors on the temporal-scale-setting for Scheme A and
Scheme B, assuming ε = 0.02. We observe that as ex-
pected, the advantage of Scheme B to allow the use of
relative large trotter step at a given systematic error level
is remarkable for larger systems and stronger couplings,
that in turn corresponds to larger values of M .

d Nplaquette Nlink g2
H max δ M δAt δBt

2 2 4
0.33 0.041 0.23 0.024 0.022
0.71 0.089 2.1 0.017 0.025
1.0 0.059 2.0 0.012 0.017

2 42 32
0.1 0.013 5.8× 10−4 0.013 0.013
0.5 0.063 7.2 0.0066 0.014
1.0 0.059 16 0.0042 0.011

3 43 192
0.1 0.0063 3.5× 10−3 0.0063 0.0063
0.5 0.032 43 0.0013 0.0052
1.0 0.059 192 0.0012 0.0082

TABLE I. Benchmark values for D4 models in 2 + 1D and
3 + 1D with periodic conditions. Assuming ε = 0.02 and
demanding the errors in Eq. (41) and Eq. (42) to be below 0.1,
δAt , δ

B
t are largest possible δt for Scheme A and Scheme B.

When g2
H = 0.1, M < 0.1 and we take δAt = δBt = max δ. The

first three rows use the same parameters as in Fig. 7. The
absolute error in Tab. I can be converted to the relative error
in Fig. 7 by use of a factor δt/atm1×1 ≈ 1 from Tab. II.

V. NUMERICAL RESULTS

In this section we present a concrete demonstration of
some of the theoretical perspectives discussed above by us-
ing a two-plaquette theory with the discrete, non-Abelian
gauge group D4. We perform classical simulations of a
quantum computer using qiskit [176, 177]. These calcu-
lations are performed without modeling of realistic noise
sources, corresponding to a perfect, error-free quantum
computer.

We simulate the D4 gauge field on the two-dimensional
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U0

U0

U1

U1

U2 U3 U2

FIG. 3. The lattice geometry used for the D4 gauge simulation.
The plaquettes are given by U†2U

†
0U3U0 and U†3U

†
1U2U1. Dash

lines are used to indicate repeated links due to the periodic
boundary conditions.

lattice shown in Fig. 3. This lattice represents the smallest
two-dimensional lattice which cannot be reduced to a one-
dimensional theory. The simulations requires a five D4
registers, and uses a total of 17 qubits: 12 for physical
degrees of freedom, 3 for an ancillary group register, and
2 ancillary qubits. Note that, for brevity, we have broken
with the notation of previous sections, in referring to a
link not by the source and sink sites, but instead with a
single direct index i = 0 . . . 3.

We define a trace on D4 (not uniquely specified by the
group structure) by embedding D4 into U(2), and defining
the trace via the fundamental representation of that Lie
group. The embedding of D4 < U(2) is generated by the
elements σx and iσz. The Hamiltonian terms are

HV =− 1
δt

log TV

=− 1
g2
H

(
Re Tr

[
U†2 (t)U †0 (t)U3(t)U0(t)

]
+ Re Tr

[
U †3 (t)U †1 (t)U2(t)U1(t)

])
HK =− 1

δt

∑
i=0..3

log T (i)
K (43)

where log T (i)
K is the one-link kinetic term for the i-th link,

determined as discussed in Appendix A2. 2 In total, the
quantum simulations entailed ∼ 200 entangling gates per
δ [112]. This is roughly the resources recently used in
[178–180], suggesting that a single step of time evolution
may be possible on current quantum devices.

Stochastic state preparation has been demonstrated for
thermal states in D4 [84] and particle-like states in Z2 [85].

2 For the numerical calculations, we take δt = 1 in HK specifically
for the discrete group, such that the eigenvalues of the kinetic
Hamiltonian are sufficiently differentiated when the system is
evolved with small trotterization step. This trajectory is ade-
quate since, using the character expansion for the kinetic part
of the transfer matrix in Appendix. A, one can show that this
construction captures the kinetic energy in the continuous time
limit taken for a discrete group.

While these results are promising, the initial states are
found to have contamination from excited states that
complicates the analysis. Therefore, to simplify the study
of trotterization and the continuum limit, we use exact
diagonalization of the Kogut-Susskind Hamiltonian to
compute the eigenvalues and then construct our initial
state as

|ψ(0)〉 = 1√
2
|ψ0〉+ 1√

2
|ψi〉 (44)

where |ψi〉 correspond to the i−th excited state. By
preparing such initial states, the corresponding time-
dependent state should be

|ψ(t)〉KS = eiE0t

√
2
|ψ0〉+ eiEit√

2
|ψi〉. (45)

As pointed out in [85] at finite at, trotterization mixes
Kogut-Susskind eigenstates through nonzero transition
matrix elements 〈ψk|H(a, at)|ψ(0)〉:

|ψ(t)〉 = eiH(a,at)t|ψ(0)〉
=
∑
k

eiEk(at)t|ψk(at)〉〈ψk(at)|ψ(0)〉

=
∑
k

λke
iEk(at)t|ψk(at)〉 (46)

As at → 0, one can show that the time-dependent state in
Eq. (46) reduces to Eq. (45). Performing measurements
of the operator O on this state with a quantum computer
yields

〈O(t)〉 ≡ 〈ψ(t)|O|ψ(t)〉

=c0 +
∑
k 6=j

[ck,j cos(at(Ej − Ek)l) + sk,j sin(at(Ej − Ek)l)]

(47)

where l = [0, N ] is the integer trotter step. ck,j , sk,j
incorporate both the mixing effects entailed in λk and the
matrix elements of O. The Ek here and in the following
are eigenvalues of H(a, at) and have explicit dependence
on at. This expression, analogous to euclidean lattice field
theory operators, can be used to fit the energies of states
atmi ≡ at(Ei − E0) where E0 is the ground state energy.

It is useful here to compare the fitting procedure to
that of Euclidean LFT. In Euclidean space, 〈O(τ)〉 ∼∑
i αie

−Eiτ and thus taking τ → ∞ acts as a low-pass
filter which removes higher energy states. In this way, for
sufficiently large τ , 〈O(τ)〉 should be exponentially domi-
nated by a single state E1 and one can extract a0E1. In
contrast, 〈O(t)〉 ∼

∑
i βie

−iEit and thus the excited-state
contribution to the lattice matrix element doesn’t decrease
as t → ∞. This lack of a natural low-pass filter is why
real-time evolution can access matrix elements that could
be inaccessibly to Euclidean LFT; it also means that the
excited-state contamination from imprecise state prepa-
ration and trotterization cannot be trivially removed. In
this sense, the sampling advantage of quantum computers
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could be jeopardized by errors induced from excited state
contamination.

In this work, we will use two different spatial Wilson
loops as our operators O, which have different quan-
tum numbers, and therefore are sensitive to different
eigenstates. The first is the left plaquette, O1×1 =
Re TrU0U3U

†
0U
†
2 , and by following the construction of

[112] it can be measured without any ancillary qubit.
The second is the Wilson loop over the entire lattice,
O2×1 ∼ Re TrU0U1U2U

†
1U
†
0U
†
2 , which requires an ancil-

lary group register to be computed [181]. For each of
these operators, we construct different initial states from
Eq. (44).

The computations are done for multiple values of
g2
H(a, at) = [0.71, 1.25] and δt = [0.01, 0.7] for Nδt =

[10, 20]. The circuits used are detailed in [112]. The BCH
contributions vanish for g2

H(a, at) → 0, and as a result,
the matrix elements ck,j , sk,j in Eq. (47) vanish with only
ci,0 and si,0 surviving. Thus the statistical errors required
to resolve oscillations in 〈O(t)〉 must be decreased accord-
ingly, calling for increased number of shots. An additional
complication from the continuum limit approach is that
the gaps atmj − atmi → 0 as g2

H → 0 and thus con-
tamination due to trotterization errors grow unless δt is
decreased as well. Together, these amount to the cost of
the approach to the continuum to scale poorly. For our
model, we find that for g2

H(a, at) > 1, the required number
of shots for the qiskit noiseless simulator qasm ranged
from 1600 to 64000 as we decreased δt, g

2
H . For this rea-

son, we utilized state vector simulator – which reports
exact probability distributions – for g2

H(a, at) ≤ 1 in order
to investigate the continuum limit at reduced computa-
tional cost. This just emphasizes the importance of being
able to perform calculations at large a, at on reducing
the quantum resources required. For the D4 theory, the
eigenvalues of HV (Eq. (43)) are 1/g2

H × {−4,−2, 0, 2, 4}.
States evolved under one-step time evolution operator
eiδtHV /2 built from HV will obtain phases in the range
δt/2g2

H × [−4, 4]. For the δt and g2
H chosen, the phase

differences are smaller than 2π so that one can resolve
states with different potential energies.

V.1. Scale Setting in Minkowski Spacetime

We evaluate 〈O1×1(t)〉 to investigate the effect of the
renormalization of the temporal scale in Minkowski cal-
culation, by performing fits to Eq. (47) and extracting
the lowest energy gap atm1×1 from 〈O1×1(t)〉. The initial
state is constructed from Eq. (44) with excited state i = 2.
An example of these calculations is found in Fig. 4 for fixed
g2
H(a, a0) = 1.11 and three different δt = {0.5, 0.25, 0.1}.

Comparing the trotterized results to the continuous-time
one calculated using classical computations, the state
contamination can be clearly observed and decreases for
smaller values of δt. The results for atm1×1, for the whole
range of g2

H and δt are found in Table II. We observe that
the bare mass atm1×1/δt is changed by only 3% when δt

increases from 0.1 to 0.5 for g2
H = 1.11, while the mixing

effect could be changed by around 20% from comparing
the ck,j , sk,j amplitudes in Fig. 4.

TABLE II. Numerical results for lattice masses atm1×1 and
atm2×1 for the bare couplings g2

H and δt studied here. Rows
above (below) the line indicate qasm (state vector) results.

g2
H δt atm1×1 atm2×1

1.25 0.70 0.6663(11) —
1.25 0.65 0.606(17) —
1.25 0.60 0.554(16) —
1.25 0.50 0.442(6) 1.120(15)
1.25 0.40 0.349(7) —
1.25 0.25 0.211(4) 0.575(5)
1.25 0.10 0.0821(11) 0.2332(11)
1.25 0.05 0.0414(5) —
1.25 0.01 0.00819(11) —
1.18 0.5 0.446(13) 1.12(4)
1.18 0.25 0.207(3) 0.557(9)
1.18 0.1 0.0838(19) 0.223(3)
1.11 0.5 0.429(11) 1.016(11)
1.11 0.25 0.206(10) 0.518(11)
1.11 0.1 0.0832(7) 0.208(4)
1.05 0.5 0.404(14) 0.918(11)
1.05 0.25 0.1987(4) 0.478(5)
1.05 0.1 0.08103(14) 0.189(3)

1 0.1 0.07580(8) 0.1749 (7)
1 0.05 0.037855(14) 0.0883 (4)
1 0.01 0.007584(4) 0.017572(6)

0.91 0.1 0.06699(9) 0.1474(4)
0.91 0.05 0.03348(3) 0.07402(9)
0.91 0.01 0.0066953(14) 0.014835(4)
0.83 0.1 0.0575(4) 0.1250(6)
0.83 0.05 0.02889(10) 0.06266(16)
0.83 0.01 0.005791(8) 0.012493(14)
0.77 0.1 0.0488(8) 0.1051(8)
0.77 0.05 0.02462(19) 0.05230(15)
0.77 0.01 0.004948(8) 0.01049(3)
0.71 0.1 0.0424(3) 0.0885(3)
0.71 0.05 0.02102(9) 0.04387(7)
0.71 0.01 0.004191(9) 0.008753(7)

In the Euclidean lattice calculation, using the relation
in Eq. (7) obtained in the weak coupling limit [151–153],
the perturbative renormalized anisotropy is

ξ−1 = c(a, a0)δτ ∼
[

1− cs(ξ)g2
H

1− ct(ξ)+cs(ξ)
2 g2

H

]
δτ

≈
[
1 + ct(ξ)− cs(ξ)

2 g2
H(a, a0) +O(g4

H)
]
δτ . (48)

Even without a functional form for ci(ξ), one can see that
solving Eq. (48) self-consistently for ξ will break a0 ∝ δτ .
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FIG. 4. Expectation value of the plaquette 〈O1×1(Nδt)〉 vs Nδt for different δt with fixed g2
H = 1.11. The green line indicated

the δt → 0 exact results

For SU(N) in 3 and 4 dimensions, c+(ξ) ≡ ct(ξ)+cs(ξ) ≈
O(10−2) and c−(ξ) ≡ ct(ξ)− cs(ξ) ≈ O(10−1) [151–153]
– suggesting that the nonlinear renormalization is gener-
ically small. While the exact functions g2

H(a, a0), ci(ξ),
depend upon the metric, the form of Eq. (48) should
remain unchanged. It is possible to investigate Eq. (48)
in Minkowski space by rewriting it as at = c(a, at)aδt.
For the case of g2

H = 1.25 plotted in Fig. 5, one sees
that at has a clear δ2

t dependence. Furthermore, Fig. 6
shows that the linear dependence of at upon δt is a g2

H
dependent function. Together, these demonstrate the
renormalization of at with respect to the bare coupling
gH and the trotter step δt. Although for our toy model
with two spatial plaquettes we cannot extract the spatial
scale a from numerical results, we can relate a to the
running of g using the perturbative results [182]

aΛ = exp
(
− 1

2b0g2

)
(b0g2)−

b1
2b0 (1 +O(g2)). (49)

In the above, b0, b1 are the standard g3, g5 coefficients
in the perturbative β function. Altogether, to extract
physical properties from quantum simulations, we must
first determine both scales explicitly.

V.2. Comparison of Schemes for Scale Setting

To reduce the quantum resources for lattice calculation,
we determine the scale using the Euclidean data following
the procedure proposed in Sec. III. As a demonstration,
we will focus on the temporal lattice spacing and show
its determination using Scheme A and Scheme B.

We solve the eigenvalues of the Euclidean transfer ma-
trix built from HK and HV in Eq. (43). By taking the
logarithm of these eigenvalues, we could extract the ener-
gies of the spectra on a Euclidean space-time, with the
ground state energy normalized to zero. The observable
a0m1×1 is the energy corresponding to the 2nd excited
state. With the set of bare couplings 1/g2

H = [0.8, 3.0]

0
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a
tm

1×
1

δt

g2H(a, at) = 1.25

FIG. 5. atm1×1 vs δt for g2
H = 1.25. The dashed (solid) lines

indicate a linear (quadratic) fit to the data. The poor linear
fit (χ2/d.o.f = 40.2) demonstrates that at is not proportional
to δt as might be naively expected. χ2/d.o.f = 1.1 for the
quadratic fit.

and δτ = [0.5, 0.01], we obtain a0m1×1 and in addition
we apply an error of 1% to a0m1×1 for any bare coupling
and a0 used, in order to mimic the measurement error
using classical Monte Carlo simulations. Then we do a 2D
fit to get the functional dependence of a0m1×1 on both
δτ , g

2
H as:

a0m1×1(δτ , g2
H) = δτ

(
f1(g2

H) + f2(g2
H)δ2

τ

)
(50)

Given that spatial lattice spacing a is related to g2
H via

the relation in Eq. (49) and fi functions should be power-
law expansions of a, we use the following functional form
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FIG. 6. atm1×1 vs δt for different g2
H . Notice that renormal-

ization of at is clearly g2
H dependent.

for the 2D fitting of a0m1×1

fi(g2
H) =

∑
n

ai,n

(
exp(−κ0/g

2
H) 1
g2κ1
H

)n
. (51)

The fitted a0m1×1 (χ2/d.o.f = 1.3) is at most 3% away
from their truth value at 68% C.L.. With this, we can
then analytically continue with either scheme. In Fig. 7,
the percent systematic error for both schemes compared
to at computed by diagonalizing U(at) in Sec. V.1 (which
agree with Tab. II). The colored region shows the errors
from the 1σ band in the Euclidean fitting. For the three
g2
H used in Fig. 7, the errors ε ≤ 2% at 68% C.L., with a

weak dependence on δτ .
As expected, Scheme A,B give precise evaluations

of at at small δt. When δt gets larger, the BCH errors
of Scheme A should increase as δ2

t . BCH errors get
smaller for smaller g2

H , as which lowers the error bound
parameter M . As shown in Fig. 7, for g2

H ≤ 0.33(ε ∼M),
Scheme A provides a better estimation of the lattice
scales for the whole region of δt < 0.5. The errors from
the analytical continuation of Scheme B barely increase
for larger values of δt, and are in principle less sensitive
to g2

H as expected. For the assumed precision in the
Euclidean data and the fitting procedure, the error, ε, is
slightly larger for the small g2

H region and altogether a
delayed growth in the errors is maintained for g2

H ≥ 0.71.
One can conclude that if g2

H is not particularly small,
Scheme B is more likely to render the lowest errors in
the scale determination. In both cases, the observed 2%
errors are well within Eq. (41) and Eq. (42), which predict
a 10% error bound for δt ≤ δA(B)

t shown in Tab. I.
Once the measurement of the renormalized spatial lat-

tice spacing is allowed when considering sufficiently large
systems, one can obtain the renormalized spatial lattice
spacing similarly using only Euclidean data.

V.3. Approaching the Continuum

In Euclidean LFT, one uses a, a0 for extrapolating
to the continuum limit. This is because performing ex-
trapolations in terms of the bare parameters requires
either very higher order fit functions (and therefore many
calculations) or calculations with very small gH and δτ
(at large computational cost). Instead, using a, a0 is an
extrapolation in nonperturbative variables, so the bare
couplings can be much larger and the fit functions sim-
pler. The same should be true in Minkowski spacetime.
In principle, one can approach the continuum along any
trajectory as a function of a, at, but experience from Eu-
clidean LFT [157, 160], suggests that taking a trajectory of
fixed-ξt would smoothly and efficiently extrapolate to the
continuum limit for Minkowski LFT. In approximations
to U(t) other than trotterization [99–102], definitions for
a nonperturbative scale like at are currently unknown,
making the extrapolation to the continuum nontrivial.

In the continuum limit a, at → 0 and thus atmi van-
ishes. One must instead explore finite physical quantities
such as atmi/atm1×1. Due to the smallness of our lat-
tice, the only states which mix with |ψ2〉 are from cutoff
effects which have atmi/atm1×1 → ∞. Therefore, we
perform another fit to 〈O2×1(t)〉 from which we extract a
second physical mass, atm2×1. The initial state for this
purpose is constructed with i = 13. With these, we can
study different approaches to the continuum limit. As the
scales set from real-time evolution are already available
(Tab. II) and Scheme B gives comparable precision, in
the following, we use at from Tab. II. We point out that
the precision of the spacings extracted from real-time
evolution would be much worse when noise is included.

Numerically, the first trajectory to approach the contin-
uum is to first take at → 0 (the Hamiltonian limit) then
take a → 0. Since the lattice spacing errors of H(a, at)
are O(a2, a2

t ), we fit the mass ratio to

atm2×1

atm1×1
= κ0 + κ2(atm1×1)2 (52)

In Fig. 8 and Fig. 9, we show these best fit lines of Eq. (52)
to the data points extracted from qasm and state vector.
The values of κ0 correspond to the Hamiltonian limit value
of the mass ratio, and we tabulate them in Table III. We
find good agreement between the κ0 in Tab. III and those
calculated by direct diagonalization of the Hamiltonian
with δt = 0 for different g2

H .
From Fig. 8, we could see that the difference for

atm2×1/atm1×1 is only 8% between its value at δt = 0.5
and the Hamiltonian limit for g2

H = 1.11, while from Fig. 4,
for the same value of g2

H and δt, the 〈O1×1(t)〉 could differ
from the Hamiltonian limit by up to 20%. The devia-
tion in atm2×1/atm1×1 represents BCH corrections to the
eigenvalues and the latter one is the correction to wave-
function. Thus less resources (larger trotterization step)
could be needed to control the error of atm2×1/atm1×1
below certain threshold.
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FIG. 7. Errors with respect to the truth scale in a Minkowski calculation using Scheme A (left) and Scheme B (right), with
the band showing the error from the 1σ region in the Euclidean fitting. We have assumed that the measurement precision in
Euclidean spacetime could reach 1%. Together with fitting errors, we have ε ≤ 2% at 68% C.L. for the g2

H and δτ = δt used in
this figure. For Scheme A we use ∆at from the fit, as ε is barely affected by the fitting procedure.

Assuming errors scaling as O(a2) and using Eq. (49),
we can fit the κ0 in Tab. III to the continuum limit using

atm2×1

atm1×1

∣∣∣∣
at→0

= λ0 + λ1e
−λ2/g

2
H (gH)λ3 . (53)

In contrast to extrapolating in at, the reliability of this
extrapolation depends much more sensitively on being in
the perturbative regime, otherwise Eq. (49) receives large
corrections and our functional form will be inadequate.
So from Eq. (53), we must perform the nonlinear fit in g2

H
which introduces complicated correlations between the
fitting parameters. Despite these limitations, we find that
the continuum limit result of λ0 = 2.03(4) agrees with
the continuum value m2×1/m1×1 = 2 computed from the
direct diagonalization of the Hamiltonian with g2

H ∼ 0
and δt = 0. The mass ratio in the continuous time limit,
κ0 in Tab. III (black points), and the best fit line using
Eq. 53 are found in Fig. 10 (black line and grey shaded
region for 68% C.L..).

The number of trotter steps N (and therefore gate costs)
is proportional to δ−1

t . Clearly therefore, it is an unde-
sirable feature to first take the Hamiltonian limit at → 0
(δt → 0) and then the continuum limit a→ 0. Instead of
working at fixed a, while decreasing δt, one can work at
fixed ξt = a

at
and then one could directly approach the

continuum limit a, at → 0 through this trajectory. Up to
a2 order, the extrapolation in terms of the bare coupling,
would be of analogous functional form as that on the
right-hand of Eq. (53), with the finite-ξt effects entering
the fitting parameters. It is thus important to explore
how to define the finite ξt trajectory. One could perform
this tuning on the quantum computer. This would pro-
ceed by computing both at, a or ξt using some physical
observables (e.g. Wilson loops or dispersion relations)
and then adjust the bare parameters until one has a fixed
ξt trajectory. This procedure requires multiple quantum
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FIG. 8. atm2×1/atm1×1 as a function of atm1×1 for a variety
of g2

H(a, at). The data points are extracted from fixed δt
results from a qasm calculation. For each g2

H , we have δt =
{0.1, 0.25, 0.5} from left to right. The solid lines reflect the
best fit for a fixed g2

H(a, at). The colored bands are the 1σ
uncertainties on the fits.
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TABLE III. Numerical results for the dimensionless ratio of
lattice masses atm2×1/atm1×1 after extrapolating for fixed
g2
H to the Hamiltonian limit. Rows above (below) the line

indicate qasm (state vector) results.

g2
H

atm2×1
atm1×1

|at→0

1.25 2.83(4)
1.185 2.70(4)
1.11 2.511(13)
1.05 2.37(6)
1.00 2.321(9)
0.91 2.2159(3)
0.83 2.158(3)
0.77 2.1191(15)
0.71 2.0882(5)

simulations to be performed – albeit at larger δt then an
extrapolation to the Hamiltonian limit requires and only
the scale-setting observable needs to be computed. But,
as demonstrated, we can reliably extract the dependence
of the scales a, at on δt and g2

H by analytical continuation
using Scheme B. We can then directly invert these re-
lations to find the δt and g2

H for a fixed ξt avoiding the
quantum computer entirely for scale-setting.

Given the smallness of our system, we are unable to
extract a or the corresponding ξt to determine a set of δt
and g2

H . This forces us to consider some approximations.
While the previous discussions demonstrate renormaliza-
tion, as the nonperturbative renormalization effects par-
tially cancel out [152], we expect that the renormalization
of ξt is milder than that of a, at individually. Therefore,
we can approximate the fixed ξt trajectory as fixed δt.
In Fig. 10, we show altogether the extrapolation to the
continuum limit through the Hamiltonian limit (gray line
and black dots), as well as two fixed values of ξt ≈ {10, 2}
to highlights the power of fixed ξt trajectories in achieving
the continuum limit results. Indeed, following the tra-

jectory of ξt ≈ 10 (red circle), we can successfully reach
the correct continuum limit with clear advantages over
the Hamiltonian extrapolation method. For ξt ≈ 10, the
needed number of data point simulations is reduced by
67% when comparing to the Hamiltonian limit procedure
that requires all the measurements shown in Fig. 8 and
Fig. 9. In addition, the circuit depth is greatly reduced
through avoiding small trotterization steps, e.g. δt < 0.1.
In Fig. 10, we further investigate using an even smaller
ξt ≈ 2, hence δt = 0.5 (blue triangles), which implies
a further improvement on the circuits depth demands.
Due to the large uncertainties from quantum simulations
as represented by the large error bars from Fig. 10, we
calculate the atm2×1

atm1×1
through explicit diagonalization of

the time evolution operator at fixed ξt ≈ 1/δt = 2. We
find that the continuum limit is also successfully reached
for this large value of trotter step. Although multiple
simulations are needed to control the measurement un-
certainties on a quantum computer, this highlights the
advantages of fixed-ξ calculations in avoiding larger errors
from enhanced circuit depth.

VI. CONCLUSIONS

The natural construction of quantum field theories on
quantum computers is as a lattice-regularized theory. Any
meaningful calculation must therefore be renormalized
and taken to the continuum limit before comparison to
experiments can be made. As we have discussed, this
involves many hurdles and it will not be easy. Typically
quantum simulations are constructed within the Hamilto-
nian formalism where a spatial lattice with spacing a is
time-evolved. Further approximations are required, as the
time evolution operator U(t) built from the Hamiltonian
usually cannot be efficiently implemented.

In this article, we have tackled three important issues
related to the simulations of Minkowksi lattice field the-
ories on quantum computers. Firstly, we discussed how
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renormalization in the form of a temporal lattice spacing
at arises from trotterizating U(t). Secondly, by relating
this trotterized time evolution operator to the Euclidean
transfer matrix, we propose two different schemes using
analytical continuation to set the Minkowski lattice spac-
ings. The most straightforward scheme is to simply equate
the Euclidean lattice spacings to those in the real-time
calculation (Scheme A). This scheme introduces O(δ2

t )
errors in addition to the statistical errors in the Euclidean
calculations. Our second method (Scheme B) can correct
the O(δ2

t ) errors of Scheme A by analytically continuing
the best-fit function of the Euclidean spacings. We have
derived conservative bounds on the systematic errors for
these schemes for small δt, and a loose constraint on the
error of the fit to take advantage of Scheme B. This en-
ables us to reduce the requirements for quantum resources
in the scale setting procedure. Thirdly, we show that by
taking a fixed anisotropic-ξt approach to the continuum
limit, one can further reduce the number of simulations
with the added benefit of shallower circuits and lower
required gate fidelities. We demonstrated these ideas for
a 2 + 1D, discrete non-Abelian D4 model using qiskit
noiseless simulators.

The results of this work suggest a number of followups.
In particular, these procedures could be tested in the
near-term for Z2 gauge theories in 2+1 dimensions on
multiple lattice sizes, allowing for the incorporation of
finite-volume effects and the explicit calculation of a.
Additionally, since the quantum resources increase as
at, a→ 0, improved Hamiltonians that account for both
lattice effects and quantum noise could accelerate extrap-
olation to the continuum approach while reducing the
quantum resources required. Finally, extending the error
bounds on our scale-setting schemes to larger δt would
be well motivated to ensure that the systematic errors
introduced are under control.
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Appendix A: Continuous limit for discrete group
with Wilson action

In this appendix, we will show the subtleties in tak-
ing the Hamiltonian limit a0 → 0 constructed from the
Wilson action of a discrete gauge group, relying on the
spectra of the kinetic part of the transfer matrix, which

could be solved using the character expansion - Fourier
transformation to the character basis. Taking Dn group as
an example (with n even), its irreducible representations
ρr are as follow:

ρ1,1(j,m) : 1 ρ1,2(j,m) : (−1)m (A1)
ρ1,3(j,m) : (−1)j ρ1,4(j,m) : (−1)m+j

ρ2,k(j,m) : exp
(
i
2πj
n
kσz

)
σmx

with j ∈ [0, ..., n− 1],m ∈ {0, 1} defining the elements of
the group and k ∈ {1, 2, ...n2 − 1} indexing the different
dimension-2 irreducible representations.

The kinetic part of transfer matrix is constructed in
the faithful irreducible representation of Dn: ρ2,1(j,m),
to ensure its positivity [112]. Consider a single link, say
the first link U1, it takes values of ρ2,1(gi) ≡ ρ2,1(j,m),
with i = 1 representing the identity group element of
j = m = 0. Using character expansion, the kinetic part of
the transfer matrix for the first link T 1

K can be explicitly
written as:

T 1
K(i, i′) = exp

(
βt Re Tr

[
ρ†2,1(gi)ρ2,1(gi′)

])
(A2)

=
∑
r

drcr Tr[ρ†2,1(gi)ρ2,1(gi′)],

with dr the dimension of the r representation. The co-
efficients for the modes in the irreducible representation
r are given by cr =

∑2n
i=1

1
dr

Tr[ρr(g†i )]T 1
K(i, 1), explicitly

as:

c1,1 =
n−1∑
j=0

(e2βt cos( 2jπ
n ) + 1)

c1,2 =
n−1∑
j=0

(e2βt cos( 2jπ
n ) − 1)

c1,3 =
n−1∑
j=0

(−1)j(e2βt cos( 2jπ
n ) + 1)

c1,4 =
n−1∑
j=0

(−1)j(e2βt cos( 2jπ
n ) − 1)

c2,k =
n−1∑
j=0

cos(2jπ
n
k)e2βt cos( 2jπ

n ) (A3)

and is inherently positive from the positivity of T 1
K when

βt > 0 for finite n. Notice that in Eq. (A3), the group
elements with m = 1 contribute only to the second piece
in each summation of cr for dr = 1 and do not contribute
to c2,k. For the D4 group considered in Sec. V, we have

c1,1 = 6 + e2βt + e−2βt , c2,1 = e2βt − e−2βt (A4)
c1,2 = c1,3 = c1,4 = −2 + e2βt + e−2βt .

The corresponding HK after normalizing the ground state
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energy to zero in the character basis |r, l〉 is written as:

HK = 1
a0

∑
r

d2
r∑

l=1
log(c1,1

cr
) |r, l〉 〈r, l| (A5)

where l represents the degree of degeneracy of the d2
r

modes in the r irreducible representation. The trotteriza-
tion error we discussed in Sec. IV would be proportional
to the maximal eigenvalues of HK .

Recall that βt = a/(g2
t a0) = 1/(g2

Hδτ ). In the small
a0 region, the contribution to the cr in Eq. (A4) are all
dominated by the e2βt terms, which quantify the con-
tribution from the identity group element (j = m = 0).
Taking the limit a0 → 0 for discrete groups would result
in degenerate spectra:

lim
a0→0

1
a0

log c1,1
cr
∼ lim
a0→0

f(r)
a0

e−2βt = 0 (A6)

with f(r = {1, 2}, {1, 3}, {1, 4}) = 8 and f(r = {2, 1}) =
6. However, related to the observable atm2×1

atm1×1
in our study

of Sec. V, one should consider the energy ratios, say:

lim
a0→0

1
a0

log c1,1
c1,2

/(
1
a0

log c1,1
c2,1

)
= 4

3 (A7)

which instead approach a finite value in the a0 → 0
limit. To obtain non-degenerate spectra and have the
above energy ratios fixed, one need to view βt and βs as
parameters, without referring to their dependence on a
and a0 in Eq. (2). The continuous time limit should be
taken while keeping [162]:

lim
a0→0

1
βs

exp(−βt) = g2
d(a)g2

s , (A8)

where g2
d(a) is some finite constant for a given spatial

lattice spacing. It then follows that:

lim
a0→0

1
a0

log c1,1
cr
∼ lim
a0→0

f(r)
a0

e−2βt = f(r)g
2
d(2a)
2a (A9)

For the numerical part of our simulation in Sec. V, we fix
δt = δτ = 1 and the corresponding dimensional spectra
in the small g2

H limit is given by:

1
ca

log(c1,1
cr

) ∼ f(r)
ca

exp
(
− 2
g2
H

)
(A10)

which is the spectra in the above Hamiltonian limit by
identifying exp(− 2

g2
H

(a) )/c = g2
d(2a)/2. This relation also

indicates that for the same spatial lattice spacing mea-
sured, the bare coupling for the the discrete group should
be exponentially suppressed than the bare coupling for a
continuous group.

Appendix B: The approximation of truncating at
leading order commutators in Eq. (38)

In this appendix, we will justify that within the region
of Eq.(39), the BCH operators beyond the leading order
are negligible and therefore Eq. (38) holds.

Define H(k, v) as a commutator with k powers of HK

and v powers of HV . There are at most 4v links in HK

and 2(d − 1)k plaquettes in HV that can contribute to
[HK,V , H(k, v)]. Therefore,

‖[HK , H(k, v)]‖ ≤ 8vg2
H‖l̂2‖‖H(k, v)‖ (B1)

‖[HV , H(k, v)]‖ ≤ 4(d− 1)kg−2
H dU‖H(k, v)‖ (B2)

With r = s = 1, one has [HK , HV ] which can be bounded
with ‖[A,B]‖ ≤ 2‖A‖‖B‖,

‖[HK , HV ]‖ ≤ 2‖HK‖2(d− 1)dUg−2
H

= Nlink4(d− 1)dU‖l̂2‖ (B3)

When trotterizing U(t) to second order, the leading order
(LO) BCH terms in H ′ are given by k + v = 3, with the
next-to-leading (NLO) order having k + v = 5. While
each NLO term has a slightly different bound, they all
satisfy

‖H(k + v = 5)‖ ≤

4 max
{

4(d− 1)g−2
H dU , 8g2

H‖l̂2‖
}2
‖H(k + v = 3)‖

(B4)

The coefficients ck of HNLO ≡ δ4∑
k ck‖H(k, 5− k)‖ are

of O(10−2), with the largest being 1/180 [183]. Therefore
the ratio of HNLO to HLO is

HNLO

HLO
. O(1) |δ|2

(max δ)2 (B5)

where max δ = 1/max
{

4(d− 1)g−2
H dU , 8g2

H‖l̂2‖
}

. When
|δ| ≤ max δ then Eq. (B5) is smaller than O(1). Thus,
the NLO contribution is negligible and the approximation
of Eq. (38) is valid.

Appendix C: The proof of the error bound for
Scheme B

For any δ within the radius |δ| ≤ max δ, one can de-
compose the analytic continuation error:

|λf (δ, g2
H)− λ(δ, g2

H)| ≤ |λf (δ, g2
H)− λf (0, g2

H)|
+|λ(δ, g2

H)− λ(0, g2
H)|+ |λf (0, g2

H)− λ(0, g2
H)| (C1)

The term |λ(δ, g2
H)− λ(0, g2

H)| is simply the trotter error,
bounded by |λ(δ, g2

H) − λ(0, g2
H)| . M/2. We further

impose a constraint |λf (δ, g2
H)−λf (0, g2

H)| ≤M/2 on the
fitting function λf (δ, g2

H).
The last term in Eq. (C1) is bounded by the Euclidean

precision, |λf (0, g2
H)− λ(0, g2

H)| ≤ εB �M . Then there
is a loose bound on |λf (δ, g2

H)− λ(δ, g2
H)|:

|λf (δ, g2
H)− λ(δ, g2

H)| .M + εB (C2)

We finish the proof with the following lemma, which is a
specific case of Lemma 1 in [174].
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Lemma C.1. Let λ(δ), λf (δ) be analytic in the half-disk
region Ω = {δ : Im δ ≥ 0, |δ| ≤ max δ} with the bounds
|λ− λf | ≤ A for any δ ∈ Ω and |λ− λf | ≤ ε on the lower
boundary Im δ = 0. Then for any δ ∈ Ω,

|λ(δ)− λf (δ)| ≤ ε
(
A

ε

)Re 4
π arctan δ

imax δ

(C3)

Proof. Define

w(δ) ≡ 4
π

arctan δ

imax δ (C4)

With δ ∈ Ω, the range of w is the infinite strip S = {w :
0 ≤ Rew ≤ 1}. Define v and h as follows

v ≡ ln A
ε

(C5)

h(δ) ≡ e−vw(δ)

A
[λ(δ)− λf (δ)] (C6)

The function h(δ) is analytic in the half-disk region Ω.
According to the maximum modulus principle, the max-
imum |h(δ)| can only be on the boundary of Ω, which
consists of two parts Im δ = 0 where |λf − λ| ≤ ε and
|δ| = max δ where Rew(δ) = 1.

|h(δ)|Im δ=0 = 1
A
|λ(δ)− λf (δ)|Im δ=0 ≤

ε

A
(C7)

|h(δ)||δ|=max δ ≤ |e−vw(δ)||δ|=max δ

=
( ε
A

)Rew(δ)|δ|=max δ
= ε

A
(C8)

Therefore, |h(δ)| ≤ ε
A for any δ ∈ Ω. Using the definition

C6, we obtain the following upper bound.

|λ(δ)− λf (δ)| = A|h(δ)|evRew(δ) ≤ ε
(
A

ε

)Rew(δ)
(C9)

For δ = iδt, we have Rew(iδt) = 4
π arctan δt

max δ . In
Eq. (C3), replace ε with εB and the loose upper bound
A with (M + εB), as Eq. (C2) suggests, and one gets the
result of Eq. (42).
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