
 

哈密顿量宇称-时间对称性的刻画*
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宇称-时间 (PT)对称性理论描述了具有实能级的非厄密特哈密顿量, 在量子物理学和量子信息科学中

起着重要作用, 是量子力学中活跃且重要的主题. 研究者们对如何描述哈密顿量的 PT对称性的问题给予了

高度关注. 本文基于 PT对称理论和哈密顿量归一化特征函数, 提出了算子 F 的定义. 然后, 在找到算子 CPT

和算子 F 的对易子和反对易子的特性后, 给出了刻画了无量纲情况下哈密顿量的 PT对称性的第一种方法.

进一步研究发现, 该方法还可以量化哈密顿量在无量纲情况下的 PT对称性. 此外, 提出了另一种基于哈密顿

量特征值实部和虚部来描述哈密顿量 PT对称性的方法, 该方法仅用于判断哈密顿量是否具有 PT对称性.
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1   引　言

量子力学中的一个重要理论是宇称-时间 (PT)

对称理论. PT对称理论的研究始于量子力学模型

的研究. 量子力学是数学希尔伯特空间中的态与实

验中可测概率间的联系. 由于概率是实的且是正

的, 所以要求概率所对应的希尔伯特空间上的向量

的范数必须是正的. 由于概率是守恒的, 是不随时

间变化的, 即时间酉演化, 所以希尔伯特空间上的

任意两个不同向量之间的内积在时间上必须是常

数. 所以有了量子力学中任何量子理论都不能违背

的两个基本公理: 1)能级是实的; 2)时间酉演化.

想要满足量子力学的两个基本公理需要限制数学

上的哈密顿量是实的、对称的, 但这不是一般的条

件. 事实上, 物理情形中存在复哈密顿量, 许多研

究者将哈密顿量 H 从实空间推广到了复空间 [1], 这

就有了更一般的条件要求: 哈密顿量是厄密的.

1998年, Bender和 Boettcher[2] 发现具有实谱

ix̂3

H= p̂2+ix̂3 H=

p̂2 + ix̂3 H = p̂2 + x̂2(ix̂δ)

En =
∑∞

n=0
anδ

n δ ⩾ 0

的非厄密哈密顿量具有 PT对称性. 后来 Bender[3]

指出, 因为函数   PT对称, 所以考虑哈密顿量

 是 PT对称的. 通过考虑哈密顿量 

 的 δ展开  , 发现加入微小

摄动的哈密顿量的能级   在  

时, 哈密顿量的能级仍然是实的 [4], 所以引入了 PT

对称理论来描述有实能级的非厄密的复哈密顿量.

拥有实能级的复哈密顿量可以是 PT对称的哈密

顿量, 也可以是厄密的哈密顿量, 但是不能同时都

是. 但是实哈密顿量可以既是 PT对称的哈密顿

量, 又是厄密的哈密顿量. 实际上, 早已有文献说

明非厄密 PT对称哈密顿量已经被用来描述小球

量子系统的基态、场理论和 Lee-Yang边缘奇点

等现象 [5–7]. 文献 [2]描述了 PT对称理论中新的复

哈密顿量不同于经典的和量子的性质, 刻画了非厄

密哈密顿量的能级谱. 文献 [8]说明 PT对称的哈

密顿量的能级谱仍然满足量子力学的两个公理,

可以把 PT对称量子力学视为普通量子力学的复杂

版本.
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关于 PT对称理论及其应用的研究也不断深

入 [9−11]. 文献 [9]研究了 PT对称耦合振子中的二

重跃迁. 文献 [10]讨论了 PT 对称哈密顿量在量子

信息科学中的应用. 利用 PT对称哈密顿量的不等

价实验解决了使用 PT对称哈密顿量执行指数级

快速数据库搜索 (量子计算机不可能完成)与超光

速信息传递的不可能性以及局域操作下纠缠的不

变性等基本信息原理之间的冲突. 充分评估了使

用 PT对称哈密顿量提出的更快的时间演化和状

态识别的方案. 文献 [11]利用 PT对称理论的非线

性性质, 说明在 PT对称性下, 增益和损耗可以为

波导系统提供最佳的和灵活的控制. 这使得 PT对

称性可能有很多物理上的应用, 如光开关、单向无

反射 PT-光学频率下的对称超材料、单模 PT对称

微环激光器、CPA激光器和声子激光器等.

对于哈密顿量的 PT对称性的刻画同样值得

进一步的研究. 2018年, El-Ganainy等 [12] 关注了

非厄密物理学和 PT对称性间得与失的相互作用

导致的新特征. 2020年, Pi等 [13] 说明了复 Berry

相拓扑结构和 PT对称破缺之间的关系. 同年, 俞

上等 [14] 提出了一种基于扩张哈密顿量的弱测量来

表征哈密顿量的 PT对称性的理论和实验方法, 该

方法也可以用来判断哈密顿量 H 是否 PT对称.

本文给出了哈密顿量 PT对称性理论上的其

他刻画方式, 主要结构如下: 第 1节介绍本文用到

的一些基础知识; 第 2节基于 PT对称理论, 定义

与哈密顿量归一化特征函数相关的算子 F, 刻画并

量化哈密顿量的 PT对称性; 第 3节通过使用哈密

顿量能级的实部和虚部, 利用已定义算子 F, 给出

判断哈密顿量 PT对称性的另一种方法; 第 4节总

结本文的研究内容. 

2   基本理论

1) 对易子和反对易子 [15]

[A,B] = AB −BA对易子:   .

{A,B} = AB +BA反对易子:   .

对易子与反对易子通常与一对算子的可交换

性和不可交换性相关, 也与算子的对称性与不可对

称性有关, 可以作为研究量子力学问题时的工具.

2) 给定无量纲哈密顿量的参数范围下的能级

情况 [2,16]

哈密顿量 H 的形式: 

H = p̂2 +m2x̂2 − (ix̂)N ,

N > 0 p̂ x̂

p̂

x̂

N ⩾ 2 N = 2

En = 2n+ 1 1 < N < 2

N < 1

其中 N 是实数 (  ), m 不等于 0,    和   分别

是动量运算符和位置运算符 (在本文中, 可以将  ,

 视为无量纲). 有哈密顿量 H 的一般谱: 哈密顿

量 H 的能级是参数 N 的函数. 值得注意的是: 当

 时, 能级谱是正的也是实的;    对应于

谐振子 , 其能级为   ; 当   时 ,

存在有限的实的正特征值和无限的复特征值共轭

对 , 实特征值的数量减少 , N 从 2减少到 1; 当

N 接近 1时, 基态能量发散; 对于   , 没有实

特征值.

3) 量子力学的两个公理: 能级是实的; 时间酉

演化.

4) PT对称理论 [3]

[H,PT ] = 0

p→ −p x→
−x i → −i p→
−p x→ −x

H = HPT = PTH

PT对称理论核心的想法是用哈密顿量具有时

空反演对称性 (PT对称性)这个较弱的条件代替

量子理论中厄密的哈密顿量. 用 PT对称性代替厄

密性条件时, 如果哈密顿量的对称性没有被打破,

哈密顿量将表现出厄密哈密顿量描述的所有量子

特征. 而且 PT对称的哈密顿量有和 PT算子可交

换的性质, 即有   . PT对称的哈密顿量

在时间反演算子 T 对时间的反演 (  ,   

 ,   )和宇称算子 P 对于空间的反转 ( 

 ,    )的共同作用下是不变的. 但是哈密

顿量 H 既不在宇称算子 P 下不变, 也不在时间反

演算子 T 下不变. 因此对于 PT对称的哈密顿量

H, 有  .

5) 狄拉克 δ函数 [17]

δ(x) = 0, (x ̸= 0)

∫
δ(x)dx

= 1

为了表示物理学中的质点、点电荷、瞬时力等

不连续分布于空间或时间中, 而是集中在空间的某

一点或时间的某一瞬时的抽象模型的密度分布引

入的概念. 数学表示为  ,  

 . 该表达式规定函数在 0点取非零值, 其他点

取 0值. 不规定 δ函数在 0点的大小, 函数值的大

小由第二个积分式决定.

6) 本文所用名词解释

完全 PT对称的哈密顿量: PT对称不破缺的

哈密顿量, 特征值全部为实特征值, 整体随时间做

酉演化.

局部 PT对称的哈密顿量: PT对称破缺的哈

密顿量, 特征值为实特征值和复特征值对, 整体随

时间做非酉演化, 局部随时间做酉演化.
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PT非对称的哈密顿量: PT对称完全破缺的

哈密顿量, 没有实特征值, 只有复特征值对.

哈密顿量的局部 PT对称部分: PT对称破缺

的哈密顿量保持 PT对称的部分, 具有实特征值,

这些实特征值是哈密顿量特征值的一部分. 哈密顿

量的 PT对称部分随时间做酉演化.

哈密顿量的 PT对称破缺部分: PT对称破缺

的哈密顿量不保持 PT对称的部分, 具有复特征值

对, 这些复特征值对是哈密顿量特征值的一部分.

不保持 PT对称的部分随时间做非酉演化.
 

3   利用对易子和反对易子刻画哈密
顿量的 PT对称性

CPT

CTP

本节利用对易子和反对易子, 进一步研究无量

纲的哈密顿量的 PT对称性. 虽然可对角化和非可

对角化哈密尔顿量都可以定义具有正  范数的

希尔伯特空间, 但是只有可对角化哈密顿量的特征

函数是其退化根子空间的基函数, 而非可对角化哈

密顿量对应于退化根子空间的基函数不是哈密顿

量的本征函数 [16]. 哈密顿量非可对角化的情况比

较复杂, 所以为了便于研究, 需要确保哈密顿量是

可对角化的. 又由于正则斯图姆-刘维尔问题的证

明结果, 特征行列式中不存在多个零点 [18] 时, 哈密

顿量 H 的特征函数在希尔伯特空间中是完备的.

因此, 本节的研究基于系统的理想假设: 系统中不

存在零  范数, 即特征行列式中不存在多个零

点. 所以本节研究的哈密顿量是可对角化的, 且其

特征函数在希尔伯特空间中是完备的.
 

3.1    重构宇称算子 P, 哈密顿量 H的空间
表示

ψn En

ϕn

设  是与哈密顿量 H 的特征值  相对应的

特征函数,    是哈密顿量 H 的归一化特征函数.

这意味着:
 

ϕn =
ψn

∥ψn∥
, ∥ϕn∥ = 1. (1)

为了更清晰地表征, 可以根据本征函数重构宇

称算子 P、哈密顿量 H 的空间表示, 分别表示如下 [3]:
 

P (x, y) =

∞∑
n=1

(−1)nϕn(x)ϕn(−y), (2)
 

H(x, y) =

∞∑
n=1

(−1)nEnϕn(x)ϕn(y). (3)

P 2 = 1 Hϕn(x) =

Enϕn(x) En

宇称算子 P 是酉的:    . 且有  

 ,   是哈密顿量 H 的能级.

Hϕn Hϕn = Enϕn =

Anϕn +Bniϕn An +Bni = En ϕn En

An Bn En

特别地,    可以被表示为:   

  (  ),   是能级  所

对应的本征函数.    和   是实数, 表示能级  

的实部和虚部.

f(x) g(x)

厄密量子力学中, 希尔伯特空间内积是具体的 [3].

对于非厄密的哈密顿量, 对 PT空间上的两个函数

 和  的内积的合理猜测是
 

(f, g) ≡
∫

dx[PTf(x)]g(x),

PTf(x) = [f(−x)]∗ f(x) PT这里,   , 有  的  范数为
 

(f, f) ≡
∫

dx[PTf(x)]f(x). (4)

ϕm(x) ϕn(x)

PT

(ϕm, ϕn) = (−1)nδmn m = n

+1

−1

所以哈密顿量 H 的本征函数   和  

有新的内积形式. 然而, 本征函数的   范数不是

正定的:    , 当   . 这是因

为在 PT对称量子力学中, 量子态的矢量空间是由

能量本征函数构造的, 其中一半有范数   , 另一

半有范数  
[3].

 

3.2    引入线性算子 C

在连续对称理论中, 哈密顿量 H 的对称性与

正负能级的数量有关 . 这不利于描述哈密顿量

H 的局部 PT对称和破缺部分. 为了便于描述哈密

顿量 H 的局部 PT对称和破缺部分, 引入了线性

算子 C. 其性质类似于量子场论中的电荷共轭算

符. 还可以根据本征函数重构线性算子 C, 其空间

表示如下:
 

C(x, y) =

∞∑
n=1

ϕn(x)ϕn(y),

C2 = 1 ±1

ϕn(x) PT

Cϕn(x) = (−1)nϕn(x)

线性算子 C 是酉的 :    , 且特征值是   ,

C 表示本征函数   的   范数的符号的测量.

因为 C 是线性算子, 所以有  .

线性算子 C 具有一般的算子表示形式 [3]:
 

C = eQ(x̂,p̂)P.

则有
 

物 理 学 报   Acta  Phys.  Sin.   Vol. 73, No. 4 (2024)    040302

040302-3

http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1


Hϕn = Enϕn = Anϕn +Bniϕn,

CPTHϕn(x) = En[ϕn(−x)]∗ = An[ϕn(−x)]∗

−Bni[ϕn(−x)]∗,

HCPTϕn(x) = En[ϕn(−x)]∗ = An[ϕn(−x)]∗

+Bni[ϕn(−x)]∗.

An +Bni = En An Bn

En

其中,   ;   和  是实数, 分别是能

量级  的实部和虚部 [3].

K
K CPT

令  是一个基于哈密顿量 H 的本征函数的空

间, 可以在空间   上得到函数 f 的   范数 [3,19],

如下所示: 

∥f∥CPT = ⟨f |f⟩CPT =

∫
dfCPT (x)f(x)

=

∫
d[CPTf(x)]f(x), (5)

CPTf(x) =

∫
dyC(x, y)f∗(−y)其中   . 此内积满足

正范数的要求和量子力学中的酉理论. 

3.3    定义与哈密顿量归一化特征函数有关的
算子 F

ϕn En

算子 G 是将复空间中哈密顿量 H 的特征函数

 与其对应能级  的乘积作为列向量的算子. 可

以表示为 

G = (E1ϕ1, E2ϕ2, · · · , Enϕn, · · · ), (6)

CPT ϕn

CPTϕn(x) = [ϕn(−x)]∗

= ϕn(x) En CPTHϕn(x)

= En[ϕn(−x)]∗=Enϕn(x) CPTHϕn(x) =

En[ϕn(−x)]∗

由   算子和哈密顿量 H 的空间重构, 如果  

属于局部 PT对称部分, 则 

 , 且能级   是实的 , 所以  

 , 否则 ,   

 
[3].

 

 

∥G∥ =
√
∥G∥CPT =

∫
[CPTG(x)]G(x)dx

=

∫
[CPT (E1ϕ1(x), E2ϕ2(x), · · · , Enϕn(x), · · · )](E1ϕ1(x), E2ϕ2(x), · · · , Emϕm(x), · · · )dx

=

∫
(E1CPTϕ1(x), E2CPTϕ2(x), · · · , EnCPTϕn(x), · · · )(E1ϕ1(x), E2ϕ2(x), · · · , Emϕm(x), · · · )dx

=

∞∑
n,m=1

EnEm

∫
[CPTϕn(x)]ϕm(x)dx ⩽

∞∑
n=1

EnEn

∫
δn(x)dx =

∞∑
n=1

|En|2.

ϕn(n = 1, 2, · · · , n, · · · ) m = n (ϕn(x), ϕm(x)) =

∫
δn(x)dx=1

ϕn(n = 1, 2, · · · , n, · · · )

若  属于哈密顿量局部 PT对称部分, 当  时, 有  .

若存在  不属于哈密顿量局部 PT对称部分, 则有上式中的不等号.

cn = En/∥G∥ an = An/∥G∥ bn = Bn/∥G∥令  ,   , 及  , 则算子 G 归一化得到算子 F:
 

F = (c1ϕ1, c2ϕ2, · · · , cnϕn, · · · ), (7)

CPT由  算子和哈密顿量 H 的空间重构, 得到
 

CPTF = CPT (c1ϕ1(x), c2ϕ2(x), · · · , cnϕn(x), · · · ) = (c1CPTϕ1(x), c2CPTϕ2(x), · · · , cnCPTϕn(x), · · · ),

FCPT = (c1ϕ1(x), c2ϕ2(x), · · · , cnϕn(x), · · · )CPT.

所以, 算子 F 的 CPT范数为
 

∥F∥CPT =

∫
[CPTF (x)]F (x)dx

=

∫
[CPT (c1ϕ1(x), c2ϕ2(x), · · · , cnϕn(x), · · · )](c1ϕ1(x), c2ϕ2(x), · · · , cmϕm(x), · · · )dx

=

∫
[(c1CPTϕ1(x), c2CPTϕ2(x), · · · , cnCPTϕn(x), · · · )(c1ϕ1(x), c2ϕ2(x), · · · , cmϕm(x), · · · )]dx

=

∞∑
n=1

cncm

∫
[CPTϕn(x)]ϕm(x)dx ⩽

∞∑
n=1

cncn

∫
δn(x)dx =

∞∑
n=1

cncn = 1.
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3.4    刻画哈密顿量的 PT 对称性

PTF PTF = [PT, F ] + {PT, F}.将  分为两部分:    其中 [3], 

[PT, F ] =
1

2
(PTF − FPT ), {PT, F} =

1

2
(PTF + FPT ).

[PT, F ] =
1

2
(PTF − FPT ) = −1

2
(FPT − PTF ) = −[F, PT ], (8)

 

{PT, F} =
1

2
(PTF + FPT ) =

1

2
(FPT + PTF ) = {F, PT}. (9)

[PT, F ] PT {PT, F} PT对易算子  表示  和 F 是不可交换, 反对易算子  表示  和 F 是可交换的.

CPT又因为  算子是酉的, 所以 

∥CPTF∥CPT = ∥F∥CPT ⩽
∑∞

n=1
|cn|2 = 1.

∥{CPT, F}∥CPT ∥[CPT, F ]∥CPT接下来, 将得到  和  的界.
 

∥{CPT, F}∥CPT =
1

4
∥CPTF+FCPT∥CPT =

1

4

∫
d[CPT (CPTF (x)+F (x)CPT )(CPTF (x)+F (x)CPT )]

=
1

4

∫
d[CPT 2F (x)CPTF (x) + CPTF (x)CPT 2F (x) + CPT 2F (x)F (x)CPT + CPTF (x)CPTF (x)CPT ]

=
1

4

(
∥CPTF∥CPT + ∥F∥CPT +

∫
d[F (x)F (x)CPT + CPTF (x)CPTF (x)CPT ]

)
=

1

4

(
∥CPTF∥CPT +∥F∥CPT +

∫
d[CPT−1CPTF (x)F (x)CPT+CPT−1CPTCPTF (x)CPTF (x)CPT ]

)
=

1

4

(
∥CPTF∥CPT +∥F∥CPT +

∫
d[CPT−1[(CPTF (x))F (x)]CPT

+ CPT−1[(CPTCPTF (x))CPTF (x)]CPT ]

)
⩽ 1

4
(∥CPTF∥CPT + ∥F∥CPT

+ ∥CPT−1∥a∥F∥CPT ∥CPT∥a + ∥CPT−1∥a∥CPTF∥CPT ∥CPT∥a) =
1

4
· 4∥F∥CPT ⩽ 1.

CPT CPT 2 = I因为  算子是酉的,   , 所以  ∫
d[CPTF (x)CPT 2F (x)] =

∫
d[CPTF (x)F (x)] = ∥F∥CPT ,∫

d[CPT 2F (x)F (x)CPT ] =

∫
d[F (x)F (x)CPT ].

ϕn CPTf

CPT CPT−1

因为  不总是属于局部 PT对称的部分, 函数 f 不一定是完全 PT对称的, 所以 f 和  不能保证是时

间酉演化的. 由于  算子是酉的,   算子也是酉的, 所以 

∥CPT−1∥a = max
∥x∥a=1

∥CPT−1x∥a
∥x∥a

= 1, ∥CPT∥a = max
∥x∥a=1

∥CPTx∥a
∥x∥a

= 1,

∥ ∗ ∥a其中,    是算子范数. 

∥{CPT, F}∥CPT =
1

4
∥CPTF + FCPT∥CPT

=
1

4

∫
d[CPT (CPTF (x) + F (x)CPT )(CPTF (x) + F (x)CPT )]

=
1

4

∫
d[CPT 2F (x)CPTF (x) + CPTF (x)CPT 2F (x) + CPT 2F (x)F (x)CPT

+ CPTF (x)CPTF (x)CPT ] ⩾ 1

4
(∥CPTF∥CPT + ∥F∥CPT ) =

1

4
· 2∥F∥CPT =

1

2
.
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0 ⩽ ∥[CPT, F ]∥CPT ⩽ 1/2这表明,   . 

∥[CPT, F ]∥CPT

=
1

4
∥CPTF (x)− F (x)CPT∥CPT =

1

4

∫
d[CPT (CPTF (x)− F (x)CPT )(CPTF (x)− F (x)CPT )]

=
1

4

∫
d[CPT 2F (x)CPTF (x)− CPTF (x)CPT 2F (x) + CPT 2F (x)F (x)CPT − CPTF (x)CPTF (x)CPT ]

⩽ 1

4
(∥CPTF∥CPT +

∫
d[F (x)F (x)CPT ]) =

1

4
(∥CPTF∥CPT +

∫
d[CPT−1CPTF (x)F (x)CPT ])

=
1

4
(∥CPTF∥CPT +

∫
d[CPT−1((CPTF (x))F (x))CPT ])⩽ 1

4
(∥CPTF∥CPT +∥CPT−1∥a∥F∥CPT ∥CPT∥a)

=
1

4
· 2∥F∥CPT ⩽ 1

2
. (10)

 

 

 

∥[CPT, F ]∥CPT

=
1

4
∥CPTF − FCPT∥CPT =

1

4

∫
d[CPT (CPTF (x)− F (x)CPT )(CPTF (x)− F (x)CPT )]

=
1

4

∫
d[CPT 2F (x)CPTF (x)− CPTF (x)CPT 2F (x) + CPT 2F (x)F (x)CPT − CPTF (x)CPTF (x)CPT ]

=
1

4

(∫
d[CPT 2F (x)CPTF (x)− CPTF (x)F (x)]−

∫
d[CPT−1((CPTCPTF (x))CPTF (x))CPT

− CPT−1((CPTF (x))F (x))CPT ]

)
=

1

4

(∫
d[CPT 2F (x)CPTF (x)− CPTF (x)F (x)]

−
∫

d[CPT−1((CPTCPTF (x))CPTF (x)− (CPTF (x))F (x))CPT ]

)

=
1

4

(∫
d[F (x)CPTF (x)− CPTF (x)F (x)]−

∫
d[CPT−1(F (x)CPTF (x)− (CPTF (x))F (x))CPT ]

)
⩾ 0.

这意味着: 

0 ⩽ ∥[CPT, F ]∥CPT ⩽ 1/2. (11)

I(CPT, F ) J(CPT, F )根据  ,   的范围和与交换

性的联系的特性, 则有:

I(CPT, F ) = ∥[CPT, F ]∥CPT
  可以表示 PT对

称破缺部分;

J(CPT, F ) = ∥{CPT, F}∥CPT
  可以表示 PT

对称部分.

I(CPT, F ) = ∥[CPT, F ]∥CPT = 0

ϕn

若  , 表示所有

 属于 PT对称部分, 即哈密顿量 H 是全局 PT

对称的.

I(CPT, F ) = ∥[CPT, F ]∥CPT ̸= 0 ϕn若   , 表明  

属于 PT对称破缺部分, 即哈密顿量 H 是 PT 对

称破缺的.

可以得到如下结论:

N < 1

I(CPT, F ) =

∥[CPT, F ]∥CPT

1)当   , 哈密顿量 H 的能级谱中没有实

特征值, 不满足量子力学的两个公理. 此时哈密顿

量 H 是 PT对称完全破缺的, 可以用 

 表示.

1 < N < 2

J(CPT, F ) =

∥{CPT, F}∥CPT I(CPT, F ) =

∥[CPT, F ]∥CPT

2)当   , 哈密顿量 H 的能级谱中有

有限个正的实特征值和无限个复共轭特征值对, 哈

密顿量 H 是 PT对称破缺的, 可以用 

 表示 PT对称部分,   

  表示 PT对称破缺部分.

N ⩾ 2

J(CPT, F ) = ∥{CPT, F}∥CPT

3)对于   , 哈密顿量 H 的能级谱的特征

值都是正的实特征值, 哈密顿量 H 是全局 PT对

称的, 可以用  表示.
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I(CPT, F ) + J(CPT, F ) = ∥[CPT, F ]∥CPT + ∥{CPT, F}∥CPT =
1

4

∫
d[CPT 2F (x)CPTF (x)

− CPTF (x)CPT 2F (x) + CPT 2F (x)F (x)CPT − CPTF (x)CPTF (x)CPT ]

+
1

4

∫
d[CPT 2F (x)CPTF (x) + CPTF (x)CPT 2F (x) + CPT 2F (x)F (x)CPT

+ CPTF (x)CPTF (x)CPT ] =
1

2

∫
d[CPT 2F (x)CPTF (x) + CPT 2F (x)F (x)CPT ]

=
1

2
(∥CPTF∥CPT +

∫
d[CPT 2F (x)F (x)CPT ]) =

1

2
(1 + ∥CPT−1∥a∥F∥CPT ∥CPT∥a) = 1.

I(CPT, F ) J(CPT, F )这意味着  和  是守恒的, 且当

F 为全局 PT对称的取最后一个等号, 这与哈密顿

量 H 的破缺部分和 PT对称部分是守恒的相一致.

CPT

CPT

En

ϕn

基于上述讨论 , 建立了描述哈密顿量 H 的

PT对称性的一种方式. 该方法下, 哈密顿量 H 的

局部 PT对称性与哈密顿量 H 与  算子的可交

换性有关 , 哈密顿量 H 的破缺部分与哈密顿量

H 与  算子的不可交换性有关. 该方法可以量

化哈密顿量 H 的局部 PT对称部分和破缺部分,

而不是仅仅判断哈密顿量 H 是否是全局 PT对称

的. 对于给定的哈密顿量 H, 可以得到特征值  

和相应的特征函数   , 以及算子 F 的定义, 进而

得到哈密顿量 H 的 PT对称部分和破缺部分. 

4   利用哈密顿量特征值的实部和虚部
判断哈密顿量的 PT对称性

对于仅仅需要区分哈密顿量 H 是否是全局 PT

对称的情况, 本节给出另一种较为简捷的刻画方

式. 该方法同样基于上述定义中的算子 F, 通过利

用哈密顿量 H 的实部和虚部, 刻画哈密顿量 H 的

PT对称性. 

4.1    利用CPT算子和F算子表示哈密顿量
的实部和虚部

CPT

ReF ImF
本节定义另外一组特殊的算子, 使其   范

数为上一节算子 F 的实部  和虚部  的倍数.

由算子 F 和哈密顿量 H 归一化特征函数的密切关

系可以反映出哈密顿量 H 的实部或者虚部的情况. 

CPTF − F

= [(a1 − b1i)CPTϕ1, (a2 − b2i)CPTϕ2, · · · ,

(an − bni)CPTϕn, · · · ]− [(a1 + b1i)ϕ1,

(a2 + b2i)ϕ2, · · · , (an + bni)ϕn, · · · )].

ImF =
1

4
∥(CPTF − F )∥CPT

bn

En

令   , 可以表示算

子 F 的虚部的平方和. 由系数  的构造, 可以进而

得到哈密顿量 H 的特征值  的虚部的平方和.
 

 

1

4
∥(CPTF − F )∥CPT =

1

4

∞∑
n=1

∥(an − bni)ϕn − (an + bni)ϕn∥CPT

=
1

4

∞∑
n,m=1

∫
d[CPT ((an − bni)CPTϕn − (an + bni)ϕn))((am − bmi)CPTϕm − (am + bmi)ϕm)]

=
1

4

∞∑
n,m=1

∫
d[((an + bni)ϕn − (an − bni)CPTϕn)((am − bmi)CPTϕm − (am + bmi)ϕm)]

=
1

4

∞∑
n,m=1

∫
d[((an + bni)ϕn − (an − bni)CPTϕn)((am − bmi)CPTϕm − (am + bmi)ϕm)]

=
1

4

∞∑
n,m=1

∫
d[(an + bni)(am − bmi)ϕnCPTϕm − (an + bni)(am + bmi)ϕnϕm

− (an − bni)(am − bmi)CPTϕnCPTϕm + (an − bni)(am + bmi)CPTϕnϕm]
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⩽ 1

4

∞∑
n=1

(|an|2 + |bn|2)
∫

dδ − (|an|2 − |bn|2 + 2anbni)
∫

dδ − (|an|2 − |bn|2 − 2anbni)
∫

dδ

+ (|an|2 + |bn|2)
∫

dδ =
∞∑

n=1

|bn|2 ⩽
∞∑

n=1

|cn|2.

另一方面, 

CPTF + F = [(a1 − b1i)CPTϕ1, (a2 − b2i)CPTϕ2, · · · , (an − bni)CPTϕn, · · · ]

+ [(a1 + b1i)ϕ1, (a2 + b2i)ϕ2, · · · , (an + bni)ϕn, · · · )].

ReF =
1

4
∥(CPTF + F )∥CPT an

En

令  , 可以表示函数 F 的实部的平方和. 由系数  构造, 可以进而得到哈密

顿量 H 的特征值  的实部的平方和. 

1

4
∥(CPTF + F )∥CPT =

1

4

∞∑
n=1

∥(an − bni)ϕn + (an + bni)ϕn∥CPT

=
1

4

∞∑
n,m=1

∫
d[CPT ((an − bni)CPTϕn + (an + bni)ϕn))((am − bmi)CPTϕm + (am + bmi)ϕm)]

=
1

4

∞∑
n,m=1

∫
d[((an + bni)ϕn + (an − bni)CPTϕn)((am − bmi)CPTϕm + (am + bmi)ϕm)]

=
1

4

∞∑
n,m=1

∫
d[((an + bni)ϕn + (an − bni)CPTϕn)((am − bmi)CPTϕm + (am + bmi)ϕm)]

=
1

4

∞∑
n,m=1

∫
d[(an + bni)(am − bmi)ϕnCPTϕm + (an + bni)(am + bmi)ϕnϕm

+ (an − bni)(am − bmi)CPTϕnCPTϕm + (an − bni)(am + bmi)CPTϕnϕm]

⩽ 1

4

∞∑
n=1

(|an|2 + |bn|2)
∫

dδ + (|an|2 − |bn|2 + 2anbni)
∫

dδ + (|an|2 − |bn|2 + 2anbni)
∫

dδ

+ (|an|2 + |bn|2)
∫

dδ =
∞∑

n=1

|an|2 ⩽
∞∑

n=1

|cn|2.

所以, 

∥CPTF∥CPT =

∫
d(CPTCPTF (x))CPTF (x) =

∞∑
n,m=1

∫
d[((an + bni)ϕn(x))((am − bmi)[ϕm(−x)]∗)]

=
1

4

∞∑
n,m=1

∫
d[4((an + bni)ϕn(x))((am − bmi)[ϕm(−x)]∗)] = 1

4

∞∑
n,m=1

∫
d[4anamϕn(x)[ϕm(−x)]∗

+ 4bnbmϕn(x)[ϕm(−x)]∗] = 1

4
∥CPTF + F∥CPT +

1

4
∥(CPTF − F )∥CPT .

表明算子 F 的实部和虚部的和是守恒的. 这与确

定的哈密顿量 H 的实部和虚部是守恒的相一致.
 

4.2    判断哈密顿量的 PT 对称性

ImF = 0 ϕn En

ϕn

若  , 所有本征函数  的能级  仅有

实部, 是实数. 此时全部本征函数  属于 PT对称

ImF ≠ 0 ϕn En

ReF = 0 ϕn

En ϕn

部分, 表明哈密顿量 H 是全局 PT对称的, 反之亦

然. 若   , 表明存在本征函数   的能级  

是具有虚部的, 是复数. 表明此时的哈密顿量 H 是

PT对称破缺的, 反之亦然. 若   , 所有  

的能级  只有虚部,   必定属于 PT对称完全破

缺的部分, 表明哈密顿量 H 是 PT非对称的, 反之

不然, 是充分不必要条件. 
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5   结　论

J(CPT, F ) I(CPT, F ) ReF
ImF

ImF
J(CPT, F )

ReF

本文给出了刻画哈密顿量 H 的 PT对称性的

两种方式 :  1)    ,    ;  2)    ,

 . 由于实数和虚数在实验上是可探测的, 后者

比前者可能更容易操作. 若仅关注哈密顿量 H 是

否是 PT对称破缺的, 而不关注破缺部分的量化,

使用   的刻画方式更简捷. 但前者在理论上可

能更好, 因为使用  可以量化哈密顿量的

局部 PT对称部分, 而  不能用于量化哈密顿量

的局部 PT对称部分.

ReF J(CPT, F )

ImF
J(CPT, F )

I(CPT, F )

ImF I(CPT, F )

若哈密顿量 H 是全局 PT对称的, 只需要关

注实部  和 PT对称部分  . 若哈密顿

量 H 是 PT对称破缺的, 而第二种刻画方式只需

要关注   , 对于第一种刻画方式需要关注局域

PT对称部分   和 PT对称破缺部分

 . 若哈密顿量 H 是完全破缺的, 可以仅

关注   和 PT对称破缺部分   , 如表 1

所列.
  

表 1    比较刻画哈密顿量 H PT对称性的两种方法
Table 1.    Compare two depiction methods of PT-symme-

try of Hamiltonian H.

第一种方法 第二种方法

H是全局PT对称 J(CPT, F) ReF

H是局部PT对称 J(CPT, F), I(CPT, F) ImF

H是PT对称完全破缺 I(CPT, F) ImF
 

I(CPT, F )

ReF ReF

需要注意的是, 当想要判断哈密顿量 H 是否

是完全 PT对称破缺时, 需要关注  是否

为 0, 而不是   是否为 0, 因为   不利于区分

ϕn En

ReF

N ⩽ 1

局部 PT对称性和 PT对称完全破缺性. 若哈密顿

量 H 是 PT非对称的, 则存在哈密顿量 H 的本征

函数  的能级  是复数, 但不一定是纯虚数, 所

以   不一定为 0. 由于参数 N 与哈密顿量 H 能

级谱的关联, 此区别主要体现于参数  的情形.
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Abstract

ϕn ϕn

The theory of PT-symmetry describes the non-hermitian Hamiltonian with real energy levels, which means

that the Hamiltonian H is invariant neither under parity operator P, nor under time reversal operator T, PTH

= H. Whether the Hamiltonian is real and symmetric is not a necessary condition for ensuring the fundamental

axioms of quantum mechanics: real energy levels and unitary time evolution. The theory of PT-symmetry plays

a significant role in studying quantum physics and quantum information science, Researchers have paid much

attention to how to describe PT-symmetry of Hamiltonian. In the paper, we define operator F according to the

PT-symmetry theory and the normalized eigenfunction of Hamiltonian. Then we first describe the PT-symmetry

of Hamiltonian in dimensionless cases after finding the features of commutator and anti-commutator of operator

CPT  and  operator  F.  Furthermore,  we  find  that  this  method  can  also  quantify  the  PT-symmetry  of

Hamiltonian in dimensionless case. I(CPT, F) = ||[CPT, F]||CPT represents the part of PT-symmetry broken,

and J(CPT, F) = ||[CPT, F]||CPT represents the part of PT-symmetry. If I(CPT, F) = ||[CPT, F]||CPT = 0,

Hamiltonian H  is  globally  PT-symmetric.  Once  I(CPT, F)  =  ||[CPT, F]||CPT ≠ 0,  Hamiltonian H  is  PT-

symmetrically broken. In addition, we propose another method to describe PT-symmetry of Hamiltonian based

on real and imaginary parts of eigenvalues of Hamiltonian, to judge whether the Hamiltonian is PT symmetric.

ReF = 1/4||(CPTF+F)||CPT represents the sum of squares of real part of the eigenvalue En of Hamiltonian H,

ImF = 1/4||(CPTF–F)||CPT is the sum of imaginary part of the eigenvalue En of a Hamiltonian H. If ImF = 0,

Hamiltonian H is globally PT-symmetric. Once ImF ≠ 0, Hamiltonian H is PT-symmetrically broken. ReF = 0

implies that Hamiltonian H is PT-asymmetric, but it is a sufficient condition, not necessary condition. The later

is easier to realize in the experiment, but the studying conditions are tighter, and it further requires that CPT

 (x)  =    (x).  If  we  only  pay  attention  to  whether  PT-symmetry  is  broken,  it  is  simpler  to  use  the  latter

method.  The former method is  perhaps better  to quantify the PT-symmetrically  broken part  and the part  of

local PT-symmetry.

Keywords: Hamiltonian, PT-symmetry, commutator, normalized feature functions
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