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Abstract. We present our program for the development of quantum informational concepts
in relativistic systems in terms of the unequal-time correlation functions of quantum fields.
We employ two formalisms that provide the basis for further developments. (i) The Quantum
Temporal Probabilities (QTP) Method for quantum field measurements and (ii) the Closed-
Time-Path (CTP) formalism for causal time evolutions. We present the main ideas of QTP and
we show how it relates to the CTP formalism, allowing us to express concepts of measurement
theory in terms of path-integrals.We also present many links of our program to non-equilibrium
quantum field theories. Details can be found in a recent paper by the authors [1].

1. Introduction

Quantum information theory (QIT) is a quantum extension of classical information theory.
It has identified new and powerful informational resources for quantum computing, quantum
communication, quantum metrology and more. Despite the broad domain of applicability of
quantum information technologies, our understanding of QIT is far lagging behind the fully
developed quantum theory of nature, namely, quantum field theory (QFT). QFT which has
proven its validity and worth in the full range of physical sciences from particle-nuclear physics
to atomic, optical and condensed matter physics, from quarks, nucleons to black holes and
the early universe. So far, quantum information theory has been largely developed in the
context of non-relativistic quantum mechanics, which is a small corner of full fledged QFT.
It is ostensibly inadequate when basic relativistic effects like locality, causality and spacetime
covariance, need be accounted for. Recognizing the importance of these relativistic effects and
seeking to understand the essential roles they play in quantum information ushered in the
emergent field of relativistic quantum information (RQI) [2].

1.1. QITs not based on QFT are incomplete

QFT satisfies the principles of quantum theory, but in addition, it is constrained by axioms
that govern the effects of the spacetime structure on the causal behavior of quantum systems.
Such axioms are largely missing from current quantum information theories. The latters’ notion
of causality, based on the sequence of successive operations on a quantum system, lacks a
direct spacetime representation. As a result, current QITs cannot make crucial relativistic
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distinctions, for example, between timelike and spacelike correlations, they do not describe
real-time signal propagation, and they ignore relativistic constraints on physical operations. A
genuinely relativistic QIT must overcome such limitations [1, 3].

Furthermore, experiments that study causal information transfer or gravitational interaction
in multi-partite quantum systems require a QFT treatment of interactions for consistency. A
non-QFT description is likely to misrepresent either the theoretical modeling of a system or
the physical interpretation of the results. This point is crucial for tests of foundational issues of
quantum theory invoking quantum information concepts such as entanglement and decoherence.
This is especially so for quantum information experiments in space [4,5] and for experiments
designed to explore quantum effects from gravity [6-9].

The introduction of the key concepts of spacetime covariance and causality in QIT forces us
to address problems that originate from the foundations of QFT. These include the following.

Quantum States. In set-ups that involve more than two quantum measurements, the standard
state-update rule implies that the quantum state is genuinely different when recorded from
different Lorentz frames [10]. There is no problem with the theory’s physical predictions that
are expressed in terms of (multi-time) probabilities [11]. However, the usual notions of quantum
information (entropy, entanglement) are defined through the quantum state, and as such, they
are ambiguous in relativistic measurement set-ups.

Local Operations. 1t is a challenging problem to formalize the notion of a localized quantum
system in QFT. There are powerful theorems demonstrating that even unsharp localization in
a spatial region leads to faster than light signals [12,13]. Hence, expressing the crucial quantum
informational notion of a local operation in terms of spatial localization can lead to conflicts
with relativistic causality.

Projective Measurements. There are strong arguments that ideal (i.e., projective) measurements
in QFT are incompatible with causality [14,15], essentially because they change the quantum
state over a full Cauchy surface. However, existing quantum information notions (including
the very notion of a qubit) presuppose maximal extraction of information through ideal
measurements.

We contend that the development of consistent relativistic QIT requires a measurement theory
that (i) respects causality and locality, and (ii) it is expressed in terms of quantum fields.
Furthermore, this measurement theory ought to be practical, i.e., it must provide non-trivial
predictions for experiments that are accessible now or in the near future.

1.2. Past work on QFT measurements

The earliest discussion of measurements on quantum fields was by Landau and Peierls [17],
who derived an inequality for the localization of particles. Bohr and Rosenfeld criticized their
work [18], and proved that the measurement of definite field properties requires a macroscopic
test particle: the particle’s charge () must be much larger than the electron charge e.

The first explicit model for QFT measurements was Glauber’s photodetection theory [19,20]
that provided a foundation for the then nascent field of quantum optics. This theory involves
unnormalized probabilities for photon detection in terms of the electric field operators E(x) and
the field’s quantum state |¢)). The joint probability density P(z1,xs,...,x,) for the detection
of a photon at each of the spacetime points x1, z9,...,x, is given by

P(z1,29,...,2n) = Y|ET (@) ET) (2) ... EO) (@) EP) (@) ... EF) (@) ED) ()0, (1)

where E() is the positive-frequency component and E(7) the negative-frequency component of
the projected field vector field n-E(x). The probability density (1) is essential for the definition
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of high-order correlations of the electromagnetic field, and consequently, for the description of
phenomena like the Hanbury-Brown-Twiss effect, photon bunching and anti-bunching [21].

Glauber’s theory has been highly successful, but its scope is limited in that it only applies to
the quantum electromagnetic field. Furthermore, it may face causality problems in set-ups that
involve the propagation of photons over long distances, because the field splitting into positive
and negative frequencies misrepresents retarded propagation.

Perhaps the simplest models for QFT measurements can be constructed using the notion
of an Unruh-DeWitt (UDW) detector [22,23]. UDW detectors first appeared in the study of
the Unruh effect, where they were employed in order to demonstrate the effects of acceleration
on the quantum field vacuum. In a UDW detector, the quantum field is coupled to a point-
like system that moves along a pre-determined spacetime trajectory. UDW detectors have
found several applications—see, for example, Ref. [24]—besides their use as models for QFT
measurements [25]. However, they are limited in that the detector degrees of freedom are not
described by a QFT, a problem that may lead to non-causal signals in set-ups that involve
multiple detectors.

Measurement models have also been constructed in the context of algebraic QFT [26-29].
The idea is to consider a measured system and a probe / apparatus that are both described by a
QFT. The two field systems start separated and interact within a bounded spacetime region. In
Minkowski spacetime, this interaction is described by an S matrix, and it leads to correlations
between observables on the system and records on the probe. Then, one defines probabilities for
the latter in terms of operators that are well defined on the probe’s Hilbert space. This approach
is fully consistent with QFT, it works for curved spacetimes even in absence of asymptotic in-
out regions, but it has not yet been developed into a practical tool capable of concrete physical
predictions.

1.3. The Quantum Temporal Probabilities approach

Here we present an approach toward QFT measurements in terms of the Quantum Temporal
Probabilities (QTP) method [30-33]. The name of this method is due to its original motivation
to provide a general framework for temporally extended quantum observables [34—-36].

The key idea in QTP is to distinguish between the time parameter of Schrodinger’s equation
from the time variable associated to particle detection [37,38]. The latter is then treated as
a macroscopic quasi-classical variable associated to the detector degrees of freedom. A quasi-
classical variable is a coarse-grained quantum variable that satisfies appropriate decoherence
conditions, so that its time evolution can be well approximated by classical equations [39,40].
Hence, the detector admits a dual description: in microscopic scales it is described by quantum
theory, but its macroscopic records are expressed in terms of classical spacetime coordinates.

In QTP the detector is also described in terms of quantum fields. Glauber’s detection theory
and Unruh-DeWitt detector models emerge from QTP as limiting cases, the former in the limit of
very short detector time-scales, the second in the limit of very short detector length-scales [1]. In
comparison to the algebraic QFT approaches to measurements, QTP provides the same results
to leading order in perturbation theory, but allows for the definition of observables for the
spacetime coordinates, and it is embedded within a nuanced analysis of the quantum-classical
transition in the detector.

A key result in QTP is that probabilities for measurements are expressed in terms of
specific unequal-time field correlation functions. Such correlation functions are a staple of
QFT. Powerful methods have been developed for their calculation and the analysis of their
properties. The specific correlation functions relevant to QTP appear in the Closed-Time-Path
(CTP) (Schwinger-Keldysh or ‘in-in’) formalism [41-46]. The CTP formalism improves over
the S-matrix (in-out formalism), in that it allows for causal equations of motion, and it has
found many applications in nuclear-particle process [47-49], early universe cosmology [50,51],
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and condensed matter physics [52,53]. We demonstrate the link between the two formalisms,
and this allows us to translate between the concepts of quantum measurement theory and of
quantum field theory.

In QTP, unequal-time correlation functions contain all information about measured
probabilities. In particular, the detection probability for N events is a linear functional of
a specific 2N-unequal time correlation function. This has the following implication. For
N = 2, probabilities of measurement outcomes are related to bipartite entanglement. Hence,
all information about bipartite entanglement is contained in the field four-point functions. An
analysis at the level of the correlation functions brings us closer to the main ideas of non-
equilibrium QFT. Indeed, we can establish a natural relation between QTP and non-equilibrium
formalisms that are based on CTP. QTP probabilities function as a registrar of information for
the quantum field, they keep track of how much information resides in which level of correlation
functions, and how this information flows from one level to the other during dynamical evolution.

We believe that the scheme presented here has good potential to systemize quantum
information in QFT, and to identify the parts of this information that is relevant to the field’s
statistical, stochastic and thermodynamic behavior. Hence, this formalism could provide a
concrete method for defining quantum information in QFT via the correlation hierarchy, as
has been proposed in Ref. [54]. Such a definition would be very different from definitions of
information in standard QIT that is based on the properties of the single-time quantum state.

2. Probabilities for QFT measurements

We first explain the need for a QFT measurement theory, and then present the QTP approach
to such measurements. The key property of the QTP probability formula is that the probability
density for n measurement events is a linear functional of a specific 2n unequal-time correlation
function.

2.1. Why we need a QFT measurement theory

Most current applications of QFT involve the S-matrix formalism. For example, S-matrix
amplitudes determine scattering cross-sections; S-matrix poles determine the spectrum of
composite particles and decay rates. S-matrix theory is defined for set ups with a single state
preparation and to a single detection event in the asymptotic future. This gives the impression
that there is no need for an elaborate measurement theory.

This impression is wrong, because there are at least two cases, where the S-matrix formulation
of QFT does not suffice. First, in quantum optics, we need joint detection probabilities in
order to describe phenomena like photon bunching and anti-bunching [21]. In non-relativistic
physics, joint probabilities of this type involve the use of the state-update rule, i.e., quantum
state reduction. However, a universal rule for reduction is missing in QFT. In practice, joint
detection probabilities relevant to experiments are constructed through heuristic arguments, for
example, as, for example, in Glauber’s photodetection models. Planned experiments in deep
space [4,5] that involve measurement of quantum optical correlations at long distances arguably
require a first-principles construction of joint probabilities.

Second, S-matrix is insufficient whenever we are interested in expectation values of physical
quantities at finite moments of time, rather than scattering amplitudes [44,45]. Examples include
the description of quantum transport in many-body systems [46-48], and the backreaction of
quantum fields on the spacetime metric in cosmological and black hole spacetimes [50, 51].
Powerful functional techniques, like the Schwinger-Keldysh method, have been developed to
deal with such problems.

2.2. The Quantum Temporal Probabilities Approach: main ideas
The key features of the QTP approach to measurements on quantum fields are the following.
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(i) The apparatus is fundamentally described in terms of QFT. In particular, the interaction
between the measured system and the apparatus is described by a Hamiltonian that is a
local functional of quantum fields.

(ii) The measurement apparatus is also assumed to exhibit classical behavior at the macroscopic
level. According to the decoherent histories approach to emergent classicality [39,40], the
apparatus pointer is a highly coarse-grained observable, so that histories for measurement
outcomes satisfy appropriate decoherence conditions.

(iii) All measurements events are localized in space and in time. For example, a particle detector
has a fixed location in a laboratory, and it records an event at a specific moment of
time. Both the locus and the time of detection can be random variables. Hence, physical
predictions are expressed in terms of probability densities

P(wlvql;anQQw'-7xn7QH)7 (2)

for multiple detection events. In Eq. (2), x; stand for spacetime points, ¢; stand for any
other recorded observable and P is a probability density with respect to both z; and ¢;.

2.8. Detection probability for a single detector

Consider a QFT on Minkowski spacetime M: it is described by Heisenberg-picture fields QAST (x)
that are defined on a Hilbert space F. The Hilbert space carries a unitary representation of the
Poincaré group, and The index r runs over spacetime and internal indices.

Let K be the Hilbert space associated to an apparatus. We assume that the apparatus
follows a world tube W in Minkowski spacetime, and that its size is much larger than the
scale of microscopic dynamics. We introduce a field-apparatus coupling with support in a small
spacetime region around a point z. The finite spacetime extent of the interaction mimics the
effect of a detection record localized at x. Working in the interaction picture, we express the
coupling term as

7, = j Fo(y)Caly) ® J2(y), (3)

where C’a(:v) is a composite operator on F that is local with respect to the field QET(.%) and a
runs over spacetime and internal indices. The current operators ja(x) are defined on K. The
switching functions F,(y) are dimensionless. They vanish outside the interaction region and
they depend on the motion of the apparatus. The spacetime volume associated to a switching
function is v = §dY F2(y).

The switching function renders the interaction term (3) Poincaré non-covariant. The use of
switching functions originates from von Neumann’s modeling of quantum measurements [55],
where it serves to localize the system-apparatus interaction in time. Certainly, in a model with
a switching function time is not a random variable. A switching function is not needed in QTP,
but we employ it in ths work, because it is computationally easier, and it leads to the same
expressions for probabilities to leading order in perturbation theory.

The S-matrix associated to Eq. (3) is Sy = T exp[—i {d*yFy.(y)Ca(y) ® J*(y)], where T
stands for time ordering. To leading order in the interaction,

Sy =1—iV,. (4)

Let the initial state of the system be |¢)) € F and the initial state of the apparatus be [2). A
particle record appears if the detector transitions from |Q2) to its complementary subspace K'.
Once the transition occurred, we measure a property of the particle through a pointer observable
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q. The latter is described by a family of positive operators II(g), such that 2 II(q) = I—|QXQ|.
The pointer observable is coarse-grained, and we take it to stationary with respect to the the
self-dynamics of the detector. This is necessary for the record to be preserved after the end of
the measurement.

Then, we compute the probability Prob(zx, ¢) that the detector is excited and records a value

q7
Prob(z, g) = (, IS ® T1(g)]S.]w, ) (5)

To leading order in perturbation theory

Prob(z,q) = fd4y1d4y2Fm(yl)Fz(yz)Gab(yl,y2)<9|f“(y1)ﬂ(Q)jb(y2)|Q>, (6)
where

Gap(,2') = (|Cal@)Cy(a") ), (7)

is a correlation function for the composite operator.

The probability Prob(z, ¢) of Eq. (6) is not a density with respect to x, because x appears as
a parameter of the switching function. We define an unnormalized probability density W (z, q)
with respect to = by dividing Prob(z, ¢) with the effective spacetime volume v,

W (z,q) = v~ 'Prob(z, q). (8)

The definition (8) is well justified in classical probability theory, but not in quantum theory.
It combines probabilities defined with respect to different experimental set-ups, i.e., different
switching functions. Nonetheless, Eq. (8) can be derived as a genuine probability density
through the QTP method [1,32], to leading order in the field-apparatus coupling.

In the QTP derivation, the interaction is present at all times, as the Hamiltonian is time-
translation invariant. The functions F,(y) are not interpreted as switching functions of the
interaction, but they describe the sampling of the spacetime point. Hence, the spacetime
volume v is a measure of coarse-graining, i.e., of the inaccuracy in the determination of the
spacetime point. This point is crucial for a rigorous derivation, because probabilities can only
be defined for histories that satisfy a decoherence condition, for which coarse-graining is a
prerequisite. In principle, a preferred value of v that corresponds to the coarse-graining scale
at which probabilities are well-defined is determined from first-principles—see [30] for explicit
calculations in simple models. This means that not all sampling functions F,(y) are acceptable:
their support cannot be made arbitrarily small. Such constraints cannot be seen in the derivation
that we presented here.

To further proceed, we assume that the detector carries a representation of the spacetime
translation group with generators p*. We note that the state |2) is not the Poincaré invariant
vacuum; it defines a preferred reference system at which its center of momentum has zero three-
momentum.

We choose a reference point xg in the detector’s world-tube, and we write

A~

Ja(y) _ e—iﬁ.(y—xo)ja(xo)eiﬁ(y—xo)' (9)

It is convenient to take |Q2) to be approzimately translation invariant, i.e., to require that

fd4xe(x’)j“(x’)]Q> ~ f d*zFy(2)e P (@ =20) jo (20|, (10)
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The idea is that the apparatus is prepared in an initial state that is homogeneous at the length
scales that correspond to position sampling and approximately static at the time scales that
correspond to time sampling. With this assumption, (Q|J%(y1)II(q)J"(12)|2) = R*®(y2 — y1, q),
where

R%®(z,q) := {a, q|e? @b, ¢) (11)

is the detector kernel, expressed in terms of the vectors |a, q) = \/ﬁ(q)ja (20)|2). Note that the
Fourier transform of the detector kernel, R%®(¢,q) = Sd4me_15'xRab(x, q) is given by

R™(€,q) = (2m)'e* " a, | Eg|b, ¢, (12)

where Eg = 0%(p — £) is the projector onto the subspace with four-momentum &~
The simplest switching functions F, are Gaussians, of the form Fy(y) = f(x — y), where

1

f(x) = GXP[—@@?O)Q - ﬁXQ]v (13)

where d; is the temporal accuracy and d, is the special accuracy of the detector. These quantities
are macroscopic, because they correspond to the sampling of the detection event.
Gaussian switching functions satisfy the identity

s = 12 (55 ) Vi - o), (14)

The spacetime volume v of the interaction region is v = 726;65. We note that the function
o(x) := 1 f%*(z) is a normalized probability density on M. Then, we write

W(x,q) = Jd%c'a(x — 2P/, q), (15)
where

P(z, Jd‘ly\f )R (y,q)Gap(z — %y,x + %y), (16)

The probability distribution W (z, ¢) is the convolution of P(z, q) with the probability density
o(x) that accounts for the accuracy of our measurements. If P(z,q) is non-negative and the
scale of variation with respect to x is much larger than both §; and d,, we can treat P(z,q) as
a fine-grained version of W (z, q) and use this as the probability density for detection.

The kernel R%(z, q) is typically characterized by a correlation length-scale £ and a correlation
time-scale 7, such that R%®(z,q) ~ 0 if [t(§)] » 7 or |[x(¢)| » £. Both scales ¢ and 7 are
microscopic and characterize the constituents of the apparatus and their dynamics. If £ « 4§,
and 7 « &, then R®(x,q)/f(z) ~ R%®(z,q) and we obtain an expression for the probability
density P(z,q) that is sampling-independent

1

- 1y,ar: + —y). (17)

P(z,q) = Jd“yR“b(y, 0)Gap(w = 5 5

The probability densities (17) are not normalized to unity. In general, the total probability of
detection Py = Y, g SW d*zP(q, ) is a small number in any perturbative calculations. There is
always a probability P((J) = 1— Py of no detection. We normalize probabilities by conditioning
the probability densities P(q,z) with respect to the existence of a detection record. Hence, we
use the probability densities P(x,q)/Pget-
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2.4. Multiple detectors
It is straightforward to obtain the probability formula for the field interacting with n detectors.
To leading order in perturbation theory, the probability density for n measurement events is

Wi(z1,q1572,q2; - - TnyGn) = Jd%'l .. d4w%0(1)(1‘1 —x))... U(")(:L'n — )
P(xh, qus 2y q2; - -5 T Gn) (18)

where

Pn(xl’q1;$27q2;'--§$n7Qn):jd4y1--‘d4yn FO () A FO () R (y1,01) -

1 1 1 1
X "‘R?,,?)bn(ynaQn)GalA..an,bl...bn (T1 = ZY1s - T — Ui @1+ SYLs - T — SUn)- (19)

2 2 2 2
Here R® (x,q) is the measurement kernel for the i-th detector. The field correlation function
Gayanbrobn(T1, -, Tn; @Y, ..., x),) is given by

Gareoiin by b (T oy T @) = WITHCN (@) .. O ()]

n

XTICE (@) ... O (1)1 (20)

where T* stands for reverse time ordering.
Again, in the appropriate regime, the probability becomes independent of the switching
functions, and equal to

Py(1, 41322, 42 -+ Ty Gn) = fd4y1 Ay RV (@) - RO (Y 00)

1 1 1 1
XGa1...an,b1...bn(x1 —3Y1, - Tn — SYn; L1 + Y1, .-, T + *yn) (21)

2 2 2 2
It is convenient to express the probability densities (21) using an abstract notation. We use
small Greek indices «, 3,7 ... for the pairs (z,a) where z is a spacetime point and a the internal
index for the composite operators C,. All indices in a time-ordered product are upper, and all
indices in an anti-time-ordered product are lower. Hence, we write the correlation functions (20)
as

a109...00m
G150

Let x € M be a spacetime point and ¢ € I' any other recorded observable. We define the set of

elementary events Z := M x I' U {J} by z, where J is the event of no detection. Then, we

express the kernel

olr — %(y + )V fly—y)R®(y— v, q)

as Ri(z) where z € Z, a stands for (y,a), B for (y,b). We will use the same symbol for
the approximate expression §[z — 3(y + /)] R®(y — ¢/, q). We employ the Einstein summation
convention over Greek indices, in order to denote sum over the discrete index a and spacetime
integral.

Then, the probability formula (21) reads

Po(21,20, .y 20) = G352 DR (1) AR (2) ... MR (2,). (22)

1P2---Pn



Tenth International Workshop DICE2022 - Spacetime - Matter - Quantum Mechanics IOP Publishing
Journal of Physics: Conference Series 2533(2023) 012004 doi:10.1088/1742-6596/2533/1/012004

3. Relation of the QTP approach to the Closed-Time-Path formalism
The probability density (19) for n measurement events is a linear functional of the 2n-point
unequal-time correlation function (20). This correlation function has n time-ordered arguments
and n anti-time-ordered arguments. It does not appear in the usual S-matrix description of
QFT; the correlation functions in the S-matrix description involve only time-ordered arguments.
Rather, the correlation function (20) appears in the Schwinger-Keldysh or ‘in-in’ or Closed-
Time-Path (CTP) formalism of QFT. Since by now the Schwinger-Keldysh formalism is quite
well known and popularly used in many fields of physics we shall not belabour it but refer the
reader to some source materials [56-58] where this method is used for the exploration of themes
relevant to our present discussions, foremost, quantum correlations. How the CTP formalism
overcomes the deficiencies of the S-matrix formulation is discussed in many original papers on
CTP, e.g., [44,45] — a short summary can be found in our recent paper [1].

In the CTP formalism, we couple the field to two different external sources J¢(z) and J%(z),
and we define the CTP generating functional

— A

Zerp[J, J] = (ol UTTNUT o), (23)

By definition, Z[J,J] = 1 and Z*[J,J] = Z[J, J]. The state |1) is defined in the distant past,
i.e., prior to any time at which J(z) has support—it is an in state.

The CTP generating functional describes correlation functions with n time-ordered and m
anti-time-ordered entries,

G o by (Tl Ty @, a) = (| T [(jlgll)(a:’l) e CZE:L) (20 )]
XTICE) () - G ()] 4k0) (24)

which can standardly be expressed as functional derivatives of Zcrp[.J, J]. For a vacuum initial
state, the generating functional has a path integral expression

Zerpld, J] = J D¢ Dé ci{Sle]-S[gl+{d'x [J“(x)Ca(z)—j(w)Ca(m)]}’ (25)

where C is defined a functional of ¢.

The relation between the QTP description of measurements and the CTP formalism is more
transparent, if we use the index notation of Sec. 2.4. For consistency, the sources J have a lower
Greek index, and the sources J have an upper Greek index. Then, we write the CTP generating
functional as

O sm—n
T ? Q]...0lp, T, TBm
ZCTP[J,J] = Z WGﬂllﬁmJOann‘]ﬁlJB 5 (26)
nm=0

where G5 5" represents the correlation functions (24). These satisfy

Ga1...an _ ,L-n—m< an-i_mZC’TIf[Ja J] _ >
1B Oy - 0, 0T 0T ) 5o

(27)

The probability densities (22) involve balanced correlation functions, i.e., correlation functions
with an equal number of upper and lower indices. We can construct a generating functional
that contains only such functions. The key observation is that such correlations contribute to
the sum only through products of the form J,J?. Hence, the natural source for a diagonal
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generating functional ZgTP that only involves balanced correlation functions is a ‘tensor’ Lg.
We define

o0
1
Z&p[L] Z G5 TenL LY. (28)

Suppose now that we consider only measurements of a single type, i.e., all detector kernels
Rg(z) are identical. Then, we can define a moment-generating functional for all probability
densities (22), in terms of sources j(z),

ZQTP Z Z %Pn(zl,zg,...,zn)j(zl)...j(zn). (29)

n= 02‘1,227 —2n

It is straightforward to show that
Zorplil = Zrp[R - ], (30)

where (R- ) = 3. RE(2)J(2).

Eq. (30) is a fundamental relation for quantum measurements in QFT, as it relates the
moment generating functional for a hierarchy of measured probability densities to the generating
functional of unequal-time correlation functions

It is straightforward to write a path integral expression for Z&,5[L] for a vacuum initial
state

28l _f Do D eiSI@1=iSIa+]diad'a! Ca(@)Cy(a) L2 @) (31)

To obtain a simple path integral expression for a broader class of states, we recall that many
field initial states can be obtained from the action of an external source {(x) on the vacuum, i.e.,

they are of the form |¢p) = U[¢]|0), where now we write U[¢] = T exp [iSd4X(k(X)Ak(X)] in

terms of composite operators Ay (z) that differ, in general from C,(z)—see [1] for examples.
Hence, for a quantum state that is obtained from an external source (i, we write the path
integral expression

Zg‘TP[f7 L] _ J D(ZS Dd; 6iS[¢]*iS[(§]+iSd4x Ck(x)[Ak(m)fgk(:v)]JrSd4xd4xlca(m)éb(x/)Lab(x,x/)7 (32)

where we must assume that the spacetime support of the kernel L% is later than the support of
¢ (state preparation is prior to measurement). By Eq. (30)

Zgrplf, il J D¢ D¢ ciS[01=iS[@]+ifd*x ¢*(2)[Ax(2)— Ay (2)]
XeZzSd4xd4 @' Cq (2)Cy (2 )R (2,2'32)j(2) (33)

The probability densities for n measurement events are obtained from functional variation of
Zgrp|(, j) with respect to j at j = 0 For example, the single-event probability density Pi(x,2)
of Eq. (17) is given by the path integral

- 1 = 1
Puwia) = [ D6 05 ( [ atyCute + 3Gt~ L0 (0.0))
« ISTO1-iSI3+i [ %o ¢ (@) Ak(0)—Ar(@)]

Expressions such as the above provide an explicit link between concepts of quantum measurement
theory like POVMs and the practical and highly successful functional language of QFT. We
believe that this link is essential for a local and covariant definition of quantum informational
notions in QFT.
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4. Links to non-equilibrium QFT

In Sec. 2, we saw that the QTP probabilities are linear functional of balanced correlation
functions. The measurements do not probe unbalanced correlation functions. Since the latter
include (Cy,(z)), QTP probabilities cannot access mean field information. This limitation is
not fundamental. Remember that the operator C (x) appears in the interaction term with the
apparatus. This restriction means that we cannot use couplings of the form { d*zC,(z)®J*(X),
in order to directly measure the operator C’a(x) At least such measurements are not possible
with weak field-apparatus coupling where perturbation theory is applicable.

Suppose, for example that C coincides with the field operator ¢—we drop the index a for
simplicity. Then, single-detector probabilities record only local information about particles. Let
the field be in a state characterized by a macroscopically large number of particles; then, it can
be viewed as a thermodynamic system. Then the single-detector probability essentially coincides
with a particle-number density function. If we also measure the recorded particle’s momentum
k, the QTP probability density P(z,k) is an operationally defined version of Boltzmann’s
distribution function. By Eq. (17), P(z,k) is a linear functional of the correlation function
G(z,2") = {p(x)P(z')), which is usually taken to satisfy the Baym-Kadanoff equations.

From the above analysis, it follows that Boltzmann’s thermodynamic entropy, defined on a
Cauchy surface ¥,

Sp(¥) = — L dBxd®kP(z, k) In P(z, k) (34)

is a Shannon-type entropy for single-detection measurements. This means that quantum
informational quantities, defined through measurements, have a direct application to non-
equilibrium QFT. Furthermore, n-detector QTP probabilities probe higher-order correlation
functions of the quantum field, thus allowing an analysis that is not accessible by traditional
methods. We shall highlight some structural similarities and connections between the QTP
analysis and methods of non-equilibrium QFT below.

4.1. Stochastic correlation dynamics from two-particle irreducible effective action
As shown in Sec. 3 the generating functional of QTP correlation functions is defined in terms
of non-local source terms L“b(a;,w’ ). It is structurally similar to the two-particle irreducible
effective action (2PIEA) [46,59] that has found many applications in non-equilibrium QFT—
see, for example, [47-49]. For present purposes, it suffices to show the structural framework of
the 2PIEA formalism, following the presentation in [56,57] to define evolution equations with
noise from higher-order correlation functions.

For ease of notation, we use a version of DeWitt’s condensed notation, where capital indices
A correspond to both the spacetime dependence and the branch of the CTP field (forward
or backward in time, ¢ or ¢). Hence, we will be writing ¢4, C4, and so on. The action in
the CTP generating functional will be S[¢4] = S[¢a] — S[¢a]. In the two-particle irreducible
representation, the (two-point) correlation function stands is an independent variable, not a
functional of the mean field. Thus there is a separate source K AB driving C'4Cp over the usual
JAC, term in the one-particle irreducible representation—see the similarity to Eq. (33).

From the generating functional

7 [K4B] = WIKY7] _ fD¢A Gi(STEEAPCACE) (35)

we have

GAB = <C'AC'B> =2 %

K=0
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oW — L {{CaCuCelp)y —{Calu )y (Cetn)) (37)
6KAB(5KCD K=0_4 AVYBLCUD AYB cYD .

Suppose that we want to express the effective dynamics of G4p in a closed form, but to go beyond
the Baym-Kadanoff equations, by taking into account noise from higher-order correlations. For
a non-equilibrium system, we seek a formulation in terms of a new object Gapg. This is a
stochastic correlation function whose expectation value over the noise average gives the usual
two point functions. The fluctuations of G 4p reproduce the quantum fluctuations in the binary
products of field operators. The simplest assumption is to take G 4p as a Gaussian process,
defined by

(Gap) = <CACB>§ (GapGep) = <OAOBOCOD> (38)
The Legendre transform of W is the two-particle irreducible effective action,
Ay L oaB AB or
Dopr[Gapl = W [K4P] — - K*P G 4p; K*P = -2 (39)
2 0GAB

The Schwinger-Dyson equation for the propagators is simply, ggf:}; = (0. When including the
stochastic source G 4p, it becomes

olopr 1 4B
_ _= 4
5Gap 2" (40)

where kg, is a stochastic nonlocal Gaussian source defined by

82T f
AB\ _ 0. AB,CD\ _ 4:|__ 9 t2Pr
(kA7) = 0; (RAPREPS = 4i [5GAB5GCD] (41)

The noiseless Eq. (40) (k = 0) provides the basis for the derivation of transport equations in
the near equilibrium limit. Indeed, for a A¢* theory, we obtain the Boltzmann equation for a
distribution function f defined from the Wigner transform of G®. The full stochastic equation
(40) leads, in the same limit, to a Boltzmann - Langevin equation [56].

4.2. Correlation Histories

The two-particle irreducible formalism can be extended to an n-particle irreducible formalism,
for any n. There is an effective action I',,p; for each n, from which all effective actions for n’ < n
can be derived. Taking n — o0, we obtain a master effective action. The functional variation of
the master effective action yields the hierarchy of Schwinger-Dyson equations [57].

To obtain effective closed dynamics for the correlations at order n, we must truncate the
Schwinger-Dyson hierarchy upon this order. Truncation renders the master effective action
complex. Its imaginary part arises from correlation functions of order higher than n, the
fluctuations of which Calzetta and Hu define as correlation noises [56] at order n. For example,
the noise 42 in Eq. (40) is the correlation noise of order two.

Calzetta and Hu defined the notion of correlation histories [58], in analogy to the decoherent
histories program. A fine-grained correlation history corresponds to the full Schwinger-Dyson
hierarchy of correlation functions. When we truncate the hierarchy at finite order n, we treat only
correlation functions of order n as independent. Higher -order correlations are ignored or slaved
to the lowest-order ones. A truncated hierarchy defines a coarse-grained correlation history.
For example, mean field theory studies coarse-grained correlation histories at order n = 1; the
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Baym-Kadanoff equation, or Boltzmann equation and their stochastic generalizations refer to
coarse-grained correlation histories of order n = 2.

The key point is that the truncation of the master effective action always leads to dissipation
and noise for the coarse-grained histories. Any truncated theory is an effective field theory in the
correlation hierarchy formulation. This effective field theory does not carry the full information,
this loss of information being expressed as correlation noise. The higher-order correlations are
analogous to an environment in the theory of open quantum systems [60]. This noise may lead
to decoherence of correlation histories [58], i.e., to the classicalization of the effective description.

The QTP approach demonstrates that the different levels of correlation histories can be
accessed by the measurement of n-detector joint probabilities. Eq. (22) assigns to each initial
state [1) of the field a hierarchy of joint probability distributions P, (21, 22, ..., 2n)-

In classical probability theory, a hierarchy of correlation functions defines a classical stochastic
process, if it satisfies the Kolmogorov additivity condition,

Py (21, 2n-1) = fdznPn(zl,zg,...,zn) (42)

Quantum probability distributions for sequential measurements do not satisfy this condition
[61,62]. Hence, the violation of Eq. (42) is a genuine signature of quantum dynamics; it
cannot be reproduced by classical physics, including classical stochastic processes. It is rather
different from the Leggett-Garg inequalities [63] that also refer to the behavior of quantum
multi-time probabilities. In contrast, if measurements on a quantum field approximately satisfy
Eq. (42), then the measurement outcomes can be simulated by a stochastic process with n-time
probabilities given by the probability distributions (42). Then the generating functional Zgrp
corresponds to a stochastic process, i.e., it is obtained as the functional Laplace transform of a
classical stochastic probability measure.

Hence, the hierarchy P,(z1,22,...,2,) provides a natural and unambiguous classicality
criterion. Given the relation between QTP probabilities and QFT correlation functions, this
criterion can be used to probe the information content of different levels for correlation histories.
For example, the validity of Eq. (42) is necessary for deriving deterministic or classical stochastic
dynamics for P;(z), i.e., for deriving the Boltzmann or the Boltzmann-Langevin equation. The
failure of (42) means that the four-point correlation functions are too ‘quantum’ to allow effective
classical stochastic dynamics for the two-point correlation function.

Conversely, the failure of Eq. (42) can be used to provide a measure of irreducibly quantum
information at the level n = 2. An example of such a measure is

SQ = JdZQ

A second informational quantity is the correlation of the probability distribution, i.e., a measure
of the deviation of Py(z1, 22) from Pj(z1)P2(22). The joint probability density P, is then slaved
to P;. This information is typically quantified by the correlation entropy

Py(21,22)
P1 (Zl)Pl (22) ’

In general, the correlation entropy will contain information for both quantum correlations
(if Sg # 0) and classical stochastic ones. Indeed, Sc may not have the usual properties of
correlation entropy if Sg # 0, and other measures that will distinguish will be more convenient.
The third relevant informational quantity in Boltzmann’s entropy (34), defined in terms of
Py (z1). These three quantities are the most important for describing the flow of information at
the level of the 2PIEA.

szng(zl, 22) — Pl(ZQ) . (43)

SC = deleQPQ(Zl, 22) In (44)
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Hence, the QTP hierarchy functions as a registrar of information of the quantum system,
keeping track of how much information resides in what order, and how it flows from one order to
another through the dynamics. There is a good potential for this scheme to systemize quantum
information in QFT: keeping track of the contents and the flow of information and measuring the
degree of coherence in a quantum system. This conceptual scheme was suggested in Refs. [54,64]
to explain black hole information loss, for instance.

5. Conclusions

We presented the QTP formalism for measurements in quantum fields and its connections to the
Closed-Time-Path description of QFT. These connections provide a direct translation between
the operational language of measurement theory (POVMs, effects, and so on) to the manifestly
covariant description of QFT through functional methods. For example, we showed how one
can express POVMs for particle detection in terms of path-integrals. We believe that this is an
important step towards the formulation of a general theory of relativistic quantum information.

A key aspect of our approach is the central role of the hierarchy of unequal-time correlation
functions. POVMs for measurement are linear functional of such correlation functions. The
very same correlation functions define the real causal dynamics in the CTP approach, which
are essential for the definition of thermodynamical observables and the construction of effective
irreversible dynamics in non-equilibrium QFT.

Crucially, QFT correlation functions are covariant and causal objects. For this reason,
we believe that a relativistic quantum information theory (QIT) that respects both causality
and spacetime symmetry must define all informational quantities in terms of such correlation
functions. This contrasts the standard approach of QIT that is based on properties of single-time
quantum states, like von Neumann entropy or entanglement.

A sound theoretical foundation for relativistic QIT is important for reasons that go beyond
the necessity of theoretical coherence. Such a foundation is required for the description and
design of quantum experiments in space [4,5] that will explore the effects of non-inertial mo-
tion (acceleration, rotation) and gravity on quantum correlations, including entanglement. The
predictions of a QFT measurement theory may be testable in experiments that involve long
separations or large relative velocities between detectors.
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