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Abstract
This Ph.D. thesis presents a compilation of the scientific papers I published over the last

three years during my Ph.D. in loop quantum gravity (LQG). First, we comprehensively in-
troduce spinfoam calculations with a practical pedagogical paper. We highlight LQG’s unique
features and mathematical formalism and emphasize the computational complexities associ-
ated with its calculations. The subsequent articles delve into specific aspects of employing
high-performance computing (HPC) in LQG research. We discuss the results obtained by ap-
plying numerical methods to studying spinfoams’ infrared divergences, or “bubbles”. This
research direction is crucial to define the continuum limit of LQG properly. We investigate the
self-energy diagram in LQG, analyzing the scaling of the divergence of the associated ampli-
tude. Using the same technique, we compute the spinfoam amplitudes of a class of two-vertex
diagrams. Besides divergent graphs, our investigations yield striking and surprising numeri-
cal evidence that spinfoam-containing bubbles can have finite transition amplitudes. Further-
more, we adapt Monte Carlo methods to the spinfoam formalism. We employ this technique
to analyze the vertex renormalization amplitude. We find numerical solid indications that this
amplitude is convergent, opening new perspectives for renormalizing large-volume infrared
spinfoam bubbles. In spinfoam cosmology, we investigate the integration of HPC with Markov
Chain Monte Carlo simulations, proving the potential to analyze the macroscopic properties of
quantum spacetime. We perform a spinfoam refinement process starting from the simplest di-
agram, demonstrating the effectiveness of this hybrid approach and elucidating the connection
of LQG observables with spacetime geometry. Furthermore, we apply the same technique to
investigate the spinfoam with a 16-cell boundary using a topological model. Finally, we outline
a numerical algorithm to compute the transition amplitude from a black hole to a “white hole”.
The recently proposed hypothetical decay process via gravitational quantum tunneling is one
of the most intriguing hypotheses on the future of black holes. We use the spinfoam approach
and HPC to investigate this phenomenon by explicitly computing the associated transition am-
plitude. The advancements of HPC-assisted LQG research will hopefully enable the study
of complex gravitational phenomena at unprecedented scales, paving the way for exploring
previously inaccessible physical regimes.

Keywords: High-performance computing, Supercomputing, Loop Quantum Gravity, Spin-
foam, Monte Carlo, MCMC, Infrared divergences, Spinfoam bubbles, Spinfoam cosmology,
Black hole, White hole, Black-to-white transition.

ii



Summary for the lay audience
Loop quantum gravity is a quantum theory of gravity that offers a promising and compelling
framework for understanding the fundamental nature of spacetime. We need a complete non-
perturbative description of quantum gravity as we still do not know what happens in certain
universe regions, such as objects that fall into black holes. At the same time, we need such a
theory to reconstruct the early primordial instants of the universe. We must consider general
relativity and quantum mechanics together to describe these physical scenarios. LQG is one of
the most successful attempts to consistently incorporate such theories into a cohesive frame-
work. It aims to describe the quantum behavior of the gravitational field rather than being a
“theory of everything”. It can be approached using two different formalisms: canonical and
covariant. The covariant route, usually called the “spinfoam” approach to LQG, is a concrete
framework where numerical and analytical calculations of transition amplitudes are possible.
My contributions have mainly focused on developing new high-performance computing (HPC)
methods relying on spinfoam formalism. Calculations in such a framework are pretty complex,
and leveraging the capabilities of HPC systems becomes essential to overcome these challenges
and facilitate groundbreaking investigations. Extensive research has been conducted, and this
thesis aims to provide a cohesive overview of the advancements and future directions. The
potential for HPC-assisted LQG offers new avenues for astrophysics, cosmology, and quan-
tum gravity phenomenology. In summary, this collection of articles demonstrates the role of
numerical methods in pushing the boundaries of LQG research.
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Introduction

Loop quantum gravity (LQG) is a theory that attempts to combine quantum mechanics and
general relativity to provide a quantum description of gravity at its most fundamental level.
This implies describing spacetime. For a formal introduction to LQG, we refer to the numer-
ous reviews and books currently available in the literature. Although there are too many to cite
them all, a few significant examples are [1, 2, 3, 4, 5, 6, 7, 8, 9]. For the interested reader,
I recently posted on ArXiv the full transcript of Carlo Rovelli’s lectures on Loop Quantum
Gravity, given in Marseille in 2018 [10]. LQG quantizes the spacetime geometry, treating it as
a granular structure at the Planck scale. Being a quantum theory, the generic structure of LQG
can be described with three core elements: the Hilbert space, an algebra of observables, and
the dynamics. The Hilbert space represents the auxiliary structure in which quantum states of
the gravitational field are defined. The basis states in the Hilbert space are spin network states,
which are graphs with edges labeled by spins. These spins encode the quantum properties of
the geometry, offering a discrete description of space. Observables are represented by oper-
ators corresponding to various geometric and physical quantities. These operators act on the
Hilbert space of states and are associated with quantities like area, volume, length, and curva-
ture. They are quantized in LQG [11], leading to discrete spectra due to the discrete nature of
spacetime at the Planck scale. The algebra of observables in LQG reflects the non-commutative
nature of quantum geometry. Finally, the dynamics can be described using two main different
formalisms: canonical and covariant.

The canonical approach to LQG quantizes gravity by starting from the Arnowitt-Deser-
Misner (ADM) formulation of general relativity [12, 13] and quantizing the canonical vari-
ables. The dynamics is encoded in a Hamiltonian constraint that generates the evolution of the
states. The covariant approach, instead, usually starts from a discrete path integral formula-
tion. It describes gravity’s quantum behavior by considering all possible histories (spacetime
configurations) and their associated amplitudes. The dynamics is defined by transition ampli-
tudes between quantum states of the gravitational field, governed by a sum over intermediate
states and related to the action of classical general relativity. These amplitudes represent the
probability of transitioning from one gravitational field configuration to another. The path
integral approach to LQG is often realized through spinfoam models. A spinfoam can be in-
tuitively thought of as a higher-dimensional analog of a Feynman diagram used in standard
quantum field theory. It is a way to represent a particular spacetime history, describing the
transitions between different three-dimensional slices over a fourth dimension. The path inte-
gral of spinfoam theory is regularized on a four-dimensional triangulation, more precisely, on
its dual structure, called “2-complex”, to truncate the degrees of freedom. The fundamental
objects of the 2-complex are vertices, edges, and faces, each with an associated elementary

1



2

amplitude. The covariant route is usually called the “spinfoam approach” to LQG. This Ph.D.
thesis focuses on the spinfoam approach.

Another fundamental principle in LQG is diffeomorphism invariance 1. General relativity
is invariant under diffeomorphisms, reflecting that the laws of physics should be independent
of the choice of coordinates or foliations of spacetime. LQG is a background-independent
theory that does not rely on an external spacetime metric. Instead, it treats spacetime as a
dynamic entity, allowing for the quantization of geometry and gravitational interactions without
assuming a fixed background. LQG maintains this diffeomorphism invariance at the quantum
level. Physical states in the LQG Hilbert space transform to respect diffeomorphism invariance,
ensuring that the physical content of the theory remains unchanged.

While it is still a developing field and faces significant theoretical and mathematical chal-
lenges, there have been several promising physical scenarios where LQG is employed to study
the behavior of the universe and its fundamental constituents, such as cosmology [14, 15, 16,
17] and black hole physics [18, 19, 20]. Apart from the previously mentioned quantization of
area and volume, some of the most striking predictions of LQG are the calculation of black
hole entropy [21] and the possibility of a cosmological big bounce [22].

Several different models are proposed in the spinfoam literature, such as the Barrett-Crane
[23] model, topological BF model [24], etc. Each spinfoam model usually represents a dif-
ferent way of formulating and quantizing the gravitational field, providing distinct mathemat-
ical and conceptual frameworks. The existence of multiple models partially stems from the
challenges of fully understanding and quantizing gravity. The Engle-Pereira-Rovelli-Livine
(EPRL) model [25, 26] is commonly considered the best current candidate to describe the
quantum gravity regime [27]. Freidel and Krasnov independently introduced a similar model
[28] (sometimes the model is referred to as the FK-EPRL model). Among its different prop-
erties, remarkable connections have been established between the semiclassical limit of such a
model (that is, in the double limit of finer discretization and large areas) and discrete general
relativity via Regge calculus [29, 30, 31, 32, 27, 33, 34]. Further extensions of the EPRL model
include the cosmological constant [35, 36] and a different metric signature [37].

Although LQG is approximately thirty-five years old, numerical computations applied to
the covariant version of the theory prior to five years ago are pretty rare. Pioneering and
significant examples are [38, 39, 40, 41]. In recent years, considerable progress has been
made in advancing our understanding of the theory, thanks partly to the development of high-
performance computing (HPC) methods and the usage of supercomputing resources. Starting
from the current formulation of the EPRL model, a significant step forward was performed in
[42]. In [42], the EPRL vertex amplitude was first written in a form suitable for a numerical
evaluation. The key was exploiting the Cartan decomposition of the Lorentz group [43]. This
led to many pioneering results, such as the first calculation of the transition amplitudes between
two spin networks with dipole graphs [44], the numerical evaluations of the vertex amplitude
[45], the initial investigations of infrared divergences with a hybrid approach [46], and the
analysis of the flatness problem in spinfoams [31]. On top of theoretical achievements, in [47],
an open-source numerical library called sl2cfoam, written in C, was released to compute EPRL

1Diffeomorphisms are transformations that involve the smooth rearrangement of points and fields within a
manifold (spacetime), preserving the underlying structure and physics of the system.
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vertex amplitude numerically. Despite the promising initial results, a significant step forward
soon appeared to be required. Such a step came with the new version of sl2cfoam, called
sl2cfoam-next [48]. With this new tool available and the introduction of new techniques and
algorithms in LQG, several recent achievements have been obtained during the last few years.
Apart from the papers described in this thesis, a few other examples are [49, 50].

This Ph.D. thesis presents a comprehensive compilation of integrated articles highlighting
my contributions to covariant LQG relying on scientific computing, primarily based on the
decomposition introduced in [42]. Except for Arbutus, I have employed all the superclusters
offered by Compute Canada for the research projects discussed in this thesis: Beluga, Narval,
Cedar, Graham, and Niagara. Using several different programming languages, I frequently
exploited more than one cluster for each project, experimenting with varying parallelization
schemes. Each Chapter of this Ph.D. thesis corresponds to a distinct research paper, offering
insights into the novel applications of HPC in tackling the computational complexities associ-
ated with LQG calculations. The Chapters are presented to form a coherent thesis rather than
being in chronological order.

Chapter 1 is a pedagogical guide paper to spinfoam transition amplitude calculations. Al-
though this was not the first project I started working on, it is the most logical choice to intro-
duce the spinfoam approach to LQG and the perspectives of scientific computing into it. We
show how to write a transition amplitude, from the definition of the 2-complex to its numeri-
cal implementation. We guide the reader using an explicit example of balancing mathematical
rigor with a practical approach. We start with the case of a single EPRL vertex amplitude,
moving to the computation of an extended spinfoam transition amplitude based on the ∆4 trian-
gulation. Such a triangulation was first considered in [51] in the context of Lorentzian effective
spinfoam models.

Chapters 2, 3, and 4 fit the research direction dedicated to infrared divergences in spin-
foams. Ensuring that the path integral and associated amplitudes are consistent, finite, and
renormalizable is an ongoing area of research. Achieving this consistency is crucial for com-
puting amplitudes with a finite probability and making meaningful predictions. LQG, being a
background-independent and nonperturbative theory, avoids UV divergences by using a funda-
mentally discrete structure of spacetime at the Planck scale. The quantization process in LQG
inherently regularizes the UV behavior, preventing the emergence of UV infinities. However,
the unbounded summation over the bulk degrees of freedom appearing in the definition of the
transition amplitudes can cause large-volume infrared (IR) divergences 2. Several renormal-
ization procedures have been proposed over the last few years, both in 2-complex refinement
[52, 53], or in group field theory [54, 55, 56]. However, many important questions remain open.
These three Chapters address some of such questions. The role of the Barbero-Immirzi param-
eter in the continuum limit is particularly interesting to our analysis. The Barbero-Immirzi
parameter in the theory represents the ambiguity related to the choice of the representation of
the classical Poisson brackets as commutators in the quantum theory. The Immirzi parameter
affects the quantization of area in LQG. The area spectrum, which represents the quantized area
of a surface in Planck units, depends on the value of the Immirzi parameter. Different values
of such a parameter correspond to various quantization schemes and, consequently, different

2However, IR divergences are absent in the theory extension that includes a cosmological constant [35].
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area spectra. It can have different values, typically chosen from the real numbers, leading to
slightly different geometry quantizations and other predictions.

The paper presented in Chapter 2 studies numerically the first-order radiative corrections
to the self-energy in covariant loop quantum gravity. The self-energy is a spinfoam diagram
believed to give the leading-order radiative correction to the theory. We analyze the scaling of
the divergence with the infrared cutoff, for which previous analytical estimates provided widely
different lower and upper bounds. It represents the first example of HPC numerical methods
employed to compute a spinfoam amplitude containing an infrared bubble. Our paper’s main
result is that the self-energy divergence is approximately linear in the cutoff. We also investi-
gated the role of the Barbero-Immirzi parameter in the asymptotic behavior, the dependence of
the scaling on some boundary data, and the expectation values of boundary operators.

In Chapter 3, we numerically estimate the divergence of several two-vertex diagrams con-
tributing to the radiative corrections for the Lorentzian EPRL spinfoam propagator. We com-
pute the amplitudes as functions of a homogeneous cutoff over the bulk quantum numbers,
fixed boundary data, and different Immirzi parameters. The main result of our analysis is that
those with fewer than six internal faces converge for a specific class of two-vertex diagrams.

Chapter 4 is the final one dedicated to infrared divergences in spinfoams. It introduces a
strategy to compute EPRL spinfoam amplitudes with many internal faces numerically using
stochastic algorithms. We show that uniform sampling Monte Carlo is exceptionally effective
in approximating the sum over internal quantum numbers of a spinfoam amplitude, consider-
ably reducing the computational resources necessary. We apply it to compute large volume di-
vergences of the theory. After using the self-energy as a stress test for validating the algorithm,
We focus on the vertex renormalization (or 5-1 Pachner move) amplitude. Such a diagram is
essential for studying the spinfoam infrared divergences along with the self-energy. We find
surprising numerical evidence that the EPRL vertex renormalization amplitude is finite.

Chapter 5 moves to the application of numerical methods in spinfoam cosmology. We
present a numerical analysis of a Hartle-Hawking state for the early universe in the deep quan-
tum regime, using the spinfoam formalism. We study the behavior of the Lorentzian EPRL
spinfoam amplitude with homogeneous boundary data under a graph refinement going from
five to twenty boundary tetrahedra. This can be interpreted as a wave function of the universe,
for which we compute boundary geometrical operators, correlation functions, and entangle-
ment entropy. The numerical calculation is made possible by adapting the Metropolis-Hastings
algorithm and computational methods appropriate for the deep quantum regime. We confirm
that the transition amplitudes are stable against such refinement. We find that the average
boundary geometry does not change, but the new degrees of freedom correct the quantum fluc-
tuations of the boundary and the correlations between spatial patches. The expectation values
are compatible with their geometrical interpretation, and the correlations between neighboring
patches decay when computed across different spinfoam vertices.

Chapter 6 continues the line of research in spinfoam cosmology. Instead of the EPRL
model, we consider a simplified topological case, where the BF theory describes the dynamics,
and the 16-cell triangulation characterizes the spinfoam boundary. Using the Markov Chain
Monte Carlo algorithm introduced initially in Chapter 5, we compute mean geometry, fluctua-
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tions, and correlations. The results are consistent with the hypothesis that refining the triangu-
lation does not substantially affect the global physical picture.

In Chapter 7, we apply numerical methods to investigate the hypothetical process of a
black hole decaying via quantum tunneling. In particular, we outline an algorithm to com-
pute the black-to-white hole transition amplitude using the loop quantum gravity covariant
formulation and the Lorentzian Engle-Pereira-Rovelli-Livine model. We apply the algorithm
to calculate the crossing time of the transition in the deep quantum regime, comparing our
result with previous analytical estimates of the same physical observable in the semiclassical
limit. Furthermore, we show how to evaluate the crossing time analytically using an alterna-
tive approach concerning the one currently in the literature. This method requires much easier
calculations and emphasizes that the crossing time does not depend on the extrinsic geometry
of the transition.

Before concluding the introduction of this Ph.D. thesis, a final remark is necessary. Apart
from the formalism I focused on during my Ph.D., other LQG communities usually employ al-
ternative numerical and analytical approaches to spinfoam. Each research direction sheds new
light on various aspects of the covariant formalism, frequently proposing modifications of the
mathematical models describing the theory. Among the main alternative routes, we mention
the adaptation of the Lefschetz Thimble method to spinfoams to investigate the semiclassi-
cal limit [57, 32], the promising opening towards quantum computing [58, 59], the study of
the cuboid renormalization [60], tensor network techniques applied to spinfoams [61, 62, 7],
and the introduction of effective spinfoam models [63, 64, 65]. In particular, effect spinfoam
models are extremely promising frameworks to simplify calculations and enable exploration of
quantum gravity phenomena while maintaining essential features of LQG.



Chapter 1

How-To compute EPRL spinfoam
amplitudes

Statement of co-authorship
This Chapter presents the paper [9], written by myself and Pietro Dona. It was published in
Universe on 26 March 2022. My supervisor, Francesca Vidotto, forwarded me the chance
to write this paper on the occasion of the special issue “Probing the Quantum Space-Time”.
I gratefully accepted it because I wanted to write a tutorial paper that could be a valuable
introduction to the numerical spinfoam approach to LQG. I had to study and review all the
literature on the subject one year before (when I started my Ph.D.). Although the covariant
LQG field has become very active, the entry barrier was steep for me, mainly because of its
unusual language and notions scattered around the literature. I noticed a cohesive and organized
introduction with practical examples was missing, which would have been extremely useful for
a student approaching the field. I asked Pietro Dona to write this paper with me since he is one
of the most excellent field experts and one of its pioneer explorers. My primary role was
to take care of the numerical computations and write the jupyter notebooks published in the
paper. I also contributed to drafting the sections and creating diagrams and plots. I consider
the estimate of the percentage of the work conducted solely by me between 40% and 60%.
This version corresponds to the manuscript published in Universe, which is compatible with
MDPI’s copyright and licensing policy.

1.1 Introduction
Spinfoam theory provides a background-independent Lorentz covariant path integral for gen-
eral relativity. Spinfoams provide dynamics to Loop Quantum Gravity, defining transition
amplitudes between spin network states. A triangulation discretizes the space-time manifold,
and its 2-complex regularizes the partition function.

The state-of-the-art spinfoam model is the EPRL-FK model [25, 28] (we will refer to it
as just EPRL for brevity). There is a large consensus in the community [31, 66, 67, 32, 27]
that the classical continuum theory can be recovered with a double limit of finer discretization
and vanishing ℏ. This observation is supported by the emergence of Regge geometries and the

6
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Regge action in the asymptotics of the 4-simplex vertex amplitude for large quantum numbers
[68, 30] and the recent study of many vertices transition amplitudes.

The number of calculations possible within the models recently grew considerably. It was
possible because of a paradigm shift in the field. It evolved from a theoretical framework to
circumvent the difficulties in imposing the Hamiltonian constraint in the canonical approach
[69] into a concrete tool where numerical calculations of transition amplitudes are possible
[70, 47, 71, 44, 72, 60, 73].

With increased interest in the field, its entry barrier also increased vastly. Getting into
spinfoam is difficult for a student or a researcher from a different field. There are plenty of
reviews [74, 75] and excellent books [1] to study and learn the basic theory. On the other end
of the spectrum, we have plenty of advanced frontline papers that explore the connection of
spinfoam with GR [31, 57, 32] or possible phenomenological implications [76, 18, 77, 78].

We noticed a hole in the literature. There are no papers that give you all the tools needed
to complete a spinfoam calculation, from its conception to the number. This paper guides the
reader through calculating an EPRL transition amplitude pedagogically. We use an explicit
example to help them not feel disoriented when dealing with abstract concepts. We hope this
paper can fill that hole and open spinfoam calculation to a new generation of students and
researchers.

To read this paper, advanced background knowledge on spinfoam is unnecessary. How-
ever, a basic understanding of the topic is helpful. We think of this work as a guide for making
spinfoam calculations. We refer to targeted reviews of the EPRL model [74, 1, 75] for a com-
prehensive discussion of its definition, motivation, and physical significance.

We start with a brief review of the spinfoam theory’s construction and the EPRL model’s
definition in Section 1.2. In the rest of the paper, we show the reader how to compute a spin-
foam transition amplitude associated with a triangulation of the space-time manifold. We iden-
tify five necessary steps, each illustrated in a different section.

Step 1. Draw the 2-complex.
In Section 1.3, we describe how to build the 2-complex from the triangulation. It is
crucial in regularizing the gravitational path integral and writing a finite transition
amplitude.

Step 2. Write the EPRL spinfoam amplitude.
In Section 1.4, we give the prescription to write the transition amplitude associated
with a 2-complex and introduce a very convenient graphical method to represent the
amplitude. For the calculation, we resort to a divide-and-conquer strategy.

Step 3. Divide the EPRL transition amplitude into vertex contributions.
In Section 1.5, we show how to divide any transition amplitude into vertex ampli-
tudes.

Step 4. Compute the EPRL vertex amplitudes.
In Section 1.6, we discuss the calculation of the vertex amplitude in terms of S U(2)
invariants and booster functions.

Step 5. Use sl2cfoam-next to compute a number.
We perform the numerical evaluation of the amplitude in Section 1.7 using the nu-
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merical library sl2cfoam-next and discuss the necessary approximations. In this
section, we also discuss and improve the extrapolation scheme discussed in [71] as
a tentative to lift, at least part of, the approximation used to calculate the amplitude.

We complement our discussion with an explicit example. We compute the EPRL transition
amplitude based on the triangulation ∆4. It was considered first in [51] in Lorentzian the spin-
foams. It is 2-complex that at the same time is not trivial (with more than one vertex), simple
(with four vertices and some symmetry), but rich enough (with one bulk face) to require a cer-
tain degree of optimization to compute the associated amplitude. Moreover, in [51], coherent
boundary data corresponding to a Lorentzian geometry was provided, allowing semiclassical
calculation with some ease that we leave to future work.

1.2 Overview of the EPRL model
spinfoam theory is a promising approach to quantizing gravity. The goal is to define a path
integral for general relativity in a non-perturbative and background-independent way. The
spinfoam partition function assigns transition amplitudes between spin network states, a basis
of the Loop Quantum Gravity kinematical Hilbert space. For this reason, spinfoam theory gives
a dynamic to Loop Quantum Gravity, often referred to as Covariant Loop Quantum Gravity [1].

In the Plebanski formulation of general relativity [79], we formulate gravity as a topological
BF theory with constraints [80]. The variables of the BF theory are a 2-form B conjugated to a
connection ω (with curvature F)1.

General relativity is not topological. The simplictiy constraints reduce the B-field in BF
theory to a γ-simple 2-form B = ⋆e∧e+ 1

γ
e∧e, reducing the action to the familiar Holst action

[81].
The path integral of spinfoam theory is regularized on a triangulation, more precisely, its

2-complex, to truncate the degrees of freedom. We discretize and quantize the topological
theory first. The B-fields are assigned to the faces of the 2-complex triangles and encode their
geometry. The connection is regularized by considering only its holonomy g responsible for
the parallel transport along the (half-)edges of the 2-complex (from one tetrahedron to another).
The topological theory partition function consists of a collection of delta functions imposing
flatness of each face of the 2-complex.

The partition function of the EPRL model enforces the simplicity constraints at the quan-
tum level to reduce the topological theory to gravity. On a simplicial triangulation, we have a
linear version of the simplicity constraints: we require the proportionality between the boost
and rotation generators of S L(2,C) K⃗ = γL⃗ at the boundary of any 4-simplex (vertex of the
2-complex). The generalization to arbitrary tessellation is possible [82] but requires complica-
tions beyond this work’s scope. Therefore, we limit ourselves to 4-simplices.

The key ingredient of the EPRL model is the Yγ map. It embeds the spin j S U(2) repre-
sentation into the lowest spin sector of the unitary irreducible representations in the principal
series of S L(2,C) labeled by ρ, k = γ j, j.

1This theory has no degrees of freedom: all the solutions of the equations of motion are gauge equivalent to
the trivial one dωB = 0 and F(ω) = 0. The name derives from the name of the variables used and the simple form
of the action

∫
M

B ∧ F(ω).
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We expand the BF theory partition function in terms of matrix elements of the holonomies
in irreducible representations of S L(2,C) Dρ,k

jmln(g). See Appendix A.2 and references therein
for more details. The EPRL model prescription enforces the Yγ map at every vertex of the
2-complex and restricts the irreducible representations to γ-simple ones Dγ j, j

jm jn(g) [25].
If the 2-complex has a boundary, the spinfoam partition function maps states from the

Loop quantum Gravity kinematical Hilbert space (identified with the boundary space of the
spinfoam with the Yγ map) into the complex numbers (quantum transition amplitudes between
these states).

The EPRL spinfoam partition function is given as a state sum over S U(2) spins j f on the
faces and intertwiners ie on the edges of the 2-complex:

Z∆ =
∑
j f ,ie

∏
f

A f ( j f )
∏

e

Ae(ie)
∏

v

Av

(
j f , ie

)
, (1.1)

defined in terms of the face amplitude A f , and the edge amplitude Ae and the vertex amplitude
Av. Requiring the correct convolution property of the path integral at a fixed boundary, the
form of the face amplitude A f ( j f ) = 2 j f + 1 and the edge amplitude Ae(ie) = 2ie + 1 are fixed
[83].

We will not give an explicit form of the amplitude for an arbitrary 2-complex. If the reader
is interested, they can be found in many references [25, 74, 1]. Instead, we opt for a constructive
approach. In Section 1.4, we guide the reader through the rules to write a general EPRL
transition amplitude. In Section 1.5, we divide the transition amplitude in vertex amplitudes.
In Section 1.6, we discuss the explicit form of the vertex amplitude and its form best suited for
numerical calculations.

1.3 How-To draw the 2-complex
The spinfoam partition function is regularized on the 2-complex of a triangulation of the space-
time manifold. Given a triangulation, we can build its 2-complex associating a vertex to each
4-simplex.

Each 4-simplex shares a tetrahedron with an adjacent 4-simplex. We associate to each
tetrahedron of the triangulation an edge of the 2-complex. An edge connects two adjacent
vertices. Each triangle in a 4-simplex is shared by two tetrahedra, which are generally shared
with other 4-simplices. In the whole triangulation, a triangle can be shared by any number of
tetrahedra and 4-simplices.

We associate a face of the 2-complex to each triangle of the triangulation. A face can con-
tain any number of vertices and all the edges connecting them. We also assign an orientation to
the faces of the 2-complex. This choice is needed for a well-defined notion of parallel transport
(to identify the source and target of the holonomy uniquely).

Since two vertices share each edge for each of them, we can introduce two half-edges, one
associated with each vertex. We can still picture them as dual to the tetrahedron but “seen”
in the 4-simplex it belongs to. In each vertex in a given face, there are two half-edges. This
is sometimes referred to as a wedge. The orientation of the face allows us to identify one
half-edge as the source tetrahedron (reference frame) and the other as the target tetrahedron
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(reference frame) of parallel transport along the face from the first to the last. If a boundary is
present, the edges intersected by the boundary are severed in half, leaving only one half-edge
in the skeleton.

We summarize the nomenclature introduced in this section in the following:

Triangulation 2-complex

4-simplex ⇄ Vertex

Tetrahedron ⇄ Edge

Triangle ⇄ Face

Tetrahedron
within 4-simplex

⇄ Half-edge

Oriented couple
of tetrahedra in

the same
simplex

⇄ Wedge

1.3.1 An example: the ∆4 triangulation

Four 4-simplices form the triangulation, all sharing a triangle. The triangulation has seven
points, nineteen segments, twenty-five triangles, sixteen tetrahedra (twelve in the boundary
and four in the bulk), and four 4-simplices. We label the points with numbers from 1 to 7,
segments with couples of different numbers (points), triangles with triples of distinct numbers
(the shared triangle is 123), tetrahedra with a quadruple of distinct numbers, and 4-simplices
with five distinct numbers. See Figure 1.1 for a pictorial representation of the triangulation.
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Figure 1.1: The ∆4 triangulation. The numbered circles correspond to points, while lines correspond to
segments. Each color corresponds to a different 4-simplex. The bulk triangle 123 is highlighted in red.
In the right panel, the 4-simplices are shown separately.

The 2-complex of the ∆4 triangulation has four vertices associated with a 4-simplex. It has
four internal edges, each associated with a tetrahedron shared among two 4-simplices. There
are also three external edges for each vertex. Each edge belongs to 4 faces, and each face is
associated with a triangle of the ∆4 triangulation. All triangles but one belong to the boundary
of the triangulation. Therefore all the faces but one of the 2-complex are boundary faces. The
bulk face is associated with the triangle shared by all 4-simplices. Thus it is crossing all four
vertices. We label the 2-complex in the same way as the triangulation. See Figure 1.2 for a
representation.

1.4 How-To write the EPRL spinfoam amplitude

For each wedge, we write a γ-simple unitary irreducible representation in the principal series
of S L(2,C) (see Appendix A.2 and reviews [84] and references therein for more mathematical
details).

Dγ j, j
jm, jn(gw) , (1.2)

where j ∈ N/2 is a spin, γ is the Immirzi parameter coming from the simplicity constraints,
m, n are magnetic indices m, n = − j,− j + 1 . . . , j − 1, j, and gw ∈ S L(2,C) is a group element
associated to the wedge. This restriction results from the weak quantum implementation of
the simplicity constraints in the EPRL spinfoam model. The Yγ map is responsible for this
implementation and embeds the spin j S U(2) representation in S L(2,C) as in (1.2). The group
element gw represents the holonomy responsible for the parallel transport along the wedge
from the source tetrahedron’s reference system to the target tetrahedron’s reference system.
We conventionally associate the row of the representation matrix, the couple ( j,m) in (1.2), to
the target and the column, the couple ( j, n) in (1.2), to the source. In this way, the S L(2,C)
γ-simple representation matrices inherit the orientation of the 2-complex.
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1234

12345 12347

12356 12367

1347

1247

2347

2367

1267

13671356

1256

1356

2345

1345

1245
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12371235

Figure 1.2: The 2-complex of the ∆4 triangulation. We named the vertices and the tetrahedra explicitly.
We avoided naming the faces explicitly not to clutter the figure. Three numbers label the faces. We find
a face’s name by looking for the numbers in common to all the edges it belongs to. For example, the
tetrahedra 1234, 1235, 1236, and 1237 all share the face 123.

Instead of a group element for each wedge, we prefer a group element for each half-edge.
We replace gw → g−1

t gs where s and t are the source and target half-edges. This choice of
fundamental variables guarantees that the parallel transport on a closed path in a vertex is
trivial. In other words, the product of all the holonomies on the same closed path is the identity
2, or the holonomy is flat within a single vertex.

We set the spin j on each edge to be the same and contract the magnetic indices m, n. At the
end of this procedure, the only non-contracted magnetic indices are on boundary half-edges.
We prescribe them as part of the boundary data. A common choice to describe boundary data
is to contract these magnetic indices with intertwiners in the recoupling basis or with coherent
intertwiners if we want to represent some semi-classical geometry.

We sum over all the possible spins j f associated with each closed face, and we weigh the
contribution of the face with the dimensional factor (2 j f + 1) [83]

∑
j f

(2 j f + 1)
∑

mw,nw

∏
w⊂ f

Dγ j f , j f

j f mw j f nw
(gw)

 , (1.4)

where the product is on all the wedges belonging to the face. We assign the spin as part of the
boundary data on non-closed faces.

2Explicitly, if w1, w2 and w3 are three wedges of the same vertex we have

gw3 gw2 gw1 =g−1
e1

ge3 g−1
e3

ge2 g−1
e2

ge1 = 1 , (1.3)

where we have assumed that the wedges are oriented such that the target of w1 is the source of w2 and so on. If
the orientation of one of the wedges w is the opposite, we replace gw with its inverse.
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We integrate over the group element associated with each half-edge using the Haar measure
of S L(2,C). One integration is redundant for each vertex, and we remove it to regularize the
amplitude as prescribed in [85].

1.4.1 Graphical notation
Writing all EPRL spinfoam amplitude constituents can quickly get out of hand. We rely on

a graphical notation to help us be precise and clear. We introduce the various elements as we
need them. We represent a unitary irreducible representation as an oriented line in the principal
series of S L(2,C). The row labels correspond to the start of the line, and the column labels to
the end of the line. We indicate the argument group element in a box and decorate the line with
the needed representation labels

Dρ,k
jmln(g) = g

l, n j,m

ρ, k

. (1.5)

By connecting the two lines, we contract two representations summing over all the magnetic
indices (both j and m are magnetic numbers from the perspective of the infinite-dimensional
irreducible representations of S L(2,C)). For example, in graphical notation, the S L(2,C) rep-
resentation property reads

Dρ,k
jmln(g2g1) =

∑
i≥k
|p|≤i

Dρ,k
jmip(g2)Dρ,k

ipln(g1) = g1g2
l, n j,m

ρ, k

= g1
l, n j,m

ρ, k

g2 .

(1.6)

We denote the implementation of the Yγ map (1.2) with a thick blue line that cuts across the
representation line:

Dγ j, j
jm jn(g) = g

j

n m . (1.7)

If we apply the Yγ map (1.7) to the product g1g2 and use the decomposition (1.6), in the graph-
ical notation, we have one blue line at both ends:

Dγ j, j
jm jn(g1g2) =

j

n mg1 . (1.8)

The (infinite) sum over two pairs of magnetic indices is implied in graphical notation, according
to equation (1.6) . If we contract two representation lines with a Yγ map, we only sum over one
pair of magnetic indices:

∑
|p|≤ j

Dγ j, j
jm jp(g2)Dγ j, j

jp jn(g1) = g2 m

j

g1n . (1.9)
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We denote with a thicker red line the sum over the spin associated with that representation j
weighted by a dimensional factor (2 j + 1):

∑
j

(2 j + 1)
∑
m,n

Dγ j, j
jm jn(g1)Dγ j, j

jn jm(g2) =
g2g1

.

(1.10)

The (tensor) product of two representations is represented as two lines. If the group element
is the same, we use a single box. Similarly, for the Y-map, we use a single line. When we
draw a box in amplitudes, we will always imply the integration with the Haar measure over the
corresponding S L(2,C) group element:

∫
dgDγ j1, j1

j1m1 j1n1
(g)Dγ j2, j2

j2m2 j2n2
(g)Dγ j3, j3

j3m3 j3n3
(g)Dγ j4, j4

j4m4 j4n4
(g) = g

n1

n

j1
j2

j3
j4

n2

n3

n4

m1

m2

m3

m4

. (1.11)

1.4.2 An example: writing the ∆4 amplitude

With the general recipe discussed in this Section and the corresponding graphical represen-
tation, we write the ∆4 spinfoam amplitude associated with the 2-complex in Figure 1.2. We
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also inherit the naming convention from the 2-complex.

A∆4 =

j123 j123

j123j123

g1235

g̃1235 g1237

g̃1237

g1234 g̃1234

12345

12356

g2356

j235

j235

j135

j135

j125

j125

j134 j134j124

j145

j245

j234

j345

j236

j356 j126

j124

j234

12347

g1347 g1247

g2347

j347

j127j137

j236

j137 j127

j237

j237

j126j136 j136

g2367

12367

j367

j156 j167

j267j256

j147

j247

i1267i1367

i2367

i1356i1256

i2356

i1347 i1247

i2347

i1245 i1345

i2345

(1.12)
To assign a unique name to all the S L(2,C) group elements, we denoted as g and g̃ the two
group elements associated with the same (bulk) edge but belonging to different vertices. We
used a small abuse of notation in writing (1.12). Some group elements appear as their inverse.
To represent them as a single box, we opted not to distinguish them. However, following our
conventions, the group element in the matrix element of a target half-edge always appears as
its inverse. For example, the half-edge 1234 is the source of 234 and the target of 134. The
group element g1234 appears as Dγ j234, j234(g1234) and Dγ j134, j134(g−1

1234).
As mentioned above , we contracted all the boundary magnetic indices with four valent

intertwiners (12 in total) as part of the prescription of the boundary data. We chose the same
recoupling basis on each and kept the label generic for the moment (ie with e a quadruple
identifying a boundary tetrahedron).

We highlighted in red the bulk face (123), dual to the triangle 123 in the ∆4 triangulation
1.1. According to equation (1.10) , we are implying a summation over the spin j123 assigned to
it weighted by a dimensional factor 2 j123 + 1. As part of the boundary data, we also prescribed
all the spins associated with the boundary faces. We keep them generic for the moment ( j f

with f a triple identifying a boundary triangle).
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We regularized the amplitude, removing one S L(2,C) integration for each vertex as dis-
cussed above . In (1.12), we indicate the removed integrals with a white box. This choice
is arbitrary, and the amplitude value is independent of this choice. However, we can use this
arbitrariness to simplify the numerical computation (see Section 1.7) by making the symmetric
choice. The integral removed is always opposite to the two bulk half edges and the bulk edge
(123).

1.5 How-To divide the EPRL transition amplitudes
Approaching the calculation of the full amplitude is an arduous task. The group matrix el-
ements in unitary representations are highly oscillating functions. The integrals are group
integrals over many copies (sixteen in our example) of six-dimensional non-compact groups.
We divide the transition amplitude into smaller, more manageable components and compute
them serialized. This approach is the most advantageous if you aim to obtain a number from
the computation of a transition amplitude. However, this could be suboptimal for semiclassical
calculation due to the number of components.

Without any loss of generality, we insert a resolution of the identity over the intertwiner
space between every two vertices of (1.12).

g̃1234g1234

j123

j234

j134

j124

i1234 . (1.13)

We rewrite the resolution of the identity over the intertwiner space as an integral over S U(2)
of four matrix elements (A.23). We commute the S U(2) integral with the Yγ map and bring the
S U(2) group element in the S L(2,C) representation.

g̃1234
g1234u

j123

j234

j134

j124

. (1.14)

Finally, we use the invariance property of the S L(2,C) Haar measure to reabsorb the S U(2)
group element with a change of variable, obtaining the original spinfoam edge.

g̃1234
g1234

j123

j234

j134

j124

. (1.15)

1.5.1 An example: decomposing the ∆4 amplitude
If we divide the ∆4 amplitude (1.12) inserting 4 resolutions of the identity (each one be-

tween two different vertices), the latter decomposes into a linear combination of the product
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of four amplitudes. That is, one per vertex. These amplitudes are commonly known as vertex
amplitudes. Using the graphical representation, we write the full ∆4 transition amplitude as:

A∆4 =
∑

l f

j123 j123

j123j123

g1235

g̃1235

g̃1237

g1234 g̃1234

g̃1236 g1236

12345

12356

g2356

j235

j235

j135

j135

j125

j125

j134 j134j124

j145

j245

j234

j345

j236

j356 j126

j124

j234

12347

g1347 g1247

g2347

j347

j127j137

j236

j137 j127

j237

j237

j126j136 j136

g2367

12367

j367

j156 j167

j267j256

j147

j247

i1267i1367

i2367

i1356i1256

i2356

i1347 i1247

i2347

i1245 i1345

i2345

i1235 i1237

i1234

i1236

.

(1.16)
By separating the vertices as in (1.16), we have transformed the problem of calculating the full
amplitude into the computation of the single building blocks: the vertex amplitudes.
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1.6 How-To compute the EPRL vertex amplitudes

In this section, we will focus on contributions local at the vertices. For concreteness, we model
the definition of the vertex amplitude on the (12345) vertex in the example (1.12).

Av12345 =

j123

g1235

g1234

j235

j135j125

j134j124

j145

j245

j234

j345

i1245 i1345

i2345

i1235

i1234

. (1.17)

In (1.17) we contracted the magnetic indices of the bulk edges (1234) and (1235) with
two intertwiners, labelled by i1234 and i1235. We will see in the next section why this choice is
natural, and we are not losing any generality. Remember that we regularized the amplitude by
fixing the group element g1245 = 1, graphically denoting such element by leaving it blank.

Consider the contribution from the wedge (234). We use the representation property to
separate the matrix elements corresponding to the two group elements.

Dγ j234, j234
j234m′234 j234n234

(g−1
2345g1234) =

∑
|l234 |≥ j234

∑
|n234 |≤l234

Dγ j234, j234
j234m′234l234n234

(g−1
2345)Dγ j234, j234

l234n234 j234m234
(g1234) (1.18)

= g2345
j234 j234l234

g1234 .

The inverse g2345 is due to the orientation of the wedge (234) and the conventions we are
adopting.

To help the reader remember the extra summation introduced by the representation prop-
erty, we wrote spin l234 even if we sum it over. This summation is bounded from below by j234

but is unbounded from above. It is a consequence of the non-compactness of the group (all
unitary irreducible representations are infinite-dimensional). Each group element appears as
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the argument of four matrix elements. For example, g1234 appears in the matrix elements

l123

g1234

l234

l134

j124

i1234

j123

j234

j134

j124

. (1.19)

On the face (124) there is no sum over the spin l124, as a consequence of the regularization
choice g1245 = 1 and the presence of the Yγ map on the half-edge (1245).

We parametrize each Lorentz transformation (S L(2,C) group element) with an arbitrary
rotation (S U(2) group element) followed by a boost in a conventional direction (the 3 direction
in our case) and another arbitrary rotation: the Cartan parametrization (A.35) of S L(2,C). The
representation matrices decompose as (A.35) and the Haar measure factorizes as in (A.36). We
divide the contribution of the integral on the half-edge (1234) to the amplitude into

l123

v1234

l234

l134

j124

l123

l234

l134

j124

j123

u1234

j234

j134

j124

i1234

j123

j234

j134

j124

r1234 . (1.20)

The matrix elements of u1234 and v1234 are S U(2) matrix elements elements (A.38). We
represent the integral over the rapidity r1234 of the product of four reduced matrix elements
(A.40) as a white oval. We wrote the arguments explicitly to help the reader to visualize the
parametrization. In the following, we will omit the name of redundant integration variables.

The Y map commutes with S U(2) group elements. Therefore, we move it next to the
rapidity integral. We perform the integrals over S U(2) (A.25) in terms of (4 jm) symbols. The
contribution to the amplitude from the half-edge (1.20) is

, (1.21)

where the thicker red line represents a summation over the corresponding label weighted by a
dimensional factor as in (1.10).

The contraction of two (4 jm) symbols obey the orthogonality condition (A.27) and allows
us to remove the summation over i′1234

i1234

j123

j234

i′
1234

j134

j124

= (−1)2 j234
δi′1234i1234

2i1234 + 1
. (1.22)
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where the phase (−1)2 j234 is a consequence of the different orientation of the link (A.13).

We define the booster functions Bγ
4 as the result of the integral

Bγ
4 ( j1, j2, j3, j4, l1, l2, l3, l4; i, k) =

l1

l2

l4

l3

j1

j2

j4

j3

k i = (1.23)

=
∑

p1,p2,p3,p4

(
l1 l2 l3 l4

p1 p2 p3 p4

)(k)
∫ ∞

0
dr

1
4π

sinh2 r
4⊗

f=1

dγ j f , j f

l f j f p f
(r)

 ( j1 j2 j3 j4

p1 p2 p3 p4

)(i)

.

The booster functions were first introduced in [42], numerically computed in [47, 48], ana-
lytically evaluated in terms of complex gamma functions [86, 87]. They have an interesting
geometrical interpretation in terms of boosted tetrahedra [88]. The booster functions encode
how the EPRL model imposes the quantum simplicity constraints and depend on the Immirzi
parameter γ. Note that, in the definition (1.23), we dropped the information on the orientation
of the faces. The orientation of the faces in the booster function is irrelevant. The effect of
orientation change of the (4 jm) symbols cancels exactly the effect of orientation change of the
reduced density matrices of S L(2,C), as we discuss in Appendix A.2. Using this definition, we
can write (1.19) in terms of the booster functions as:

. (1.24)

We compute the contribution to the amplitude from all other half edges of (12345) with the
same prescription. The (4 jm) symbols in (1.24) contracts among themselves and form a {15 j}
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symbol of the first kind (A.30).

Av12345 = (−1)2 j135+2 j234
∑

l f

.

(1.25)

The sum over spins l f are only bounded from below (e.g. l123 ≥ j123) and the intertwiners ke are
bounded by the triangular inequalities of the (4 jm) symbols. To complete the calculation we
recognize the S U(2)invariant as a canonical {15 j} symbol of the first kind (A.30). The vertex
amplitude is

Av12345 = (−1)2 j135+2 j234
∑

l f


i1245 j124 k1234 l234 k2345

j145 l134 l123 l235 j245

l345 k1345 l135 k1235 j125

 (1.26)

Bγ
4 ( j235, j234, j345, j245, l235, l234, l345, j245; i2345, k2345)

Bγ
4 ( j123, j135, j125, j235, l123, l135, j125, l235; i1235, k1235)

Bγ
4 ( j134, j124, j234, j123, l134, j124, l234, l123; i1234, k1234)

Bγ
4 ( j145, j345, j135, j134, j145, l345, l135, l134; i1345, k1345) .

In general, one need to change the orientation of some links to obtain the canonical {15 j}
symbol using (A.13) to compute the relative phase.

We rewrote the vertex amplitude (1.17) as a combination of a canonical {15 j} symbol
weighted by four booster functions.

1.7 How-To calculate numbers
In the previous Section, we completed the formal evaluation of the amplitude. We can stop
here if we are satisfied with the expression (1.16). A few more steps are needed to translate it



22 Chapter 1. How-To compute EPRL spinfoam amplitudes

into a number. We decompose each vertex amplitude in (1.16) as in (1.25). By doing so, we
finally write the ∆4 transition amplitude in the appropriate form for a numerical evaluation:

A∆4 =
∑

l f

i1237

i1234

l123

l136

l235

j256

j156
i1256

i1236
i2356

i1356

l236

j126

j125 l135

l356

l123l235

l134

j145

j245

i1245

i1235

i1345

i2345

l135j125

j124

l234

l345

l123

l134

l237

j247

j147
i1247

i2347

i1347

l234

j124

j127l137

l347

l123 l237

l136

j167

j267

i1267

i1367

i2367

l137 j127

j126

l236

l367

j123

j123

j123

j123

.

(1.27)
In this paper, we rely on the library sl2cfoam-next to evaluate the EPRL spinfoam amplitude
numerically. The code discussed in this Section is available in the repository as notebooks [89].

1.7.1 Historical overview

The development of a library for the numerical computation of the Lorentzian EPRL 4-simplex
vertex amplitude started with sl2cfoam [90]. The library is coded in C and is based on the
decomposition of the vertex amplitude (1.26) in terms of booster functions. We refer to the
original paper [47] for a detailed discussion of the library’s performance, accuracy, and memory
management.

The library computes the S U(2) invariant symbols using wigxjpf [91]. The invariants
are stored efficiently in custom hash tables based on khash [92] that consider their symmetry
properties.
sl2cfoam computes the booster functions performing a numerical integration of the boost

matrix elements (1.23). The integrand is rewritten as a finite sum of exponentials with complex
coefficients to tame its highly oscillating behavior. One obtains the booster function from
the interference of many exponential integrals with the trapezoidal rule. To reach enough
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numerical precision, the authors employed arbitrary precision floating point computations with
the GNU libraries GMP [93], MPFR [94] and MPC [95].

The library was used to explore the numerical properties of the EPRL vertex [31, 70, 46,
44]. The need for a much more efficient and accurate code immediately became clear, as the
computational time for more complex amplitudes was out of reach.

Recently sl2cfoam-next[96], the evolution of sl2cfoam, has been released. Also, the
new library is written in C, but it has an optional julia interface [97], which hugely simpli-
fies its usage. Although sl2cfoam-next computes the Lorentzian EPRL vertex amplitude in
the form (1.26), it introduces several ideas and techniques borrowed from High-Performance
Computing and tensor networks. Therefore, with respect to the original version, it represents
a significant improvement in performance and precision. We refer to [48] for its complete
description and usage examples.

The numerical integration of the booster functions is performed with the Gauss-Kronrod
quadrature method after a weighted sub-intervals decomposition of the integration range. Also,
for technical reasons, the γ-simple unitary irreducible representations in the principal series of
S L(2,C) are slightly different from (1.2) as it uses Dγ( j+1) j instead of Dγ j j.

The huge number of sums and products involved in the expression (1.17) is performed with
optimized routines for multidimensional array multiplications (we will refer to them loosely as
tensors in the informatics sense), such as BLAS [98] and MKL. For the description of the CPU
parallelization scheme adopted, we refer to [48]. It has been recently introduced the possibility
to offload tensor contractions to the GPU and parallelize them over the GPU cores with the
CUDA platform [99] by using the julia package CUDA.jl [100, 101].

1.7.2 Introducing the cut-off
The vertex amplitude (1.26) comprises three distinct elements: the {15 j} symbol, the booster

functions, and the combination of two. The formula (1.26) is exact, and sl2cfoam-next can
compute its constituents to very high numerical precision. However, the sums over the spins l f

that appear in (1.26) due to the split of the representation matrix elements on the wedges are
bounded from below but not from above. This means that to extract a number from (1.26), we
must make an approximation and cut off the 6 unbounded sums in the vertex amplitude. While
unbounded, the sums are convergent because the vertex amplitude is finite [85]. Therefore, in
principle, it is possible to find a cut-off large enough to capture the value of the amplitude with
the desired precision.

The library sl2cfoam-next implements a homogeneous cut-off ∆l on all the unbounded
summations. We replace the sums

∞∑
l f= j f

−→

j f+∆l∑
l f= j f

. (1.28)

Unfortunately, we do not have a prescription to find the optimal ∆l value. Numerical ex-
plorations show that it depends on the details of boundary data, such as the face spins j f and
the Barbero-Immirzi parameter γ. Currently, the best-consolidated strategy is to set ∆l as large
as possible and estimate the error by studying the value of the amplitude A∆4(∆l) as a function
of the cut-off.
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Recently [71] introduced an extrapolation scheme to overcome the enormous computa-
tional cost of indefinitely increasing ∆l. The extrapolation algorithm was used to calculate
the self-energy spinfoam amplitude (see [102, 46]), which is a divergent amplitude since it
contains a bubble. Furthermore, we mention that the implementation of Markov Chain Monte
Carlo methods in the study of spinfoams based on the techniques discussed in this paper is in
progress [78].

1.7.3 Using the sl2cfoam-next
Before any calculation, we need to import the sl2cfoam-next library and initialize it. In

the blocks of code of this Section, we will imply that the library is correctly initialized first,
and we omit the following code.

Listing 1.1: Initialization of sl2cfoam-next� �
1 using SL2Cfoam
2 Immirzi = 1.2
3 sl2c_data_folder = "$(path_to_library_data_folder)"
4 sl2c_configuration = SL2Cfoam.Config(VerbosityOff, VeryHighAccuracy, 100, 0)
5 SL2Cfoam.cinit(sl2c_data_folder, Immirzi, sl2c_configuration)� �

We set the value of the Immirzi parameter to 1.2 (for historical reasons, any value is equally
possible). We define a data folder used both to look for the fastwigxj tables and to store the
computed data optionally. In this way, we avoid recomputing the same vertex amplitude for a
second time. We refer to the documentation of sl2cfoam-next and the accompanying paper
[48] for a detailed description of all the setup options.

1.7.4 Computing one vertex
We find it very valuable to dedicate this paragraph to using the julia frontend of sl2cfoam-next
to compute the EPRL vertex amplitude. We reference the amplitude (1.26). We provide some
jupyter notebooks3 in the Git repository [89], for interactive usage examples that the reader
can compile and execute. In the Listing 1.2, we show an essential schematic representation of
the code.

Listing 1.2: Computation of a vertex amplitude with sl2cfoam-next� �
1 Dl = 15
2 spins = j245, j125, j124, j145, j235, j234, j345, j123, j135, j134 = ones(10)
3 @time v = vertex_compute(spins, Dl);� �

We are omitting the initialization code in Listing 1.1. In lines 1-2, we specify the boundary
data (all the spins equal to 1) and the cut-off ∆l = 15. In line 3, we compute the amplitude. The
function vertex_compute returns a tensor with five indices, one per intertwiner, computing
the vertex amplitude (1.25) (without any phase) for all possible values of boundary intertwiners.
In [89], we show how to compute a restricted range of boundary intertwiners.

3The code in [89] was tested with the kernel julia 1.7.0
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The @time macro is used for logging purposes, tracking the computational time and mem-
ory usage. At fixed boundary spins and the Immirzi parameter, the computation time depends
on several parameters, such as the value of the cut-off ∆l and the accuracy level at which the
library is set. With the parameters specified in Listing 1.1, the first time line 3 of Listing 1.2
is run takes 158 seconds. The computation time decreases exponentially by selecting a lower
cut-off ∆l. We tested this code on a laptop with Intel(R) Core(TM) i7-10750H 2.60GHz proces-
sor. The library distributes the workload on the available cores according to the parallelization
scheme discussed in [48]. If we store the required booster functions during the first compu-
tation, the second time we run the script takes 3.2 seconds. It is the time to compute, sum,
and contract all the required {15 j} symbols in the expression (1.25). Finally, If we store the
full vertex amplitude, the computation time is negligible since nothing is calculated, and we
retrieve the value from memory.

If we are interested in one single vertex amplitude, this is all we need to do.

1.7.5 An example: computing the ∆4 amplitude with sl2cfoam-next

We split the computation of the amplitude (1.27) into two steps. First, we compute and save
the value of all the necessary vertices. Then, we contract the required vertices to calculate the
∆4 amplitude. We fix all boundary spins j equal to 1 for simplicity. The bulk spin j123 assumes
values from 0 to 3 j, while bulk intertwiners i1234, i1235, i1236, and i1237 assume values compatible
with triangular inequalities. With the regularization choices we made, the vertex amplitudes
are fully symmetric. The bulk spin and intertwiners always appear in the same position in each
of the four vertices. Therefore, it is sufficient to compute only a single vertex amplitude for all
the possible values of spins and intertwiners. To keep the computational time reasonable, we
fix the cut-off ∆l to 15. We analyze the dependence of the amplitude on this cut-off in the next
step.

Listing 1.3: Computation of all the vertex amplitudes needed in the computation of the transition am-
plitude (1.27)� �

1 using JLD2
2 j = 1
3 Dl = 15
4 root_dir = pwd()
5 vertex_path = "$(root_dir)/vertex_ampls/Immirzi_$(Immirzi)/j_$(j)/Dl_$(Dl)"
6 mkpath(vertex_path)
7 j_bulk_min, j_bulk_max = 0, 3j
8 for j_bulk = j_bulk_min:j_bulk_max
9 spins = [j, j, j, j, j, j, j, j_bulk, j, j]
10 v = vertex_compute(spins, Dl)
11 vertex = v.a
12 @save "$(vertex_path)/j_bulk_$(j_bulk)_fulltensor.jld2" vertex
13 end� �

In lines 2-3, we set all boundary spins equal to 1, and the cut-off ∆l = 15. In lines 4-6, we create
the directory path to organize the files containing the computed amplitudes. In line 7, we define
the range of the bulk spin, and from line 8, we loop over it. Finally, in lines 9-12, we assign
the vertex amplitude’s spins, compute the vertex amplitude, and save it for later use. Notice
that we are computing the fulltensor vertex amplitude for all the possible values of boundary
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intertwiners. This ensures that the ∆4 amplitude can be calculated for any combination.
Finally, assembling all the vertices, we compute the whole amplitude (1.27). One of the

main advantages of collecting the vertex amplitudes in multidimensional arrays is that there
are very efficient methods to multiply (or “contract”) the latter. For the application, we discuss
in this work, improving upon a for loop is unnecessary, but julia offers the possibility to
perform contractions wonderfully and, possibly, using the GPU. See, for example, the method
contract, provided in sl2cfoam-next to contract vertices with coherent boundary states.
Alternatively, there are packages such as LoopVectorization.jl (see [103] for an example)
or libraries like ITensor [104]. In the following code block, we assume all the variables
defined in Listing 1.3 are available.

Listing 1.4: Computation of the transition amplitude (1.27). All the vertex amplitudes are precomputed.� �
1 i_b = 2
2 i = i_b + 1
3 D4_amp = 0.0
4 for j_bulk = j_bulk_min:j_bulk_max
5 fulltensor_to_load = "$(vertex_path)/j_bulk_$(j_bulk)_fulltensor.jld2"
6 @load "$(fulltensor_to_load)" vertex
7 D4_partial_amp = 0.0
8 D = size(vertex[i,:,:,i,i])[1]
9 for i_1234 in 1:D, i_1235 in 1:D, i_1236 in 1:D, i_1237 in 1:D
10 @inbounds D4_partial_amp += vertex[i,i_1234,i_1235,i,i]*vertex[i,i_1235,i_1236,i,i]*
11 vertex[i,i_1236,i_1237,i,i]*vertex[i,i_1237,i_1234,i,i]
12 end
13 D4_partial_amp *= (2j_bulk + 1)
14 D4_amp += D4_partial_amp
15 end
16 @show D4_amp� �

In lines 1-2, we define the boundary intertwiners. We pick them all equal to 2 for simplicity,
but any other choice is also possible. Notice that in julia, the vector’s index starts from 1.
Therefore, we shift its value. In line 3, we initialize the variable that will contain the amplitude.
From line 4, we loop over all the possible values of the bulk spin. In lines 5-6, we load the
precomputed amplitude. In line 7, we initialize the variable to store the partial amplitude. The
partial amplitude is the quantity in (1.27) at the bulk spin j123 fixed value. From lines 8 to 12,
we sum the product of the four vertex amplitudes over the bulk intertwiners. Finally, in line
13, we add the dimensional factor to the full amplitude value we display in line 16.

1.7.6 Results and extrapolation

We summarize the result of our calculation in Table 1.1 and Figure 1.3.

∆l 0 1 2 3 4 5 6 7
A∆4(∆l) × 1036 0.202 1.09 2.03 2.59 2.90 3.09 3.21 3.29

∆l 8 9 10 11 12 13 14 15
A∆4(∆l) 3.36 3.40 3.44 3.47 3.50 3.51 3.53 3.54

Table 1.1: Numerical values of the amplitude A∆4(∆l) in function of the cut-off.



1.7. How-To calculate numbers 27

Figure 1.3: Amplitude A∆4(∆l) in function of the cut-off.

Looking at the plot in Figure 1.3, it seems reasonable to deduce that by increasing the
cut-off ∆l, the value of the amplitude grows and (asymptotically) converges to the value of
the amplitude. In the first numerical works based on sl2cfoam and st2cfoam-next [70, 31]
the amplitude was approximated using the value with the largest available cut-off. However,
we have more information (convergence, trends, speed). Is it possible to better estimate the
amplitude with what we have?
We use series acceleration techniques. We reorganize the sums in the amplitude such that it
takes the form

A∆4(∆l) =
∆l∑

n=0

an , (1.29)

where a0 is the amplitude with vanishing cut-off ∆l = 0 (also called simplified model in [42]),
a1 encodes all the terms in the various sums of A∆4 that appears in the amplitude cut-off ∆l = 1
but are not in a0, and so on. The whole amplitude is recovered in the limit for an infinite cut-off
of (1.29).

While recast in this form, we can apply techniques to estimate the value of numerical
convergent series like the one in Appendix A.3. A similar approach was attempted in [72], and
here we improve it and clarify it. The technique is analog to the Aitken delta-squared process
[105] applied the the succession of the partial sum (1.29).

Since the amplitude is finite, the infinite cut-off limit of (1.29) exists, and the series defined
in this way is convergent. We will assume that the ratios an/an−1 are increasing (from a certain
point onward). This assumption is backed up by numerical evidence (up to the available cut-
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off). The lower bound estimate in (A.50) specialized for the series (1.29) is

A∆4 ⪆
A∆4(∆l)A∆4(∆l − 2) − A2

∆4
(∆l − 1)

A∆4(∆l) − 2A∆4(∆l − 1) + A∆4(∆l − 2)
=

A∆4(15)A∆4(13) − A2
∆4

(14)

A∆4(15) − 2A∆4(14) + A∆4(13)
≈ 3.61 · 10−36 ,

(1.30)
where we specified the largest maximum value of the cut-off we computed, which is ∆l = 15.
The estimate (1.30) is significantly different from A∆4(15) and does not require any additional
calculation or resources. The lower bound (1.30) is analogous to the approximation we can
obtain with Aitken’s delta-squared process. With (A.50), we also obtain an upper bound to
the amplitude.

A∆4 ⪅
A∆4(∆l) − A∆4(∆l − 1)L

1 − L
=

A∆4(15) − LA∆4(14)
1 − L

≈ 3.74 · 10−36 , (1.31)

where L = lim∆l→∞ an/an−1, which we estimate numerically with an inverse power law fit as
in the example in Appendix A.3. We stress that the validity of this upper bound needs to be
taken with a grain of salt since approximating the value of L can falsify the inequality in (1.31).
Summarizing,

A∆4 ∈ (3.61 · 10−36,≈ 3.74 · 10−36) . (1.32)

We can plot the amplitude together with the bound obtained from (1.30) and (1.31) to appreci-
ate the improvement to the rough estimate A∆4(15).

Figure 1.4: Amplitude A∆4(∆l) in function of the cut-off with the band (1.32) highlighted in blue. We
excluded the points ∆l < 5 for a better plot scale.

Computational resources are precious. Up to this point, all our proposed calculations can
be done on a standard laptop. How much can we improve the estimate by increasing the cut-off
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using High-Performance Computing? Compute Canada’s Narval cluster increased the cut-off
from 15 to 25. The computation was distributed on 80 tasks with 10 CPUs per task, requiring
about 8 minutes. The script used can be found in [89]. These were the resources we could
employ in this project. However, there is still a big room for easy improvement.

∆l 16 17 18 19 20 21 22 23 24 25
A∆4(∆l) × 1036 3.55 3.56 3.57 3.58 3.58 3.59 3.59 3.60 3.60 3.61

Table 1.2: Numerical values of the amplitude A∆4(∆l) in function of the cut-off.

Repeating the estimate process, we find new upper and lower bounds.

A∆4 ∈ (3.63 · 10−36,≈ 3.69 · 10−36) . (1.33)

The lower bound is marginally improved, as expected by comparing the numerical values in
Table 1.2 to the ones in Table 1.1. However, the improvement on the upper bound is significant.
Having more points to extrapolate the limit of the ratios L is essential.

Figure 1.5: Amplitude A∆4(∆l) in function of the cut-off with the band (1.32) highlighted in purple and
the band (1.33) highlighted in green.

The calculation we proposed is not limited to our choice of boundary data. Using the same
technique and adapting the code, we also compute the value of the A∆4 amplitude for boundary
intertwiners ib = 1, 0 and for other values of the Immirzi parameter γ = 1, 0.1. We summarize
the results in Table 1.3
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A∆4(25) A∆4(25)

γ = 1.2,ib = 1 5.06 · 10−37 (5.09 · 10−37, 5.11 · 10−37)

γ = 1.2,ib = 0 1.90 · 10−37 (1.92 · 10−37, 2.17 · 10−37)

γ = 1.0,ib = 2 9.44 · 10−34 (9.51 · 10−34, 9.90 · 10−34)

γ = 1.0,ib = 1 1.49 · 10−34 (1.50 · 10−34, 1.53 · 10−34)

γ = 1.0,ib = 0 4.95 · 10−35 (5.01 · 10−35, 8.50 · 10−35)

γ = 0.1,ib = 2 4.28 · 10−24 (4.33 · 10−24, 5.49 · 10−24)

γ = 0.1,ib = 1 1.24 · 10−24 (1.26 · 10−24, 1.64 · 10−24)

γ = 0.1,ib = 0 2.33 · 10−25 (2.38 · 10−25, 2.79 · 10−25)

Table 1.3: Numerical calculation of the amplitude A∆4 with different boundary data. The boundary
spins are all equal j = 1, and the cut-off ∆l = 25.



Chapter 2

Numerical analysis of the self-energy in
covariant LQG

Statement of co-authorship

This Chapter discusses the paper [71], written by me, Francesco Gozzini, and Francesca Vi-
dotto. It was published in Physical Review D on 20 May 2022. Furthermore, the proceeding
paper [72] contains research material and results that converged into this paper. This was the
first project I decided to invest and work on. The idea of using HPC to study the self-energy
amplitude was born after I studied exhaustively the paper [46] and thanks to many exciting
discussions with Francesco Gozzini, who had recently developed the sl2cfoam-next library.
I took care of the numerical computations along with Francesco Gozzini. Furthermore, I con-
tributed to drafting the sections and creating the cabling spinfoam diagrams and plots. It must
be noted that the paper employs a peculiar extrapolation technique for convergent series, which
is addressed as an “original numerical method”. I found it accidentally by playing with the
data, and it turned out to be crucial to state the conclusion of the work. Later on, an anony-
mous referee for a paper subsequent to this pointed out that this technique is equivalent to the
Aitken extrapolation technique [105], which we kept utilizing on a standard basis ever since.
I consider the estimate of the percentage of the total work conducted by me between 40% and
60%. This manuscript corresponds to the article’s Physical Review D-published version, which
agrees with the APS copyright policies.

2.1 Introduction

The spinfoam, or covariant, formulation of loop quantum gravity [74], is based on the defi-
nition of truncated amplitudes that define the background independent dynamics of quantum
spacetime [106, 107] in a way similar to the Feynman graphs’ definition of the dynamics of
quantum field theory. In a Feynman graph, radiative corrections appear as loops (a set of prop-
agators forming a circle) and may give rise to ultraviolet divergences. In a spinfoam, radiative
corrections appear as bubbles (a set of faces forming a sphere). They may give rise to infrared
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divergences when the cosmological constant is taken to be zero1. Here we investigate the first-
order radiative correction to a single edge of the spinfoam, which is analog to the first-order
contribution to the self-energy in quantum field theory. We use the version of the amplitude de-
veloped in [110, 111, 112, 28, 26, 113, 25, 82, 114] generally denoted as the EPRL amplitude.
For reviews and notation, see [1, 115, 116].

The spinfoam infrared divergences have been studied analytically from several different
perspectives [117, 52, 53, 118, 119, 120, 121, 122, 54, 55]. EPRL divergences have been
studied in the Euclidean [123, 124] and Lorentzian theories [102, 46]. In particular, the last
two references by Riello and Doná provide lower and upper bounds to the degree of divergence
of the self-energy, resulting in a wide window. In [102], Riello gives a detailed analysis of the
critical point that contributes to the amplitude in the large-spin scaling limit, based on the
techniques introduced in [68], in the case of non-degenerate geometric configurations. He
finds a logarithmic divergence in the cutoff K. He then estimates in a final appendix that
the contribution of the degenerate sector might be linear in K, hence dominating the total
divergence, postponing a detailed analysis of this sector to future studies. On the other hand,
in [46], Doná derives an upper bound of the divergence by disregarding interference between
various terms of the sum. His estimate leads to an upper bound on the divergence that scales
as K9. He also proves that the upper bounds derived with his algorithm provide excellent
estimates of different kinds of infrared divergences restricted to the 3D model. This suggests
that this might also be true in 4D, underlining the need for a complete numerical analysis for
future studies.

These two results leave a window of possibilities that spans more than nine powers of the
cutoff. In this work, we address the issue numerically. What we find is consistent with Riello’s
rough estimate: for small values of the Barbero-Immirzi parameter, the numerical analysis is
compatible with a linear divergence in K.

The numerical calculation is possible thanks to the recently developed sl2cfoam-next
library [48]. Computations were performed on Compute Canada’s Cedar and Graham clusters
(www.computecanada.ca) and on the Mesocentre of Aix-Marseille University (mesocentre.univ-
amu.fr). The analysis and visualization of the computed data have been done with Julia [97]
and Mathematica [125].

In section 2.2, we describe the structure of the self-energy amplitude. In section 2.3, we
recall the calculation of the degree of divergence in the topological S U(2) BF model, which
can be found exactly. This allows us to compare the numerical results with the analytical ones
in the literature. In section 2.4 we define the EPRL amplitude. In section 2.5, we describe the
results of the numerical analysis of the EPRL self-energy amplitude. Finally, in the appendices,
we report some further numerical studies and consistency checks.

2.2 Self-energy

Consider two four simplices joined by four tetrahedra. Two tetrahedra form the boundary of
this cellular complex. In quantum gravity, this cellular complex can be associated with the

1The general definition of the spinfoam amplitudes includes a non-zero cosmological constant [108, 35, 109]
that plays the role of an infrared cutoff and makes the amplitudes finite.

https://www.computecanada.ca/
https://mesocentre.univ-amu.fr
https://mesocentre.univ-amu.fr
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Figure 2.1: The two-complex C of the self-energy. All vertices and edges, but only one internal and two
external faces are depicted.

transition from a single quantum of space to a single quantum of space via a splitting into four
virtual quanta, which then recombine [106, 107].

The dual of this cellular complex is a two-complex C. It is formed by two pentavalent
vertices v± joined by four internal edges ea, with a = 1, 2, 3, 4. Each of the two vertices has one
other edge e±, ending on the boundary. The two-complex has four external faces fa that end
on the boundary, and six internal faces fab, dual to the surfaces that separate the four internal
tetrahedra. See Figure 2.1. The six faces fab, taken together, form the bubble we are interested
in.

The boundary of the two-complex C is the graph Γ formed by the two 4-valent nodes n±
where the edges e± end (dual to the initial and final quanta of space), joined by four links la that
bound the faces fa (see Figure 2.2). The kinematical LQG boundary Hilbert space is therefore
HΓ = L2

[
S U(2)4/S U(2)2

]
Γ
. The graph Γ is represented in Figure 2.2.

Figure 2.2: The boundary graph.

A basis inHΓ is given by the spin network states | ja, i±⟩, where ja are the spins attached to
the links la. In the two intertwiner spaces, we choose the recoupling basis i± defined by pairing
the links j1 and j2 at the node n±, i.e. the basis that diagonalizes the modulus square of the
sum of the S U(2) generators in the S U(2) representation j1 and j2 [126, 127, 128]. The label
i indicates the spin of the virtual link in this recoupling basis.

We focus on the subspacesH j ⊂ HΓ where the four spins are equal ja = j, and denote the
basis states as

| j, i±⟩ = | j, i+⟩ ⊗ | j, i−⟩ . (2.1)

We are interested in the EPRL amplitude [1]

W( j, i±) = ⟨WC| j, i±⟩ (2.2)

relative to the two complex C. We need an infrared cutoff to compute this amplitude numeri-
cally to bound the sum over the spins associated with the internal faces. We denote this cutoff
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K, and we define the cutoff amplitude as

W( j, i±,K) = ⟨WC,K | j, i±⟩. (2.3)

We are interested in studying the dependence of this amplitude on K.

2.3 BF amplitude

As a first step, we consider the amplitude

WBF( j, i±) = ⟨WBF
C | j, i±⟩ (2.4)

in the topological S U(2) BF theory, where the amplitude can be computed analytically [46].
The BF self-energy amplitude can be written as

WBF ( j, i±) =
∑
jab,ia

d{ jab} d{ia}
∏
±

{15 j} ja, jab,i±,ia , (2.5)

where d{ jab} =
∏
(a,b)

(2 jab + 1) and d{ia} =
∏
a

(2ia + 1), with a, b = 1, ...4, a , b. The BF vertex

amplitude {15 j} jAB,iA is the 15-j Wigner symbol defined contracting the five intertwiners iA with
the ten spins JAB, with A, B = 1, ...5, A , B. See Appendix A.1 for notation and conventions.
A graphical representation of this amplitude that will be useful later on is the following:

WBF ( j, i±) =
∑
jab,ia

d{ jab} d{ia}× (2.6)

.

Here, for completeness, we should include in the expression for the amplitude the dimensional
factor of the boundary faces and intertwiners, but this is a constant overall factor that can
be ignored in the analysis since it does not affect the scaling of the divergence, that is what
interests us. In (2.6), the six internal faces jab are highlighted in red. If we choose a recoupling
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basis for the internal intertwiners as follows

WBF ( j, i±) =
∑
jab,ia

d{ jab} d{ia}× (2.7)
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i4

,

then, this picture directly expresses the two BF vertex amplitudes in terms of Wigner 3-j sym-
bols: each intersection of three lines is one such symbol, and the lines specify the contractions’
scheme.

The multiple sums over the spins jab and the virtual spins ia of the intertwiners are con-
strained by the Mandelstam identities that must be satisfied for the Wigner symbols not to
vanish. But it is clear from the last picture that the fixed values of the external spins ja do not
prevent the internal spins jab from growing arbitrarily large. This is the origin of the diver-
gence. To study it numerically, we introduce a cutoff jmax = K on the six internal faces jab,
bounding all the sums by K. That is, we define

WBF ( j, i±; K) =
∑
jab≤K

ia

d{ jab} d{ia}
∏
±

{15 j} ja, jab,i±,ia .

We have computed this quantity numerically for a fixed value of the ja and i± for different
values of K. In the BF case, it is known analytically that the degree of divergence does not
depend on ja and i±. The result is shown in Figure 2.3, where the continuous curve is WBF =

4.8 · K9. This result is consistent with the analytical result [46], which gives

WBF ( j, i±; K) ∝ K9. (2.8)

We briefly recall how to derive this result. Consider the simple case where all external spins
are zero. The BF amplitude can be expressed in Fourier transform as multiple integrals over
S U(2), given by one integration per link and one delta function per face. In this case, we have

WBF =

∫
dga

∏
a>b

δ
(
gag−1

b

)
.

It is easy to see that one integration is redundant, and the other three can be used to eliminate
three delta functions, leaving

WBF = δ (1)3 . (2.9)

To regularize this expression, one can write the delta function as a sum over characters χ j of
irreducible representations of S U(2) and introduce an infrared cutoff K, as follows:

δ (U) = lim
K
δK (U) = lim

K

K∑
j

(2 j + 1)χ j (U) .
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Figure 2.3: Log-log plot of the BF self-energy amplitude as a function of the cutoff K on the internal
spins jab. The continuous curve represents the 4.8·K9 function.

Then, easily, δK (1) ≈ K3 and (2.8) follows from (2.9).
The numerical analysis in Figure 2.3 shows that the asymptotic scaling of the self-energy

BF divergence (2.8) is reached for very low values of the infrared cutoff K. The computation
involved in producing Figure 2.3 is nowadays trivial and can be easily performed on a laptop
thanks to very efficient routines for computing Wigner (3,6,9)-j symbols [129, 130]. However,
we note that the computational complexity grows for a large power of the cutoff index K,
approximately equal to the number of internal faces of the foam. In Figure 2.4 we plot the
total number of combinations of internal spins that must be computed for each cutoff value
K till K = 20. We can see that the triangular inequalities reduce the complexity from K6 to
effectively ∼ K5.6. This still gives many configurations to consider and provides a considerable
numerical challenge in the EPRL case, whose vertex amplitude is much more computationally
complex than the BF one, as shown in the next section.
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Number of terms jab ≤ K

Figure 2.4: Log-log plot of the total number of different configurations of internal spins jab to be summed
over for increasing cutoff values K. The power-law fit is ∼ 1.7 · K5.6.
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2.4 EPRL

Let us now come to the quantum gravity theory. The EPRL vertex amplitude is defined using a
restriction of the unitary irreducible representations in the principal series of S L(2,C) [25, 113].
To evaluate it numerically, a more tractable formulation has been derived in [42] and discussed
in [47, 45]. In this formulation, the vertex is expressed as a sum over S U(2) 15-j symbols
weighted by one “booster function” B4 per edge (see Appendix A.2 for explicit formulas). The
amplitude of a vertex bounded by spins j f and intertwiners ie can thus be written as a sum

V
(

j f , ie, γ
)
=

∑
l f≥ j f

ke

d{ke}

∏
e

B4( j f , l f ; ie, ke; γ)

 {15 j}l f ,ke (2.10)

with virtual intertwiners ke and virtual spins l f ≥ j f , e = 2...5. One booster function must
be replaced by the identity, corresponding to the suppression of a redundant S L(2,C) integra-
tion2. Notice that we keep the dependence on the Barbero-Immirzi parameter explicit. In this
expression, the infinite sum over l f , called the “shell expansion”, can be shown analytically to
converge, but given the numerical calculation, it is convenient to truncate it at a finite value
defining

V
(

j f , ie, γ
)
= lim
∆l→∞

V
(

j f , ie, γ;∆l
)

(2.11)

where

V
(

j f , ie, γ;∆l
)
=

∑
j f≤l f≤ j f+∆

ke

d{ke}

∏
e

B4( j f , l f ; ie, ke; γ)

 {15 j}l f ,ke

=
∑

j f≤l f≤ j f+∆

ke

d{ke}
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l

.

As before, we have neglected dimensional factors attached to the boundary intertwiners ie and
the boundary spins j f . The following will refer to the cutoff ∆l as the number of shells. Even if
the convergence of the amplitudes a function of ∆l is assured [47, 45], it is not possible to have
a unique prescription to set the optimal ∆l to get an acceptable convergence, since it depends on
the details of data such as the face spins j f and the Barbero-Immirzi parameter. Furthermore,
the convergence strongly depends on the structure of the 2-complex, and there is no known
general procedure to estimate the error made in truncating the sum over the auxiliary spins. In
the next Section, we describe a technique to extrapolate the limit ∆l→ ∞ for the self-energy.

2The 15-j symbol in (2.10) also depends on the four spins which label the gauge fixed edge, even if in the
analytic notation it is not emphasized
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With the form of the vertex described above, we can write the self-energy amplitude ex-
plicitly in a form suitable for numerical analysis. This gives

W( j, i±, γ; K,∆l) =
∑
jab≤K

jab≤lab≤ jab+∆l
ia,kq±

d{ jab}d{ia}d{kq±}×

, (2.12)

with q = 1...4. Compared to the diagrammatic expressions used for the EPRL vertex (2.12), we
have rearranged some links to emphasize the structure of the contractions between the vertices,
which defines the spinfoam associated with the triangulation described in Section 2.2.

The EPRL self-energy amplitude is the main object of the analysis performed in this pa-
per. The interested reader can derive the complete analytical expressions by comparing the
graphical counterparts with the definitions in Appendices A.1 and A.2.

When the two boundary intertwiners i+ and i− have the same value i, the EPRL self-energy
amplitude simplifies as

W( j, i, γ; K,∆l) =
∑
jab≤K

ia

d{ jab} d{ia}V( j, jab; i, ia; γ;∆l)2 (2.13)

since the two vertex amplitudes entering the sum over the internal faces jab are identical. Except
for the coherent state and the boundary observable analysis (Appendix B.1), we shall always
consider the two boundary intertwiners i± to have the same value. In the following, we use
i = (0, 0). The result with different values is substantially identical, differing only by a slight
overall shift of the points.

Numerically, the vertex amplitude V( j, jab; i, ia; γ;∆l) in (2.13) can be efficiently computed
using the recently developed library sl2cfoam-next [48] given the list of boundary spins ( ji =

j, jab) and the number of shells ∆l. The squared sum over the internal intertwiner indices ia can
be implemented by contracting the resulting vertex tensor with itself. The library automatically
distributes all the configurations of internal spins across the available cluster nodes, and each
node parallelizes the computation of the various shells over the available local CPUs. The
particular code employed for this work is available at the repository [131].

From (2.12) it is clear that the computation of a single EPRL vertex amplitude is much
more complex than the corresponding BF vertex amplitude with the same boundary spins and
intertwiner indices. In fact, a single EPRL amplitude requires the computation of roughly
(∆l + 1)6 different BF amplitudes and (∆l + 1)3 booster functions, for each different set of
intertwiners ia that bound the vertex (whose number is ∼ (2 j + 1)5 if the boundary spins are of
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order ∼ j). In the present case, a different EPRL vertex tensor (i.e., a bundle of amplitudes at
fixed boundary spins with running boundary intertwiner indices) must be computed for each
configuration of the internal spins jab, whose number as a function of the cutoff K has been
estimated in the previous Section (see Figure 2.4). From these simple estimates, we see that
the numerical complexity of computing (2.13), using our methods, proliferates when any of
the parameters K, ∆l or j increases, roughly with a power law between 5 to 6 powers of the
increasing parameter. We provide in the next Section some data for the resources employed in
the computation of (2.13) up to K = 10 and ∆l = 20.

2.5 Divergence Analysis

We have studied the amplitude (2.13) numerically and considered the following questions:

1. What is the asymptotic scaling of the EPRL divergence?

2. What is the dependence on the Barbero-Immirzi parameter?

3. At fixed boundary spins and Barbero-Immirzi parameter, does the scaling change using
boundary spin network states or intrinsic coherent states?

4. What configurations contribute most to the divergence itself?

The first two questions are addressed in the main text, the third in the paper [71], and the fourth
in Appendix B.2. The main difficulty in answering these questions is the limit ∆l → ∞ that
cannot be taken numerically. To address this problem, we have relied on a property of the
dependence of the amplitude on ∆l at fixed K, that has emerged from the numerical analysis
itself.
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Figure 2.5: The EPRL divergence (2.13) as a function of the cutoff parameter K, for some shells ∆l = 0
to 10. Darker colors correspond to larger ∆l. A portion of the plot around K = 5 is highlighted to show
the convergence properties of the shell approximation. Left: γ = 0.1. Right: γ = 1.0.
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Extrapolation scheme

We show in Figure 2.5 the amplitude (2.13) as a function of the cutoff K, for various values of
the number of shells ∆l and γ = 0.1 and γ = 1.0. From a simple qualitative analysis, we infer
that the convergence of the shell approximation is faster for a reduced bulk spins cutoff, while
it becomes slower as K increases. The highest curve is a lower bound to the amplitude as a
function of K, which is recovered in the limit ∆l → ∞. Convergence in the number of shells
appears to depend on γ, with the case γ = 1.0 converging faster.

The convergence of (2.13) in the parameter ∆l can be extrapolated from the data reported
in Figure 2.5. To this aim, we have computed the ratios of the differences between adjacent
curves of Figure 2.5, at fixed K, as a function of ∆l. That is, we have studied the function:

f (γ,K,∆l) ≡
W(γ,K,∆l + 2) −W(γ,K,∆l + 1)

W(γ,K,∆l + 1) −W(γ,K,∆l)
, (2.14)

for each fixed value of j and i. The result is shown in Figure 2.6 for K ≥ 5 and γ = 1.0.
It appears from Figure 2.6 that the function f (γ,K,∆l) tends to a constant for larger enough
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Figure 2.6: Function (2.14) for γ = 1.0. The curves tend to a constant value cK,γ.

values of K, as a function of ∆l (however, see also the more complete analysis for the case
γ = 0.1, that is studied in a following section). Since (2.14) is the ratio between successive
terms of a series, this means that the sum over the parameter ∆l can be well approximated by a
geometric series when K is large. Defining

cK,γ ≡ f (γ,K,N − 2) (2.15)

where N is the largest ∆l parameter that has been reached numerically, our assumption implies
for ∆l ≥ N

W(γ,K,∆l + 1) −W(γ,K,∆l) ≈
(
cK,γ

)∆l
. (2.16)

We thus approximate the divergence in the limit ∆l→ ∞ as

W(γ,K) ≡ lim
∆l→∞

W(γ,K,∆l) (2.17)

≈ W(γ,K,N − 1) +
W(γ,K,N) −W(γ,K,N − 1)

1 − cK,γ
,
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where we used the elementary limit of the geometric series. We note that the approximation
improves when (i) more shells can be computed numerically, i.e., the index N increases, and (ii)
the ratios (2.14) are closer to true constants in ∆l. We applied this extrapolation scheme to the
amplitudes computed numerically for different values of γ. In particular, in the case, γ = 0.1,
where the convergence in ∆l is the slowest, hence the approximation is the least accurate, we
pushed the ∆l parameter to very large values to study the accuracy of our extrapolation scheme
and obtain very precise results for a physically relevant case.

Case γ = 0.1
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Figure 2.7: The complete analysis for the case γ = 0.1 till N = ∆lmax = 20. Left: All the curves at
various ∆l with the extrapolation from ∆l = 20. Right: The extrapolations from ∆l = 10 and ∆l = 20
with the corresponding linear fits. The slopes of the fits are 8.1 · 10−6 and 8.6 · 10−6, respectively.
The standard errors of the fits, obtained with Julia’s LsqFit package, are 2.3 · 10−8 and 4.6 · 10−9,
respectively.
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Figure 2.8: Function (2.14) for γ = 0.1 plotted till N = ∆lmax = 20. It is evident that the approximation
f ≈ const for ∆l > N provides a lower bound to the exact limit ∆l→ ∞.

In Figure 2.7, we show the amplitude (2.13) for the case γ = 0.1, with the computed data for
∆l ≤ 20 and the extrapolated curves from N = 10 and from N = 20. From these plots, we can
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verify that the approximation gives results that are already accurate, starting with low values of
N since the difference between the two extrapolations is small, around 5% for K = 10. Plotting
the ratios (2.14) till very large values of ∆l, as we did in Figure 2.8, we can see that for the case
γ = 0.1 the approximation f (γ,K,∆l) ≈ const is more accurate for larger values of K and less
accurate for smaller cutoffs. This is not an issue since convergence in ∆l is reached sooner for
tiny cutoffs (since the ratios are smaller, the series converges faster). Also, Figure 2.8 shows
that the extrapolation is a lower bound to the actual amplitude, although very close to the exact
result.

Notably, the qualitative behavior of the divergence, either extrapolated from N = 10 or
N = 20, is linear. In Figure 2.7, we show the fit of the extrapolated curves with straight lines.
The extrapolated points fall precisely on a straight line for K ≳ 5 in both cases, with the better
approximation at N = 20 being also closer to linear behavior than the one at N = 10. We
conclude in this case that the overall divergence is very close to linear in the cutoff parameter
K.

A few comments are in order. First, our results are in accordance with the rough analytical
estimate of Riello [102]. It is essential to notice that his primary analysis focuses on what
Riello calls the non-degenerate sector of the divergence and disregards the contributions from
degenerate configurations when the 4-simplices dual to the two spinfoam vertices v± have non-
maximal dimension. He found that this sector contributes with a leading factor of log K to the
divergence. However, in Appendix C of [102], the remaining degenerate sector is estimated to
contribute with a dominant factor of K to the overall divergence, which our numerical analysis
shows. Our result also clearly indicates that the interference effects neglected in [46] strongly
suppress the divergence of approximately eight powers of K.

Second, our numerical analysis does not entirely exclude the possibility that the behavior
for very large values of K is different from what is inferred in the regime K ≲ 10. There are
however multiple arguments supporting our conclusion: (i) our findings are compatible with
past analytical estimates [102]; (ii) from Figure 2.7 we see that improving the approximation
also improves the matching with the linear fit, which appears perfect for as much as about 12
data points; (iii) we can compare the EPRL divergence with the BF case, where the asymp-
totic power-law divergence is already manifest for spins of order ∼ 10 (see Figure 2.3), and
analytically it is seen to be independent of the details of the chosen boundary data; (iv) re-
cent numerical investigations [48, 132] strongly support the hypothesis that the semiclassical
(i.e., asymptotic) regime of theory is reached for relatively small spins if the Barbero-Immirzi
parameter γ is small (e.g., around 0.1). This appears to be related to the slower frequency
of asymptotic amplitude oscillations whenever γ is small [132]. Hence, in this case, we can
assume that we are looking at the asymptotic divergence for K ≳ 5. This is also supported by
our analysis for larger values of γ, which do not appear to converge to a fixed (γ-independent)
asymptotic behavior in the considered range of the cutoff, as we show in the next paragraph.

As a final comment for the γ = 0.1 case, we report technical details about the hardware
resources employed. The computation of the divergence at K ≤ 10 and ∆l = 20 ran on 640
CPUs for ∼ 60 hours, for a total of ∼ 40000 CPU-hours. The computation at γ = 0.1 from
∆l = 0 to 20 took about 125000 CPU-hours. Recall that the computational complexity of
the EPRL model scales as (∆l + 1)6. Thus the plots with the largest number of shells took
most of the allocated CPU time. Symmetries in the internal spins jab peculiar to this case
( j = 1/2, i± = 0) have been implemented in the code to reduce the computational time of about
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Figure 2.9: Fit of the amplitude W(γ,K) extrapolated via equation (2.17) with N = 10 for decreasing
values of the Barbero-Immirzi parameter γ , 0.1 and with N = 20 for γ = 0.1. The fit is made by
cutting the values of W(γ,K) for K ≤ 4 and superimposing the resulting curve with all the extrapolated
points.

a factor ∼ 6.

Case γ ≳ 0.1

The extrapolation method outlined above allowed us to investigate also larger values of the
Barbero-Immirzi parameter γ without replicating the already substantial computational effort
required for the case γ = 0.1. We have studied the scaling of the asymptotic divergence for 9
values of γ, ranging between 0.1 and 10. The result is shown in Figure 2.9, for which we used
N = 10 in equation (2.17). Notice that the extrapolation scheme is more effective in the cases
γ > 0.1 than in the case γ = 0.1, as the curves of the ratios given by the function (2.14) become
closer to constants as γ increases (compare Figure 2.6 with Figure 2.8). The data of Figure 2.9
are fitted with a function:

W(γ,K) = a + bKc (2.18)

where a, b, c are real coefficients. The best fit for the values of these parameters is shown in
Table 2.1.

Table 2.1 shows that the amplitude is suppressed for large γ. The divergence is increasingly
well fitted by an approximately linear scaling as the Barbero-Immirzi parameter decreases,
while for γ ≳ 1, the curve is approximated by a quadratic function in the range K ∈ [0, 10].
We interpret this apparent dependence of the scaling on γ as a sign that the asymptotic or semi-
classical regime is not reached for K ≤ 10 when γ ≳ 1. A possible educated guess is that the
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Table 2.1: Fit coefficients table

W(γ,K) = a + bKc ( j = 0.5, i = 0), K ∈ [0, 10]
γ a b c
10 −1.7 · 10−32 9.2 · 10−33 2.3
7.5 −2.2 · 10−29 8.2 · 10−30 2.3
5 −4.3 · 10−25 1.1 · 10−25 2.3
3 −5.7 · 10−20 1.1 · 10−20 2.3
1 −8.6 · 10−11 2.6 · 10−11 1.9
0.75 −1.7 · 10−9 1.1 · 10−9 1.8
0.5 −7.6 · 10−8 6.7 · 10−8 1.5
0.25 −1.5 · 10−6 2.0 · 10−6 1.2
0.1 −8.8 · 10−6 8.6 · 10−6 1

non-linear behavior for large γ could correspond to the initial non-linear part of the curve at
small γ, namely that the dependence could become linear for any γ at sufficiently high K. This
intriguing hypothesis could have interesting consequences for a renormalization procedure. We
leave the accurate testing of the large-γ sector for future works. As the computational com-
plexity dramatically increases when K increases, it is likely that different numerical methods
or approximations would be needed to test this sector, which is interesting from a theoretical
point of view but does not appear attractive physically, given the current status of the theory.

2.6 Conclusions
In this work, we applied new computational techniques to the study of the infrared divergence
of the spinfoam self-energy graph in the EPRL model. We have computed the divergent am-
plitudes with a running cutoff under an approximation (the “shells approximation”), which we
then lifted by introducing an extrapolation scheme suited for the case considered. We tested
our assumptions by refining the approximation up to many shells, using considerable compu-
tational resources for the most interesting case with the Barbero-Immirzi parameter γ = 0.1.
We also explored the divergence at other values of γ and investigated the dependence and re-
liability of our results by using different boundary data and computing geometrical boundary
observables.

Our findings considerably refine the upper and lower bounds in the previous literature
[102, 46]. Furthermore, we have shown that the numerical evidence indicates a linear diver-
gence in the infrared cutoff parameter. On the one hand, our result shows that the divergence
scaling is much less severe than what is expected by approximate power-counting arguments of
BF and Euclidean theories [123, 124] or upper-bound estimates to the Lorentzian theory [46].
However, on the other hand, our result also shows that the total divergence is of a higher order
than the analytical estimate of the so-called “non-degenerate” sector [102] and thus provides
the first strong evidence that virtual “degenerate” (i.e., of non-maximal dimension) configura-
tions effectively dominate the first order quantum corrections to the bare spinfoam propagator.
Previous works hinted at this point (see Appendix C of [102]) but were left unverified.

As in ordinary quantum field theories, understanding quantum corrections to the bare spin-
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foam propagator is tightly related to the issue of renormalization, which is still an active area of
research in the context of spinfoam and group field theories. Our work fills one of the first steps
toward this program by precisely estimating the degree of divergence. Our results about the
divergence at various values of γ also suggest that a possible renormalization scheme might
involve running the Barbero-Immirzi parameter. The numerical testing of this hypothesis is
left for future work, as the possible generalization of our extrapolation scheme to different
divergent graphs.

This is one of the first works in the covariant loop quantum gravity field to exploit high-
performance codes, specifically on a computer cluster. The computations accomplished in this
paper would not have been possible using a single or a few machines. We believe that complex
computational projects will prove to be more and more fundamental to advancing the field in
the coming years, and we hope that our work and codes will provide a useful and encouraging
ground for progressing in this direction. In this regard, the application of MCMC methods in
covariant LQG to study the quantum regime in spinfoams composed of multiple vertex ampli-
tudes glued together is described in [78].



Chapter 3

Radiative corrections to the Lorentzian
EPRL spinfoam propagator

Statement of co-authorship

This Chapter illustrates the paper [133], written by me, Pietro Dona, and Edward-Wilson Ew-
ing. It was published in Physical Review D on 26 September 2022. The idea of writing such
a paper was born after an exciting discussion with Pietro Dona, who had previously given a
presentation in which Ed Wilson was part of the audience. I took care of the numerical compu-
tations. Furthermore, I contributed to the analytical calculations, drafted sections, and realized
plots and pictures. I estimate the percentage of the total work conducted by me between 30%
and 50%. This manuscript corresponds to the article’s Physical Review D-published version,
which agrees with the APS copyright policies.

3.1 Introduction

The main goal of spinfoam theory is to define the dynamics of loop quantum gravity in a
background-independent and Lorentz covariant way, providing transition amplitudes between
spin network states [1, 74]. The state of the art is the EPRL and FK spinfoam models [25,
28]; this paper will focus on the Lorentzian EPRL spinfoam model. These theories have a
compelling connection with discrete general relativity in the double limit of finer discretization
and vanishing ℏ [29, 30, 31, 32, 27].

The theory is ultraviolet finite; however, the unbounded summation over the bulk degrees
of freedom can cause large-volume infrared divergences (although the infrared divergences are
not present in the extension of the theory that includes a cosmological constant using quantum
groups [35]). A complete spinfoam theory requires a renormalization procedure to remove
these low-energy divergences, and renormalization will be essential to define the continuum
limit properly. Various renormalization procedures have been proposed in the context of 2-
complex refinement [52, 53], or in group field theory [54, 55, 56], but despite this work, there
remain many critical open questions.

An essential step in developing a renormalization procedure in spinfoam models is to con-

46
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sider ‘self-energy’ corrections to the propagator. These radiative corrections to the EPRL
model have been studied analytically [102], numerically [71, 72], and using hybrid techniques
[46]. So far, the main object of study has been a particular Feynman diagram believed to
give the leading-order radiative correction; this Feynman diagram (which is often called the
‘melonic’ self-energy diagram) is a particular two-vertex spinfoam diagram associated with
a space-time bubble. To calculate the contribution from this diagram, the common strategy
is to introduce a homogeneous cutoff on all the spinfoam bulk face summations and estimate
the degree of divergence of the amplitude, studying it as a function of the cutoff. There are
strong numerical indications that the divergence for the melonic self-energy graph is linear in
the cutoff [72, 71]. There are also some general (although weaker) bounds on the degree of
divergence for any spinfoam diagram [134].

Different spinfoam amplitudes are generally associated with triangulations sharing the same
fixed boundary. We order the spinfoam diagrams having the same boundary by the number of
vertices. The melonic self-energy diagram is not the only two vertex diagram contributing to
the radiative corrections to the Lorentzian EPRL propagator. Still, most of the other diagrams
have fewer bulk faces. Therefore, we expect most of them to contribute to the self-energy
calculation with subdominant divergences. This is indeed the case in topological S U(2) BF
theory, where the calculation can be done analytically (see Appendix C.1). Still, even if there
are some clear structural analogies between the two theories (in particular, they share the same
propagator), some significant differences remain. An explicit computation of the divergence of
all diagrams is needed for the EPRL spinfoam model.

This paper continues the numerical study of the two-vertex diagrams contributing to the
Lorentzian EPRL propagator started in [71]. We focus on the subclass of diagrams with two
vertices and two boundary edges, each contained by the four boundary faces. The diagrams
differ in the connectivity of the internal edges and faces; in particular, the number of internal
faces varies from one diagram to another. Analytical calculations of transition amplitudes with
the Lorentzian EPRL spinfoam theory are challenging and limited to the large spin regime.
Recently, there has been significant progress in numerical techniques for spinfoam models, and
we use these new developments for our numerical analysis. Specifically, we use the numerical
techniques from [71], including the approximation scheme clarified in [9]. The numerical
calculations are done using the library sl2cfoam-next [48] (available in the repository [96]),
the state-of-the-art code to compute EPRL spinfoam amplitudes on a computer.

In Section 3.2, we review the Lorentzian EPRL transition amplitude and point out the
origin of infrared divergences. We also list a class of diagrams contributing to the two-vertex
correction to the propagator. Then, in Section 3.3, we overview the main ingredients of our
numerical recipe. We conclude with Section 3.4 where we analyze the amplitudes and estimate
the divergence of the spinfoam diagrams we study. For completeness, we also include a detailed
expression of the Lorentzian EPRL vertex amplitude in the Appendices, the analytic calculation
of the divergent two-vertex diagrams for the topological S U(2) BF theory in Appendix C.1,
and a discussion concerning other self-energy diagrams (that should be included or not in the
calculation depending on the symmetries of the spinfoam model) in Appendix C.2.
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3.2 EPRL radiative corrections

Spinfoam diagrams are constructed by contracting interaction vertices with spinfoam propaga-
tors along the edges. The Lorentzian EPRL spinfoam model prescribes a simplicial1 interaction
vertex and the associated vertex amplitude is

Av

(
j f , ie

)
= =

∞∑
l f= j f

∑
ke

{15 j}( j f , l f )
5∏

e=2

Bγ
4

(
l f , j f ; ie, ke

)
(2ke + 1) , (3.1)

The amplitude (3.1) has fifteen arguments (ten spins j f and five intertwiners ie). The form
of the amplitude in (3.1) is known as the booster decomposition of the vertex amplitude. It
rewrites the vertex amplitude as a superposition of 15 j symbols weighted by booster functions
Bγ

4 [42]. The booster functions enforce the simplicity constraints of the EPRL spinfoam mod-
els, depending on the Immirzi parameter γ, and have a compelling geometrical interpretation in
terms of boosted tetrahedra [30]. We refer to the original paper [42] for an explicit expression
in terms of intertwiners and S L(2,C) γ-simple unitary irreducible representations. The EPRL
propagator is simple and is given by

Ae (ie) = = (2ie + 1) δie,i′e , (3.2)

forcing the intertwiners in two vertices corresponding to the same edge to be the same.

A spinfoam transition amplitude associated with the 2-complex of a triangulation ∆ is given
by the contraction of vertices and propagators dual to the 2-complex, spins and intertwiners as-
sociated with bulk faces and edges are summed over. Each face is weighted with a dimensional
factor A f ( j f ) = 2 j f + 1 and the whole amplitude is

A∆ =
∑
j f ,ie

∏
f

A f ( j f )
∏

e

Ae(ie)
∏

v

Av

(
j f , ie

)
. (3.3)

We focus on diagrams contributing radiative corrections that satisfy three requirements to
avoid an excessive proliferation of diagrams to study. Each diagram we consider has

1. Two vertices

2. Two boundary edges

3. Four boundary faces and each one of these faces contains both boundary edges.

4. Only trivial propagators, preserving the order of the faces.

1A general form of the spinfoam vertex exists for an arbitrary number of edges [82]. Still, we do not consider
it here since, in this case, there is an infinite number of diagrams contributing to the radiative corrections to the
theory. We restrict to the simplicial vertex to avoid this uncontrolled proliferation of diagrams.
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We give some examples of diagrams excluded by these conditions in Appendix C.2. There are
four classes of diagrams that differ by the combinatorics of the bulk edges shared by the two
vertices, as shown in Figure 3.1.

(a) (b)

(c) (d)

Figure 3.1: Classes of spinfoam diagrams with two vertices and two boundary edges.

The diagrams in each class differ by the combinatorics of the faces in the bulk. For the
diagrams satisfying the 4 conditions listed above, we find: (a) two diagrams with 6 unbounded
faces, one in class 3.1a and one in class 3.1d, (b) in each of class b and d there are two dia-
grams with four unbounded faces, and there is another one in class c, (c) finally, there are two
diagrams in class a with two unbounded faces. To complete the analysis, we also mention that
there are other diagrams across all four classes where the sums on the internal spins and inter-
twiners are fully bounded due to S U(2) triangular inequalities, in which case the corresponding
amplitude is a sum of a limited number of terms and the summation is trivially finite.

3.3 Numerical calculations
We study the divergences of the Lorentzian EPRL spinfoam diagrams of Figure 3.1 using
sl2cfoam-next. The library is an open-source library written in C to calculate EPRL tran-
sition amplitudes numerically, with an optional user-friendly Julia interface. It is based on
the booster decomposition of the vertex amplitude (3.1) and implements the calculation of the
vertex amplitude with a homogeneous truncation of the unbounded sums over the virtual spins
l f parameterized by ∆l

∞∑
l f= j f

→

j f+∆l∑
l f= j f

. (3.4)

We compute the diagrams following the strategy described in [72, 71] where the diagram in
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class a with 6 internal faces is studied in great detail. We refer to those articles for an updated
analysis of the divergence of the melonic self-energy EPRL spinfoam diagram.

We fix the boundary spins jb and intertwiners ib and choose a truncation parameter ∆l. The
sums over the spin of the bulk faces j f are unbounded and potentially divergent. We introduce
a homogeneous cutoff K on these sums while we sum over all the possible values of the bulk
intertwiners ie. We take this chance to stress the difference between ∆l and K. At first glance,
they look similar, as they are both introduced as an upper bound of a previously unbounded
summation but they are profoundly different. The parameter ∆l represents the unavoidable
truncation to approximate the convergent series in the vertex amplitude. On the other hand,
K is the cutoff on the divergent sums on the bulk degrees of freedom responsible for the large
volume divergences of the diagrams.

The parameters ∆l and K are independent. Nevertheless, we have some technical con-
straints. We want a value for the cutoff K large enough to estimate the degree of divergence
of the amplitude but compatible with the computational resources at our disposal. We also
want a truncation ∆l large enough to obtain a good numerical approximation of the amplitude.
Increasing the truncation will improve the numerical estimate of the amplitude; however, al-
though the resources necessary for the calculation will grow considerably with the truncation,
the numerical accuracy will improve very little. It is essential to choose a balanced value of
the parameters. Previous work suggests that choosing similar values for ∆l and K gives good
numerical results [71]. Given the computational resources at our disposal, we choose ∆l = 10
and consider K running from 0 to 10 in half-integer steps.

In the following, we neglect the dimensional factors related to boundary faces and inter-
twiners, as these correspond to a constant multiplicative factor that does not affect the func-
tional dependence of the amplitude on K.

To minimize the dependence on the parameter ∆l, we use the convergence acceleration
technique described in [9]. Using the value of the amplitude at fixed K obtained with the three
largest truncations available ∆l, ∆l−1, and ∆l−2, we approximate the amplitude (corresponding
to the limit ∆l→ ∞) with

A(K) ≈
A(K,∆l)A(K,∆l − 2) − A2(K,∆l − 1)

A(K,∆l) − 2A(K,∆l − 1) + A(K,∆l − 2)
. (3.5)

The Julia scripts used to compute the diagrams, the Wolfram’s Mathematica notebooks in
which we analyze the amplitudes, and the numerical values of the amplitudes are available in
the public repository [135]. The scripts can be parallelized on multiple CPU cores to optimize
the numerical calculations. For each spinfoam diagram, the sums over the spins of the bulk
faces shared by the two vertex amplitudes (3.1) are distributed on the available tasks, using
the distributed memory parallel computing implementation of Julia. Then, the sums over
the spins of the bulk faces on every single vertex are parallelized on the threads of each task.
Finally, the contraction over bulk intertwiners uses the loop vectorization technique. The code
we used is scalable on a supercomputer. We provide the script used for calculating the Compute
Canada clusters in the repository [135]. The total CPU usage for the computations described
in this paper consisted of ∼ 200 CPU hours.
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Figure 3.2: 6F. Wiring of the spinfoam diagrams with 6 bulk faces. We highlight the internal faces in
different colors.

3.4 Results

We focus on uniform boundary configurations to simplify the numerical calculation and opti-
mize the computational resources at our disposal. We take all the boundary spins jb to be the
same, fixing them to the lowest possible non-trivial value jb =

1
2 . We look at the amplitudes

with equal boundary intertwiners and with different Immirzi parameters to minimize the de-
pendence on the boundary data choices we have to make. We compute the amplitudes using a
cutoff ranging from K = 0 to 10 in half-integer steps and a truncation ∆l = 10. We approximate
the amplitudes using (3.5).

3.4.1 spinfoam diagrams with 6 bulk faces

We briefly discuss the two diagrams with the most unbounded bulk faces. We show in Fig-
ure 3.2 the wiring diagrams highlighting the combinatorics of their internal faces.

Studying the divergence of the melonic spinfoam diagram 6F(a) required tremendous nu-
merical effort. For a detailed presentation of the results, see [72, 71]. Similarly, we expect
that the numerical analysis of the spinfoam diagram 6F(b) will also require optimization and
significant computational time. For this reason, we leave a detailed study for future work.
Nonetheless, it is useful to highlight a few key points concerning these diagrams before mov-
ing on to other diagrams with fewer internal faces.
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The EPRL amplitude associated with the diagram 6F(a) is

A6F(A) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4)A f ( j f5)A f ( j f6) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, jb, jb, jb, j f1 , j f2 , j f3 , j f4 , j f5 , j f6; ib, i1, i2, i3, i4

)
×

Av

(
jb, jb, jb, jb, j f1 , j f2 , j f3 , j f4 , j f5 , j f6; ib, i4, i3, i2, i1

)
.

(3.6)

In [72], it is shown that the amplitude (3.6) with boundary intertwiners ib = 0, boundary
spins jb =

1
2 and Immirzi parameter γ = 0.1 diverges linearly in the cutoff K2. This result is

obtained by fitting the amplitude as a function of the homogeneous cutoff up to K = 10 with
truncation ∆l = 20 and using a convergence acceleration technique like (3.5). Crucially, one of
the observations of [71] is that the value of the amplitude estimated using (3.5) with truncation
∆l = 20 and ∆l = 10 are essentially identical. This justifies our choice of using a truncation
∆l = 10 for the other diagrams to calculate the amplitude accurately while limiting the need
for time-intensive computational resources.

Next, the EPRL amplitude associated with the diagram 6F(b) is

A6F(B) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4)A f ( j f5)A f ( j f6) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, j f1 , j f1 , jb, jb, jb, jb, j f2 , jb, jb; i1, ib, i2, i2, ib

)
×

Av

(
jb, j f1 , j f1 , jb, j f3 , j f4 , j f5 , j f6 , j f4 , j f3; i1, i3, i4, i4, i3

)
.

(3.7)

The number of terms of the amplitude 6F(b) for increasing cutoff values K grows approxi-
mately as ∼ 30 ·K4. Although this trend is slower than it is for the melonic self-energy diagram
[71], there is an important difference that makes the computation of amplitude 6F(b) far more
resource-demanding. In the melonic self-energy diagram 6F(a), there is a boundary face on
each edge, and triangular inequalities constrain the growth of the spin of the bulk faces at each
of the two vertices. Note that this does not happen in the diagram 6F(b), and as a result, we
expect that the calculation of the vertices requires considerable computational resources. As K
increases, eight spins out of ten in one vertex of 6F(b) are of the order of K, compared to the six
in the diagram 6F(a). For the same reason, the computation time as a function of the truncation
parameter ∆l is also considerably higher. As a rough estimate, calculating the amplitude 6F(b)
up to K = 10 and ∆l = 2, distributed on 32 CPUs, took about 16 hours. The calculation with
∆l = 10 could take weeks. Calculating the amplitude 6F(b) with sufficient precision requires
an enormous investment of time and computational resources that we do not currently have
access to. Therefore we leave a detailed study of this diagram for future work.

2It is worth mentioning that the result looks slightly different for larger values of γ. However, there are solid
arguments to explain why it is a numerical artifact and that the divergence of the melonic self-energy diagram is
linear in the cutoff.
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Figure 3.3: 4F. Wiring of the spinfoam diagrams with 4 bulk faces. We highlight the internal faces in
different colors.

3.4.2 spinfoam diagrams with 4 bulk faces
Five diagrams (satisfying the four conditions above) with four unbounded bulk faces. Their
wiring diagrams are given in Figure 3.3, showing the combinatorics of the internal faces.

We illustrate the numerical analysis in detail for one diagram; the others are very similar,
and we report the results for the other diagrams. The EPRL amplitude associated with the
spinfoam diagram 4F(a) is

A4F(A) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, jb, jb, jb, j f1 , j f2 , j f2 , jb, jb, j f3; ib, i4, i3, i1, i1

)
×

Av

(
jb, jb, jb, jb, j f4 , jb, j f2 , jb, j f2 , j f1; ib, i2, i2, i3, i4

)
.

(3.8)

We start by looking at the amplitude with both boundary intertwiners ib = 0. We report the
numerical values of the amplitude for different cutoffs K in Figure 3.4.

In topological BF theory, the amplitude of this diagram diverges less rapidly than the mel-
onic self-energy diagram (see Appendix C.1), and it seems reasonable to expect that the same
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Figure 3.4: Plot of the numerical values of the EPRL amplitude of the spinfoam (3.1b) with boundary
spins jb = 1

2 , boundary intertwiners ib = 0 and Immirzi parameter γ = 0.1. We plot with a blue band
the fit (3.11).

will be true for the EPRL spinfoam model. Since there is strong numerical evidence that the
EPRL melonic self-energy diagram is linearly divergent in the cutoff, we expect the diagram
4F(a) will have a degree of divergence that is at most log K.

We make a baseline fit with a four-parameter function using the NonlinearModelFit
routine in Mathematica, with the result

Aprelim
4F(A) ( 1

2 , 0; K) = −4.11 · 10−9 log K + 2.93 · 10−7 − 8.61 · 10−8K−1 − 1.77 · 10−8K−2 . (3.9)

The coefficient of log K is orders of magnitude smaller than the others, indicating that the
amplitude may be convergent. It is generally difficult to numerically distinguish between a
logarithmic and a convergent behavior at these scales since K is at most 10 in the numerical re-
sults. Increasing the cutoff by a factor of 2 results in a log(2) ≈ 0.69 increase of the logarithmic
term but costs several more hours of computational time. The amount of resources needed for
the calculation does not scale linearly in the cutoff (a rough estimate of the computational time
would be K to the power of the number of unbounded summations). As a result, increasing the
cutoff is not a good strategy to answer this question.

There is a more efficient way to verify the convergence of the diagram. We amplify the
divergence of the diagram by replacing the face amplitude in (3.3)

A f ( j f ) = 2 j f + 1 −→ Aamp
f ( j f ) = (2 j f + 1)2 . (3.10)

We can verify that of the four unbounded sums in (3.8), only three are unbounded since S U(2)
triangular inequalities limit the spin on one of the internal faces (specifically, the yellow in-
ternal face which shares an edge with three fixed boundary faces). Therefore, the degree of
divergence of the amplified amplitude increases by K3. We evaluate the amplified amplitude
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numerically using the same parameters and boundary data as the original one. We fit the am-
plified amplitude with a cubic polynomial in the cutoff and find that the coefficient of K3 is
negligible by two orders of magnitude with respect to the others3. The amplified amplitude
diverges quadratically as K2 in the cutoff, confirming that the original amplitude had a negative
degree of divergence. To avoid any doubt, we also repeat the calculation with an amplified face
amplitude Aamp

f ( j f ) = (2 j f + 1)3, with the expected result that the amplitude is again amplified
by a factor of K3, now diverging as the fifth power K5 of the cutoff, confirming that the original
amplitude (3.8) is convergent4.

Given the strong indications that the leading order dependence on the cutoff scales as K−1,
we fit the initial amplitude again, omitting the log K term, and find with a 95% confidence
interval

A4F(A)( 1
2 , 0; K) = (2.799, 2.806) · 10−7 − (5.387, 4.790) · 10−8 K−1 − (5.552, 4.501) · 10−8 K−2 .

(3.11)
To remove the cutoff, it is easy to take the limit K → ∞ with the result A4F(A) = (2.799, 2.806) ·
10−7.

The result concerning the degree of divergence of this diagram seems to be robust. We also
studied the amplitude for different boundary intertwiners ib = 1 and found a similar outcome.
We fit the amplitude and see with a 95% confidence interval

A4F(A)( 1
2 , 1; K) = (5.969, 5.983) · 10−8 − (2.123, 2.006) · 10−8 K−1 − (0.910, 1.117) · 10−8 K−2 .

(3.12)
Likewise, we study the amplitude with boundary intertwiners ib = 0 and a larger Immirzi
parameter γ = 1. Again, we find that the amplitude is convergent,

A4F(A)( 1
2 , 0; K)γ=1 = (1.080, 1.084)·10−12−(1.680, 1.640)·10−12 K−1−(1.146, 1.229)·10−12 K−2 .

(3.13)
We summarize these results in Figure 3.5.

We perform a similar analysis to calculate the amplitudes of the other diagrams with 4 internal
faces in Figure 3.3. In this case, we report the data, fits, and plots only for γ = 0.1 and boundary
intertwiners ib = 0, to keep the presentation concise, but we repeated the calculation for γ = 1
and ib = 1 finding qualitatively similar results. The amplitude of the spinfoam diagram 4F(b)
is

A4F(B) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, jb, jb, jb, jb, j f1 , jb, j f2 , j f3 , j f2; ib, i4, i1, i3, i1

)
×

Av

(
jb, jb, jb, jb, j f2 , j f4 , jb, j f2 , j f1 , jb; ib, i2, i3, i2, i4

)
,

(3.14)

3Fitting with a cubic polynomial, we find a ratio between the coefficients of K3 and K2 of 0.01, indicating that
the coefficient of K3 is irrelevant.

4Fitting with a degree six polynomial, we find a ratio of 0.05 between the coefficients of K6 and K5, suggesting
that the coefficient of K6 is irrelevant.
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Figure 3.5: Plot of the numerical values of the EPRL amplitude of the spinfoam diagram 4F(a) with
boundary spins jb = 1

2 (orange dots) and the corresponding fit (blue band) (3.12) and (3.13). Left panel:
boundary intertwiners ib = 1 and Immirzi parameter γ = 0.1. Right panel: boundary intertwiners ib = 0
and Immirzi parameter γ = 1. The strange amplitude behavior with ib = 1 and K = 1

2 is a numerical
artifact of this diagram because the cutoff value is smaller than the intertwiners.

and it appears to be convergent. The numerical results are shown in Figure 3.6, together with
the best-fit curve with a 95% confidence interval given by

A4F(B)( 1
2 , 0; K) = (1.147, 1.150) · 10−7 − (2.933, 2.696) · 10−8 K−1 − (7.095, 2.929) · 10−9 K−2 .

(3.15)
The amplitude of the spinfoam diagram 4F(c) is

A4F(C) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
j f1 , jb, jb, j f2 , jb, jb, j f3 , jb, jb, jb; i1, i4, ib, ib, i3

)
×

Av

(
j f2 , jb, jb, j f1 , jb, jb, j f3 , j f4 , jb, jb; i1, i3, i2, i2, i4

)
,

(3.16)

and again, we find a clear indication that this amplitude is convergent. We perform a fit and
find with a 95% confidence interval

A4F(C)(1
2 , 0; K) = (1.0269, 1.0273) · 10−7 − (7.595, 7.566) · 10−8 K−1 + (1.199, 1.250) · 10−8 K−2 .

(3.17)
Figure 3.6 represents the data and the fit.

Finally, we look at the amplitudes 4F(d) and 4F(e). The amplitudes associated with these
diagrams are

A4F(D) ( jb, ib; K) =
K∑

j f=0

∑
ie

(−1)χD A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, j f1 , j f1 , jb, jb, jb, jb, j f2 , jb, jb; i1, ib, i2, i2, ib

)
×

Av

(
jb, j f1 , j f1 , jb, jb, j f3 , j f1 , jb, j f4 , jb; i1, i3, i4, i3, i4

)
,

(3.18)



3.4. Results 57

Figure 3.6: The plot of the numerical values of the EPRL amplitudes with boundary spins jb = 1
2 ,

boundary intertwiners ib = 0 and Immirzi parameter γ = 0.1. We plot the corresponding fits with a blue
band. Left panel: spinfoam diagram 4F(b) and fit (3.15). Right panel: spinfoam diagram 4F(c) and fit
(3.17).

and

A4F(E) ( jb, ib; K) =
K∑

j f=0

∑
ie

(−1)χE A f ( j f1)A f ( j f2)A f ( j f3)A f ( j f4) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, j f1 , j f1 , jb, jb, jb, jb, j f2 , jb, jb; i1, ib, i2, i2, ib

)
×

Av

(
jb, j f1 , j f1 , jb, j f3 , j f1 , j f1 , jb, j f1 , j4; i1, i3, i3, i4, i4

)
,

(3.19)

where χD = 2 j f3 and χE = 2 jb + 2 j f1 + j f3 + j f4 are phases coming from the decomposition
of the amplitude. Once again, the numerical evaluation of the amplitudes (3.18) suggests the
amplitudes are convergent. We perform a fit with a 95% confidence interval and find

A4F(D)( 1
2 , 0; K) = −(1.778, 1.776) · 10−7 + (5.097, 6.681) · 10−9 K−1 − (2.999, 2.720) · 10−8 K−2 ,

(3.20)
A4F(E)(1

2 , 0; K) = (3.586, 3.592) · 10−7 + (8.172, 13.486) · 10−9 K−1 − (4.360, 3.425) · 10−8 K−2 .
(3.21)

We report these fits and compare them with the data points in Figure 3.7.
It is somewhat surprising that the degree of divergence of these last two diagrams is at

most the same as for the first 3 diagrams with four internal faces (and possibly even with a
smaller degree of divergence given by K−2). Naively, one might expect the degree of diver-
gence to be directly related to the number of unbounded summations. If one looks carefully,
diagrams 4F(d) and 4F(e) are the only ones among the diagrams in Figure 3.3 with four un-
bounded internal faces—the other three diagrams always have one face bounded by triangular
inequalities (specifically, the yellow internal face in each diagram). (On the other hand, all of
the diagrams in Figure 3.3 in the S U(2) BF theory have the same degree of divergence.) This
counterintuitive result indicates that the degree of divergence depends in a complicated way on
the components of the diagram.
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Figure 3.7: Plot of the numerical values of the EPRL amplitudes with boundary spins jb = 1
2 , boundary

intertwiners ib = 0 and Immirzi parameter γ = 0.1. We plot with a blue band the corresponding fits.
Left panel: spinfoam diagram 4F(d) and fit (3.20). Right panel: spinfoam diagram 4F(e) and fit (3.21).

3.4.3 spinfoam diagrams with 2 bulk faces

Only two diagrams satisfy the four above conditions with two unbounded bulk faces. These
are shown in Figure 3.8, where we highlight the combinatorics of the internal faces. Note that
other diagrams exist with two internal faces satisfying the four conditions. Still, in all other
such diagrams, the spin of the internal faces is bounded due to S U(2) triangular inequalities.
Also, in this case, we report only the calculation with γ = 0.1 and boundary intertwiners ib = 0.

ib ib

i1

i3i2

i1

i3 i2

i4 i4

(a)

ib ib

i1

i1

i2 i2

i3 i3

i4

i4

(b)

Figure 3.8: 2F. Wiring of the spinfoam diagrams with 2 bulk faces. We highlight the internal faces in
different colors.

The amplitudes of the diagram 2F(a) and 2F(b) are

A2F(A) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, jb, jb, jb, j f1 , jb, j f2 , j f1 , jb, j f1; ib, i1, i2, i3, i4

)
×

Av

(
jb, jb, jb, jb, j f1 , jb, j f2 , j f1 , jb, j f1; ib, i4, i2, i3, i1

)
,

(3.22)
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Figure 3.9: The plot of the numerical values of the EPRL amplitudes with boundary spins jb = 1
2 ,

boundary intertwiners ib = 0 and Immirzi parameter γ = 0.1. We plot with a blue band the correspond-
ing fits. Left panel: spinfoam diagram 2F(a) and fit (3.24). Right panel: spinfoam diagram 2F(b) and
fit (3.25).

and

A2F(B) ( jb, ib; K) =
K∑

j f=0

∑
ie

A f ( j f1)A f ( j f2) Ae(i1)Ae(i2)Ae(i3)Ae(i4)×

Av

(
jb, jb, jb, jb, jb, j f1 , j f1 , j f2 , j f1 , jb; ib, i1, i2, i3, i4

)
×

Av

(
jb, jb, jb, jb, jb, j f1 , j f1 , j f2 , j f1 , jb; ib, i1, i3, i2, i4

)
.

(3.23)

Both amplitudes are convergent. With a fit with a 95% confidence interval, we find

A2F(A)( 1
2 , 0; K) = (3.481, 3.482) · 10−8 + (1.643, 2.689) · 10−10 K−1 − (6.924, 5.082) · 10−10 K−2 ,

(3.24)
and

A2F(B)( 1
2 , 0; K) = (7.5237, 7.5243)·10−8+(7.584, 12.386)·10−11 K−1−(3.245, 2.400)·10−10 K−2 ,

(3.25)
and we compare them with the numerical values of the amplitudes in Figure 3.9.

Since these diagrams contain fewer faces than diagrams in Figure 3.3, we expect them to
converge more rapidly, and the plots showing the numerical results indeed suggest this is the
case. In an attempt to quantify the rate of convergence of these amplitudes, we amplify the
divergence of the amplitudes by replacing the face amplitude in (3.3) as

A f ( j f ) = 2 j f + 1 −→ Aamp
f ( j f ) = (2 j f + 1)4 . (3.26)

With this amplification, we find a linearly divergent amplitude, suggesting that the original
amplitude has a degree of divergence of −5.

3.5 Conclusions
Without a cosmological constant, spinfoam models are affected by infrared divergences. They
are associated with significant volume divergences and originate from the unbounded sums
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over the spinfoam’s bulk degrees of freedom.

Calculating the radiative corrections to the Lorentzian EPRL spinfoam propagator is nec-
essary to study the theory’s renormalization and explore the continuum limit. Two-vertex di-
agrams provide the first contributions to a vertex expansion. Previous studies focused on the
‘melonic’ self-energy diagram 6F(a), with numerical evidence suggesting it diverges linearly
with respect to the spin cutoff [72, 71], but there exist other diagrams with two vertices that
also need to be computed to include all contributions at this order in the vertex expansion.

In this paper, we studied two-vertex diagrams with two boundary edges, four boundary
faces containing both boundary edges, and whose propagators preserve the order of the faces.
We find eight additional diagrams that we classify based on the number of internal faces.

We focus on the diagrams with four and two bulk faces (see Figure 3.3 and Figure 3.8).
These diagrams are expected to be subdominant because they have fewer internal faces with
respect to the diagram 6F(a), and we find numerical evidence that the diagrams with four or
two internal faces appear to be convergent. We also point out the existence of a second diagram
with six internal faces 6F(b), but leave the numerical calculation of this diagram for future work
since it requires computational resources we currently do not have access to.

For simplicity, in the numerical calculations, we fix the boundary spins to 1
2 , the first non-

trivial option. We consider both possible boundary intertwiners (0 or 1), and we repeat the cal-
culations, setting the Immirzi parameter to γ = 0.1 and also γ = 1 to minimize the dependence
of our analysis on the specific choice of boundary data. We introduce a homogenous cutoff
K on the summations over the spins of the bulk faces, and we compute the EPRL spinfoam
amplitudes using the sl2cfoam-next framework as a function of K. For the diagrams with
four or two internal faces, all amplitudes have a degree of divergence (in K) smaller than the
melonic self-energy diagram, confirming expectations. Somewhat surprisingly, these diagrams
all appear convergent, with numerics suggesting a degree of divergence of K−1 for diagrams
with four internal faces and even faster convergence for diagrams with two internal faces. If
this is the case, then within the class of graphs we consider, seven of the nine diagrams are
finite (and of the two remaining diagrams, both have six internal faces, and one is known to
diverge while the other has not been computed yet).

This result may have some significant ramifications for renormalization. While we have
only considered a specific class of diagrams, the fact that many are finite provides some encour-
agement that the theory might be renormalizable. On the other hand, there seems to be a rapid
growth in the number of diagrams, significantly as the number of vertices increases. Whether
the spinfoam model is renormalizable may hinge on which of these two effects dominates—of
course, it will be necessary to consider diagrams with more vertices to answer this question,
and we leave this task for future work.

Related to this point is the question of which spinfoam diagrams should be considered
in a given calculation. In this paper, we imposed some conditions that reduced the number
of diagrams we considered, although it may be necessary to relax these conditions (for more
on this point, see Appendix C.2). This question is closely related to the symmetries of the
spinfoam model: what exactly are the symmetries that should be imposed on a spinfoam model,
and do they force specific contributions to vanish?

It may be fruitful to consider the questions of renormalization and symmetries from the
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perspective of group field theory, whose partition function can be expanded in the usual way
with the result giving a spinfoam model [136, 137]. Imposing symmetries directly in the group
field theory action may be more accessible. In turn, this can be used to determine which
diagrams will contribute simply by seeing whether they appear when calculating the Feynman
expansion for the partition function. A further advantage is that this approach can also be used
to calculate symmetry factors for different spinfoam diagrams, which may not be as easy to
determine from the spinfoam model.

Finally, an important goal for future research would be to find a simple formula giving the
degree of divergence of any diagram given its number of vertices, number of bulk edges, and
number of bulk faces (and perhaps other relevant topological or combinatorial information);
this could be useful for example to determine which interaction terms (in a group field theory
language) are applicable/irrelevant. Our work suggests a clear dependence of the degree of
divergence on the number of bulk faces, with more internal faces producing greater divergence.
For example, the melonic self-energy diagram appears to diverge linearly and has six bulk
faces. In comparison, diagrams with four internal faces seem to have a degree of divergence
K−1, and diagrams with two internal faces converge even faster still. Nevertheless, it is essential
to compute a broader range of diagrams to infer a general formula for the EPRL degree of
divergence; we leave this for future work.
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Summing bulk quantum numbers with
Monte Carlo in spinfoam theories

Statement of co-authorship

This Chapter presents the paper [138], written by me and Pietro Dona. It was published in
Physical Review D on 9 May 2023. The idea of applying Monte Carlo methods to investigate
infrared divergences came after studying such a technique to apply it to the multidimensional
discrete summations appearing in spinfoams. This method was first applied in [78] (to which
Chapter 5 is dedicated). After several weeks of attempts, I could finally reproduce the results
of [71] using Monte Carlo methods. I noticed that it required a small fraction of computational
time. After sharing such findings with Pietro Dona, we decided to apply such a technique to
compute the vertex renormalization spinfoam amplitude. The latter was precisely one of the
spinfoam diagrams I have wanted to investigate since I started my Ph.D. I took care of the
numerical computations, contributing to drafting sections. I also realized some of the plots
and images. I estimate the percentage of the total work conducted by me between 50% and
70%. This manuscript corresponds to the article’s Physical Review D-published version, which
agrees with the APS copyright policies.

4.1 Introduction

spinfoam theory is the Lorentz covariant version of loop quantum gravity (LQG) and pro-
vides a tentative background independent path integral for gravity. It gives dynamics to LQG
kinematical states defining transition amplitudes between spin network states [1, 74]. The most
promising spinfoam theory is the EPRL-FK model [25, 28]. Various generalizations include the
extension to general triangulations [82], the inclusion of a cosmological constant [35, 36], and
boundary with different signature [37]. These theories promisingly connect with discrete gen-
eral relativity in the double limit of finer discretization and large areas [29, 30, 31, 32, 27, 33].

The field has recently undergone an explosion of numerical methods, providing new tools
to address many open questions of the theory. We can compute expectation values and fluc-
tuations of operators in the large spins regime using the complex saddle point analysis and

62
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the integration on a Lefschetz thimble using Markov chain Monte Carlo [32, 57]. It is pos-
sible to verify that Regge geometries emerge in the large-scale and small Immirzi parameter
regimes. A similar result can also be obtained from effective spinfoam models [139, 51]. Fi-
nally, sl2cfoam (and its latest iteration sl2cfoam-next) is an open-source framework to
compute EPRL spinfoam amplitudes [47, 48]. It is based on a divide-and-conquer strategy and
a booster decomposition of the vertex amplitude [42]. The library was already employed to
explore the large quantum numbers regime [48, 140, 9], the infrared divergences of the the-
ory [71, 133], the black-to-white hole transition [141], and correlations in the early universe
[78]. Very recently, a hybrid approach taking advantage of all the available techniques was also
proposed [49].

This work overcomes one of the principal limitations of sl2cfoam-next. The library
provides an optimized and efficient framework to compute all the constituents of a spinfoam
transition amplitude. Nevertheless, numerically computing spinfoam amplitudes with many
internal faces is prohibitively taxing. There are too many objects to compute as their number
scales exponentially with the number of internal faces. We overcome this problem by evalu-
ating the sums over the internal quantum numbers using statistical frameworks. We find the
possibility of using uniform sampling in Monte Carlo surprisingly effective. We can compute
amplitudes with slightly better than 1% precision by considering a sampling five orders of
magnitude smaller than the total amount of terms of the sum.

We apply this novel technique to compute the melonic self-energy and the vertex renormal-
ization amplitude in the S U(2) BF and EPRL theories. These two amplitudes are the perfect
laboratory to test the effectiveness of Monte Carlo as they possess many internal faces. These
spinfoam amplitudes are believed to be divergent, and their renormalization is crucial to de-
fine the continuum limit of the EPRL theory. In the case of the melonic self-energy, we find
excellent agreement with the numerical results in the literature [72, 71], which do not use
stochastic methods. This work contains the first computation of the Lorentzian EPRL vertex
renormalization amplitude. We surprisingly find numerical evidence for its convergence.

The scripts we use to compute the amplitudes and the notebooks to analyze the data are
publicly available at the repository [142]. We perform most of our calculations on the Narval
cluster of the Digital Research Alliance of Canada.

4.2 spinfoam transition amplitudes

We write a spinfoam transition amplitude starting from a 2-complex ∆ simplicial triangulation
of the space-time manifold decorated with LQG quantum numbers. Each face is colored with
a spin j f and each edge with an intertwiner ie.

The spinfoam transition amplitude A∆ is the product of local fundamental amplitudes: a
face amplitude A f ( j f ), an edge amplitude Ae(ie), and a vertex amplitude Av

(
j f , ie

)
. Finally, we

sum over all the possible quantum numbers associated with the bulk of the 2-complex

A∆ =
∞∑

j f=0

∑
ie

∏
f

A f ( j f )
∏

e

Ae(ie)
∏

v

Av

(
j f , ie

)
. (4.1)
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This work focuses on two spinfoam theories: the topological BF S U(2) model and the
Lorentzian EPRL model. We introduce them here schematically and report their detailed def-
inition in Appendix D.1. We refer to reviews [74] or books [1] for a more complete and ped-
agogical introduction. We use the same notation for the vertex amplitudes in the two models.
It is convenient to avoid overburdening the notation and not repeat the same equations twice.
We will stress the difference between the two models if necessary. The vertex amplitude for
the topological model is defined as

Av

(
j f , ie

)
= {15 j}( j f ; ie) , (4.2)

where the {15 j}( j f ; ie) is a S U(2) invariant depending on the ten spins and five intertwin-
ers coloring the spinfoam vertex. We work with the booster functions decomposition of the
Lorentzian EPRL spinfoam model introduced in [42]. In this form, the EPRL vertex amplitude
is a superposition of {15 j} symbols weighted by booster functions Bγ

4.

Av

(
j f , ie

)
=

∞∑
l f= j f

∑
ke

{15 j}( j f , l f )
5∏

e=2

(2ke + 1)Bγ
4

(
l f , j f ; ie, ke

)
. (4.3)

The presence of the booster functions is the striking difference between the amplitudes (4.2)
and (4.3). They encode the imposition of the simplicity constraints and the explicit dependence
of the theory from the Immirzi parameter γ. They possess a compelling geometrical interpre-
tation of boosted tetrahedra [88]. The edge and face amplitudes are fixed, requiring the correct
composition of spinfoam amplitudes [83].

Ae (ie) = 2ie + 1 , and A f

(
j f

)
= 2 j f + 1 . (4.4)

Depending on the details of the 2-complex could be necessary to also multiply by some extra
phase and edge-related S U(2) invariants depending on the spin and intertwiners quantum num-
bers. They result from our decision to work with a specific recoupling scheme in the vertex
amplitudes. We refer to the review [9] for a step-by-step guide on computing them.

We perform all the numerical calculations using sl2cfoam-next, the state-of-the-art code,
to compute spinfoam amplitudes with a computer. The library is open source and written in
C. It is based on the booster decomposition of the EPRL vertex amplitude, optimizing the
available computational resources. We refer to the original paper [48], the review [9], or the
book chapter [143] for a detailed description.

One of the main ingredients we mention here is the introduction of a homogeneous trunca-
tion parameter ∆l to approximate the unbounded convergent sums over the virtual spins l f in
(4.3).

∞∑
l f= j f

−→

j f+∆l∑
l f= j f

. (4.5)

Despite the notation, we emphasize that the truncation parameter ∆l is independent of the 2-
complex ∆.
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4.3 Summing bulk degrees of freedom with Monte Carlo
The library sl2cfoam-next [48] computes EPRL vertex amplitudes (4.3) very fast and effi-
ciently1. Unfortunately, it is insufficient to compute a general spinfoam amplitude with many
vertices and internal faces. The number of vertex amplitudes we have to calculate, assemble,
and sum grows exponentially with the number of bulk faces. We can convince ourselves this
is a severe problem with a back-of-the-envelope calculation. Imagine you want to compute an
amplitude with F internal faces, and all the spins associated with the inner faces have some
characteristic value J. We must loop through all (2J + 1)F possible values that the internal
spins can assume and compute all the vertex amplitudes to calculate the amplitude. Let us
assume, optimistically, that we need just 1µs of CPU time to obtain them (the actual time is
orders of magnitude larger). Suppose we want to calculate an amplitude with 10 internal faces
and average spins of order 10. To perform this calculation, we need approximately 2110µs ≈ 6
months of CPU time, which is a lot of time considering our modest requirements and optimistic
hypothesis.

We overcome this problem using Monte Carlo to perform the sum over the bulk spins. We
rewrite the spinfoam amplitude (4.1) in terms of partial amplitudes

A∆ =
∞∑

j f=0

a( j f ) with a( j f ) =
∑

ie

∏
f

A f ( j f )
∏

e

Ae(ie)
∏

v

Av

(
j f , ie

)
. (4.6)

We include the sum over the bulk intertwiners in the partial amplitudes a( j f ). Those sums are
always finite for fixed bulk spins, and we perform them leveraging the tensorial structure of
sl2cfoam-next without resorting to Monte Carlo methods. We omit the evident dependence
from the 2-complex ∆ of the partial amplitude.

The partial amplitude vanishes if some spins j f do not satisfy triangular inequalities2. We
restrict the sum over the bulk spins in (4.6) to the set of spins satisfying triangular inequalities
that we indicate as I∆. In this way, we eliminate the majority of trivially vanishing partial
amplitudes. This step is convenient to obtain an efficient Monte Carlo amplitude estimate.

Generally, I∆ is unbounded. Therefore, applying Monte Carlo to estimate the amplitude is
impossible. We circumvent this limitation subdividing I∆ into layers Jk.

Jk =
{
j f ∈ I∆|max j f = k

}
. (4.7)

By definition, each layer is finite. Different layers do not overlap Jk ∩ Jk′ = ∅, and the union
of all of them forms the original set I∆ =

⋃∞
k=0Jk. We reorganize the spinfoam amplitude as a

sum over layers of layer amplitudes

A∆ =
∞∑

k=0

S k with S k =
∑
j f ∈Jk

a( j f ) . (4.8)

1It can evaluate the topological BF S U(2) vertex amplitude too.
2For example, if j1, j2, j3, and j4 are the four spins associated with the faces contained in an edge of ∆ and

Max(| j1 − j2|, | j3 − j4|) > Min( j1 + j2, j3 + j4)⇒ a∆( j f ) = 0

then the set of intertwiners associated with that edge is empty, and the partial amplitude trivially vanishes.
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Each layer amplitude S k is defined as a sum with a finite number of terms (that, however,
proliferates with k). We can approximate them with Monte Carlo S mc

k using the procedure
described in Appendix D.2 with a fixed amount of samples Nmc. In general, the number of
layers is infinite3. We cut off the sum over the layer to a top layer K. This prescription is
equivalent to introducing a homogeneous cutoff K to all the bulk spins. The Monte Carlo
approximation of a spinfoam amplitude with a cutoff K is given by

Amc
∆ (K) =

K∑
k=0

S mc
k . (4.9)

The S mc
k calculation requires a discrete random uniform probability distribution over the

layer Jk. In principle, we could map the layer in an interval of integers, define a uniform dis-
tribution there and map it back toJk. However, this prescription is very unpractical. Therefore,
we prefer to define the uniform distribution in an alternative way.

We extract one real number from a continuous uniform distribution in [0, k + 0.5] for each
bulk face. Then, we floor them to half-integers and check if they belong to the layerJk. If they
do, we accept them as a random layer sample. If they do not, we discard them and repeat the
procedure. We summarize this procedure in the flowchart 1.

Algorithm 1 Random sampling of spins in Jk

1: procedure RandomSample(k,Jk)
2: while true do ▷ repeat until we find a good candidate
3: j f ← extract a real number from a uniform distribution in [0, k + 0.5] for each face
4: j f ← floor them to half-integers and interpret them as spins
5: if all spins j f are smaller than k then
6: continue
7: if any spin j f do not satisfy triangular inequalities of Jk then
8: continue
9: return j f ▷ the spins belong to the layer Jk

In the application we present in Section 4.5, we perform an explicit test to show that the
samples extracted with this algorithm are uniformly distributed in Jk.

We acknowledge that Algorithm 1 is not optimal. To scale it up to more complicated
amplitudes, we must improve it considerably. We leave this task to future work. Since they
share the edge structure, the sampling Algorithm 1 is the same for both spinfoam models we
study.

We conclude this section by showing a pseudocode representation (Algorithm 2) of the
Julia scripts that implement the Monte Carlo estimate of the spinfoam amplitude (4.9). The
complete Julia scripts are available in the repository [142].

3In some exceptional cases, the layers are all empty from a particular value of k forward because of the
triangular inequalities involving both bulk and boundary spins. It is the case of the ∆3, and the ∆4 triangulations
studied numerically in [31, 9]
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Algorithm 2 Scheme of Monte Carlo estimate of the spinfoam amplitude
1: for k = 0.5 , 1 . . .K do ▷ for each layer
2: extract Nmc samples of the layer using RandomSample(k,Jk)
3: store them in memory
4:
5: for k = 0.5 , 1 . . .K do ▷ for each layer
6: load the bulk spins samples from memory
7: for n = 1 . . .Nmc do ▷ for each sample
8: compute the partial amplitude a( j f )
9: sum the partial amplitudes and save the layer amplitude S k

10: compute the amplitude Amc
∆

(k) summing the layer k to the previous ones
11: store the amplitude

In calculating an EPRL spinfoam amplitude, the partial amplitude depends on the trunca-
tion parameter ∆l. Therefore, we fix the truncation parameter once and for all and store the
amplitude for every ∆l.

4.4 Applications to the melonic self-energy and vertex renor-
malization diagrams

We test the effectiveness of the Monte Carlo framework described in Section 4.3 by computing
four spinfoam amplitudes. We focus on the melonic self-energy amplitude and the vertex
renormalization (or 5 − 1 Pachner move) amplitude with the topological BF S U(2) and the
EPRL model. These diagrams are essential for studying the infrared divergences of spinfoam
theories and their continuum limit.

The melonic self-energy diagram comprises two vertices, two boundary edges (one for
each vertex), and four bulk ones connecting the two vertices, four boundary faces, and six bulk
faces. We report in Figure 4.1 a schematic representation of the 2-complex, and we refer to
Appendix D.4 for the detailed routing diagram.

Figure 4.1: Schematic representation of the 2-complexes of the self-energy spinfoam diagram (left) and
the vertex renormalization spinfoam diagram (right).

To simplify the numerical calculation, we consider very symmetric boundary data where
the boundary spins jb are all the same and all the boundary intertwiners ib are all the same. The



68 Chapter 4. Summing bulk quantum numbers withMonte Carlo in spinfoam theories

spinfoam transition amplitude with a homogeneous cutoff on all the spins associated with bulk
faces is

Ase ( jb, ib; K) =
K∑

j f=0

 6∏
f=1

(2 j f + 1)

 ·∑
ie

 4∏
e=1

(2ie + 1)

 ·
Av ( jb, jb, jb, jb, j1, j2, j3, j4, j5, j6; ib, i1, i2, i3, i4) ·
Av ( jb, jb, jb, jb, j1, j2, j3, j4, j5, j6; ib, i4, i3, i2, i1) .

(4.10)

The amplitude (4.10) is the same for both spinfoam models that differ by the vertex ampli-
tudes Av: (4.2) for BF SU(2) and (4.3) for EPRL. The melonic self-energy diagram with the
BF S U(2) topological model can be evaluated analytically and numerically [71, 46, 72]. We
know it is divergent. The divergence is due to redundant S U(2) delta functions that indicate
some residual gauge freedom in the path integral [144] and can be dealt with by gauge fixing
appropriately. The same amplitude with the EPRL model has been studied analytically [102],
with a hybrid calculation [46], and, recently, numerically [71, 72]. The amplitude is divergent,
and there are strong indications that it diverges linearly in the cutoff. We are revisiting this
amplitude as a control for the Monte Carlo technique we introduce. In fact, the self-energy
has a relatively small number of internal faces, so the computation is still possible even with-
out using Monte Carlo. Reproducing known results allows us to evaluate the choices of the
framework.

The vertex renormalization diagram contains five vertices, five boundary edges (one for
each vertex), and ten bulk ones connecting all couples of vertices, ten boundary faces, and ten
bulk faces. We report in Figure 4.1 a schematic representation of the 2-complex, and we refer
to Appendix D.4 for the detailed routing diagram.

Also in this diagram, we simplify the numerical calculation by taking symmetric boundary
data with all equal boundary spins jb and boundary intertwiners ib. If we put a homogeneous
cutoff K on the sums over the bulk spins, the amplitude reads

Avr ( jb, ib; K) =
K∑

j f=0

 10∏
f=1

(2 j f + 1)

 ·∑
ie

 15∏
e=1

(2ie + 1)

 ·
Av( jb, jb, jb, jb, j1, j2, j3, j4, j5, j6; ib, i4, i11, i12, i2) ·
Av( jb, jb, jb, jb, j7, j8, j1, j9, j2, j3; ib, i6, i13, i14, i4) ·
Av( jb, jb, jb, jb, j10, j4, j7, j5, j8, j1; ib, i8, i15, i11, i6) ·
Av( jb, jb, jb, jb, j6, j9, j10, j2, j4, j7; ib, i10, i12, i14, i15) ·
Av( jb, jb, jb, jb, j3, j5, j6, j8, j9, j10; ib, i2, i13, i15, i10) ·
{6 j}( jb, j3, i1, j5, j6, i2) · {6 j}( jb, j1, i3, j2, j3, i4) ·
{6 j}( jb, j7, i5, j8, j1, i6) · {6 j}( jb, j10, i7, j4, j7, i8) ·
{6 j}( jb, j6, i8, j9, j10, i10)(−1)χ ,

(4.11)

where {6 j} are S U(2) invariants that we define in Appendix D.1. The phase in (4.11) reduces
to:

χ =

10∑
k=1

jk +

15∑
k=11

ik . (4.12)
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The form of the amplitude is convoluted because we want to use the same intertwiner re-
coupling scheme in all the vertices. This is necessary to perform the numerical calculations
efficiently, as sl2cfoam-next implements only a specific vertex amplitude (2.12). Again, the
amplitude (4.11) is the same for both spinfoam models that differ by the vertex amplitudes. The
vertex renormalization diagram can be analytically evaluated analytically with the BF S U(2)
topological model, explicitly integrating the group functions in the holonomy representation
of the amplitude [46]. This amplitude was already studied with the Euclidean EPRL model
in [123], finding a logarithmic divergence. A numerical calculation of the amplitude for the
cutoff values greater than 4 is extremely challenging if we do not use Monte Carlo. The degree
of divergence of the same diagram with the EPRL spinfoam model is entirely unknown. Any
calculation with known techniques is too complicated. In Section 4.8 we study it using Monte
Carlo. Computing this amplitude is a stress test for the Monte Carlo framework and a novel
result for studying EPRL spinfoam infrared divergences.

In Figure 4.2, we show the number of bulk spin configurations j f as a function of the cutoff
K for the vertex renormalization diagram. We only consider spin configurations that satisfy
triangular inequalities. It is evident that the number of configurations to be summed increases
as a power law with the cutoff K. Hence the convenience of using Monte Carlo. A simple
numerical fit for K ∈ [5, 10] shows that the number of configurations qualitatively scales as
∼ 39.3 · K8.5 for the vertex renormalization. For the self-energy diagram, in [72], the same fit
for K ∈ [5, 20] showed that the number of configurations scales as ∼ 17.1 · K5.6.

Figure 4.2: Number of bulk spins configurations j f as a function of the cutoff K of the vertex renormal-
ization diagram.

In all the amplitudes, to perform the numerical calculations with a modest amount of re-
sources, we restrict the numerical calculation to the simplest non-trivial case of jb =

1
2 for

both instances of boundary intertwiners ib = 0 and ib = 1. In the following sections, we
will explicitly discuss the calculation’s result only in the case of boundary intertwiner ib = 0.
However, we performed the same analyses also with boundary intertwiners ib = 1. We find
qualitatively identical results. Interested readers can find them in the detailed notebook in our
public repository [142].

In the case of the EPRL model, we need to specify two more parameters to perform a nu-
merical calculation. We fix the Immirzi parameter to γ = 0.1. We choose this value to partially
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compare our results with the literature on the numerical evaluation of EPRL spinfoam ampli-
tudes [71]. We also choose the truncation parameter ∆l = 10 for similar reasons. This choice is
also motivated by keeping the numerical task practical. The cost of resources increases rapidly
with ∆l, and literature [48, 9, 71] suggests that for maximal spins of order 10, the truncation
∆l = 10 is a good compromise between costs and precision.

In the following sections, we use the same name for the amplitudes Ase and Avr with both
the BF S U(2) and the EPRL model to keep the notation as clean as possible. The reader
can uniquely identify which model the amplitude is computed with from the section. Finally,
we use the term “exact amplitude" referring to (4.8) with a finite cutoff K computed without
resorting to Monte Carlo methods.

4.5 The melonic amplitude in the topological theory

In this section, we use the Monte Carlo framework described in Section 4.3 on the melonic
self-energy transition amplitude in the topological S U(2) BF model. This calculation aims to
fine-tune and validate our choices of Monte Carlo parameters.

First, we test if the algorithm we use to sample the layers is equivalent to a uniform discrete
probability distribution over the amplitude layers. We list all the sets of bulk spins in the layer,
and we map them in an interval of integers. Each element of the list is associated with its
positions (we choose the order of the list arbitrarily but only once). We produce many samples
using the Algorithm 1. We compute the samples’ mean, variance, and skewness and check if
they are compatible with the corresponding quantities of a discrete uniform probability distri-
bution. We tested every layer of this amplitude and found excellent agreement. For brevity,
we report the analysis with a sample of 100 000 configurations of the amplitude layer with
k = 10 that contain VJk = 549 406 possible configurations. We report them in Table 4.1 and
Figure 4.3. The probability distribution generated with Algorithm 1 is equivalent to a uniform
discrete probability distribution.

Figure 4.3: Histogram of the sample with 100 000 configurations from the layer k = 10 with 50 bins.
Each bin contains approximately 2 000 elements.
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Quantity Expected Sample Difference (%)
Mean 274 703.5 274 864.7 0.05 %
Standard Deviation 1 587 371.04 1 585 998.51 0.09 %
Skewness 0 −0.00545 -

Table 4.1: We compare the first three momenta of the sample with the corresponding exact quantities of
a discrete uniform probability distribution. We find excellent agreement.

We estimate the value and error of each amplitude layer with Monte Carlo repeating it
T = 20 times and computing the mean and standard deviation. We choose the number of trials
after a simple test. We fix the size of the Monte Carlo sampling to Nmc = 1 000 to efficiently
iterate and improve the analysis. We compute the average over T = 10, 20, and 50 trials. We
repeat it 100 times to study the distribution of the average. The law of large numbers states that
the distribution of the averages is normal with standard deviation given by the average standard
deviation. We can visualize it using a box plot we report in Figure 4.4.

Figure 4.4: Box plot of the average of the Monte Carlo evaluation of different amplitude layers. We
consider the layers from k = 5 to 10. We repeat the estimate 100 times. We look at 10 trials (in blue), 20
trials (in orange), and 50 trials (in green). To ease the comparison, we plot the estimated value of the
layer relative to the exact one.

This qualitative analysis shows that the tails of the distribution with 10 trials are very long.
The standard deviation with just 10 trials is not a reasonable estimate of the error of the Monte
Carlo estimate of the amplitude’s layer. This observation is independent of the layer. With
20 trials, the first and third quartiles are reduced to half, making it a better option. A similar
observation is valid for 50 trials, albeit more resource intensive. We use 20 trials as a good
compromise between precision and simplicity. Nevertheless, the error between the Monte
Carlo estimate relative to the exact quantity is always a few percent with Nmc = 1 000 and
using 20 trials instead of 10 improve its estimate from 1% to 2%. The gain in the error estimate
using 50 trials is marginal and does not justify the requirement of extra resources.

We study the Monte Carlo estimate of the amplitude as a function of the cutoff K for three
different sample size choices of Nmc = 1 000, Nmc = 10 000, and Nmc = 100 000. We average
the calculation of T = 20 trials for each layer and sum them to get the amplitude. We compute
the error on the amplitude from the standard deviation of each layer. We compare the relative
error on the amplitude as a function of the cutoff for different sizes of Monte Carlo samples
(see Figure 4.5).
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Figure 4.5: Relative error of the S U(2) BF melonic amplitude as a function of the cutoff computed
with 20 trials. We compare different Monte Carlo sampling sizes Nmc = 1 000 (green), Nmc = 10 000
(orange), and Nmc = 100 000 (blue) samples.

For all three sample sizes, the relative error on the amplitude is smaller than 1%. As
expected, the error decreases for larger values of Nmc. The relative error for Nmc = 100 000
is smaller than 0.1%. We decide to use Nmc = 100 000 for all the other calculations we present
in this section. We also plot the estimated value of the amplitude with Nmc = 100 000 relative
to the exact value with the estimated errors. We plot in Figure 4.6 the Monte Carlo estimate
of the amplitude in relation to the exact value, with error bars corresponding to the standard
deviation.

Figure 4.6: Monte Carlo estimates of the S U(2) BF melonic amplitude relative to the exact value with
Nmc = 100 000 and T = 20 trials in each layer.

The exact value of the amplitude is compatible with the Monte Carlo estimate within the
errors. At first sight, one could be confused by the trend of the errors decreasing with the cutoff.
The observation that the relative error of the various layers is almost constant (as we can infer
from Figure 4.4) can easily explain this. However, the contribution to the amplitude of the
outer layers (with larger k) is bigger than the others. A quick back-of-the-envelope calculation
shows that if we add two quantities a few orders of magnitudes apart but with the same relative
error, the relative error on the sum is smaller than both.

We conclude our exploration by estimating the degree of divergence of this amplitude. The
analytic calculation shows that the amplitude diverges with the cutoff as ∝ K9 at the leading
order. Can we determine it numerically? We answer with a proof of concept analysis we use
to validate the technique before applying it to more complex amplitudes where the analytic
answer is unknown. We are not satisfied with a qualitative result. We could easily eyeball a
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line on the logarithmic plot of the amplitude as a function of the cutoff. However, this approach
is only helpful if we know the degree of divergence. We need to perform a fit to determine it
numerically. We start with a model function with a polynomial form

A(K) = c1Ka + c2Ka−1 . (4.13)

We limit ourselves to the leading and subleading order terms. In general, the amplitude diverges
as a polynomial with all the powers of the cutoff. Using it as a model to fit our data would
undoubtedly lead to overfitting as we want to use a maximum cutoff of K = 10. We could
compute this amplitude for larger values of the cutoff. However, the EPRL model’s amplitude
is too computationally demanding, and we must impose a small cutoff of K = 10. We use this
limitation as an excuse to use a small cutoff with the topological model and anticipate some
problems arising from this choice. We fit using only the last 10 data points available.

We perform a simple least squares fit using the Julia package LsqFit. We find the expo-
nent a = 8.81 ± 11.99 and coefficients c1 = 4.83 ± 240.38, c2 = 41.12 ± 66.95. Examining the
uncertainties of the parameters, we conclude that the fit is clearly unreliable. Moreover, even
if the fit value for the exponent a looks compatible with the exact value a = 9, we could not
affirm it without knowing it in advance.

What is happening? The covariance between the coefficients c1 and c2 is huge. The fit
procedure with a cutoff of order 10 cannot distinguish between the contributions from the
leading and sub-leading orders (for example, if the exact coefficients are c1/c2 ≈ 10).

A simple solution to this impasse would be to extend the fit to larger values of K. In this
way, the contribution of the leading order would dominate the sub-leading one. Since we are
limited by a maximum cutoff K = 10, we have to find a different solution. Alternatively, we can
diminish the degree of divergence of the amplitude by changing the face amplitude introducing
a tunable parameter µ

A f ( j f ) = (2 j f + 1)→ (2 j f + 1)µ (4.14)

The case µ = 1 corresponds to the standard case, but if we set µ < 1 we lower the divergence
of the amplitude. In general, the amplitude will diverge as Ase ∝ K6µ+p where p is a number
we have to determine, and 6µ is the contribution coming from the six unbounded sums over
the bulk spins. We pretend we do not know that for µ = 1 the amplitude diverges as Ase ∝ K9

and therefore p = 3. And we try to determine p = a − 6µ fitting the amplitude with the same
model (4.13) for various values of µ = 1/6, µ = 0 and µ = −1/6. We take this opportunity
to check if the Monte Carlo estimate of the amplitude is as good as in the case µ = 1. We
compare the Monte Carlo estimate of the amplitudes relative to their exact values with different
µ. All the relative error bars, computed over T = 20 realizations as we did before, are within
0.1%, confirming that the Monte Carlo estimate is very accurate. We summarize the results in
Figure 4.7.
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Figure 4.7: Monte Carlo estimates of the S U(2) BF melonic amplitude with Nmc = 100 000 and T = 20
trials in each layer. We compare different values of the parameter µ in the face amplitude (4.14).

We fit the amplitude with the model (4.13). The interpretation of the result, in this case, is
more straightforward. We report the fitted coefficients in Table 4.2.

a c1 c2

µ = 1/6 4.15 ± 0.34 0.91 ± 1.24 6.38 ± 0.17
µ = 0 2.97 ± 0.04 2.01 ± 0.03 3.50 ± 0.05

µ = −1/6 1.94 ± 0.02 2.83 ± 0.02 0.39 ± 0.05

Table 4.2: Values of the coefficients of the model (4.13) obtained fitting the amplitude with different
values of µ.

A few comments are in order. First, all the fits indicate clearly that p = a−6µ = 3. Second,
notice that we are not worried that a is not always compatible with the nearest integer value.
This is an artifact of using just the leading order and next to the leading order of the polynomial
in (4.13). We determined the degree of divergence of the amplitude as Ase ∝ K6µ+3.

4.6 The vertex renormalization amplitude in the topological
theory

Exact numerical calculations of spinfoam amplitudes with many bulk faces are accessible only
for simple models, but become infeasible when the number of faces is too large. We showcase
the problem by looking at the vertex renormalization or 5-1 Pachner move amplitude with the
topological S U(2) BF spinfoam theory. The issue with this computation is not the time we need
to compute each term of the sums over the spins of the ten internal faces but the sheer amount
of terms of these sums. With a cutoff K = 10 on the sums, we need to compute 30 788 382 715
terms in total, 11 892 969 195 of which belongs to last layer of the amplitude. They are almost
six orders of magnitude more than in the melonic diagram case. This is where using the Monte
Carlo framework to perform the sums is necessary.

Motivated by the analysis of the melonic diagram, we average the Monte Carlo calculation
of each layer over T = 20 trials. We sum the layers’ average to obtain the amplitude value
for a given cutoff. We compute the amplitude variance by summing each layer’s variance. We
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consider the standard deviation as the error of the amplitude. We perform the calculation with
three different choices of sample sizes Nmc = 1 000, Nmc = 10 000, and Nmc = 100 000.

In this case, we cannot compare with the exact value of the amplitude to evaluate the Monte
Carlo technique. The exact value is not computable for cutoff K = 10. It is exactly the reason
we resort to Monte Carlo methods. We compare the relative error on the amplitude for the three
sample size choices. We summarize the result of this analysis in the plot of Figure 4.8.

Figure 4.8: Relative error on the Monte Carlo estimate of the S U(2) BF vertex renormalization
amplitude over 20 trials. We compare different Monte Carlo sampling sizes Nmc = 1 000 (green),
Nmc = 10 000 (orange), and Nmc = 100 000 (blue) samples.

We see that Nmc = 1 000 produces an estimate with a significant relative error between 8%
and 3%. For Nmc = 100 000 we find very modest relative errors between 0.8% and 0.3%. The
increase in the relative errors compared to the melonic diagram case is expected. Each layer of
this amplitude contains a few orders of magnitude more elements than the corresponding layer
in the melonic amplitude.

We fit the amplitude computed with Nmc = 100 000 samples averaged over T = 20 trials
as a function of the cutoff K using the model (4.13). We employ only the amplitude value as
a function of the cutoff between 5 and 10 since we expect the matching of the functional form
(4.13) to be, at best asymptotic. The degree of divergence of this amplitude can be estimated
analytically, finding Avr ∝ K12 at the leading order.

With a simple least squares fit, we find an unreliable result with an exponent a = 11.20 ±
0.69 and coefficients c1 = 1.91 ± 4.39, and c2 = 1.70 ± 10.82. The situation is analogous to
the case of the melon amplitude. To determine numerically the degree of divergence of this
amplitude with a maximum cutoff of K = 10 we modify the face amplitude as in (4.14) such
that the amplitude diverge as Avr ∝ K10µ+p with p to determine. We want to keep the exponent
10µ+ p as low as possible. Therefore, we pick three values of the weight µ = 0, µ = 1/10, and
µ = 1/5. We find

a c1 c2

µ = 0 1.96 ± 0.02 0.18 ± 0.01 −0.05 ± 0.02
µ = 1/10 2.89 ± 0.02 0.15 ± 0.01 0.07 ± 0.02
µ = 1/5 4.00 ± 0.04 0.08 ± 0.01 0.26 ± 0.02

Table 4.3: Values of the coefficients of the model (4.13) obtained fitting the amplitude Avr with different
values of µ.
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All three results are compatible with the analytic value of p = 2 resulting in the amplitude
diverging as Avr ∝ K10µ+2.

4.7 The melonic amplitude in the EPRL theory
In Sections 4.5, we computed the melonic self-energy spinfoam amplitude with the topological
BF S U(2) model using Monte Carlo. We obtained a remarkably accurate amplitude approx-
imation, employing only a fraction of the computational resources. Is the Monte Carlo tech-
nique applicable to spinfoam amplitudes with the EPRL model, and is it equally successful?

Before discussing the calculation details, we must disentangle two different overlapping
approximations. One is due to the Monte Carlo sampling procedure, while the other is due to
working with a finite truncation parameter ∆l. In calculating the melonic amplitude, we can
access the public data from [71] that employs an extensive truncation ∆l = 20. We borrow that
data to perform a detailed study of the truncation approximation independently from the Monte
Carlo one.

We mitigate the dependence from a specific choice of truncation ∆l using an extrapolation
technique (see Appendix D.3). This idea was first introduced in [71], further formalized in [9],
and additionally utilized in [133]. Our understanding of the extrapolation technique applied to
EPRL spinfoam amplitudes with finite truncation has improved considerably. In this section,
we revisit it in a new light. We explicitly show that its principal hypothesis is satisfied and
compare possible alternatives.

The amplitude Ase(K,∆l) at fixed cutoff K is a sequence in the truncation parameter ∆l.
Since the EPRL vertex amplitude is well-defined, the limit of infinite truncation is finite, and
we can approximate it using the Aitken delta squared method.

A(ex)
se (K,∆l) =

Ase(K,∆l)Ase(K,∆l − 2) − Ase(K,∆l − 1)2

Ase(K,∆l) − 2Ase(K,∆l − 1) + Ase(K,∆l − 2)
(4.15)

The sequence A(ex)
se (K,∆l) converges to Ase(K) faster than Ase(K,∆l). Therefore approximating

the limit with the truncation of the sequence Ase(K) ≈ A(ex)
se (K) ≡ A(ex)

se (K,∆l) is, in general, a
better approximation than using the truncation of Ase(K,∆l). The extrapolation is effective if
the rate of convergence of the amplitude is at least linear in ∆l, as discussed in Appendix D.3.
For this purpose, we study the ratio

λAse(K)(∆l) =
Ase(K,∆l) − Ase(K,∆l − 1)

Ase(K,∆l − 1) − Ase(K,∆l − 2)
. (4.16)

If the limit of the ratio (4.16) for infinite truncation is smaller than 1, the convergence of
Ase(K,∆l) is linear. Proving numerically the existence of the limit is challenging. Therefore,
we settle with some numerical evidence for linear convergence. Moreover, truncating the se-
quence of extrapolations A(ex)

se (K,∆l) to a finite ∆l to approximate its limit is reliable only if
the ratio approached (at least approximately) a horizontal asymptote. Part of this analysis has
already been performed in [71]. Here we re-propose it in light of our improved understanding.
For all half-integers K ≤ 10, the ratio (4.16) approaches a horizontal asymptote smaller than 1.
This behavior is evident for any 8 ≤ ∆l ≤ 20 and legitimizes the extrapolation of the amplitude
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(4.15). The ratio approaches the asymptote from below. Therefore, we expect the extrapola-
tions from larger truncation to increase. We summarize the analysis for some cutoff values in
Figure 4.9.

Figure 4.9: Plot of the ratio (4.16) for various values of the cutoff K = 10, K = 7.5, K = 5. A horizontal
asymptote is evident even for modest values of the truncation.

How effective is the extrapolation (4.15)? We answer this question by comparing the ex-
trapolation obtained from ∆l = 10 and ∆l = 20. The last is usually inaccessible due to its
exceptional computational cost, while the former is less precise but cheaper to compute. The
value of the amplitude Ase(K,∆l) changes substantially when we increase the truncation. For
example, at cutoff K = 10, the amplitude with ∆l = 20 is 40% larger than the one with ∆l = 10.
This was expected since the spins entering the calculation at K = 10 are of order 20, and the
amplitude truncated at ∆l = 10 cannot approximate the real amplitude value well. However,
we find a milder difference between the extrapolation (4.15) with different truncations. With
the same cutoff, the difference between the extrapolation done with truncation ∆l = 10 and
∆l = 20 is just 6%. In both cases, the extrapolations approximate the amplitude better than any
truncated amplitude we have access to. We summarize the results in Figure 4.10.

Figure 4.10: Comparison between the amplitude extrapolations and the truncated values Ase(K,∆l)
with ∆l = 10 and ∆l = 20 as a function of the cutoff. For larger cutoff values, the effect of truncation is
critical. The extrapolation successfully mitigates this dependence.

It is natural to question if extrapolating the amplitude sequence (4.15) is the only way
to proceed. We explored multiple alternatives (vertex-by-vertex, bulk amplitude, and layer-
by-layer), and they all turned out to perform worst. We review in detail one of them. The
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amplitude is a sum limited to a maximum K of contributions of layers (4.8) we compute with
a fixed truncation ∆l

Ase(K,∆l) =
K∑

k=0

S k(∆l) . (4.17)

Each layer contribution S k(∆l) is a convergent sequence in the truncation parameter. We can use
Aitken extrapolation on each layer contribution and obtain a sequence of amplitudes summing
them

A(ex,S )
se (K,∆l) =

K∑
k=0

S (ex)
k (∆l) with S (ex)

k (∆l) =
S k(∆l)S k(∆l − 2) − S k(∆l − 1)2

S k(∆l) − 2S k(∆l − 1) + S k(∆l − 2)
.

(4.18)
We approximate the limit of the sequence of amplitude truncating the accelerated convergence
sequence A(ex,S )

se (K) ≈ A(ex,S )
se (K,∆l) (4.18). Since the amplitude (4.17) is a finite sum over

layers, the sequence obtained extrapolating layer-by-layer (4.18) has the same limit as the
sequence (4.15) and both, of course, converge to the value of the amplitude Ase(K) without any
truncation. In practice, we do not have access to an arbitrarily large truncation but to a relatively
small one, and we want to approximate the limit truncating the extrapolated sequences. Which
one approximates the amplitude better is an open question that we can answer by exploring
different possibilities.

First, we verify that every layer amplitude is at least linearly convergent in the truncation
parameter by studying the ratio

λS k(∆l) =
S k(∆l) − S k(∆l − 1)

S k(∆l − 1) − S k(∆l − 2)
. (4.19)

We show some explicit examples in Figure 4.11. All the layer amplitudes are compatible
with the linear convergence hypothesis. Differently from (4.16) the ratio (4.19) approach a
horizontal asymptote from above. As a consequence, the extrapolation of the layer amplitudes
decreases in value for increasing truncation. In particular, the last layer k = 10 for ∆l = 10 is
still far from the horizontal asymptote. For this reason, we expect the extrapolation to change
significantly if we increase the truncation from ∆l = 10 to, for example, ∆l = 15 or 20 and
approximate. This is not the case for lower levels k ≤ 5.

Figure 4.11: Plot of the ratio (4.19) for various values k = 10, k = 7.5, k = 5. A horizontal asymptote
is evident but is reached for different truncation values.
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We extrapolate all the layer amplitudes and sum them. We truncate the sequence (4.18) to
approximate its limit. It is useful to compare the result with the extrapolation of the whole am-
plitude (4.15) using different truncation parameters. We summarize our findings in Figure 4.12.

Figure 4.12: Comparison of the melonic self-energy amplitude obtained extrapolating the amplitude
layer-by-layer or the whole amplitude.

For large cutoff, the extrapolation (4.18) with truncation ∆l = 10 is much larger than its
counterpart (4.15). At cutoff K = 10, the layer-by-layer extrapolation (4.18) is 16% larger
than whole amplitude extrapolation (4.15). The difference reduces drastically if we repeat both
extrapolations with a larger truncation ∆l = 20. At cutoff K = 10 the two differ only by 1%. In
particular, the value of the extrapolation (4.18) decreases substantially. This agrees with what
we observed studying the ratio (4.19). With low truncation, the layer-by-layer extrapolation
results in a poor amplitude approximation. In contrast, the two extrapolation schemes almost
coincide for larger truncations.

In the following, we will study the Monte Carlo approximation of the amplitude and limit
ourselves to a small truncation ∆l = 10 to conserve computational resources. We will use
only the whole amplitude extrapolation scheme (4.15) since it is the most accurate within this
setting.

Next, we evaluate how effective Monte Carlo techniques are if applied to the bulk spin
summations in the EPRL model using the melonic amplitude as a testing ground. Following
the cost-benefit analysis of the first part of this section, we set the truncation to ∆l = 10. We
use Monte Carlo to estimate the contribution to the amplitude of each layer averaging over
T = 20 trials. The amplitude is given by the sum of the averages of the layers and its error by
the square root of the total variance. We perform the calculation with three different choices
of Monte Carlo sample sizes Nmc = 1 000, Nmc = 10 000, and Nmc = 100 000. As displayed in
Figure 4.13 the relative error on the amplitude is more or less stable at 1% for the small sample
size and 0.1% for the large one.
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Figure 4.13: Relative error of the EPRL melonic amplitude as a function of the cutoff computed with 20
trials and truncation fixed to ∆l = 10. We compare different Monte Carlo sampling sizes Nmc = 1 000
(green), Nmc = 10 000 (orange), and Nmc = 100 000 (blue) samples.

The error is compatible with the analog error computed with the topological theory. We
could have expected it as the distribution of the layers’ amplitudes value is relatively flat. The
dominant factor in the error is the ratio between the number of configurations in the layer
and the Monte Carlo sample size, which is model-independent. At fixed truncation ∆l = 10,
we can also compare the amplitude computed using Monte Carlo with the exact one. The
amplitude computed using Monte Carlo is compatible with the exact value within the error.
We summarize the comparison in the plot in Figure 4.14.

Figure 4.14: Monte Carlo estimate of the EPRL melonic amplitude with finite truncation ∆l = 10
relative to the exact value with Nmc = 100 000 and T = 20 trials in each layer.

How well the extrapolation technique (4.15) is compatible with the Monte Carlo sum over
the bulk spins? Instead of averaging over T = 20 trials, we sum the layer amplitudes of
each realization to obtain 20 different realization of the amplitude at fixed truncation ∆l = 10.
This is possible since each Monte Carlo estimate of each layer amplitude is independent. We
extrapolate the amplitude (4.15) for each trial and approximate it averaging over the trials and
considering as error its standard deviation.

We compare the extrapolation of the amplitude computed with Monte Carlo with the one
calculated without that approximation. We find a 0.1% average error due to Monte Carlo for
all cutoff values (see Figure 4.15). This is compatible with the finite truncation case with
∆l = 10. However, this is just an error due to the Monte Carlo approximation. We expect it to
be firmly subdominant with respect to the error due to the presence of the truncation despite
the extrapolation.
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Figure 4.15: Monte Carlo estimates of the EPRL melonic amplitude extrapolated from a finite trunca-
tion ∆l = 10 relative to the exact value with Nmc = 100 000 and T = 20 trials in each layer.

Finally, we determine the degree of divergence of the amplitude performing a numerical
fit. The same calculation was already done in [71] with an exact amplitude computation. We
showed that using Monte Carlo allows us to estimate the amplitude with a 0.1% error compared
to the exact value (at fixed truncation). Therefore is no surprise that we find a good fit with

A(K) = c1Ka + c2 (4.20)

with a = 1.091±0.005, c1 = (6.186±0.093)·10−6, and c2 = (−3.476±0.253)·10−6 that coincide
with the result of [71]. We changed the model of the fit from the topological models, as (4.13)
gives unreliable results. If we generalize the face amplitude (4.14) introducing a weight µ, we
conclude that the scaling of the amplitude is compatible with A(K) ∝ K6µ+p with p ≈ −5.

For completeness, we could look at the melonic divergence with different weight µ values
as we did for the topological S U(2) model. However, the result we obtain is unreliable. A
more solid calculation requires a larger truncation and, consequently, way more computational
resources that we currently do not have access to. We will comment on these issues in more
detail in the next section. We leave this interesting consistency check to future work.

4.8 The vertex renormalization amplitude in the EPRL the-
ory

Computing the degree of divergence of the EPRL vertex renormalization amplitude (4.11) has
never been attempted. The theory is too complex to do it numerically or analytically. We can
use Monte Carlo to calculate this amplitude for the first time. We build upon the experience
accumulated in the previous sections and our choices and approximations. For this reason, we
use a truncation parameter ∆l = 10, and Nmc = 100 000 Monte Carlo samples. The calculation
of this amplitude required ∼ 400 CPU hours, which is a minimal fraction of what would be
required without Monte Carlo. We compute the Monte Carlo error as the standard deviation of
the amplitude over T = 20 relative to its average. We find a very stable error of approximately
0.9% for all values of the cutoff as summarized in Figure 4.16
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Figure 4.16: Relative error of the EPRL vertex renormalization amplitude as a function of the cutoff,
computed with 20 trials and truncation fixed to ∆l = 10. We use Nmc = 100 000 Monte Carlo samples.

The relative error of the amplitude is curiously constant for increasing cutoff K. While this
behavior could seem odd initially, it has a straightforward explanation. As we discuss below,
the amplitude seems convergent. The amplitude layers decrease very fast. The contribution to
the relative error of larger layers is irrelevant.

The amplitude’s statistical fluctuations are slightly bigger than in the EPRL self-energy
amplitude. However, they are compatible with the errors of the topological model. It is not
surprising since the ratio between the number of samples and the cardinality of the set we are
summing over dominates the error of a Monte Carlo calculation.

We reduce the dependence of the amplitude from the truncation using the extrapolation
(4.15) as discussed in Section 4.7. We show the value of the extrapolated amplitude as a
function of the cutoff in Figure 4.17. The amplitude is essentially constant for cutoff K > 2.
A power law fit is inadequate to capture the functional scaling of the amplitude. Therefore we
opt for a model capturing the constant behavior plus a correction.

A(K) = c1 + c2/K . (4.21)

Fitting the amplitude result in c1 = 0.765±2.667×10−5 and c2 = −0.0006±0.0002. We should
take these values with a grain of salt as they depend strongly on the model we decide to use.

Figure 4.17: Monte Carlo estimate of the EPRL vertex renormalization amplitude as a function of the
cutoff K. We use ∆l = 10, Nmc = 100 000 and T = 20 trials. We plot the extrapolated amplitude and the
fit using the model (4.21).

We are tempted to enhance the divergence of the amplitude by modifying the face ampli-
tude (4.14) introducing the weight µ. We observe that increasing µ we need to increase ∆l.



4.8. The vertex renormalization amplitude in the EPRL theory 83

Otherwise, the extrapolation technique fails in estimating the amplitude well.
We tried different face amplitudes weights and studied the amplitude ratios (4.16). We

show it in Figure 4.18. While for standard face amplitude µ = 1 and µ = 1.4, the ratio reaches
a horizontal asymptote smaller than 1 very soon, it is not the case for µ = 1.8, and µ = 2. We
can see how for these two cases, the ratio is still decreasing and greater than 1 at truncation
∆l = 10. Therefore, to obtain a reliable extrapolation we would need a larger truncation, not
accessible with the computational resources at our disposal.

Figure 4.18: Plot of the ratio (4.16) for increasing values of µ at cutoff K = 10. For µ = 1.8 and µ = 2
the ratio has not reached a horizontal asymptote smaller than 1 at ∆l = 10. Therefore the extrapolation
(4.15) cannot be applied.

We conclude that for this transition amplitude, the extrapolation scheme (4.15) is sensible
to the weight on the face amplitudes. The slower convergence of the amplitude sequence is also
evident from the plot of the amplitude for different truncations as well displayed in Figure 4.19.

Figure 4.19: Plots of vertex renormalization EPRL amplitude Amc
vr × 1017 for increasing values of the

weight factor µ. In each panel, we report all the curves obtained for increasing values of the truncation
parameter ∆l. The bottom curve (azure) corresponds to ∆l = 0 while ∆l = 10 is the top one (purple).

For completeness, we report the fit of the convergent amplitude with µ = 1.4 with the
model (4.21). We find c1 = 5.535±0.011 and c2 = −0.464±0.074. Due to the invalidity of the
extrapolation, we cannot perform a fit in the other two cases. Consequently, we cannot estimate
p in the divergence of the amplitude Avr ∝ K10µ+p. Nevertheless, our numerical analysis shows
strong indications that the infrared bubble of the EPRL theory is convergent.
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4.9 Conclusion and Discussion
The sl2cfoam-next library allows fast and reliable calculations of EPRL spinfoam transition
amplitudes. While it is optimized to compute vertex amplitudes, calculating a spinfoam am-
plitude with many vertices and internal faces still presents a huge technical obstacle. To sum
over the bulk degrees of freedom, we have to compute an enormous number of components
that scale exponentially with the number of internal faces.

We apply Monte Carlo to the spinfoam bulk summations and show that it is a very promis-
ing strategy to overcome this obstacle. The complexity of the calculation depends on the num-
ber of Monte Carlo samples Nmc we can freely choose. Of course, the result’s precision depends
on Nmc and how we choose the probability distribution of the Monte Carlo sampling. We de-
cide to use a uniform probability distribution. We acknowledge it is not the optimal choice as it
equally weights all the bulk spins configurations. However, it is efficient and allows us to paral-
lelize the sampling algorithm for a single amplitude across multiple threads. Moreover, we can
use it democratically with any amplitude. Alternatively, we could abandon uniform sampling
in favor of Markov Chain Monte Carlo (MCMC) methods. This would result in faster conver-
gence, but on the other hand, the sampling algorithm for calculating a single amplitude would
no longer be parallelizable. We leave the study and implementation of MCMC to bulk degrees
of freedom for future works. Finally, in this paper, we used intertwiners as boundary states. In
other cases, one could attempt to take advantage of the state’s properties to perform importance
sampling Monte Carlo. For example, in the case of extrinsic boundary states, it would make
sense to tailor the probability distribution sampling from a normal distribution. However, one
has to deal with the well-known sign problem with highly oscillatory distributions. We leave
the analysis of different boundary states for future works.

We evaluate the proposed strategy and discuss its choices for computing the melonic self-
energy and the vertex renormalization spinfoam amplitudes with the S U(2) BF and the EPRL
theory. These amplitudes with many vertices and internal faces provide a good test. In par-
ticular, the topological theory is convenient as partial analytical calculations are possible and
help us evaluate the performance of our method. The calculations of the amplitudes with
Monte Carlo are surprisingly effective already with a modest number of Monte Carlo samples
Nmc = 100 000. Remember that the vertex renormalization amplitude contains ≈ 1010 possible
(non trivially vanishing) amplitudes to appreciate this result. Obtaining a good approximation
computing just order ≈ 105 of them is remarkable. We find minor uncertainties of 0.1% and
0.9% for the EPRL self-energy and the vertex renormalization amplitude, respectively. Similar
results hold for the S U(2) BF model suggesting that the dominant factor in the error is the ratio
between the cardinality of the space of all the possible spin configurations and the (square root
of the) Monte Carlo samples. The calculations in the EPRL theory are carried out with a finite
truncation ∆l = 10. We alleviate the dependence of the result using extrapolation techniques to
accelerate the convergence of the amplitude. We explore different extrapolation schemes. Ex-
trapolating the full amplitude at a finite cutoff is the most convenient option. We also formalize
the regime of validity of the extrapolation scheme and develop a test to verify if the amplitude
falls into it.

At the same time, analyzing the divergence of these amplitudes for the EPRL theory is an
essential step toward understanding the theory’s continuum limit. While the self-energy ampli-
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tude is already studied in the literature [71, 46, 102], for the vertex renormalization amplitude,
we know only a loose upper bound [46]. The amplitude was too complex to try any numerical
or analytical calculation. The estimate we provide in this paper is a complete and important
novelty. Performing the sums over the bulk degrees of freedom with statistical methods is
enough to confirm the linear divergence of the melonic self-energy amplitude.

The numerical evaluation of the EPRL vertex renormalization spinfoam amplitude pro-
vides a convincing argument to claim its convergence. However, it is a shocking result as it
contradicts any intuition from the analytical calculations of the topological models where the
amplitude is more divergent than the melonic self-energy one.

Our result is a numerical computation of the amplitude, not analytical proof. One should
always keep in mind its limitations. We performed a calculation with fixed boundary spins
jb =

1
2 , Immirzi parameter γ = 0.1, an extrapolation based on the truncation ∆l = 10, and a

uniform cutoff on all the faces limited to K ≤ 10. Technical limitations and convenience dic-
tate some choices. Nevertheless, we explored alternatives when possible, and the result seems
general. Numerically we infer that the convergence of the vertex renormalization amplitude is
determined by the destructive interference of the vertex amplitudes’ oscillations of the EPRL
theory. The booster functions are responsible for the interference, which appear in the EPRL
vertex amplitude and are not present in the topological one. They encode the imposition of the
simplicity constraints in the theory. This interpretation agrees with the results in [46]. Neglect-
ing this interference results in a divergent upper bound estimate identical to the topological
model.

Consider the Ponzano Regge model, a simpler spinfoam theory that describes Euclidean
quantum gravity in three dimensions. The vertex renormalization amplitude in that theory
(the 1-4 Pachner move) is cubically divergent in the cutoff K3. The divergence is related to
a residual gauge invariance in the path integral that is not entirely fixed [144]. Geometrically
it can be interpreted in the ∞3 ways we can divide a tetrahedron in four with an extra point.
The convergence of the EPRL vertex renormalization amplitude could signal that a similar
symmetry is absent in the theory. The restriction to Lorentzian geometries with space-like
boundaries of EPRL vertex in the large spins regime breaks the BF action’s shift symmetry.
Whether or not it indicates that simplicity constraints are imposed correctly in the EPRL theory
remains an open question. We hope that a detailed analytical study and the contribution of other
upcoming numerical techniques tailored to the study of the large spin limit of the theory [32]
could help solve this mystery.
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Markov Chain Monte Carlo methods for
graph refinement in Spinfoam Cosmology

Statement of co-authorship
This Chapter presents the paper [78], written by me, Francesco Gozzini, and Francesca Vi-
dotto. It was published in Classical and Quantum Gravity on 14 April 2023. My supervi-
sor, Francesca Vidotto, originally started this line of research with Francesco Gozzini in [77].
Francesco Gozzini initiated the application of Markov Chain Monte Carlo methods to inves-
tigate spinfoam refinement just after [77] was published. After he completed his Ph.D., this
project was left unfinished. I took over the work and rewrote all the algorithms, adapting the
old codes to the numerical libraries and more recent strategies developed in the meantime. I
took care of the numerical computations, drafted sections, and realized plots and images. I es-
timate the percentage of the total work conducted by me between 40% and 60%. This version
corresponds to the manuscript accepted for publication on Classical and Quantum Gravity, not
to the final published version in the same journal. To be compatible with the IOP’s author
rights policy, an embargo period of 4 months will be requested for this Ph.D. thesis.

5.1 Introduction
The last years have seen a lively development of numerical methods in the covariant, or spin-
foam, formulation of Loop Quantum Gravity [1]. A key step in this direction has been the in-
troduction of Markov chain Monte Carlo (MCMC) methods and their application to the study
of the EPRL propagator [57]. In [57], the authors exploited the known properties of the single-
vertex semiclassical limit to perform a Monte Carlo sampling over particular subspaces of the
complexified parameter space, using semiclassical boundary states [145]. Exploiting the sta-
tionary phase approximation [146], the authors found a good agreement with the semiclassical
results obtained via analytical methods.

The evaluation of spinfoam amplitudes in the Engle-Pereira-Rovelli-Livine model (EPRL)
[31, 70, 71, 9], the introduction of effective models [63, 64] and the numerical study of cuboid
renormalization [147] have shed considerable light on several aspects of the theory, such as the
role of the Immirzi parameter, the accidental flatness constraints, and the refinement limit.

86
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This paper introduces a technique that can be applied to some calculations in a regime
where the number of degrees of freedom is large, but the relevant spin quantum numbers are
small. We combine the Metropolis-Hastings algorithm [148] with some recently developed
high-performance computing techniques in covariant LQG [48]. Not based on analytical ap-
proximations, this method requires minimal knowledge of spinfoam geometry. On the other
hand, the algorithm becomes resource-demanding as the complexity of the spinfoam increases.
We test the algorithm in the case of a single 4-simplex, and then we use it to study a spinfoam
with six vertices in the bulk and twenty nodes on the boundary. This corresponds to the cellular
decomposition obtained from one elementary 4-simplex by splitting each of the five boundary
tetrahedra into four tetrahedra. The resulting spinfoam is a refinement of the 4-simplex vertex,
which does not add any internal (dynamical) face to the spinfoam two-complex. The following
refers to it as the “star" spinfoam.

We restrict the calculation to the homogeneous sector where the spins of all boundary links
have the same value. In this sector, the boundary intertwiners give the spinfoam degrees of
freedom, which encode the shapes of the boundary tetrahedra. We numerically compute these
variables’ amplitude as a function and use the Monte Carlo sampling to study the expectation
values of different boundary operators and their correlations. For the sake of completeness, we
investigate both the BF and EPRL models.

Spinfoam amplitudes with a regular graph on the boundary and homogeneous data can be
interpreted as cosmological states [17]. In particular, when a single boundary state is consid-
ered, the amplitude can be seen as a transition from nothing into a 3-dimensional geometry,
compatible with the 4-dimensional Lorentzian bulk [149, 150]. The computed amplitude trun-
cates the spinfoam vertex expansion of the nothing-to-geometry transition amplitude. This
provides a spinfoam Lorentzian version of the Hartle-Hawking wave function of the universe
[151]. We refer to the literature in spinfoam cosmology for the physical interpretation of these
states [16, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164].

These states are rich enough to describe a boundary geometry that is regular on average
but allows quantum fluctuations. The recent advance in numerical methods applied to spin-
foam amplitudes has opened the possibility of computing concrete observables with spinfoam
cosmological states. The first computation of this kind was introduced in [77] using a single
4-simplex. In this paper, we would like to focus on numerical methods. The cosmological
spinfoam states provide an exciting framework for investigating novel techniques.

A critical open question in the spinfoam approach to quantum gravity is the convergence
of the amplitudes under refinement of the two complexes of the spinfoam. In this regard, we
can confirm numerically that the refinement studied is stable for the boundary observable, in
the sense that there is excellent agreement between expectation values computed on the single
vertex graph and the refined graph. However, the correlations turn out to be different, as well as
the quantum information entropy between different boundary nodes, reflecting the finer scale
at which they become accessible. The results provide a quantitative estimate of the quantum
correlations between different spatial patches in the manifold boundary whose truncation is
represented by the boundary spin network.

The paper is organized as follows. In Section 5.2, we define the boundary state we use in our
analysis. In Section 5.3, we discuss the Markov chain Monte Carlo method applied to the spin
sums over the boundary degrees of freedom. In Section 5.4, we test the Monte Carlo sampler
to the case of a single 4-simplex, where calculations can be performed using deterministic
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approaches. In Section 5.5, we study the star spinfoam, investigating the numerical results
of geometrical operators (boundary angles and volumes) and the related correlations. We also
discuss the entanglement entropy between boundary nodes, considering different partitions into
subsystems.

The code used for all the computations described in this paper is available on GitHub [103]1

All the computations were performed on Compute Canada’s Cedar, Graham, Beluga, and Nar-
val clusters (www.computecanada.ca). Therefore, the computational resources employed for
this paper can be quantified as approximately 8 · 104 CPU hours.

5.2 The boundary state
We study the boundary state |ψ0⟩ introduced in [77], which explored the simplest triangulation
of a 3-sphere, emerging from a single 4-simplex. Let Γ be a graph with L links and N nodes.
Then, the LQG Hilbert space for the graph is:

HΓ = L2

[
S U(2)L/S U(2)N

]
. (5.1)

The spin network basis in HΓ is made by the states |{ jl}, {in}⟩ (from now on, we omit the Γ
subscript), where { jl} is a set of half-integer spins and {in} an intertwiner set, n = 1 . . .N,
l = 1 . . . L. An intertwiner in is a basis element of the invariant subspace of the tensor product
of 4 S U(2) representations at the node n. In the following, we fix all the spins to be equal,
namely jl = j. We denote a boundary spin network state of this reduced space as:

| j, {in}⟩ ≡ | j, i1 . . . iN⟩ = | j, i1⟩ ⊗ · · · ⊗ | j, iN⟩ , (5.2)

suppressing the curly brackets for the spin label j, as one common spin is attached to all the
links. We define the state |ψ0⟩ in the Hilbert space (5.1) by

⟨ j, {in}|ψ0⟩ ≡ A ( j, {in}) , (5.3)

where A ( j, {in}) is the LQG amplitude of the state in the spin network basis. The amplitude (5.3)
can be interpreted as the amplitude associated with the transition nothing-to-| j, {in}⟩. Hence |ψ0⟩

gives the natural state projected out of the empty state by the LQG dynamics. The amplitude
function depends on the common spin j on the links and all the N intertwiner indices. The state
|ψ0⟩ is therefore defined as:

|ψ0⟩ =
∑
{in}

A ( j, {in}) | j, {in}⟩ . (5.4)

The sum is over all possible values of all the intertwiners in the set {in}, compatible with tri-
angular inequalities. If jl = j, then every intertwiner in can assume integer values between 0
and 2 j. This gives (2 j + 1)N boundary basis elements that enter the sum (5.4). Following the
geometrical interpretation of the covariant LQG phase space in terms of twisted geometries
[128], we might interpret the constraint jl = j as imposing strongly at the quantum level that
all the areas of the faces of the boundary tetrahedra must be equal. The intertwiner degrees

1The code works on any operating system with an updated version of the Julia programming language (the
code was tested with Julia 1.6.2).

https://www.computecanada.ca/
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of freedom model the “shape" of the boundary tetrahedra, which are relational observables
at a given value j. They are directly linked to the boundary 3d dihedral angles, as discussed
in Section 5.5.1. The definition (5.4) doesn’t depend on the details of the triangulation. The
triangulation determines how the amplitude A ( j, {in}) must be computed.

5.2.1 Expectation values
We consider local geometrical operators acting on single boundary nodes of H . We specify
the matrix elements for each operator in the basis states (5.2). We start defining the normalized
expectation value on the boundary state (5.4) of an operator Ok, acting on the Hilbert space
associated with the k-th node, as:

⟨Ok⟩ ≡
1
Z
⟨ψ0|Ok|ψ0⟩ . (5.5)

The normalization factor is computed as follows:

Z ≡ ⟨ψ0|ψ0⟩ =
∑
{in}

A ( j, {in})2 . (5.6)

From (5.4) we write:

⟨ψ0|Ok|ψ0⟩ =
1
Z

∑
{in}

∑
{i′n}

A ( j, {in}) A
(
j, {i′n}

)
⟨ j, {i′n}|Ok| j, {in}⟩ . (5.7)

By using the orthogonality of the spin-network states (5.2) we find:

⟨ j, {i′n}|Ok| j, {in}⟩ = δi′1,i1
. . . ⟨ j, i′k|Ok| j, ik⟩ . . . δi′N ,iN , (5.8)

therefore we conclude:

⟨Ok⟩ =
1
Z

∑
{in}

2 j∑
i′k=0

A ( j, {in}) A
(
j, {in}, i′k

)
⟨ j, i′k|Ok| j, ik⟩ , (5.9)

where A
(

j, {in}, i′k
)

is defined as:

A
(
j, {in}, i′k

)
≡ A

(
j, i1 . . . i′k . . . iN

)
, (5.10)

namely, the amplitude computed with i′k in place of ik. Since ik ∈ {in}, the sum over ik is
contained in the sum over the set {in}. It is now straightforward to compute ⟨OkOm⟩, which
turns out to be:

⟨OkOm⟩ =
1
Z

∑
{in}

2 j∑
i′k=0

2 j∑
i′m=0

A ( j, {in}) A
(
{ j}, {in}, i′k, i

′
m
)
⟨ j, i′k|Ok| j, ik⟩⟨ j, i′m|Om| j, im⟩ , (5.11)

where the meaning of A
(

j, {in}, i′k, i
′
m

)
is transparent by looking at (5.10). We refer to the am-

plitude with i′k instead of ik and i′m in place of im. In the case of diagonal operators Dk in the
spin-network basis, equations (5.9) and (5.11) become respectively:

⟨Dk⟩ =
1
Z

∑
{in}

A2 ( j, {in}) ⟨ j, ik|Dk| j, ik⟩ , (5.12)
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⟨DkDm⟩ =
1
Z

∑
{in}

A2 ( j, {in}) ⟨ j, ik|Dk| j, ik⟩⟨ j, im|Dm| j, im⟩ . (5.13)

Normalized correlations are defined as:

C(Ok,Om) =
⟨OkOm⟩ − ⟨Ok⟩⟨Om⟩

(∆Ok) (∆Om)
, (5.14)

where the quantum spread is:

∆Ok =

√
⟨O2

k⟩ − ⟨Ok⟩
2 . (5.15)

The fact that the connected correlation function (5.14) between the nodes k and m is non-
vanishing turns out to be a necessary condition to have correlated fluctuations between the
shapes of the tetrahedra dual to nodes k and m [165, 166, 167, 146, 126].

5.3 Monte Carlo over intertwiner space
As discussed in Section 5.2.1, an operator’s expectation value must sum over all possible eigen-
states of the quantum system. Numerically, this rapidly becomes intractable as the number of
degrees of freedom increases. In the present context, for a graph with N boundary intertwiners,
there are (2 j+1)N values to compute and to sum. Suppose that the amplitude function A ( j, {in})
can be computed in 10−6 seconds on reference hardware (the real-time is typically orders of
magnitude larger). For 20 boundary tetrahedra, which is the case of the star spinfoam discussed
in Section 5.5, a spin j = 2 computation would take three years. We cannot use blind summa-
tion if we want to approach this problem numerically. Even parallelizing the computation on
multiple machines cannot solve this issue in the case of many boundary degrees of freedom.
A solution is Monte Carlo summation. This technique is used to compute the expectation val-
ues of random variables. We obtained the best results by adapting the Metropolis-Hastings
algorithm [148, 168] to the discrete sums over the boundary intertwiners. For completeness,
we briefly describe the Metropolis-Hastings algorithm2 in its general form.

5.3.1 Metropolis-Hastings algorithm
Let us consider a quantity O, which can be computed as:

O =
∑
x∈χ

f̃χ (x) o (x) , (5.16)

where x is a (possibly multidimensional) discrete variable on a state space χ which must be
summed over, while f̃χ is a probability distribution function on χ, so that:∑

x∈χ

f̃χ (x) = 1 . (5.17)

2We refer to the original paper [148] or to the numerous texts available for a deeper description of the algo-
rithm.
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From now on, we define f̃χ as the target distribution and omit the state space label χ. Since the
target distribution is normalized, we write:

f̃ (x) ≡
f (x)∑

x
f (x)

, (5.18)

from which:

O =

∑
x

f (x) o (x)∑
x

f (x)
. (5.19)

If the target distribution (5.18) can be computed up to a multiplying constant, the Metropolis-
Hastings algorithm allows constructing on state space χ an ergodic Markov chain with length
NMC: x1, x2, x3 . . . , xn . . . , xNMC such that xn is converging (in distribution) to f̃ , exploring the
space χ progressively. If we define:

ONMC =
1

NMC

NMC∑
n=1

o (xn) , (5.20)

Then, since the chain can be considered as a statistical sample, the law of large numbers ensures
that:

lim
NMC→∞

ONMC = O . (5.21)

The computation is stochastic, and the correct result is found only in the limit of an infinite
number of samples. This allows us to write:

ONMC ≈ O for NMC ≫ 1 . (5.22)

We estimate the original sum (5.16). The soundness of the procedure comes from known
theorems on Monte Carlo summation. We can estimate the error by comparing many different
runs. Since the simulation is Markovian and the chain can be considered a statistical sample,
the latter usually depends on the starting value. In the following, we randomly choose the
starting point of the Markov chain. While the chain is in thermalization, the initial steps are
typically removed as burn-in iterations. To transit from the chain state xn to xn+1, we require
a proposal distribution g defined on space χ. If g is positive everywhere, then the Metropolis-
Hastings algorithm preserves f̃ as the stationary distribution to which the chain is progressively
converging. In the random walk Metropolis-Hastings, the proposal distribution consists of a
local exploration of the neighborhood of the current value xn of the Markov chain. That is, the
proposed value x′n is simulated as:

x′n = xn + δxn , (5.23)

where δxn is a random perturbation with distribution g. The proposed state x′n is sampled from
a probability distribution g

(
x′n|xn

)
, which suggests a candidate given the previous sample value

xn. As proposal distribution, we choose a truncated normal distribution rounded to integers
centered around xn with standard deviation σ:

g
(
x′n|xn

)
= Nd,t(xn, a, b;σ) , (5.24)
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Algorithm 3 Random walk Metropolis-Hastings
1: Choose the number of iterations NMC, the burn-in parameter b and the standard deviation
σ of the proposal distribution g.

2: Set a random initial configuration x and compute f (x)
3: Set initial multiplicity to 1
4: for n = 1 . . .NMC do
5: Generate a candidate x′ from x according to the proposal distribution g
6: if x′ = x then
7: Increase the multiplicity by 1
8: continue
9: else

10: Compute f (x′)
11: Compute p = min

{
1, f (x′)

f (x)
g(x|x′)
g(x′ |x)

}
12: Generate a uniform random number r between 0 and 1
13: if r < p then
14: if n > b then
15: Store x and f (x) with the corresponding multiplicity
16: Set x = x′, f (x) = f (x′)
17: Set the multiplicity to 1
18: else
19: Increase the multiplicity by 1
20: Dump to disk the x’s, f (x)’s and the corresponding multiplicities.

where the definition ofNd,t is reported in E.1. The full algorithm is summarized in the flowchart
3, in which we report the steps to implement the random walk Metropolis-Hastings and build
the Markov chain. The multiplicity factors and the storage of f (x)’s have been introduced as
a matter of efficiency. This considerably speeds up the algorithm and the consequent com-
putation of operators. Technically, the Markov chain obtained at the end of the algorithm 3
has a length less than NMC (as this depends on the acceptation ratio). Since it is sufficient to
take into account the multiplicity of each single chain state to restore the original length, in the
following, we refer to the Markov chain obtained at the end of the algorithm 3 as having length
NMC without losing any generality.
Since xn depends on the previous element along the Markov chain, this induces a non-zero
correlation between xn and xn+d. The correlation between xn and xn+d is the autocorrelation
at lag d. The autocorrelation should decrease as the lag increases for a Markov chain that
converges to a stationary distribution. Although the most common approach is to evaluate the
autocorrelation of operators, a measure of the degree of autocorrelation of the Markov chain is
represented by the autocorrelation of the sequence of the amplitudes of the states. If we define
the average of the states’ amplitude as:

f̄ (x) =
1

NMC

NMC∑
n=1

f (xn) , (5.25)
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the definition of the autocorrelation function at lag d associated with the sequence f (x1) . . . f (xn)
can be written as:

ACF
(
x1 . . . xNMC ; d

)
=

NMC−d∑
n=1

(
f (xn) − f̄ (x)

) (
f (xn+d) − f̄ (x)

)
NMC∑
n=1

(
f (xn) − f̄ (x)

)2
. (5.26)

We can compare the results of operators’ expectation values over different runs to obtain an un-
biased estimate of the statistical fluctuations due to the Monte Carlo sampling. We store multi-
ple Markov chains according to algorithm 3, computing operators for each. This is extremely
useful in determining the convergence of the Markov Chain to the stationary distribution and
the corresponding unbiased statistical dispersion of the operators. This is discussed in Section
5.3.2.

5.3.2 Expectation values with Monte Carlo
To apply the Metropolis-Hastings algorithm discussed in Section 5.3.1 to the computation of
spinfoam observables of Section 5.2.1, a direct comparison between equations (5.12) and (5.16)
is enlightening. Namely, if we associate to the state space χ the intertwiners’ boundary space
(5.2), so that x = {in}, then the target distribution becomes:

f̃ (x) =
A2 ( j, {in})∑
{in}

A2 ( j, {in})
. (5.27)

Namely, we run a stochastic sampling routine that extracts draws of intertwiners [i1 . . . iN]
from their whole configuration space, according to the Markov chain. The proposal distribu-
tion corresponds to a discrete multivariate truncated normal distribution, and each intertwiner
is proposed sampling from an independent one-dimensional distribution. The a, b parameters
in (5.24) for each intertwiner are 0 and 2 j, respectively. After storing the intertwiner draws,
we can use them to compute the expectation values of operators. We can summarize the intro-
duction of the Monte Carlo with the following substitution in the formulas of the expectation
values of the operators: ∑

{in}

A2 ( j, {in}) o ({in}) ≈
∑
[in]

o ([in]) . (5.28)

In the right side of equation (5.28), the sum over the intertwiners is intended as the sum over
the stored draws [in] ≡ [i1 . . . iN] in which the intertwiners have a fixed value compatible with
triangular inequalities. We are no longer considering all the independent summations over the
intertwiners. This hugely reduces the computational cost, making the computation feasible in
the case of many boundary degrees of freedom. With (5.28), the normalization factor (5.6)
becomes:

Z ≈
∑
[in]

= Number of MC iterations ≡ NMC . (5.29)

We can easily find the expression for the expectation values of non-diagonal operators by mul-
tiplying and dividing for A ( j, {in}) and then using (5.28), remembering (5.29). In fact, (5.9)
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becomes:

⟨Ok⟩ ≈
1

NMC

∑
[in]

2 j∑
i′k=0

A
(

j, [in] , i′k
)

A ( j, [in])
⟨ j, i′k|Ok| j, ik⟩ . (5.30)

Equation (5.11) becomes:

⟨OkOm⟩ ≈
1

NMC

∑
[in]

2 j∑
i′k=0

2 j∑
i′m=0

A
(

j, [in] , i′k, i
′
m

)
A ( j, [in])

⟨ j, i′k|Ok| j, ik⟩⟨ j, i′m|Om| j, im⟩ . (5.31)

In case of diagonal operators, from (5.12) and (5.13) we obtain:

⟨Dk⟩ ≈
1

NMC

∑
[in]

⟨ j, ik|Dk| j, ik⟩ , (5.32)

⟨DkDm⟩ ≈
1

NMC

∑
[in]

⟨ j, ik|Dk| j, ik⟩ .⟨ j, im|Dm| j, im⟩ . (5.33)

Notice that in the case of diagonal operators, it is unnecessary to compute any amplitude ex-
cept those necessary for sampling the draws of intertwiners. This makes the computation of
diagonal operators several orders of magnitude faster than non-diagonal ones. We consider
the numerical analysis up to the value j = 6 for the spins associated with the boundary links.
This numerical approach is intended to be applied in the full quantum regime, i.e., when the
spin quantum numbers are small and the semiclassical approximation is invalid. In addition,
the computational complexity represented by increasing j strongly depends on the type of the
considered operator and the Metropolis-Hastings parameters. The value j = 6 allows comput-
ing all the operators and correlation functions we consider with a stable precision of up to 3
significant digits.
Crucially, this approach is not based on analytical approximations and requires minimal knowl-
edge of spinfoam geometry, which typically becomes quite complicated for models beyond the
single 4-simplex. On the other hand, the price to pay is the calculation of the spinfoam am-
plitude at each iteration of the algorithm 3. Much effort has been devoted in recent times to
the efficient computation of spinfoam amplitudes [9, 48, 47]. At present, the best numerical
framework to compute BF and EPRL vertex amplitudes, which can be seen as the elementary
building blocks of more general triangulations, is the sl2cfoam-next library [48]. Calcu-
lating the spinfoam amplitude with high-performance computing techniques is fundamental
for applying the Metropolis-Hastings algorithm discussed in 5.3.1. Recent developments have
made it possible to compute potentially divergent spinfoam amplitudes with many internal
faces [133, 71]. This makes the algorithm presented in this paper a good candidate to be used
in the case of spinfoams with a non-trivial dynamic structure.
After we have stored a number C of Markov chains, each with the same length NMC and
Metropolis-Hastings parameters, we can compute the expectation value (5.30) of an opera-
tor Ok for each chain ⟨Ok⟩1 . . . ⟨Ok⟩C and then consider the corresponding average and standard
deviation:

µ⟨Ok⟩ =

∑C
c=1⟨Ok⟩c

C
, (5.34)
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σ⟨Ok⟩ =

√∑C
c=1

(
µ⟨Ok⟩ − ⟨Ok⟩c

)2

C
. (5.35)

For each considered operator, we plot the corresponding Gaussian distribution:

G(x; µ⟨Ok⟩, σ⟨Ok⟩) =
1

σ⟨Ok⟩

√
2π

e
− 1

2

(
x−µ⟨Ok⟩
2σ⟨Ok⟩

)2

. (5.36)

The number of Monte Carlo iterations NMC for each Markov chain, the number C of averaged
chains, and the relevant parameters in the Metropolis-Hastings algorithm are all listed in tables
in the E.2.

5.4 The 4-simplex

The 4-simplex, or (referring to the dual triangulation) the vertex, is the simplest geometrical
triangulation of the 3-sphere. It is formed by 5 tetrahedra glued on 10 faces. There are 5
boundary degrees of freedom and no internal faces. As shown in Figure 5.1, there is a com-
plete self-duality between the geometrical triangulation of the 4-simplex and the corresponding
boundary graph. The geometry in Figure 5.1 doesn’t depend on the Lorentzian character of the

Figure 5.1: Left: Geometry of the 4-simplex triangulation. Numbered circles correspond to points.
Right: The corresponding boundary spin network. Each red circle corresponds to a boundary node,
and each line corresponds to a boundary link.

triangulation or not. Namely, it is the same for the S U(2) topological BF or the Lorentzian
EPRL 4-simplex. We need to explicitly represent the spinfoam associated with the amplitude
to emphasize the difference between the two models. We denote such amplitudes associated
with a single vertex as VBF and VEPRL. We write the corresponding expression in the general
form, in which all spins have different values. As discussed in Section 5.2, in the present
context, we focus on the case where all spins are equal.

5.4.1 The BF and EPRL vertex amplitudes

The vertex amplitude of the topological BF model can be written as an S U(2) invariant Wigner
{15 j} symbol. The choice of the recoupling basis on each intertwiner determines if the symbol
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can be reduced to the product of lower-dimensional symbols. We choose the irreducible sym-
metric {15 j} symbol of first kind, following the convention of [169]. The definition in terms of
{6 j} symbols is:

VBF ( jab; ia) = (−1)
∑5

k=1( jk+ik)
∑

s

(2s + 1)
{

i1 j25 s
i5 j14 j15

}{
j14 i5 s
j35 i4 j45

}{
i4 j35 s
i3 j24 j34

}
×

{
j24 i3 s
j13 i2 j23

}{
i2 j13 s
i1 j25 j12

}

= , (5.37)

where a, b = 1 . . . 5, a , b. To avoid weighing down the notation, boundary dimensional
factors attached to intertwiners ie and spins jab have been neglected. The {6 j}Wigner symbols
in (5.37) can be computed efficiently with libraries such as wigxjpf and especially fastwigxj
[91, 170].
The EPRL vertex amplitude is built from the topological S L(2,C)) spinfoam vertex amplitude
once the simplicity constraints have been imposed [25, 113]. We use the form of amplitude
originally derived in [42], which results in a linear combination of {15 j} symbols weighted
by one booster functions Bγ

4 per edge (see E.3 for explicit formulas). We write the vertex
amplitude according to the graphical notation discussed in detail in [9]:

Vγ
EPRL ( jab, ia; ∆l) =

jeq+∆l∑
leq= jeq

∑
ke

(∏
e(2ke + 1)Bγ

4( j1e, leq; ie, ke)
)

VBF

(
j1e, leq; ke, ia

)

=
jeq+∆l∑
leq= jeq

, (5.38)

where e, q = 2 . . . 5, e , q. We introduced the ∆l parameter to truncate the summation over the
auxiliary spins leq. The role of this truncation parameter in the context of infrared divergences
has been deeply discussed in detail in [71, 133, 72]. In this paper, we consider ∆l = 20
and γ = 1.2 as the value of the Barbero-Immirzi parameter. It is interesting to notice how
the truncation parameter ∆l seems to play a minimal role in the computation of boundary
observables, as already observed in [71] in the case of divergent infrared amplitudes. In the
present context, except for a slight systematic shift in the expectation values of the dihedral
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angles of the star model (discussed in Section 5.5.1), we found no difference3 between the case
∆l = 0 and ∆l = 20. From a computational point of view, the advantage of using a small ∆l
parameter is remarkable. The 4 spins associated with the gauge-fixed edge are ( j12, j13, j14, j15),
as the elimination of a redundant S L(2,C) integration along one edge in the EPRL vertex (5.38)
is necessary to ensure that the corresponding amplitude is well defined [85]. As in (5.37) we
neglected the dimensional factors attached to the boundary intertwiners and spins.

5.4.2 Testing the Monte Carlo sampler
The 4-simplex is an excellent model to test the sampling routine over the intertwiners space
discussed in Section 5.3.2. Since the number N = 5 of boundary degrees of freedom is low,
it is possible to compute observables and related functions without resorting to Monte Carlo
methods, allowing for a direct comparison. To perform the sampling algorithm, it is necessary
to compute the vertex amplitudes (5.38)-(5.37) at a fixed value of boundary spin j and for all
the possible (2 j + 1)5 values of intertwiners. For the EPRL model, as mentioned in Section
5.4.1, the computational time considerably increases with j, especially with a high value of
the truncation parameter ∆l. The computation of the EPRL vertex amplitude (5.38) for j =
0.5, 1, . . . 6 has been distributed over several machines and hundreds of CPUs, and it has taken
about 5 days to complete. The amplitudes are available at the public repository [103], along
with the corresponding BF counterparts (5.37). We start by looking at the autocorrelation
function (5.26) of the vertex amplitudes sampled during the random walk. To measure the
autocorrelation, we set b = 0 in the flowchart 3, while all the other parameters are the same
as reported in E.2. We report the data in Figure 5.2. Obviously, the most important parameter
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Figure 5.2: Autocorrelation function (5.26) of the BF and EPRL vertex amplitudes as a function of the
lag d for different values of j. As expected for a Markov chain that converges to a stationary distribution,
the autocorrelation decreases as a function of the lag.

to verify the sampler’s effectiveness is the observables’ computation. In this respect, a direct
comparison is made easier because this simple model’s external dihedral angle operator has
been studied in [77]. The dihedral angle operator is the simplest operator to compute in the
intertwiner basis, and it describes the cosine of the external dihedral angle cos(θab) between
two faces a and b of a boundary tetrahedron. Faces a and b depend on the recoupling basis

3In order not to be redundant, we do not explicitly report the data in the case ∆l = 0.
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Figure 5.3: Gaussian distribution (5.36) of the expectation values (5.32) of the dihedral angle operator
(5.39) in the 4-simplex model. We averaged over several runs, computing the (average) angle µ<cos θ>
defined on a single node and the corresponding standard deviation σ<cos θ> for different values of j.

chosen for the invariant S U(2) {15 j} symbol, which appears both in the EPRL (5.38) and BF
amplitude (5.37). The external dihedral angle of the tetrahedron dual to the node n in the
symmetry-reduced space basis states (5.2) is [77]:

⟨ j, in| cos(θ)| j, in⟩ =
in(in + 1) − 2 j( j + 1)

2 j( j + 1)
. (5.39)

The dihedral angle operator (5.39) is diagonal in the spin-network basis. Therefore, we can
quickly compute it with equation (5.32). We show the statistical fluctuations (5.36) of the ex-
pectation values (5.32) in the case of the dihedral angle operator (5.39) in Figure 5.3 for some
values of j. All the parameters used in the Metropolis-Hastings algorithm are reported in E.2.
The results show that the angle average corresponds to a regular tetrahedron, which is the result
originally obtained in [77] with deterministic calculations. It is clear how stochastic fluctua-
tions in the random-walk over intertwiner space tend to grow much faster for EPRL, rather than
for BF, as boundary spin j increases. This interesting behavior is the main reason why we used
a number of NMC iterations larger than one order of magnitude in the analysis of the star model,
as discussed in Section 5.5. In order to have a stable precision up to the third significant digit,
especially for large values of j, it is necessary to set a sampling number NMC ∼ 106, compared
to (2 j + 1)5 sums to be carried out in the exact calculation (5.12). Although this indicates that
the sampler works as expected, this makes using the random walk Metropolis-Hastings algo-
rithm extremely inefficient in the case of a single 4-simplex. However, as for other (Markov
Chain) Monte Carlo methods, the advantage obtained in the case of many degrees of freedom
emerges surprisingly, as we show in the case of the star spinfoam amplitude. This is because
the Metropolis-Hastings algorithm (as well as other MCMC methods) is not affected by the
problem known as curse of dimensionality.
As mentioned in Section 5.3, the statistical fluctuations in Figure 5.3 are very useful in de-
termining the convergence of the Markov Chain to the stationary distribution, as well as the
dispersion of the operators. For the star model, which is the main element of analysis in the
present context, we explicitly report the fluctuations (5.36) computed for all the considered
operators and for the entanglement entropy.
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5.5 The star

After testing the algorithm discussed in Section 5.3 to the 4-simplex case, we are ready to study
the star spinfoam model, in which a computation without resorting to Monte Carlo methods
would be impossible. The 2-complex of the star is composed of 6 vertices (one completely
internal), 5 edges, and has no internal faces. The boundary graph is a refinement of the 4-
simplex graph obtained by splitting each of the 5 nodes into 4 nodes. The final result of this
refinement process is that we obtain 20 nodes on the boundary, which correspond dually to 20
boundary tetrahedra. Therefore the full triangulated manifold is composed of five 4-simplices
glued on 5 internal tetrahedra, each 4-simplex showing 4 tetrahedra on its boundary. The
triangulation of the star graph is shown in Figure 5.4, along with the boundary spin network.
The triangulation of the star model is non-regular since there are segments that are shared

Figure 5.4: Left: Geometry of the star triangulation. Numbered circles correspond to points, and each
letter is associated with a unique 4-simplex. Colored lines are shared by three tetrahedra belonging to
the same 4-simplex. Right: The corresponding boundary spin network. Each red circle corresponds to
a boundary node, and each line corresponds to a boundary link.

between 3 tetrahedra and other segments that are shared by 6 tetrahedra. Notice that the dual
graph is a sort of “magnification" of the dual 4-simplex. Iterating the same procedure, we
obtain a fractal structure. The EPRL star amplitude is constructed starting from the vertex
amplitudes (5.38), shown in Figure 5.5. The diagram for the BF is similar, with the difference
that each vertex amplitude is simply given by (5.37). That is, with respect to the graphical
amplitude in Figure 5.5, there are no booster functions (and therefore no Y-map). In order
not to be redundant, we do not also report the BF spinfoam diagram explicitly. The labels
refer to the triangulation shown in Figure 5.4. The 4-simplices are labeled with one letter
and four points. The boundary intertwiners are labeled by one letter and three points, which
indicate the corresponding tetrahedron in the triangulation (as there is one intertwiner for each
node). The links shared by three 4-simplices are labeled by three points, as they are dual to
triangles. Those connecting two nodes belonging to the same 4-simplex are labeled with one
letter and two points. Finally, the intertwiners connecting the booster functions with the {15 j}
symbols are labeled with the position of the node in the corresponding 4-simplex. We can
write the analytical expression of the amplitude associated with the star spinfoam EPRL and
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Figure 5.5: Graphical representation of the EPRL spinfoam amplitude corresponding to the star trian-
gulation geometry described in Figure 5.4. Excluding the intertwiners connecting the booster functions
with the {15 j} symbols in the same vertex, there are 5 internal intertwiners that need to be summed over.

BF, respectively, as:

Aγ
EPRL ( j, ib, ∆l) =

∑
i1...i5

Vγ
EPRL ( j, i1, i2, i3, i4, i5, ∆l)

5∏
a=1

Vγ
EPRL ( j, ia, ib, ∆l) , (5.40)

ABF ( j, ib) =
∑
i1...i5

VBF ( j, i1, i2, i3, i4, i5)
5∏

a=1

VBF ( j, ia, ib) , (5.41)

where we used the expressions for the EPRL and BF vertex amplitude (5.38)-(5.37). The
dependence on intertwiners for each vertex (apart from those on which it is necessary to sum
over to assemble the amplitude) has been generically indicated with ib in order not to weigh
down the notation. The combinatorial structure of the spinfoam should be clear by looking at
Figure 5.5.
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A simple benchmark

Before discussing the expectation values, it is interesting to estimate the computational time of
the Metropolis-Hastings algorithm, discussed in Section 5.3.2, applied to the star spinfoam am-
plitude. As shown in equations (5.40)-(5.41) and in the flowchart 3, at each step of the Markov
chain, we need to perform the contraction of the vertex amplitudes over 5 bulk intertwiners.
This is undoubtedly the computationally most expensive part of the algorithm. For low spins,
it is sufficient to perform the contraction with HPC techniques exploiting the CPU solely. We
found the best performance using the LoopVectorization Julia package. The offloading of
tensor contractions on the GPU with parallelization on the GPU cores [171], exploiting the
recent tensor network techniques [104], will be implemented in future works. The best im-
provement is obtained for large values of the spins [48], making this approach more suitable
for a study of the semiclassical limit of spinfoams rather than the quantum regime. We show
a random walk sampling algorithm benchmark in Figure 5.6 for increasing values of the total
number of iterations NMC in the Markov chain. The sampling in Figure 5.6 has been carried
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Figure 5.6: Benchmark of the sampling and storage process of intertwiners draws in the random walk
3 over the 20-dimensional intertwiners’ space of the star spinfoam amplitude 5.5. Computation time
asymptotically scales as ∼ j4.5.

out on a laptop with processor Intel(R) Core(TM) i7-10750H 2.60GHz. The acceptance rate of
intertwiners draws has been set between 30% and 33%, with a burn-in parameter b = 103. In
the code available at the repository [103], the Markov chains are automatically parallelized on
the number of available CPUs, eventually distributing the computation on multiple machines.
As discussed in Section 5.3.2, building more Markov chains is useful for improving accuracy
and estimating the error committed due to the statistical fluctuations of the random walk.

5.5.1 Numerical results: operators
We now describe the numerical values obtained for the expectation value of local geometric
operators (5.9) with the boundary state (5.4) for the star spinfoam amplitude. We also compute
the quantum spread (5.15) and correlation functions (5.11) between different nodes. We discuss
the results obtained with each geometrical operator’s BF and EPRL models. The parameters
used for sampling the draws employed for the computation of the operators are discussed in
detail in E.2.
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The dihedral angle operator

The dihedral angle operator has already been discussed in Section 5.4.2, as we used it to test
the Monte Carlo sampler. In the star model, since all boundary tetrahedra are equal and regular,
we can improve the statistic with a further average4. Namely, we can compute the expectation
value of the dihedral angle (5.39) and the corresponding quantum spread (5.15) for all 20 nodes
of the spinfoam independently at fixed boundary spin j, then averaging the results, which are
shown in Figure 5.7. The results show that the expectation value of the boundary dihedral
angle (5.39) is peaked to the value corresponding to an equilateral tetrahedron, which is the
same result obtained in Section 5.4 with the simplest possible triangulation of a 3-sphere. This
indicates that in the evolution from 1 to 6 vertices, the spatial metric of the boundary state
still averages to that of the 3-boundary of a regular 4-simplex, i.e., that of a 3-sphere. This is
not a trivial consequence of the reduction (5.2) but it turns out to be a dynamic result of the
global geometry. In (5.12), we consider the sum over all the spinfoam boundary intertwiners.
Different geometries might give different (non-regular) average boundary angles, for example,
the case of the ∆3 spinfoam graph [31]. To get an idea of the gain obtained with respect to the
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Figure 5.7: Expectation values (5.32) of the dihedral angle operator (5.39), averaged over all the 20
nodes of the spinfoam. The orange line shows the value of the cosine of the dihedral angle of a regular
tetrahedron, which is cos

(
θregular

)
= −0.3̄.

blind summation, it is sufficient to consider that at spin j = 6. It is possible to compute the ex-
pectation value of an operator (for example, the dihedral angle operator) stably up to the third
significant digit with several Monte Carlo iterations NMC ∼ 107, as in the 4-simplex model.
The exact sum would require performing (2 j + 1)20 ∼ 1022 sums. Therefore, the Metropolis-
Hastings algorithm adapted to the spinfoam formalism reduces the computation complexity by
about 15 orders of magnitude.
The corresponding quantum spread ∆ cos(θ) is shown in Figure 5.8. It turns out to be rapidly
increasing for EPRL and slightly increasing for the BF model. As initially noticed in [77],
this suggests that quantum fluctuations of the metric in the Lorentzian model are wide and are
not suppressed in the asymptotic regime with few vertices. This, however, might be a simple
consequence of the boundary state (5.2), which fixes the areas of the boundary triangles at the
quantum level, implying that the boundary angles are quantum spread. The results suggest

4This step is justified a posteriori once it has been verified that the expectation value of the operator over all
the nodes is identical.
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Figure 5.8: Expectation values of the spread (5.15) for the dihedral angle operator (5.39), averaged
over all the 20 nodes of the spinfoam. In the EPRL model, the quantum spread increases faster as a
function of the boundary spin j.

that, even if it is not a regular triangulation, the star model is suitable to discretize a closed ge-
ometry as a simplicial manifold bounded by a topological 3-sphere. In fact, in addition to the
similarity with the results obtained in [77], preliminary results on the 16-cell spinfoam model,
which constitutes the second regular triangulation of the 3-sphere after the 4-simplex, exhibit
a similar striking behavior [172]. The Gaussian distributions (5.36), measuring the statistical
fluctuations in the Monte Carlo sampling, are shown in Figure 5.9. For the sake of clarity, we
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Figure 5.9: Gaussian distribution (5.36) of the expectation values (5.32) of the dihedral angle operator
(5.39). We averaged over several runs, computing the (average) angle µ<cos θ> defined on a single node
and the corresponding standard deviation σ<cos θ> for each j.

underline that the statistical fluctuations in Figure 5.9 were computed by averaging the expecta-
tion value (5.32) for the operator (5.39) on a single node over several runs, according to (5.36).
In contrast, in Figure 5.7, we performed a further average on the 20 nodes of the spinfoam.
We computed the correlation functions (5.14) between dihedral angles for all the 190 indepen-
dent node combinations of the spinfoam. The result is shown in Figure 5.10. For the dihedral
angle operator (5.39), we found that correlations can assume two types of values, both for cor-
relations between operators defined on nodes belonging to the same vertex and for different
vertices as well, finding 4 different total possible numerical values. In the case of nodes on the
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Figure 5.10: Expectation values (5.33) of the correlations between dihedral angle operators (5.39). The
correlations computed respectively for the EPRL and the BF models are essentially indistinguishable.

same vertex, we get the same correlations originally computed in [77]. In the second case, we
observe that also angles between distant vertices can be (only) positively or negatively corre-
lated, and the absolute value of the correlations is small compared to the first case. This agrees
with the results on the entanglement entropy, as discussed in Section 5.5.2.
The numerical results show that the EPRL and BF models give rise to essentially indistinguish-
able dynamic correlations in the dihedral angle operator (5.39). This suggests that at least in the
approximation described in Section 5.2, the S U(2) topological model (typically much easier to
compute) provides an excellent approximation for studying dynamical correlations.

The volume operator

There are two slightly different prescriptions for the volume operator in LQG. Here we follow
the Rovelli-Smolin prescription in [11]. Since the general expression of the volume matrix
elements in the spin-network basis is not trivial [1], here we limit ourselves to the equations in
symmetric-reduced space of (5.1) in which all the spins have the same value j and the basis
states are given by (5.2).
Let A be the (2 j + 1) × (2 j + 1) Hermitian matrix:

A = i ×


0 −a1 0 0 . . . 0
a1 0 −a2 0 . . . 0
0 a2 0 −a3 . . . 0
...

...
...

...
. . .

...

 (5.42)

where the coefficients ak are defined as:

ak =
1
4

k2((2 j + 1)2 − k2)
√

4k2 − 1
, (5.43)

Let qk be its real eigenvalues and |qk⟩ the corresponding eigenvectors. For each j the eigenval-
ues come in pairs of opposite signs, plus one 0 eigenvalue for j integer. The volume operator
matrix can be written as:

⟨ j, in|V | j, i′n⟩ =

√
2

3
(8πGℏγ)

3
2

∑
k

√
|qk|⟨ j, i′n|qk⟩⟨qk| j, in⟩. (5.44)
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Contrary to the dihedral angle (5.39), the volume operator (5.44) is not diagonal in the basis
(5.2). In terms of expectation values (5.30) and correlations (5.31), this involves recomputing
the amplitude function for each element of the sampling, hence it is much slower than the cor-
responding diagonal evaluation (however it is still incomparably faster than blind summation
(5.11) which would be required without the Monte Carlo approximation (5.28)). This means
that computing the expectation value (5.30) in the case of the volume operator (5.44) for more
than one node of the spinfoam takes too long. The expectation values of the volumes are shown
in Figure 5.11, in which we neglected all the constant factors in the expression (5.44) since it
simply corresponds to a homogeneous re-scaling of all points. It turns out that the scaling of
the boundary volume, as a function of the boundary spin j, corresponds to that existing be-
tween the volume of a regular tetrahedron and the area of one of its faces. That is, V ∝ j3/2, as
the eigenvalue of the area operator is proportional to

√
j( j + 1) ≈ j. We observe this in both

BF and EPRL models, although the spectrum is not the same. An interesting feature of the
volume operator spectrum is a systematic shift between integer and half-integer spins. That
is, these are two slightly shifted curves. The quantum spread of the volume operator is shown
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Figure 5.11: Expectation values (5.30) of the volume operator (5.44). The orange line is proportional
to the functional dependence between the volume of a regular tetrahedron and the area of one of its
faces: V ∝ j3/2.

in Figure 5.12. The shift between the curves corresponding to integer spins and half-integers
is manifest. Differently with respect to the angle operator 5.8, for the volume operator, the
quantum spread increases faster for BF rather than EPRL. The Gaussian distributions (5.36)
are shown in Figure 5.13. The average values of the volumes used as mean in the Gaussian
distributions (5.36) are the same plotted in Figure 5.11. The probability distribution for non-
diagonal operators in equation (5.30) is not strictly positive. Interestingly, as shown in Figure
5.13, this does not affect the convergence. Volume correlations are shown in Figure 5.14. As
for the angles, the volume correlations between nodes belonging to the same vertex are much
higher than those between different vertices. For the volumes, the latter appears to be essen-
tially zero. It is interesting to notice that, contrary to what happens with the angles, there is
only one type of correlation between volumes. That is, only exists one common value for all
the correlations between volumes of tetrahedra on the same vertex, and the same is true for
non-adjacent tetrahedra.
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Figure 5.12: Expectation values of the quantum spread (5.15) for the volume operator (5.44). As in
Figure 5.7, it is evident that the spectrum of the volume operator gives rise to two distinct curves for
integer and half-integer spins, which turn out to be shifted with respect to each other.
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Figure 5.13: Gaussian distribution (5.36) of the expectation values (5.30) of the volume operator
(5.44). We averaged over several runs, computing the (average) volume µ<V> defined on a single node
and the corresponding standard deviation σ<V> for each j.

5.5.2 Numerical results: entanglement entropy

We now discuss the results of the computation of the entanglement entropy between different
nodes, viewed as quantum subsystems of the whole graph. The entanglement entropy is the
most relevant quantity to study the degree of correlation between operators, as it gives the
mutual information between different subsystems [173, 174]. In the topological BF model, the
way in which we defined the boundary state (5.4) in Section 5.2 coincides with the definition
of the Bell-Network states, whose entanglement entropy is computed in [174] for different
combinations of graphs and subsystems.
In general, a quantum system composed of two subsystems A and Ā has a Hilbert space given
by the tensor product:

H = HA ⊗HĀ . (5.45)
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Figure 5.14: Expectation values (5.31) of the correlations between volumes. While in the BF model,
the correlations between volumes on the same node seem to slowly increase with the boundary spin j,
in EPRL, this does not happen. Unlike angles (see Figure 5.10), all nodes on the same vertex have the
same correlation, while nodes on different vertices are essentially uncorrelated.

Given the boundary state |ψ0⟩ in the Hilbert space (5.1), the normalized reduced density matrix
of the subsystem A is defined by the partial trace over its complement Ā:

ρA =
1
Z

TrĀ |ψ0⟩⟨ψ0| . (5.46)

The entanglement entropy of the subsystem A is then defined as the von Neumann entropy of
the reduced density matrix:

S A = −Tr
(
ρA log ρA

)
. (5.47)

Using the expression (5.4) in (5.46), after some algebraic manipulations the normalized re-
duced density matrix (5.46) can be written as:

ρA =
1
Z

∑
{ia}

∑
{i′a}

M
(
j, {ia}, {i′a}

)⊗
a

| j, {ia}⟩⟨ j, {i′a}| , (5.48)

where a ∈ A. The coefficients M
(
j, {ia}, {i′a}

)
are defined by tracing over the intertwiners iā in

the complement subsystem Ā:

M
(
j, {ia}, {i′a}

)
=

∑
{iā}

A ( j, {ia}, {iā}) A
(
j, {i′a}, {iā}

)
. (5.49)

We replaced the sum over the full set {in} with {ia}, namely, the intertwiners involved in the
partition (5.45). By introducing the Monte Carlo approximation (5.28), the expression for the
density matrix becomes:

ρA ≈
1

NMC

∑
[in]

∑
{i′a}

A
(
j, {i′a}, [in]

)
A ( j, [in])

⊗
a

| j, [ia]⟩⟨ j, {i′a}| . (5.50)

The notation [ia] is a label for the set of intertwiners draws [in] in which the nodes belonging
to the subsystem A have a value compatible with the position in the density matrix, and the
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meaning of the amplitude A
(
j, {i′a}, [in]

)
should be clear by looking at (5.10). Notice that the

density matrix is symmetric and Tr (ρA) = 1. The entropy (5.47) becomes:

S A ≈ −νi log νi , (5.51)

where νi is the i-th eigenvalue of the density matrix (5.50). Notice that the computational
time of the density matrix considerably increases as the number of nodes NA in subsystem A
grows, as the matrix (5.50) has dimensions (2 j + 1)NA × (2 j + 1)NA . Furthermore, at a fixed
number of Monte Carlo iterations NMC, the statistical fluctuations increase along with NA since
each matrix element is sampled by a set that becomes smaller and smaller. For these reasons,
we introduced a second multi-threading parallelization scheme using multiple machines in the
numerical computation of the density matrices. Each node computed the density matrix using
a different Markov chain by distributing the calculation over multiple CPUs. The same hybrid
parallelization scheme can be used to speed up the calculation of non-diagonal operators (5.30)
and corresponding correlations (5.31).

Subsystem with 1 and 2 nodes

The values of the entanglement entropy as a function of the boundary spin j are shown in
Figure 5.15 for the subsystem A in the partition (5.45) consisting in 1 and 2 nodes. We used
the parameters listed in E.2 for the data in Figure 5.15. Notice that, by choosing a common
value j for all the links of the star spinfoam (see Figure 5.5), we cannot distinguish correla-
tions between nodes belonging to distinct vertices whether or not the same link connects them.
For example, labeling the nodes according to the notation illustrated in Figure 5.5, comput-
ing the entanglement entropy for the subsystems A = {C235, A235}, A′ = {C235,D134} and
A′′ = {C235, B134}we obtain the same numerical value. The value of the EPRL entropy for the
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Figure 5.15: Values of the entanglement entropy (5.51) for different subsystems A in the partition (5.45)
with NA = 1 and NA = 2 for the star spinfoam in Figure 5.5.

subsystem consisting of a single node is similar to the value obtained in [77] for the single ver-
tex graph. It is interesting to notice that the EPRL entropy of all considered subsystems tends
asymptotically to a constant value as the boundary spin j increases. The statistical fluctuations
of entropy are shown in Figure 5.16. Notice that, with the same number of iterations NMC,
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Figure 5.16: Gaussian distribution (5.36) of the entanglement entropy (5.51) for the subsystems in
Figure 5.15. We proceeded as in the case of angles (Figure 5.9) and volumes (Figure 5.13). Top panel:
fluctuations for the subsystem with NA = 1. Bottom panel: fluctuations for the subsystem with NA = 2.

statistical fluctuations in Figure 5.16 are more significant for NA = 2 for the abovementioned
reasons. The fact that the entropy of a subsystem composed of nodes on different 4-simplices
is slightly greater than the one of the subsystem composed of nodes on the same 4-simplex is
connected to the smaller value of the correlations between nodes belonging to different four
simplices. To discuss this point, we first define the mutual information I(k,m) between two
generic nodes k and m as:

I(k,m) = S k + S m − S km , (5.52)

where S km is the entropy of the subsystem A composed by the nodes k and m. It turns out
that the mutual information (5.52) between k and m actually provides a bound on correlations
[173, 174]: (

⟨Ok,Om⟩ − ⟨Ok⟩⟨Om⟩
)2

2∥Ok∥
2∥Om∥

2 ≤ I(k,m) . (5.53)

where ∥Ok∥ is the norm of the local operator O on the node k. Therefore, equations (5.52)
and (5.53), along with the results in Figure 5.15 imply that the correlation function (5.14)
has a more stringent upper bound for the subsystem containing nodes defined on different 4-
simplices.
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Subsystem with four nodes

For completeness, we show in Figure 5.17 the values computed for the entropy of subsystem A
composed of 4 adjacent nodes, that is, four nodes on the same 4-simplex A = {iC235, iC234, iC345, iC245, }.
For this computation, we limited the analysis to a maximum value j = 5 since the computa-
tional cost is significantly higher than the other calculations reported in this paper. Unlike the
parameters in E.2, for this specific calculation, we set NMC = 107 for j = 0.5, 1, . . . 5, averaging
over 17 independent runs both for BF and EPRL. Following the hybrid parallelization scheme
discussed at the beginning of this Section, we used 17 processes, each with 64 CPUs, for 1088
CPUs. With this configuration, the total computation time for the data in Figure 5.17, including
the sampling of the intertwiners draws, took about three days.
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Figure 5.17: Values of the entanglement entropy (5.51) for the subsystem A in the partition (5.45) with
NA = 4. All the nodes in A belong to the same 4-simplex.
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Figure 5.18: Gaussian distribution (5.36) of the entanglement entropy (5.51) for the subsystem in Figure
5.17. We used the same number of iterations NMC = 107 for BF and EPRL, averaging over 17 runs.
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Conclusions

In this paper, we combined the Metropolis-Hastings algorithm [148] with recently developed
high-performance codes in LQG [48, 47] to compute the expectation value and correlation
functions of operators over large spinfoam graphs in the low spins regime. After testing the
method, we applied it to the computations of boundary geometrical observables, correlation
functions, and entanglement entropy in a spinfoam model with 20 boundary nodes, obtained as
a refinement of the 4-simplex graph. We investigated both the EPRL and the BF models. Our
results show that the BF and, more significantly, the EPRL model have a well-defined behavior
under the refinement of the boundary graph. The computed boundary geometry agrees in terms
of expectation value with the geometric interpretation of the operators. Furthermore, we found
that correlations are present in neighboring patches but decay sharply when moving to patches
that belong to different vertices. This opens the way to studying spinfoams composed of many
vertices glued together. We also showed that the dynamical correlations between boundary
operators in the BF and EPRL models are surprisingly similar in our case study. In contrast,
the entanglement entropy shows a significant difference.

Our work provides essential hints on the well-definiteness of spinfoam refinement. By
refinement, we mean a step toward a less radical truncation. This is implemented by replacing
a given triangulation with a finer one. A single boundary graph allows the construction of a
quantum state that describes the complete evolution of a (discretized) geometry in the (intrinsic,
discrete) time provided by the area observables (here assumed equal). When stepping from a
given triangulation to a finer one, the same overall continuous spacetime geometry is truncated
as a different discretized geometry that, of course, has single cells with a different volume and
single triangles with a separate area when, say, the overall volume or the overall size of a whole
sphere are given. By stability under refinement, we mean that the quantum state computed with
the first triangulation can be seen as a good first approximation to the one calculated with the
finer one since geometrical operators scale as a function of boundary spins in the same manner
before and after the refinement.

The method presented in this paper can be applied to spinfoam models with Lorentzian or
Euclidean signatures and to compute bulk observables. An interesting perspective would be
to compare the results obtained in the spinfoam-like path integral expansion formalism [175]
with the ones in the full spinfoam one. This would give interesting insights into the canonical-
covariant relation. Numerical methods currently allow performing computations using spin-
foams with a much richer bulk structure than the one considered in this paper. For example,
the study of infrared divergences [71, 133] or the analysis of the ∆3 and ∆4 triangulation [9].
The methods described in this paper can also be applied to different choices of boundary states.
However, one has to deal with fluctuating sampling probabilities for complex coherent states,
and different Monte Carlo techniques might be more effective. The proposed approach pro-
vides a needed complement to already existing numerical techniques in covariant LQG [57].
It is effective in the regime of low spins quantum numbers with many degrees of freedom, for
which the other existing methods are not tailored. The next step in the development of this
work consists of applying the algorithm presented here to study the correlation functions de-
fined on a spinfoam model with 16 cells on the boundary: this is the next regular triangulation
of the 3-sphere after the 4-simplex considered in [77]. This model is studied in [172].
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Chapter 6

Primordial fluctuations from quantum
gravity: 16-cell topological model

Statement of co-authorship
This Chapter presents the only research project in this Ph.D. thesis that has not yet been pub-
lished in a peer-reviewed journal. The authors are myself, Francesco Gozzini, and my Ph.D.
advisor, Francesca Vidotto. It chronologically follows the line of research started with [77]
and [78], discussed in Chapter 5. This work has a very similar development to the previous
Chapter. I performed most of the work as a final assignment of the Scientific Computing course
at Western University, taught by Professor Karttunen, in the Winter Term of 2022. After that,
this project was temporarily shelved. Although the published version may differ, this draft has
been completed to constitute a Chapter of this thesis. I took care of the numerical computa-
tions, following the route set initially by Francesco Gozzini. I drafted all sections except for
the introduction and realized plots and images. As for the previous Chapter, I estimate the
percentage of the total work conducted by me between 40% and 60%.

6.1 Introduction
The early universe is believed to have emerged from a phase dominated by quantum gravi-
tational effects. A quantum theory of gravity is needed to describe this phase and to derive
the initial boundary data of the cosmological standard model. An approach to address this
derivation in the covariant Loop Quantum Gravity context has been proposed in [77]. It is
based on two hypotheses. First, the initial boundary data of the cosmological standard model
can be computed as the result of a quantum gravitational transition amplitude from nothing,
as initially suggested by Hartle and Hawkings in the (different) context of Euclidean quantum
gravity. This state has been argued to be relevant both in the case of a genuine Big Bang and a
Big Bounce [152, 153, 158, 159, 160, 161]. Second, truncating the theory to a finite number of
degrees of freedom, capturing only a few lowest frequency modes at each cosmological time,
represents a good first-order approximation in this regime. These hypotheses allow us, in prin-
ciple, to compute the initial state using the transition amplitudes of the theory. In particular,
fluctuations and correlations of the resulting quantum state can be calculated and compared
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with those of the quantum field theory’s initial state of standard cosmology.

In practice, the calculation is complicated. Initial numerical investigations have been de-
veloped in [78], relying on a drastic truncation, which can be interpreted as triangulation of
the spatial geometry of a closed universe into five adjacent tetrahedra. A severe limitation of
this truncation is that all distinguishable regions of space are adjacent, hiding any dependence
on correlations from spatial distance. In this paper, we take a step towards removing this lim-
itation. We consider a finer truncation, corresponding to a triangulation of the geometry of
a closed universe into sixteen tetrahedra. In this triangulation, the distinguishable regions of
space are not all adjacent, and we can analyze the dependence of the quantum correlations
between different regions as a function of their separation.

The paper focuses on the setting up of the combinatorics and on showing that the calcu-
lations are, in principle, doable numerical but do not perform the calculations with the full
covariant quantum gravity amplitudes, which will be explored in the future. Instead, we use
the unphysical simplified version of these amplitudes provided by the S U(2) BF model. This
is a rather drastic simplification of the amplitudes, and therefore, we present the results here
more as a proof of concept than an actual test of the theory. While there are regimes where the
BF amplitudes are similar to the physical ones, this is not generally the case.

In the next Chapter, we describe the relevant aspects of the geometry of a 16-cell. Then,
we set the calculation of the states’ properties resulting from the transition to nothing. Finally,
we give the numerical results showing the properties of this state.

6.2 The 16-cell geometry

A 16-cell is the name of a regular polytope (the high-dimension generalization of a polyhe-
dron) in four-dimensional Euclidean space. It is defined as the convex hull of the 8 points with
Euclidean coordinates (0, 0, 0,±1), (0, 0,±1, 0), (0,±1, 0, 0), (±1, 0, 0, 0). It is also called hex-
adecachoron and is analogous to the octahedron in three dimensions, namely the convex span
of the points (0, 0,±1), (0,±1, 0), (±1, 0, 0), and to the square in two dimensions, namely the
convex span of the points (0,±1), (±1, 0). Its boundary is a regular triangulation of a 3-sphere
into 16 tetrahedra. The triangulation has 32 triangular faces, 24 edges, and the 8 vertices. This
is the second of the three regular triangulations of the 3-sphere: the first being the 4-simplex
and the third being the 600-cell made by 600 tetrahedra. The dual of this triangulation is the
surface of a hypercube (which has 16 vertices).

An intuitive visualization of the 16-cell triangulation is as follows. Start with two points,
say a and b (See Figure 6.1). Adding two extra points, say c and d, each connected to a
and b, we obtain a 1-sphere (a circle) split into 4 segments S 1....S 4 triangulated into a square.
By connecting these segments to two external points, say e and f , we obtain 8 triangles that
triangulate a 2-sphere into an octahedron, as in Fig. 6.1. By adding two more extra points,
say g and h, connecting each to these 8 triangles, we obtain 16 tetrahedra that triangulate a
two-sphere. The two skeleton of the resulting triangulation is depicted in Figure 6.1 (with a
different numbering of the vertices).
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1a
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Figure 6.1: Triangulation of a 2-sphere with 8 triangles, one of which is highlighted in grey (left).
Notice that this can be obtained by adding points 5 and 6 to a triangulation of a 1-sphere (a circle)
with four segments. By repeating the same step one dimension higher, namely adding points 7 and 6
and connecting them to the 8 triangles, we obtain the 16-cell triangulation of a 3-sphere (right, with
different numbering).

It is possible to triangulate the four-dimensional 16-cell polytope by splitting it into eight 5-
simplices. Figure 6.2 illustrates this triangulation. This also shows how a spinfoam that defines
an amplitude for this geometry can be computed [1]. The spinfoam has eight 4-simplices glued
on six internal faces. The eight points in the triangulation are labeled using numbers 1, 2 . . . 8.
Consequently, in the spinfoam diagram, each 4-simplex is labeled with five numbers, each
tetrahedron with four numbers, and each face with three numbers. In Figure 6.2, only the
bulk and boundary tetrahedra are labeled so as not to clutter the picture. As we discuss below,
however, we shall not need the explicit form of this spinfoam.

6.3 Expectation values and correlations

6.3.1 Boundary state
Let Γ be an LQG graph with L links and N nodes. Then, the Hilbert space associated with Γ is:

HΓ = L2

[
S U(2)L/S U(2)N

]
. (6.1)

The states | jl, in⟩ form the spin network basis in HΓ, where n = 1 . . .N, l = 1 . . . L (isolated
indices range over multiple values). Half-integer spins constitute the set jl, and in is an inter-
twiner set. Each intertwiner i is a basis element of the invariant subspace of the tensor product
of 4 S U(2) representations at the corresponding node. Here, we are interested in the Hilbert
HΓ defined by the graph formed by the two-skeleton of the triangulation of the boundary of the
16-cell. Hence N = 8, L = 24. From now on, we omit the Γ subscript to not weigh down the
notation.

Following [77, 78], we fix all the spins to be equal so that jl = j for all the links of the
boundary. Only one common spin is attached to all the links in this subspace. This define a
subspace ofHΓ of the form

HΓ = ⊕ j ⊗
16
n=1 Inv[V j ⊗ V j ⊗ V j ⊗ V j] , (6.2)
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Figure 6.2: The spinfoam, with eight vertices and six internal faces (highlighted with different colors).
The labels refer to the points in the triangulation. Only the edges are labeled so as not to clutter the
picture.

where V j is the spin- j representation of S U(2) and Inv denotes the S U(2) invariant part of the
tensor product. We write a boundary spin network state as:

| j, in⟩ = | j, i1⟩ ⊗ · · · ⊗ | j, i16⟩ , (6.3)

where in are intertwiners in Inv[V j ⊗ V j ⊗ V j ⊗ V j]. Since all spins are equal to j, triangular
inequalities constrain every intertwiner to assume only integer values between 0 and 2 j.

We are interested in the Hartle-Hawking state |ψ0⟩ defined in [77] and further studied in
[78]. In the Hilbert space (6.1), it is defined as:

|ψ0⟩ =
∑
j,in

W ( j, in) | j, in⟩ , (6.4)

where W ( j, in) = ⟨0| j, in⟩Ph is the LQG physical transition amplitude from the sstatedefined
by j = 0. This amplitude is associated with the transition from nothing to a boundary spin
network state | j, in⟩ with a given j. The state (6.4) can be interpreted as the natural state that is
projected out of the vacuum state by the dynamics. In the | j, in⟩ basis, the state reads

ψ0( j, in) = W ( j, in) . (6.5)

In quantum gravity, evolution is relative with respect to one of the physical variables. It is
natural to use j as the independent variable and interpret it as a proxy for a time variable
related to the overall size of the spacial 3-sphere. The in are then interpreted as coding the
local distortions of the geometry. Then we can interpret ψ0( j, in) in analogy with the way we
usually interpret ψ(t, x): namely, taking the first variable as labeling an evolution and the value
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of the state fixed value of this variable as describing the quantum state that given moment of
the evolution. In the following, we shall do so, thus studying

|ψ0( j)⟩ =
∑

in

W ( j, in) | j, in⟩. (6.6)

at different values of j. The sum in (6.6) is over all the intertwiners in the set in, giving a total of
(2 j+1)16 elements entering the sum. In Section 6.4.2, we describe how to perform calculations
with the state (6.6) using Monte Carlo methods.

6.3.2 Computing operators
We define the expectation value on the state (6.6) of a local operator O over node k as:

⟨Ok⟩ ≡
⟨ψ0|Ok|ψ0⟩

⟨ψ0|ψ0⟩
. (6.7)

The operator Ok in (6.7) acts on the boundary k-th node of the Hilbert space (6.1). Using the
orthogonality of the spin-network states (6.3)

⟨ j, i′n| j, in⟩ = δi′1,i1
. . . δi′N ,iN , (6.8)

We define the normalization factor in the denominator of (6.7) as:

⟨ψ0|ψ0⟩ =
∑

in

W ( j, in)2
≡ Z . (6.9)

For a diagonal operator in the spin-network basis (6.3), the expectation value (6.7) can be
written as:

⟨Ok⟩ =
1
Z

∑
in

W ( j, in)2
⟨ j, ik|Ok| j, ik⟩ . (6.10)

In (6.10), the index k is fixed as it appears on both sides of the equations, while index n ranges
from 1 to N. The expectation value of the product of two operators (on the node k and k′

respectively) turns out to be:

⟨OkOk′⟩ =
1
Z

∑
in

W ( j, in)2
⟨ j, ik|Ok| j, ik⟩⟨ j, ik′ |Ok′ | j, ik′⟩ . (6.11)

We can now define the quantum spread of a local operator as:

∆Ok =

√
⟨O2

k⟩ − ⟨Ok⟩
2 . (6.12)

Finally, we write the (normalized) correlation between two local operators as follows:

C(Ok,Ok′) =
⟨OkOk′⟩ − ⟨Ok⟩⟨Ok′⟩

(∆Ok) (∆Ok′)
. (6.13)



118 Chapter 6. Primordial fluctuations from quantum gravity: 16-cell topological model

6.3.3 The 16-cell spinfoam amplitude
We now take a drastic simplification. Instead of the full covariant EPRL amplitude W ( j, in),
we use the S U(2) topological BF amplitude. This simplifies the numerical calculation sub-
stantially and allows us to disregard a potential difficulty problem: the six internal faces form
a bubble in the spinfoam. (Bubbles have been recently studied numerically [71, 10, 72, 138].)
In principle, we must sum infinite terms to compute the amplitude. Introducing a cut-off on the
spins labeling the bulk faces would allow us to solve this issue, dealing with a finite number of
internal face configurations. Then, we should compute all the required vertex amplitudes and
perform the 12 contractions over bulk intertwiners for each configuration of internal faces. The
16-cell spinfoam amplitude at fixed values of boundary intertwiners (all boundary spins being
fixed) is obtained by summing all such contributions. Nevertheless, it would still be too chal-
lenging to compute numerically all the 16-cell amplitudes we need to calculate the expectation
values (6.10) and correlations (6.13). To investigate such quantities, we use the BF topological
model. As discussed below, this solves two problems at the same time. Studying the 16-cell
geometry using other non-topological spinfoam models (such as the EPRL theory) is left for
future work.

Thanks to the topological invariance of BF theory, we can compute the amplitude by look-
ing only at the boundary. This essentially reduces to computing a Wigner 48j-symbol (16
intertwiners plus 32 spins) because the amplitude W ( j, in) is simply the evaluation of the cor-
responding S U(2) spin network. The steps for reducing the 48j symbol to simpler 21j symbols
(each one decomposed in 6j and 9j Wigner symbols) are described below. This simplification
allows us to avoid the introduction of an artificial cut-off on the spins, labeling the internal
faces in the bulk. The expression of the amplitude is greatly simplified, making it feasible to
compute a considerable amount of them.

We now describe the steps required to compute the 16-cell spinfoam amplitude. We start
from the triangulation in the right panel of Figure 6.1. We insert an internal segment between
points 1 and 5 (arbitrarily chosen) to derive the corresponding dual triangulation, as reported in
Figure 6.2. The spinfoam has eight vertices and six internal faces. Each vertex in the spinfoam
is labeled with 5 points in the triangulation (each vertex is dual to a 4-simplex), each edge
with 4 points (each edge is dual to a tetrahedron), and each face with 3 (each face is dual to
a triangle). All tetrahedra in the triangulation labeled with points 1 and 5 are in the spinfoam
bulk, while the remaining ones (marked with points 1 or 5) are on the boundary. The tetrahedra
in the triangulation sharing 3 points are glued on a face in the spinfoam. For example, the two
tetrahedra labeled with points 5678 and 5278 are connected by a link on the boundary of the
spinfoam.

We first perform the integrals over S U(2) in each one of the 16 boundary tetrahedra using
relation (F.11), defined in F.2. Applying (F.11), we have an intertwiner on each boundary tetra-
hedron of the spinfoam. Since the BF topological invariance allows computing the amplitude
by focusing on the boundary, we perform the integrals over the 6 internal faces of the 16-cell
spinfoam. We are left with the diagram reported in the top left panel of Figure 6.3, where each
boundary intertwiner is represented with a brown dot. A Wigner 48j symbol constitutes the
boundary of the 16-cell spinfoam amplitude. To compute it efficiently, we write the symbol
as contractions of smaller Wigner 21j symbols. The definition of the 21j symbol split as the
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Figure 6.3: Top: The boundary of the 16-cell spinfoam amplitude is a 48j Wigner symbol, split as the
contraction of four 21j symbols. Bottom: Each 21j symbol is reduced to the sum of the products of seven
6j symbols and one 9j symbol.

contraction of 6j and 9j symbols is bulky. Therefore it is reported in F.2 (see (F.14)). We take
advantage of it to write the “north and south" amplitudes associated with the boundary of the
top right panel in Figure 6.3. These are given by the contraction of 21j symbols along the
vertical purple spins:

WN =
∑
p1,p2

{21 j} ( j, i1, i2, i3, i4, b1, b2, b3, p1, p2) {21 j} ( j, i16, i15, i14, i13, b5, b4, b3, p1, p2) dp1dp2 ,

WS =
∑
p1,p2

{21 j} ( j, i8, i7, i6, i5, b1, b2, b3, p1, p2) {21 j} ( j, i9, i10, i11, i12, b5, b4, b3, p1, p2) dp1dp2(−1)χ

where χ = 2p1 + 2p2 + 3b3 and d jk ≡ 2 jk + 1. Finally, we contract the “north and south"
amplitudes above along the five horizontal blue spins in the top right panel of Figure 6.3.
Therefore, we write the expression for the 16-cell BF spinfoam amplitude as:

W ( j, in) =
∑

b1...b5

(
WN ·WS · db1db2db3db4db5

)
·

16∏
k=1

√
dik , (6.14)

where in = i1 . . . i16.

6.4 Computational strategy
We aim to compute the expectation values (6.10)-(6.11), the quantum spread (6.12), and the
correlation function (6.13) for the 16-cell spinfoam described in section 6.2. We want to do it
for increasing values of j, which requires computing many 16-cell spinfoam amplitudes (6.14).
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Therefore, our priority is efficiently computing the amplitude (6.14) for each possible combi-
nation of boundary intertwiners. Next, we must assemble multiple amplitudes to calculate the
quantities we are interested in.

6.4.1 Computing the 16-cell spinfoam amplitude
As discussed in Section 6.3.3, the topological BF 16-cell spinfoam amplitude can be written as
a 48j Wigner symbol. Then, we can split the 48j Wigner symbol into a bunch of 21j symbols.
Finally, each 21j symbol can be decomposed into 6j and 9j Wigner symbols. We proceed as
follows to compute the amplitude numerically.

We first pre-compute all the 6j and 9j Wigner symbols with spins j ≤ 2 jmax. We do it for in-
creasing values of jmax, relying on fastwigxj library [170, 91]. By default, it evaluates Wigner
symbols quickly by looking at precalculated tables produced using the wigxjpf library. Then,
we compute all the possible 21j symbols (F.14) with spins i1, i2, i3, i4, b1, b2, b3, p1, p2 less than
or equal to a characteristic spin ∼ 2 jmax (a combination of others bounds some of these, as
triangular inequalities constrain the spins). Again, we do it for increasing jmax values. The
number of such symbols rapidly increases along with jmax. We store the 21j symbols using the
parallel hash map, publicly available at [176]. The size of the hash tables as a function of
jmax is shown in Figure 6.4. By measuring the size of the calculated tables with a simple best

Figure 6.4: Size of the computed parallel hash map tables of 21j Wigner symbols. Each symbol is stored
in uint8 format to save memory. The hash table size roughly increases as j6.86

max.

polynomial fit, we conclude that the size roughly increases as:

size ≈ j6.86
max − 0.64 . (6.15)

Our strategy is to compute the 16-cell spinfoam amplitude (6.14) by retrieving all the required
21j symbols from the hash tables. To do it efficiently, we must pre-load each table into the
RAM or a cluster node-local storage before computing the amplitudes. The relation (6.15)
imposes a significant constraint on the required memory. Furthermore, as jmax grows, the



6.4. Computational strategy 121

number of Wigner symbols to sum over and the time necessary to perform lookups in the hash
table increase. Consequently, we must limit jmax to very low values. We choose a maximum
boundary spin jmax = 4. This also corresponds to the deep quantum physical regime we want
to investigate in this paper.

6.4.2 Computing expectation values with MCMC

We can now compute the 16-cell amplitude (6.14) efficiently for different combinations of
boundary intertwiners at fixed boundary spin j. We have the fundamental tool for computing
the quantum expectation values and correlations. However, we need to address a major issue.
In order to compute (6.10) there are (2 j + 1)16 summations to be performed. For j = 3, there
are ∼ 3.3 · 1013 elements in the sum. Assuming (optimistically) that each amplitude (6.14)
can be computed in ∼ 10−5 seconds, we would need ∼ 10 years to compute a single quantum
expectation value! We can solve this issue using Markov Chain Monte Carlo (MCMC) over
the boundary intertwiners. Specifically, we employ the Metropolis-Hastings algorithm [148].
We report a brief introduction to the Metropolis-Hastings algorithm in F.1, and we describe the
details of the implementation below. This technique has been originally applied to spinfoams
in [78] in the case of a spinfoam model with 20 boundary tetrahedra, to which we refer for
further details.

To compute (6.10) using MCMC, we choose the following normalized target distribution
over the state space (6.3):

f j (in) =
W2 ( j, in)∑

in
W2 ( j, in)

. (6.16)

We use the Metropolis-Hastings algorithm to build a Markov chain with length Nmc constituted
by intertwiner states [in]1, [in]2, . . . , [in]Nmc so that each intertwiner state is generated from the
distribution (6.16). We use a truncated normal distribution rounded to integers as the proposal
distribution, and each intertwiner (in every state is sampled from a one-dimensional normal
distribution. The center of the distribution is the value of the corresponding intertwiner in
the previous state truncated between 0 and 2 j (the range of all intertwiners). For example, if
j = 2 and i1 = 3 in the state [in]s, the proposed value for i1 in the state [in]s+1 is sampled
from a normal distribution centered around 3 and truncated between 0 and 4, and so on for the
other intertwiners (each one is independent of others). We report in the flowchart 4 below the
full implementation of the algorithm to store Markov chains constituted by intertwiner states,
using the target distribution 6.16. The parameters of the MCMC algorithm, the definition of
the proposal distribution, and the expression of the truncated coefficients related to the proposal
distributions are reported in the F.1.

We show in Figure 6.5 the squared amplitude W2 ( j, [in]s) as a function of the number of
steps s for the first 104 iterations of the MCMC algorithm 4. We notice that the “hotspots"
become less and less frequent as j increases. This is most probably because the space of
states becomes more prominent, so the sampler requires more iterations to find the relevant
contributions. To overcome this issue, an interesting approach (currently under development)
consists of replacing MCMC in spinfoams with GFlowNets [177]. We tried many different
values for the burn-in parameter b (ranging from 0 to 104) and found no significant dependence.
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Algorithm 4 Random walk over boundary intertwiners
1: for j = 1 . . . jmax do
2: Choose Nmc, the burn-in parameter b and the standard deviation σ as in F.1
3: Load into memory the hash table with the 21j Wigner symbols corresponding to j
4: Sample a random intertwiners configuration [in]1 and compute W ( j, [in]1)
5: Set initial multiplicity to 1
6: for s = 1 . . .Nmc do
7: Generate a new state [in] from [in]s

8: if [in] = [in]s then
9: Increase the multiplicity by 1

10: continue
11: else
12: Compute W ( j, [in])
13: Compute p = min

{
1, W2( j,[in])

W2( j,[in]s)
C0,2 j,σ([in]s)
C0,2 j,σ([in])

}
14: Generate a uniform random number r between 0 and 1
15: if r < p then
16: if s > b then
17: Store [in]s, W ( j, [in]s), and the corresponding multiplicity
18: Set [in]s → [in], W ( j, [in]s)→ W ( j, [in])
19: Set the multiplicity to 1
20: else
21: Increase the multiplicity by 1
22: Dump to disk all the states, amplitudes, and the corresponding multiplicities

This can be because the distribution (6.16) has many isolated peaks regularly distributed in the
space (6.4). The algorithm’s time complexity 4 depends on the proposal distribution’s standard
deviation σ. The higher σ is, the higher the probability that the sampler moves from the current
state high (therefore, a new amplitude must be computed). Moreover, the standard deviation of
the proposal distribution affects the acceptance rate: the lower σ is, the higher the acceptance
rate becomes (in the extreme case σ = 0, the sampler never moves, and all proposed states
are accepted). We balance σ so that the acceptance rate of the Metropolis-Hastings algorithm
ranges between ∼ 30% and ∼ 45%.
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Figure 6.5: Squared amplitude W2 ( j, [in]s) computed in the algorithm 4 as function of the number of
steps s along the Markov Chain. The frequency of amplitude’s peaks tends to decrease as j increases.

Next, we use the intertwiner draws stored during the algorithm 4 to evaluate the expectation
value (6.10) by applying the Monte Carlo summation [138]:

⟨Ok⟩mc =
1

NMC

Nmc∑
s=1

⟨ j, [ik]s|Ok| j, [ik]s⟩ . (6.17)

With respect to (6.10), we replaced a sum over (2 j + 1)16 intertwiners with a sum over Nmc

elements. This hugely simplifies the calculation, which would be impractical otherwise. The
application of Monte Carlo to the corresponding quantum spread (6.12) and to the correlation
functions (6.13) is straightforward:

∆⟨Ok⟩mc =

√
⟨O2

k⟩mc − ⟨Ok⟩
2
mc , (6.18)

C(Ok,Ok′)mc =
⟨OkOk′⟩mc − ⟨Ok⟩mc⟨Ok′⟩mc

(∆⟨Ok⟩mc) (∆⟨Ok′⟩mc)
. (6.19)

We want to estimate the error in (6.17) due to the statistical fluctuations of MCMC. For
this purpose, we repeat the calculation of (6.10) multiple times using different (and inde-
pendent) Markov chains with the same parameters. Then, we compare the results, allowing
us to improve the estimation and quantify the fluctuations. If we have C different estimates
⟨Ok⟩

(1)
mc, ⟨Ok⟩

(2)
mc, . . . ⟨Ok⟩

(C)
mc , we compute the corresponding average:

⟨Ok⟩mc =
1
C

C∑
c=1

⟨Ok⟩
(c)
mc . (6.20)
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For completeness, we write the corresponding average for the spread and correlations explic-
itly:

∆⟨Ok⟩mc =
1
C

C∑
c=1

∆⟨Ok⟩
(c)
mc , (6.21)

C(Ok,Ok′)mc =
1
C

C∑
c=1

C(Ok,Ok′)(c)
mc . (6.22)

To have an intuitive visualization, we consider the normal distribution associated with the av-
erage (6.20). For this purpose, we introduce the standard deviation between the expectation
values over the chains:

σ =

√√
1
C

C∑
c=1

(
⟨Ok⟩mc − ⟨Ok⟩

(c)
mc

)2
, (6.23)

So that we can write the normal distribution as:

NO(x) =
1

σ
√

2π
e
− 1

2

(
x−⟨Ok⟩mc

2σ

)2

. (6.24)

If the standard deviation (6.23) is low, the statistical fluctuations in the estimate (6.20) are
reasonably under control. We notice that increasing C does not reduce (6.23), as the standard
deviation is reduced by increasing the number of samples Nmc along each chain.

Therefore, we must run the algorithm 4 C times to store as many independent Markov
Chains. Since each chain is independent, we can parallelize the code across multiple threads
using the C/C++ OpenMP library [178]. Each thread runs a different Markov chain with
the given parameters, storing the computed intertwiner draws. The parallel hash table with
all the required 21j Wigner symbols is loaded only once into the RAM so that each thread
retrieves the symbols (F.14) from the same table. By doing this, we can compute the average
over C expectation values (6.20), spread (6.21) and correlations (6.22) computed with as many
independent chains. For this task, we take advantage of the Python libraries Pandas and Numpy
[179, 180]. As reported in table F.1, in this paper, we computed and stored C = 30 Markov
chains, each with 106 intertwiner draws.

Finally, we notice that the expression of the 16-cell spinfoam amplitude (6.14) requires a
considerable numerical effort to be computed, despite the strategy described in Section 6.4.1.
This limitation allows us to calculate only diagonal boundary operators. For this class of oper-
ators, the only amplitudes (6.14) we need to compute are those required in the algorithm 4. In
the case of non-diagonal operators, such as the volume of boundary tetrahedra, we would need
to compute 2 j additional amplitudes (6.14) for each term in the sum (6.17).

6.5 Numerical results
In this Section, we report the numerical values obtained for the expectation values (6.10), the
quantum spread (6.12), and correlations (6.13) following the procedure described in Section
6.4.2. Here we focus on the dihedral angle operator, describing the external dihedral angle
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between faces a and b of each boundary tetrahedron. Its expression in the basis states (6.4) is
[77]:

⟨ j, in| cos(θ)k| j, in⟩ =
ik(ik + 1) − 2 j( j + 1)

2 j( j + 1)
. (6.25)

Due to its simplicity and geometrical interpretation, the dihedral angle operator 6.25 is an opti-
mal candidate to investigate the geometrical properties of the 16-cell triangulation described in
Section 6.2. Furthermore, it is the same operator studied in [77, 78], which allows immediate
comparison with previously studied triangulations.

6.5.1 Expectation values
The expectation value (6.20) of the dihedral angle operator (6.25) and the quantum spread
(6.21) are shown in Figure 6.6. Both these quantities have been computed averaging over
C = 30 independent Markov chains.

Figure 6.6: Left: expectation values (6.20) of the dihedral angle operator (6.25). We show only the
result for the first node, but all other nodes have the same behavior. The orange line shows the value
of the cosine of the external dihedral angle of a regular tetrahedron arccos

(
1
3

)
. Right: corresponding

quantum spread (6.21).

A few comments are in order. The first observation is that the expectation value (6.25) of
all 16 boundary tetrahedra is peaked on the value of an external dihedral angle of an equilateral
tetrahedron. This coincides with the result obtained with the simplest possible triangulation of
a 3-sphere [77] and the triangulation used in [78]. Unlike the 4-simplex studied in [77], the
16-cell is not self-dual. This dynamical result of the global geometry confirms that the metric
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of the state (6.4) averages to that of a regular 3-sphere even in the 16-cell geometry and is
not a consequence of the reduction (6.3). The second observation is that the quantum spread
is slightly increasing as a function of the boundary spin j, which indicates that the quantum
fluctuations are ample. This agrees with the result obtained in [78] in the topological model. It
is reasonable to expect more significant fluctuations for the EPRL model. We leave the analysis
of the EPRL case for future work.

As described in F.1, a non-zero correlation exists between the intertwiner states stored
during the algorithm 4. This is a consequence of the Markovian nature of the process. We
want to check whether the quality and number of states generated with the algorithm (4) are
sufficient to accurately approximate the target distribution (6.16). For this purpose, we compute
the autocorrelation function (5.26) for the matrix elements of the dihedral angle operator (6.25)
using the states generated with the Metropolis-Hastings algorithm. These terms define the
expectation values (6.17). We computed the autocorrelation function over all the 30 chains
stored and for all nodes, finding very similar behavior. We report explicitly in Figure 6.7 the
autocorrelation function computed using chain one and considering the first node of the 16-
cell spinfoam. The result clearly shows that the autocorrelation is significant at short lags but
goes to zero pretty fast (we show a maximum lag of 8000 for visualization purposes, but each
chain contains 106 states). This is precisely what we expect for a Markov chain that converges
to a stationary distribution, indicating that the sample size that we considered is sufficient.
Interestingly, the autocorrelation’s decaying becomes slower as the boundary spin j increases.

Figure 6.7: Autocorrelation function (5.26) of the expectation value (6.17) of the dihedral angle oper-
ator (6.25). The autocorrelation decays more slowly as a function of the lag d as the boundary spin j
increases.

As a final check for the effectiveness and reliability of the MCMC algorithm described in
Section 6.4.2, we repeat the calculation of the dihedral angle operator multiple times using
equation (6.20). The plot of the corresponding normal distribution (6.24) is reported in Figure
6.8. For convenience, we report the plot considering node 1 of the 16-cell spinfoam, but we
performed the calculation over all 16 nodes, finding a very similar behavior. Interestingly, the
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statistical fluctuations become more significant as the boundary spins j increase. This confirms
that we have enough control over the stochastic fluctuations due to Monte Carlo.

Figure 6.8: Normal distribution (6.24) of the expectation values of the dihedral angle operator (6.25).
The statistical fluctuations increase as a function of the boundary spin j.

6.5.2 Correlations

We compute the correlations (6.13) of the dihedral angle operator (6.25) for the 16-cell geom-
etry described in Section 6.2. We report the result of (6.22) in the right panel of Figure 6.9 and
in Figure 6.10. In the left panel of Figure 6.9, we report the exact same boundary of the 16-cell
spinfoam defined in Section 6.2, labeling the nodes with numbers. We do this to identify the
correlations within the 16-cell geometry quickly. Looking at the correlation values, we notice
that each node k is equivalent to node k ± 4. This is because the 16-cell spinfoam boundary is
symmetrical for 90 degree rotations. Interestingly, there are relatively high values of the corre-
lations between nodes not directly connected by a link (for example, 1-9, 5-13, etc.). In other
words, some couples of non-adjacent nodes are strongly correlated. This is the striking differ-
ence between the 16-cell geometry and the spinfoam model studied in [78] or the 4-simplex
[77].
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Figure 6.9: Left: 16-cell spinfoam boundary (same as Figure 6.3) with nodes labeled by numbers Right:
Some values of quantum correlations (6.22) as a function of the boundary spin j.

In Figure 6.9, we explicitly show the correlation between just a few couples of nodes so as
not to clutter the picture. We infer that correlations are constant as a function of the boundary
spin j, confirming the trend observed in [78, 77]. In Figure 6.10, we show the numerical values
of (6.22) computed between all possible combinations to emphasize the complete pattern of
nodes. We report the tables for the minimum and maximum values considered for the boundary
spins for visualization purposes. From Figure 6.9, it is evident that the values between j = 0.5
and j = 4 have very similar values.

Figure 6.10: Quantum correlations (6.22) computed for all possible couples of nodes at fixed boundary
spin j. We show explicitly only the minimum and the maximum values j. As Figure 6.9 reveals, values
in between give similar results. Each node k is equivalent to node k ± 4. Left: case j = 0.5. Right: case
j = 4.

6.6 Conclusions
In the deep quantum regime, we have presented a numerical investigation of the non-perturbative
Hartle-Hawking state defined in covariant loop quantum gravity. We have computed this state’s
mean geometry, fluctuations, and correlations. We have relaxed the truncation from the tetrahe-
dron triangulation of the cosmological 3-sphere to a 16-cell triangulation. We have computed
the quantities above in the simplified setting where the dynamics are topological.
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The numerical analysis is consistent with the hypothesis that refining the triangulation does
not substantially affect the global physical picture. The mean geometry remains consistent with
an approximation of a metric threes-sphere. Fluctuations and correlations remain high, as in
the tetrahedral truncation. We expected a clear dependence of correlation on the separation of
the nodes, but we have not found it. We do not know if this is due to the topological nature of
the BF simplification taken. The calculation must be repeated with the full physical amplitude
to test so. This task requires pushing the numerical tools further.
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Haudenosaunee, Lūnaapèewak, Attawandaron, and Neutral peoples.

https://www.templeton.org/grant/the-quantum-information-structure-ofspacetime-qiss-second-phase
https://www.templeton.org/grant/the-quantum-information-structure-ofspacetime-qiss-second-phase


Chapter 7

Numerical approach to the
Black-to-White hole transition

Statement of co-authorship

This Chapter illustrates the paper [141], written by me. It was published in Physical Review
D on 15 June 2023. Since it is a solo-author paper, it seems unnecessary to remark on my
contributions in this specific case. I started working on this paper after studying [18], which
for me was a revelation, as well as a source of inspiration throughout most of my Ph.D.. This
manuscript corresponds to the article’s Physical Review D-published version, which agrees
with the APS copyright policies.

7.1 Introduction

At present, black holes seem to be perfectly described by classical general relativity, including
their behavior in the strong field regime [181]. We have no reason to suspect that, beyond the
black hole horizon, general relativity does not continue to provide a reasonable physical de-
scription inside it. The region where our knowledge falters is the center: we have no idea what
happens to an object after it reaches the singularity. Furthermore, the distant future of a black
hole is still quite a mystery. The calculation originally made by Hawking [182] shows that the
black hole shrinks due to the back reaction of the Hawking radiation. The black hole should
become smaller and smaller, but after this phase, nothing is known. The perturbative formu-
lation of quantum gravity disregards non-perturbative quantum-gravitational phenomena. This
is the reason why the full theory of quantum gravity is required. The possibility of black hole
decay via gravitational quantum tunneling is currently one of the most intriguing hypotheses
on the future of these objects [183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203].

In the last few years, considerable effort has been devoted to investigating the phenomenon
using the covariant "spinfoam" formulation of loop quantum gravity [18, 204, 205, 206, 207,
208]. At the same time, there have been remarkable advances in the development of com-
putational methods in the field. A few examples are the application of MCMC methods to
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investigate the semiclassical limit [57] as well as the deep quantum regime [78, 138], the study
of cuboid renormalization [147], the introduction of effective spinfoams [63, 64], and the study
of the EPRL amplitudes using high-performance computing [47, 9, 48, 143]. One of the main
reasons for developing techniques to compute EPRL spinfoam amplitudes was to investigate
the black-to-white transition using computational methods [209, 10]. In this sense, this paper
aims to be the first direct link between these two research directions.

We outline an algorithm to compute the amplitude and apply it to calculate the crossing
time of the transition. We estimate it numerically and analytically, modifying the boundary
state with respect to the calculation of the same observable currently present in the spinfoam
literature, corresponding to a different physical regime [209, 206, 204]. We find the same re-
sult: the crossing time scales linearly with the mass. The calculation described here is remark-
ably simpler and shows that the crossing time does not depend on the extrinsic curvature of the
boundary geometry. Therefore, our result is in excellent agreement with the previous estimates,
supplementing them with new physical information. The paper is organized as follows. Sec-
tion 7.2 briefly reviews the quantum tunneling hypothesis and the necessity of a full quantum
gravity theory to describe it. In Section 7.3, we describe the external geometry of the process.
In Section 7.4, we write the four-dimensional spinfoam amplitude of the black-to-white hole
transition, and in Section 7.5, we outline the algorithm to compute it. Finally, in Section 7.6,
we evaluate the crossing time of the transition. Unless explicitly indicated otherwise, we use
the Planck unit system (c = ℏ = G = 1) in the following.

7.2 The quantum tunneling
Regardless of what happens in the future, after the full evaporation of the black hole has oc-
curred, it is reasonable to expect that in a distant forward time, all that remains is regular
spacetime. That is, we expect that there is a spacetime with a causal structure after the end of
the black hole evaporation. We know from classical GR that a collapsed star creates a hori-
zon. The "cosmological censor" conjecture [210] states that every singularity in classical GR
is always hidden inside a horizon. Assuming that this conjecture is true since GR is invariant
under time reversal, the opposite also turns out to be true. Therefore, even in the future, the
"putative singularity" should be closed inside a horizon. To describe the process, we need a
description of the external classical geometry and a quantum one, which provides information
on the tunneling transition inside the black hole.

These ingredients are provided precisely by loop quantum gravity, which describes the
transition amplitude between classical geometries. In particular, the closed surface surrounding
the classical region can be arbitrarily chosen. Therefore, the central singularity is enclosed
inside a boundary, namely a space-like surface Σ with a classical geometry defined on it. A
tunneling effect exists between the two space-like regions on "opposite sides" of the singularity.
This is a purely quantum effect as these regions have no classical transition. Thus, there is no
possible classical evolution. A possibility considered in the literature [211] is that there is a
white hole after the evaporation of the (small) black hole, which remains as a remnant, which
should radiate in the low-frequency spectrum [212]. In Figure 7.1, we sketch the tunneling
process using an (extended) Penrose diagram. The blue lines denote the gravitational horizon,
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and the green ones indicate the space-like boundary surface. The B region represents the future
of the black hole after the evaporation, whereas A is the region around the singularity center.
The quantum theory describes the tunneling process. It is reasonable to expect that the degrees
of freedom of the latter are not arbitrarily small but comparable to the black hole size.

First, we must truncate the theory to compute transition amplitude using covariant loop
quantum gravity. We do so by discretizing Σ and the four-dimensional interior region. If we
know the (intrinsic and extrinsic) geometry of Σ, we can write an extrinsic coherent state in the
Hilbert space of loop quantum gravity to the truncation.

Figure 7.1: Extended Penrose diagram describing the tunneling process. The B region represents the
future of the black hole after the evaporation, whereas A is the region around the singularity center.

7.3 Geometry
The final external metric depends only on two parameters: the mass of the black hole m and
the "time" T between the lower and upper regions [213]. Therefore, these two parameters
completely describe the external geometry. There are several characteristics and time scales
involved in the process. These have been deeply described in [204]. Crucially, since the exter-
nal metric can be explicitly given as a function of m and T , the transition amplitude describing
the tunneling process also depends on the same parameters. The surface Σ in Figure 7.1 is
formed by two flat 2-spheres joined at their boundary. We conventionally define these "upper"
and "lower" boundary surfaces, associated with the future and past of the black hole, as Σ+ and
Σ−.

7.3.1 Discretization of Σ
To write the transition amplitude explicitly and compute the crossing time, choosing a dis-
cretization of Σ is necessary. We use the same discretization originally introduced in [18]. The
geometry of the triangulation in terms of the Ashtekhar variables was derived entirely in the
same paper, to which we refer for further details.
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Triangulation: each 2-sphere Σ± is first triangulated using a single equilateral flat tetrahe-
dron. Then, the triangulation is refined by splitting each tetrahedron into four equal isosceles
tetrahedra, as shown in Figure 7.2. Therefore, the total surface Σ is triangulated with eight

Figure 7.2: Regular tetrahedron τ0 split into four isosceles tetrahedra τ1, τ2, τ3, τ4. Both Σ+ and Σ− are
triangulated with such four isosceles tetrahedra.

boundary tetrahedra. The geometry is consequently composed of two 4-simplices (each with
zero 4-volume) joined by a tetrahedron.

Two-complex: the corresponding two-complex has two vertices contracted over a bulk
intertwiner. The boundary graph is constituted of 16 links. Of these, 4 "angular" links la

connect the nodes between different vertices, while for each vertex, there are 6 "radial" links
l±ab. So there are two different types of links. This discretization ultimately defines the spinfoam
associated with the transition amplitude, which is described in section 7.4.

7.3.2 Extrinsic boundary states
After defining a discretization of Σ, it is possible to write down a coherent state describing the
geometry. Among the possible definitions of coherent states, in [18], the authors considered
the "extrinsic" coherent states [1], originally introduced by Thiemann [214], parametrized as
in [215] in terms of twisted geometries [128]. These states depend on two unit-length source
and target vectors n⃗s, n⃗t and on a complex number z, which we write as:

z = η + i (β + γζ) . (7.1)

In (7.1), η ∈ R+ is the dimensionless area of the triangular face dual to the link, ζ ∈ [0, 4π) is
the boost angle between the normals of the tetrahedra [216, 217] and β is an extra rotation. We
refer to [18] for the connection between the boost angle and the discretized holonomy along
each link. Extending analytically the definition of the Wigner matrices D j (h) to complex
parameters, where h ∈ S U(2), the extrinsic coherent states can be written as:

Ψσ,ns,nt ,z (h) =
∑

j

(2 j + 1)e− j( j+1)/2σ×

Tr[D j(h)D j(ntezσ3
2 n−1

s )] , (7.2)
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where j is the spin attached to the link. The S U(2) elements ns, nt in (7.2) rotate the unit vector
along the ẑ axis into the source vector n⃗s and the target vector n⃗t, respectively. The state on the
graph is defined as the product of a factor (7.2) for each link. Notice that apart from a phase
factor, the ratio between two terms which differ by one unit in the component of the magnetic
moment in the diagonal Wigner matrix D j

(
ezσ3

2

)
is:

eηn

eη(n−1) = eη > 103 for η ≥ 7 , (7.3)

where n ∈ [− j, j]. Therefore, when the real part η of ζ is large enough, the trace in (7.2) is
completely dominated by the highest magnetic moment component. As a consequence, the
Wigner matrix can be approximated as:

D j
k,q

(
ezσ3

2
)
≈ δ

j
kδ

j
qez j . (7.4)

When condition (7.4) is satisfied, the state (7.2) can be expressed as:

Ψσ,ns,nt ,z (h) ≈
∑

j

(2 j + 1)e− j( j+1)/2σ+z j×∑
n,m

D j
n, j(nt)D j

m,n(h)D j
j,m(n−1

s ) , (7.5)

and the sum over j in (7.5) is peaked on the minimum of j( j + 1)/(2σ) − η j, which is

jm = ησ −
1
2
. (7.6)

7.3.3 Balancing the spread
The quantity σ in the definition of the extrinsic coherent states (7.2) plays an important role,
as it determines whether the state is peaked on the area or the extrinsic curvature. We first
consider a generic dependence:

σ = j−αm , (7.7)

where α ∈ R. From (7.6) we find:

η = jα+1
m +

jαm
2
. (7.8)

Recalling the relation existing between the spin and the area operator in LQG, it can be shown
[145] that the (relative) spread in the non-commuting areas and embedding data is:

∆ζ

⟨ζ⟩
∼ j

α
2
m ,

∆A
⟨A⟩
∼ j

−( α2+1)
m . (7.9)

The product between the two relative spreads (7.9) is independent of α and goes to zero in
the large jm limit. A good requirement to recover the semiclassical behavior is that the relative
dispersions (7.9) vanish for jm −→ ∞. Along with condition (7.7) and requiring that both η and
jm are large, this results in the range α ∈ [−1, 0] for the extrinsic coherent states (7.2) to behave
semiclassically. In [18], the choice made was α = −1

2 to peak the state both on the area and on
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the extrinsic curvature in the large jm limit. Crucially, notice that with this choice, when jm is
small, condition (7.4) is not a valid approximation. Therefore, we consider the case α > 0 so
that (7.4) is valid. From (7.9), this choice leads to a sharp area operator and an extrinsic spread
curvature. In the language of [145], this corresponds to a large heat-kernel time. Physically,
this means increasing the quantum spread associated with the boost angle operator between Σ−
and Σ+. From (7.7) and (7.8) we obtain:

− j( j + 1)
2σ

+ j η = −
jαm
2

(
j − jm

)2
+

jα+2
m

2
, (7.10)

where the last term is absorbed in the normalization factor of the amplitude. In the transition
amplitude, every link of the boundary graph has an extrinsic coherent state (7.2) associated
with it. Therefore, each boundary link has an independent (infinite) sum. The condition α >
0 increases the factor jαm, so putting a small half-integer cut-off K around jm allows a good
amplitude approximation. This corresponds to the physical limit in which we recover the
intrinsic coherent states from the extrinsic ones.

The semiclassical condition α ∈ [−1, 0] implies that states (7.2) become rapidly spread
around jm for large jm. In such a regime, a possible approach to computing the amplitude
numerically could consist in using importance sampling Monte Carlo to overcome the multiple
independent sums over boundary links. However, one has to deal with the sign problem in such
a case. Alternatively, one could use the analytical methods developed in [209, 206] suitable for
the semiclassical regime.

7.3.4 Normal orientation
In this Section, we define the orientation of normals to the boundary tetrahedra in the triangu-
lation described in Section 7.3.1. These were originally computed in [18]. We parametrize the
Wigner matrix as in [218]:

D j
m, j(n) = D j

m, j(ϕ, θ,−ϕ) = e−imϕd j
m, j(θ)e

i jϕ , (7.11)

where d j
m, j(θ) is the small Wigner matrix [218, 169]. The n⃗ vector can be parametrized with the

polar angles as usual:
n⃗ = (sin θ cos ϕ, sin θ sin ϕ, cos θ) .

Using the orientation of Figure 7.3, after some calculation [18] the following values are ob-
tained:

n⃗0 = (0, 0), (7.12)
n⃗k =

(
arccos

[
−
√

2
3

]
, φk

)
, (7.13)

with k = 1, 2, 3 and

φ1 = 0, φ2 =
2
3
π, φ3 = −

2
3
π . (7.14)

The required value for β in (7.1) turns out to be β = 0 for the equilateral faces, and β = φk −φk′

for the isosceles faces. This extra rotation along the ẑ axis must match the triangles in the (x, y)
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plane. The effect of such rotation is such that we can replace the S U(2) element n in (7.11)
with another element τ, whose third component is zero:

D j
m, j(τ) = D j

m, j(ϕ, θ, 0) = e−imϕd j
m, j(θ) . (7.15)

For the target on the same link, we add a parity transformation so that θ −→ θ − π
2 . Finally, we

Figure 7.3: Normals orientation in each isosceles tetrahedron.

define the Livine-Speziale coherent intertwiner coefficient in the recoupling channel i with all
outgoing links as:

ψi(τ) =
∑
ma

(
j1 j2 j3 j4

m1 m2 m3 m4

)(i) 4∏
a=1

D ja
ma, ja

(τ)

= , (7.16)

where D j
m, j(τ) has been defined in (7.15). The coefficient (7.16) encodes the orientation of

the normals in the final amplitude. The definition of the 4jm Wigner symbol is reported in
Appendix G.1.
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7.4 Transition amplitude

7.4.1 The EPRL vertex amplitude
We write the EPRL vertex amplitude using the graphical notation discussed in detail in [9]:

Vγ

(
j f , ie;∆l

)
= (7.17)

=
∑

j f≤l f≤ j f+∆l
ka

 4∏
a=1

dka B4( j f , l f ; ia, ka; γ)

 {15 j}l f ,ka

=
∑

j f≤l f≤ j f+∆l

,

where a = 1 . . . 4, e = 1 . . . 5, q = 2 . . . 5. The dependence of the amplitude on the Barbero-
Immirzi parameter γ has been indicated using a label. The definition of the 15j Wigner symbol
is reported in Appendix G.1, while the B4 function is defined in Appendix E.3. We compute
the EPRL vertices (7.17) with the numerical framework sl2cfoam-next [48]. We define the
coherent amplitude as the vertex amplitude (7.17) contracted with coherent states coefficients
(7.16) over all nodes except one1:

Vcoh
γ,n f

(
j f , i5;∆l

)
=

∑
ia

V

 4∏
a=1

diaψia(τ f )

 . (7.18)

The graphical notation of the coherent amplitude (7.18) is easily obtained from (7.17) and
(7.16). We do not report it explicitly for the single vertex amplitude. Instead, we use it directly
in the Black-to-White hole transition amplitude described in Section 7.4.2.

7.4.2 The Black-to-White hole transition amplitude
The Black-to-White hole transition amplitude is obtained by contracting the amplitude associ-
ated with the spinfoam described in Section 7.3.1 with the coherent boundary state described in
Section 7.3.2, according to the usual procedure in covariant LQG [1]. We refer to the original
article [18] for a description of all the necessary steps.

With the definition of the EPRL vertex amplitude (7.17), it is possible to write the Black-to-
White hole transition amplitude in a suitable form for a numerical evaluation, transforming the
original 24j Wigner symbol into the contraction of two (linear superposition of) 15j symbols

1The contraction over all nodes of the vertex is usually considered, but for the present context the definition
(7.18) is more convenient
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over a bulk intertwiner. Aside from the normals to the boundary tetrahedra, each link has an
associated spin j and boost angle ζ. In [18], it was shown that when condition (7.4) is satisfied,
the dependence on the parameters m,T is decoupled from the combinatorial structure of the
two-complex. This greatly simplifies the numerical evaluation and leads to a factorization of
the amplitude in the form of (a spin-sum over) a "weight function" w that multiplies the factor
associated with the contraction of the two vertex amplitudes. We define the weight function as:

wα( ja, j±ab, j±, j0, ζ±, ζ0) = cα ( j±, j0)

 4∏
a=1

d jae
−

jα0
2 ( ja− j0)2

eiγζ0 ja


∏

ab,±

d j±ab
e−

jα±
2 ( j±ab− j±)2

eiγζ± j±ab

 ,
(7.19)

where b = 2, 3, 4, a , b. The data ( j0, ζ0) label the 4 angular links, while ( j±, ζ±) are associated
with the radial links. The normalization factor inherited from the boundary state is:

cα ( j±, j0) =
(
e

jα+2
0
2

)4 (
e

jα+2
±
2

)12

, (7.20)

which corresponds to the last factor in (7.10) inherited by each link. We write the Black-to-
White hole transition amplitude as:

Wα( j±, j0, ζ±, ζ0;∆l) =
∑
j±ab, ja

wα

∑
i5

di5

∏
±

Vcoh
γ,n±f

(
j±ab, ja, i5;∆l

)

=
∑
j±ab, ja

wα

∑
j±ab≤l±ab≤ j±ab+∆l

. (7.21)

The graphical notation in (7.21) emphasizes how the normals to the tetrahedra discussed in
Section 7.3.4 are associated with the faces of the triangulation discussed in Section 7.3. The
intertwiner i5 is dual to tetrahedron τ0 in Figure 7.2. In [219], we provide a Mathematica note-
book to re-construct the full geometry (we thank Pietro Dona for the help with the notebook).
Finally, we emphasize that the compact notation used in the first line of (7.21) does not specify
if each link is a source or a target, but this is clarified with the graphical notation.
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As mentioned in Section 7.3, the external geometry is entirely defined by the parameters
m,T . Therefore, these two parameters entirely determine the amplitude (7.21). The relation-
ship between these and the variables j0, j±, γ, ζ±, ζ0 is provided by the following relations:

j0 =
m2

(
1 + e−

T
2m

)2

2γ
, (7.22)

j± =
j0
√

6
, (7.23)

ζ0 =
T

2m
, (7.24)

ζ± = ∓
32
9

√
6 . (7.25)

Despite the equality sign, in equation (7.22) it was used the well-known approximation A =
8πγ

√
j ( j + 1) ≈ 8πγ j. A few comments are in order.

The discrete nature of spin has interesting consequences. For example, relation (7.23)
implies that j0 and j± cannot be both half-integer numbers. These are the terms on which
the boundary coherent states (7.2) are peaked. Furthermore, triangular inequalities impose
constraints on the allowed spins configurations.

7.5 Computing the amplitude

7.5.1 The numerical algorithm
The algorithm to calculate the black-to-white hole transition amplitude (7.21) as a function of T
can be divided into three main steps. The strategy is similar to the one outlined in [9]. The core
idea is to separate the computation of the EPRL vertex amplitudes (7.17) from the contraction
along the intertwiners of each vertex, which is typically much less resource-demanding than
the former. The code used for all calculations in this paper is public and available on GitHub
[219].

The first step is to pre-calculate all the necessary EPRL vertex tensors (7.17). With the term
"tensor," we refer to the multidimensional array consisting of the vertex amplitude computed
for all the possible values of intertwiners. The flowchart is reported in 5. This is the most
demanding step regarding computational resources and time complexity. The calculation of the
vertex tensors has been performed with the sl2cfoam-next library [48] on the Cedar, Graham
and Narval Compute Canada superclusters. We employed a hybrid parallelization scheme,
distributing the workload on multiple processes and eventually exploiting various threads for
each task. In [219], we also provide a code that automatically distributes the calculation of
the vertex tensors to multiple machines. In Figure 7.4 we report the computational time of
algorithm 5 for jmin

0 = 1, jmax
0 = 5, ∆lmax = 10, K0 = 0.5, K± = 0.5. Each curve represents the

seconds required to compute all the vertex amplitudes (7.17) centered around different spins
configurations j0, j±. In the top panel, we show the results for γ = 1, while in the bottom
one, we report the time for γ = 5. The two cases have approximately the same trend, even
if the calculation for larger values of the Barbero-Immirzi parameter requires more time. The
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Algorithm 5 Part 1: computing the EPRL vertices

1: At fixed Immirzi constant γ, choose the parameters α, K0, K±, jmin
0 , jmax

0 as described in
Section 7.3.3

2: Set a maximum value ∆lmax

3: for j0 ∈ { jmin
0 , jmin

0 +
1
2 , . . . jmax

0 } do
4: Calculate j± from (7.23) and round to the nearest half-integer
5: for ∆l ∈ {0, 1 . . .∆lmax} do
6: Compute all the EPRL vertex amplitudes (7.17) with ja ∈

[
j0 − K0, j0 + K0

]
, jab ∈[

j± − K±, j± + K±
]

7: Dump the vertices to disk
8: end
9: end

results in Figure 7.4 were estimated by distributing the computation of the vertices over 64
CPUs AMD Rome 7532 @ 2.40 GHz 256M cache L3.
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Figure 7.4: Log-log plot of computational time required for algorithm 5. Top: case γ = 1. Bottom:
case γ = 5.

The second step consists in contracting the stored vertex tensors. The contraction is per-
formed between the vertices and the coherent state coefficients (7.16) according to the spinfoam
structure described in Section 7.3. This is illustrated in the flowchart 6. The final result of this
step is a set of complex numbers, which correspond to the term in round brackets in (7.21) mul-
tiplying the weight factor w. This represents the pure "spinfoam contribution" to the amplitude,
which is contracted with the weight factor of the boundary states.

The third and final step consists in computing the weight factor (7.19) and assembling the
amplitude by retrieving all the pieces previously computed. As noticed in [18], the amplitude
(7.21) is periodic in the extrinsic curvature angle ζ0 with period 4πm

γ
in T . This is a consequence

of the discretization discussed in Section 7.3.1. Following the strategy of [204, 206, 209], we
restrict the validity of the amplitude (7.21) to a single period over T . We choose a parameter
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Algorithm 6 Part 2: contracting the EPRL vertices
1: for the spins configurations considered in algorithm 5 do
2: Compute all the coherent state coefficients (7.16) with ja ∈

[
j0 − K0, j0 + K0

]
, jab ∈[

j± − K±, j± + K±
]

3: for ∆l ∈ {0, 1 . . .∆lmax} do
4: Retrieve the amplitudes stored during algorithm 5 and load them into memory
5: Contract the vertices with the coherent states to obtain two coherent amplitudes

(7.18) as in (7.21)
6: Contract the coherent amplitudes along i5

7: Dump the results to disk
8: end
9: end

N >> 1 and divide the interval
[
0, 4πm

γ

]
into N equal sub-intervals with constant T :

0 ≡ T0 < T1 < T2 · · · < TN ≡
4πm
γ

, N >> 1 . (7.26)

The weight factor is computed in each sub-interval, and the amplitude is assembled by retriev-
ing and assembling all pieces. The value of m is computed using (7.22) disregarding the T
dependence, as the term e−

T
2m rapidly becomes negligible as a function of T . As shown in 7.6.1,

neglecting this term results in a shift of the crossing time, but it does not alter the functional
dependence on T . The flowchart is shown in 7. The final result of algorithm 7 is a set of

Algorithm 7 Part 3: Assembling the B-W amplitude
1: for the spins configurations considered in algorithm 5 do
2: Compute m using (7.22)
3: Choose a parameter N >> 1 and divide the first period in T according to (7.26)
4: for each sub-interval do
5: Compute and store the weight factor (7.19)
6: Assemble the amplitude (7.21) retrieving the data stored in algorithm 6
7: end
8: Dump the amplitudes to disk
9: end

amplitudes:
{WTi}

N
i=0 ≡ {WT0 ,WT1 . . .WTN } , N >> 1 (7.27)

corresponding to the partition (7.26), which can be used to compute the physical observables
depending on the amplitude (7.21) as a function of T . We discuss one example in Section 7.6.
In figure 7.5, we display the results of the (rescaled) amplitude computed using the algorithm
7 and N = 100 in the partition (7.26). Each point corresponds to the squared absolute value of
the elements in the partition (7.27). Notice that in Figure 7.5 the amplitude is rescaled so that
the julia package Plots.jl displays the value correctly. A few comments are in order.
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The exact value of the amplitude is recovered in the limit ∆l −→ ∞. This parameter is
introduced in the EPRL vertex amplitude (7.17) as a homogeneous truncation to approximate
the unbounded convergent sums over the virtual spins l f [42]. The role of this parameter
has been deeply discussed in many papers focusing on numerical computations of spinfoam
amplitudes [9, 47, 48, 72, 71, 133]. The amplitude becomes constant as m increases since the
quantum fluctuations are suppressed as the spin grows. That is, approaching the semiclassical
limit as discussed in 7.3.3. With the expression "quantum fluctuations," we refer to the terms
in the sum (7.5) defining the extrinsic coherent state with j , jm. In (7.21) we have such a sum
for each link, where jm corresponds to j0 in the case of angular links and j± for the radial ones.

Higher orders in the vertex expansion are necessary to investigate larger T values and re-
solve (at least partially) the periodicity of amplitude (7.21) in T . An example of complete
derivation of the black-to-white hole transition amplitude with a finer triangulation has been
derived in [205]. Unfortunately, the level of complexity in the numerical evaluation of the
amplitude grows very quickly as the triangulation refinement increases.
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Figure 7.5: Black-to-White hole transition amplitude (7.21) computed with the algorithm described in
Section 7.5. In the partition (7.27), it was used N = 100. The truncation parameter’s value ∆l = 10
reasonably approximates the amplitude. Top: case γ = 1. Bottom: case γ = 5.
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7.6 The crossing time
In this Section, we estimate the crossing time both numerically and analytically. It represents
the characteristic time scale for the transition when it takes place. For an accurate and com-
prehensive physical description of this observable (as well as other time scales involved in the
tunneling process), we refer to [204]. In the following, we do not explicitly indicate the de-
pendence on the truncation parameter ∆l, implying that the latter has been fixed to ∆l = 10
providing a reasonable amplitude estimate. According to the probabilistic interpretation of the
transition amplitude developed by Oeckl [220, 221], explicitly applied to the black-to-white
hole transition in [222], we first define a conditional probability distribution:

Pα (m|T ) =
µα(m,T ) |Wα(m,T )|2∫ ∞

0
dT µα(m,T ) |Wα(m,T )|2

, (7.28)

which is interpreted as the conditional probability for measuring T at a given mass m. The
coefficient µ provides the measure for the identity resolution of the extrinsic boundary states.
The necessity for this factor was first pointed out in [222]. It was explicitly computed in
[209, 206] in the twisted geometry parametrization. For a single link, this reads:

να ( j) =
j−

α
2 (1 + 2 j)

64π
7
2

(
e− jα+2

− e− jα(1+ j)2)
, (7.29)

where j is the spin attached to the link. The coefficient µ in (7.28) is defined as the product of
a factor (7.29) for each boundary link. In the present context, there are just two types of links.
That is four angular links with spin j0 and 12 radial links with spins j±.

We estimate the crossing time as the expectation value of T over the conditional probability
distribution (7.28):

τα (m) =
∫ ∞

0
dT T Pα (m|T ) . (7.30)

The crossing time (7.30) is well-defined since integrating (7.28) along T at fixed m gives a
total (conditional) probability of 1, regardless of the constant factor multiplying the amplitude
(7.21).

7.6.1 Crossing time estimate in large spins regime
As discussed in Section 7.3.3, for large values of spins, we can set the cut-off K equal to zero in
the sum over spins in (7.5). From (7.29) and (7.22), it is easy to see that the measure coefficient
µ in the conditional probability distribution (7.28) acts as the Heaviside step function:

µα (m,T ) ≈ θ (T − T∗) , (7.31)

where T∗ is large enough so that j0 in (7.22) is rounded to the lowest half-integer. Focusing on
the first period of the amplitude in T , along with condition (7.31), this results in:

Pα (m|T ) ≈

0 for T ∈ [0,T∗](
4πm
γ
− T∗

)−1
for T ∈

[
T∗, 4πm

γ

] . (7.32)
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It is immediate to compute the crossing time (7.30) with (7.32):

τ (m) ≈
m2π2

γ2
(

4πm
γ
− T∗

) . (7.33)

We have recovered the linear scaling of the crossing time as a function of the mass m. If we
completely neglect the T dependence in the boundary data (7.22), this is equivalent to consider
T∗ = 0, which implies:

τ (m) ≈
2πm
γ

for T∗ = 0 . (7.34)

This is the same estimate originally obtained in [204, 206] in the semi-classical regime with α =
−1

2 using the stationary phase approximation for the amplitude. These two results considered
together emphasize that the scaling of the crossing time as a function of T does not depend on
the α parameter, which is used to peak to coherent states as discussed in Section 7.3.3. Using
the range α > 0 makes the calculation remarkably simpler. Since such a regime implies that
the extrinsic curvature becomes more and more spread as the spin increases, we infer that the
scaling of the crossing time only depends on the intrinsic geometry of the black-to-white hole
scenario rather than the extrinsic geometry.

7.6.2 The crossing time computation
Finally, we compute the crossing time (7.6) using the numerical approach described in Section
7.5. We consider the parameters γ = 1, 5, α = 3, . . . 6, K0 = 0.5, K± = 0.5, jmin

0 = 1.5,
jmax
0 = 5, ∆lmax = 10, and N = 100 for the algorithm described in Section 7.5. This choice of

parameters is such that approximation (7.5) is reliable. After obtaining the amplitudes (7.27),
the conditional probability distribution and the crossing time (7.30) can be evaluated using the
trapezoidal rule to compute the integrals over T . The result is shown in Figure 7.6 for different
parameter α values, which balances the quantum spread of the boundary states as discussed in
Section 7.3.3. The dashed curve represents the "semiclassical" (in the sense of just the intrinsic
geometry) asymptotic estimate (7.34).

The crossing time tends to become closer and closer to the asymptotic estimate as a function
of m as α increases. The quantum fluctuations emerge for very small values of the black hole
mass.

7.7 Conclusions
In this paper, we presented and described an algorithm to calculate the full black-to-white hole
transition amplitude numerically, using the covariant "spinfoam formulation" in the Lorentzian
EPRL model and high-performance computing methods. We considered the triangulation orig-
inally introduced in [18], for which a complete numerical evaluation was still missing in the
literature. We explicitly applied the algorithm to compute a relevant physical observable corre-
sponding to the crossing time of the transition. We also discussed a straightforward analytical
approach to estimate the same quantity alternative to the one currently present in the spinfoam
literature, which is based on the stationary phase technique [209, 206, 204].
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Figure 7.6: Crossing time (7.30) evaluated with the amplitudes (7.27), computed with the algorithm
discussed in Section 7.5. The asymptotic estimate corresponds to (7.34). Top: case γ = 1. Bottom:
case γ = 5.

Compared to the analytical calculation in the literature, we tuned the boundary state in
this paper so that the limit for large spins corresponds to an infinite spread of the extrinsic
curvature. The estimate of the crossing time (analytical and numerical) performed in this pa-
per shows that the estimate is the same. Physically, this emphasizes that the crossing time of
the black-to-white hole transition amplitude does not depend on extrinsic curvature. On the
contrary, it appears to be a feature of intrinsic geometry. Therefore, this result adds new infor-
mation despite being in excellent agreement with the previous estimates of the same physical
observable in the literature, including estimates obtained by different communities [223, 224].

This work hopes to be the first step in connecting the usage of high-performance com-
puting techniques in loop quantum gravity with the study of the quantum tunneling process
between a black hole and a white hole. In recent years, remarkable advances have been made
in developing computational methods for spinfoam calculations to study refined triangulation
[138, 72, 32]. Numerical approaches based on (Markov Chain) Monte Carlo methods com-
bined with the vertex decomposition (7.17) recently allowed computing EPRL spinfoam am-
plitudes and observables for highly non-trivial triangulations, potentially containing infrared
bubbles [133, 71]. Two examples are the vertex renormalization (or "5-1 Pachner move") am-
plitude [138] and the star model [78]. The former contains a bubble with 10 internal faces.
We hope that our work will provide a valuable and encouraging ground for progressing in the
development of spinfoams more refined than the one considered in this paper. At the same
time, we hope that the considerations about the independence of the crossing time scaling from
the extrinsic geometry will encourage the investigations of new probabilistic interpretations of
the tunneling process.



Conclusions

This Ph.D. thesis has explored a small part of the LQG frontier, attempting to push the bound-
aries of the research by developing new computational techniques based on HPC and enabling
investigations into quantum gravitational phenomena. The collection of integrated articles pre-
sented here highlights the current and future role of scientific computing in advancing the
covariant loop quantum gravity field. I believe the prospects for further advancements in HPC-
assisted LQG research are promising. The ever-increasing computational power of modern
supercomputers and the exciting perspectives of quantum computing, coupled with ongoing
developments in algorithms and numerical methods, opens new avenues for exploration. These
developments will enable the study of previously inaccessible physical regimes and the inves-
tigation of quantum phenomena on larger scales.

Compared to 3-4 years ago, we now have the numerical tools and algorithms to calcu-
late rather complicated and extended EPRL amplitudes, once considered inaccessible. For
example, concerning infrared divergences, one of the most noteworthy results obtained is the
introduction of a robust scheme to investigate amplitudes associated with spinfoams contain-
ing bubbles numerically. Before the algorithm discussed in Chapter 2 was introduced, the
situation was somewhat uncertain, with significantly different estimates regarding self-energy
divergence [46, 102]. By resorting to Monte Carlo methods, as shown in Chapter 4, it is now
possible to test the divergence of a spinfoam amplitude with high precision without compro-
mising the computational effort. The results of Chapters 3 and 4 indicate that there is still much
to discover about EPRL spinfoam amplitudes with many internal faces.

Specifically, for the interested reader in continuing my line of research, I found some ques-
tions exciting and could not answer during my Ph.D. For example, “which are the EPRL spin-
foam diagrams containing infrared bubbles that are convergent?”. In other words, can we
establish a priori if an EPRL diagram with specific connectivity has a finite amplitude? As
discussed in Chapter 4, the destructive interference between the oscillations due to the Lorentz
group in EPRL is most probably responsible for the amplitude’s finiteness in a few cases (as in
the examples considered in Chapter 3). This is especially manifest if compared to the topolog-
ical model, where the interferences are more suppressed, usually resulting in highly divergent
amplitudes. Therefore, the question of understanding the actual mechanism leading to the di-
vergence of the amplitude naturally arises. A possible systematic way of investigating it could
be to apply the numerical methods developed in Chapters 2, 3, and 4 to study many spinfoam
diagrams with different connectivity. At the same time, analytical studies using S L(2,C) group
theory could help solve this mystery. Another question is “how can we re-normalize divergent
spinfoam diagrams?” This is the core of the large-volume infrared divergences “issue” in LQG.
I do not have specific suggestions or intuition. The most natural approach seems to develop

146
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and apply techniques inspired by renormalization in QFT. Of course, such a technique must be
adapted to the specific and quite peculiar spinfoam formalism.

In spinfoam cosmology, the refinement approach based on Markov Chain Monte Carlo
discussed in Chapter 5 could be applied to different graphs with richer connectivity than the
star model. This would allow the exploration of possible correlations between universe regions
using other cosmological models. This research direction has already been started in Chapter
6, which considers a regular triangulation of a 3-sphere, although it only employs a topological
model. Extending the study of the 16-cell to the Lorentzian EPRL case is not straightforward in
the deep quantum regime. Apart from the computational perspectives, it would be interesting
to expand the conceptual frame of the cosmological spinfoam scenario further by incorporating
matter fields.

We also mention that work is currently in progress towards using machine learning in spin-
foams [225]. The idea is inspired by the recent results obtained in QCD [226, 227], where a
Markov chain update scheme has been successfully employed for Monte Carlo sampling in lat-
tice field theories using a machine-learned flow-based generative model. The current attempt
to introduce machine learning algorithms in covariant LQG has been focused on replacing
Markov Chain Monte Carlo methods described in Chapter 5 with Generative Flow Networks
(GFlowNet) [228, 229, 230]. Although the initial expectancy was to speed up the original
Monte Carlo-based approach, the latest results seem to indicate that this is not the case. Nev-
ertheless, this new research direction is just at the primordial stages. I hope that computational
scientists will address unexplored and visionary questions by using machine learning-inspired
algorithms in the future of spinfoams.

Regarding the gravitational black-hole quantum tunneling, a compelling and satisfying
project would be to investigate the black-to-white hole transition amplitude using a spinfoam
more refined than the one considered in Chapter 7. I believe the current concrete proposal in
the literature [205] is too complicated for the current status of numerical methods in LQG,
even considering Monte Carlo methods and HPC resources. Nevertheless, one can construct
many possible spinfoams that are more refined than the simple one studied in Chapter 7. Other
prospects concerning the black-to-white hole scenario have already been mentioned in the con-
clusions of Chapter 7.

Finally, I dedicate a small paragraph regarding my overall considerations on covariant
LQG. These maturated over more than three years devoted to doing scientific research in
the field. On the one hand, the prospects for future research in this field are exciting, with
HPC-assisted LQG opening up new frontiers for theoretical physics, cosmology, and our un-
derstanding of the universe. On the other hand, we have (yet) no solid empirical support for
any theory of quantum gravity. The current limits of experimental physics are way too strict to
provide viable lab experiments to test each view’s unique features and predictions. Accessible
energy scales are many orders of magnitude distant from the Planck scale. In this regard, the
situation appears entirely different from the previous century, in which the experiments were
crucial to building the theoretical standard model of particle physics. The lack of experimental
data and direct empirical evidence contributed to the development of multiple theories (appar-
ently non-compatible) describing the quantum gravity regime: string theory, LQG, asymptotic
safety, causal dynamical triangulation, etc. There appear to be many distinct approaches and
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strategies for each theory, usually employed by different communities. Despite this fragmented
scenario, I was privileged to be part of the LQG community. The latter is full of intelligent,
talented, and passionate scientists. I hope the “numerical spinfoam” community will expand
and mature and hopefully find empirical support for the theory soon. I hope my modest contri-
butions during the last few years could serve the purpose.
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Appendix A

Appendix Chapter 1

A.1 S U(2) toolbox
The group S U(2) is the group of 2× 2 complex matrices with unit determinants that satisfy the
unitarity condition

det(u) = 1 , and u−1 = u† , ∀u ∈ S U(2) . (A.1)

The group is homomorphic to the rotation group S O(3) and is generated by the angular mo-
mentum algebra Li with i = 1, 2, 3 satisfying the commutation relations[

Li, L j

]
= iϵi jkLk . (A.2)

In the fundamental representation Li = σi/2 where σi are the standard Pauli matrices. The
Casimir operator is L2 = L⃗ · L⃗ and the unitary irreducible representations are labeled by a spin
j ∈ N/2 a half-integer and are 2 j+1 dimensional. The canonical basis for these representations
diagonalizes the operator L3

L2 | j,m⟩ = j( j + 1) | j,m⟩ , L3 | j,m⟩ = m | j,m⟩ . (A.3)

In this basis the matrix elements of the group are given by the Wigner matrices

D j
mn(u) ≡ ⟨ j,m| u | j, n⟩ . (A.4)

Their explicit expression and properties can be found in [218] and we will not report them.

In this work, we compute integrals of products of S U(2) representation matrices in terms
of S U(2) invariants. We will introduce the minimal amount of tools needed and the graphical
method to perform the calculations. We do not want to provide a complete introduction to
recoupling theory and its graphical method that are worth books and reviews on their own
[231, 84, 169]. We use a graphical notation that is completely analogous to the one introduced
in Section 1.4.

We associate an oriented line to each S U(2) representation matrix. We decorate the line
with a spin label and a box containing the group element

D j
mn(u) = u

n m

j1
. (A.5)
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We contract two representations summing over the magnetic indices by connecting the two
lines. We compute the integral over S U(2) using the unique invariant measure over the group
(the Haar measure du [84]). The explicit form of the measure depends on the parametrization
used for the group. We collect the boxes corresponding to the same group elements. In the
following, we will always imply the integration of all the group elements in the boxes.

The integral of the product of two representation matrices is given by∫
duD j1

m1n1
(u)D j2

m2n2
(u) =

1
2 j1 + 1

δ j1 j2(−1)2 j1−m1−n1δ−m1m2δ−n1n2 =
1

2 j1 + 1
δ j1 j2ϵ

j1
m1m2

ϵ j1
n1n2

,

(A.6)

where we defined the tensor ϵ j1
m1m2 ≡ (−1) j1−m1δ−m1m2 , the unique invariant tensor in the product

of two j1 representations. The ϵ tensor squares to∑
m2

ϵ j1
m1m2

ϵ j1
m2m3
=

∑
m2

(−1) j1−m1δ−m1m2(−1) j1−m2δ−m2m3 = (−1)2 j1−m1+m3δm1m3 = (−1)2 j1δm1m3 ,

(A.7)
and has the symmetry property ϵ j1

m1m2 = (−1)2 j1ϵ
j1
m2m1 . We use the graphical representation to

write (A.6) as

u

j1

j2

=

j1

1

2j1+1
δj1j2 . (A.8)

The invariance property of the tensor ϵ j1
m1m2 means∑

n1,n2

D j1
m1n1

(u)D j1
m2n2

(u)ϵ j1
n1n2
= ϵ j1

m1m2
. (A.9)

From (A.9) we can derive the property of Wigner matrices∑
m2n2

ϵ j1
n1m2

ϵ j1
m1n1

D j1
m2n2

(u) = D j1
m1n1

(u−1) . (A.10)

Using this property we can also perform integrals where an inverse group element appears

∫
duD j1

n1m1
(u−1)D j2

m2n2
(u) = u

j1

j2

=

j1
1

2j1+1
δj1j2 =

1

2j1+1
δj1j2

j1

(A.11)

=
1

2 j1 + 1
δ j1 j2δm1m2δn1n2 . (A.12)

For simplicity, we will merge the ϵ tensors with the box in the following. At first sight, it could
appear as an ambiguity since one line will have a group element u in the box, while the line
with the opposite orientation u−1 and there is no indication of which is which. However, we are
integrating over u. Therefore, the name we give the group element is irrelevant. The important
information is contained in the relative polarity: one group element is the inverse of the other.
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Using this convention and the square property (A.7), in any closed diagram, inverting the
orientation of a line (without group elements) results into a phase (−1)2 j.

=

j j

(−1)2j = (−1)2j

j

. (A.13)

The integral of the product of three representation matrices is given by∫
duD j1

m1n1
(u)D j2

m2n2
(u)D j3

m3n3
(u) =

(
j1 j2 j3

m1 m2 m3

) (
j1 j2 j3

n1 n2 n3

)
. (A.14)

The tensors appearing in (A.14) are the Wigner (3 jm) symbols, the unique invariant tensor (or
three valent intertwiner) in the tensor product of three S U(2) representations.∑

n1,n2,n2

D j1
m1n1

(u)D j2
m2n2

(u)D j3
m3n3

(u)
(

j1 j2 j3

n1 n2 n3

)
=

(
j1 j2 j3

m1 m2 m3

)
. (A.15)

The (3 jm) has the following symmetry properties (see [84, 169, 218] for an exhaustive list)(
j1 j2 j3

n1 n2 n3

)
=

(
j2 j3 j1

n2 n3 n1

)
= (−1) j1+ j2+ j3

(
j1 j3 j2

n1 n3 n2

)
, (A.16)

and vanishes unless the selection rules are satisfied

m1 + m2 + m3 = 0 , | j1 − j2| ≤ j3 ≤ j1 + j2 , j1 + j2 + j3 ∈ N . (A.17)

In the graphical representation (A.14) is

u

j1

j3
=

j2

j1

j3

j2

j1

j3

j2 , (A.18)

where for the (3 jm) symbol (
j1 j2 j3

m1 m2 m3

)
=

j1

j3

j2 , (A.19)

we read the spins in clockwise order if all the arrows are outgoing and in anti-clockwise order
if all the arrows are ingoing. In the standard S U(2) graphical calculus, this is usually indicated
with a sign next to the node [169, 218, 231]. For our calculations, this is unnecessary, and we
avoid adding this extra layer of complexity. Similarly to (A.11) we have

∫
duD j1

n1m1
(u−1)D j2

m2n2
(u)D j3

m3n3
(u) = u

j1

j3
=

j2

j1

j3

j2

j1

j3

j2 = (A.20)

(−1) j1−n1

(
j1 j2 j3

−n1 n2 n3

)
(−1) j1−m1

(
j1 j2 j3

−m1 m2 m3

)
.
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The (3 jm) satisfy the orthogonality relation

∑
m2,m3

(
j1 j2 j3

m1 m2 m3

) (
j′1 j2 j3

m′1 m2 m3

)
=

j2

j3

j1 j′
1

=
1

2 j1 + 1
δ j1 j′1

δm1m′1
,

(A.21)

and are normalized to 1

∑
m1,m2,m3

(
j1 j2 j3

m1 m2 m3

) (
j1 j2 j3

m1 m2 m3

)
=

j1

j3

j2
= 1 . (A.22)

We also compute the integral of the product of four representation matrices with the tools
we provided using a trick∫

duD j1
m1n1

(u)D j2
m2n2

(u)D j3
m3n3

(u)D j4
m4n4

(u) =
∫

dudvD j1
m1n1

(u)D j2
m2n2

(u)δ(uv−1)D j3
m3n3

(v)D j4
m4n4

(v) ,

(A.23)

where we doubled the number of integrals by inserting a delta function. The delta function can
be expanded as a sum of Wigner functions [1]

δ(uv−1) =
∑

i

(2 j + 1)
∑

m

Di
mm(uv−1) =

∑
i

(2i + 1)
∑
m,n

Di
mn(u)Di

nm(v−1) . (A.24)

Using the graphical representation and the properties (A.15) and (A.20) we compute (A.23)

u

j1

j3

j2

j4

=u

j1

j2

i

j3

j4

=

j1

j2

j4

j3

i , (A.25)

where we used a red thick line to imply a summation weighted by the dimensional factor (2i+1)
and we define the (4 jm) symbols (invariant tensor or four valent intertwiner) as

j1

j2

j4

j3

i =

(
j1 j2 j3 j4

m1 m2 m3 m4

)(i)

=
∑

m

(−1)i−m

(
j1 j2 i

m1 m2 m

) (
i j3 j4

−m m3 m4

)
. (A.26)



A.1. S U(2) toolbox 169

The way we grouped representations together in (A.23) is completely arbitrary. The definition
(A.26) corresponds to the choice of coupling (also called recoupling basis) of the representation
of spins j1 and j2 (ore equivalently spins j3 and j4). The orthogonality condition (A.21) of the
(3 jm) symbols imply the normalization of the (4 jm) symbols

j1

j2

j4

j3
i k = 1

2i+1
δik

j4

j3

i

= (−1)2i 1

2i+1
δik
. (A.27)

The contraction of two (4 jm) symbols in different recoupling basis forms another notable
S U(2) invariant called the {6 j} symbol.

j1

j2

j4

j3

i k = (−1) j2+ j3+i+k

{
j1 j2 i
j4 j3 k

}
. (A.28)

The {6 j} symbol in terms of (3 jm) symbols can be written in a canonical from as

{
j1 j2 j3

j4 j5 j6

}
=

∑
m1...m6

(−1)
6∑

i=1
( ji−mi)

(
j1 j2 j3

m1 m2 −m3

) (
j1 j5 j6

−m1 m5 m6

)
×

×

(
j4 j5 j3

m4 −m5 m3

) (
j4 j2 j6

−m4 −m2 −m6

)
. (A.29)

For a numerical evaluation, it is not convenient to write the {6 j} symbol as in (A.29). It is much
more efficient to rely on libraries that compute and store Wigner {6 j} symbols optimally using
recursion and symmetry properties, such as wigxjpf and fastwixj [91, 170].

Another higher-order invariant that appears in our calculations is the irreducible {15 j} sym-
bol of the first kind (following the classification of [169]). We can write it both graphically and
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in terms of {6 j} symbols as:


j1 j2 j3 j4 j5

l1 l2 l3 l4 l5

k1 k2 k3 k4 k5

 =
l4

l3

l2

k2

l1

j1

j5

l5

k1

j4 k3

j2k5

k4 j3

= (−1)
∑5

i=1 ji+li+ki
∑

x

(2x + 1)
{

j1 k1 x
k2 j2 l1

}{
j2 k2 x
k3 j3 l2

}
×

{
j3 k3 x
k4 j4 l3

}{
j4 k4 x
k5 j5 l4

}{
j5 k5 x
j1 k1 l5

}
. (A.30)

It must be emphasized that the {15 j} symbol (A.30) is not the most convenient choice from
a numerical point of view. In fact, it is possible to choose the recoupling scheme in order to
obtain reducible {15 j} symbols (see [232] for an example), whose evaluation is much faster.
However, since this aspect is not the most critical part of the performance, we prefer to have a
pleasantly symmetrical symbol and sacrifice some efficiency. This also simplifies computations
of spinfoams transition amplitudes with many vertices, since the basis choice in the recoupling
on one edge affects both vertices it connects. Therefore, choosing a symmetric {15 j} symbol
as in (A.30), we are sure that the recoupling is consistent in every vertex.

A.2 S L(2,C) toolbox
The group S L(2,C) is the group of 2 × 2 complex matrices with unit determinant. The group
is homomorphic to the proper Lorentz group (the Lorentz group part that preserve the sign of
the time component) [233, 43].

The algebra of S L(2,C) is generated by spatial rotations and boosts Li and Ki satisfying the
commutation relations[

Li, L j

]
= iϵi jkLk ,

[
Li,K j

]
= iϵi jkKk ,

[
Ki,K j

]
= −iϵi jkLk . (A.31)

In the spinorial representation Li = σi/2 and Ki = iσi/2 where σi are the standard Pauli matri-
ces. The two Casimir operators are K2−L2 and K⃗ · L⃗. The unitary irreducible representations in
the principal series are labeled by ρ a real number and k a half-integer. In these representations
the Casimirs assume the values(

K2 − L2
)
|ρ, k⟩ = (ρ2 − k2 + 1) |ρ, k⟩ , K⃗ · L⃗ |ρ, k⟩ = ρk |ρ, k⟩ . (A.32)
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The generic unitary representation (ρ, k) is infinite dimensional since the group is non-
compact. However, we can decompose the representation (ρ, k) in an infinite number of S U(2)
representations that diagonalize L2 with different values of the spin j

(ρ, k) =
⊕

j≥k

j . (A.33)

The definition of the EPRL model is based on the canonical basis of (ρ, k). In this basis we
diagonalize L2 and L3

L2 |ρ, k; j,m⟩ = j( j + 1) |ρ, k; j,m⟩ , L3 |ρ, k; j,m⟩ = m |ρ, k; j,m⟩ . (A.34)

with j ≥ k and m = − j, . . . , j .
The Cartan parametrization [43, 42] of the group S L(2,C) is given by the map

g = ue
r
2σ3v−1 , (A.35)

where u, v ∈ S U(2), r ∈ [0,∞) is the rapidity and σ3 is the diagonal Pauli matrix the generator
of boosts along the z axis. The Haar measure with respect to this parametrization is [43, 42]

dg =
1

4π
sinh2 r dr du dv . (A.36)

Using the Cartan parametrization (A.35) the matrix elements of a group element g in the canon-
ical basis reads

Dρ,k
jmln(g) ≡ ⟨ρ, k; j,m| g |ρ, k; l, n⟩ = Dρ,k

jmln(ue
r
2σ3v−1) =

∑
a,a′

D j
ma(u)Dρ,k

jala′(e
r
2σ3)Dl

a′n(v−1) .

(A.37)
The subgroup S U(2) ⊂ S L(2,C) is generated by L⃗ and its matrix elements are given by S U(2)
Wigner matrices (A.4)

Dρ,k
jmln(u) = ⟨ρ, k; j,m| u |ρ, k; l, n⟩ = δ jlD j

mn(u) where u ∈ S U(2) . (A.38)

Moreover, e
r
2σ3 is diagonal, therefore Dρ,k

jmln(erσ3) = δaa′D
ρ,k
jala(erσ3) ≡ δaa′d

ρ,k
jla(r) where dρ,kjla are

called reduced matrix elements of S L(2,C). Summarizing

Dρ,k
jmln(g) =

∑
a

D j
ma(u) dρ,kjla(r) Dl

an(v−1) . (A.39)

The expression for dρ,kjlm(r) was given in [234, 235, 236, 43, 42]

dρ,kjlm(r) = (−1) j−l

√
(iρ − j − 1)! ( j + iρ)!
(iρ − l − 1)! (l + iρ)!

√
(2 j + 1)(2l + 1)
( j + l + 1)!

e(iρ−k−m−1)r

√
( j + k)!( j − k)!( j + m)!( j − m)!(l + k)!(l − k)!(l + m)!(l − m)!∑

s,t

(−1)s+te−2tr (k + s + m + t)!( j + l − k − m − s − t)!
t!s!( j − k − s)!( j − m − s)!(k + m + s)!(l − k − t)!(l − m − t)!(k + m + t)!

2F1

[
{l − iρ + 1, k + m + s + t + 1}, { j + l + 2}; 1 − e−2r

]
(A.40)
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where 2F1 is the Gauss hypergeometric function. The phase used in (A.40) is the same intro-
duced in [42], which ensures the reality of the booster function (1.23). The reduced matrix
elements (A.40) satisfy the following relation:

dρ,kjlm(r) = (−1) j−ldρ,kjl−m(r) . (A.41)

As a consequence, the matrices (A.38) have the property:

Dρ,k
jmln(g) = (−1) j−l+m−nDρ,k

j−ml−n(g) . (A.42)

We can write the S L(2,C) matrix elements of g−1 as:

Dρ,k
ln jm(g−1) = (−1) j−l+m−nDρ,k

j−ml−n(g) =
∑

a

(−1) j−l+m−n D j
−ma(u) dρ,kjla(r) Dl

a−n(v−1) , (A.43)

where in the first equality we used (A.42) (in addition to the S L(2,C) irrep properties) and in
the second one (A.39). Since there are no phases depending on the summed index, we conclude
that the orientation of the (4 jm) spins in the booster function (1.23) is irrelevant. This justifies
the fact that we draw the latter without arrows.

A.3 Approximation of a convergent series
In this appendix, we provide further details on the extrapolation scheme used in Section 1.7.
This is analogous to the more general Aitken’s delta-squared process [105], which accelerates
the rate of convergence of a sequence providing a good approximation technique . Consider
the series S =

∑∞
n an and cut-offed sum S N =

∑N
n an. By definition, the series is the limit of S N

for an infinite cut-off

S = lim
N→∞

S N = lim
N→∞

N∑
n

an =

∞∑
n

an . (A.44)

Suppose that the sequence an is positive and, from a certain point onwards, increasing such that

lim
N→∞

cN ≡ lim
N→∞

aN

aN−1
= lim

N→∞

S N − S N−1

S N−1 − S N−2
≡ L < 1 , (A.45)

where the ratios increase to L. The series S is convergent by the ratio test since the ratios are
increasing:

cN =
aN

aN−1
<

ak

ak−1
, ∀k > N . (A.46)

Hence we have aN+1 = aN
aN+1
aN

> aNcN , aN+2 > aN+1cN > aNc2
N , and in general aN+m > aNcm

N for
m > 0. We can provide a bound on the series observing that

S − S N =

∞∑
n=N+1

an =

∞∑
m=1

aN+m >

∞∑
m=1

aNcm
N = aN

cN

1 − cN
. (A.47)

Similarly, we have that ak
ak−1

< L ∀k > N by definition of L and monotonicity of the ratios.

S − S N =

∞∑
n=N+1

an =

∞∑
m=1

aN+m <

∞∑
m=1

aN Lm = aN
L

1 − L
. (A.48)
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Summarizing, we have an estimate from above and below of the value of the series as

S N + aN
cN

1 − cN
< S < S N + aN

L
1 − L

. (A.49)

If the ratios are decreasing instead of increasing, we obtain an estimate analog to (A.49) but
with inequalities operators inverted. Let us focus on (A.49) since it is the case relevant for the
cut-off approximation presented in Section 1.7. We rewrite (A.49) in terms of cut-offed sums
as

S NS N−2 − S 2
N−1

S N − 2S N−1 + S N−2
< S <

S N − S N−1L
1 − L

. (A.50)

Often, in real-world physical applications, the analytical expression of an is very compli-
cated. We cannot compute S but can still calculate the cut-offed sums S N with N as large as our
numerical computational resources allow. What is the best approximation of S we can find?
We will assume that we know S is convergent (so that the question is well-posed) and that the
ratios cN increase. We want to use the inequalities (A.50). We can numerically compute the
left-hand side of the inequality. What about the right-hand side? The convergence of S ensures
that lim

N→∞
cN = L exists, however in general we cannot compute the value of L. At the moment,

there is no clear strategy on how to compute L. In this work, we will consider two possibilities.
None of them is optimal, and we leave improvements to future work. Notice that no matter
what approximation we decide to adopt to compute L the right inequality of (A.50) will not
hold anymore.

For example, we can approximate L with the largest available ratio L ≈ cN . In particular, if
we insist and substitute in (A.50) the approximation L ≈ cN , the right quantity becomes equal
to the left one. We have to content ourselves with a lower-bound estimate of the amplitude
given

S ⪆
S NS N−2 − S 2

N−1

S N − 2S N−1 + S N−2
. (A.51)

The estimate (A.51) is similar to the strategy used in [72, 71]. We clarified that it is a lower
bound. Another possibility is to use the sequence of ratios cN computed numerically to estimate
the value of L. This extrapolation is slightly dangerous since its accuracy depends on how large
we can take the cut-off N. Of course, this is in addition to the lower bound (A.51).

In the following, we provide a concrete toy model example. Consider the series

S =
∞∑

n=1

1
n + 1

(9/10)n =
10
9

log(10) − 1 ≈ 1.558 . (A.52)

This series is exactly summable in terms of the log function. Nevertheless, we want to approx-
imate the series pretending not to know how to sum it, ignoring that any analytical calculation
is straightforward, and relying only on numerical tools. Let us assume that the largest possible
cut-off we can access is N = 15. We can compute the cut-offed sums

S 15 ≈ 1.480 , S 14 ≈ 1.467 , S 13 ≈ 1.452 . (A.53)



174 Chapter A. Appendix Chapter 1

We can immediately apply (A.51) to obtain

S ⪆
S 15S 13 − S 2

14

S 15 − 2S 14 + S 13
≈ 1.549 . (A.54)

The largest cut-offed sum is 5% off the actual value while the lower bound approximation
(A.54) is closer, being only 0.6% off. The numerical values for the ratios are

N 3 4 5 6 7 8 9 10 11 12 13 14 15
cN 0.675 0.720 0.750 0.771 0.788 0.800 0.810 0.818 0.825 0.831 0.836 0.840 0844

We extrapolate the limit at infinity of the ratios L fitting the data using the first few terms of
an inverse power law and keeping the constant term. It is a cheap and dirty way of extrapolating,
and one should be more careful. However, it is more than enough for our purposes. We use
Wolfram’s Mathematica built-in Fit method to perform the fit and find L ≈ 0.889. If we
substitute it in (A.50), keeping in mind the approximations we are making, we find the estimate

S ⪅
S 15 − S 14L

1 − L
≈ 1.583 , (A.55)

which is 1.6% larger than the actual value. Combining the two estimates, we obtain a range for
the series S ∈ [1.549, 1.583].
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B.1 Boundary observables
A useful check of the consistency of the geometrical picture and the numerical calculation can
be obtained by looking at the geometry of the two boundary tetrahedra. Their geometrical
properties are jointly fixed by choosing the boundary data and by the dynamics. Here we show
the resulting expectation values of some geometrical boundary operators, that is:

⟨O⟩ =
⟨W |O|Ψ⟩
⟨W |Ψ⟩

(B.1)

where the bra W contains the propagator, namely the dynamics, while the ket Ψ turns out
to be the tensor product of the in and out states of the LQG Hilbert space. With the term
"propagator," we refer to the square matrices (they are such since the self-energy triangu-
lation has two boundary tetrahedra) in which the element a, b corresponds to the amplitude
(2.13) with a = i+, b = i−. Computing the expectation values (B.1) of geometric operators
describing boundary tetrahedra is a significant numerical investigation, especially consider-
ing that computations carried out with the EPRL model are still in their primordial stages
[70, 45, 77, 57, 32, 72], and, as far as we know, at present time there are no such numerical
computations with spinfoams containing a bubble.

Since in the calculation of (B.1), the dimensional factor of the boundary intertwiners is
relevant, in this section, it is convenient to define a "normalized" amplitude as:

WN( j, i±,K) ≡ W( j, i±,K)
√

d{i±} , (B.2)

where d{i±} =
∏
±

(2i± + 1) = (2i+ + 1)(2i− + 1).

Angles

The angle operator measures the shape of the tetrahedra in twisted geometry:

Aab| j, i±⟩ = cos(θab)i± | j, i±⟩ (B.3)

which is interpreted as the cosine of the external dihedral angle between the faces a and b of
the tetrahedron defined on the node associated with the intertwiner i±. The spin-network basis
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states diagonalize the dihedral angle θab between faces a and b. The equation for the dihedral
angle cos(θab) in terms of intertwiner spin i± reads:

cos(θab)i± =
i±(i± + 1) − ja( ja + 1) − jb( jb + 1)

2
√

ja( ja + 1) jb( jb + 1)
. (B.4)

We consider the expectation value (B.1) of the angle operator (B.3) in any of the two (equal)
boundary regular tetrahedra of the triangulation using the spin network state. According to the
recoupling basis ( j1, j2), we focus on the angle between faces 1 and 2. The expectation value
on node + can be computed as:

⟨W |A12|W⟩
⟨W |W⟩

=

∑
i±

[
WN( j, i±,K)

]2 cos(θ12)i+∑
i±

[
WN( j, i±,K)

]2 , (B.5)

where we considered the case in which all boundary spins are equal to j. Carrying out the
numerical computation of (B.5), we obtain a value that is in agreement with the geometric
value of the external angle of a regular tetrahedron up to the tenth significant digit, as shown in
Figure B.1. We repeated the calculation for increasing values of boundary spins j up to j = 5,
also varying ∆l, finding exactly the same value and the unaltered precision. This is consistent

1 2 3 4 5 6 7 8 9 10 11 12−3.333500× 10−1

−3.333450× 10−1

−3.333400× 10−1

−3.333350× 10−1

−3.333300× 10−1

−3.333250× 10−1

K

〈A12〉 (j = 0.5, γ = 0.1, K, ∆l = 0)

Figure B.1: The dynamic expectation value of the cosine of the external dihedral angle operator (B.5).
We find an excellent agreement with the value −0.3̄.

with the fact that we are looking at the only angle which is completely sharp, while the others
turn out to be spread.

Volumes

The volume operator of a tetrahedron reads:

Vabc =

√
2

3
(8πGℏγ)

3
2

√∣∣∣∣J⃗a · J⃗b × J⃗c

∣∣∣∣ , (B.6)
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where J⃗a is the vector of S U(2) generators on link a. The operator (B.6) is not diagonal in the
spin network states. The dynamic expectation value (see [1] for the derivation) on node + turns
out to be:

⟨W |V |W⟩
⟨W |W⟩

=

∑
i±,i′+

√
d{i+}d{i′+}WN( j, i±,K)WN( j, i′+,K)v

(
i+, i′+, j

)
∑
i±

[
WN( j, i±,K)

]2 (B.7)

where v
(
i+, i′+, j

)
is the matrix element:

v
(
i+, i′+, j

)
=

√
2

3
(8πGℏγ)

3
2

∑
v

⟨ j, i′+|v⟩
√
|qv|⟨v| j, i+⟩, (B.8)

in which qv are the eigenvalues of the volume, while |v⟩ corresponds to the eigenvector relative
to the eigenvalue qv. In Figure B.2 we report the numerical values obtained from (B.7). We
see that the scaling of the expectation value of the boundary volume as a function of the spin
j corresponds to that existing between the volume of a regular tetrahedron and the area of one
of its faces, that is V ∝ j3/2. As for the angle operator, we repeated the calculation by varying
the number of shells, finding the same trend.

Finally, we repeated the calculation with coherent boundary states verifying that the classi-
cal contribution dominates the expectation value for the angle operator and volume.

The picture emerges that the boundary observables have an expected value that coincides
with the classical one and is not affected by divergence in the bulk of the spinfoam. Namely,
even if the amplitude (2.13) is divergent, the expectation values (B.5), (B.7) are finite and fully
consistent with the geometry of a regular tetrahedron.

B.2 Internal contributions
We add here a tentative analysis of the kind of configurations that contribute to the divergence.
For this aim, it is convenient to rewrite equation (2.13) as

W ( j, i, γ; K,∆l) =
∑
jab≤K

ω( jab; j, i, γ,∆l). (B.9)

Figure B.2: The dynamic expectation value of the volume operator (B.7). We neglected all the constant
factors in (B.7) and (B.8). The volumes scale as j

3
2 .
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Figure B.3: The largest individual contributions to the divergent amplitude (2.13) come from “semi-
classical” bulk spins configurations with j̄ ∼ j and low σ. Triangular inequalities result in a triangular
shape in the plane

(
j̄, σ

)
.

Now, consider the average and the standard deviation of the sextuplet of internal spins { jab}:

j̄( jab) =
1
6

∑
a,b

jab, σ( jab) =

√
1
6

∑
a,b

( jab − j̄ab)2 (B.10)

and define
w( j̄, σ; j, i, γ,K,∆l) =

∑
j̄( jab)= j̄
σ( jab)=σ

ω( jab; j, i, γ,∆l). (B.11)

That is, we write the contributions to the divergence as a function of the average and standard
deviation of the internal spins, adding the contributions with different sextuplets with the same
average and standard deviation. The function 100 −

∣∣∣log w( j̄, σ; j, i, γ,K,∆l
∣∣∣) is plotted for

fixed j, i, γ,∆l and various values of K in Figure B.3, where the factor 100 is only for visual
purposes. Increasing ∆l increases the value of each point while rising K also implies adding
more configurations, as shown in Figure 2.4. Figure B.3 indicates that the largest individual
contributions to the amplitude (2.13) come from “semiclassical” bulk spins configurations with
j̄ ∼ j and low σ, as one might expect. At the same time, the divergence comes from the
proliferation of smaller contributions with arbitrarily high spin and deviations.

We also note that the divergence of the self-energy, manifestly shown in Figure 2.9, occurs
in the limit ∆l → ∞ only. In fact, in [46], it is shown that the sum over the internal spins of
the amplitude (2.13) is convergent in the simplified model ∆l = 0. Even if an analytical proof
is not yet available, it seems likely that the amplitude has a finite limit K → ∞ for each finite
∆l since the internal spin configurations in the limit become more and more suppressed. Since
also the limit ∆l→ ∞ at fixed K is finite, we can schematize the role of the two limits with the
following four-node diagram:

W(K,∆l) convergence?

convergence divergence.

K→∞

∆l→∞ ∆l→∞

K→∞
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C.1 Topological BF SU(2) spinfoam theory
Calculations with the topological BF SU(2) spinfoam theory are straightforward analytically
and numerically. Therefore they provide a convenient test for the techniques we use and the
choice of parameters we make with the EPRL theory.

The analytical calculation reduces to integrating group-valued delta functions, and the nu-
merical calculations can be comfortably done on a standard laptop using optimized libraries to
compute Wigner symbols [91, 170].

This theory’s boundary data, face, and edge amplitudes are the same as the EPRL spinfoam
theory (3.3). The vertex amplitude is simpler and consists of a S U(2) invariant Av( j f , ie) =
{15 j} (A.30). The theory is affected by large spin divergences, and the renormalization is well
studied [144, 54] and is related to residual diffeomorphism gauge symmetry. We can rewrite
the amplitude (3.3) in a more suitable way for analytical calculations. The amplitude can be
cast in terms of integrals (with the invariant measure) over a copy of S U(2) for each edge of
S U(2) irreducible representations of spin j f for each face. Boundary edges are contracted with
4-valent intertwiners. Bulk (closed) faces the S U(2) character Tr D( j f ) of the product of all the
group elements of the edges composing the face g f . The sum over the spin associated with the
face j f can be performed exactly∑

j f

A f ( j f ) Tr D( j f )(g f ) =
∑

j f

(2 j f + 1) Tr D( j f )(g f ) = δ(g f ) , (C.1)

in terms of the delta function over the group. The group elements are usually interpreted as the
S U(2) holonomy providing the parallel transport between reference frames associated with the
spinfoam edges. As expected from a topological theory, the delta function on spinfoam faces
forces holonomy around each bulk face to be trivial. In this form, the amplitude calculation
reduces to integrating out delta functions. Divergences of the amplitudes manifest as delta
functions evaluated at the identity. We regularize them with a cutoff of K.

δ(1) ≈
K∑

j f=0

(2 j f + 1) Tr D( j f )(1) =
K∑

j f=0

(2 j f + 1)2 =
8
3

k3 + 6k2 +
13
3

k + 1 = O(K3) . (C.2)
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We compute the degree of divergence analytically of four diagrams in this paper 6F(a),
4F(a), 4F(c), and 4F(e).

The BF amplitude of the melonic self-energy diagram 6F(a) is

A(BF)
6F(A)( jb, ib; K) =

∑
m1m2m3m4

(
jb jb jb jb

m1 m2 m3 m4

)ib ( jb jb jb jb

n1 n2 n3 n4

)ib

∫ 6∏
e=1

dgeD j1
m1n1

(g1g2g6) D j2
m2n2

(g1g3g6) D j3
m3n3

(g1g4g6) D j4
m4n4

(g1g5g6)

δ
(
g2g−1

3

)
δ
(
g2g−1

4

)
δ
(
g2g−1

5

)
δ
(
g3g−1

4

)
δ
(
g3g−1

5

)
δ
(
g4g−1

5

)
.

(C.3)

Performing all the integrals one by one and using the invariance of the intertwiners, we get

A(BF)
6F(A)( jb, ib; K) =

1
2ib + 1

δ(1)3 = O(K9) . (C.4)

The degree of divergence of the melonic self-energy diagram is 9.
Similarly, we can look at the BF amplitude of the diagram 4F(a),

A(BF)
4F(A)( jb, ib; K) =

∑
m1m2m3m4

(
jb jb jb jb

m1 m2 m3 m4

)ib ( jb jb jb jb

n1 n2 n3 n4

)ib

∫ 6∏
e=1

dgeD jb
m1n1

(g1g2g3g4g6) D jb
m2n2

(g1g2g3g4g6) D jb
m3n3

(g1g2g3g4g6) D jb
m4n4

(g1g2g3g4g6)

δ (g2) δ (g4) δ
(
g3g−1

5

)
δ
(
g2g5g4g−1

5

)
.

(C.5)

The result of the integrals is

A(BF)
4F(A)( jb, ib; K) =

1
2ib + 1

δ(1) = O(K3) . (C.6)

The degree of divergence of the diagram 4F(a) is 3. Notice that the divergence of this diagram
is subdominant to the melonic self-energy one.

In total analogy, the BF amplitude of the diagram 4F(c) is

A(BF)
4F(C)( jb, ib; K) =

∑
m1m2m3m4

(
jb jb jb jb

m1 m2 m3 m4

)ib ( jb jb jb jb

n1 n2 n3 n4

)ib

∫ 6∏
e=1

dgeD jb
m1n1

(g1g6) D jb
m2n2

(
g1g3g5g−1

3 g6

)
D jb

m2n2

(
g1g2g5g−1

4 g6

)
D jb

m2n2

(
g1g2g−1

5 g−1
4 g6

)
δ
(
g2g−1

3

)
δ
(
g2g−1

4

)
δ
(
g3g−1

4

)
δ (g5) .

(C.7)

The result of the integrals is

A(BF)
4F(C)( jb, ib; K) =

1
2ib + 1

δ(1) = O(K3) , (C.8)
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so the degree of divergence of the diagram 4F(c) is 3.

Finally the BF amplitude of the diagram 4F(e) is

A(BF)
4F(D)( jb, ib; K) =

∑
m1m2m3m4

(
jb jb jb jb

m1 m2 m3 m4

)ib ( jb jb jb jb

n1 n2 n3 n4

)ib

∫ 6∏
e=1

dge

∫
D jb

m1n1
(g1g6) D jb

m2n2
(g1g2g6) D jb

m3n3

(
g1g−1

2 g6

)
D jb

m4n4

(
g1g3g4g5g−1

3 g6

)
δ (g2) δ (g4) δ (g5) δ

(
g2g3g4g5g−1

4 g−1
5 g−1

3

)
.

(C.9)

The result of the integrals is

A(BF)
4F(D)( jb, ib; K) =

1
2ib + 1

δ(1) = O(K3) . (C.10)

Once again, a degree of divergence of 3 for the diagram 4F(e).

We compare the analytic calculation of the degree of divergence of the diagrams 4F(a),
4F(c), and 4F(e) with the numerical estimation done using the same technique we employ for
the EPRL model. The computation is straightforward and can be done in seconds using the
BF vertex of sl2cfoam-next. We fix the homogeneous cutoff to K ⪅ 10 as a prototype for
the EPRL calculation. In all three cases, we can fit the amplitudes with a cubic polynomial
(see Figure C.1), finding a perfect agreement with the analytic calculations. Furthermore, it
suggests that using a cutoff of order 10 is not a limiting factor in our analysis.
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Figure C.1: Plot of the numerical values of the BF amplitude of the spinfoam diagram 4F(a), 4F(c), and
4F(e) (left to right) with boundary spins jb = 1

2 (orange dots) and the corresponding fits (blue band).
The leading order of the fits are A4F(A)( 1

2 , 0; K) ≈ (2.657, 2.667)k3, A4F(C)( 1
2 , 0; K) ≈ (2.666, 2.667)k3,

A4F(D)( 1
2 , 0; K) ≈ (2.666, 2.667)k3. For all cases, it is compatible with the analytical value of 8/3k3 of

(C.2).

C.2 Other Diagrams with Two Vertices
Here we present some diagrams with two vertices and two boundary edges, but that is ruled
out by (at least) one of the other two conditions that (i) there are exactly four boundary faces,
and each boundary face contains both boundary edges, and (ii) the propagators are trivial and
preserve the order of the faces. The examples we give here are not exhaustive (there are many
more diagrams besides the ones we discuss here) and are only meant to survey other possible
contributions to the self-energy calculation. Whether these diagrams (and others) should be
included or not depends on the symmetries of the spinfoam model. We note that we imposed
these conditions as a simplifying assumption to reduce the number of diagrams we consider
as a first step. To calculate the full self-energy of the propagator (to two vertices), it may be
necessary to include the diagrams that do not satisfy these conditions.

These two conditions are quite different. The first condition tracks the boundary faces
through the spinfoam and requires that each boundary face traverse the diagram and exit on the
outgoing edge. Another way to understand this condition is that it requires all boundary faces
to connect the spinfoam’s initial and final boundary edges. This condition is not guaranteed
to be satisfied because the boundary face could turn around and exit on the ingoing edge. A
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Figure C.2: Some examples of spinfoam diagrams we did not consider.

diagram with this property (a face that enters and leaves the diagram on the same edge) is only
possible if two faces of the edge have the same spin, for example, j1 = j2. For this reason, this
type of diagram can only contribute to the self-energy calculation for specific edge propagators,
namely those with faces with at least one repeated spin. On the other hand, for an edge whose
four faces all have different spins, these diagrams cannot contribute. Although it may seem
unusual to have diagrams that contribute to some choices of boundary spins but not others
(given the same boundary graph), if all possible paths are to be summed over, there appear to
be more paths possible in the presence of symmetries in the spin labels of the propagator.

In Fig. C.2, the diagrams (A) and (B) are two examples of spinfoams that violate condition
(i). These two diagrams fall into two subcategories: diagram (A) is disconnected, while dia-
gram (B) is connected. In diagram (A), the spinfoam is completely disconnected, and it could
contribute to the self-energy only for propagators where the four faces can be paired up, in this
case, j1 = j4 and j2 = j3. In contrast, diagram (B) is connected, and for this spinfoam, only
two of the faces of the propagator need to be paired up. In this case, j2 = j3 (we highlight them
in dark red and blue in the picture).

As an aside, note that (either) half of diagram (A) may be relevant for no-boundary cal-
culations in cosmology, where one wishes to calculate the transition from the ‘no-geometry
vacuum’ state (with no quanta of geometry) to an excited state corresponding to a cosmologi-
cal space-time.

The second condition that the order of the faces in the propagator is preserved ensures
that there are no ‘twists’ in the internal propagators. We imposed this condition for simplic-
ity because it drastically reduces the number of diagrams to consider. Taking the geometric
perspective that the propagator represents a quantum tetrahedron, a cyclic permutation of three
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faces can be seen as a rotation. In comparison, the interchange of two faces is a reflection
(or a parity transformation). Since there is no preferred background, it may seem natural that
rotations should be a symmetry of the theory [237]. However, arguments exist that parity
transformations should not be allowed [238, 239]. Note that any number of interchanges in the
order of the faces corresponds to either a rotation or a parity transformation: an even number
of interchanges of faces gives a rotation. In contrast, an odd number is a parity transformation
(perhaps composed of a rotation).

Examples of these two possibilities are given in Fig. C.2, where diagram (C) contains
one interchange of faces corresponding to a parity transformation. At the same time, there
is a cyclic permutation of three faces in diagram (D) corresponding to a rotation. Note that
‘twisted’ diagrams often have fewer internal faces than similar spinfoams without twists in the
internal propagators. As a technical aside, note that the edge’s intertwiner refers to a specific
recoupling choice, so tracking how the recoupling scheme transforms under a rotation or parity
transformation is essential.

Also, note that a propagator that completely reverses the order of the faces from ( j1, j2, j3, j4)
to ( j4, j3, j2, j1) can be obtained through rotations and corresponds to a change in whether the
propagator is being viewed from ‘above’ or from ‘below’; an example is given in diagram (E)
in Fig. C.2. It may seem appropriate that this transformation be allowed for propagators in
spinfoams, even if different rotations and reflections are not.

The spinfoam diagrams that must be included in the calculation depend on the symmetries
of the spinfoam model. For example, the spinfoam model derived from colored group field
theory has very rigid combinatorics (thereby ensuring a one-to-one correspondence between
any given spinfoam diagram and the dual simplicial complex) that does not allow any permuta-
tions in the faces of the propagator [240]. As a result, the number of spinfoams that need to be
computed (with a given number of vertices) for any given boundary state will be much smaller
for colored group field theories, thereby significantly simplifying the calculation. On the other
hand, a model that allows permutations of the faces in the propagators will have many more
diagrams contribute when calculating the self-energy and presumably also when calculating
different amplitudes.

To summarize, in this paper, we imposed some conditions on the self-energy diagrams
we considered to reduce the number of spinfoams we need to calculate, as otherwise, a large
number of diagrams need to be computed. We stress that these conditions are used only to
simplify the task for a first exploration of self-energy diagrams beyond the melonic diagram
shown in Figure 6F(a) (that has already been studied in some detail [102, 71, 72, 46]). Although
determining the right conditions to be imposed on the self-energy diagrams will ultimately
depend on the symmetries of the theory (these symmetries could be defined directly at the
level of the spinfoam model or instead in a group field theory from which one can derive
the spinfoam expansion), it is possible that the conditions imposed here may be too strict, in
which case it would be necessary to relax these conditions, depending on the symmetries of
the spinfoam model.
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D.1 Vertex Amplitudes
In this Appendix, we report the definition of the Topological BF SU(2) spinfoam vertex ampli-
tude.

ABF
v ( j1, j2, j3, j4, j5, j6, j7, j8, j9, j10; i1, i2, i3, i4, i5) =


i1 j3 i4 j6 i2

j4 j10 j8 j5 j1

j7 i5 j9 i3 j2

 . (D.1)

The SU(2) invariant in (D.1) is a {15 j} symbol of the first kind. According to the conventions
of [169], we write it in terms of Wigner’s {6 j} symbols.

j1 j2 j3 j4 j5

l1 l2 l3 l4 l5

k1 k2 k3 k4 k5

 = (−1)
∑5

i=1 ji+li+ki
∑

x

(2x + 1)
{

j1 k1 x
k2 j2 l1

}{
j2 k2 x
k3 j3 l2

}

×

{
j3 k3 x
k4 j4 l3

}{
j4 k4 x
k5 j5 l4

}{
j5 k5 x
j1 k1 l5

}
.

(D.2)

In this work we also use the in-line notation for

{6 j}( j1, j2, j3, j4, j5, j6) =
{

j1 j2 j3

j4 j5 j6

}
. (D.3)

In the booster function decomposition, the Lorentzian EPRL vertex amplitude is defined as:

Av ( j1, j2, j3, j4, j5, j6, j7, j8, j9, j10; i1, i2, i3, i4, i5) =

∞∑
l f= j f

∑
ke


i1 j3 k4 l6 k2

j4 l10 l8 l5 j1

l7 k5 l9 k3 j2

 (2k2 + 1)(2k3 + 1)(2k4 + 1)(2k5 + 1)

Bγ
4 ( j5, j6, j7, j1, l5, l6, l7, j1; i2, k2) Bγ

4 ( j8, j9, j2, j5, l8, l9, j2, l5; i3, k3)
Bγ

4 ( j10, j3, j6, j8, l10, j3, l6, l8; i4, k4) Bγ
4 ( j4, j7, j9, j10, j4, l7, l9, l10; i5, k5) .

(D.4)
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The booster functions are one-dimensional integrals over the rapidity parameter r of the re-
duced matrix elements, in the γ-simple unitary representation of S L(2,C).

Bγ
4 ( j1, j2, j3, j4, l1, l2, l3, l4; i, k) =∑

p f

(
l1 l2 l3 l4

p1 p2 p3 p4

)(k)
∫ ∞

0
dr

1
4π

sinh2 r
4⊗

f=1

dγ j f , j f

l f j f p f
(r)

 ( j1 j2 j3 j4

p1 p2 p3 p4

)(i)

.
(D.5)

The expression for dγ j, j
jlm (r) has been written in [43, 42]:

d(γ j, j)
jlp (r) =(−1)

j−l
2
Γ ( j + iγ j + 1)
|Γ ( j + iγ j + 1)|

Γ (l − iγ j + 1)
|Γ (l − iγ j + 1)|

√
2 j + 1

√
2l + 1

( j + l + 1)!

×

[
(2 j)!(l + j)!(l − j)!

(l + p)!(l − p)!
( j + p)!( j − p)!

]1/2

e−( j−iγ j+p+1)r

×
∑

s

(−1)s e−2sr

s!(l − j − s)! 2F1[l + 1 − iγ j, j + p + 1 + s, j + l + 2, 1 − e−2r] .

(D.6)

where 2F1 is the Gauss hypergeometric function. In (D.5) we used a short notation for the
(4 jm) Wigner symbols. They are the contraction of two Wigner (3 jm) symbols (the unique
intertwiner of three S U(2) representation) labeled by the virtual spin k:(

j1 j2 j3 j4

p1 p2 p3 p4

)(k)

=
∑

pk

(−1)k−pk

(
j1 j2 k
p1 p2 pk

) (
k j3 j4

−pk p3 p4

)
. (D.7)

The large quantum number limit of the booster functions (D.5) has been studied in [88]. They
possess an appealing geometrical interpretation in terms of boosted tetrahedra.

D.2 Monte Carlo summation
Suppose we want to compute the sum

S =
∑
j∈J

a j , (D.8)

where J is a finite subset of (N/2)F and j is a multi-index. So far, we are just muddling the
waters with a complicated notation to give a nod to the spinfoam application. If VJ = |J| is
the cardinally of the set, we can always map it in the interval of natural numbers between 1 and
VJ . The sum (D.8) is a fancy way to represent a sum over an integer index from 1 to VJ .

If VJ is very large, the numerical computation of S can result in a highly resource-hungry
task. Therefore, we want to use (discrete) Monte Carlo techniques to approximate its value.

We define a uniform probability density function over the set J as RJ . We assume that RJ
is normalized to 1. The probability associated to every element of J with RJ is 1/VJ . The
hypothesis that the set J is finite ensures that RJ exists.
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The fundamental step towards the implementation of Monte Carlo is to interpret the sum
(D.8) as the expectation value of the terms of the sum a j using RJ

S = VJ
∑
j∈J

a j

VJ
= VJ E

[
a(RJ )

]
. (D.9)

We use a discrete uniform probability distribution because we assume we do not know in
advance which term of the sum a j contributes the most. This information would allow sam-
pling from a more efficient probability distribution using importance sampling Monte Carlo.
Alternatively, it would be possible to use Markov Chain Monte Carlo methods, such as the
Metropolis-Hastings algorithm. This approach has been applied recently in [78] to compute
observables in spinfoams with many boundary degrees of freedom.

We approximate the expectation value in (D.9) using a sample of the set J . We use the
probability distribution RJ and randomly extract Nmc elements from the set J . We denote this
set as Jmc. Strictly speaking, Jmc is not a subset of J since it can contain elements more than
once. The Monte Carlo estimate of S is given by

S mc =
VJ
Nmc

∑
j∈Jmc

a j . (D.10)

The law of large numbers ensures that the average of a large number of samples becomes closer
and closer to the expected value as more samples are performed. Since S mc is a sample of the
sum S we have that

S mc Nmc→∞
−−−−−→ S . (D.11)

The sum S mc (D.10) is the Monte Carlo estimate of S . We consider a “large" number of samples
Nmc as we are interested in a numerical approximation of (D.9).

The amount of computational resources necessary to compute S mc scales with the number
of samples Nmc and not the size of the original set VJ . The number of samples Nmc is a
calculation parameter that we can tune. We must find a balanced value for Nmc to have a good
approximation and save resources.

D.3 Aitken extrapolation
The Aitken’s delta-squared process or Aitken extrapolation [105] is a numerical recipe used to
accelerate a sequence’s convergence rate. Suppose you have a convergent sequence S n with
S = limn→∞ S n. If S n converges linearly, namely

lim
n→∞

|S n − S |
|S n−1 − S |

= λ , (D.12)

with 0 < λ < 1. Linear convergence means the sequence is closer to its limit by almost the
same amount with every step. In this case, we can approximate S starting from the approximate
relation

S n − S
S n−1 − S

≈
S n−1 − S
S n−2 − S

, (D.13)
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and solve for S to find

S ≈ A[S n] ≡
S nS n−2 − S 2

n−1

S n − 2S n−1 + S n−2
. (D.14)

The sequence A[S n] is the Aitken extrapolation of S n and converge to S faster than linear (see
the original paper [105] or the book [241] for a proof) meaning that

lim
n→∞

|A[S n] − S |
|S n − S |

= 0 . (D.15)

The requirement of linear convergence of S n is equivalent to asking that for n large enough

S n ≈ S +Cλn , (D.16)

for some constant C and for |λ| < 1. This allows us to estimate λ without knowing the limit
S , as is often the case. In practice, if we knew the value of the limit S , we would not need to
extrapolate S n. The limit of differences

lim
n→∞

S n − S n−1

S n−1 − S n−2
= λ . (D.17)

If the rate convergence of S n is of higher order (quadratic or more), we do not need to ex-
trapolate as the convergence is already very fast. However, we should look for a different
extrapolation technique if the convergence is sub-linear. We refer to the Appendix of [9] for an
explicit and straightforward example.

D.4 Diagrams of the melonic self-energy and vertex renor-
malization spinfoam amplitudes

This Appendix reports the self-energy and vertex renormalization spinfoam amplitudes’ wiring
diagrams, highlighting the internal faces’ combinatorics. These are shown in Figure D.1 and
Figure D.2. The notation for each intertwiner is used in equations (4.10) and (4.11). We do not
explicitly label the spins so as not to clutter the picture.
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Figure D.1: Wiring of the 2-complex of the self-energy spinfoam diagram. The internal faces are high-
lighted with different colors. Boundary intertwiners have a blue box corresponding to the integrals
removed to regularize the amplitude.
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Figure D.2: Wiring of the 2-complex of the vertex renormalization spinfoam diagram. The internal
faces are highlighted with different colors. Boundary intertwiners have a blue box corresponding to the
integrals removed to regularize the amplitude.
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E.1 Discrete truncated normal distribution
We report in this appendix the definition of truncated normal distribution rounded to integers.
For simplicity, we write the equations for a one-dimensional variable. The probability density
function of a normal distribution N(x, σ) with mean zero and standard deviation σ is defined
as:

N(x, σ) =
1

σ
√

2π
e−

x2

2σ2 , (E.1)

where x ∈ R. We can define the probability distribution function of a normal distribution with
mean zero, and standard deviation σ rounded to integers as:

Nd(n, σ) = Φ(n + 0.5, σ) − Φ(n − 0.5, σ) , (E.2)

where n ∈ N and Φ(x, σ) is the cumulative distribution function of a normal distribution with
mean zero and standard deviation σ, defined as:

Φ(x, σ) =
1

σ
√

2π

∫ x

−∞

e−
t2

2σ2 dt . (E.3)

For convenience, let us also define:

Φ(a, b;σ) = Φ(b, σ) − Φ(a, σ) =
1

σ
√

2π

∫ b

a
e−

t2

2σ2 dt . (E.4)

The cumulative distribution function of a discrete (integer) Gaussian is written as:

Φd(n1, n2;σ) = Nd(n1, σ) +Nd(n1 + 1, σ) + · · · +Nd(n2, σ) . (E.5)

With the above definitions, we can define the probability distribution function of a truncated
normal distribution rounded to integers Nd,t(n, n1, n2;σ) between n1 and n2 as:

Nd,t(n, n1, n2;σ) =
Nd(n, σ)
Φd(n1, n2;σ)

. (E.6)
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E.2 Metropolis-Hastings parameters
We report in the tables below the parameters used in the Metropolis-Hastings algorithm. These
parameters are used for all calculations in this paper except for the data in Figures 5.17 and
5.6.

BF 4-simplex
j NMC b σ C
0.5 106 102 0.97 5
1.0 106 102 0.94 5
1.5 106 102 0.90 5
2.0 106 102 0.90 5
2.5 107 102 0.90 5
3.0 107 102 0.90 5
3.5 107 102 0.90 5
4.0 107 102 0.90 5
4.5 107 103 0.90 5
5.0 107 103 0.90 5
5.5 107 103 0.90 5
6.0 107 103 0.90 5

EPRL 4-simplex
j NMC b σ C
0.5 107 103 0.97 5
1.0 107 103 0.94 5
1.5 107 103 0.90 5
2.0 107 103 0.90 5
2.5 107 103 0.90 5
3.0 107 103 0.90 5
3.5 107 103 0.90 5
4.0 107 103 0.90 5
4.5 107 103 0.90 5
5.0 107 103 0.90 5
5.5 107 103 0.90 5
6.0 107 103 0.90 5

BF star
j NMC b σ C
0.5 106 103 0.40 32
1.0 106 103 0.39 32
1.5 106 103 0.37 32
2.0 106 103 0.35 32
2.5 106 103 0.35 32
3.0 3 ·106 103 0.35 32
3.5 3 ·106 103 0.35 32
4.0 5 ·106 103 0.35 32
4.5 5 ·106 103 0.35 32
5.0 5 ·106 103 0.35 32
5.5 7 ·106 103 0.35 32
6.0 7 ·106 103 0.35 32

EPRL star
j NMC b σ C
0.5 107 103 0.40 32
1.0 3 ·107 103 0.39 32
1.5 3 ·107 103 0.35 32
2.0 3 ·107 103 0.35 32
2.5 3 ·107 103 0.35 32
3.0 5 ·107 103 0.37 32
3.5 5 ·107 103 0.37 32
4.0 5 ·107 103 0.38 32
4.5 5 ·107 103 0.39 32
5.0 5 ·107 103 0.40 32
5.5 8 ·107 103 0.40 32
6.0 8 ·107 103 0.40 32

TABLES: Parameters used in the Metropolis-Hastings algorithm. From left to right: j is the spin
attached to the links of the star spinfoam, NMC is the number of Monte Carlo iterations, b is the number
of burn-in iterations, σ is the standard deviation of the truncated normal proposal distribution and C
corresponds to the number of Markov chains that we averaged to improve the statistic and measure the
statistical fluctuations.

A general difference we observed between the BF and EPRL models is a greater statistical
fluctuation in the expectation values of operators for EPRL as j increases, even though the
dimension of the intertwiners’ space is the same. To reduce the statistical fluctuations in EPRL,
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we tried both to increase the number of Markov chains to be averaged by order of magnitude (in
the code [103], the latter are automatically parallelized on the available cores) and to increase
the number of Monte Carlo iterations NMC. We found good precision in both cases, and for this
paper, we decided to use the data obtained with the second approach, as shown in the tables.

Notice the role that the Metropolis-Hastings parameters play in the sampling process.
While increasing the number of chains to be averaged has the effect of improving the accuracy
in the determination of the operator’s mean value (and the corresponding standard deviation),
increasing the number of Monte Carlo iterations NMC implies reducing the standard deviation
of the statistical sampling. Therefore, satisfying statistical precision is achieved when these
two parameters are sufficiently high and balanced. While we did not find relevant differences
by modifying the number of burn-in iterations, we set the optimal standard deviation of the
proposal distribution σ by requiring an acceptance rate of intertwiners draws [in] around 30%
in the sampling algorithm.

E.3 Booster functions
The booster functions [47], [45], also known as B4 functions [42], are the non compact resid-
uals of the S L(2,C) integrals. These functions encode all the details of the EPRL model, such
as the Y−map. We define them as1:

B4

(
j f , l f ; i, k

)
≡

1
4π

∑
{p f }

(
j f

p f

)(i)
∫ ∞

0
dr sinh2 r

4∏
f=1

d(γ j f , j f )
j f l f p f

(r)

 ( l f

p f

)(k)

. (E.7)

where d(ρ,k)(r) are the boost matrix elements for γ-simple irreducible representations of S L(2,C)
in the principal series and γ is the Immirzi parameter. In their most general formulation, the
booster functions turn out to be the S L(2,C) analogs of the usual Clebsch-Gordan coefficients
for the rotation group S U(2). The semi-classical limit of booster functions was discussed in
[30]. The general explicit form of the boost matrix elements can be found in the literature
[43, 42]. In the case of simple irreducible representations, these turn out to be [42]:

d(γ j, j)
jlp (r) = (−1)

j−l
2
Γ( j+iγ j+1)
|Γ( j+iγ j+1)|

Γ(l−iγ j+1)
|Γ(l−iγ j+1)|

√
2 j+1

√
2l+1

( j+l+1)!

[
(2 j)!(l + j)!(l − j)! (l+p)!(l−p)!

( j+p)!( j−p)!

]1/2

×e−( j−iγ j+p+1)r ∑
s

(−1)s e−2sr

s!(l− j−s)! 2F1[l + 1 − iγ j, j + p + 1 + s, j + l + 2, 1 − e−2r] , (E.8)

where 2F1[a, b, c, z] is the hypergeometric function.

***

1In this Appendix, we do not indicate the dependence on multiple variables with the curly brackets in order
not to weigh down the notation
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F.1 Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) technique used
to generate samples from a complex or high-dimensional target probability distribution. To
discuss the algorithm, we consider a multidimensional discrete variable x on a state space χ,
and a quantity O which can be computed as:

O =

∑
x∈χ

W2
χ (x) o (x)∑

x∈χ
W2

χ (x)
, (F.1)

where W2
χ(x) is the unnormalized target distribution on χ. We refer to the normalized target

distribution as follows:

fχ(x) ≡
W2

χ (x)∑
x∈χ

W2
χ (x)

, (F.2)

Suppose Wχ(x) can be computed (up to a multiplying constant). In that case, the Metropolis-
Hastings algorithm allows constructing an ergodic Markov chain on the space χ with length
Nmc: [x]1, [x]2, . . . , [x]Nmc such that each state is indirectly sampled from the normalized target
distribution (F.2). We use the notation [x]s to denote the s-th state along the chain. A positive
proposal distribution gχ on the space χ is required to transit from each state to the next one.

We use the random walk Metropolis-Hastings, in which the sampler locally explores the
neighborhood of the current state [x]s of the Markov chain, proposing a candidate state [x]′

sampling from a chosen probability distribution (usually a uniform or a normal distribution).
That is, given the current state [x]s, the algorithm suggests a candidate state depending on [x]s.
As proposal distribution, in this paper, we consider a truncated normal distribution rounded to
integers. Before writing its expression, we first define the cumulative distribution function of a
one-dimensional normal distribution with zero mean and standard deviation σ:

Φσ(x) =
1

σ
√

2π

∫ x

−∞

e−
t2

2σ2 dt . (F.3)

If the space χ is multidimensional, gχ is a multivariate distribution. We sample each component
of x from a one-dimensional distribution independent of the others. We write the expression of
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a one-dimensional normal distribution rounded to integers, truncated between n1 and n2, with
standard deviation σ as:

gn1,n2,σ (n) =
Φσ(n + 0.5) − Φσ(n − 0.5)

n2∑
k=n1

[Φσ(k + 0.5) − Φσ(k − 0.5)]
. (F.4)

For convenience, let us also define the truncated coefficients:

Cn1,n2,σ ([x]) =
N∏

i=1

 n2−xi∑
n=n1−xi

[Φσ(n + 0.5) − Φσ(n − 0.5)]

 , (F.5)

where we defined with xi the i-th component of the draw [x]. To build the Markov Chain, we
compute the ratio between the target distribution (F.2) times the truncated coefficients (F.5) at
the proposal state and the same quantity at the current state. Then, we accept the proposal state
with a probability equal to this state. Otherwise, we stay at the current point. The initial steps
of the algorithm are usually removed as burn-in iterations during the thermalization phase.
The detailed implementation of the Metropolis-Hastings algorithm applied to spinfoams is
described in Section 6.4.2 of the main text.

After storing a Markov chain with the desired length Nmc, we can compute (F.1) applying
Monte Carlo on the multidimensional sum over x, using the chain itself as a statistical sample.
When the number of samples Nmc is large enough, we obtain a reasonably good estimate of the
original quantity:

Omc =
1

Nmc

Nmc∑
s=1

o ([x]s) ≈ O for Nmc ≫ 1 . (F.6)

The Monte Carlo estimate (F.6) is exactly equal to (F.1) only in the (ideal) limit of an infinite
number of samples. The convergence is faster with respect to the standard version of Monte
Carlo [138] (in which the draws are sampled randomly) because each draw is generated from
the distribution (F.2).

There is a non-zero correlation between [x]s and [x]s+d where d ≥ 1. This is because each
proposed state depends on the previous one (as the process is Markovian). For each quantity
(F.6) we can compute the autocorrelation function with lag d:

RO (d) =

Nmc∑
s=d+1

(
o([x]s) − ONmc

) (
o([x]s−d) − ONmc

)
Nmc∑
s=1

(
o([x]s) − ONmc

)2
. (F.7)

Since the Markov Chain converges to a stationary distribution, the autocorrelation F.7 should
decrease as the lag d increases.

Finally, we report in table F.1 the parameters used in the MCMC algorithm 3 for the calcu-
lations considered in this paper.
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MH - parameters
j Nmc b σ C
0.5 106 10 0.40 30
1.0 106 10 0.35 30
1.5 106 10 0.35 30
2.0 106 10 0.35 30
2.5 106 10 0.35 30
3.0 106 10 0.35 30
3.5 106 10 0.32 30
4.0 106 10 0.30 30

Table F.1: Parameters used in the MCMC algorithm 3. From left to right: j is the boundary spin
of spinfoam amplitude, Nmc is the number of iterations over the chain, “b" is the number of burn-in
iterations, σ is the standard deviation of the proposal distribution and “C" corresponds to the number
of Markov chains that we stored.

F.2 S U(2) recoupling coefficients
In this Appendix, we report some definitions of standard invariant Wigner symbols. We refer to
[169, 218] for the analytical definitions and graphical representations of the general expressions
which appear in the recoupling theory of S U(2) representations.

We explicitly define the 4 jm symbol, which is less common than the other Wigner symbols
usually considered in the literature. It can be obtained by contracting two 3 j Wigner symbols
using an intertwiner i. Three inequivalent recouplings correspond to how four spins of S U(2)
representations can be coupled in pairs. Each different recoupling corresponds to a (different)
4 jm symbol for the given set of spins j1, j2, j3, j4. We choose to couple spins j1, j2 with j3, j4:(

j1 j2 j3 j4

m1 m2 m3 m4

)(i)

≡
∑
mi

(−1)i−mi

(
j1 j2 i

m1 m2 mi

) (
i j3 j4

−mi m3 m4

)
. (F.8)

The 4 jm Wigner symbol (F.8) has the following orthogonality property:∑
m1,m2,m3

(
j1 j2 j3 j4

m1 m2 m3 m4

)(i) ( j1 j2 j3 j4

m1 m2 m3 m4

)(i′)

=
δi,i′

di

δ j4,l4δm4,n4

d j4
, (F.9)

Where the triangular inequality constrains the intertwiner i:

max {| j1 − j2|, | j3 − j4|} ≤ i ≤ min { j1 + j2, j3 + j4} . (F.10)

To perform S U(2) integrations and switch to intertwiners on spinfoam boundaries, we use the
following property of the 4jm Wigner symbol:∫

S U(2)
du D j1

n1m1
(u)D j2

m2n2
(u)D j3

m3n3
(u)D j4

m4n4
(u) =

∑
i

di

(
j1 j2 j3 j4

n1 n2 n3 n4

)(i) ( j1 j2 j3 j4

m1 m2 m3 m4

)(i)

,

(F.11)
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where D j
nm represents an S U(2) Wigner matrix. We use the in-line notation for the 6j Wigner

symbols

{6 j}( j1, j2, j3, j4, j5, j6) =
{

j1 j2 j3

j4 j5 j6

}
(F.12)

And the 9j Wigner symbol:

{9 j}( j1, j2, j3, j4, j5, j6, j7, j8, j9) =


j1 j2 j3

j4 j5 j6

j7 j8 j9

 . (F.13)

Finally, we report the definition of the 21j Wigner symbol split into 6j and 9j Wigner symbols:

{21 j} ( j, i1, i2, i3, i4, b1, b2, b3, p1, p2) =
∑

g1

∑
g2

[∑
l

{6 j} ( j, i3, j, j, i4, l) · {6 j} (i4, j, l, b1, j, j) ·

(F.14)

· {6 j} (l, j, g2, b2, j, b1) · {9 j} (l, j, i3, j, i2, j, g2, g1, j) · dl · (−1)2l+i3+3i4+b1+b2+g2
]
·

· {6 j} (i2, j, j, i1, j, g1) · {6 j} ( j, p1, j, j, i1, g1) · {6 j} ( j, b3, p2, j, g2, b2) · {6 j} ( j, p2, p1, j, g1, g2) ·

· dg1dg2 · (−1)2g1+3i1+ j+i2+3g2+2b2+b3+2p1 .
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G.1 Wigner symbols
In this paper, we use the definition of the 3j Wigner symbol provided in [218]. It has the
following orthogonality property:∑

m1,m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m1 m2 n3

)
=
δ j3l3δm3n3

2 j3 + 1
. (G.1)

The 3j Wigner symbol vanishes if triangular inequalities are not satisfied. We define the 4jm
Wigner symbol as the contraction of two 3j symbols over an internal spin k:(

j1 j2 j3 j4

m1 m2 m3 m4

)(k)

= (G.2)

=
∑
mi

(−1)k−mi

(
j1 j2 k

m1 m2 mi

) (
k j3 j4

−mi m3 m4

)
.

We also use the synthetic notation:(
j f

m f

)(k)

≡

(
j1 j2 j3 j4

m1 m2 m3 m4

)(k)

. (G.3)

With the definitions (G.2) and (7.11) we have:∫
dn D j1

m1,n1
(n) D j2

m2,n2
(n) D j3

m3,n3
(n) D j4

m4,n4
(n)

=
∑

k

dk

(
j1 j2 j3 j4

m1 m2 m3 m4

)(k) ( j1 j2 j3 j4

n1 n2 n3 n4

)(k)

. (G.4)

A valuable property of Wigner matrices is the following:

D j
j,m

(
n−1

)
= (−1) j−mD j

−m,− j (n) . (G.5)
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We use the irreducible 15j Wigner symbol of the first kind, following the conventions of [169].
Its definition in terms of Wigner’s 6j symbols turns out to be:

{15 j} = (−1)
∑5

i=1 ji+li+ki
∑

s

ds

{
j1 k1 s
k2 j2 l1

}{
j2 k2 s
k3 j3 l2

}{
j3 k3 s
k4 j4 l3

}{
j4 k4 s
k5 j5 l4

}{
j5 k5 s
j1 k1 l5

}
.

(G.6)

G.2 Booster functions
The booster functions are the non-compact remnants of the S L(2,C) group [42, 45]. For the
physical interpretation of the booster functions and their semiclassical limit, we refer to [30].
We define them as follows:

B4

(
j f , l f ; i, k

)
≡

1
4π

∑
p f

(
j f

p f

)(i)
∫ ∞

0
dr sinh2 r

4∏
f=1

d(γ j f , j f )
j f l f p f

(r)

 ( l f

p f

)(k)

, (G.7)

where γ is the Barbero-Immirzi parameter and d(ρ,k)(r) are the matrix elements for γ-simple
irreducible representations of S L(2,C). The explicit form of the boost matrix elements can be
found in [43, 42]. We report below the case of simple irreducible representations:

d(γ j, j)
jlp (r) =(−1)

j−l
2
Γ ( j + iγ j + 1)
|Γ ( j + iγ j + 1)|

Γ (l − iγ j + 1)
|Γ (l − iγ j + 1)|

√
2 j + 1

√
2l + 1

( j + l + 1)!

[
(2 j)!(l + j)!(l − j)!

(l + p)!(l − p)!
( j + p)!( j − p)!

]1/2

× e−( j−iγ j+p+1)r
∑

s

(−1)s e−2sr

s!(l − j − s)! 2F1[l + 1 − iγ j, j + p + 1 + s, j + l + 2, 1 − e−2r] .

(G.8)
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