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Abstract

Photons have emerged as the main candidates for carrying quantum information
due to their weak interaction with the environment. Unfortunately, their limited
interaction with one another poses challenges for photonic quantum information
processing. One of the possible solutions lies in the unique behavior of interacting
Rydberg excitations in cold atomic ensembles, where strong nonlinearities enable
engineering interactions among individual photons. This phenomenon makes Rydberg
ensembles a promising platform for quantum information applications, notably in
long-distance quantum communication. This thesis presents a series of experiments
that explore and exploit Rydberg-mediated interactions, all with the long-term
objective of building an efficient quantum repeater.

The thesis begins with a concise theory overview of Rydberg and ensemble
physics. This is followed by an explanation of the experimental setup. I discuss
how, building upon a previously existing setup, we improved the stability and
spectral properties of our laser system, along with enhancing the quality of the
atomic ensemble. A comprehensive modification to the laser locking system was
implemented by adopting a drift-resistant spectroscopy technique together with
a transfer cavity. Simultaneously, thanks to the introduction of a crossed dipole
trap, we increased of the atomic ensemble’s density while reducing its physical size.
The introductory section of the thesis concludes with a description of two different
single-photon generation methods and an in-depth review of various decoherence
mechanisms impacting Rydberg ensemble excitations. The single-photon generation
performance has been improved by the modifications implemented in the setup,
resulting in higher generation rates and better single-photon purity. Supported by
experimental data and a careful analysis of experimental parameters, we identify the
most probable sources of significant decoherence and suggest potential strategies for
mitigation.

In our initial experiment, we achieve the storage and subsequent retrieval of an
on-demand single photon. This photon is generated through the collective excitation
of Rydberg states in one cold atomic ensemble, and it is stored in a low-noise Raman
quantum memory situated in another cold atomic ensemble. Our results show the
capability to store and retrieve these single photons while maintaining a high signal-
to-noise ratio of up to 26 and preserving strong antibunching characteristics. We
also explore the built-in temporal beam splitting capabilities of the Raman memory
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and successfully use the memory to control the single photon waveshape.
In the second experiment, we demonstrate for the first time an interaction and

storage of single photons in a highly non-linear medium based on cold Rydberg
atoms. We employ the DLCZ protocol in a cold atomic ensemble to create single
photons, guiding them to another ensemble for storage in a highly excited Rydberg
state under conditions of electromagnetically induced transparency. By studying the
statistics of the light retrieved from the Rydberg atoms, we show for the first time
single-photon filtering with non-classical input light. Moreover, through Monte Carlo
simulation, we get an intuitive understanding of the effect of the (partial) Rydberg
blockade upon the Fock state distribution of arbitrary input light pulses. This
allows us to conclude that the response of the medium is determined by the input
Fock state distribution, what confirms the established understanding of Rydberg
ensemble nonlinearity. This demonstration can be seen as a step towards realization
of deterministic photon-photon gates based on Rydberg ensembles with single photon
inputs.

The results presented in this thesis affirm the potential of Rydberg ensembles
to become central elements of future quantum networks, both as single photon
sources and processing nodes. Furthermore, auxiliary outcomes provide an additional
understanding of the Rydberg ensemble physics and offer insight into limitations
that we need to overcome to improve further our setup.



Resum

Els fotons han sorgit com els principals candidats per transportar informació quàntica
a causa de la seva feble interacció amb el medi ambient. Malauradament, la seva
interacció limitada entre ells planteja reptes per al processament de la informació
quàntica fotònica. Una de les possibles solucions rau en el comportament únic de
les excitacions de Rydberg interactuants en conjunts atòmics freds, on les fortes
no linealitats permeten interaccions d’enginyeria entre fotons individuals. Aquest
fenomen fa que els conjunts de Rydberg siguin una plataforma prometedora per a
aplicacions d’informació quàntica, especialment en la comunicació quàntica de llarga
distància. Aquesta tesi presenta una sèrie d’experiments que exploren i exploten les
interaccions mediades per Rydberg, tots amb l’objectiu a llarg termini de construir
un repetidor quàntic eficient.

La tesi comença amb una visió general concisa de la teoria de Rydberg i la física
de conjunts atòmics. Tot seguit s’explica la configuració experimental. Parlo de
com, a partir d’una configuració existent anteriorment, hem millorat l’estabilitat i
les propietats espectrals del nostre sistema làser, juntament amb la millora de la
qualitat del conjunt atòmic. Es va implementar una modificació integral del sistema
de bloqueig làser mitjançant l’adopció d’una tècnica d’espectroscòpia resistent al
desviament juntament amb una cavitat de transferència. Simultàniament, gràcies a
la introducció d’una trampa de dipols creuats, vam augmentar la densitat del conjunt
atòmic alhora que vam reduir la seva mida física. La secció introductòria de la tesi
conclou amb una descripció de dos mètodes diferents de generació de fotons únics i
una revisió en profunditat de diversos mecanismes de decoherència que afecten les
excitacions del conjunt de Rydberg. El rendiment de la generació de fotons únics s’ha
millorat amb les modificacions implementades a la configuració, donant lloc a taxes
de generació més altes i una millor puresa dels fotons únics. Amb el suport de dades
experimentals i una anàlisi acurada dels paràmetres experimentals, identifiquem les
fonts més probables de decoherència significativa i proposem estratègies potencials
per a la seua mitigació.

En el nostre experiment inicial, aconseguim l’emmagatzematge i la posterior recu-
peració dels fotons únics sota demanda. Aquest fotó es genera mitjançant l’excitació
col·lectiva dels estats de Rydberg en un conjunt atòmic fred i s’emmagatzema en
una memòria quàntica de Raman de baix soroll situada en un altre conjunt atòmic
fred. Els nostres resultats mostren la capacitat d’emmagatzemar i recuperar aquests
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fotons únics mantenint una alta relació senyal-soroll de fins a 26 i conservant fortes
característiques antiagrupament. També explorem les capacitats de divisió del feix
temporal incorporades de la memoria de Raman i utilitzem la memòria amb èxit per
controlar la forma d’ona del fotó únic.

En el segon experiment, demostrem per primera vegada una interacció i emma-
gatzematge de fotons únics en un medi altament no lineal basat en àtoms freds de
Rydberg. Utilitzem el protocol DLCZ en un conjunt atòmic fred per crear fotons
únics, guiant-los a un altre conjunt per emmagatzemar-los en un estat de Rydberg
molt excitat en condicions de transparència induïda electromagnèticament. En
estudiar les estadístiques de la llum recuperada dels àtoms de Rydberg, mostrem
per primera vegada el filtratge del fotó únic amb llum no clàssica d’entrada. A
més, mitjançant la simulació de Monte Carlo, obtenim una comprensió intuïtiva de
l’efecte del bloqueig (parcial) de Rydberg sobre la distribució d’estat de Fock dels
polsos arbitraris de llum d’entrada. Això ens permet concloure que la resposta del
medi està determinada per la distribució d’estat de Fock d’entrada, la qual cosa
confirma la comprensió establerta de la no linealitat del conjunt de Rydberg. Aquesta
demostració es pot veure com un pas cap a la realització de portes fotons-fotons
deterministes basades en conjunts de Rydberg amb entrades d’un sol fotó.

Els resultats presentats en aquesta tesi afirmen el potencial dels conjunts de
Rydberg per convertir-se en elements centrals de futures xarxes quàntiques, tant
com a fonts de fotons individuals com nodes de processament. A més, els resultats
auxiliars proporcionen una comprensió addicional de la física del conjunt de Rydberg
i ofereixen una visió de les limitacions que hem de superar per millorar encara més
la nostra configuració.



Acknowledgments

First, I would like to thank my parents and family. For being always there when I
needed support and backing me in all my life decisions. Even though some of them
looked simply terrible from their perspective. And maybe most importantly in the
context of this thesis, thank you for making it possible for me to study abroad what,
in a long run, led me to ICFO and my PhD.

Next in the line are my friends, many of them. Some acquired during my time
at ICFO, like my lovely flatmates Max and Tymek (and lately also Giuliana), ex-
quasi-flatmate Flor, and not-flatmates Kora, Mel, Zeynep, Krystian, but some also
coming from long before, high school or even middle school, Maciek, Andrzej (aka
Żądza), Bańdo, Precel and quite a few others. They were surprisingly willing to
listen to all my whining about how horrible it is to be a PhD student and offer help
in vengeance or simply try to cheer me up. All these moments, when we got baked,
drunk or neither of those and went dancing, singing, bush walking or simply chilled
on the terrace, will stay with me for long. Hopefully very long.

However, the main responsible for why I endured these four years is QPSA. I love
the vibe and energy of our group and how each of us can be different but still be
very welcome. I should start from Hugues who assembled this very fine bunch, and,
probably more importantly, gave me the opportunity to take on this PhD. Thank
you for giving me the chance to learn about cold atoms and Rydberg physics, and
support when I asked for it. Then Auxi, Lukas and Felix, my lab mates, but also
dear friends. Auxi should be praised for her inexplicable patience – towards the
experimental setup and crucially towards me, and teaching me probably 85% of
what I know about Rydberg physics. Lukas was my most faithful lab companion.
I’m still surprised of how good friends we became, despite he tended to listen to
Rammstein full on in our lab. Felix is the most recent acquisition of our lab, and
sometimes we have some fierce disagreements. But quoting the classic: “Felix, I think
it’s a beginning of a beautiful friendship”.

I also cannot forget to mention other members of our group: Edu for whom
things have always two sides, bright sides, Stefano who lifted complaining to the
level of art, Dario whose honesty and loudness form an explosive mix, Jelena and Ale
who simply cannot be not loved, Chetan who never missed a point when counting
them during our Friday afternoon volleyball sessions, Sam who is always willing to
help and join any discussion, Soeren whose opinions during lunch debates surprised



8

me many times (which is a good thing!), Bernardo who hates cockroaches (I’m still
sorry!), and all the other comrades who, without an exception, are great people! All
the daily chats, making fun of ICFO and ranting about academia meant heaps to
me! Love you, guys!

Although I acknowledge them only towards the end, I’m indebted to them a lot
as they made my PhD life way smoother – ICFO workshops and administration. In
particular, I would like to thank Dani, José Carlos and the whole crew of electronic
workshop for spending infinite hours on my request to repair things or make them
best ever, and the mechanical workshop for creating magic out of my sloppy designs.
The help of logistics was also indispensable – super reliable but mostly invisible,
as they would start and finish early in the morning, before I would even enter the
lab. Human resources created an almost impenetrable shield that screened me from
all the conundrums of Spanish bureaucracy and especially Anne, who is like a God
mother to all PhD students. I’m not sure how I will survive without them after
leaving ICFO. And blessings to Dolors and the deep back office, who patiently helped
us organize YAO 2023.

I also want to express my gratitude to Laura, Carles and all people in comité de
empresa who continue the efforts to make ICFO an even better place.

Finally, I would like to voice my appreciation to the referees of my thesis, Darrick,
Stephan, and Stewart, for their dedicated effort and time spent reviewing my work
and providing valuable feedback, what substantially improved the quality of this
manuscript.



Contents

Abstract 3

Acknowledgments 7

Abbreviations 13

1 Introduction 15
1.1 Quantum networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Nonlinear media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 QIP with Rydberg ensembles . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Rydberg atoms and ensembles 21
2.1 Rydberg atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Single-atom properties . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Rydberg interactions . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Rydberg atomic ensembles . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Spin waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Rydberg super-atom . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.3 Electromagnetically induced transparency . . . . . . . . . . . 29
2.2.4 Dark state polariton . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.5 Rydberg polaritons . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Experimental setup 37
3.1 Trapping and cooling the atoms . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Magneto-optical trapping and cooling . . . . . . . . . . . . . 38
3.1.2 Dipole trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 iXblue laser at 780 nm . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Repumper laser . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Coupling laser . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Dipole trap laser . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Locking setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



10 Contents

3.3.1 Modulation transfer spectroscopy . . . . . . . . . . . . . . . . 46
3.3.2 Actively stabilized reference cavity . . . . . . . . . . . . . . . 52
3.3.3 Coupling laser lock . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Experimental control . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Single photon detection 59
4.1 Autocorrelation g(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Hanbury-Brown and Twiss . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Effect of noise on g(2) . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Correcting g(2) for noise . . . . . . . . . . . . . . . . . . . . . 63

4.2 Single-photon detectors . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Single-photon detection noise . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Dark counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.2 Afterpulsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.3 Backflash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.4 Other noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Excitations in Rydberg ensembles 69
5.1 Single-photon generation . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Off-resonant single-photon generation . . . . . . . . . . . . . 69
5.1.2 EIT single-photon generation . . . . . . . . . . . . . . . . . . 71

5.2 Decoherence in Rydberg ensembles . . . . . . . . . . . . . . . . . . . 74
5.2.1 Decoherence of Rydberg spin wave . . . . . . . . . . . . . . . 74
5.2.2 Decoherence of propagating rEIT polaritons . . . . . . . . . . 81
5.2.3 Decoherence in OR excitation . . . . . . . . . . . . . . . . . . 83
5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Raman storage of quasideterministic single photons generated by
Rydberg collective excitations in a low-noise quantum memory 89
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Rydberg single-photon source . . . . . . . . . . . . . . . . . . 91
6.2.2 Raman quantum memory . . . . . . . . . . . . . . . . . . . . 92
6.2.3 Atomic ensembles’ preparation details . . . . . . . . . . . . . 93
6.2.4 Limitations and challenges . . . . . . . . . . . . . . . . . . . . 94

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1 Photon generation . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Photon storage . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



Contents 11

7 Strongly nonlinear interaction between non-classical light and a
blockaded Rydberg atomic ensemble 103
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . 105
7.2.2 Heralded photon source . . . . . . . . . . . . . . . . . . . . . 105
7.2.3 Nonlinear medium . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.1 Estimation of multiphoton strength ζ . . . . . . . . . . . . . 108
7.3.2 Monte Carlo simulation of the partial blockade . . . . . . . . 110
7.3.3 Effect of the partial blockade on the storage efficiency . . . . 114

7.4 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 115

8 Conclusion & Outlook 117

Publication list 135



12 Contents



Abbreviations

A list of abbreviations used in this thesis:

AOM acousto-optic modulator
ARP adiabatic rapid passage
BS beam splitter
BSM Bell state measurement
CMOT compressed magneto-optical trap
DAC digital-to-analog converter
DLCZ Duan, Lukin, Cirac and Zoller (protocol)
EIT electromagnetically induced transparency
EOM electro-optical modulator
ES error signal
FMS frequency modulation spectroscopy
FWHM full width at half maximum
FWM four-wave mixing
GHZ Greenberger-Horne–Zeilinger (state)
HBT Hanbury-Brown and Twiss (setup)
HOM Hong–Ou–Mandel
HWP half-wave plate
MOT magneto-optical trap
MTS modulation transfer spectroscopy
OD optical depth
OR off-resonant (excitation)
PBS polarizing beam splitter
PD photodetector
PDF probability density function
PDH Pound-Drever-Hall
PSD power spectral density
PWM pulse-width modulation
QIP quantum information processing
QKD quantum key distribution
QM quantum memory
QWP quarter-wave plate



14 Contents

RAM residual amplitude modulation
rEIT Rydberg EIT
RMS root mean square
SAS saturated absorption spectroscopy
SHG second-harmonic generation
SNR signal-to-noise ratio
SNSPD superconducting nanowire single-photon detector
SPD single-photon detector
vdW van der Waals
WCS weak coherent state



Chapter 1

Introduction

We find ourselves amidst what is being hailed as the second quantum revolution [1].
Whether one chooses to fully embrace this notion or dismiss it as an overhyped
buzzword, the fact remains that there is a significant amount of attention, funding,
and research being directed towards quantum technologies. This surge in interest is
evident not only in numerous blogs, newspapers, and research articles1, but also in
the substantial investments being made by funding agencies and the private sector.
Quantum internet is one such technology that is capturing the imagination and
resources of many.

1.1 Quantum networks

The quantum internet [3] is envisioned as a network of interconnected nodes, such
as quantum computers, with links that enable the transmission, processing, and
reception of information encoded in quantum states. The quantum internet is not
intended to replace the currently existing internet, but rather to offer additional
capabilities, including quantum cryptography and quantum cloud computing [4].

The consensus is that the quantum internet would employ photons as the carriers
of quantum information, transmitted through satellites or existing fiber optic infras-
tructure [4]. Photons are a natural choice due to their fast propagation and weak
interaction with the environment, offering relative protection against environmental
noise that can corrupt encoded information.

The primary obstacle to achieving a functional large-scale quantum internet are
transmission losses. Signal amplification, commonly used to compensate for losses in
classical networks, is not possible due to the no-cloning theorem [5, 6]. It prohibits
the perfect copying of an unknown quantum state, effectively preventing any type of
amplification of a quantum signal. This means that there is a limit resulting from

1At the moment of writing this thesis, a Google search of “quantum technology” gave 715 million
results. To compare, the first agricultural revolution, considered by some as one of the most
important developments in human history [2], scored 122 million results.
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the transmission losses to how far quantum information can be directly transmitted.
For optical fibers operating at telecom wavelengths, where attenuation is minimal,
this distance is typically on the order of a few hundred kilometers.

In 1993, Bennett et al. proposed a solution to overcome the limitations imposed
by the no-cloning theorem [7]. They introduced the quantum teleportation protocol,
which enables the transfer of an unknown quantum state from one party to another
at the cost of a classical bit and an entangled pair shared between the parties. This
effectively shifts the challenge from sending quantum information directly between
the parties to distributing entanglement between them. However, transmission losses
still impose a maximum rate at which entanglement can be directly distributed [8].

In 1998, Briegel et al. proposed a complementary approach known as the quan-
tum repeater protocol to distribute quantum entanglement over long distances [9].
The transmission channel is divided into multiple shorter elementary links, where
entanglement is generated through direct photon transmission between nodes. Subse-
quently, entanglement between increasingly distant nodes is achieved via entanglement
swapping [10]. A schematic representation of the protocol can be seen in fig. 1.1.

Over the years, numerous protocols have been proposed to realize quantum
repeaters [11–19]. These protocols generally require single- or entangled-photon
sources, quantum memories, and entanglement swapping2. While all these elements
are available, their performances are far from what is necessary for practical quantum
repeaters.

Generating single photons deterministically is challenging, and many realizations
rely on probabilistic pair sources. However, in such cases, the photon emission prob-
ability needs to be kept low to avoid multi-photon pulses. Otherwise, the distributed
entanglement is of low quality, making it unusable for quantum communication
purposes. This results in low entanglement distribution rates.

Most entanglement swapping implementations utilize linear optics, which limits
the success probability to 50% [21]. As a result, the overall success probability of
establishing entanglement across a chain of N quantum repeaters is reduced by a
factor of 2N . This again results in low entanglement distribution rates.

Many solutions have been proposed to overcome these limitations. Interestingly,
there is a platform that holds promise in addressing both challenges: a highly
nonlinear medium of a Rydberg atomic ensemble [22, sec. 5].

1.2 Nonlinear media

Entanglement swapping rely on Bell state measurements (BSM), i.e. a projection
on Bell states. BSM, which can be viewed as a specific type of quantum logical
gate followed by a measurement, presents a challenge in quantum information pro-
cessing. As any two-photon gate, it requires photon-photon interactions. However,

2There exists quantum repeater protocols where no quantum memories or entanglement swapping
is necessary, e.g. [20], however, the quantum states required for such protocols cannot be efficiently
generated at the moment.
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Figure 1.1: Entanglement distribution between node A and node D. (1) Nodes A + B and C
+ D try to establish entanglement. (2) Due to losses and other imperfections, the elementary
links get entangled at different times. Quantum memories allow for storage of entanglement
and synchronization of the network. (3) As soon as entanglement is established between the
neighboring links, one performs the entanglement swapping (in this case between nodes B
and C). (4) Successful swapping results in entanglement between nodes A and D.

photons typically do not interact with each other [3]. Yet, it is possible to medi-
ate photon-photon interactions through light-matter interactions, where a suitable
medium exhibits nonlinear behavior. In this scenario, photon arriving later to the
medium experience different conditions than earlier photons, effectively resulting in
an interaction between them [23]. However, there are no readily available media that
exhibit a nonlinearity at the desired single-photon level.

One approach to engineer such nonlinearity is the Knill, Laflamme, and Milburn
(KLM) proposal [24], which achieves single-photon level nonlinearity through post-
selection using only linear optics and photon detectors. Although this method offers
simplicity, its success probability is low as some results are ambiguous and must be
discarded. In the case of BSM of two qubits, the success probability is limited to a
maximum of 50% [21]3.

An alternative approach is to use systems that naturally possess single-photon
level nonlinearity, such as atoms or quantum dots (an atom can absorb only one
photon at a time). However, their coupling to the optical field is typically weak,
significantly limiting the probability of photon-photon interaction. One common
strategy to overcome this limitation is to place the single emitter within a high-
finesse cavity [25]. Unfortunately, this approach significantly increases experimental
complexity.

One could think, instead, of enhancing the interaction probability by increasing
the number of emitters. This, however, weakens the nonlinearity (two atoms can
absorb two photons at a time). Unless, one engineers an interaction between the
emitters, which allows all of them to interact with the photons, but, once one emitter
interacts, others are unable to do so or do that differently. This would allow the
system to have a high light-matter interaction probability, while maintaining the
desired level of nonlinearity. One of a few examples of systems exhibiting such

3If additional auxiliary photons are employed, the efficiency of BSM can approach 1 [Olivo2018].
Nevertheless, achieving high efficiencies would necessitate exceptionally efficient single-photon
sources to enhance entanglement distribution rates.
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behavior are Rydberg atomic ensembles [26].

1.3 QIP with Rydberg ensembles

Rydberg atoms are atoms where the most outer electrons are excited to some high
energy state [27]. Such atomic systems hold significant promise for various quantum
technologies [28]. They possess unique, exaggerated properties that can be controlled
by state selection and the application of external electromagnetic, what makes them
highly tunable quantum systems.

There are several reasons why Rydberg atoms are appealing for quantum tech-
nologies. Firstly, atoms are inherently stable quantum systems that exhibit consistent
behavior within the same species and environment. Additionally, the physics of
Rydberg states bears resemblance to that of hydrogen, providing physicists with
an intuitive model even for complex multielectron Rydberg systems. However, the
most captivating aspect of Rydberg atoms lies in their strong and long-range tunable
interactions. These interactions make them attractive candidates, in particular, for
quantum simulators and quantum computing [29–31].

In this thesis, we investigate and utilize an ensemble of cold Rydberg atoms
for quantum information processing (QIP) purposes. We engineer the Rydberg
interactions to dominate over other relevant energy scales in the system, such as
the Rabi frequency of the excitation field. In this regime, the interaction between
Rydberg atoms becomes so strong that the simultaneous creation of two Rydberg
excitations within the ensemble becomes highly unlikely. This phenomenon, known
as the Rydberg blockade effect [32], effectively results in the nonlinearity at the
single photon level discussed earlier. When the first photon enters the medium and
promotes an atom to the Rydberg state, it creates a Rydberg excitation that blocks
the entire ensemble. Subsequent photons cannot be promoted to the Rydberg level,
in other words, experience a different response from the medium compared to the
first photon.

The potential of utilizing Rydberg atoms and the blockade for quantum gates
was recognized in 2000 [33]. Since then, the observation of entanglement between
individual Rydberg atoms has been achieved [34], and the first quantum gates with
Rydberg atoms have been demonstrated [35–37]. However, for quantum networking
purposes, gates based on Rydberg ensembles are more suitable due to their stronger
coupling to the photonic field compared to single atoms. Numerous theoretical
proposals have been put forward over the years [32, 38–47], but it was only recently
that the first Rydberg-ensemble-based photon-photon gate was demonstrated [48].
A subsequent realization, reported from last year, significantly improved the gate
performance by employing a Rydberg ensemble in an optical cavity [49], setting a
record efficiency of 41% for a photonic CNOT gate.

Ensemble-based Rydberg-mediated interactions have also been employed in
several single-photon photonic components, such as switches [50, 51], transistors [52,
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53], and photon subtractors [54, 55]. All the above demonstrations were conducted
using weak coherent states (WCS) rather than true single photons.

The concept of a Rydberg-ensemble-based single-photon source was initially
proposed in 2002 [56], but it was only in 2012 that the anti-bunching of photons,
a signature of single-photon emission, was observed. For both, well-defined pulses
[57] and a continuous stream of photons [58]. Subsequently, the single-photon source
was extended to include long-term storage capability [59], and the photons were
shown to be highly indistinguishable in a Hong-Ou-Mandel interference experiment
with photons obtained from trapped ions [60]. During this time, a limitation in the
brightness of the Rydberg photon source due to so-called pollutants was discovered
[61], although it is believed not to be a fundamental constraint4. In 2018, a room-
temperature Rydberg-ensemble-based source was demonstrated [63], but it requires
very large Rabi frequencies of the coupling beam to prevent motional dephasing.
To date, the best Rydberg-based single-photon source was reported in [62], with
an autocorrelation g(2)(0) of 2× 10−4 and a generation probability in a single trial
of 40% (resulting in an overall generation rate of 1.1 kHz). A similarly performing
source was used to demonstrate the highest fidelity quantum gate based on the
KLM protocol with a fidelity of 99.84% [64]. Recently, Rydberg ensembles have also
been utilized to generate entangled photon pairs [65] and entangled photon trains
with Greenberger-Horne-Zeilinger (GHZ) type of entanglement [66]. Additionally, an
entanglement filter was recently demonstrated, where an input product state of two
WCS is converted into an entangled photon pair [67].

Another approach utilizing Rydberg ensembles for QIP involves using two different
Rydberg states to encode a qubit. It has been shown that such a qubit is robust against
external perturbations, and high-fidelity single-qubit rotations can be performed
using a microwave field [68]. Using such qubits, the capability of creating high-fidelity
atom-photon entanglement has been demonstrated, along with a nondestructive
qubit readout scheme [69, 70]. Recently, also a qubit between the ground state and
a Rydberg state was reported with a coherence time of 20 µs [71].

It is worth noting that there exists a substantial body of literature that experi-
mentally investigates the properties of Rydberg ensembles, with a particular focus
on the interactions between Rydberg excitations and photon interactions mediated
by the ensemble. Numerous non-trivial effects have been explored, including the
enhancement of three-body losses [72], the study of three-body interactions and
bound states [73, 74], and the creation of Rydberg molecules [75]. Recent research has
also documented repulsive and attractive photonic interactions [76], investigated the
transient dynamics of photons interacting via the Rydberg medium [77, 78], studied
interaction-induced dephasing of multiple Rydberg excitations [79] and reported
storage-enhanced nonlinear response of the ensemble [80].

The extensive experimental investigations, together with a multitude of theoretical
studies and proposals, highlight the potential of Rydberg ensembles as a promising

4One proposed solution to overcome this limitation is the application of strong electric field
pulses to remove the pollutants from the cloud [62].
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tool in the quantum toolbox. As they are, in general, complex many-body systems of
interacting Rydberg excitations, the theoretical understanding of certain phenomena
is still missing, and numerical methods are currently limited to quasi-one-dimensional
systems [61]. However, for the same reasons, one can anticipate that many more
intriguing findings will emerge.

1.4 Thesis outline

This thesis explores the utilization of a disordered ensemble of cold rubidium atoms
excited to a Rydberg state as a single photon source and investigates its properties
within the context of quantum information processing. The following chapter pro-
vides the necessary theoretical background to comprehend the experimental results
discussed later on.

A brief overview of the experimental setup is provided, acknowledging the com-
prehensive documentation by previous students who have worked on this setup.
However, specific developments accomplished during this thesis, including a new
locking setup - a major improvement to our experiment, are discussed in greater
detail. Subsequently, we discuss the single photon detection and the impact of the
detection noise on our measurements.

The following chapter explains different single-photon generation methods, which
we use in our experimental works. A particular emphasis is placed on understanding
the decoherence mechanisms that impose limitations on the efficiency of our source.

Shifting gears, we focus on the two main experimental results of this PhD research.
The first result involves the realization of a building block of a specific quantum
repeater protocol, where our single photon source is combined with another cold-
atomic setup serving as a quantum memory. The second outcome involves the first
investigation of the interactions between non-classical light and a Rydberg medium
exhibiting single-photon-level nonlinearity. In this case, our Rydberg ensemble acts as
the nonlinear medium, while single photons are generated using another cold-atomic
ensemble.

Lastly, the thesis concludes with reflections about future directions that our
experiment could take.



Chapter 2

Rydberg atoms and ensembles

In this chapter, we explore the theoretical concepts essential for understanding our
investigation of Rydberg physics with ensembles. We address key aspects, starting
with the intriguing properties of Rydberg atoms, particularly focusing on their
dipole-dipole interactions, which make them promising for quantum information
applications. We then examine how these interactions manifest in disordered atomic
ensembles, shedding light on their behavior as complex systems. By acquiring a solid
grasp of these theoretical foundations, not only we get some insight into Rydberg
physics with ensembles, but also understand the associated challenges encountered
in our research.

2.1 Rydberg atoms

Rydberg atoms are atoms excited to a high principal quantum number state and
exhibit unique and exaggerated properties. Below, I start with describing their
single-atom properties to later focus on interactions between them and resulting
dipole blockade.

2.1.1 Single-atom properties

Understanding Rydberg atoms’ properties, particularly for alkali atoms, involves
considering an electron in a modified Coulomb potential. This makes Rydberg atoms
similar to hydrogen atoms, however, there are several important factors that need to
be taken into account to make this analogy useful [27, ch. 2].

Firstly, spin-orbit coupling, which is often neglected in the textbook hydrogen
model, must be included. Secondly, the finite extent of the atomic core (nucleus
together with the closed shells) results in a non-negligible probability for the valence
electron to penetrate it, especially for low angular momentum states. Lastly, the
valence electron polarizes the core electrons, leading to an effect on the valence
electron itself.
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All of these considerations modify the potential experienced by the valence
electron compared to the hydrogen model1. Consequently, the well-known scaling
laws from the hydrogen model no longer hold. However, it is possible to recover
these scaling laws by introducing the concept of quantum defect δ, as seen in the
Rydberg formula for the binding energy:

Enlj = −hc
RM

(n− δ)2
, (2.1)

where h is the Planck’s constant, c is the speed of light, n, l, and j are the principal,
orbital angular momentum, and total orbital angular momentum quantum numbers,
respectively. RM represents the specific Rydberg constant for the given element [83].
The quantum defect is an empirical constant that depends on n, l, and j, but for
large values of n, its dependence on n becomes negligible. In the case of 87Rb, for
S-states with n > 10, it can be approximated with δ = 3.131. For more precise
values, please refer to [84].

With the recovery of the scaling laws, summarized in Table 2.1, some general
observations can be made about Rydberg atoms. They possess very large orbits, as
depicted in fig. 2.1 (left), and are loosely bound to the nucleus, making them easily
ionizable. The energy spacing between nearby states decreases with n, while their
transition dipole moment increases, as illustrated in fig. 2.1 (right), enabling the
addressing of transitions between these states with a microwave field. The transition
dipole moment with the ground state decreases with n, resulting in long lifetimes2.
However, in practice, lifetimes are limited by black body radiation [27, p. 53-55],
but even then they are larger than 50 µs for Rydberg states with n > 50 [29, fig. 6].

2.1.2 Rydberg interactions

Rydberg atoms exhibit strong dipole-dipole interactions between each other, due to
their large dipole matrix elements.

When two atoms are both excited to Rydberg levels, this interaction causes a
change in their energies. To understand this phenomenon, we start by considering the
potential experienced by two interacting atoms at a distance r. It can be expressed
as3 [29, sec. IIB] [87]

Vdd =
1

4πϵ0|r|3
�
d1 · d2 − 3

�
d1 ·

r

|r|

��
d2 ·

r

|r|

��
≡ C3

|r|3 , (2.2)

1Typically used model potential was derived in [81]. A nice and detailed explanation of how to
obtain Rydberg wave functions for this model potential was given in [82, sec. 2.1.2].

2We are mostly concerned about the decay to the ground state (or the lowest P3/2 state in
the case of Rydberg S1/2 states), because the Einstein A coefficient describing the spontaneous
decay process is proportional to the third power of the states’ energy difference (and only directly
proportional the transition dipole moment). Hence, the lifetime is mostly limited by the decay to
the ground state.

3It’s important to note that this expression is valid only when the inter-atomic distance is much
larger than the electronic wave functions of the two atoms.
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Property Scaling 5S1/2 90S1/2

Binding energy En∗ (n∗)−2 4.18 eV 1.8meV
Orbit radius ⟨r⟩ (n∗)2 298 pm 532 nm
Level spacing En∗ − En∗+1 (n∗)−3 605THz 9.87GHz (91S1/2)
Dipole moment

between adjacent states (n∗)2 4.23 ea0 (5P3/2) 4701 ea0 (89P3/2)

Lifetime τ (n∗)3 26.2 ns 271 µs (at 300K)
Dipole moment

5P3/2 to Rydberg states (n∗)−3/2 – 0.0032 ea0

Van der Waals coefficient C6 (n∗)11 6.76× 10−7 Hzµm6 1.64× 1013 Hzµm6

Polarizability α (n∗)7 79.4mHz cm2/V2 3.17GHz cm2/V2

Table 2.1: Summary of scaling laws for Rydberg atoms together with example values for
87Rb. Transition dipole moments are the reduced matrix elements in the total angular
momentum J basis, defined in asymmetric notation. e is the electron charge and a0 is the
Bohr radius. Scaling laws were taken from [22], the ground state values from [83] and the
90S1/2 values were calculated with ARC [85] and with pairinteraction [86].

where di represents the dipole operators of atom i, which couple the initial Rydberg
state to other dipole-coupled states. C3 is a distance-independent but angle-dependent
factor (however, for S-states, which are of main interest in this thesis, the angle
dependence is very weak).

To examine the effects of dipole-dipole interactions on the energy of two Rydberg
atoms, we consider the case where both atoms are excited to the same Rydberg state,
which is a typical scenario in our experiments. When the atoms are very far apart
(r → ∞), they can be described by a product state: |ψ⟩ = |nlj, nlj⟩, where |nlj⟩
represents a specific fine structure level.

The dipolar interaction given by eq. 2.2 couples |ψ⟩ to other two-atom states
|n1l1j1, n2l2j2⟩, following the usual dipole selection rules, i.e., l1, l2 = l ± 1 and
j1, j2 = j ± 0, 1. While there are infinitely many dipole-coupled states, in practice,
the dipole-dipole interaction strength is primarily determined by a few energetically
nearby two-atom states. This is due to two factors: the small energy difference
between the two-atom states (which becomes evident later in this section) and the
requirement of non-negligible dipole matrix elements. The dipole matrix elements
are significantly suppressed for large differences in principal quantum numbers [88,
sec. IIIA], as illustrated in fig. 2.1(right).

Let’s consider the case where we restrict for simplicity our analysis to only two
two-atom states. We can write the interaction Hamiltonian as follows [29, sec. IIB]:

Hint =

�
0 Vdd

Vdd ∆

�
, (2.3)

where ∆ represents the energy mismatch between the two states ∆ = En1l1j1 +
En2l2j2 − 2Enlj , often referred to as the Förster defect. The eigenenergies resulting
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Figure 2.1: (left) Dependence of probability density function (PDF) of finding the valence
electron on the distance from the nucleus for three different principal quantum numbers.
One can appreciate the size of Rydberg atoms can more than 1000 times larger than
ground-state atoms. (right) Transition dipole moment between state

��nP3/2,mJ = 3/2
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and a neighboring state
��(n+ 1)S1/2,mJ = 1/2

�
(pink) or state

��90S1/2,mJ = 1/2
�
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Transition dipole moments between the neighboring states grow like (n∗)2. One should
compare the plotted values with the ground state

��5S1/2, F = 2,mF = +2
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to the excited
state

��5P3/2, F = 3,mF = +3
�

transition dipole moment, which is 2.99 ea0. In blue, one
can also see that often there are very few dominant neighbors that couples very strongly to
a given state, while other states are much more weakly coupled.

from this Hamiltonian are given by:

V±(r) =
∆

2
± sign(∆)

r
∆2

4
+

C2
3

r6
. (2.4)

In the limit of small inter-atomic distances and/or small Förster defects, the
original states become heavily mixed, and the eigenenergies can be approximated as:

V±(r) ≈ sign(∆)
C3

r3
. (2.5)

However, we are not concerned with this regime, as our atomic cloud is too dilute
to exhibit such strong interactions. Usually, one refers to this regime as (resonant)
dipolar interactions.

In the opposite limit of large inter-atomic distances, the deviation from the
original energy is small, resulting in what is known as the van der Waals (vdW)
interaction:

VvdW ≈ − C2
3

∆r6
=

C6

r6
. (2.6)

It’s worth noting that the C6 coefficient for Rydberg states can be either positive or
negative, depending on the sign of the Förster defect4.

It should be mentioned that it is possible to alter the nature of the interaction
from van der Waals to dipolar at large distances. This can be achieved through

4For atoms in the ground state, the van der Waals interaction is always attractive.
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the application of external electric fields [89–91], which corresponds to tuning ∆ to
approach zero, usually called Förster resonance, as well as with microwave fields
[92–94].

In general, there exist numerous two-atom states that contribute to the interaction
between two Rydberg atoms. Since the vdW interactions have a small effect on
the original states, perturbation theory can be employed. It turns out, after some
massaging, that the result can be expressed with the same simple formula as in
eq. 2.6 [82, sec. 2.2]:

VvdW(r) =
X

ij

|⟨ψ|Vdd |i, j⟩|2
2E − Ei − Ej

(2.7)

=
C6

r6
, (2.8)

with the coefficient C6 describing now interaction with many two-atom states. |i⟩ and
|j⟩ denote different unperturbed single-atom states, and Ei, Ej are their respective
energies.

From the above paragraphs, it is evident that the C6 coefficient depends on the
dipole matrix elements (to the power 4), which are notably large for Rydberg atoms,
and the Förster defects, which diminish for larger principal quantum numbers. From
Table 2.1, one can easily see that C6 scales with the principal quantum number as
(n∗)11. It’s clear that one should expect strong interactions between Rydberg atoms,
as shown in fig. 2.2(right).

Dipole blockade

The interactions between Rydberg atoms give rise to a phenomenon known as dipole
blockade, which inhibits multiple excitations. Let us again consider a pair of Rydberg
atoms at a distance r. The energy shift experienced by them depends on r, as
demonstrated in the previous section. When the atoms are close to each other, this
energy shift can exceed the excitation linewidth. Consequently, if they were in their
ground states, only one of them can be excited to the Rydberg state, as the laser
used for excitation is not resonant with the transition from a singly excited state to
a doubly excited state, as illustrated in fig. 2.2(left).

The dipole blockade effect is characterized by a characteristic length known as
the blockade radius, denoted as rb. The specific expression for rb varies depending
on the context5, but it is typically defined as the distance at which the interaction
VvdW(r) is equal to the excitation linewidth Ω, i.e., VvdW(rb) = ℏΩ. For a weak

5The determination of the blockade radius depends on the specific circumstances. For instance,
different formulas apply when considering a direct excitation to a Rydberg state using a π-pulse,
compared to the case of Rydberg electromagnetically induced transparency (EIT), which will be
discussed later in this thesis. The situation gets even more complicated if one studies complex
phenomena such as the few-body physics of Rydberg polaritons, as explored in works like [95] or
[96].
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Figure 2.2: (left) Schematic representation of the blockade effect. When atoms are far away,
they can be both excited from their ground state |g⟩ to the Rydberg state |r⟩. However,
when they get closer, the van der Waals interaction starts shifting the doubly excited state
|r, r⟩. At the blockade radius, rb this shift is so large that the driving field Ω is not resonant
with the transition from singly to doubly excited state. Effectively, if the atoms are closer
than rb, only one of them can be excited to the Rydberg state. Image adopted from [97].
(right) Strength of the van der Waals interaction as a function of the interatomic distance for
different Rydberg levels of 87Rb, 80S1/2, 90S1/2 and 100S1/2. Calculations were performed
with pairinteraction [86].

driving Ω is simply the laser linewidth, for strong driving, due to power broadening,
it would correspond to the excitation field Rabi frequency. This yields the formula:

rb =
6

r
C6

ℏΩ
, (2.9)

from which one can see that rb ∝ (n∗)11/6. In our experiments, the typical blockade
radius is approximately 13 µm for a Rydberg state with n = 90.

The concept of dipole blockade can also be applied to ensembles. In particular,
when the size of the ensemble is smaller than the blockade radius, only a single
Rydberg excitation can exist, irrespectively of the number of atoms in the ensemble.
We will discuss this scenario in the next section.

2.2 Rydberg atomic ensembles

In our experiment, we investigate an ensemble of atoms, which leads to intriguing
implications. Firstly, I will explain the directional emission of photons from the
ensemble in a well-defined mode. This phenomenon is closely related to the concept
of spin waves. Later, I will focus on electromagnetically induced transparency (EIT)
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and its notable properties. Throughout the discussion, I examine how Rydberg
interactions and dipole blockade influence these phenomena.

2.2.1 Spin waves

Let us imagine an ensemble of atoms at which we shine a resonant laser field. The
interaction of the laser fields with multiple atoms simultaneously results in shared,
delocalized excitations among the atoms. These collective excitations, often referred
to as spin waves6, can be viewed as coherent superpositions of excitations present in
the individual atoms. For simplicity, let’s assume that all atoms are equally coupled
to the laser field, i.e. we ignore the fact that the excitation field has a finite extent,
and that we create exactly one excitation. The latter assumption holds true for
specific systems, such as a perfect quantum memory with a single photon at the input
or ensembles in which only one excitation can exist due to interatomic interactions.
As we discussed earlier, our system belongs to the second category. In such a case, a
state describing this single excitation in the ensemble, consisting of N atoms, can be
expressed as follows [56]:

|R⟩ = 1√
N

X

i

eik·ri |g1g2 . . . ri . . . gN ⟩ , (2.10)

where |gi⟩, |ri⟩, and ri represent the ground state, the Rydberg state, and the position
of the atom i, respectively. k is the wave vector of the exciting field (or the net
wave vector of all the exciting fields). It’s important to note that there exists a
well-defined phase relation between the single-atom excitation states, determined by
the wave vectors of the exciting field and the atoms’ positions in the ensemble, i.e.
the term eik·ri .

To understand why this state leads to directed emissions, we can follow a similar
approach to the one described in reference [56]. Let’s imagine that we transfer the
excitation |R⟩ to a short-lived excited state |e⟩ using a π-pulse from an additional
field with wave vector kc. The resulting collective state is (assuming here that |e⟩
has lower energy than |r⟩ and, hence, the minus sign in the phase factor exponent)

|E⟩ = 1√
N

X

i

ei(k−kc)·ri |g1g2 . . . ei . . . gN ⟩ . (2.11)

This state will emit radiation into various modes, with all atoms returning to the
ground state and a single photon propagating in the direction ke. Although it is
not a fully correct picture, one can imagine N atoms that start emitting radiation
simultaneously due to spontaneous decay. The radiation from each atom interferes
with the radiation from others, and based on the well-defined phase relation between
these fields, i.e. all the atoms were in a superposition state, certain modes are favored

6“Wave” refers to the phase factor which changes its value depending on the atom’s position, as
explained in the paragraph below.
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over others. The probability of emitting a photon into the mode ke can be expressed
as:

Pe ∝
1

N

�����
X

i

ei(k−kc−ke)·ri

�����

2

, (2.12)

where it was assumed that the single-atom emission is isotropic.
When k − kc − ke is nonzero, different terms in the summation partially cancel

each other due to the atoms’ different positions. However, when the phase matching
condition is satisfied, i.e., k − kc − ke = 0, all the phase factors add constructively,
resulting in the maximum value of Pe. Therefore, one gets strongest emission in
the direction given by ke = k − kc. It is also worth noting that the suppression of
non-phase-matched emission increases with the atoms number. This means that to
achieve high directed retrieval efficiency, we want a system which has a high optical
depth [98, sec. III]. A spin wave state is also robust against the particle loss and its
fidelity with the initial state decreases by a factor of 1/N for each lost atom, where
N is the atom number [99, sec. IIIC]. All the above-mentioned properties make spin
waves a very useful tool for quantum information processing.

2.2.2 Rydberg super-atom

The blockade effect, which was discussed in sec. 2.1.2, can be extended to an ensemble
of N atoms, where only one excitation is allowed within the blockaded volume7. This
effect leads to the emergence of a two-level super-atom [32], with a ground state
|G⟩ = |g1 . . . gN ⟩ and an excited state |R⟩ defined in eq. 2.10.

When the ensemble is driven, it exhibits Rabi oscillations only between these
two states, with a collective Rabi frequency that is enhanced by a factor of

√
N

compared to the single-atom Rabi frequency:

⟨G|d|R⟩ = 1√
N

NX

i

⟨gi|d|ri⟩ ⟨g1 . . . gj−1gj+1 . . . gn | g1 . . . gj−1gj+1 . . . gn⟩

=
√
N⟨g|d|r⟩,

(2.13)

where d represents the dipole operator.
The blockade effect allows a single photon to saturate the absorption of the

atomic medium, while the shared collective excitation enhances the coupling to the
driving field. These properties make the super-atom concept a powerful tool for
various quantum applications. For example, the effective two-level system has been
utilized to investigate quantum electrodynamics effects in free-space, achieving strong
light-matter coupling without the need for an optical cavity [100]. In the realm
of quantum technologies, these effects have been leveraged to realize single-photon
sources [57, 62, 64], entanglement sources [65, 67], single-photon transistors [52, 53],
collective qubits [68, 69], and quantum gates [48, 49, 101]. As a result, Rydberg
ensembles have emerged as a promising platform for quantum networking.

7This is why we considered only one collective excitation in the previous section.
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2.2.3 Electromagnetically induced transparency

Let’s switch gears and explore a fascinating phenomenon known as electromagnetically
induced transparency (EIT), which we use to engineer interactions between light and
an atomic ensemble. For instance, it can transform an initially opaque medium into
a transparent one, as a result of the destructive interference of different transitions
pathways in a multilevel system. However, let’s proceed step by step.

I’ll provide some intuitive understanding of why EIT occurs, while sparing the
reader from detailed calculations that have been extensively covered before. Interested
readers can refer to a comprehensive and comprehensible chapter on EIT in the
thesis of Ornelas-Huerta [82, sec. 3.1]8.

EIT occurs in three-level systems where one transition between two states is very
weak, while another transition is driven by a strong coupling field. Typically, this
phenomenon is observed in so-called lambda systems, as depicted in fig. 2.3(top left),
where the weak transition corresponds to a transition between hyperfine states of the
same ground state which is dipole-forbidden. However, in our case, we are primarily
interested in ladder systems, as shown in fig. 2.3(bottom left), where the weak
transition is between the ground state and a Rydberg state, also dipole-forbidden in
our configuration.

Consider the scenario illustrated in fig. 2.3(right). In this case, a strong coupling
field Ωc connects the excited state |e⟩ with the Rydberg state |r⟩, while a weak
probe field Ωp couples the ground state |g⟩ with the excited state. Both fields can be
detuned from their respective resonances, with ∆p representing the probe detuning
and ∆c representing the coupling detuning. For this setup, one can derive under the
rotating wave approximation the interaction Hamiltonian9, which takes the form:

H =
ℏ
2




0 Ω∗
p 0

Ωp −2∆p Ω∗
c

0 Ωc −2δ


 , (2.14)

where δ = ∆p +∆c is the two-photon detuning.
Let’s begin by considering the case where both fields are on-resonance (∆p =

∆c = 0), which is a typical experimental condition. In this case, the Hamiltonian

8Presented there derivation does not include purely dephasing effects, which may be relevant
in our context. However, the obtained results can be easily modified by following the derivation
in a review by Firstenberg et al. [26, sec. 3.2]. It is important to note that different authors may
adopt different conventions for defining relevant quantities such as Rabi frequencies, decay rates,
and dephasing rates. Fortunately, the two cited sources employ the same convention. Another good
reference to learn about EIT is [102] which, in general, are a great lecture notes covering almost
any topic of atomic optics.

9Which means neglecting the kinetic part of the Hamiltonian.
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Figure 2.3: EIT atomic level schemes. (left) Two typical systems in which one can observe
EIT, a lambda system in the top and a ladder system in the bottom. (right) Ladder system
of interest. Relevant states are the ground state |g⟩, the excited state |e⟩ with decay rate
Γ, and the metastable Rydberg state |r⟩ with dephasing rate γr. A weak probe field with
frequency ωp couples |g⟩ and |e⟩ with a detuning ∆p = ωp − ωge. A strong control field with
frequency ωc drives the transition |e⟩ → |r⟩ with a detuning ∆c = ωc −ωer. The two-photon
detuning is δ = ∆p +∆c.

has three eigenvectors and their corresponding eigenenergies:

|D⟩ = cos θ|g⟩ − sin θ|r⟩ ℏωD = 0

|+⟩ = 1√
2
(sin θ|g⟩+ |e⟩+ cos θ|r⟩) ℏω+ =

ℏ
2

q
Ω2
c + Ω2

p

|−⟩ = 1√
2
(sin θ|g⟩ − |e⟩+ cos θ|r⟩) ℏω− = −ℏ

2

q
Ω2
c + Ω2

p,

(2.15)

where θ is the mixing angle given by:

cos θ =
Ωcq

Ω2
c + Ω2

p

, sin θ =
Ωpq

Ω2
c + Ω2

p

. (2.16)

There are two important observations to make. Firstly, while the state |D⟩
remains at zero energy, the states |+⟩ and |−⟩ are shifted up and down, respectively.
Secondly, the states |+⟩ and |−⟩ contain components from all the bare atomic states,
while the state |D⟩ has no contribution from |e⟩ and is therefore the dark state. If
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the atom is prepared in this state, there is no possibility of excitation to |e⟩ and
subsequent spontaneous emission.

To observe EIT, a typical scenario involves shining a coupling light on an ensemble
of atoms initially in the ground state |g⟩. At Ωp = 0, one can identify that |D⟩ = |g⟩.
Then, a weak probe light is shined, which changes the EIT eigenstates and gives some
|g⟩ component to |+⟩ and |−⟩. However, as the whole process happens adiabatically,
the atoms remain in state |D⟩, which is a dark state and cannot absorb any light.
Therefore, the ensemble appears transparent to the probe light, despite the probe
is resonant with the |g⟩-to-|e⟩ transition. Moreover, if the probe detuning ∆p were
included, one could show that the ensemble would be maximally absorptive when
∆p matches the energy shift of either |+⟩ or |−⟩.

This discussion presents a simplified picture where spontaneous decay from |e⟩
and |r⟩, as well as other sources of decoherence, were neglected. To include these
effects, one would typically use the master equation in Lindblad form to compute
the non-unitary dynamics of the system. This leads to a system of six differential
equations, as detailed in [82, sec. 3.1]10.

Under the assumptions of a weak probe field (implying that most of the atoms
remain in |g⟩) and the system being in a steady state (where the populations
and coherences between the states do not evolve in time), one can determine the
susceptibility of the atomic ensemble11. For a near resonant probe, the susceptibility
can be expressed as:

χ =
ϱσ0
k0

iΓ (2γr − 2iδ)

(Γ− 2i∆p) (2γr − 2iδ) + Ω2
c

, (2.17)

where σ0 =
3λ2

0
2π is the resonant cross-section of the |g⟩-to-|e⟩ transition, k0 = 2π

λ0
is

its wave number and ϱ is the atomic density. As depicted in fig. 2.3(right), Γ is
the decay rate from |e⟩ to |g⟩ and γr describes an energy-conserving12 dephasing
processes of the Rydberg state.

Now, let’s explore what all of this means for the propagation of the probe light
in the atomic ensemble. The susceptibility is related to the complex refractive index
n∗, which determines the optical properties of the medium. Approximately, we have:

n∗ =
p
1 + χ ≈ 1 + χ/2. (2.18)

Assuming a uniform density for the ensemble of a length L, the relation between the

10The most appropriate derivation for our case is given in [102, sec. 6.2.2], although it does not
explicitly show all the differential equations, making it difficult to appreciate the complexity of
the problem. To map their problem to ours, one should identify |g1⟩ with |r⟩ and set the decay
constant Γ1 to zero. Also in [26, sec. 3.2], one can find appropriate equations, however, it does not
provide much insight to how to solve them.

11To understand how the density matrix from the Lindblad equation relates to the susceptibility
of the ensemble, I recommend reading [103, sec. 4.2].

12Meaning there is no decay from |r⟩, just loss of coherence.
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output probe field and the input field is given by:

Eout

Ein
= ein∗k0L = e− Im{χ}k0L/2ei(1+Re{χ}/2)k0L. (2.19)

The first term describes the attenuation of the input field, while the second term
accounts for dispersion, resulting in a phase shift of the output field relative to the
input field.

When considering the transmission of light through the ensemble, we define the
transmission coefficient, denoted as t, as the ratio of the output intensity Iout to the
input intensity Iin of the probe, Iout = tIin. In the case of EIT, the transmission
coefficient is given by the expression:

t = exp

�
−ODIm

�
iΓ (2γr − 2iδ)

(Γ− 2i∆p) (2γr − 2iδ) + Ω2
c

��
, (2.20)

where OD = ϱσ0L represents the usual two-level optical depth of the ensemble. One
can see a typical EIT transmission curve in fig. 2.4. The resonant transmission of
EIT (∆c = ∆p = 0) is given by:

t = exp


− OD

1 + Ω2
c

2Γγr


 . (2.21)

One can see that, in the absence of dephasing (γr = 0), the EIT transparency would
be always 1. However, in the presence of dephasing, the transparency is decreased
and influenced by the optical depth, the Rabi coupling frequency, and the excited
state decay rate.

Moreover, the EIT transparency peak for resonant coupling can be well approx-
imated with a Gaussian function with the amplitude given by eq. 2.21 and width
(understood as the standard deviation) given by

ΓEIT =
Ω2
c

Γ
√
8OD

, (2.22)

where for simplicity we neglected the dephasing in the Rydberg level13.
Another notable property of EIT is the phenomenon of slow light, where the speed

of light propagation in the medium is significantly reduced due to strong dispersion
around the EIT resonance, as one can see in fig. 2.4(right). This effect leads to an

13Otherwise the formula gets more complicated:

ΓEIT =

s
(2Γγr + Ω2

c)
3

8ΓOD(ΓΩ2
c + 4Ω2

cγr − 8γ3
r )

(2.23)

.
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Figure 2.4: Transmission and phase shift for a probe propagating through a medium with
OD = 15 under EIT conditions (blue) and with normal two-level susceptibility, i.e. without
the control field (red). Parameters typical for our experiment were used to plot the figures:
resonant coupling ∆c = 0, Ωc = 1.5Γ and γr = 0.05Γ.

extended interaction time between the light and the ensemble. To see why it occurs,
let us recall the group refractive index ng given by:

ng = n+ ωp
∂n

∂ωp
≈ 1 +

Re{χ}
2

+
ωp

2

∂ Re{χ}
∂ωp

, (2.24)

where n = Re {n∗} is the real part of the refractive index as in eq. 2.18. In the case
of EIT, the last term dominates the expression. The group velocity vg = c/ng is used
to define the group delay τd, which quantifies the additional time it takes for a pulse
to travel through the ensemble compared to vacuum τd = L(1/vg − 1/c) ≈ L/vg. By
using the expression for χ from eq. 2.17 and the last term of the equation for ng, we
obtain for resonant probe and coupling (∆c = ∆p = 0):

τd = OD
ΓΩ2

c − 8Γγ2r

(2Γγr + Ω2
c)

2 . (2.25)

Assuming a negligible dephasing rate γr (which is not entirely true for our system,
but I find it instructive), we can simplify the equation further to:

τd =
ODΓ

Ω2
c

. (2.26)

In our experiment, the typical group delay is around 70 ns14, corresponding to an
average group velocity of 410m/s. This means that the light travels in our ensemble
about 1,400,000 times slower than the speed of light in vacuum.

14This value was measured for parameters given in Table 3.1. However, estimating the group
delay is somewhat challenging due to the complex propagation dynamics of short pulses under rEIT
conditions [77, 78]. Moreover, if one were to naively use eq. 2.25 and calculate the expected group
delay, the result would be more than 10 times larger than the measured value.
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From the expressions for the transmission coefficient, eq. 2.21, and the group
delay, eq. 2.26, it becomes apparent that optimizing EIT is not a straightforward task.
On one hand, we aim to achieve a large group delay to extend the interaction time
with the ensemble, which requires a high OD and a small coupling Rabi frequency.
However, these factors also lead to a decrease in EIT transparency. In our case,
working with high-lying Rydberg levels which have small transition dipole moments
to the excited state, the maximum achievable coupling Rabi frequency is typically
used, although it may not always be the optimal scenario.

2.2.4 Dark state polariton

So far, we have been treating the probe field in a classical manner. However, in
order to account for the quantum nature of the probe field and work with single
photons, we introduce the concept of a polariton. A polariton is a quasi-particle
that arises from a coherent superposition of an electromagnetic field and an atomic
excitation. In the context of EIT, polaritons do not couple to the excited state15 and
therefore cannot emit radiation, so they are referred to as dark-state polaritons. The
mathematical description of EIT polaritons was developed in [104, 105], and I will
provide a brief summary of the most relevant properties here. For a detailed and easily
understandable derivation, I recommend referring to the thesis by Ornelas-Huerta
[82, sec. 3.2].

Let’s consider the same scenario as in the previous section, depicted in fig. 2.3.
We assume that the probe light propagates along the z-direction and is described by
an amplitude operator Ê†(z), which creates a photon at position z. The collective
excitations shared among the atoms in the medium are described by operators P̂†(z)
and Ŝ†(z), which create atomic excitations at position z in the |e⟩ and |r⟩ states,
respectively. It can be shown that the creation operator for the polariton field takes
the form [104]:

Ψ̂†(z) =
ΩcÊ†(z)− g

√
N Ŝ†(z)p

Ω2
c + g2N

, (2.27)

where g describes the single-atom coupling of probe photons to the |g⟩-to-|e⟩ transition
(proportional to the transition dipole moment rescaled) and N is the number of
atoms participating in the formation of the polariton.

Several observations can be made based on this expression. First, it bears a
resemblance to the dark eigenstate in eq. 2.15, as they are different descriptions
of the same phenomenon. Second, the coupling g is enhanced by a factor of

√
N ,

signifying that the probe field couples to a collective atomic excitation. Third, P̂†(z)
is absent, indicating that the polariton does not couple to the excited state and
therefore cannot emit light16. It is a dark excitation. Finally, the polariton comprises

15In the scenario relevant to us, but in principle they can couple to the excited state.
16We assume here that the lifetime of |r⟩ much longer than other time scales in the system, which

is a valid assumption in our system. In reality, a radiative decay from |r⟩ is possible, however, very
unlikely.
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both electromagnetic and atomic (Rydberg) excitations, inheriting characteristics
from both types of excitations. Its dynamics stem from the photonic component,
resulting in propagation, while the spin-wave component can give rise to interactions
with other polaritons or external fields.

Intuitively, as we decrease Ωc, the polariton becomes more Rydberg-like, leading
to a decrease in the group velocity. Conversely, as we increase Ωc, the polariton
becomes more photon-like, resulting in an increase in the group velocity. In fact,
one can show [104] that the group velocity of the polariton is vg = c/(1 + g2N/Ω2

c),
which agrees with our intuition and, in fact, is equal to the group velocity derived in
the previous section.

In the extreme case where we turn off the control field, the polariton is entirely
mapped to a Rydberg excitation. By subsequently turning the control field back on,
we can retrieve the pure Rydberg excitation as a propagating polariton in the probe
mode. This coherent conversion of a propagating polariton into an atomic excitation
and vice versa is the principle behind EIT quantum memories, which are known for
their high storage efficiencies [106, 107] and long storage times [108].

2.2.5 Rydberg polaritons

In the previous sections on EIT, we focused mainly on the effects of EIT, without
considering the interactions between Rydberg atoms. Now, let’s discuss what happens
when light propagates through an atomic ensemble where both phenomena, dipole
interactions between atoms and EIT, are present.

Based on eq. 2.27, we know that polaritons propagating in an EIT medium have
an admixture of the Rydberg state. This implies that polaritons should also interact
with each other and, interestingly, these polariton-polariton interactions allow us to
engineer optical nonlinearities, which can even occur at the single-photon level in
extreme cases (by which we should understand that any subsequent photon arriving
to the ensemble propagates under different conditions than the first photon).

To understand this behavior intuitively, let’s consider a pair of photons sent into
the medium one after the other. The first photon propagates through the medium
as a polariton, with a reduced group velocity vg. When the second photon enters
the medium, the Rydberg level is shifted due to the van der Waals potential of the
already existing polariton. If the second photon arrives close enough to the first
photon, within the so-called blockade time τb = rb/vg, where rb is the blockade
radius, the dipole interaction shifts the Rydberg level so much that the control field
is no longer resonant with the |e⟩ to |r⟩ transition. Then, the second photon sees
an ensemble of two-level atoms to which it is resonant and, therefore, will likely be
scattered. Consequently, the probability of multiple photons simultaneously exiting
the medium is suppressed.

This phenomenon was observed as a decrease in EIT transparency with increasing
probe power [109]. Subsequently, it was discovered that light leaving a Rydberg-
EIT (rEIT) ensemble exhibits strong antibunching features [58], indicating that the
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photons are well-separated in time by at least the blockade time. In our research
group, we demonstrated that the nonlinear response can be enhanced by storing
photons in the Rydberg state [80], as it extends the interaction time and selectively
filters out photons that did not interact with the ensemble.

To explain these observations, a significant body of theoretical work has been
developed, just to give some examples [41, 110–112]. For a didactic introduction to
the theoretical framework commonly used to describe interacting Rydberg polaritons,
I recommend referring to the work by Bienias et al. [113].

Moreover, more exotic phenomena have been observed. For example, resonant
enhancement of three-body losses has been documented [72]. Furthermore, when
deviating from single-photon resonance, a plethora of interesting and non-trivial
effects emerge, such as conditional phase shifts [114, 115], three-body interactions
and bound states [73, 74], as well as repulsive and attractive photonic interactions
[76].



Chapter 3

Experimental setup

In this chapter, I’ll walk you through our experimental setup, which is specifically
designed for creating and manipulating disordered ensembles of Rubidium atoms
and exciting them to Rydberg states. We use standard cold-atomic techniques and
some custom-made solutions tailored to the specific needs of our experiment.

To achieve nonlinear effects at the single-photon level, we have a few requirements
to fulfill. First, we need a strong interaction between light and matter, which means
our optical depth must be large. Second, we ensure that the atoms are tightly
confined so that only one, or at most a few, blockade spheres can fit within the
atomic ensemble. Lastly, we require our excitation lasers to have small linewidths
and good frequency stability to address narrow atomic transitions.

In our experiment, we achieve a dense and compact atomic cloud of 87Rb atoms
by loading them into a dipole trap from a magneto-optical trap. This provides us
with the necessary conditions to proceed with an interrogation of the atoms. We
turn off the dipole beam and introduce a probe beam with a counter-propagating
coupling beam to excite them to a Rydberg level. Finally, the photons emitted by
the system are detected using single-photon detectors, as discussed in more detail in
ch. 4.

Many parts of the setup are only briefly discussed as they were already described
in detailed in theses of my predecessors, Emanuele [116, ch. 4] and Auxi [117, ch. 3].
Part that were developed during my PhD are depicted in more detail.

3.1 Trapping and cooling the atoms

We use a fairly standard experimental setup to trap and cool 87Rb atoms. We
chose to work with 87Rb because it is a relatively simple and easy-to-handle species,
making it a good choice for studying the physics of Rydberg atom ensembles. The
used techniques for trapping and cooling this atomic species are well-established and
include magneto-optical trapping, optical molasses, and dipole trap. Our primary
objective is to create a small cloud, comparable with the blockade radius, with an
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dipole trap
...

interrogation

0.5 to 2 s ∼20ms∼20ms ∼30ms 200ms

atom loading

Figure 3.1: A typical experimental sequence. The experimental sequence begins with the
atom loading phase, which includes magneto-optical trapping (MOT) followed by compressed
MOT (CMOT) and optical molasses. The dipole trap is kept on during this entire process.
After the loading phase is complete, the interrogation phase begins. During this phase, the
dipole trap is pulsed and, depending on the experiment, the probe light may also be used.

optical depth much larger than 1. In our setup, we typically work with a cloud that
has a diameter of about 15 µm (FWHM) and optical depth 10 to 14. To achieve
this, we follow a typical experimental sequence, which is illustrated in fig. 3.1, and
described in the following sections.

3.1.1 Magneto-optical trapping and cooling

Below, I will provide a brief overview of the main mechanism of laser cooling and
then describe the different stages of the loading phase. For a more comprehensive
explanation, I recommend reading Foot’s textbook [118, ch. 9] or the theses of my
predecessors, Auxi [117, sec. 3.4] and Emanuele [116, sec. 4.1].

Laser cooling techniques rely on radiation forces to trap and cool atoms. These
forces arise from the scattering of photons, which carry momentum ℏk, where k
is the laser field wave vector, that is transferred to the atoms, when a photon is
absorbed. Since the remission of the photons happens in random directions, there is
a net force that slows down the atoms. By shining three pairs of counter-propagating
red-detuned laser beams along the Cartesian axes, one can slow down the atoms in
all three directions, achieving so-called optical molasses1. The ultimate limit for this
kind of cooling is equal to a few times the recoil temperature, Tr which is given by
[118, p. 208]

kBTr =
(ℏ|k|)2
mA

, (3.1)

where kB is the Boltzmann constant and mA is the atomic mass. For 87Rb, Tr =
362 nK. A comprehensive explanation of this effect can be found in [102, sec. 1.4.2]

1At first glance, one might think that the forces coming from counter-propagating laser beams
would balance each other out and have no effect on the atoms. However, this is only the case
for stationary atoms. When the Doppler effect is taken into account for moving atoms, it can be
shown that the forces become imbalanced. The resulting force resembles friction, with a magnitude
proportional to the atom’s velocity.
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or [118, sec. 9.1].
Our typical atom loading phase begins with a magneto-optical trap (MOT),

which consists of a magnetic field gradient generated by two coils arranged in an
anti-Helmholtz configuration and the six laser beams described earlier2. This setup
not only slows down the atoms, but also traps them in a region of zero magnetic
field [118, sec. 9.4]. After a variable time, typically around 500ms, we obtain a
dilute cloud of atoms with a diameter of approximately 2.5mm (FWHM) and a
temperature of 300 µK. Typically, we do not focus much on the specific parameters
of this loading stage. Instead, we optimize it by monitoring the brightness of the
cloud’s fluorescence.

The next phase in our experiment is the compressed magneto-optical trap
(CMOT), which enables us to increase the atomic density beyond that achieved in
the MOT without significantly raising the cloud temperature [119]. To achieve this,
we gradually increase the magnetic field gradient to confine the atoms in a tighter
potential and decrease the intensity of the laser beams to reduce the fluorescence
radiation pressure. Again, we optimize it by monitoring the brightness of the cloud’s
fluorescence and, crucially, ensuring that its center aligns with the center of the
dipole trap.

The loading phase concludes with optical molasses, which enables us to reduce
the temperature of the cloud at the expense of losing some atoms. During this phase,
the magnetic field gradient is turned off, which is necessary for the molasses to work
but leads to the loss of trapped atoms, and the laser beam power is further reduced.
As a result, we obtain a cloud with a diameter of around 1.3mm (FWHM) and a
temperature of approximately 35 µK, as confirmed by a time-of-flight measurement
[120, appendix A].

3.1.2 Dipole trap

In order to obtain a small cloud that is comparable with the blockade radius, we use
a far-detuned dipole trap. This trap also allows us to interrogate the atoms for long
periods of time without losing optical depth. The dipole trap is kept on during the
whole loading phase and for another 30ms so that all the atoms that did not fall
into the dipole trap would have time to fly away (due to the gravity).

Atoms in the dipole trap experience attractive or repulsive dipole force, which is
a result of the gradient of the intensity of the laser light. The explanation of this
force is beyond the scope of this thesis, but a didactic explanation can be found in
[118, sec. 9.5] or in [102, sec. 1.4.1].

In general, the magnitude of the dipole potential depends linearly on the laser

2To be precise, we use one additional laser in our setup, called a repumper. Since 87Rb has two
ground states and only one of them participates in the MOT process, the repumper ensures that all
the atoms are in the desired ground state.
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intensity, I

Udipole ≈
ℏΓ2

8δ

I

Isat
, (3.2)

where we assumed that there is one dominant transition (the dipole trap laser is
detuned far from resonance, but much closer to one specific resonance than all the
others)3. Γ stands for the spontaneous decay rate of this transition, δ is the laser
detuning (negative for a red-detuned light), and Isat is the transition saturation
intensity. If δ takes a negative value, the potential energy Udipole exhibits a minimum
at the location of highest intensity, i.e. it forms a potential well that attracts atoms.
However, there is another important factor to consider, which is the scattering rate,
Rscatt

Rscatt ≈
Γ2

8δ2
I

Isat
. (3.3)

This rate determines how often the atoms absorb photons and effectively how quickly
get heated up. Fortunately, the scattering rate scales differently with the detuning,
δ than the dipole potential, so for sufficiently far-detuned light, the scattering is
negligible.

The choice of the dipole trap is typically dictated by the trade-off between the
dipole potential depth and the scattering rate, as well as the availability of high-power
lasers. In our experiment, we found that using a laser with a wavelength of 852 nm
was a good choice.

During my PhD, we made a significant improvement to our setup by switching
from a single-pass dipole trap to a crossed dipole trap. This change allowed us to
reduce the cloud size from 40 µm to 15 µm (FWHM diameter) while increasing the
optical depth from 9 to 18 (at 2 s MOT loading time).

However, we had to adapt an awkward geometry for the dipole trap due to lack
of space in the setup. The original beam was kept at a shallow angle of 21◦ with
respect to the probe (in the horizontal plane), and we added an independent vertical
beam intersecting both the first dipole trap beam and the probe beam at a right
angle, as shown in fig. 3.2. The beams have powers of around 820mW and 990mW,
respectively. The horizontal beam is cylindrical and focused to a waist of w0 = 34 µm,
while the vertical beam is elliptical and has waists of w0,x = 34 µm and w0,y = 68 µm.
The ellipticity of the vertical beam simplified the dipole trap’s alignment in the
vacuum chamber. Moreover, acousto-optical modulators that gate the dipole trap
beams are driven at two different frequencies to avoid interference between the fields.
For the above values and taking into account that both beams are linearly polarized,
we calculated the trap potential to be Udipole/kB ≈ 330 µK, which is deep enough to
observe long trapping times, as shown in fig. 3.3(right).

To avoid anti-trapping of Rydberg atoms and the inhomogeneous AC Stark shift,
both discussed in sec. 5.2.1, the dipole trap is turned off when atoms are probed,

3This assumption does not hold true for 87Rb since both D1 and D2 lines contribute to the
dipole potential. Nonetheless, we mention this consideration for explanatory purposes rather than
for computing precise values.
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Figure 3.2: Geometry of the dipole trap. From a top view, the dipole trap’s original
horizontal beam is visible, intersecting with the probe mode (represented by a black dashed
line) at an angle of 21◦. In the side view, only the vertical beam can be observed. Before
being focused with a 150mm-focal-length lens, the vertical beam passes through a telescope
consisting of two cylindrical lenses, which reduces the beam size in the y direction and
results in an elliptical beam shape. This simplifies the dipole trap’s alignment in the vacuum
chamber.

typically for 2.5 µs. It means that both dipole-trap beams are pulsed during the
interrogation phase, with a duty cycle of around 50%.

Using the method described above, we achieve a cloud that meets our requirements.
The cloud’s size of 15 µm (FWHM) is comparable to the blockade radius and has a
sufficient density to give an optical depth much larger than 1. Moreover, depending
on the specific experiment’s needs, we can easily adjust its optical depth between 0
and 18 by varying the duration of the MOT, as demonstrated in fig. 3.3(left).

The reported cloud size might be surprising when compared to the dipole trap
beam sizes. One would anticipate that the size of the potential well formed by the
intersection of the two dipole trap beams, known as the dipole trap potential well,
would have a diameter of 2w0 = 68 µm. However, the reported size of the cloud is
much smaller than this. There are two reasons for this disparity.

Firstly, the beam waists, denoted as w0, are typically defined as the half-width
at 1/e2 of the light intensity, which is related to the full width at half maximum
(FWHM) by the equation 2w0 = 1.699FWHM. Therefore, the estimated potential
well size based on the beam waists appears larger.

Secondly, the cloud size is usually smaller than the trap well size because the
cloud does not completely fill the potential well. This can be described by the
filling factor ζ ≡ kBT/Udipole, where T represents the temperature of the cloud and
Udipole corresponds to the depth of the dipole trap potential well. The size of the
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Figure 3.3: (left) Optical depth of the cloud hold in the dipole trap depends on the
duration of MOT (loading time). (right) Optical depth as a function of the interrogation
time for two different loading times, 60ms (red circles) and 150ms (blue circles). Optical
depth decreases during the interrogation time (we typically work with interrogation time of
200ms). The main reason for this is the fact that the dipole trap is pulsed, as the scattering
rate is estimated to be very low, less than 10 events per second. The solid lines are fits to
function Ae−τ . In both plots, optical depth was measured with the probe transmission.

atomic cloud, denoted as wa, is related to the trap size (under the harmonic potential
approximation) by the equation wa =

√
ζw0 [121, sec. 3.3.1]. Taking into account

the measured values from our experiment and considering the distinction between
FWHM and 1/e2 widths, the expected cloud size is calculated to be approximately
13 µm, which aligns well with the observed value.

3.2 Laser system

Now that we have discussed how we prepare our atomic ensemble, let’s turn our
attention to the technicalities of our laser system. To create all the necessary fields,
which are schematically shown in fig. 3.4, we need four different lasers at different
wavelengths. Some of these lasers have already been described in detail by my
predecessor, Emanuele [116, sec. 4.2], so I will only mention them briefly here.

The lasers we use are: a fiber laser at 1560 nm whose light is frequency doubled
to obtain the 780 nm light for the probe and to drive the MOT, a diode laser at
780 nm which serves as the repumper, a diode laser at 479 nm that allows us to
excite our atoms to Rydberg states, and a diode laser at 852 nm which serves as the
dipole trap. We will now describe each laser in more detail and discuss its role in
our experimental setup.

3.2.1 iXblue laser at 780 nm

The MOT light and the probe light used in our experiment are derived from a 780 nm
laser from iXblue and addresses the F = 2 to F ′ = 3 transition of the D2 line. Its
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Figure 3.4: Schematic representation of the fields involved in our experiments and the
relevant atomic transitions. The dipole trap light is far off-resonant to any relevant transition
and is represented only symbolically.

frequency is stabilized with modulation transfer spectroscopy (MTS), as explained
in detail in sec. 3.3.1.

The laser is based on an amplified fiber laser at 1560 nm, whose light is then
converted to 780 nm using a fiber second-harmonic-generation (SHG) chip. We
specifically chose this laser for its overall stability and low noise, which is particularly
relevant for high-fidelity π-pulses, as discussed in sec. 5.2. The locking setup,
described in sec. 3.3, also relies on the stability of the laser.

This laser is claimed to have a narrow linewidth and very low phase noise at
higher frequencies4. The linewidth of the 1560 nm laser, according to the test sheet,
is less than 3 kHz, which means that we expect a linewidth of less than 6 kHz at
780 nm. The laser delivers more than 950mW of power at 780 nm, which is more
than sufficient for our experimental needs. Due to its limited tunability of around
24GHz, this laser is only suitable for addressing the D2 line of 87Rb. Overall, we
are very happy with this laser, as it has proven to be reliable and stable over long

4We have not independently verified these claims, but we have found its overall performance to
be very good, especially when compared to our previous diode laser, which was also supposed to
have a narrow linewidth of few tens of kHz.
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periods of time.
I’d like to note that the initial experiments discussed in this thesis were carried out

using a different diode laser5, which had its light amplified by an optical amplifier6.
This laser notoriously mode-hopped, and its controller unintentionally introduced
environmental RF noise into the laser light. Furthermore, its beam alignment was
consistently shifting, requiring frequent realignment of the fiber in-coupling. Due to
these challenges, we decided to invest in a more costly yet more reliable 780 nm laser
system described above.

3.2.2 Repumper laser

We generate the repumper light using a home-built laser which is based on a
distributed feedback diode laser from EagleYard7. It delivers up to 80mW with
linewidth of around 2MHz. The repumper laser addresses the F = 1 to F ′ = 2
transition and its frequency is actively stabilized using the frequency of the trap
laser as a reference. We achieve this by employing light beating spectroscopy [122].
The RF signal sent to an AOM allows us to control both the frequency and intensity
of the repumper laser. For more details on the laser construction and the particular
implantation of the lock, see Emanuele Distante’s thesis [116, sec. 4.2.2].

3.2.3 Coupling laser

We use a commercial SHG laser from Toptica8 to provide the coupling light at a
wavelength of 479 nm, which connects the intermediate excited state to the Rydberg
state, and its wavelength can be adjusted to address different Rydberg states. It’s
composed of a tunable external-cavity diode laser at 959 nm, an amplifier and an SHG
cavity, and delivers up to 340mW of power at 479 nm. Although it is not inherently
low noise, we employ a locking setup described in sec. 3.3 to achieve stable and
low-noise performance. This is important because any noise in the laser introduces
dephasing, and the coupling laser needs to be stable in its central frequency since the
transitions to Rydberg levels are narrow. The coupling light intensity and frequency
are controlled with a double-pass AOM.

3.2.4 Dipole trap laser

The dipole trap light at 852 nm is generated by a home-built laser and then amplified
using two free-space amplifiers from Toptica9. The laser is based on a distributed
feedback diode laser from EagleYard, with the design similar to the repumper laser,
and produces an output power of 40 mW which acts as a seed for the amplifiers.

5Radiant Dyes NarrowDiode
6Toptica BoosTA
7EYP-DFB-0780
8Toptica TA/DL SHG pro
9Toptica BoosTA pro



3. Experimental setup 45

The amplified beams with 2.2W and 2.6W of power are then gated by two AOMs
driven at different frequencies to prevent interference between them. Since the dipole
trap laser is not resonant with any atomic transition, it does not require frequency
stabilization.

3.3 Locking setup

In the previous section, we explored the laser system used in our experimental setup.
However, in order to effectively address the narrow atomic transitions10, it is crucial
to stabilize the absolute frequency of our lasers. Additionally, to minimize unwanted
dephasing effects, we employ active noise reduction techniques for the coupling laser
light (for a discussion on various dephasing effects, see sec. 5.2).

During my PhD, we made significant changes to how we lock our lasers. The pre-
vious iteration of setup had notable limitations arising from the chosen spectroscopic
methods used to stabilize the 780 nm and 479 nm lasers.

For the 780 nm laser, we used to use frequency modulation spectroscopy (FMS),
which offers a strong error signal. However, the presence of a non-zero offset made it
prone to drifting, resulting in shifts of the locking point. This effectively translates
to a drift of the laser frequency, which we want to avoid.

The 479 nm laser was locked using EIT spectroscopy to a Rydberg level in a vapor
cell. However, due to the diminishing dipole moment of higher Rydberg levels, the
error signal strength was very weak. Moreover, we were loosing some power of 479 nm
light in this setup, which anyway is limited. Furthermore, the lock’s bandwidth was
quite restricted, making it unsuitable for narrowing the laser’s linewidth.

Our current locking system was designed to solve these issues and is composed of
three interconnected elements. The first element is modulation transfer spectroscopy
(MTS), which allows us to lock the probe laser to the desired atomic transition,
F = 2 to F ′ = 3. The second element of our locking setup is an actively stabilized
cavity. The length of this cavity is actively controlled using the Pound-Drever-Hall
(PDH) method, which relies on a feedback loop referenced to the probe light. This
cavity serves as a stable reference for the Pound-Drever-Hall lock of the 960 nm seed
laser used in the coupling process, the third element of our locking system.

By cascading these three locks, we achieve a highly stable and precisely controlled
frequency for the probe and coupling lasers. In the following sections, we will delve

10It’s truly impressive to consider the level of precision we aim for in laser stabilization. Take
the probe light, for instance, with a frequency of around 3.84 × 1014 Hz. We strive to make it
more stable than the transition width, which is about 6.07× 106 Hz. That’s nearly eight orders of
magnitude! But wait, the transitions to the Rydberg states are even narrower, estimated to be only
about 2× 104 Hz. And the frequency difference between the ground state and the n = 90 Rydberg
state is 1.01× 1015 Hz, which amounts to almost eleven orders of magnitude of difference. It is a bit
like having a ruler as long as the distance from Earth to Sun and operate it with a mm precision. I
find it remarkable how precise our laser stabilization needs to be to explore such intricate atomic
phenomena.
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into the details of each locking element, explaining their principles and the techniques
employed to achieve the desired stability and accuracy in frequency control.

3.3.1 Modulation transfer spectroscopy

We employ modulation transfer spectroscopy (MTS) [123] as a robust method to
lock our probe laser and obtain a highly stable absolute frequency reference. MTS
operates on the principle of four-wave mixing with a pump beam and a probe
beam, utilizing a frequency modulation imposed on the pump light to transfer the
modulation to the probe light. By demodulating the beating signal between the
probe carrier and the imprinted sidebands, we extract an error signal that serves as
feedback on the laser current to maintain laser frequency stability.

One of the advantages of MTS is its offset-free error signal, which makes it a
favorable choice compared to frequency modulation spectroscopy (FMS) in many
applications, as one can see in fig. 3.5(left). As a result, the zero-crossings of the
MTS signals align precisely with the corresponding atomic transitions, assuring the
accuracy of the frequency stabilization.

In the following paragraphs, I provide an intuitive explanation of the underlying
physics that gives rise to the characteristic modulation transfer spectroscopy (MTS)
signal. I then provide the details of our implementation and the optimization
procedures we undertook to enhance its performance.

Four-wave mixing in modulation transfer spectroscopy

To understand the principles of MTS, let’s consider a simple toy model of a two-
level atom. This model is sufficient to grasp the underlying physics of MTS. In a
typical MTS setup (shown in the top right of fig. 3.5), a modulated pump beam
counter-propagates with an unmodulated probe beam.

In our setup, we shift the pump carrier frequency by 2ωaom relative to the probe
frequency. This allows us to effectively lock our laser away from the atomic resonance,
which is necessary when using AOMs to control the laser beams11.

For simplicity, let’s limit our consideration only to the first sidebands. Addition-
ally, we need to account for the motion of the atoms; we denote their velocities as v.
As the pump and probe counter-propagate, they will experience opposite Doppler
shifts for the same velocity class.

All in all, the pump field carries the following frequencies (as seen from a
perspective of an atom) ωpump = {ωc + kv, ωc +Ωmod + kv, ωc−Ωmod + kv}, where
ωc = ω − 2ωaom is the pump carrier frequency, ω is the laser frequency, k = ω/c is
the corresponding wave vector length and Ωmod is the modulation frequency. On the
other hand, the counter-propagating unmodulated probe light has a frequency of
ωprobe = ω − kv.

11It’s worth noting that we could have shifted both fields in frequency to keep the laser off-resonant
with the atomic transition, but this would have required an AOM operating at a different frequency,
which we didn’t have available at the time of building the setup.
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Figure 3.5: (left) Typical MTS error signal compared to a typical frequency modulation
spectroscopy (FMS) error signal. Saturated absorption spectroscopy (SAS) signal is given
for reference. One can clearly see in the MTS signal strongly pronounced features from
the cycling transitions. Figure was reproduced after [123]. (right top) Schematic diagram
of modulation transfer spectroscopy. Doppler shift seen by the atoms have opposite signs
for the pump and the probe light. (right bottom) Schematic representation of the FWM
process in MTS for a two-level atom. There exist two distinct possible process that give
rise to two different resonance conditions. Doppler shifts were omitted for the clarity of the
image. Both were adopted from [124].

In this system, there are two possible four-wave mixing (FWM) processes occur-
ring, as depicted in the bottom right of fig. 3.5. The maximum intensity of the FWM
process is expected when both single-photon absorption and three-photon absorption
are resonant with the atomic transition for the same velocity class [125]. We can
consider the left case (of the two in the bottom right of fig. 3.5), which leads to a
simple set of equations:

(
ω0 = ωc + kv

ω0 = (ωc + kv)− (ωc ± Ωmod + kv) + (ω − kv)
(3.4)

Here, ω0 represents the atomic resonance frequency. Solving these equations yields a
unique resonance condition:

ω = ω0 + ωaom ± Ωmod

2
(3.5)

for a specific velocity class:

kv = ±Ωmod

2
− ωaom. (3.6)

For the right case, a similar analysis leads to ω = ω0 + ωaom ∓ Ωmod.
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There are two important observations to make. Firstly, despite the pump light
being shifted by −2ωaom, the laser light, when locked to the MTS signal, is only ωaom

away from resonance. Secondly, the two different processes result in two distinct
resonance conditions. This leads to a doublet structure that may decrease the slope
of the error signal or even invert its slope [123]. To mitigate this, it is advisable to
keep the modulation frequency below the transition linewidth. However, it should
not be too low, as it can limit the lock bandwidth and might introduce undesirable
amplitude modulation that affects the error signal [126].

When working with real atoms that have more than just two levels, we observe
that MTS provides a strong signal specifically for cycling transitions, as depicted
in fig. 3.5(left). This is because the atoms have a longer interaction time with the
laser beam for cycling transitions compared to non-cycling transitions, as explained
in [124]. For a detailed quantum mechanical analysis of MTS in 87Rb, I suggest
referring to [127].

MTS setup

Let’s now explore our MTS setup, which is illustrated in the left panel of fig. 3.6.
We guide light from the trap laser into a polarization-maintaining fiber, ensuring
careful alignment to minimize power fluctuations in the MTS setup. The light is
collimated12 to a beam with a diameter of 1.6mm. By adjusting the angle of a
half-wave plate (HWP), we can control the power ratio between the reflected probe
beam (via a polarizing beam splitter, PBS) and the transmitted pump beam.

To enhance the signal, we enlarge the probe beam diameter by a factor of 3,
before directing it to the Rubidium reference cell13. The cell is wrapped in mu-metal
to minimize effects of magnetic field variations, and passively heated up to increase
atomic density14. On the other hand, the pump beam undergoes frequency shifting
using an acousto-optic modulator (AOM)15 in a double-pass configuration, resulting
in a frequency shift of 454MHz. To match the expected mode size and reduce the
optical path length, we utilize an uncollimated telescope prior to the AOM. This
particular frequency shift was chosen to align with the frequencies of existing AOMs
in our setup. To maintain frequency stability, the AOM is driven by a highly stable
fixed-frequency source16.

12Schafter und Kirchoff 60FC-4-8A-07
13Thorlabs GC19075-RB
14The exact temperature to which we heat up the cell is unknown. To determine the optimal

temperature, we performed an optimization procedure by adjusting the current flowing through the
heaters and monitoring the amplitude of the error signal. For this purpose, we utilize flexible heaters
from Omega Engineering, the KHLVA-102/10 model. These heaters are designed to minimize
the magnetic field they generate. To further enhance magnetic field cancellation, we employ a
configuration where two heaters are stuck to each other with the current flowing in opposite
directions.

15AA Opto-electronic MT200-B100A0.5-800
16AA Opto-electronic MODA227-B51k-34
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Figure 3.6: (left) Schematic representation of the modulation transfer spectroscopy setup.
Pump light first goes to the AOM where its frequency is shifted by 454MHz and then passes
through the EOM which imprints sidebands at 4.5MHz. The side bands are transferred to
the probe light in FWM process inside the Rb cell. Beating of the carrier frequency with
the side bands is detected at the amplified photodetector (PD). (right) Optimization curves
of the MTS lock. (top) The error signal (ES) slope as a function of the EOM modulation
depth. The modulation depth of the maximum slope agrees well with the prediction of [128].
(bottom) The ES-slope-to-noise ratio (SNR) and noise as a function of the probe power. As
expected, the noise is proportional to the probe power (it is given in units proportional to
V/

√
Hz). Similar results were presented in [129].

Next, the pump beam passes through a wedged electro-optic modulator (EOM)17,
which has a resonance frequency of 4.5MHz. This specific frequency was selected to
optimize the steepness of the error signal, as discussed in the optimization section
sec. 3.3.1. The modulation signal is generated by a Red Pitaya18 and amplified with
a medium-power amplifier19. The wedged crystal design of the EOM helps minimize
the etalon effects, which have been reported to impact MTS performance [129].

Once the sidebands are imprinted, the pump beam propagates through the
Rubidium cell, where the process of four-wave mixing (FWM) takes place. The
probe beam, with the sidebands transferred, is reflected off a PBS and directed to
a photodetector (PD)20. To separate the saturated absorption spectroscopy (SAS)

17Qubig PM7-NIR_4.5
18STEMlab 125-14 Low Noise
19Mini-Circuits ZX60-100VH+
20Thorlabs PDA10A-EC
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signal (DC component) from the MTS signal (AC component), the PD output is fed
through a bias-tee21. The MTS signal is then amplified using a low-noise amplifier22

and fed into a Red Pitaya, which internally mixes it with the modulation signal.
This process generates the error signal, which is utilized to generate a feedback signal
to the laser, also within the Red Pitaya. To control the Red Pitaya, we employ the
Linien software [130] and we are very satisfied with its performance23!

Optimization of the MTS error signal

Let’s now turn our attention to the optimization of an MTS lock, where two key
parameters come into play: the slope of the error signal (ES) and the presence of
residual amplitude modulation (RAM).

The ES slope governs the sensitivity of the lock to laser frequency changes and
determines the minimum detectable frequency shift that the feedback loop can
effectively track. Thus, the ratio of the ES slope to the noise floor can be regarded
as the signal-to-noise ratio (SNR), which we aim to maximize to enhance the lock’s
performance.

RAM is a common phenomenon that can impact various locking methods, albeit
with different underlying causes24. Many locking techniques rely on demodulating
a signal from a photodiode, which ideally should exhibit no component at the
modulation frequency (or they perfectly cancel each other due to opposite phases)
when the laser light precisely matches the desired frequency. In this ideal case, the ES
would be zero. However, due to spurious effects, the signal may undergo amplitude
modulation at the modulation frequency, resulting in an offset in the demodulated
ES. This unintended modulation is known as residual amplitude modulation (RAM).

Unfortunately, RAM can be particularly challenging to deal with, as its strength
often fluctuates over time for unknown reasons. Moreover, monitoring RAM during
lock operation is virtually impossible. Therefore, our objective is to minimize RAM
as much as possible to ensure the stability and reliability of the lock.

To maximize the ES slope, we followed an approach presented in [128]. Their
work allows finding the optimal modulation depth for a given modulation frequency.
Keeping in mind challenges associated with achieving large modulation depths using
an EOM (for our EOM the maximum modulation depth is less than 6), as well as
the need to avoid resolving the doublet structure discussed in the previous section,
we chose to modulate our pump at a frequency of 4.5MHz. We then optimized the
ES slope by adjusting the modulation depth, as shown in the top right of fig. 3.6.

21Mini-Circuits ZFBT-6GW+
22Mini-Circuits ZFL-500LN+
23We tried different available pieces of software for Red Pitaya suitable for spectroscopy and

locking - PyRPL [131] and Lock-in+PID [132], and we found Linien to be the easiest and most
reliable of them.

24It is worth noting that the issue of RAM primarily arises when one is concerned about the
absolute frequency of the laser light. However, if the purpose is simply to narrow the linewidth
using techniques like Pound-Drever-Hall (PDH) locking, RAM becomes less of a concern.
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The next step in our optimization process was to adjust the probe power to
maximize SNR, as discussed in [129]. While increasing the probe power is expected
to increase the ES slope, it also leads to higher noise due to power fluctuations.
Therefore, it was important to examine how the SNR behaved with varying probe
power. We recorded the ES slope and the mean power spectral density (PSD) of the
ES within the frequency range of 50 to 150 kHz for several probe power values, as
illustrated in fig. 3.6 (bottom right).

Having optimized the ES slope, we turned our attention to RAM. The problem
of RAM in MTS has been extensively discussed in literature [129, 133, 134] and the
key takeaway is that the pump light sidebands’ amplitudes should be symmetrical,
and they should be uniformly imprinted in space (in the pump beam cross-section).

To achieve this, we used an EOM instead of an AOM, which effectively solved
the frequency symmetry issue25. However, the use of an EOM introduced another
challenge: polarization RAM arising from the strong birefringence of the EOM
crystal. Fortunately, this problem can be mitigated by using an EOM with a wedged
crystal26.

The second challenge, related to spatial uniformity, remains less understood.
Typically, it is addressed by carefully aligning the probe and pump beams to achieve
perfect overlap. In our experiments, we observed only a weak dependence of RAM
on the alignment of the beams.

Possible improvements

Before we wrap up, I wanted to mention a few ideas we came across while researching
and building the setup, which could potentially improve its performance.

Firstly, instead of heating the cell, which adds complexity and the risk of unwanted
magnetic fields, we could have used a cell with a higher concentration of 87Rb isotope,
which would naturally enhance the signal.

To address the issue of spatially nonuniform sidebands, one interesting approach
we found in a study by Long et al. [135] involved coupling the light from the
electro-optic modulator (EOM) into a single-mode optical fiber. Another idea was to
place the frequency-shifting acousto-optic modulator (AOM) before the spectroscopy
setup, which would have simplified the alignment process and made the overall setup
more compact.

In terms of stability, Long et al. [135] reported that working with a magnetically
insensitive cycling transition, such as the F = 1,mF = 0 to F ′ = 0 transition, along
with a magnetic bias field, could potentially improve long-term stability. However,

25We encountered challenges in our initial setup where the sidebands were imprinted using an
acousto-optic modulator (AOM), which posed two significant problems. Firstly, precise alignment
of the probe and pump beams was crucial to mitigate RAM since the sidebands were not uniformly
imprinted across the cross-section of the pump beam, as previously observed in [134]. Secondly, we
faced long-term drifts that necessitated periodic realignment of the probe and pump beams.

26Another source of RAM might be etalon effects in the EOM, but this can be again mitigated
by having a wedged crystal.
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Figure 3.7: (left) A typical error signal of PDH technique for the optimal modulation
depth of 1.08. One can appreciate the steepness of the error signal around the zero crossing
point. (right) Graphical representation of the spectrum of a phase modulated light with
modulation frequency νmod used in a typical PDH technique (top) and in offset sideband
locking technique (bottom). Opposite pointing of the arrows represent opposite phases
carried by the sidebands. In the offset sideband locking technique, one can tune the frequency
shift νtune such that the sideband at frequncy ν = νlaser + νtune becomes resonant with the
cavity. Then this sideband becomes the usual carrier for the PDH technique depicted above.

an interesting counterpoint was presented by Lee et al. [129], who achieved even
better stability with a simpler setup that didn’t require a bias field.

Our MTS setup demonstrates very good performance, though, we are not able
to directly verify its stability, as it would require either an additional highly stable
laser or an ultra-stable reference cavity, which are currently unavailable to us.
Nonetheless, the observed results indicate the robustness and effectiveness of our
MTS implementation.

3.3.2 Actively stabilized reference cavity

The second element of our locking setup is an actively stabilized medium finesse
optical cavity. This cavity acts as a frequency reference for the 960 nm seed light
of the coupling laser, and we control its length using the Pound-Drever-Hall (PDH)
method, locking the 780 nm light to the MTS lock. The optical cavity provides good
stability with only small long-term drifts, as discussed in sec. 3.3.2.

A brief introduction to PDH method

To give a brief introduction to PDH and discuss important design considerations
for a locking system, PDH’s main objective is to reliably detect changes in cavity
length or laser frequency. We achieve this by illuminating an optical cavity with
phase-modulated light near its resonance and monitoring the reflected signal. We
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mix the reflected signal with the modulation frequency to generate the error signal
(ES). An example of a typical PDH ES can be seen in fig. 3.7(left).

The magic of PDH lies in phase modulation27. Through phase modulation, we
generate sidebands, as depicted in fig. 3.7(top right), with opposite phases – a crucial
distinction compared to amplitude modulation, where the sidebands share the same
phase. When the laser light perfectly matches the optical cavity’s resonance, the
reflected signal consists of the sidebands and a residual portion of the carrier. The
beatings between the carrier and the sidebands cancel each other out due to their
opposite phases, resulting in an ES value of zero. However, if the cavity length
changes or the laser frequency drifts, one sideband is more strongly reflected while
the other is less reflected. When the modulation frequency is in phase with the less
reflected sideband, we observe positive values in the ES. Conversely, negative values
are obtained in the opposite case. Thus, by employing phase modulation of the laser
light, we can reliably determine the “direction” of changes in cavity length or laser
frequency.

One can approximate the ES, denoted as ϵ, near the resonance as a linear function
of detuning from the cavity resonance, ∆ν [137]:

ϵ = −8
p
PcPs

∆ν

δν
, (3.7)

where Pc and Ps represent the optical powers in the carrier and one of the first
sidebands, respectively, and δν corresponds to the cavity linewidth. To achieve
optimal lock performance, maximizing the slope is crucial.

Two important points should be noted. Firstly, a narrower cavity linewidth leads
to a steeper ES and higher responsivity of the locking system. However, it is important
to consider that very high-finesse cavities may come with drawbacks such as increased
cost and alignment challenges. Secondly, there exists an optimal modulation depth
of 1.08, which maximizes the

√
PcPs factor. For a more comprehensive theoretical

treatment of the Pound-Drever-Hall (PDH) method, I recommend referring to the
works of Black [137] or Nagourney [138, sec. 4.7].

The advantage of this method lies in the fact that the locking point remains
independent of the laser power (at least in principle), and power fluctuations mainly
affect the slope of the ES. Additionally, it’s worth noting that the ES slope is
proportional to the optical power, while shot noise only grows with the square root
of power. Therefore, it’s advantageous to provide more power to the locking setup
for optimal performance.

However, achieving excellent long-term stability requires attention to certain
small details. These considerations will be discussed in the following section.

27It took me some time to realize that phase modulation and frequency modulation are essentially
the same thing, just parameterized differently, and both can be referred to as angle modulation.
This concept is nicely explained in [136, sec. 6.1]. In the context of PDH, we primarily focus on
phase modulation since it’s easier to achieve high-quality phase modulation, mostly with EOMs,
compared to frequency modulation.
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Figure 3.8: Schematic representation of the cavity setup. 780 nm and 960 nm impinge on
the cavity from opposite sides and are separated by dichroic mirrors (DM). 960 nm light is
modulated in the laser and in the fiber EOM (fEOM). 780 nm light, in contrary, is modulated
by a free-space EOM. The left flat mirror is glued to a piezo actuator which glued to the
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Cavity setup

Our cavity setup is depicted on the right side of fig. 3.8. The 780 nm light is guided
through a polarization-maintaining fiber and then collimated28 into a 0.9mm diameter
beam. To avoid polarization residual amplitude modulation (RAM) (discussed later),
a half-wave plate (HWP) is used to match the axis of the subsequent EOM29. The
EOM is driven at 12.5MHz with an amplified30 signal generated by a Red Pitaya31.
The beam is focused with a singlet lens of 500mm focal length and directed towards
the cavity. Numerical simulations32 suggested it would give the best mode matching
with the cavity mode.

A dichroic mirror33 separates the reflected 780 nm light from the transmitted
960 nm light, which enters the cavity from the other side. The reflected light
undergoes further reflection from a polarizing beam splitter (PBS) and is detected
using an amplified photodetector (PD)34. The PD signal is then sent to a Red Pitaya,
where it is mixed with the modulation signal to generate the error signal (ES). A
home-built piezo driver35, driven by a PID signal generated by Red Pitaya, controls

28AMS Technologies 355230-FCAPC-780
29Leysop 12.5MHz-RPM-LT-960
30Mini-Circuits ZX60-100VH+
31STEMlab 125-14
32With a very nice piece of software available online [139].
33Thorlabs DMSP805T
34Thorlabs PDA8A2
35Our design – great thanks to our electronic workshop!, is based on a design presented in [140].

It performs very well (better than the previously used piezo driver from Thorlabs) and with small
modifications suits well our needs. We mostly simplified the design by getting rid of the DAC in
favor of a manually set offset, to which an amplified and low-passed slow input is added. This
modification is necessary due to the specification of Red Pitaya whose slow output is only 0 to 1.8V,
so needs amplification, and is generated with PWM, so requires a low-pass filter.
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the length of a piezo actuator36 to which one of the cavity mirrors is attached.
The home-built cavity has a finesse of approximately 2000 at 780 nm. Following

recommendations from deHond et al. [141], we opted for a plano-concave design
with the curvature of one mirror of 500mm37. To reduce the cavity linewidth, we
decided for a longer cavity design, utilizing a 250mm Invar spacer38 machined in
our institute’s mechanical workshop39. The cavity is housed in a teflon tube, which
is enclosed within an aluminum tube, and further surrounded by another teflon
tube. This assembly is securely mounted on a breadboard. We decided not to
place the cavity under vacuum, as anyway it is actively stabilized. Additionally, a
home-built temperature control system is implemented to stabilize the temperature
of the aluminum tube, although its performance is limited, likely due to the cavity
large size.

Cavity lock performance

We measured the error signal (ES) slope to be approximately 9mV/kHz, which
should meet our requirements. With a noise floor of a few mV, the locking system is
capable of responding to cavity length changes corresponding to less than 1 kHz. The
lock’s bandwidth, estimated by increasing the gain until the system starts oscillating,
is around 13 kHz. While this may seem relatively low, it is expected due to the
limited bandwidth of the piezo actuators we are using.

Similar to the MTS setup, we currently lack a means of directly assessing the
long-term stability of the cavity lock. However, there are indications that the stability
may not be as good as we had hoped. Notably, we observe a significant amount of
residual amplitude modulation (RAM), likely stemming from a slight polarization
mismatch in the EOM and etalon effects (either in the EOM or somewhere down the
optical path). Although careful alignment can temporarily eliminate the RAM, it
tends to reappear over time, necessitating periodic realignments. Such effects have
been studied before [142, 143] and a particularly promising approach is to use a
wedged EOM [144]. Additionally, relocating the EOM before the optical fiber could
improve the spatial uniformity of the imprinted sidebands. For more details on RAM,
please refer to the discussion in sec. 3.3.1.

In addition to RAM concerns, we also face challenges arising from environmental
factors. Fluctuations in ambient temperature can exceed the compensation range of

36Physik Instrumente Round PICMA PD150.31
370.5 inch fused-silica mirrors from Layertec 122294 (plane) and 122293 (concave) with reflectance

of 99.8(1)% at 780 nm and 958 to 970 nm
38City Special Metals Invar 36
39The cavity finesse depends only on the intra-cavity losses, which for a typical cavity is given

by F ≈ 2π/(1− r1r2), where r1 and r2 are reflectances of the mirrors, which were assumed to be
close to 1. In the same time, finesse is defined as a ratio between the cavity free spectral range,
FSR and its linewidth, δν, F = FSR/δν. As the cavity FSR is inversely proportional to its length
L, FSR = c/2L, it straightforward to see that increasing the cavity length decreases effectively its
linewidth.
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the piezo driver. Furthermore, abrupt pressure changes resulting from activities like
opening doors can impact the stability of the cavity. To mitigate these issues, one
possible solution is to place the cavity under vacuum conditions.

3.3.3 Coupling laser lock

As previously mentioned, the optical cavity plays a role of a frequency reference for
the 960 nm seed light of the coupling laser. To stabilize its frequency, we employ the
Pound-Drever-Hall (PDH) method in combination with the offset sideband locking
technique [145]. This approach is necessary because the desired wavelength (given
by the atomic resonance) may be far from the cavity resonance.

To address this, we use a wideband fiber electro-optic modulator (fEOM)40 to
generate sidebands, with one of them resonant with the cavity. This resonant sideband
then serves as the carrier frequency for the PDH method, what is schematically
shown in fig. 3.7(bottom right). To drive the fEOM we use an amplified41 signal
from a small USB RF generator42.

The light is directed towards the same setup, where a collimated beam with a
diameter of 1mm is directed towards the opposite side of the cavity. To ensure mode
matching, we employ a lens with a shorter focal length compared to the 780 nm case,
as the concave mirror acts as a diverging lens. Prior to entering the cavity, the light
passes through a dichroic mirror, which reflects the transmitted 780 nm wavelength.
Unlike the 780 nm light, there is no need for an EOM for the 960 nm light, as it is
already frequency modulated within the laser itself, serving the purpose of locking
the second harmonic generation (SHG) cavity. The modulation frequencies of the
780 nm and the 960 nm lights, 12.5MHz and 20MHz, respectively, are purposely
different to avoid any cross-talk between the locking systems.

This locking mechanism not only stabilizes the absolute frequency of the laser
but also narrows its linewidth, thanks to the relatively large bandwidth of the lock,
which is approximately 1MHz. This linewidth reduction is essential in our system,
as phase noise can adversely affect overall efficiency, as discussed in sec. 5.2. We
estimated the 960 nm laser linewidth to be around 30 kHz based on the RMS of the
error signal (ES) (the laser is locked) and the measured ES slope, 2.8mV/kHz. This
is a significant accomplishment, but we are aiming to further improve. Our target is
to achieve a linewidth of around 10 kHz, which would be the optimal outcome for
our system.

However, there are some slow drifts caused by residual amplitude modulation
(RAM). One source of RAM arises from modulating the laser diode current to achieve
the necessary frequency modulation for locking the second-harmonic generation
(SHG) cavity. While this modulation also introduces some amplitude modulation,
we believe that this RAM component remains constant over time and should not

40iXblue NIR-MPX950-LN-10-00-P-P-FA-FA
41Mini-Circuits ZFL-1000VH+
42Windfreak SynthUSBII
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pose significant issues. Subsequent laser models have addressed this concern by
incorporating an EOM to directly modulate the seed light, thereby reducing this
particular RAM source.

Additionally, there is some RAM originating from the fiber EOM, which we
employ not only for the offset sideband generation but also to amplify the PDH
sidebands. This is necessary because the current modulation in the laser is relatively
small. Fortunately, this issue has been the subject of previous studies [146–148], and
we are optimistic that we will find a suitable solution to mitigate this RAM problem.

3.3.4 Summary

In summary, our locking system stands as a robust solution that meets our needs.
The performance of the MTS lock for the 780 nm laser appears very good, although
it’s challenging to precisely gauge its performance due to a lack of comparably stable
frequency reference. However, the absence of observable error signal offset and, hence,
offset drifts suggests that the system is performing well.

The primary limitation of the setup appears to be the RAM in the PDH locks
of the cavity and the 960 nm laser. While we haven’t continuously monitored the
resulting offsets over extended durations, occasional checks indicate that drifts likely
remain within the range of 100 kHz (based on measured error signal slopes). With
known solutions available and some adjustments, we are hopeful to improve on this
issue significantly.

It should be mentioned, however, that during an experiment conducted while
preparing this thesis, we started periodically monitoring the photon generation
efficiency’s dependence on the coupling AOM frequency. This indirectly provides
insights into the combined frequency drift of the 780 nm and 479 nm light sources.
Notably, it is necessary to adjust the coupling light frequency by up to 2MHz to
obtain optimal generation efficiency. This suggests much larger drifts than above
estimations, however, it’s possible that factors beyond laser frequencies contribute to
these drifts. To validate this observation, we think of using an ultra-stable cavity
already used by another experiment in our group to monitor coupling light frequency
drifts (as the cavity has sufficient reflectance only for this wavelength). With this
method, we expect to definitively benchmark the locking setup’s performance.

Another problem is the environmental impact on the cavity length, which some-
times drives away the piezo controller out of its range. We hope to solve this issue
by putting the cavity under vacuum.

Beyond its good performance, our locking setup is cost-effective and scalable.
While we haven’t calculated exactly the setup cost, a rough estimate places the
expenses at less than 7000 euros, significantly lower than, for instance, an ultra-
stable cavity (excluding additional elements such as EOMs and external optics and
electronics). Furthermore, if the need arises to lock another laser, the design can be
duplicated using mirrors with different coatings. In principle, this locking approach
can be expanded to multiple wavelengths without substantial expenses.
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3.4 Experimental control

We utilize an FPGA-based device from Signadyne (now Keysight) to control our
experiment and capture time-tag information from detectors. Our setup includes
two analog cards with a total of 8 channels, which we mostly use to control various
AOMs. Each channel operates independently and incorporates an arbitrary waveform
generator (AWG) functionality. Additionally, we have a digital card with 32 output
channels for simple on/off control, as well as a time-to-digital converter (TDC)
featuring 4 input channels and a resolution of 320 ps. As the TDC is integrated with
other cards, it is possible to perform operations conditioned on presence or lack of a
photon detection. All of these components are housed within a National Instruments
PXI rack.

Despite the versatility of this device, we have encountered some dissatisfaction
with its performance. It exhibits occasional bugs, and unfortunately, Keysight,
the company that acquired the original manufacturer, provides minimal support.
Consequently, we are actively exploring alternative solutions for testing and potential
future acquisitions.

Parameter Typical value
Ensemble size (15 µm)3 (FWHM)
Optical depth (OD) 11 (up to 20)
# atoms 1700
Probe waist 6.5 µm
Coupling beam waist 11µm
Coupling Rabi frequency (Ωc/2π) 8.5MHz (to 90S1/2)
Excited state decay rate (Γ/2π) 6.067MHz [149]
Rydberg state decoherence rate (γr/2π) 0.4MHz

Table 3.1: Summary of typical parameters in our experiments.



Chapter 4

Single photon detection

Photon detection plays a critical role in our experiments, as it allows us to analyze
the photons emitted by our system. To ensure accurate interpretation of the results,
it is important to understand how photon detection works and its impact on our
measurements. In this chapter, I discuss some practical aspects of single-photon
detection from an experimental perspective. It does not aim to provide an exhaustive
review but rather highlights experimental challenges and considerations encountered
during my PhD. By addressing these challenges and incorporating proper modeling
techniques, we aim to factor out the effects of photon detection on our experimental
findings, in particular, the autocorrelation measurements.

4.1 Autocorrelation g(2)

The autocorrelation function, denoted as g(2), is a commonly used metric for assess-
ing the quality of single-photon emission. One of the key advantages of g(2) is its
invariance under linear losses, making it a robust tool for evaluating the performance
of single-photon sources. By looking at the shape and magnitude of the autocorrela-
tion function, one can gain information about the photon statistics and temporal
properties of the emitted light.

For a polarized parallel light beam (which is a typical situation in our experiments)
propagating along z direction, g(2) can be expressed as [150, sec. 4.12]

g(2)(z, τ) =

D
Ê−(z, t)Ê−(z, t+ τ)Ê+(z, t+ τ)Ê+(z, t)

E

D
Ê−(z, t)Ê+(z, t)

ED
Ê−(z, t+ τ)Ê+(z, t+ τ)

E , (4.1)

where Ê+(z, t) =
P

i ui(z, t)âi and Ê−(z, t) =
P

i u
∗
i (z, t)â

†
i are electric field opera-

tors, ui(z, t) are spatio-temporal modes describing the photon wave packet, a†i are
the corresponding photon creation operators and ⟨ ⟩ denotes the quantum mechanical
expectation value.



60 4. Single photon detection

For a single-mode light, the above expression simplifies to [150, sec. 5.1]1

g(2)(0) =
⟨a†a†aa⟩
⟨a†a⟩2 . (4.2)

In particular, for a state with a Fock distribution pk, where k corresponds to the
photon number, it can be written as:

g(2)(0) =

P∞
k=0 k(k − 1)pk

(
P∞

k=0 kpk)
2 . (4.3)

From this, it can be easily seen that for a Fock state of n photons, g(2)(0) = 1− 1
n .

Thus, for a perfect single photon, g(2)(0) = 0. For a photon source, where p1 ≫
p2 ≫ pk>2 it becomes

g(2)(0) ≈ 2 p2
p21

. (4.4)

In such a case g(2)(0) is a direct measure of the multi-photon probability for a
single-photon source.

In the case of coherent light, such as laser light, where Poissonian statistics
apply, the value of g(2)(0) is equal to 1. Notably, any light with g(2)(0) less than 1
defies explanation by classical theory, signifying a distinct quantum phenomenon.
This implies sub-Poissonian statistics, characterized by ∆k <

√
k, with ∆k and k

denoting the standard deviation and expectation value of pk, respectively [150, p.
250].

Closely associated is the concept of antibunching, where the occurrence frequency
of closely spaced photons is lower compared to photons with larger spacings, im-
plying g(2)(0) < g(2)(τ). Both these situations are purely quantum in nature [151,
ch. 6.5]. It’s important to note that sub-Poissonian statistics do not necessarily
imply antibunching [152], although non-classical light often exhibits both photon
antibunching and sub-Poissonian photon statistics simultaneously.

4.1.1 Hanbury-Brown and Twiss

The Hanbury-Brown and Twiss (HBT) setup is a common configuration used to
measure g(2)(τ). It consists of a beam-splitter and two single-photon detectors
(SPDs) connected to a time-tagging device, as shown in fig. 4.1(left). The use of two
detectors helps overcome the limitations imposed by the dead time of the SPDs.

In our experiments, we measure the number of coincidences of detections in both
detectors for different relative delays between the detections, denoted as N1,2(τ). Let

1One may observe that, based on the assumption that light is emitted in a single mode,
g(2)(τ) = g(2)(0) for any τ . However, this is an artifact of the idealized assumption. In reality,
light cannot be perfectly single-mode; in particular, its frequency modes’ distribution has a finite
width and thus a finite coherence time. When accounting for these factors, one expects to recover
g(2)(τ) = 1 for large τ .
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Figure 4.1: (left) The Hanbury-Brown and Twiss (HBT) setup used in our experiment.
The bandpass filter blocks scattered coupling light and prevents backflash detections (if we
use SPADs). The time tagging device is discussed in sec. 3.4. (right) Typical histograms of
photon detections. The first peak is the leakage of the excitation pulse, the second is the
retrieved single photon pulse. Two different curves correspond to the two detectors. The
shaded area is the detection window in which we look for coincidences. The histograms start
with a trail trigger sent by the experimental control at the beginning of each trial. The bin
size is 10 ns.

N be the total number of experimental trials and c1,2(τ) = N1,2(τ)/N be the mean
detected coincidence number per trial. As typically c1,2(τ) ≪ 1, it can be also seen
as the probability of detecting such an event. It can be shown that the normalized
probability of these events is equal to g(2)(τ) given in eq. 4.1 [150, sec. 5.9]:

g(2)(τ) =
⟨n̂1n̂2⟩
⟨n̂1⟩⟨n̂2⟩

=
c1,2(τ)

p1p2
=

N1,2(τ)N

N1N2
, (4.5)

where n̂1(2) is the number operator acting on the mode going to detector 1(2), ⟨ ⟩
is the expectation value, p1(2) = N1(2)/N is the mean detected photon number and
N1(2) is the total number of detections in detector 1(2). An example curve of g(2)(τ)
can be seen in fig. 4.2(right). An alternative approach to measuring g(2)(τ) is by
solely measuring N1,2(τ) and assuming that for large delays τ , there is no correlation
between the detections, resulting in g(2)(τ) = 1.

It is important to note that the above analysis assumes that the expectation
values from eq. 4.1 depend only on the relative delay between the detections, denoted
as τ , and not the absolute time t, implying that the fields are stationary. While this
assumption is often valid, it is not always the case.

During the measurements in the experiment described in ch. 7, we discovered that
our setup required several tens of milliseconds to “warm up” during each trapping
cycle before reaching a steady-state efficiency2. This introduced periodicity in the

2We are still unsure about the mechanism responsible for this effect, however, it seems to be of
technical rather than physical origin.
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Figure 4.2: Autocorrelation g(2) as a function of trial shift for two sets of data: (left) where
the single photon detection probability was (unexpectedly) varying during the interrogation
time and (right) where only a part of the data with a constant probability was used. As we
typically look for coincidences in a window that includes whole single-photon pulses (see
fig. 4.1(right)), the relative delay between the detections τ is given in trial number difference
n, i.e. τ = n ttrial, where ttrial is the trail length and typically ttrial = 5µs.

photon detection probabilities. Initially unaware of this effect, we assumed the
probabilities to be constant over time, resulting in periodic changes in the extracted
g(2)(τ), as shown in fig. 4.2(left). However, by excluding the “warm-up” periods from
the data, we were able to recover the expected behavior of g(2)(τ), as depicted in
fig. 4.2(right).

4.1.2 Effect of noise on g(2)

As we mentioned before, g(2) is independent of linear losses, however, it can be
affected by noise. Especially when one tries to measure values of g(2)(0) close to
zero, any noise is detrimental. As discussed later in sec. 4.3, most of the noise source
present in our system are uncorrelated with the photon detections. We can easily
evaluate the effect of uncorrelated noise detections upon g(2).

If we assume that the probability of detecting any type of 3-detection coincidence
is negligible, the noise alters the probabilities for detection and coincidences as
follows:

c̃1,2 = c1,2 + p1pn,2 + p2pn,1 + pn,1pn,2 (4.6)
p̃1(2) = p1(2) + pn,1(2). (4.7)

Here, pn,1(2) is the noise probability for detector 1(2). The autocorrelation is therefore:

g̃(2)(0) =
c̃1,2
p̃1p̃2

=
p12 + p1pn,2 + p2pn,1 + pn,1pn,2
p1p2 + pn,1p2 + pn,2p1 + pn,1pn,2

, (4.8)

which can be rewritten in terms of SNRs as

g̃(2)(0) =
g(2)(0) + 1/s1 + 1/s2 + 1/(s1s2)

1 + 1/s1 + 1/s2 + 1/(s1s2)
, (4.9)
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Figure 4.3: (left) The influence of noise on g(2)(0) for various “ideal” g(2)(0) values. Low
SNR increases the measured g̃(2)(0) and only for large SNR the effect of noise becomes
negligible. The effect is more pronounced for smaller g(2)(0). (right) Noise-corrected g(2)(0)
as a function of the detected g̃(2)(0) for different values of SNR. Negative values of the
noise-corrected g(2)(0) for smaller values of SNR correspond to the values of the detected
g̃(2)(0) that cannot be observed with such a noise strength.

where s1(2) = p1(2)/pn,1(2) is the SNR for detector 1(2).
Assuming that SNRs are the same for both detectors, this expression finally

simplifies to

g̃(2)(0) =
g(2)(0) + 2/s+ 1/s2

1 + 2/s+ 1/s2
. (4.10)

In fig. 4.3(left) one can see the effect of finite SNR on g(2)(0).

4.1.3 Correcting g(2) for noise

If one assumes that the noise affecting g(2) is uncorrelated with the photon detections,
which is our usual assumption, correcting for the noise means simply solving eq. 4.9
for g(2)(0). This gives

g(2)(0) = g̃(2)(0)−
�
1− g̃(2)(0)

��
1

s1
+

1

s2
+

1

s1s2

�
. (4.11)

The effect of noise correction is shown in fig. 4.3(right).

4.2 Single-photon detectors

In our group, we use two distinct types of single-photon detectors (SPDs) for visible
light: semiconductor single-photon avalanche diodes (SPADs)3 and superconducting
nanowire single-photon detectors (SNSPDs)4. These detectors operate on vastly
different principles, resulting in distinct noise characteristics for each type.

3Laser Components COUNT-10C-FC and Excelitas SPCM-AQRH-14-FC
4ID Quantique ID281
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SPADs, similar to photodiodes, operate based on the principle of the internal
photoelectric effect. When a low reverse bias voltage is applied to a photodiode,
the leakage current changes linearly with the absorption of photons, resulting in
the liberation of current carriers (electrons and/or holes). However, in the case of
a SPAD, the reverse bias voltage is significantly higher, allowing a single carrier to
trigger a self-sustaining avalanche of carriers, generating a detectable current [153,
sec. 2]. SPADs offer the advantages of affordability (typically a few thousand euros)
and compact device size. The typical dead time5 ranges from 20 ns to 50 ns, and the
detection efficiency at a wavelength of 780 nm can exceed 60%.

On the other hand, SNSPDs consist of a meander structure made from super-
conducting wire, typically around 10 nm thick and 200 nm wide. These nanoscopic
superconducting wires, when biased near the critical current (at which the supercon-
ductivity breaks down), experience local destruction of the superconducting state
within picosecond timescales upon absorption of a photon. While initially only a
tiny section of the wire becomes resistive, the subsequent Joule heating causes the
resistive region to expand, resulting in an effective resistance in the kΩ range [154,
sec. 6.2]. SNSPDs are typically bulky due to the requirement of placing them in a
cryostat and are more expensive, with costs on the order of 100,000 euros. However,
they offer the highest achievable detection efficiencies, exceeding 90%. Additionally,
SNSPDs might exhibit short dead times of less than 10 ns.

4.3 Single-photon detection noise

Our SPDs are sensitive to various types of noise. These noises can originate from
the detection process itself, such as afterpulsing or dark counts, or they can arise
from the experimental setup, such as scattered coupling light. While certain types of
noise can be effectively filtered out, others pose significant challenges for removal
and have to be accounted for in the post-processing.

4.3.1 Dark counts

The dark count rate refers to the average number of counts recorded by a detector
per second when no light is present.

In the case of SPADs, dark counts arise from thermally generated carriers within
the SPAD junction. These dark counts exhibit Poissonian statistics and serve as
the internal noise source of the detector [154, sec. 4.4.2]. While they are typically
constant in time, the dark count rate may increase temporarily after strong pulses

5Dead time refers to the duration after a detection event during which the system cannot produce
an output signal in response to additional photons. The significance of dead time varies depending
on the pulses being detected. In our experiment, where typical pulse durations are around 150 ns,
the dead time poses a significant limitation on our ability to accurately determine the photon
number of multi-photon pulses.
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Figure 4.4: (left) Detection rate and dark count rate observed at the SNSPD as a function
of bias voltage. One can see that the detection efficiency saturates before reaching the critical
current (which corresponds to around 2.1V of the bias voltage) allowing us to work with
low dark count rate. (right) Schematic histogram of SPAD afterpulse detections appearing
on top of the photon detections from a coherent light source as a function of waiting time
between two consecutive detections. It can be easily shown that the probability of detecting
a click for a given waiting time follows an exponential decay [156]. Therefore, by fitting
an exponential function (black solid line) to the part of the histogram for large waiting
times, one can easily identify afterpulse detections (blue part of the histogram). The typical
waiting time after which no afterpulse should be detected depends on the detector and varies
from 100 to 1000 ns.

that heat up the detector. For silicon SPADs, typical dark count rates fall within
the range of 10 to 100 per second.

In the case of SNSPDs, it is helpful to consider dark counts as a combination
of two components: intrinsic and extrinsic dark counts. Extrinsic dark counts
primarily result from factors external to the nanowire, such as black-body radiation
or electronic noise. On the other hand, the origin of intrinsic dark counts, remains
largely unknown [155].

The dark count rate in SNSPDs is dependent on the applied bias current and can
be as low as 1/s6. However, achieving such a low rate often comes at the expense
of lower detection efficiency. This trade-off is particularly pronounced for telecom
SNSPDs, where achieving maximum detection efficiency is accompanied by tens or
more dark count clicks per second. In our specific case, at 780 nm, we are able to
operate at the maximum detection efficiency with less than 6 dark counts per second,
as illustrated in fig. 4.4(left).

Similarly to SPADs, dark counts in SNSPDs can typically be modeled using
Poissonian statistics. It should be mentioned that at large bias currents, deviations
from Poissonian distribution have been observed [155]. However, in our case, we do
not consider this to be a significant issue since the absolute number of dark counts is
very low. In particular, the count rate due to stray light collected by the fibers can
be several times larger than the dark count rate.

6Similar phenomenon is observed in SPADs, but typically commercial SPADs come with preuad-
justed bias voltage.
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4.3.2 Afterpulsing

The afterpulse probability refers to the additional probability of a detector producing
a dark count after a preceding detection event. This probability can vary depending
on the overall count rate, and differs from one detector to another in terms strength
and for how long the dark count probability is elevated.

In the case of SPADs, afterpulsing is a well-understood phenomenon [154, sec.
4.4.3] and its chance of occurring is typically, for visible light detectors, below 0.5%.
For SNSPDs, reports vary, with some indicating no afterpulsing [157] or afterpulsing
attributed to electronics rather than the detector itself [158]. However, recent studies
have reported afterpulsing in SNSPDs that cannot be attributed to external factors
[159].

The afterpulse probability can be measured by analyzing the histogram of time
differences (waiting times) between consecutive clicks [156]. By fitting an exponential
function to the long waiting times, where afterpulsing is not expected, one can extract
the additional probability of detecting a click immediately after a detection event, as
shown in fig. 4.4(right). However, caution must be exercised as afterpulsing events
can be mixed with clicks corresponding to photons detected in the “twilight” zone,
which is the final part of the detector’s dead time when its efficiency is recovering.
These photons can be detected, but their timing is often incorrect, leading to an
aggregation of counts right after the dead time. To mitigate this, one can scan the
rate of incoming photons and examine the asymptotic behavior at zero rate [154, sec.
8.4.1].

Although afterpulses are correlated with photon detections, their impact on
g(2)(0) measurements should be minimal, see sec. 4.1.2. This is because the detection
coincidence and afterpulsing are independent events, thus the probability of observing
an afterpulse for a coincidence click is the same as for a regular photon detection.

4.3.3 Backflash

Backflash refers to the broad-spectrum emission emitted by a detector following a
detection event. It has been observed in SPADs and studied as a potential vulnera-
bility in quantum key distribution protocols [160, 161]. The backflash probability is
often not provided in the detector datasheets. However, in a study by Pinheiro et al.
[161], they reported that a similar detector to ours had a backflash probability of
not less than 6.5%. As for SNSPDs, I haven’t come across any reports of backflash,
and it seems unlikely to occur since there are no relaxation processes involved in the
detection or reset of these detectors.

Backflash poses a particular concern in autocorrelation measurements, as it can
cause cross-talk between two detectors. This occurs when light emitted by one
detector is reflected by an optical element and subsequently detected by another
detector. Since such events are strongly correlated, backflash can significantly impact
g(2)(0) measurements.
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We learned about the effect of backflash the hard way while conducting the
experiment described in ch. 6. We noticed that our measured values of g(2)(0) were
much higher than expected. To confirm our suspicion that backflash was responsible
for this discrepancy, we conducted a simple test, as illustrated in fig. 4.5(left). We
connected a SPAD under test and an SNSPD (as a reference) to two output taps
of a fiber splitter. Additionally, we connected another SNSPD to one of the input
taps to monitor reflections. By cross-correlating the detections of the SPAD and
SNSPDs, we were able to identify various effects, including reflections from FC/PC
connectors, two-photon components of the input pulses, and most importantly,
backflash (as shown in fig. 4.5(right)). The element responsible for reflecting the
backflash back to the detectors was a filter cavity used in the memory setup, designed
to reflect all frequencies except the stored photon frequency. Moreover, when
we introduced a narrow bandpass filter after the filter cavity, the backflash peak
disappeared in the cross-correlation histogram, which was expected since backflash
is typically a broad-spectrum emission. One should also notice, that the probability
of detecting a backflash click scales linearly with the photon detection probability,
while the coincidence probability scales quadratically. It means that backflash can
be particularly problematic when the photon detection probability is very low.

The key takeaway from our experience is that when using SPADs for autocorre-
lation measurements, it is always advisable to include a band-pass filter immediately
before the detector. This helps mitigate the impact of backflash on the measurement
results.

4.3.4 Other noise

In addition to the discussed noises originating from the detection process, our system
also experiences noise caused by scattering from different laser beams. During the
relevant time window, when the photon is expected, only the coupling beam is active,
and it is the sole source of noise. The majority of this noise arises from the scattering
of 480 nm light on the science cell, which we effectively filter out using a band-pass
filter7. However, there is some additional noise that cannot be eliminated with the
band-pass filter. We attribute this noise to fluorescence emitted by the Rubidium
atoms deposited on the walls of the science cell or the science cell glass itself. Part
of this fluorescence occurs at a wavelength close to that of the photons (780 nm) and
contributing approximately 40 additional detections per second. We observe that
the main factor reducing this number is the bandwidth of the filter, suggesting that
the fluorescence is wideband. Since these detections are expected to be uncorrelated
with the photon detections, we treat them as additional dark counts and correct
them using the same method described in sec. 4.1.3.

7Thorlabs FBH780-10
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Figure 4.5: (left) Setup used to characterize backflash emitted by our SPADs. Input SNSPD
allows for a direct detection of the backflash emitted by the SPAD. Output SNSPD monitors
the backflash that was reflected by the filter cavity (or any other optical element). Adding
the extra 10m delay line allows us to identify the origin of different spurious (backflash
and reflections) peaks in the histograms. Fibers going to SNSPDs are FC/PC-terminated
what causes undesired reflections. (right) Detection histograms of SPAD, input SNSPD
and output SNSPD (top) and histogram of coincidence between SPAD and input/output
SNSPD detections (bottom). The two highest peaks in the top histogram correspond to
the original weak 40 ns pulses detected by the SPAD and the output SNSPD. The delay of
output SNSPD histogram with respect to the SPAD histogram comes from the different
fiber length, but also additional delay of around 400 ns due to extra cables and electronics.
One should notice that peaks identified as the backflash detections are of almost identical
height in both histograms, highlighting that these events are highly correlated with the
SPAD detections.



Chapter 5

Excitations in Rydberg ensembles

In this chapter, we look into the practical aspects of generating Rydberg excitations
and their subsequent retrieval as single photons. I explain the processes involved in
creating these excitations, and later discuss challenges posed by various noise sources
that limit their generation and retrieval efficiencies.

5.1 Single-photon generation

We use the properties of Rydberg atoms and atomic ensembles to reliably and
efficiently generate single photons. In our work, we employ two distinct approaches:
off-resonant (OR) two-photon excitation and electromagnetically-induced trans-
parency (EIT). Both of them create Rydberg spin waves within the atomic ensemble,
which can be subsequently converted into single photons. In this section, we will
explain these techniques and explore their potential for efficient and controlled
single-photon generation.

5.1.1 Off-resonant single-photon generation

One common approach to single-photon generation is to use a two-photon off-
resonant excitation (OR excitation) to initially excite the atoms to the Rydberg
state |r⟩ =

��nS1/2

�
, as illustrated in fig. 5.1. Following this, the Rydberg excitation

is transferred using a π-pulse to a short-lived state |e⟩ =
��5P3/2, F

′ = 3
�

from which
it decays, emitting a photon. The Rydberg blockade mechanism ensures that only
one excitation is present in the Rydberg state, resulting in the emission of a single
photon. Additionally, due to the nature of the excitation as a spin wave, the emitted
photon is confined to a well-defined mode.

To achieve this, the detuning from the excited state ∆p is set to be large, where
∆p ≫ Γ. Under this condition, the three-level system can be approximated as
a two-level system comprising only |g⟩ and |r⟩, connected through a field with a
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two-photon Rabi frequency [102, sec. 6.1]

ΩR =
ΩpΩc

2∆p
. (5.1)

Both the probe and control fields, being far-detuned from their respective transitions,
induce AC Stark shifts on |g⟩ and |r⟩, resulting in a shift of the two-photon resonance
by

δR =
Ω2
c − Ω2

p

4∆p
. (5.2)

For our experimental parameters, δR is around 500 kHz. It should be mentioned that
during the excitation process, there is a residual population in the |e⟩ state. This
population introduces decoherence, which is discussed along with other decoherence
mechanisms in sec. 5.2. Typically, one refers to this approximation as adiabatic
elimination.

In our experimental setup, we typically use a detuning of ∆p/2π = 40MHz. This
choice of detuning ensures that significant population in the |e⟩ state is prevented,
while also maintaining a sufficiently large two-photon Rabi frequency. This allows us
to efficiently excite the atoms with pulses typically shorter than 1 µs.

To achieve efficient population transfer, different techniques can be employed.
One commonly known method is the Rabi π-pulse, where the Rabi oscillation between
the two states is stopped once the population is fully transferred to the Rydberg state.
However, this approach is susceptible to various noise sources, such as amplitude and
frequency fluctuations of the driving field [162], as well as atomic number fluctuations
in the case of Rydberg ensembles [163].

A more robust alternative is the adiabatic rapid passage (ARP), where the
frequency of the transferring pulse is adiabatically swept. By properly sweeping the
frequency, the instantaneous eigenstates of the system are changed in a continuous
manner, effectively transforming the system ground state into the excited state
and, therefore, achieving population transfer. In the context of Rydberg ensembles,
ARP has been studied theoretically [163, 164] and successfully demonstrated [165].
However, it was also suggested theoretically that ARP might not be well suited for
performing operations where the spin wave phase needs to be well controlled, like in
logic gates, as the accumulated phase depends strongly on the atoms’ number [164].
Another known alternative is the stimulated Raman adiabatic passage technique
(STIRAP). However, a theoretical study showed that in the resonant case it destroys
the interatomic coherence and dephases the single Rydberg excitation, making it
useless for our purposes [166, sec. I].

In our case, not only is the efficiency of population transfer important, but also
the autocorrelation g(2)(0) of the retrieved photons. In strongly blockaded ensembles,
where only one excitation can exist, the g(2)(0) value of the photons is very low [60, 62,
64, 167]. However, in our ensemble, which is slightly larger than the blockade radius,
multiple Rydberg excitations can potentially exist. These coexisting excitations,
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however, dephase due to mutual interactions, effectively suppressing multiphoton
emission [57, 79, 168, 169]. Therefore, the photons’ g(2)(0) value depends on the
number of created excitations and can be tuned by changing the population transfer
efficiency (i.e. Rabi angle) [79].

To optimize the generation process, a characterization curve is typically obtained,
as shown in fig. 5.1. The goal is to find a point where the g(2)(0) value is low while
maintaining a good generation probability. As the number of excitations created in
the ensemble has to be tuned, we use the typical Rabi cycle method to excite the
atoms.

Finally, let’s discuss the concept of the blockade radius in this context. The
blockade radius is determined by the primary broadening mechanism in the excita-
tion process [83, fig. 13], which can arise from factors such as the laser linewidth,
collectively enhanced Rabi frequency, discussed in sec. 2.2.2 (resulting in power
broadening1) or transition linewidth2. The blockade radius can be expressed as:

rb =
6

r
C6

ℏ δω
, (5.3)

where δω represents the frequency width of the dominant broadening mechanism. In
our specific case, since we use pulses that are shorter than a full π-pulse, the dominant
broadening mechanism is associated with the pulse spectrum, which can be obtained
through a Fourier transform of the pulse wave shape. For typical experimental
parameters with n = 90 and the pulse duration of 250 ns, the blockade radius is
rb = 14 µm.

5.1.2 EIT single-photon generation

Alternatively, one could use EIT for single-photon generation.
In this approach, one sends a weak coherent pulse under rEIT conditions, where

the first photon is transmitted while subsequent photons are scattered due to dipole
interactions (as explained in sec. 2.2.5). However, for this protocol to work, the pulse
duration must be shorter than the blockade time, τb = rb/vg, where vg represents the
group velocity3. Consequently, the pulses need to be broad in frequency, significantly

1Others report (in a different context) that in the case of population transfer with a π-pulse,
one should not observe power broadening [170]. However, the Fourier limited pulse spectrum is
anyway roughly equal to the Rabi frequency and, hence, results in the same blockade radius.

2Although in most cases, the homogenous transition linewidth is not the limiting factor, as it is
typically narrow, on the order of a few kHz, the Doppler broadening might become significant, if
the system is not very cold, like in our case. We estimate the Doppler broadening to be around
110 kHz.

3For a multi-photon pulse longer than τb, one can imagine a train of bins separated by approxi-
mately τb with each of them containing a photon. In fact, an attempt was made to realize such
a source of trains of single photons, but unfortunately proved unsuccessful due to experimental
limitations and the presence of not fully understood phenomena known as pollutants [61]. For a
weak input pulse with on average less than 1 photon per τb, one also gets an irregular train of
photons separated by τb or more. The explanation why the separation between the photons is not
exactly τb is given in [171].
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Figure 5.1: Off-resonant (OR) photon generation. (left) Schematic representation of the
OR scheme. If the laser fields are far detuned from the excited state |e⟩, one can approximate
this system with a two-level system. However, atomic levels experience small AC Stark
shifts, changing the resonance frequency (hence, the small shifts of |g⟩ and |r⟩). A Rydberg
excitation is created with a two photon pulse with Rabi frequency ΩR = ΩpΩc/2∆p. After
a programmable storage time, the excitation is transferred to the excited states from where
it decays, emitting a photon. (right) A typical characterization curve of the OR photon
generation at n = 90. Autocorrelation g(2)(0) and the mean detected photon number as a
function of a quantity proportional to Rabi angle. One can see that there is a clear trade-off
between larger number of generated photons and their quality.

broader than the EIT transparency width given by eq. 2.22, what results in losses.
To implement this method successfully, two crucial requirements must be met: a
high optical depth per blockade radius to lower the group velocity and assure that
all the subsequent photons are scattered, denoted as ODb = OD rb/L (where L
is the ensemble length), and minimal decoherence in the Rydberg states to avoid
suppression of the EIT transparency. Unfortunately, achieving these conditions is
currently beyond our experimental capabilities.

Instead, our group employs an alternative approach. We send weak coherent
pulses into the ensemble and, while these pulses travel under EIT conditions, we
switch off the coupling beam, effectively storing the polaritons. After a programmed
time, the coupling field is turned, leading to the retrieval of the stored polaritons as
single photons. This technique eliminates the need for extremely short pulses, as the
storage phase filters out undesirable portions of the pulse. The initial part of the
pulse gets temporarily filtered, while the later part is scattered by the medium, as
depicted in fig. 5.2(left).

Moreover, the storage phase enhances the nonlinearity experienced by the stored
part of the pulse. This occurs for two reasons. Firstly, it arises due to the freeze
of polariton propagation, a phenomenon previously observed in our group [80, fig.
3]. We believe that this effect can be understood through the following reasoning,
which draws from [78]. When multiple Rydberg excitations are present, the dipole



5. Excitations in Rydberg ensembles 73

interaction disrupts the ideal EIT conditions, causing the propagating polaritons
to partially occupy the excited state (unlike in the ideal EIT case, as discussed in
sec. 2.2.3). As the propagation comes to a halt during storage, the decay from the
excited state continues at the usual rate Γ, effectively reducing the amplitude of
subsequently retrieved multiphoton states.

Secondly, multiple Rydberg excitations within the ensemble mutually dephase,
leading to a suppression of multiphoton retrieval [172]. It’s important to note that
while a similar process exists in the OR generation technique, there are nuanced
differences. In OR excitation, one general spin wave is generated, with higher order
components undergoing self-dephasing. Conversely, in the EIT storage process, due
to its sequential nature, one should envision multiple distinct spin waves (separated
by the blockade radius) that mutually dephase. While the technical divergence
from the OR technique is minimal – essentially involving setting the single-photon
detuning to zero, ∆p = 0 – it’s evident that these processes differ significantly in
their underlying physics.

As in the case of OR excitation, an optimization curve is typically obtained, see
fig. 5.2(right). Increasing the probe power leads to a greater number of polaritons in
the ensemble, resulting in a higher generation probability but also a higher g(2)(0)
value. The increase of g(2)(0) is discussed in more details and numerically simulated
in ch. 7. The decrease in generation probability for very strong probes can be
attributed to two effects.

Firstly, when a subsequent input photon scatters due to the blockade effect, the
environment effectively projects the wave function of the initial polariton within
a distance corresponding to the time interval between the two photon arrivals (of
the first photon converted into a polariton and the second, scattered photon). This
broadens the spectrum of the propagating polariton, causing it to no longer fit within
the EIT transparency window and resulting in additional losses [171].

Secondly, there are what we call pollutants, which are Rydberg excitations that
are not part of the polariton and cannot be efficiently retrieved as single photons,
yet they still impose a blockade on the ensemble. These pollutants are photons
scattered due to the dipole blockade or other processes, such as the aforementioned
EIT filtering [61]. They remain in the ensemble due to radiation trapping [173]
and with the coupling field are promoted to the Rydberg state. Although they are
subsequently transferred to the excited state via the coupling field and eventually
leave the ensemble, they block the ensemble for some short time. However, some
of these excitations may decay to other Rydberg levels due to collisions or other
processes. As these states are not coupled with the coupling field, these pollutants
are stationary and have a longer lifetime, limited by the respective state’s lifetime.
While their impact should be less pronounced due to weaker interactions with the
desired Rydberg level, they can persist for an extended duration.

In the case of EIT, the expression for the blockade radius differs as the relevant
energy scale is governed by the single-atom EIT linewidth, γEIT = Ω2

c/2Γ [26]. The
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typical expression for the blockade radius is given as:

rb =
6

s
C6

2ℏγEIT
= 6

s
C6Γ

ℏΩ2
c

. (5.4)

However, different expressions can be found in the literature4. Since the blockade
radius is understood as a parameter setting the relevant length scale in the system,
given different expression found in the literature, one should be careful when using
it to compare different experiments. One should notice, however, that for a typical
experimental parameter range, the differences between different expressions are less
25%. For our usual experimental parameters at n = 90, the blockade radius is
rb = 10.5 µm.

It’s worth highlighting that, in theory, photons from an EIT source are anticipated
to exhibit reduced state purity due to scattering events [111], which may diminish
their suitability for quantum communication applications. As of now, no experimental
verification of this phenomenon has been documented. We speculated about this
effect as a potential explanation for the comparatively lower visibility of the HOM
interference of weak coherent states and EIT photons in comparison to photons
generated via the OR method [174]. However, the available data was insufficient to
draw definitive conclusions.

5.2 Decoherence in Rydberg ensembles

Decoherence sources in our system introduce limitations and imperfections in both
the EIT and OR methods of single-photon generation. In this section, we discuss
dephasing mechanisms affecting the stored spin wave and noise processes during
spin wave creation, and how they affect the generation efficiency. We also examine
specific effects exclusive to the OR excitation technique. Our aim is to understand
these decoherence sources to possibly mitigate them and optimize the efficiency and
fidelity of our single-photon source.

5.2.1 Decoherence of Rydberg spin wave

Decoherence processes play a critical role in our system, particularly evident in the
short decay time of a stored Rydberg spin wave. It is typically less than 2 µs – over
100 times shorter than the radiative lifetime of the Rydberg state. Consequently, it

4In one of the first papers treating about the interactions of the rEIT polaritons by Gorshkov
et al. [41] the blockade radius is given as rb = 6

q
C6Γ
2ℏΩ2

c
, while in a seminal paper by Peyronel et

al. [58] rb = 6

q
2C6Γ
ℏΩ2

c
. In [61], for a situation almost identical to ours, based on a heavy theoretical

consideration from [95], the blockade radius is expressed by rb =
6

r
C6
ℏ

�
Γ
Ω2

c
+ 1

Γ

�
. In general, the

blockade radius can be also defined as a minimum distance between two rEIT polaritons and the
exact expression depends on the particular problem [95].
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Figure 5.2: EIT photon generation. (left) Schematic representation of the EIT scheme time-
filtering property. A pulse (longer than the group delay) propagates under EIT conditions,
forming rEIT polaritons. When the pulse is inside the ensemble, the coupling field Ωc is
switch off, freezing the polariton propagation. Part of the pulse, that already passed through
the ensemble, propagates further. Part of the pulse, that has not reached the ensemble,
gets scattered. After a programmable storage time, the coupling field is turned on and the
polariton continues to propagate, eventually becoming a photonic pulse. (right) A typical
characterization curve of the EIT photon generation at n = 90. Autocorrelation g(2)(0) and
the mean detected photon number as a function of the mean input photon number. One
should notice that the pulses are longer than the group delay, so not all the photons can be
stored in the medium. One can see that there is a clear trade-off between larger number of
generated photons and their quality. The decrease of the generation probability for large
input photon numbers is explained in the main text.

becomes imperative to identify and understand the various sources of decoherence
affecting our system.

Rydberg spin waves and rEIT polaritons can be viewed as essentially the same
phenomenon [61], implying that they are both susceptible to dephasing in similar if
not identical ways. To understand the dephasing mechanisms in our system, let us
first consider the spin wave state |R⟩ immediately after its creation, at time t = 0
. In a simplified model that neglects variations in the excitation processes among
different emitters, the spin wave can be expressed as follows:

|R⟩ = 1√
N

X

i

ei∆k·ri |g1g2 . . . ri . . . gN ⟩ . (5.5)

Here, |gi⟩, |ri⟩, and ri denote the ground state, the Rydberg state, and the position
of atom i, respectively. The net wave vector of the exciting field is denoted as ∆k,
which in our case is the sum of the wave vectors of the probe field kp and the coupling
field kc. Since the spin wave is created in a ladder scheme, we have ∆k = kp + kc.
Because the fields in our setup are counter-propagating (for reasons explained later
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in this section), |∆k| = |kp|− |kc|.
One of the most readily observable consequences of spin wave dephasing is a

reduction in the generation probability, η, as a function of storage time t. This
decrease is often modeled by calculating the overlap squared of the time-evolved spin
wave state, |R(t)⟩, with respect to the initial state, |R⟩ [175, app. A]:

η ∝ | ⟨R|R(t)⟩ |2. (5.6)

Here, we assume that |R⟩ represents the state that can be retrieved with the highest
efficiency. During the storage time, each emitter accumulates a phase φi(t), which
may differ among emitters due to various noise processes. Thus, we can express the
overlap squared as:

| ⟨R|R(t)⟩ |2 =
�����
1

N

NX

i=1

eiφi(t)

�����

2

≈
����
Z

n(φ(t))eiφ(t)d(φ(t))

����
2

. (5.7)

In the last step, we take the continuous limit [176, sec. 2.4.2], and n(φ(t)) represents
the probability distribution of the phases at time t. From this expression, we observe
that η is maximized when the phases for all emitters evolve identically. Conversely,
any discrepancy in the phase evolution of components corresponding to different
emitters diminishes the efficiency.

In the following paragraphs, I will discuss different sources of the Rydberg spin
wave dephasing. As a metric, I will consider the coherence time, defined as the time
it takes for the single photon generation probability to decay to 1/e. We typically
observe a coherence time of 1.8 µs.

Motional dephasing

In our ensemble, the atoms exhibit thermal motion due to their finite temperature.
Assuming no atom-atom collisions, the position of atom i at time t can be expressed
as ri(t) = ri + vit, where vi is the velocity of the atom. Consequently, the phase
accumulated by each atom is given by

φi(t) = ∆k · (ri + vit), (5.8)

where we neglect the phase contribution from the kinetic part of the Hamiltonian
(which cancels out when computing the fidelity). Assuming a thermal gas, we can
approximate the velocity distribution to follow the Boltzmann distribution. By
considering this, one can easily derive that

η ∝ exp

�
−kBT |∆k|2

m
t2
�
, (5.9)

which corresponds to a Gaussian function with a characteristic time τ =p
m/kBT |∆k|2, which we can identify as the coherence time.
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To minimize ∆k, we choose a geometry where the probe beam and the coupling
beam are counter-propagating, giving |∆k| = |kc|− |kp|. However, due to significant
mismatch in wavelength between the probe and coupling fields, the resulting ∆k is
still large, requiring our atoms to be extensively cooled. We plot τ as a function of
temperature in fig. 5.3(left). For typical experimental parameters, we find τ = 3.4 µs,
which we identify as a relevant factor, although it may not be the dominant contributor
to the Rydberg state decoherence.

Another supporting point for this conclusion is the non-Gaussian nature of
the observed decay in η. It exhibits characteristics that fall between a Gaussian
and exponential decay, indicating the presence of an additional relevant dephasing
mechanism.

For a more complete derivation, I refer the reader to [177].

Residual magnetic field

The presence of a magnetic field causes a (hyper)fine level to split into Zeeman
sublevels, with the number of sublevels given by 2X + 1, where X corresponds to
the total orbital angular quantum number J for fine structure states or the total
atomic angular quantum number F for hyperfine structure states. When atoms
occupy different Zeeman sublevels, the presence of a non-zero magnetic field leads
to dephasing, as the atoms accumulate phase at different rates due to their varying
energies. To address this issue, it is common practice to optically pump all atoms
into a single Zeeman sublevel. Unfortunately, we have been unable to implement
Zeeman optical pumping within our setup, leaving us vulnerable to residual magnetic
fields.

To mitigate this, we cancel the residual magnetic field by looking at spectra of
the microwave spectroscopy on the |F = 1⟩-to-|F = 2⟩ transition5; a typical scan can
be seen in fig. 5.3(right). By adjusting the current in the compensation coils, we
can merge the distinct peaks associated with different transitions between Zeeman
substates into a single peak. This merging signifies the absence of a background
magnetic field, a crucial requirement for our experiments.

However, the resulting peak exhibits a residual width that surpasses the magnetic
dipole-allowed transition width. We attribute this broadening to magnetic field
gradients, which we cannot compensate with our current setup. This results in
a position-dependent energy shift, over time contributing to the dephasing of the
spin wave. We can typically reduce its FWHM to below 50 kHz, corresponding to a
magnetic field variation of approximately 24mG within the atomic cloud6.

Rydberg levels are often approximated as fine structure states and, therefore,
have different magnetic moments than the ground state [179, sec. 6.9]. Nevertheless,

5For details of the microwave spectroscopy setup, I refer the reader to [178, sec. 4.1.3]
6This estimate assumes that states that contribute the most to the splitting have the

largest magnetic moment difference between the Zeeman sublevels, namely |F = 1,mF = 1⟩ and
|F = 2,mF = 2⟩.
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Figure 5.3: (left) Spin wave coherence time vs the ensemble temperature. Moving
atoms scramble the spin wave phase, leading to lower retrieval efficiency. (right) In typical
microwave spectroscopy scans of the

��5S1/2, F = 1
�

to
��5S1/2, F = 2

�
transitions, two distinct

situations can be observed. In the top plot, where the magnetic field is not compensated,
nine allowed transitions are visible. However, two pairs of transitions experience the same
net Zeeman shift, leading to overlapping peaks. The measurement appears noisy, but the
exact reason for the noise is unknown. In the bottom plot, the magnetic field is compensated,
resulting in all the peaks collapsing into a single structure. The residual width of this
structure, approximately 45 kHz, can be attributed to magnetic field gradients that cannot
be compensated in our setup. The top curve is shifted for clarity.

the broadening of the ground state to Rydberg state transition should remain below
50 kHz7. Due to multitude of transitions involved in this dephasing process, it’s
difficult to give an exact number for τ , however, it should remain larger than 20 µs.
Therefore, we do not consider this broadening to be a limiting factor for our system.

Background electric field

Stray electric fields present another potential source of decoherence in our system.
Similar to the magnetic field, an electric field can induce energy shifts in the atoms.
Any variation of this shift within the atomic cloud results in a position-dependent
phase shift, which contributes to the dephasing of the spin wave. The large polariz-
ability of Rydberg atoms makes them particularly sensitive to the effects of electric
fields.

In the case of a homogeneous background electric field, its impact on our system
is minimal. This is because all levels with J = 0 or J = 1/2 experience only a scalar
Stark shift [102, sec. 7.4.2.2], given by

∆E
(0)
Stark = −1

2
α(0)(J)E2, (5.10)

where J represents the total electron angular momentum, E is the electric field
amplitude, and α(0)(J) denotes the scalar polarizability which depends on the total

7We again took for this estimation states with the largest magnetic moment difference that should
be connected in our excitation scheme, namely

��5S1/2, F = 2,mF = 1
�

and
��nS1/2,mJ = −1/2

�
.
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electron angular momentum J , but is independent of the total atomic angular
momentum F . Both the ground state and the Rydberg state would experience a
shift in their energies due to the homogeneous electric field, resulting in a shift in
the transition frequency but not broadening.

In the case of the EIT scheme, one might be concerned about the involvement of
the excited state, which is a P -state that experiences a tensor shift dependent on the
absolute value of the projection of the total atomic angular momentum |mF | [102, sec.
7.4.2.4]. However, in our context, the absolute values of the Stark shift for low-lying
states are negligible. Even assuming an atmospheric potential gradient of 0.8V/cm
(which is likely an overestimation due to the presence of metallic structures partially
shielding the experiment), the maximum tensor Stark shift between different mF

levels would be well below 1Hz.
The situation changes when considering gradients of electric fields. While the

ground state is minimally affected due to its small polarizability, Rydberg levels
exhibit a significant susceptibility to such gradients, as indicated by their large
polarizabilities (cf. Table 2.1). For instance, the 90S1/2 state can experience a
broadening of 500 kHz when subjected to an electric field difference of 17mV/cm
over the length of the atomic cloud. It is unlikely to have such a strong static
gradient, which would correspond to approximately 11 (V/cm)/cm for our system.
However, electromagnetic radiation at relevant frequencies ranging from hundreds of
kHz to tens of MHz, such as that emitted by switching-mode power supplies, could
potentially cause issues. As a reference, a 50 kW AM radio station would produce a
radio signal with an amplitude of about 17mV/cm at a distance of 100 km.

It is challenging for us to quantify the exact effect of external radiation, but
it is plausible that this factor could limit our coherence time, since we do not
currently screen our atoms from external radiation. We also consistently observe
significant day-to-day variations in the coherence time of our system, which do not
exhibit any correlation with any monitored parameter. Currently, out of lack of any
better explanation, we attribute these variations to fluctuations in the background
electromagnetic radiation.

AC Stark shift

In our experimental setup, we do not observe decoherence due to the AC Stark shift,
because we turn off the dipole trap when probing the atoms. However, it is worth
discussing this phenomenon as it is a common challenge in Rydberg systems.

The AC Stark shift occurs when atoms interact with a fast oscillating electric
field, which is typically provided by a far-detuned dipole trap light. This shift is
proportional to the laser intensity8. In the case of so-called red-detuned dipole traps,

8In a general case, the relation between the electric field and the AC Stark Shift is more
complicated. However, for our case of the Rydberg state being an S-state and a linear polarization
of the dipole trap, the shift should be indeed proportional to the laser intensity. For details, see
[102, sec. 7.7].
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where the atoms are attracted towards the region of highest intensity, there can be
a substantial variation in the laser intensity experienced by the atoms across the
ensemble, from the center to the edges. This variation leads to a position-dependent
phase shift, contributing to the dephasing of the spin wave [177].

To partially mitigate this effect, researchers have explored the use of "magic"
wavelengths for the dipole trap. These are specific wavelengths where the AC Stark
shifts experienced by the relevant states, namely the ground and Rydberg states, are
equal. Although perfect cancellation is challenging to achieve, it is possible to make
the relative shift small enough that it does not significantly impact the system’s
coherence [180, 181].

However, at the wavelength of our dipole trap, an additional effect known as the
antitrapping of Rydberg atoms takes place. While atoms in the ground state are
attracted to the highest intensity of the trapping beam, this phenomenon causes
atoms in the Rydberg state to be repelled from the trap. The reason behind this
behavior is that the polarizabilities of the ground and Rydberg states have opposite
signs for the electric field at this specific frequency.

To circumvent these effects, we pulse the dipole trap during the interrogation
time.

Mutual dephasing of Rydberg spin waves

If the ensemble is larger than the blockade radius, more than one Rydberg excitation
can exist. They interact with each other, what results in a position-dependent energy
shift experienced by the atoms. Over the storage time, this energy shift transforms
into a position-dependent phase shift, leading to a decrease in the retrieval efficiency
[168]. This dephasing effect can be observed in our system as a reduction in the
storage time with increasing Rabi angle or number of input photons, depending on
the excitation protocol, as shown in fig. 5.4(left).

This dephasing phenomenon occurs specifically when multiple excitations are
present in the ensemble. In the case of a single excitation in the cloud, the retrieval
efficiency remains unaffected. This effectively changes the outgoing pulse statistics
compared to the input pulse, enhancing the single-photon nature of the emitted pulse
[169]. In our system, this effect plays a role in maintaining a low autocorrelation
g(2)(0) despite the ensemble not being fully blockaded.

Although quantifying the exact impact of this effect is challenging, based on the
presented data in fig. 5.4, it appears to be a relevant factor, but not the limiting one,
as at a very low number of input photons we still observe short coherence time.

Density-dependent dephasing

Another source of dephasing observed in our system arises from the relatively high
peak density of our ensemble, where the average distance between atoms becomes
smaller than the Rydberg atom radius. In this scenario, the valence electron of a
Rydberg atom can scatter off a neutral atom, leading to the formation of a molecule
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[75]9. This molecule formation has been found to induce density-dependent dephasing
[50]. Subsequently, the resonances associated with these molecular interactions were
directly observed [75].

The interaction between atoms due to scattering, in a mean-field picture, is
proportional to the atomic density. Since the density within the cloud is non-uniform,
the relative phase shift experienced by the emitters is also non-uniform, resulting
in a spin wave dephasing. We have plotted the decoherence rate, defined as the
inverse of the coherence time, as a function of optical depth in fig. 5.4(right). The
dependence appears to be linear, similar to the findings in [50], although the slope in
our case is 1.5 times larger. The model presented in their work [175, sec. 4.4], which
fits their data well, does not have any free parameters and should be suitable for our
experimental conditions. We are uncertain about the reason for the discrepancy. It
could be attributed to inaccurate estimation of atomic density, however, this seems
unlikely.

The crucial point to consider is the behavior at zero density, which gives a
coherence time of 2 µs. This suggests that even in the absence of any density-
dependent dephasing, our coherence time would still be relatively short.

It is worth noting that the presence of molecular resonances not only impacts
existing spin waves but also affects the blockade radius in the EIT scheme. When
the binding energy of the molecules is small, their resonances can overlap with
the EIT transparency window, resulting in its broadening and a reduction of the
blockade radius, cf. eq. 5.4. However, this effect is predicted to be significant only
for ensembles at much higher densities than ours [75].

5.2.2 Decoherence of propagating rEIT polaritons

Having discussed the various decoherence processes that can impact the existing
spin wave, let’s now turn our attention to the processes that affect its creation. In
this section, I will focus on the noise sources that can influence rEIT (Rydberg-EIT)
polaritons. In the subsequent section, I will discuss the OR (off-resonant) scheme.

Coupling laser linewidth

The presence of phase noise in the emitted laser field leads to a finite laser linewidth.
Lasers are tools used to establish coherence between different atomic levels, therefore,
large laser linewidth would introduce phase noise in our system and have negative
impact on our experiments.

Typically, the impact of laser phase noise is modeled as a pure dephasing term
[182–184]. In the case of EIT, the relevant laser is the coupling laser, and its finite
linewidth increases the dephasing of the excited and Rydberg states [185, sec. IIIA].
In the absence of other dephasing mechanisms, it could be identified with γr in
fig. 2.3(right) or eq. 2.17. The former is typically of larger concern, as the dephasing

9For a detailed explanation of this phenomenon, refer to Baur’s thesis [175, sec. 4.4]
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Figure 5.4: Decoherence of the rEIT polariton stored in our ensemble. (left) Coherence
time of EIT storage vs number of input probe photons per blockade time. For a larger number
of input photons, there is a higher chance of creating more than one Rydberg excitation in
the ensemble which interact and dephase. Hence, a decrease in the coherence time with the
probe photon number. For large input photon numbers, the coherence time should approach
a constant value, as only a finite number of Rydberg excitations can fit in our ensemble.
(right) Decoherence rate extracted from an exponential fit of the storage efficiency decay as
a function of the optical depth of our ensemble. In dense ensembles, collision of electrons of
the Rydberg atoms with nearby ground state atoms result in additional dephasing. The red
line is a linear fit, discussed in sec. 5.2.1.

of the Rydberg state is usually the main limiting factor for establishing large EIT
transparency. In our system (after the update of the locking system), the estimated
linewidth of the coupling laser is around 60 kHz (for more details, see sec. 3.3.3). We
can extract the dephasing rate from fits of the observed EIT spectrum to eq. 2.21.
Typically, we would obtain the dephasing rate larger than 300 kHz. Based on these
observations, we conclude that the laser linewidth is not the limiting factor in
achieving better EIT transparency.

Finite coupling beam size

Another important consideration is the impact of the finite size of the coupling beam,
which introduces an inhomogeneous Rabi frequency across the atom ensemble.

Let us recall that our single-photon source can be regarded as an EIT quantum
memory designed to accommodate only a single photon. Ideally, in this memory, we
should be able to populate only the so-called symmetric Dicke states [105] These are
the states that form in the polariton’s state. However, an inhomogeneous coupling
field Rabi frequency breaks the necessary symmetry and non-symmetric Dicke states
start being populated. These states cannot be efficiently mapped into photons [186,
sec. 1.2.2], leading to lower single-photon generation efficiency.

To mitigate this issue, it is a common practice to employ a coupling beam
significantly larger than the probe mode. In our case, the difference in size is
relatively modest, with the probe mode diameter of 13 µm and the coupling mode
diameter of 22 µm. To my knowledge, it has not been studied how the coupling Rabi
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frequency inhomogeneity affects the EIT transmission. However, considering that
the variation of the coupling Rabi frequency within the probe mode is 29% (given by
the probe waist), it might be worth reducing the size of the probe mode to enhance
the uniformity of the coupling Rabi frequency.

It’s relevant to note that the finite size of the probe mode can also influence
the coherence time consideration, as discussed in [177]. Nevertheless, in a setup
with geometry similar to ours, they managed to achieve a coherence time of 30 µs,
indicating that this effect has minor significance in our context.

Doppler effect

The residual motion of the atoms also introduces the Doppler effect. Although the
Doppler shift for atoms moving with velocities equal to RMS of the Boltzmann
distribution is approximately 50 kHz, the residual motion should have no noticeable
effect on the EIT spectrum in our system. To confirm this, we performed a simple
numerical computation where we integrated the susceptibility given in eq. 2.17 over
the Boltzmann velocity distribution. Our results showed that only at a temperature
of 10mK did we start to observe a slight Doppler broadening effect on the EIT
spectrum.

5.2.3 Decoherence in OR excitation

Off-resonant (OR) excitation is influenced by various noise processes that can impact
its performance. These noise processes can be broadly classified into two categories:
those that introduce decoherence and decrease the visibility of Rabi oscillations, and
those that solely affect the fidelity of the Rabi flop. Similarly to the decoherence
processes described above for rEIT polaritons, these noise processes are present only
during the creation of the spin wave, i.e. during the Rabi flop. All the decoherence
rates estimated in this section should be compared to the collectively enhanced two-
photon Rabi frequency

√
NΩR/2π ∼ 2MHz (see sec. 2.2.2 and eq. 5.1) to evaluate

their relevance in the excitation process [162, sec. IIIA].

Residual population in the excited state

In the OR scheme, our system can be approximated as a two-level system, as discussed
in sec. 5.1.1. However, as the detuning from the intermediate (excited) state, |e⟩,
is finite, there is a small residual population in this state. As |e⟩ is short-lived and
its population decays quickly, this leads to a loss of coherence in the system and,
consequently, damping of the Rabi oscillation [102, sec. 5.5.2]10. The scattering rate

10Scattering from the excited state might also lead to a population trapping, if there exist other
decay channels than only to the ground state [162, sec. IIIB]. In our case, the decay to the ground
state is the only dipole-allowed process, therefore we do not consider this effect to be important in
our system.
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due to this residual population is given by [102, sec. 6.1.2]

ΓOR ≈ Γpres ≈ Γ

�
Ωc

2∆p

�2

, (5.11)

where pres is the residual population in the excited state. For our experimental
parameters, ΓOR/2π = 80 kHz, so we don’t consider it a limiting factor11.

Laser linewidths

As discussed in sec. 5.2.2, finite laser linewidths introduces additional dephasing.
This manifests as a reduction in the Rabi oscillation amplitude, as reported in [162,
sec. IIIC]. However, considering that the combined linewidth of our lasers is expected
to be less than 65 kHz, we anticipate that its impact on our system is small.

Doppler shifts distribution

In our ensemble, the atoms move with velocities following the Boltzmann distribution,
resulting in each atom experiencing a different Doppler shift and effectively a different
detuning from the resonance. In our experimental setup, the probe and coupling
lasers are counter-propagating, leading to an effective wave vector magnitude of
|∆k| = |kc| − |kp|, where kp and kc represent the wave vectors of the probe and
coupling fields, respectively. The distribution of Doppler shifts follows the Gaussian
distribution with a standard deviation given by ∆k vRMS. Here, vRMS =

p
kBT/m

corresponds to the RMS velocity obtained from the one-dimensional Boltzmann
distribution, considering the temperature T and atomic mass m. In our case, FWHM
of this distribution is approximately 110 kHz, therefore, we are not concerned about
this effect. Moreover, we plan to improve our cooling stage to reduce the motional
dephasing of the spin wave, cf. sec. 5.2.1.

Finite laser beam size

The finite size of the laser beams has already been discussed in the context of
EIT polariton propagation (see sec. 5.2.2). In the OR scheme, the different Rabi
frequencies experienced by individual emitters lead to a distinct phase evolution for
each atom, resulting in a dephasing process. Unlike in EIT, both the coupling and

11ΓOR is not necessarily the rate at which the Rabi oscillation decays. According to lecture notes
from Ivan Deutsch [187], for a simplified but still realistic model, this rate is given by

ΓRabi =
ΩpΩcΓ

4∆2
p

.

Since the problem is not numerically difficult and to be able to take into account all relevant effects,
de Léséleuc et al. [162, sec. IIIB] analyzed this decay numerically. In any case, for our parameters,
this effect should not pose a problem.
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probe fields contribute to the effective Rabi frequency, amplifying the inhomogeneity
even further.

In our case, the ensemble size exceeds the probe mode size, making the effective
interaction region being defined by the probe waist. Within the FWHM of this
interaction region, we estimate a significant variation of approximately 37% in
the effective Rabi frequency. Enlarging the difference in size between the coupling
and probe beams would help reduce the contribution from the coupling field’s
inhomogeneity. However, this would solve only part of the problem as the variation
primarily arises from the amplitude variation of the probe field, which also defines
the interaction region, so simply cannot be mitigated. Unless one allows for the
probe mode to be larger than the ensemble, however, such a configuration would not
suitable for other purposes than photon generation.

To enhance the efficiency of population transfer, the use of composite pulses
instead of typical π-pulses could mitigate partially the effect of finite laser beam size
[188].

Finite dipole interaction strength

Another source of decoherence affecting OR excitation in Rydberg ensembles stems
from the finite dipole interaction strength. We will follow a model introduced in
[189] which they used to explain diminishing Rabi oscillation amplitude12.

Consider an ensemble that is smaller than the blockade radius – due to the
dipole interactions, the singly excited state (with one Rydberg excitation) is not
coupled to the doubly excited state (with two Rydberg excitations) by the driving
field. Interaction strength, however, depends on the atom’s position relative to the
Rydberg excitation. It means that each of the doubly excited states has different
energy, depending on the relative position to the Rydberg atom. Assuming the
interaction strength is significantly larger than other parameters, we can adiabatically
eliminate these doubly excited states, similar to what was done with the excited
state in sec. 5.1.1.

This adiabatic elimination leads to two important consequences. Firstly, it
introduces an AC Stark shift that changes the resonance frequency of the |g⟩ to |r⟩
transition, which is position-dependent and distinct for each atom (as the interaction
is position-dependent). Secondly, it couples different singly-excited states via position-
dependent Raman transitions. This leads to a decay of the ideal Rydberg spin wave
state, given by eq. 2.10, into this quasi-continuum of singly-excited states, reducing
the Rabi oscillation amplitude13. It should be noted that when the interaction
strength is infinite, we return to the simple picture of two collective states discussed
in sec. 5.1.1.

Given the complexity of the model, it is only possible to estimate the scaling of

12For a nicely explanatory derivation, I refer the reader to Vaneecloo’s thesis [186, sec. 7.1.1]
13One can alternatively see this as an inhomogeneous broadening mechanism whose origin is

position-dependant interaction between the atoms.
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this decoherence process [189]:

γint ∝
NΩ2

N

U
=

N2(ΩpΩc)
2

4∆2
pU

, (5.12)

where ΩN represents the collectively enhanced two-photon Rabi frequency, and U
denotes the interaction strength at a distance equal to the ensemble size.

An evident approach to reduce the impact of this decoherence source is to make
the blockade radius significantly larger than the ensemble size. However, in our case,
the blockade radius remains smaller than the ensemble size, thereby this decoherence
process is reinforced by another resulting from interactions between multiple Rydberg
excitations, as discussed in sec. 5.2.1. The former acts at distances shorter than the
blockade radius, while the latter operates at larger distances.

Reduced population transfer fidelity

There are several effects that can influence the effective Rabi frequency without
inducing decoherence, yet leading to a decrease in π-pulse fidelity. These processes
are not directly related to the decoherence of the quantum system, but rather to
the ability to reproduce the same experimental conditions throughout the entire
integration time.

One such effect arises from fluctuations in the number of atoms in the ensemble.
As the effective Rabi frequency depends on the number of atoms within the dipole
blockade, atom number fluctuations introduce uncertainty in the π-pulse area. This
effect becomes more pronounced for smaller ensembles, as fluctuations are expected
to follow Poisson statistics and scale with the square root of the atom number. In our
case, with an estimated atom number14 of approximately 700, the fluctuations are
on the order of 4%. We do not consider this to be a significant issue in our system.

Another factor that reduces the fidelity of a π-pulse are the slow drifts of
experimental parameters, such as laser power or frequency. In our system, we observe
minimal power fluctuations, and we regularly make adjustments to compensate for
them, so we are not concerned about this aspect. Unfortunately, we do observe
significant fluctuations of approximately 1MHz in the coupling laser frequency, which
is substantial even when considering the broadening mechanisms discussed earlier.
We attribute these fluctuations to imperfections in the locking system, as discussed
in sec. 3.3.3. On the other hand, we believe that the probe light frequency remains
stable to within tens of kHz, so it should not pose any significant concerns.

5.2.4 Summary

Let’s bring together the various sources of decoherence we’ve discussed and consider
our options for managing them.

14We consider here only the atoms that are in the probe mode.
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Motional dephasing, explored in sec. 5.2.1, emerges as a significant factor. Further
cooling of the ensemble should help, as it was shown in [177]. This not only aids in
mitigating motional dephasing, but also offers advantages like reducing ensemble size,
as explained in sec. 3.1.2. Additionally, cooling would help mitigate the Doppler effect
and its associated frequency detunings, discussed in sec. 5.2.3. Another approach
one could consider is the use of an optical lattice to suppress the motion of atoms, as
in [181]. However, in our case, this method would require a substantial experimental
effort.

Concerning static magnetic and electric background fields, our analysis in sec. 5.2.1
and sec. 5.2.1 suggests minimal adverse effects. However, it’s wise to consider the
potential influence of slowly varying electric fields originating from lab equipment or
external sources, possibly necessitating screening. Moreover, in cases where higher
principal quantum numbers are involved, the strong polarizability scaling (refer to
Table 2.1) might demand electric field compensation.

Making our ensemble strongly blockaded would be beneficial, countering the
mutual dephasing of Rydberg excitations (sec. 5.2.1) and mitigating finite interaction
strength effects (sec. 5.2.3). Enhanced cooling, as mentioned earlier, contributes to
achieving this goal.

While laser linewidths appear to be within reasonable bounds, some aspects
warrant careful attention. Certain effects, such as density-dependent dephasing
(sec. 5.2.1) and non-uniform Rabi frequency (sec. 5.2.2 and sec. 5.2.3), pose challenges
that might be hard to circumvent. However, increasing the size ratio between the
coupling and probe modes can offer an improvement for the latter issue.

To sum up, managing decoherence in our system involves a mix of strategies.
Careful cooling to minimize motional dephasing, vigilance against slowly varying
electric fields, striving for stronger blockade, and optimizing mode ratios are promising
approaches. By implementing these changes, we can hope for a significant in
improvement in the performance of our experimental setup.
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Chapter 6

Raman storage of
quasideterministic single photons
generated by Rydberg collective
excitations in a low-noise quantum
memory

This chapter describes an experiment that involved the collaboration of two distinct
setups. I was responsible for the Rydberg setup, which served as the single-photon
source, while my colleague, Lukas Heller, operated another cold-atomic setup used as
a quantum memory. The data was collected with a help of two post-docs, Auxiliadora
Padrón-Brito and Klara Theophilo. Our experimental results have been published in
[190], and the content of this chapter is based on that publication. All the figures
presented in this chapter are taken directly from this publication.

While finalizing our experiment, we learned about a recent experiment where a
single photon generated by Rydberg atoms was stored in an atomic ensemble using
electromagnetically induced transparency [191].

6.1 Motivation

To date, most of the early demonstrations of quantum repeater links with ensemble-
based quantum memories are based on probabilistic light-matter entanglement
sources, e.g. based on emissive quantum memories using spontaneous Raman
scattering in atomic clouds [192–196], following the Duan, Lukin, Cirac, and Zoller
(DLCZ) proposal [11], or by using read-write quantum memories combined with
spontaneous parametric down-conversion sources [197, 198]. However, these types
of probabilistic sources lead to limitations due to a trade-off between excitation
probability and fidelity of the generated state. To keep the errors due to the generation
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of multiple pairs low, and therefore the fidelity high, the generation probability must
remain low. This trade-off leads to low success probability per trial (especially for
multiple-link repeaters), which limits the overall high-fidelity entanglement rate [199].

A quantum repeater architecture based on the use of deterministic single photons
and absorptive ensemble-based quantum memories was proposed to overcome this
limitation [12]. In this scheme, each node consists of a deterministic single-photon
source and a quantum memory. The single photon is sent on a beam splitter (BS)
and one output of the BS is directed towards the quantum memory while the other
output is converted to telecom wavelength and sent to a central station where
it is mixed with the photonic mode from another distant quantum node. It has
been shown that heralded single photons (generated from probabilistic sources) can
be stored in quantum memories [200, 201] with up to 87% storage and retrieval
efficiency [107, 202]. Hence, the main challenge of this scheme compared to schemes
using probabilistic sources is to generate memory-compatible indistinguishable single
photons on demand with high efficiency. In addition, the quantum memory should
feature very low noise in order not to degrade the single photon properties.

Several approaches have been demonstrated to generate on-demand single photons
using single emitters such as quantum dots, single molecules and color centers in
diamond. However, most of these photons are not resonant with quantum memories
and have a bandwidth much larger than the one of long-lived quantum memories.
While progress has been made recently to interface photons from quantum dots
and molecules to atomic vapors or rare-earth doped solids [203–206], so far high
efficiency and long-lived storage of these photons has not been demonstrated. Single
trapped atoms can be used to generate directly resonant and memory-compatible
photons that have been interfaced with a BEC quantum memory [207], however, the
efficient photon generation in a single mode requires placing the atom in a high-finesse
cavity, which represents an experimentally complex task. In recent years, several
experiments have shown that ensembles of Rydberg atoms could serve as a source of
on-demand narrowband [57, 59, 92, 167] indistinguishable single photons [62, 174,
180]. This approach has the advantage that no high-finesse cavity is required, due to
the collective nature of the single photon generation.

In this experiment, we demonstrate the storage and retrieval of an on-demand
single photon generated by a collective Rydberg excitation on a low-noise Raman
quantum memory located in a different cold atomic ensemble. We show that the
single photons can be stored and retrieved with a signal-to-noise ratio (SNR)1 up to
26, preserving strong antibunching. We also evaluate the performance of the built-in
temporal beam splitter offered by the Raman memory. In addition, we demonstrate
that the Raman memory can be used to control the single photon waveshape. These
results show that single photons generated on demand by Rydberg atoms can be

1During the final round of revisions for this thesis, Stephan Dürr, one of the reviewers, pointed
out that the more precise term should be “signal-to-background ratio”. However, to maintain
consistency with the published paper and the conventional terminology used in the literature, we
chose to retain the term “signal-to-noise ratio”.
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Figure 6.1: A scheme of the experimental setup, the relevant atomic levels and the
experimental sequence. (a) The source. The probe (Ωp) and the counter-propagating
coupling beam (Ωc) are tightly focused in a cold cloud of Rubidium atoms to generate the
input photon. (b) The memory. A write-in control beam pulse (ΩW ) maps the incoming
photon to an atomic excitation in another cold cloud of Rubidium atoms. The excitation is
retrieved with a read-out control beam pulse (ΩR) and filtered with a Fabry-Perot cavity
(FPC). (c) The retrieved photon is split in a fiber-based beam-splitter (FBS) and detected
with SNSPD 1 and 2 performing, effectively, an HBT measurement. The relevant atomic
levels for the photon generation (d) and for the photon storage (e) are also shown. A
two-photon excitation (Ωp and Ωc) creates a Rydberg spin wave in |r⟩ (1) which is later
mapped to the first excited state |es⟩ and decays, emitting a photon (2). The emitted photon
is mapped with ΩW to a ground-state spin wave in |s⟩ (3) and later retrieved with ΩR (4).
(f) The pulse sequence. The whole experiment is synchronized with TTLs sent by the source
at the beginning of each generation trial.

stored in an atomic quantum memory, which is an important step towards the
implementation of efficient quantum-repeater links using single-photon sources.

6.2 Experimental setup

Our experimental setup comprises two ensembles of cold 87Rb atoms situated in
the same laboratory, connected via 12m of optical fiber cable. One of them is used
to generate single photons in a quasi-deterministic way by exploiting the strong
dipole-dipole interaction between Rydberg states (the source). Another is used to
store and on-demand retrieve the generated photons in an atomic Raman memory.

6.2.1 Rydberg single-photon source

In the first step of the generation protocol, we excite the ensemble from its ground
state |gs⟩ =

��5S1/2, F = 2
�

to a Rydberg state |r⟩ =
��90S1/2

�
, see fig. 6.1(d), via

a two-photon excitation. We send a weak coherent probe pulse Ωp and a strong
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counter-propagating coupling pulse Ωc/2π ≈ 6MHz, see fig. 6.1(a). The 1/e2 beam
radius is 6.5 µm for the probe and 13 µm for the coupling mode. The probe light at a
wavelength of 780 nm is red-detuned by −40MHz from the transition to the excited
state |es⟩ =

��5P3/2, F = 3
�
. The coupling light is tuned such that the two-photon

transition is resonant with the transition |gs⟩ → |r⟩.
The number of generated Rydberg excitations is strongly limited due to the dipole

blockade, as discussed in sec. 2.1.2. The blockade is a result of the strong dipole-dipole
interaction between Rydberg states, which prevents a simultaneous excitation of two
Rydberg atoms, if they are closer than a distance called the blockade radius. Then, if
the interaction region is smaller than the volume given by the blockade radius, only
one atomic excitation will be created in state |r⟩ - this is called the fully blockaded
regime. The Rydberg excitation is shared between all the atoms in the blockade
region, forming a collective quantum superposition, termed Rydberg spin wave.

With a delay of 1 µs, a second coupling pulse is sent resonantly to the |r⟩ → |es⟩
transition, mapping the Rydberg spin wave onto the excited state |es⟩ and triggering
the collective emission of a single photon at 780 nm. The photon is emitted in the
input mode and in forward direction thanks to collective atomic interference. It
is then separated from the coupling light by a dichroic mirror and a band-pass
filter, before being collected into a polarization-maintaining single-mode fiber. An
electronic trigger is sent to the memory to signal each photon generation attempt.

The generated photon is guided to the second atomic ensemble, the memory. The
frequency of the photon is, however, not compatible with the transitions used in the
memory, so it is shifted by −320MHz with an acousto-optic modulator (AOM). As
a result, the photon is now red-detuned with respect to the |gm⟩ → |em⟩ transition.

6.2.2 Raman quantum memory

The Raman memory relies on coherent, adiabatic absorption of the incoming single
photon [208]. A storage attempt starts with sending a control write-in pulse ΩW

coupling states |s⟩ =
��5S1/2, F = 1,mF = 0

�
and |em⟩ =

��5P3/2, F = 2,mF = +1
�

off-resonantly by δ = −52MHz, see fig. 6.1(e). The 1/e2 beam radius is 69 µm for the
photon and 180 µm for the coupling mode. Assuming that the |gm⟩ → |em⟩ transition
is lifetime-limited, the excited state coherence lifetime is 2τeg, with τeg = 26ns the
excited state population lifetime. Since the write-in pulse is in two-photon resonance
with the input photon, the incoming photon field is transferred to a collective atomic
spin excitation on |s⟩. Careful tuning of the control write-in pulse shape, power and
timing with respect to the input photon is required to optimize the writing efficiency
into the memory. Experimentally, we find that the optimum control write-in pulse
closely resembles the input photon waveshape and impinges on the cloud shortly
before the photon, with ΩW /2π ≈ 48MHz.

To retrieve the stored excitation, after a programmable delay, we send a read-out
pulse ΩR. The read-out pulse is in the same spatial mode as the write-in pulse
with the same frequency detuning δ. Owing to the collective atomic interference,
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the photon is emitted in the input mode in the forward direction and collected
into a single-mode fiber. The bandwidth and the shape of the output photon are
governed by the temporal profile and the power of the read-out pulse and can be
tuned arbitrarily (see sec. 6.3.2).

The collected photons are guided to the detection setup. Depending on the
measurement, it is either a superconducting nanowire single-photon detector (SNSPD)
or a Hanbury Brown-Twiss (HBT) setup comprised of a fiber-based beam splitter and
two SNSPDs, see fig. 6.1(c). We use a HBT setup to measure photons autocorrelation.

6.2.3 Atomic ensembles’ preparation details

In this section, we provide a brief overview of the trapping details for both the source
and the memory. It’s important to note that in this specific experiment, the Rydberg
setup is equipped with only one beam of a dipole trap, which differs from the setup
described in ch. 3. This configuration leads to a lower optical depth, shorter trapping
time, and a larger ensemble size.

In the source, we first load the atoms into a magneto-optical trap (MOT),
later compress them and subsequently apply 7ms of polarisation-gradient cooling.
Finally, the ensemble is prepared by optical pumping to its initial ground state
|gs⟩ =

��5S1/2, F = 2
�
. A one-dimensional dipole trap is kept on during the whole

process (with a beam waist of 34 µm at an angle of 22◦ with respect to the probe beam,
giving the effective interaction region length of 40 µm (FWHM), and a trap depth
of 250 µK). The whole process results in a cloud with OD of 6 and a temperature
of 40 µK. Thanks to the dipole trap, the effective interaction region, given by
the overlap between the probe beam and the atomic ensemble, is still larger but
comparable to the ∼ 13 µm of the blockade radius. The ensemble can be interrogated
for 200ms, limited by the population lifetime of the dipole trap (400ms), before
another MOT reloading cycle has to be performed. During its interrogation time, the
source attempts to generate a single photon every 4 µs with generation probability
pgen = 5 to 15%.

For the memory, the OD of the ensemble and the cloud temperature are the main
parameters governing the storage and retrieval efficiency and the storage time. To
achieve a dense and cold ensemble, the atoms are first loaded into a MOT for 10ms
followed by 1.5ms of polarisation-gradient cooling. Later, the memory is optically
pumped to its initial ground state |gm⟩ =

��5S1/2, F = 2,mF = +2
�
, in the presence

of a homogeneous magnetic bias field oriented along the photon mode. Optical
pumping is helpful to avoid beating between spin waves at different Zeeman sublevels.
The whole process provides us a cloud with OD of 5 and a temperature of 30 µK.
OD starts dropping after 1.2ms of interrogation time and the trapping cycle has to
be repeated.
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6.2.4 Limitations and challenges

One of the main challenges of this study were long integration times, which required
good stability of both setups. This results mainly from two technical limitations.
The first one are very different trapping cycles of the source and the memory, making
the overall duty cycle very low. The resulting repetition rate of the whole experiment
is 5 kHz. The second one is the passive loss in the photon transmission, which
affects quadratically the coincidence probability in the HBT experiment. The total
transmission from the output of the source to the detection setup, in the absence
of atoms in the memory, is 10(1)%, limited by the fiber coupling after the source
(0.4), the frequency-shifter AOM setup (0.62), the fiber coupling after the memory
(0.83), the frequency-filtering cavity setup (0.65) and miscellaneous optical and
polarisation-dependent losses (0.75). The transmission from the output of the source
to the input of the quantum memory is 22%. The SNSPDs have quantum efficiency
∼ 85% and 3Hz of dark counts.

The limiting factor for the quality of the single photon retrieved from the quantum
memory is the introduced technical noise, which affects its SNR. The main source of
noise is the leakage of the memory control pulses, which couple to the photon mode.
An angle of 3 degrees between the photon mode and the coupling beam minimizes
the spatial overlap and noise introduced by directional, forward scattering. The noise
is further removed with a home-built narrowband Fabry-Perot filter cavity of 43.4
dB suppression (at the control pulse frequency). The remaining noise is composed
of light leaking through the filter, inelastically scattered control light at the photon
frequency and the detectors’ dark counts.

6.3 Results

In this section we study the single photon properties of the source photons which,
further on, are used as the memory input photon. Secondly, we discuss performance
of the memory, commenting on its tunability.

6.3.1 Photon generation

The HBT setup is used to characterize the photons generated by the source. Photon
arrival times at each SNSPD are recorded together with trigger times for each
experimental trial. We compute the second order autocorrelation function as:

g(2)(k) =
c1,2(k)

p1p2
, (6.1)

where p1 (p2) is the probability of detection per trial with SNSPD 1 (2) and c1,2(k)
is the probability of a coincidence between detections separated by k trials (k = 0
means that detections are taken within the same trial). All the probabilities are
calculated within a detection time window at fixed delay after each trial trigger. We
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Figure 6.2: Dependence of g(2)(0) and pgen on mean probe photon number. pgen follows
the Rabi cycle decreasing for the largest values of the probe power while g(2)(0) grows
monotonically up to 1.

choose a 300 ns detection window which includes more than 95% of the photon. For
perfect single photons g(2)(0) = 0. In practice, background noise or multi-photon
components increase the g(2)(0). Emitted light remains non-classical for g(2)(0) < 1
and g(2)(0) = 0.5 marks the limit between single and multi-photon states.

In our source, we can change the emitted photon g(2)(0) within a range of
0.16 to 1 by varying the mean probe photon number, see fig. 6.2. For smaller probe
photon number, the increase of g(2)(0) is accompanied by an increase of the photon
generation probability pgen, which is defined as pgen = (p1 + p2)/α where α = 0.21
is the combined transmission and detection efficiency (of the source only - in this
characterization we detected photons right after the source). However, for larger
probe photon number pgen decreases in accordance with the Rabi cycle. Yet, this
is not accompanied by the g(2)(0) which continues to grow up to 1, indicating the
presence of multiphoton components.

If not stated otherwise, for the following measurements, we fix g(2)(0) ≈ 0.23
and pgen ≈ 12%. The emitted photon has a steep leading edge followed by a slower
exponential decay, with a full width at half maximum (FWHM) of the entire photon
of ∼ 120 ns, see fig. 6.3 at time zero.

6.3.2 Photon storage

In this section, we demonstrate that the memory can efficiently store the generated
single photon. It also offers tunability in the storage and retrieval process.

To characterize the memory performance, we first measure the temporal histogram
of photon counts in 3 different situations, as shown in fig. 6.3 (left). We first detect
the input single photon (orange histogram) when no storage attempt is performed,
i.e. with no atoms in the memory but with control pulses. Then, a storage attempt
is performed (red histogram) and one can see two peaks - the transmitted pulse,
which is the part of the single input photon that is not absorbed in the storage
attempt (counts in the 300 ns gray shaded window), and the stored pulse, which is



96 6. Raman storage of quasideterministic single photons

0 500 1000 1500
time (ns)

0.00

0.25

0.50

0.75

1.00

in
te
n
si
ty

(a
rb
.
u
n
it
s)

transmitted
300 ns

stored
100 ns

input
noise
storage

0 20 40 60
storage time (µs)

0.0

0.1

0.2

effi
ci
en
cy

η w
r

Figure 6.3: (left) Photon histogram observed at the SNSPDs after the memory. The orange
histogram is the input photon alone with no storage attempt. The red histogram presents
a storage attempt. The blue histogram shows the noise without input photon, but with
the atoms in the memory. The gray shaded area is the detection window for the input and
transmitted photon, and the green shaded area is the detection window for the stored photon
(both windows include more than 95% of the respective waveforms). (right) The storage and
retrieval efficiency as a function of storage time with the corresponding Gaussian fit e−t2/τ2

,
where τ is the memory lifetime. The fit also includes an oscillatory term accounting for spin
wave interference coming from residual population in

��5S1/2, F = 2,mF = 1
�

(as an effect
of imperfect Zeeman optical pumping) [209].

the excitation retrieved from a successful storage attempt (counts in the 100 ns green
shaded window). Finally, we measure the noise (blue histogram) by blocking the
input photon while keeping all the control pulses on and the atomic cloud present.
This last measurement should contain all the information about the noise present
in the experiment, in particular the noise introduced by the control pulses. We
measure a corrected noise probability per trial at the output of the quantum memory,
within the storage window, of pnoise = 2.3(3) × 10−4, which is derived from the
detected noise probability as pnoise = pdetnoise/β, where β = 0.34 is the combined
transmission and detection efficiency after the memory (at the photon frequency).
To our knowledge, this value is among the lowest reported in ground state spin wave
memories and is comparable to other quantum memories based on cold atoms or
BECs [107, 200, 210–212]. We attribute this noise to the control pulse light leaking
through the filter and scattering resulting from residual population on the storage
transition. Four-wave mixing (FWM), which is an important source of noise in hot
vapor memories, is not observed experimentally: The noise floor remains constant as
a function of storage time, which would not be the case if FWM introduced additional
spin waves. The control beam does not couple the atomic ground state |gm⟩ to any
excited state, a necessary requirement for FWM to occur. Furthermore, the angle of
3◦ between control and photon mode is prohibitively large for the phase-matching
condition to be satisfied [212].

The input and the noise histograms serve as a reference to calculate the storage
and retrieval efficiency ηwr = ps/pin, where ps and pin are background-subtracted
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Figure 6.4: Mean number of single photons at the input of the memory as a function of
the read-out SNR. Orange dashed line: linear fit that passes through zero. The slope of this
line corresponds to µ1.

probabilities of detecting a stored photon (within the 100 ns detection window) and
an input photon (within the 300 ns detection window), respectively. We also calculate
the write-in efficiency defined as ηw = (pin − pt)/pin, where pt is the background-
subtracted detection probability of a transmitted photon (within the 300 ns detection
window). From these two quantities, we infer the read-out efficiency ηr = ηwr/ηw.
We obtain a maximum storage and retrieval efficiency ηwr ≈ 21% at a storage time
of 1.2 µs. For longer storage times, the motional decoherence and the decoherence
due to the stray magnetic field gradients limits the efficiency with a characteristic
1/e decay time of 30 µs (see fig. 6.3(right)).

For the measurement shown in fig. 6.3 (left), the SNR of the retrieved photon
is 24(4). For different input number of photons, we measure SNR of up to 26 (see
fig. 6.4). An interesting figure of merit is the µ1 parameter, defined as µ1 = pnoise/ηwr,
which expresses the input number of photons required to have SNR = 1 at the output.
In our case, we find µ1 = 1.00(7)× 10−3 (see fig. 6.4), which is more than two orders
of magnitude lower than similar ground state quantum memories based on warm
atomic vapors [213–215], more than one order of magnitude lower than solid-state
QMs based on rare-earth doped solids [201, 216] and similar to other quantum
memories based on cold atoms [107, 200, 210–212].

Preservation of photon autocorrelation

A crucial requirement for a quantum memory is that it preserves the statistical
properties of the stored photons. To show that our memory fulfills this criterion, we
first adjust the mean probe photon number of the source to low values, resulting in
a photon generation probability of pgen ≈ 3.0(3)% (see fig. 6.2). With this setting,
we expect the emitted photons to be strongly non-classical. To reduce the effect
of experimental fluctuations, we collect data for 63 hours. We measure g(2)(0) of
the input (g(2)(0) = 0.20(2)), transmitted (g(2)(0) = 0.22(3)) and stored photons
(g(2)(0) = 0.34(7)) and obtain values well below 0.5, see fig. 6.5. It shows that
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(see sec. 4.1.2).

the memory preserves the single photon nature of the input photon. One can see,
however, that g(2)(0) of the stored photon is significantly larger than the g(2)(0) of
the input photon. We expect that the main source of degradation of g(2)(0) is the
uncorrelated noise introduced by the memory control pulses. We developed a simple
model, discussed in sec. 4.1.2, to quantify the effect of uncorrelated noise on g(2)(0).
The model predicts a g

(2)
m (0) = 0.33(4) for stored photon taking into account a

measured SNR of 11(2) and the measured input g(2)(0). For this data set, the model
is in agreement with the measured data, within the error bars. We also performed
several other measurements (with integration times of around 10 to 16 hours per
data point) for different input g(2)(0). While the model reproduces qualitatively the
trend, as one can see in fig. 6.5 (right), there is a large point to point fluctuation
that we attribute to low statistics and experimental fluctuations.

Spectral properties

Our memory offers significant tunability in the write-in process that may prove useful
in future hybrid quantum networks [217]. We start by showing that the memory can
adapt to the input photon frequency. For that, we set the input photon detuning to
δ = −52MHz and we vary the frequency of the control beam pulse. The maximum
efficiency is observed for the two-photon resonance, see fig. 6.6 (left), achieving
optimum storage conditions for the input photon.

The width of the curve depends on the spectral properties of the input photon.
Bandwidth-limited photons (i.e. photons that exhibit the minimum bandwidth for a
given temporal duration) are desirable because one can achieve with them a high
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Figure 6.6: (left) Storage and retrieval efficiency versus frequency detuning of the control
write-in pulse for the single photon input (red) and WCS (orange). The frequency detuning
is measured from the two-photon resonance of the input photon and the write-in control
beam. (right) Storage and retrieval efficiency ηwr as a function of the temporal duration
(FWHM) of WCS input pulses with Gaussian shape. The gray horizontal shaded area
represents the mean (0.225) and standard deviation (0.008) of the efficiency for input pulse
durations above 25 ns. Only for pulse durations below 25 ns, corresponding to a bandwidth
of about ≈17.6MHz (assuming transform-limited Gaussian pulses), the storage and retrieval
efficiency drops. We attribute this drop to limited control power and finite AOM rise time,
resulting in a smaller pulse area. The blue dashed vertical line represents the minimum
duration of the single photon generated by the Rydberg-based source (∼90 ns FWHM). For
each data point, write-in control pulse power, shape and delay are optimized.

Hong-Ou-Mandel interference visibility over the whole duration of the pulse [218,
219]. Using the whole duration of the pulse would result in higher entanglement
distribution rates. Therefore, in order to benchmark the spectral properties of the
input photon, we repeat the measurement with a weak coherent state (WCS) with
the same waveshape, center frequency and mean number of photons. This WCS is
derived from a laser exhibiting a linewidth much smaller than the bandwidth of the
pulse. As can be seen in fig. 6.6 (left), both spectra overlap very well, suggesting
that the input photon is close to bandwidth-limited.

Using classical light pulses, we also performed storage at detunings δ = −32MHz
and δ = −72MHz (not shown here). For these values, no significant change of storage
and retrieval efficiency was observed, suggesting that the input photon detuning can
be varied within this range. Eventually, the detuning will be limited by the proximity
to other atomic levels.

We also study the bandwidth of our memory by sending WCS of different durations
(with FWHM of 8 to 800 ns). We show the results in fig. 6.6 (right), asserting that
the memory can accommodate pulses of very different lengths without changing its
efficiency.
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Figure 6.7: Storage efficiencies, survival probability and splitting ratio as a function of the
write-in control beam power.

Tunable beam-splitter

Another interesting feature of the memory is that one can control how much of the
input photon is absorbed and how much is transmitted. By varying the write-in
control beam power, one can change ηw as shown in fig. 6.7 (top). This changes
effectively the splitting ratio ps/pt between the stored and the transmitted photon
pulse. Our memory can therefore be used as a temporal beam splitter [220] with
a tunable splitting ratio, which may have applications in the quantum repeater
architecture mentioned in the introduction [12]. Substituting the BS + QM with
only the QM and guiding the transmitted light directly to the intermediate station,
relaxes the requirements for storage efficiencies to approach unity. To investigate
this possibility, we plot ps/pt, see fig. 6.7 (bottom). It peaks for intermediate values
of the write-in control beam powers and decays for higher values. This stands in
contrast with the monotonically growing ηw and is a result of ηr decreasing with the
control power. We attribute this behavior of ηr to the asymmetrical distribution of
the spin wave in the ensemble, when large write-in control powers are used [98, 208].
With increasing write power, the spin wave starts having more asymmetric shape,
being mostly created at the beginning of the ensemble. This effect is known to limit
the retrieval efficiency, especially in the forward retrieval configuration [221–223].

In fig. 6.7 (bottom), we also plot the survival efficiency (ps+pt)/pin, the normalized
probability of detecting a transmitted or stored photon per trial. We observe that it
decreases with increasing control power due to the decrease of the read-out efficiency.
With current conditions, the tunability range of ps/pt is limited, but we expect that
backward retrieval should considerably improve the read-out efficiency at high write
power, which will increase the survival probability [98]. As a first application of the
single photon temporal beam splitter, we used the two temporal output modes of the
memory to measure the antibunching parameter. For the measurement presented in
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Figure 6.8: Stored photon waveshape tunability. (a) Dependence of the stored photon
duration on the read-out control beam power. (b) Selected waveshapes of the stored photons
from (a) and their corresponding fits. (c) Stored photon waveshape (solid orange) matching
exactly the input photon waveshape (dashed blue). (d) Stored photon shaped as a time-bin
qubit.

fig. 6.5, we obtain a g(2)(0) = 0.28(2) with a significantly increased count rate with
respect to the case where we split each output mode with a standard BS.

Photon shaping

Our memory also offers shape tunability of the stored photon [224]. In particular,
one can retrieve photons with very different lengths (with FWHM of 25 to 900 ns)
by changing the read-out control beam power, see fig. 6.8(a, b). We read out the
memory with a square-shaped pulse resulting in a steep leading edge of the retrieved
photon and slower decaying trailing edge. We fit the former with a Gaussian function
and the latter with an exponential and obtain the total FWHM of the photon. One
can also use more complex waveforms for the read-out control pulse to shape the
read-out photon, e.g. reproducing the input photon or a time-bin qubit, see fig. 6.8(c,
d). This capability would allow for matching differently shaped photons emitted
by different sources. We do not observe significant reduction of ηwr for different
read-out pulse shapes, in agreement with theory [225].

6.4 Conclusions

We demonstrated storage and retrieval of an on-demand single photon generated
in one Rydberg-based atomic ensemble in another cold atomic ensemble through a
Raman memory protocol. We achieved a 21% memory efficiency and a signal-to-
noise ratio up to 26 for the retrieved photon, leading to µ1 of 1.00(7)× 10−3. This
allowed us to observe only a moderate degradation of the single photon statistics.
We showed the adaptability of our memory in frequency and bandwidth. Moreover,
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we evaluated the performances of the built-in temporal beam splitter offered by the
Raman memory. Lastly, we showed that we can shape the temporal waveform of
the retrieved photon by shaping the read-out pulse power and waveform. These
results are a step forward in the implementation of efficient quantum-repeater links
using single-photon sources. In that context, one interesting advantage of having the
source and the memory residing in different ensembles is that they can be optimized
independently. This allows for an efficient single-photon generation and storage
and facilitates the use of multiplexed quantum memories [226, 227], which would
significantly improve repeater entanglement generation rates.

Several improvements should be applied to our experiment before it can become
a practical alternative. The generation efficiency of the single photon from the
Rydberg ensemble could be increased by increasing the OD of the ensemble and/or
by embedding the ensemble in a low finesse cavity [70]. The quality of the single
photon (as measured by the autocorrelation function g(2)(0)) could also be improved
by addressing a slightly smaller ensemble and by reaching a higher principal quantum
number level to increase the Rydberg blockade radius, as was shown in [62], where
g(2)(0) values smaller than 10−3 have been measured. Regarding the Raman quantum
memory, higher storage and retrieval efficiencies could also be reached by increasing
the OD of the ensemble [107] and using backward retrieval [222], or with an impedance
matched cavity. Backward retrieval will also improve the survival probability and
the performances of the temporal beam-splitter. Finally, longer storage time up to
1 s could be achieved by using magnetic insensitive transitions and by loading the
ensemble into an optical lattice to suppress motional induced dephasing [228].



Chapter 7

Strongly nonlinear interaction
between non-classical light and a
blockaded Rydberg atomic
ensemble

This chapter describes another experiment that involved collaboration of two distinct
setups. I was responsible for the Rydberg setup, which served as the nonlinear
medium, while my colleague, Lukas Heller, operated another cold-atomic setup used
as a non-classical light source. The data was collected with a help of two post-docs,
Félix Hoffet and Auxiliadora Padrón-Brito. Our experimental results have been
published in [229], and the content of this chapter is based on that publication. All
the figures presented in this chapter are taken directly from this publication.

7.1 Motivation

The promise of dipole blockaded ensembles for quantum information processing
purposes is clear. However, so far, all proof-of-concept demonstrations with blockaded
ensembles have used classical weak coherent states (WCS) as inputs, although
there are records of single photons being stored in Rydberg ensembles with weaker
nonlinearity [51, 116]. Nevertheless, for applications in quantum networks it is
crucial to demonstrate that single photons can interact with a blockaded ensemble
with single-photon nonlinearity. For example, a photon-photon gate between two
single photons that are part of an entangled state would allow deterministic Bell
state measurements and entanglement swapping, important capabilities for scaling
up quantum networks. Using single photons as inputs have also been predicted to
improve the contrast of single photon transistors [52].

As a step towards these applications, we report the first experimental demon-
stration of the interaction and storage of a correlated single photon in a highly
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Figure 7.1: Schematic view of the experiment. A train of write pulses detuned by
∆/2π = −40MHz from the |g⟩ → |e⟩ transition is sent to E1 (step 1) until a Raman
scattered photon is detected on detector D1 (step 2), heralding a collective excitation in
E1. This spin-wave is then read out by a strong read pulse resonant with |s⟩ → |e1⟩ (step
3), which produces the emission of a read photonic field in a well-defined mode (step 4).
Using the nonlinearity of the dipole blockade effect, this field is then mapped to a single
Rydberg excitation in E2 by means of Rydberg-EIT driven by a coupling beam (step 5).
At a later time, the excitation is read out by reapplying the coupling beam (step 6) and
the statistics of the field are studied in a HBT setup consisting of one beam splitter and
two detectors (step 7). D1(2,3) : Single-photon detector 1(2,3); E1(2): Atomic ensemble
1(2); DM: Dichroic mirror; BS: Beam-splitter; FPC: Fabry-Perot cavity; rb: dipole blockade
radius (∼ 10.5 µm).

nonlinear medium based on cold Rydberg atoms. We use the DLCZ protocol [11] in a
cold-atomic ensemble to generate heralded non-classical states of light with a tunable
multiphoton component. Those photons are then guided to another ensemble and
stored in a highly excited Rydberg state using dynamical electromagnetically induced
transparency (rEIT) [104, 110]. We assert the single-photon-level nonlinearity of
our system by comparing autocorrelation functions g(2)(0) of the input and output
photons, showing the first realization of single photon filtering with non-classical
input states. Additionally, we demonstrate that the nonlinearity depends only on
the input Fock-state distribution of the optical field.

7.2 Experimental setup

Our experimental setup consists of two ensembles of cold 87Rb atoms located in the
same laboratory and connected via 10m of optical fiber cable (see fig. 7.1). The
first ensemble (E1) is used to generate heralded non-classical light using the DLCZ
protocol. The second ensemble (E2) is used as a nonlinear Rydberg EIT quantum
memory with which the DLCZ light interacts.
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7.2.1 Experimental protocol

We start by sending a train of write pulses to E1, detuned by ∆ = −40MHz from the
|g1⟩ =

��5S1/2, F = 2,mF = +2
�

to |e1⟩ =
��5P3/2, F = 2,mF = +1

�
transition. With

a low probability, this generates a write photon in the heralding mode which, upon
detection at detector D1, heralds a collective spin excitation (spin wave) in the
spin state |s⟩ =

��5S1/2, F = 1,mF = 0
�
. To reduce the heralding noise, we filter

unwanted frequencies with a Fabry-Perot cavity in the write mode. In total, the
transmission of a write photon in our setup (including its detection) is 21%. After
1.6 µs, we then send a read pulse resonant with the |s⟩ → |e⟩ transition that maps
the collective excitation into a read photon. This photon is resonant with the
|g⟩ → |e⟩ transition and is emitted into a well-defined mode that depends on the
phase matching conditions of the process. It is then collected in an optical fiber and
sent to the nonlinear Rydberg medium. The atomic parametric interaction used
in the DLCZ process creates photon pairs in a two-mode squeezed state [11, 230].
By changing the write pulse intensity, we vary the probability of creating (p) and
detecting a write photon (pw), and therefore we can tune the multiphoton probability
in the read field.

The read photons are then frequency-shifted by an acousto-optical modula-
tor (AOM) to match the |g2⟩ =

��5S1/2, F = 2
�
→ |e2⟩ =

��5P3/2, F = 3
�

transition
in E2. They are directed to the Rydberg medium, where they propagate under
EIT conditions. The EIT coupling field is counter-propagating and resonant with
the |e2⟩ → |r⟩ =

��90S1/2

�
transition. The photons propagate as Rydberg polaritons

strongly interacting through van der Waals interactions, which prevent multiple
Rydberg excitations in the cloud [32]. Since only one excitation can exist in the cloud
at a time, only one photon can be retrieved. As a consequence, the medium response
is nonlinear and the statistics of the photonic pulses are affected. Additionally, when
the Rydberg polariton is propagating in the cloud, we can switch off the coupling
field, freezing the polariton’s propagation and effectively performing storage. This
is known to enhance the nonlinearity [78, 80]. Finally, the retrieved photons are
detected using single-photon detectors (D2 and D3) and their statistics are measured
in a Hanbury Brown-Twiss (HBT) setup.

7.2.2 Heralded photon source

For the DLCZ source to generate photons efficiently, its optical depth (OD) must
be large [18] and the coherence time of the collective spin excitation must be longer
than the time between the write and the read pulse. We achieve both using standard
techniques of magneto-optical trapping (MOT) assisted by a single retro-reflected
beam dipole trap at 797 nm. We obtain a cloud with OD = 6 and an initial
temperature of ∼ 80 µK, cold enough to suppress effects of motional dephasing.
However, in each trial the ground state population is swapped back and forth
between |g1⟩ and |s⟩ (an intrinsic property of the DLCZ protocol) effectively heating
up the cloud and resulting in a short dipole-trap trapping time of the order of a few
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ms, much shorter than the Rydberg one.

7.2.3 Nonlinear medium

To maximize the nonlinearity of the Rydberg medium, one needs large OD in a small
ensemble [26]. The characteristic length is given by the dipole blockade radius rb –
radius of a sphere around an atom excited to the Rydberg level where, due to the
dipole-dipole interactions, no other atom can be excited to the Rydberg state [32].
In our case, for n = 90, rb ≈ 10.5 µm [26, 86]. To achieve such a regime, we first
trap our atoms in a MOT using similar techniques as in E1 and then transfer them
into a small crossed dipole trap at 852 nm. In this way, we obtain a spherical cloud
with OD = 11, diameter of 15 µm (FWHM) and temperature of ∼ 40 µK. The EIT
transparency is limited to about 60% due to a large dephasing rate of the |er⟩ → |r⟩
transition, attributed to stray RF fields and motional dephasing. To avoid additional
dephasing we lock the lasers to a home-build reference cavity, allowing for linewidth
reduction and long-term stability, see sec. 3.3.

Because of the different trapping cycles of the two ensembles (12ms for E1 vs 1.3 s
for E2), the overall duty cycle of the experiment is limited to 5%. Besides, passive
losses affect quadratically the coincidence probability in the HBT experiment. Both
factors result in long interrogation times, which makes this experiment challenging,
as high stability is required for long periods of time.

7.3 Results

We now discuss our results. We start by characterizing our heralded non-classical
light source. The read photons statistics can be changed by varying the write pulse
intensity during the excitation stage of the DLCZ protocol (step 1 in Fig. 7.1). By
increasing the write pulse intensity, and consequently increasing the probability of
detecting a write photon pw, we can tune the heralded autocorrelation g

(2)
in (0) of

the read photons from 0.1 to 1.4, allowing us to study the response of the Rydberg
medium to light with different input statistics.

The heralded DLCZ states are stored in the Rydberg medium and their storage
and retrieval efficiency is measured as a function of pw, as shown in fig. 7.2(top).
For low pw values, the efficiency is around 20%. As pw increases, thereby enlarging
the multiphoton contribution in the heralded input field, we observe a pronounced
reduction in efficiency. This behavior is consistent with the effects of the dipole
blockade, which turns higher-order Fock states into one-photon states. Such dynamics
have previously been reported for weak coherent states during slow-light propagation
[58, 61] or storage [174] under rEIT conditions. Notably, this result marks a first
demonstration of non-classical light pulse storage within a strongly nonlinear Rydberg
medium.

We turn our attention to g(2)(0), as it is a vital metric for achieving high fidelity
entanglement in quantum networks [199]. After the interaction of the DLCZ-emitted
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Figure 7.2: (top) Decay of the heralded single-photon storage and retrieval efficiency η as
a function of detected write probability pw. The dashed line is a guide to the eye. (bottom)
Autocorrelation g(2)(0) of the input (blue), propagating under rEIT conditions (green), and
stored (red) DLCZ read photons for different values of pw. Values of g(2)(0) are obtained by
integrating coincidences over the full pulse. We observe a strong reduction of the DLCZ
read photons g(2)(0) after their storage – a clear manifestation of the strong nonlinearity of
our Rydberg medium. g

(2)
out(0) of pulses propagating without storage is only lowered with

respect to the input due to their duration larger than the group delay (150 ns vs. ∼ 85 ns)
and complex dynamics of propagation of such short pulses [77, 78]. This data was corrected
for background noise induced by the blue coupling light and dark counts of the detectors
(see sec. 4.1.3). The correction lowers the g(2)(0) values by ≤ 0.06.

light with our nonlinear medium, we observe a pronounced suppression of the g(2)(0)
value, as seen in fig. 7.2(bottom), another clear indicator of the nonlinear interaction
taking place. Specifically, the g(2)(0) for slow light experiences only a slight reduction,
attributed to the pulse not being fully compressed within one blockade radius. The
propagation time through the medium is around 85 ns, while the pulses are 150 ns
long (FWHM). It means that the nonlinearity affects only a part of a pulse at a time,
what effectively decreases the strength of the nonlinearity. The g

(2)
out(0) for stored

light, on the other hand, stays low for increasing value of pw and input g
(2)
in (0). This

is a clear sign of nonlinearity enhancement due to storage, as previously observed in
[80]. These measurements are the first observation of a g(2)(0) reduction and single
photon filtering with a non-classical input for any kind of system.

As one can see in fig. 7.2, our g(2)out(0) does not reach zero and rises as pw increases,
implying that the ensemble might not be under full blockade. To explain the observed
trend, we develop a simple Monte Carlo simulation accounting for the influence of
an imperfect blockade on different Fock states.



108 7. Interaction between non-classical light and a Rydberg ensemble

However, before explaining the details of our simulation, we have to introduce
the concept of multiphoton strength ζ. As we later discuss, not only do we validate
our model with the collected g

(2)
out(0) data for DLCZ photons, but we also study the

response of our medium with input coherent states. The multiphoton strength ζ
facilitates the representation of the results for both data sets on a single plot.

7.3.1 Estimation of multiphoton strength ζ

For a Fock state distribution of the incoming state

pk = ⟨k| ρ̂in |k⟩ , (7.1)

where ρ̂in is the incoming state and |k⟩ is k-photon Fock state, the multiphoton
strength ζ is defined as the probability of having two or more photons in a pulse
normalized to the probability of having at least one photon:

ζ =

P
k≥2 pkP
k≥1 pk

. (7.2)

This choice is motivated by the fact that multiphoton components adversely impact
the performance of quantum networks. In contrast, the mean photon number provides
limited insights into the underlying Fock state distribution, making multiphoton
strength a more informative metric.

We now explain how we estimate the input pulse Fock state distribution and
describe the effect of different optical elements on this distribution.

Transfer matrix formalism

Any element affecting Fock state distribution, let say a beam splitter or transmission
losses, can be described by a matrix M , such that the distribution after this element
can be expressed as

p′k = Mklpl, (7.3)

where Mkl are elements of the matrix and the summation over the repeating indices is
implicit. For this matrix to preserve the normalization of the Fock state distribution,
i.e.

P
k p

′
k = 1, it’s necessary that its columns sum up to 1.

Virtually any element can be expressed as such a matrix. A typical example
would be a beam splitter or any other lossy element with transmission t. If we aim
to determine the Fock state distribution after this element, the matrix elements for
this operation are described by the binomial probability mass function:

Mkl =

�
l

k

�
tk(1− t)l−k. (7.4)

Consider another example: a perfect single-photon filter, such as a Rydberg ensemble
that’s both perfectly blockaded and perfectly transmissive. This filter transforms all
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higher order Fock components into 1-photon component. The matrix representation
for such a filter would be:

M =




1 0 0 0 · · ·
0 1 1 1 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .


 . (7.5)

Generally, lossy operations are represented by upper triangular matrices. However,
if one were to model elements adding photons, such as detector dark counts, using
this approach, the matrix would exclusively have elements in the lower triangle.
A nice bonus of this formalism is how straightforward it is to back-propagate any
operation just by inverting its matrix representation (provided that the matrix is
not singular).

Knowing how we can easily account for transmission losses in our system, we can
estimate what is the Fock state distribution at the input of the Rydberg cloud.

Coherent state

Determining the Fock state distribution for a coherent state is a straightforward task
because it follows the Poisson distribution. Moreover, any linear element retains
this characteristic. Therefore, for a coherent state, the Fock state distribution is
expressed as

pk = e−|α|2 |α|2k
k!

, (7.6)

where |α|2 = µin, with µin being the mean input photon number, derived from the
back-propagation of loss from the detection probabilities at single-photon detectors.
Finally, one obtains multiphoton strength ζ using eq. 7.2.

DLCZ single photons

Determining the Fock state distribution for the DLCZ read photon at the Rydberg
ensemble’s input is more complex. We start by considering that the DLCZ produces
a two-mode squeezed state for the write and read photons

|Ψw,r⟩ =
p
1− p

∞X

n=0

pn/2 |nw, nr⟩ , (7.7)

with p being the probability that at least one excitation is generated. We are
interested in the Fock state distribution in the read mode, conditioned on a prior
detection in the write mode. We model the detection of a write photon by the
following POVM operator, which takes into account transmission and detection
efficiencies (tw) and models non-photon-number-resolving detection:

Π̂det =
∞X

n=1

[1− (1− tw)
n] |nw⟩ ⟨nw| . (7.8)
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The resulting conditional density matrix for the read-mode ρ̂r|w can be written as:

ρ̂r|w =
Trw

h
Π̂detρ̂w,r

i

Trw,r

h
Π̂detρ̂w,r

i

=(1− p)t−1
w [1− p(1− tw)]

×
∞X

n=1

pn−1 [1− (1− tw)
n] |nr⟩ ⟨nr| , (7.9)

where ρ̂w,r = |Ψw,r⟩ ⟨Ψw,r|. We can identify ρ̂w,r with ρ̂in from eq. 7.1 and use the
above-described transfer matrix formalism to account for the losses between the
setups tr = Tηa = 0.15, with T being the transmission factor between the two
experiments and ηa being the DLCZ read-out efficiency. The remaining task to
determine multiphoton strength is to figure out the value of p in eq. 7.7.

Due to losses between the generation of DLCZ photons and their detection,
it would be difficult to directly measure their Fock state distribution and infer
p1. Instead, we estimate it from the auto-correlation function g(2)(0), which is
independent of linear losses and is bijective for given losses tr. To obtain p, we find a
probability distribution pk = ⟨k| ρ̂r|w |k⟩ that yields given g(2)(0). A general formula
for the auto-correlation function g(2)(0) of an arbitrary state is

g(2)(0) =
⟨a†a†aa⟩
⟨a†a⟩2 =

∞P
k=0

k(k − 1)pk

� ∞P
k=0

kpk

�2 . (7.10)

Then, from p, we can infer the input Fock state distribution and the corresponding
multiphoton strength ζ.

Having explained how to estimate the Fock state distribution at the input of the
nonlinear medium, we can now describe our method to simulate the effect of the
partial dipole blockade on this distribution.

7.3.2 Monte Carlo simulation of the partial blockade

In our numerical simulation, we simplify the problem to one dimension. This choice
is motivated by the directionality of polariton propagation and the small transverse
extent of the probe mode. We also assume the ensemble has a uniform density
distribution over its length, determined by the cloud’s FWHM. Additionally, we
model the dipole blockade as a binary effect: if two polaritons are closer than the

1Alternatively, one could infer the generated two-mode squeezed state eq. 7.7 based on the
measured pw, but this would require very careful calibration of losses in the write path, which, from
our experience, can be challenging.
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blockade radius, the later-arriving one gets scattered; otherwise, both propagate
without losses. This approximation is referred to as the hard-sphere model [111, 171].

It’s important to note that this is an effective model, and some physical aspects
of the problem are not addressed. Specifically, the binary blockade is a good
approximation only in ensembles with a very high optical depth [61, 171]. However,
by storing the photons, we amplify the nonlinearity [80] – any photon not stored as
a polariton, even if unscattered, is essentially filtered in time by the storage process.
We also overlook the dephasing interactions between polaritons during storage [172],
which can be viewed as another nonlinearity booster. As mentioned later, both
of these factors might be the reason why the model’s blockade radius matches so
closely with what’s expected from the usual formula for blockade radius [26]. It
would be worthwhile to vary the storage time and see if this affects the determined
blockade radius. Additionally, we do not account for more nuanced effects that
especially arise at high multiphoton strengths, such as dissipative interactions [171]
and pollutants [61]. Both are likely to elevate the measured g(2)(0) by diminishing
the g(2)(0) expression’s denominator. Though, we observe pollutant effects only
when ζ is near 1. Overall, our simulation should be seen as a tool that offers an
intuition of how the medium modifies the Fock state distribution of stored pulses.

In our simulation, we start by randomly selecting a number of positions within
the cloud corresponding to the number of a specific input Fock state. Sequentially
analyzing these positions, we determine the probability of polariton presence at each
spot by considering the blockade effect. To clarify, there may be scenarios where
the third polariton survives without being lost, even if it’s located closer than the
blockade radius to the second one. This can happen if the second polariton was
previously scattered by the first. We repeat this process 1 × 105 times for each
Fock state to determine the probability distribution of survival and conversion into
other Fock states. The derived distributions are then integrated as columns in a
transfer matrix, capturing the influence of (partial) blockade on the input Fock state
distribution.

To determine the Fock state distribution after the storage in the Rydberg ensemble,
we utilize the transfer matrix formalism described earlier. For DLCZ photons, we
begin with eq. 7.9 as the input state and compute its Fock state distribution.
Subsequently, this is modified by matrices that factor in transmission losses between
setups (tlosses = 0.15), the fact that the input pulse cannot be fully compressed within
the medium (resulting in a part only of the pulse being effectively stored which we
model as a beam slitting operation, ηcompression = 0.6), and half the linear losses
during EIT propagation (√ηEIT =

√
0.6)2. Estimating the second factor is somewhat

challenging due to complex propagation dynamics of such short pulses under rEIT
conditions [77, 78]. Nonetheless, the precise value influences our simulation results
only weakly, evident in fig. 7.3 where the limits of the shaded area correspond to

2The remaining linear losses during EIT propagation do not affect the measured g(2)(0), however,
they need to be included in the calculation of the storage and retrieval efficiency, as it is shown in
the next section.
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Figure 7.3: Autocorrelation g
(2)
out(0) of DLCZ read photons (red circles) and coherent

states (yellow circles) after their storage in the nonlinear medium, for different values of
multi-photon strength ζ of the input state. The solid lines in the corresponding colors
represent the Monte Carlo simulation results discussed in the main text. The shaded area
corresponds to uncertainty of estimating losses before the storage.

ηcompression being 0.45 and 0.75. Finally, the matrix derived from the Monte Carlo
simulation is used to account for the blockade effect.

This procedure can be concisely represented by:

p′ = MblockadeM
√
EITM compressionM losses p , (7.11)

where elements of p are pk = ⟨k| ρ̂r|w |k⟩ with ρ̂r|w as per eq. 7.9. The matrices, M ,
are defined as outlined above.

In the case of coherent states, we don’t need to account for the transmission
losses, because by backpropagation we calculate directly the state right before the
cloud.

Simulation results

The model replicates well the observed g
(2)
out(0) data for both DLCZ photons and

WCS, as shown in fig. 7.3, where we set the blockade radius to rb = 10.5 µm, aligning
with the value calculated for our experimental parameters [26]. While the blockade
radius traditionally pertains to rEIT conditions without storage, and the hard-sphere
model suits very high OD regime [61, 171], we attribute the agreement between the
data and the simulation to storage enhancing the medium nonlinearity, akin to an
OD boost [80].

Using our simulation, we can explain the distinct g
(2)
out(0) patterns observed for

DLCZ photons and WCS. In most cases, 2-photon state is converted into 1-photon
state, but occasionally the imperfect blockade allows for its survival. Higher order
components get transformed into either 1- or 2-photon states, with the 2-photon
conversion probability rising with k. At low ζ, g(2)out(0) values primarily reflect the
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Figure 7.4: Simulated input Fock state distribution of DLCZ read photon and coherent
state for the same values of ζ. We plot it for ζ = {0.01, 0.05, 0.5}, corresponding to
g
(2)
in (0) = {0.12, 1, 1.4} of the DLCZ generated light field. Coherent states have always
g
(2)
in (0) = 1 whatever the ζ value. The transmission losses are included in the computation

of the Fock state distributions.

amplitude of 2-photon states, meaning g
(2)
out(0) ≈ 2 p2/(p1)

2. For WCS, since the input
g
(2)
in (0) = 1 at any ζ, post-storage g

(2)
out(0) remains flat at lower ζ values, determined

by the 2-photon state’s survival probability. However, as ζ grows, higher-order
components emerge, leading to an increase in g

(2)
out(0). Conversely, DLCZ photons

show an increasing g
(2)
in (0) trend with ζ. After storage, the trend persists, but the

values diminish due to the blockade. The stored DLCZ photon g
(2)
out(0) intersects the

stored WCS g
(2)
out(0) when the input DLCZ photons have g

(2)
in (0) ≈ 1.

It’s worth noting that due to the ensemble being only partially blockaded, the
nonlinearity becomes sensitive to the shape of the input Fock state distribution. This
is precisely why the g

(2)
out(0) of DLCZ photons raises more rapidly than that of WCS

– the tail of the DLCZ Fock state distribution is longer than of WCS at larger values
of ζ, as one can see in fig. 7.4.

This simulation can also be employed to mimic results from slow-light propagation
without storage. To adjust for pulses that cannot be entirely compressed within the
medium, one might consider expanding the medium size to align with the pulse length.
Yet, to align with the experimentally observed results, when using the blockade
radius extracted from storage data, the medium needs to be more than twice as large
as above reasoning would indicate. This discrepancy is most probably caused by
two factors. Firstly, unlike stored pulses, propagating pulses don’t benefit from the
two nonlinearity-enhancing effects mentioned earlier in this section. Consequently,
the nonlinearity they experience is weaker. Secondly, previous observations have
indicated that the initial parts of pulses undergoing rEIT propagation exhibit minimal
reduction in g(2)(0) [77, 78].
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Figure 7.5: Rydberg memory efficiency as a function of multiphoton strength ζ for storage
and retrieval of DLCZ photons (red circles) and WCS state (yellow circles). The solid lines
of corresponding colors show the model prediction. The predicted faster efficiency decay for
DLCZ photons at large ζ comes from the fact that the corresponding Fock state distribution
has a longer tail towards higher-order multiphoton components than for WCS.

7.3.3 Effect of the partial blockade on the storage efficiency

Understanding the impact of the partial blockade on the pulse’s Fock state distribu-
tion, we can re-examine the efficiency data and simulate its decay with respect to
ζ. We start by describing how we model the effect of the blockade on the storage
efficiency.

Once the Fock state distribution of the pulses post-blockade is determined,
simulating the storage and retrieval efficiency is straightforward. One needs to account
for two factors, the remaining linear losses during EIT propagation (√ηEIT =

√
0.6)

and the retrieval efficiency (ηr = 0.41). This efficiency is deduced by matching the
simulated efficiency with the experimental results at very low multiphoton strengths,
where the influence of the blockade is negligible.

Given these considerations, the efficiency for the DLCZ photons can be calculated
as:

η =
µs

µin
=

ηr
∞P
k=0

kM
√
EIT

kl p′l
∞P
k=0

kM losses
kl pl

=

ηr
√
ηEIT

∞P
k=0

k p′k

tlosses
∞P
k=0

k pk

, (7.12)

where the last equality comes from the linearity of the losses. Here, µin and µs denote
the mean input and retrieved photon numbers, respectively. pl and p′l represent the
elements of Fock state distributions as in eq. 7.11. We use the same method to
estimate the storage and retrieval efficiency for coherent states.

The comparison between our simulations and the experimental data for both
DLCZ photons and WCS is depicted in fig. 7.5. While our simulation aligns well
with the WCS data, there’s a some discrepancy for the DLCZ data at higher ζ
values. This inconsistency likely stems from the uncertainty in determining ζ for this
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dataset. It’s derived from the correspondence of ζ to the measured pw, and accurate
calibration of transmission losses of the write photon is crucial for its reliability3.

It’s worth noting that both models align with the experimental data for WCS and
DLCZ photons, despite many parameters, like mean photon number, experimental
rate or input g

(2)
in (0), being very different. Given that these models focus exclusively

on the input Fock state distribution, this suggests that the Rydberg medium’s
nonlinear response is determined by this distribution, which confirms the prevailing
understanding of the Rydberg ensemble nonlinearity.

7.4 Conclusions and outlook

In this work, we employed a DLCZ quantum memory as a heralded source of non-
classical light, examining its interplay with Rydberg nonlinearity during storage under
EIT conditions in an atomic ensemble. This constitutes the first experiment where a
non-classical state is stored in such a highly nonlinear medium, a crucial prerequisite
for their applications in quantum networks. The photon’s autocorrelation g(2)(0)
was strongly reduced due to this interaction, demonstrating single photon filtering
with quantum input light. With a simple simulation, we explained the role of partial
blockade of the ensemble in this process. By comparing the results with quantum
light and weak coherent states, we showed that the input Fock state distribution
dictates the response of the medium, which aligns with established understandings
of such systems. Our results show a proof of principle that correlated single photons
can be stored in a Rydberg medium with single photon level nonlinearity. This
represents a step towards the realization of photon-photon gates with true single
photons.

3Such calibration concerns don’t affect the g
(2)
out(0) data, as ζ is determined from measured input

g
(2)
in (0), which is independent of the linear losses’ calibration of the write photon.
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Chapter 8

Conclusion & Outlook

The four-year duration of my PhD has been a significant and formative period
in my life. It has provided ample opportunities for academic growth and personal
development. Being surrounded by many smart people has not only fostered scientific
discussions, but also offered valuable moments for broader conversations. Overall,
this experience has played a crucial role in shaping me both professionally and
personally.

During my PhD, we conducted a series of experiments utilizing strongly interacting
Rydberg states in cold atomic ensembles to generate effective interactions among
photons. Our work included a successful implementation of a building block of
a quantum repeater with deterministic single-photon sources, where we explored
the unique flexibility offered by Raman memory, which holds promise for future
quantum repeater applications. Furthermore, we demonstrated for the first time the
interaction and storage of single photons in a highly non-linear medium based on cold
Rydberg atoms, marking a novel contribution in this field. Thanks to a Monte Carlo
simulation, we got an intuitive understanding of the effect of the (partial) Rydberg
blockade upon an arbitrary input Fock state distribution and confirmed that the
medium’s response depends solely on the input Fock state distribution. These results
can be seen as a step towards realization of deterministic photon-photon gates based
on Rydberg ensembles.

My work on the Rydberg system led me to a conclusion, that the physics of our
Rydberg ensemble is very interesting, yet very complex. The presence of multiple
Rydberg excitations make our system a complex many-body system. While significant
progress has been made in explaining phenomena in this regime, there is still much
to explore, and theoretical understanding remains an active area of research.

Given our group’s focus on quantum repeaters, I believe it would be beneficial
to rebuild our experiment so that one could work in the regimes where the physics
is simpler or already well understood, while keeping in mind the ultimate goal of
building a functional quantum repeater. In particular, this would require addressing
the issue of short coherence time of Rydberg excitations.

There are two potential avenues for utilizing Rydberg ensembles in quantum
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repeaters. The first is a deterministic source of quantum light, i.e. single photons,
entangled-photon pairs or light-matter entanglement. We have successfully achieved
generation of single photons and demonstrated their quality through interference with
DLCZ photons in a Hong–Ou–Mandel (HOM) experiment [231] (this experiment was
performed while writing this thesis and, therefore, its results are not included here).
Nevertheless, there is ample room for improvement, particularly in terms of generation
efficiency and autocorrelation of the photons. The use of small, strongly blockaded
ensembles has proven successful in this regard [62, 64]. By making slight adjustments
to the setup, it would be possible to generate entangled photon pairs [65] or even
photon trains [66], which are valuable resources for quantum repeaters. Another
potential upgrades could be a ring cavity around the ensemble, significantly improving
photon collection efficiency [70], or using a magical wavelength optical lattice to trap
atoms continuously and suppress the motional dephasing [181]. Unfortunately, any
of these improvements couldn’t be implemented in the current setup due to the lack
of space, what necessitates a major setup makeover.

With the enhanced setup, there is potential for extending the single-photon
generation protocol to produce on-demand photon pairs at different wavelengths.
This would involve transferring the Rydberg excitation, following the usual stor-
age process, to a higher excited state carefully chosen to permit only one decay
channel, resulting in the emission of two photons. An interesting candidate for
this process is the state

��4D5/2, F
′′ = 4

�
, which would yield photons at 780 nm

and 1529 nm, corresponding to the transitions
��5S1/2, F = 2

�
→

��5P3/2, F
′ = 3

�
and��5P3/2, F

′ = 3
�
→

��4D5/2, F
′′ = 4

�
, respectively. A similar, but probabilistic proto-

col was already demonstrated in [232]. The aforementioned ring cavity could further
improve the efficiency of this process by enhancing the first transition.

Rydberg ensembles also offer promising potential for quantum repeaters in
the form of quantum gates, particularly the crucial CNOT gate for entanglement
swapping. Unlike linear-optical CNOT gates, which have limited efficiency (typically
to 1/9 [64]), Rydberg-based gates provide the possibility for near-perfect efficiency.
There are two possible avenues to explore for building such gates.

The first approach leverages the blockade effect [32, 39, 41, 42, 44, 47], requiring
a small ensemble. This approach has the advantage that the gate fidelity is weakly
dependent on experimental parameters [29, sec. 1A]. However, achieving high
efficiency is difficult due to the need for photon storage, which remains an outstanding
challenge. The highest efficiency photonic CNOT gate achieved so far, with 40%
efficiency, was primarily limited by the storage efficiency of the gate photon [49].

An alternative approach is to utilize interactions between counter-propagating
Rydberg polaritons, which eliminates the need for photon storage and potentially
offers higher efficiencies. However, in this case, the gate fidelity may depend on
experimental parameters such as the Rabi frequency [40, 45], or require working with
extremely dense ensembles [233] (if the protocol is extended to counter-propagating
pulses). This approach would require a significantly larger ensemble than the blockade
radius, which is in contrast to the requirement for efficient single-photon generation.
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Nevertheless, it should be feasible to design a setup capable of generating an ensemble
of two different sizes, potentially by adopting a geometry similar to previous works
[82, sec. 5.3.4] or [234, sec. 3.5].

In summary, the field of Rydberg physics is a dynamic and captivating area
of research, with a multitude of proposals and demonstrations contributing to the
advancement of quantum technologies and the exploration of fundamental physics.
Although many things have been understood and demonstrated, there is still a large
room for scientific activity in this field.
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