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ABSTRACT

QUANTUM CHAOS, INTEGRABILITY, AND
HYDRODYNAMICS IN NONEQUILIBRIUM
QUANTUM MATTER

FEBRUARY 2024

JAVIER LOPEZ PIQUERES
B.Sc., UNIVERSIDAD AUTONOMA DE MADRID
M.Sc., ECOLE NORMALE SUPERIEURE, PARIS
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Romain Vasseur

It is well-known that the Hilbert space of a quantum many-body system grows
exponentially with the number of particles in the system. Drive the system out of
equilibrium so that the degrees of freedom are now dynamic and the result is an
extremely complicated problem. With that comes a vast landscape of new physics,
which we are just recently starting to explore. In this proposal, we study the dynam-
ics of two paradigmatic classes of quantum many-body systems: quantum chaotic
and integrable systems. We leverage certain tools commonly employed in equilibrium
many-body physics, as well as others tailored to the realm of non-equilibrium scenar-
ios, in order to address various problems within this evolving field. Our contributions
are the following:

Inspired by random matrix theory and random unitary circuits subject to projec-

tive measurements, we first uncover a novel phase transition in a model of random



tensor networks separating an area-law from a logarithmic-law in the scaling of entan-
glement entropy of a many-body wavefunction. Next, we study transport in the Rule
54 cellular automaton, a paradigmatic integrable model displaying just two species
of solitons of different chiralities. Our contribution here is a sound numerical veri-
fication of some of the formulas for transport coefficients recently derived within a
generalized hydrodynamic approach valid for integrable systems. Using the equations
of generalized hydrodynamics as a starting point we then propose a new phenomeno-
logical scheme based on a relaxation-time approximation widely used in kinetics, but
fundamentally different, to study the experimentally relevant regime where only a
few conservation laws are present. We then aim at uncovering the hydrodynamics of
integrability-breaking starting from fully microscopic dynamics. To do so we study
a noisy version of the Rule 54 model and of the hard-rod gas, where the source of
noise in both models is backscattering of solitons. We find that these models of
integrability-breaking are atypical in that in the former relaxation occurs at long
time scales owing to the presence of kinetic constraints, and the latter displays singu-
lar transport signatures as a result of infinitely many conserved charges despite the
model being nonintegrable. Finally, we conclude by studying operator spreading in
both integrable and chaotic quantum chains. Using hydrodynamics and tensor net-
work simulations we find distinctive signatures of these two classes of models when

looking at their operator front.
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INTRODUCTION

It is known in popular folklore that the three body problem was the only problem
to ever give Newton headaches [Taol4]. The only major progress on this problem had
to wait a couple centuries, when Poincaré, despite not being able to find a closed-form
solution to the problem, laid the foundations of chaos theory (all the while revolu-
tionizing various areas of mathematics) [Chel5]. Fast forward into the present and
the n > 3 body problem is still a mystery. The inability to solve the problem of
many interacting objects is sometimes known as the curse of dimensionality. Despite
this natural obstruction, different ideas and methods have been developed to tackle
seemingly complex problems involving many degrees of freedom interacting with each
other. Ideas based on universality, the renormalization-group, perturbative and vari-
ational methods, etc; have proved successful in determining macroscopic properties
of such complex systems; only at equilibrium. Away from it, much less is known: the
added layer of complexity that stems from temporal (and not just spatial) correlations
yields room for new and unexpected phenomena with no equilibrium counterpart. At
the same time, many of the ideas that work in the equilibrium scenario may fail ter-
ribly in the nonequilibrium context (such as is the case of many perturbation theory
based methods [Mac07]), or simply not work at all (it is not clear what the relevant
variational manifold of physical states should look like away from equilibrium). Nev-
ertheless, one hopes that such exponential complexity could be possibly compressed
in such a way we can at least accurately simulate these systems on a computer, either
by using equilibrium-inspired methods, or by means of completely new frameworks

with no equilibrium counterpart.



This work fits within the general paradigm of finding new efficient representations
of underlying highly complex, dynamical phenomena. We study quantum many-body
systems out of equilibrium inspired in part by methods that have proven to work in
the equilibrium setting, such as is the case of tensor network based methods, as well
as tools particular to the nonequilibrium setting, such as is the case of hydrodynamic
based approaches.

In Chapter 1 we discuss the basics of quantum chaotic systems. We explore a novel
entanglement phase transition in a system of random tensor networks that reproduces
some universal properties of quantum many-body chaotic systems and that shares
many properties with a system of qudits (d-level quantum systems) evolved under
random unitary gates subject to random measurements. Using the cavity method
from spin-glass theory and arguments based on universality, we analytically extract
the critical properties of the entanglement phase transition when the topology of the
tensor network is that of a tree, finding that the transition belongs to the universality
class of the n-state Potts model. Based on this, we conjecture our results provide the
basis for the mean-field universality class of entanglement phase transitions.

In Chapter 2 we discuss integrable systems. Despite having been studied for
many decades in the context of their thermodynamic properties, it has only been
just recently that much progress has been made in their study away from global
equilibrium. A new hydrodynamic approach, dubbed generalized hydrodynamics (or
GHD for short) — named that way as a natural extension of the standard theory of
hydrodynamics of integrable systems (systems with infinitely many local conservation
laws) — has shed new light into the nonequilibrium properties of such systems. Here
we put this hydrodynamic theory to test, by studying a very simple integrable model,
the Rule 54 cellular automaton where many of the GHD formulas can be put to

scrutiny numerically.



It is in Chapter 3, where we discuss the core work of the Thesis. Using the GHD
framework as a starting point, we explore the physics of more realistic systems, that
are strongly interacting, far-from-equilibrium, but not integrable. Using the equations
of generalized hydrodynamics as a starting point we then propose a new phenomeno-
logical scheme based on a relaxation-time approximation widely used in kinetics, but
fundamentally different, to study the experimentally relevant regime where only a
few conservation laws are present. This hydrodynamic approach is verified to work
extremely well when compared with first-principle based numerical simulations using
tensor networks. We then aim at uncovering the hydrodynamics of integrability-
breaking starting from fully microscopic dynamics. To do so we study a noisy version
of the Rule 54 model where the source of noise is backscattering of solitons. This
perturbation has the effect of preserving the conservation in the number of the total
number of solitons of both chiralities, while forcing the imbalance of both chiralities to
decay. We show that while the dynamics of the tagged quasiparticles is well-captured
by our theory, transport on the other hand evades a full analytical treatment owing
to the presence of kinetic constraints. In order to have a full analytical-handle of
transport in an interacting system away from integrability we study backscattering
again, this time in the hard-rod gas. The hard-rod gas is a simpler model than that
of Rule 54, yet it shares many properties with most integrable models. We success-
fully describe transport analytically in this noisy version of the hard-rod gas in the
limit of small noise, providing, to the best of our knowledge, the first fully analyt-
ically tractable model of transport of an interacting, nearly integrable model where
integrability-breaking leads to large momentum transfer, going beyond the types of
perturbations currently tackled by the form-factor expansion formalism. Further-
more, the resulting model answers the intriguing question of what happens when the
integrablity-breaking perturbation breaks infinitely many charges, while preserving

infinitely remaining ones.



In Chapter 4 we again study chaotic as well as integrable systems, this time within
the context of operator spreading. Using GHD we show that the right-weight — a mea-
sure of operator spreading, has a front that decays anomalously for all accessible time
scales, in contrast with quantum chaotic systems that are governed by a decay consis-
tent with a purely gaussian front. We also give numerical evidence that while small
bond dimension matrix product operators are sufficient to capture the exponentially
decaying tail of the front, they lead to significant quantitative and qualitative errors
for the actual front.

We close in Chapter 5 with some conclusions from the work presented in this

Thesis.



CHAPTER 1
QUANTUM CHAOTIC SYSTEMS

In the first part of this Chapter, we give a brief exposition of the main ideas
behind the theory of quantum chaos, focusing on two of its pillars, the eigenstate
thermalization hypothesis, and random matriz theory. We then move on to describe
random unitary circuits and random tensor networks, which are models inspired by
random matrix theory with the added constraint of locality. We shall outline as well
the basics of tensor network theory. In the last part of the Chapter, we work out
a model of random tensor networks that feature an entanglement phase transition
between an area-law to a logarithmic-law in entanglement entropy when the bond

dimension of the network is tuned. The results of that section follow [LPWV20].

1.1 Eigenstate Thermalization Hypothesis and Random Ma-

trix Theory
Roughly speaking, quantum chaotic systems comprise quantum systems with very
few or no conservation laws. Defining precisely quantum chaos is a bit subtle. While
there exists a precise definition of classically chaotic systems, the same is not true in
the quantum case. Chaoticity in classical systems is the result of nonlinearity in the
evolution of a dynamical system and extreme sensitivity to the initial conditions !.

The main consequence of this is that any chaotic system will reach a unique stationary

state after long enough times, from which we can characterize the statistical properties

!Extreme sensitivity here can be quantified in terms of a positive Lyapunov exponent.



of the system after equilibrium is reached [Rue78, Gall3]. We then say the system
thermalizes. The main feature of nonlinear dynamics is phase space mixing, and it
is what ultimately leads to positive entropy production and loss of information of
the initial state [KS12]. It is this basic feature that questions the mere existence
of chaos in the quantum context, as the Schrodinger equation is linear and so one
would think that no chaos can ever be present in a quantum system. Further, time
evolution is unitary and so no information can ever be lost. The resolution to this
little paradox was given by von Neumann in his famous work [Neu29]. He gives a
natural notion of ergodicity in the quantum context, whereby instead of focusing on
states evolved under the Schrodinger equation, one should pay instead attention to
local observables. In looking at local observables at long times, the system behaves as
if ergodic, this is, the time average of an observable at long enough times and w.r.t.
an initial state within a given energy shell [F, E+ § E], should be equal to the average
of that observable w.r.t. the microcanonical ensemble at that energy E [PSSV11].
Recent years have witnessed a revival in interest in understanding the emergence
of statistical mechanics in quantum many-body systems, sparked in great part by
remarkable experimental progress [KWWO06, HLFT07, BDZ08] (see also the reviews
[DKPR16, GE16, Deul8]). A major breakthrough was achieved with the inception of
the Eigenstate Thermalization Hypothesis (ETH) as a promising candidate to explain
the microscopic origin of thermalization in generic closed quantum many-body physics
[Deu9l, Sre94, Sre99, RDO08a|. ETH can be succinctly expressed by the following
formula for the matrix elements of a few-body local observable O in the basis of

energy eigenstates {|E,)} [Sre99]

Oy = (BalO1Es) = Ounc(E)oas + ¢ P2 f5(w, B) Ra, (L1)

Eo+Eg

where F = 5

is the energy average, w = E, — E3 is the energy difference, S is the

thermodynamic entropy, and R,g are random numbers that average to zero and have



variance equal to one. Both the microcanonical average Oy,.(E) as well as the spectral
function fg are some smooth functions. The formula (1.1) in particular shows that the
microcanonical average centered around the eigenenergy E,, can be found by picking
up any eigenstate within an energy window [E, —dE,, E, +JE,| with J E, sufficiently
small in a sense specified in [RDO08a], in other words, (E,|O|E,) ~ Ope(Ey), where
the =~ should be understood as equality up to exponentially small errors.

Eq. (1.1) is very similar to the predictions from Random Matrix Theory (RMT)
for what the components of a given observable should be between eigenstates of the

Hamiltonian, namely,

2
dim#
where dim? is the dimension of the Hilbert space. The similarity between the RMT

Ous ~ Obus + Rags, (1.2)
and ETH predictions for the components of local observables is not mere coincidence,
and in fact, the ETH ansatz reduces to that of RMT when restricted to a very narrow
energy window so that fs(w, E) is constant in Eq. (1.1) [RDO08a]. The difference
in content between ETH and RMT goes beyond the scope of the Thesis and we refer
the interested reader to the review article [ DKPR16]. The main point to make here is
that RMT and ETH make universal predictions of generic quantum systems, where
energy is the only conserved quantity. There are many systems where the presence of
extra conserved quantities render the predictions from ETH and RMT inapplicable.
Of particular relevance are integrable systems, which we discuss in the next Chapter,
and many-body localized systems (see Ref. [AL18, AABS19| for recent reviews on

the subject).

1.2 Random Unitary Circuits, (Random) Tensor Networks,

& Entanglement Phase Transitions
Very recently the attention has been veered towards cooking up minimal models

of quantum many-body systems embodying certain aspects of RMT, such as is the



case of random unitary circuits (RUCs). The extra ingredient in these systems is
locality, enforced by the presence of local unitary gates that entangle two nearby
qudits. These models have proved useful when studying out-of-equilibrium dynamics,
as their simplicity allows for predictions for entanglement growth [NRVH17, ZN19a]
and out-of-time-ordered correlators [NVH18a, vKRPS18a.

Consider a one dimensional array of qudits initially unentangled. Applying con-
secutive layers of two-qudit random unitary gates acting on two consecutive qudits as
shown in Fig. 1.1 will produce a highly entangled state over time. The information
about the initial state of the system becomes, at long enough times, scrambled, that
is, hidden from local observables, and consequently one speaks of the system being
thermalized 2. This is because stationary states in this setup become volume-law
entangled, in accordance with our expectations that thermal states have extensive
entropy proportional to the volume of the system.

While RUCs give insight into the process of how quantum systems may eventually
thermalize, recent attention has been directed towards studying under which condi-
tions a system fails to thermalize and produce area-law entanglement at long enough
times, as opposed to volume-law entanglement. Interspersing random measurements
at a rate p with unitary gates, the resulting wavefunction may collapse to an area-law
state if p is large enough (see Fig. 1.1). On the other hand, if p is low enough,
the state should thermalize, that is, should have volume-law entanglement 3. The
expectation is thus that the competing action of disentangling projective measure-
ments and entangling unitary dynamics should yield a phase transition at a critical

measurement rate p. between area-law and volume-law entanglement states. This is

2Note that the converse may not be true, since a thermalizing system may not necessarily imply
it is scrambling, as is the case of Clifford circuits [VKRPS18b].

3The fact that one should generally have volume-law entanglement at a small non-zero measure-
ment rate is a non-trivial statement, and in fact earlier works (mistakingly) suggested that any small
amount of measurements is enough to maintain an area-law state in general [CNPS19].



indeed the case, and such phenomenon is for obvious reasons dubbed measurement-
induced phase transition (MIPT) and has been subject to intense research in the
very last few years (we cite here a few of the earliest works on this subject [LCF18,
SRN19, BCA19, GH19, LF21, FVVY21, BCA20, JYVL19, LCLF20, ZGW'20] as
well as recent reviews [PV22, LRP22, FKNV23)).

There are multiple reasons why studying such transition may be of relevance.
From the theory side, the entanglement transition for the case of Haar random circuits
with random measurements in (1 + 1)-d has been connected to a (classical) percola-
tion phase transition in 2D, described by a nonunitary conformal field theory with
central carge ¢ = 0. These types of conformal field theories are poorly understood.
Understanding such random quantum circuits better may bring further insight into
the nature of these conformal field theories. Still on the theory side, but from a more
practical perspective, studying such random quantum circuits and their entanglement
transitions may be of particular relevance in the context of noisy intermediate scale
quantum (NISQ) devices. The minimal requirements needed to observe the MIPT,
namely any set of unitary gates that is sufficiently entangling and randomly located
mid-circuit measurements, makes the MIPT suitable to be probed in NISQ circuits,
and this is indeed the case as has been done in works 4 [NNZT22, KSMM22, HIA23].

While RUCs provide a natural setup where to study such entanglement phase
transitions, one can consider instead more abstract setups where the same minimal
ingredients of locality and a tuning parameter driving the transition between area-
law and volume-law entangled phases, are present. One such setup is random tensor
networks which was studied even earlier than RUCs in Ref. [VPYL19]. In the next

Section we describe a particular random tensor network where the entanglement tran-

4We remark that while the MIPT set-up is suitable for NISQ devices, it comes at a price of
requiring post-selection, which forbids the scalability to a large number of qubits, and therefore,
strictly speaking, fundamentally challenging to observe.
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Figure 1.1. Random Unitary Circuit. Left: The gates U are drawn from the
Haar ensemble of d x d matrices, where d is the local Hilbert space dimension (d = 2
for qubits), and act on a pair of neighbor qudits (gray dots for the initial state |ty)).
Right: same but with interspersed random measurements.

sition can be accurately characterized. First, however we give a brief outline of the

theory behind tensor networks.

1.2.1 Interlude: Tensor Network Basics

Consider any quantum state [¢)) with L degrees of freedom (dof) each of which
carries a local Hilbert space dimension of size d. An exact representation of this state
requires d” complex numbers, a task which in the simplest instances of qubits with
d = 2, permits even the most powerful computers to work with at most L = O(10)
qubits.

Tensor networks are representations of wavefunctions in terms of tensors connected
by bonds, representing the amount of entanglement shared between the different ten-
sors. In many circumstances of interest, they provide efficient representations of
wavefunctions, by exploiting locality and the structure of entanglement in the wave-
function. Tensors in general will have two types of indices. One type characterizing
the physical dimension of the local Hilbert space, d, plus a set of [ indices, one for each
of the [ neighbors this tensor is connected to. We shall label such tensors with one

upper index for the physical dimension, and [ subindices, e.g. Tfl withe=1,...,d.

7“’jl7

The dimension of each of these [ indices is the bond dimension (which is in principle
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different for different bond indices), and characterizes the strength of entanglement
between that tensor and each of its neighbors. The physical link is not connected to
any other tensor.

Consider now a one dimensional wavefunction representing L qudits. As men-
tioned, a naive description of such wavefunction would require d* complex numbers.
A representation of the same wavefunction as a tensor network, which for this particu-
lar scenario of 1D it is named matriz product state (MPS), requires instead O(Lx2d),
where x is the maximum bond dimension between any pair of tensors, see Fig. 1.2.
The core of the success of tensor network methods lies in the realization that for many
quantum states of physical relevance, only a finite amount of entanglement is shared
between physical tensors (representing qudits). In particular, ground states of local,
gapped Hamiltonians obey area-law for their entanglement [Has06, WVHCO08]|, which
means the bond dimension for such states should be a constant independent of the
system size L in 1D, allowing for a very efficient description of such states using tensor
networks. The key step that allows to represent any arbitrary wavefunction in terms
of a tensor network is the singular value decomposition (SVD), which permits to de-
compose any tensor such as the one in Fig. 1.2 in terms of the matrix S containing its
singular values. These singular values are nothing else than the Schmidt eigenvalues
separating the two parts of the wavefunction at that link. If we know a priori the
structure of entanglement in the system, we can exploit this to our advantage, by
restricting the maximum bond dimension at each link, which amounts to truncating
the matrix S at each link to be of only size x X x g, where xr is the bond dimension
to the left side of S and yg is the bond dimension to the right of S.

While tensor networks provide an efficient representation of generic ground states,
one may wonder what happens with excited states, and in particular, with nonequi-
librium states such as the ones generated by evolving an initial trivial state with

RUCs. Studying the dynamics of MPSs can be done as well using the language of
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Figure 1.2. Tensor network decomposition. Left: description of a one dimen-
sional wavefunction of 5 qudits in terms of an MPS with tensors ng ' g, In the presence
of open boundary conditions (obc). Right: decomposition of an arbitrary rank-4 ten-
sor using SVD.
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Figure 1.3. Mapping between quantum circuits and tensor networks: ba-
sics of the TEBD algorithm. Top: Any state evolved via a quantum circuit can
be expressed in terms of a tensor network. Bottom: This requires contracting the
gates with pairs of MPS blocks (tensors) A%, A%+ followed by SVDs, identifying the
new blocks A% = USY2, A%+t = G112V

tensor networks. In this case however the rapid growth of entanglement over time
limits the efficiency of the method to short-to-intermediate time scales. The partic-
ular way tensors get updated upon time evolution is captured by the time evolving
block decimation (TEBD) algorithm [Vid03, ZV04, Sch11b] (see Fig. 1.3), which is
routinely used to study the dynamics of 1D quantum many-body systems in many
contexts (in fact, we shall use this method in pretty much all the Chapters that follow
when studying dynamical correlators).

Having constructed a tensor network it remains to compute observables and corre-

lators. In this context it is useful to introduce the second kind of tensor network that
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will be used a lot throughout, the matriz product operator (MPO). This is simply a
generalization of the MPS tensor network to describe arbitrary operators, including
density matrices. Its shape is very similar to that of an MPS except that each block of
the tensor network has now an added physical index, thus MPOs have local tensors of
the form T,g; ﬂi—l’ where the second, dangling index @;, refers to the bra in the density
matrix description, i.e. p = |¢){¢| °. Computing expectation values w.r.t. to mixed
or pure states corresponds to contracting two tensor networks with each other in such
a way so as to get a scalar. This amounts to contracting the physical, dangling bonds
of the two tensor networks. For instance, the simplest example consists in contracting
two MPS, e.g. (¢|¢).

There exists multiple ways to describe the same state using tensor networks. In
other words, tensor networks have a redundancy in their description. There are two
kinds of redundancies or degrees of freedom. The first one is blocking which we have
discussed in passing. It is the idea that one can contract any virtual bonds in the
network at the expense of getting a tensor with more indices (for instance in Fig.
1.2, the two tensors on both sides of the equality correspond to the same state). The
second one, yet more important, is a gauge degree of freedom [PGSGG'10]. This
is a consequence of the fact we can always insert a resolution of identity between
any pair of tensors, in such a way that each tensor gets redefined as A — M~tAM
(ommiting labels for the sake of exposition). This has very important consequences
in the computation of physical (local) observables for one dimensional systems. The
reason being is that, by exploiting this gauge dof, we can always bring an MPS into
canonical form, which means any local observable between any two pairs of states can

be computed by simply contracting the tensors at around the support of the operator

5In fact, any MPO can be mapped to a corresponding MPS by vectorizing a given density matrix,
p — |p) = |¢) ®|¢). This vectorization procedure is used routinely when computing tensor network
contractions involving density matrices, see in particular Sec. 4.1.2 of Chapter 4
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corresponding to that observable, which is much more computationally efficient than

contracting the entire tensor network.

1.3 Mean Field Entanglement Transitions in Random Tree

Tensor Networks

We have seen that any state can be represented as a tensor network. Studying
entanglement phase transitions in such setups may thus provide universal insights
into the nature of the transition, not only applicable within the context of RUCs
but other physical systems of relevance as well, of which the many-body localization
transition is a prime example. The main object of study in these transitions is the
entanglement entropy. In all such instances the entanglement entropy close to the
transition and in the scaling limit takes the universal form S — S. = F((g — g.)L'/"),
with g the parameter driving the transition — either the bond dimension D in the case
of random tensor networks, or the measurement rate p for random quantum circuits
—and S, the entanglement entropy at criticality.

While previous works had identified the presence of such entanglement transition
in random quantum circuits subject to random measurement from numerical simula-
tions [LCF18, SRN19, BCA19, GH19], it had not been clear whether such transition
indeed existed, and if so what the critical properties of the transition should be (i.e.
exact critical point, critical exponents, and exact scaling form of the entanglement at
the transition). Ref. [JYVL19, BCA19] showed that there is indeed a phase transition
at the critical point in Haar random circuits subject to random projective measure-
ments using a replica approach (which we describe a bit more below). The notorious
difficulty of the problem, in particular, the fact that the transition is described by a
certain nonunitary conformal field teory with central charge ¢ = 0 for which little is

known about, hindered the analytical computation of the critical exponents.
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Because of the innherent difficulty of the replicated statistical mechanics model,
in particular the 2D topology of the resulting model, in Ref. [LPWV20] we studied
a version of the same model but on a tree. The absence of loops in this setup should
in principle make the extraction of critical exponents (and other critical properties)
easier, but not necessarily trivial. We found that random tree tensor networks have
indeed an entanglement phase transition, for which the critical properties can be
extracted analytically (assuming the validity of the replica approach). In a sense,
this is similar to the mean-field universality class familiar from standard condensed
matter physics, albeit in a new setup.

The setup— We consider one-dimensional quantum wavefunctions |¢) given by
tree tensor networks (Fig. 1.4). The physical degrees of freedom are qudits of dimen-
sion d, which live at the boundary of the tree tensor network. Let ¢ be the coordination
number of the tree, and D the bond dimension of the tensor network. We choose the
tensors to be random [HNQ'16], obtained by drawing the tensor for each node of
the tree independently from a featureless Gaussian distribution characterized by zero
mean and unit variance. Because of the tree geometry, such wavefunctions can have
logarithmic entanglement scaling, contrary to matrix-product states for example.

Our main goal is to study the entanglement properties of wavefunctions generated
from this random ensemble. This approach is inspired in spirit by RMT, but it allows
us to include some locality structure in the geometry of the “bulk” tensor network,
controlling the entanglement of the boundary physical system. We will focus on the
tensor-averaged Renyi entropies

1 trp’y

51(4”) = log (trp)”’

(1.3)

1—n

where (...) refers to averaging over random tensors, and p4 is the reduced density
matrix in some contiguous interval A of size L4 obtained from tracing out the com-

plement of A in p = |¢) (¢| (Fig. 1.4).
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Figure 1.4. Random tree tensor networks. Top: tree tensor network geometry:
the physical quantum degrees of freedom live at the boundary (“leaves”) of the tree.
Bottom: the entanglement entropy of a region A at the boundary can be expressed
as the free energy cost of a domain wall of a classical statistical mechanics model
defined on the Cayley tree.
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Statistical Mechanics model — In order to compute these Renyi entropies, we
follow Refs. [ZN19b, VPYL19, BCA19, JYVLI19] and use a replica trick logtrp’ =
lim,, o ((trp’)™ — 1)/m. This allows us to express (1.3) as

n 1 .1
St = lim — (Fa — Fo), (1.4)

n—1m—=o0m

with Fuo = —log 240 and Zy = (trp")™, Z4 = (trp”)™. Using this exact identity,
the calculation of the Renyi entropies reduces to computing 2, and Z4, and to eval-
uate the replica limit (1.4). When m and n are integers, the averages in Z; and Z4
can be evaluated analytically using Wick’s theorem. One can then express the parti-
tion functions Z, and Z; in terms of a classical statistical mechanics model, whose
degrees of freedom are permutations g; € Sg—nm labelling different Wick contractions
at each vertex of the tensor networks. Since the degrees of freedom of this statistical
mechanics model live on the nodes of the tree tensor network, they form a Cayley
tree, and Z4 and Z; differ only in their boundary conditions. Using the results of
Ref. [VPYL19], we find that Z, = >_, , e ", with the following nearest-neighbor

Hamiltonian

H==> JinClo 9, (15)
(i.7)

where C(g) counts the number of cycles in the permutation g, J;j; = log D with
D the bond dimension for links connecting bulk tensors, and J; ;) = logd (with d
the dimension of the Hilbert space of the boundary physical qudits) for boundary
couplings involving physical degrees of freedom. This Hamiltonian is invariant un-
der global left /right multiplication of the degrees of freedom g¢; by any permutation
h € Sgq, so it has a Sg x Sg symmetry. In this mapping, the trace over physi-
cal degrees of freedom in Z, = (trp®)™ forces the permutations on the boundary

sites corresponding to the physical qudits to be fixed to the identity permutation

gs = go = () in 2. Meanwhile, boundary permutations in Z4 are fixed to identity if
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they belong to A (the complement of A), whereas they are fixed to a different per-
mutation gswap = (12...1n)%™ if they belong to A. The permutation gswap arises
from enforcing the partial trace in Z4 = (trp%)™. Note that C(g) is maximum for
the identity permutation, so that the Hamiltonian (1.5) corresponds to ferromagnetic
interactions.

In the language of this statistical mechanics model, the Renyi entropies (1.4)
can be computed from the free energy cost of inserting a domain wall between the
boundary permutations gy and gswap at the entanglement interval. This provides a
very simple picture of the scaling of the entanglement entropy as a function ¢ of bond
dimension D. If D is small (near 1), we expect the statistical mechanics model (1.5)
to be disordered (paramagnetic), and the free energy cost in (1.4) will not scale
with L4: this corresponds to an area-law phase. If on the other hand D is large,
the statistical mechanics model is in an ordered (ferromagnetic) phase with all bulk
permutations aligned and equal to gg, and the free energy cost in (1.4) will be given
by the energy penalty of the bonds frustrated by the domain wall minimizing this
energy (“minimal cut” through the network). For large L4 and generic intervals A,
this minimal domain wall cuts ~ log L4 bonds of the tensor network (Cayley tree)
corresponding to logarithmic entanglement scaling Sy ~ (log D)log L 4. This implies
that the ordering transition of (1.5) at a critical coupling J. = log D, corresponds
to an area- to logarithmic scaling of the Renyi entropies of the random tree tensor
networks.

Q = 2 replicas and cavity method — In order to gain some insight into the scaling
of the entanglement entropy, we start by analyzing the simpler case of () = 2 replicas.

As we will argue below, the mean-field nature of the statistical mechanics model on

SWhile the bond dimension D is in principle an integer, it is possible to construct tensor networks
using projected entangled pairs that correspond to arbitrary D. In the following, we will assume
D > 1 to be a real number.
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the Cayley tree will make critical properties mostly independent of (), allowing us
to generalize this insight to the replica limit @@ — 0. For @ = 2, eq. (1.5) is simply
an Ising model. If we let g; = +1 be the two elements of Sy = Zy, (1.5) reads
H = =2 Jui(3+ gigj)/2, which up to an irrelevant additive constant, is an
Ising model with coupling K = J/2 = (log D)/2. To proceed, we use the so-called
Cavity Method [MPV87, MMMO09, DGMO08| which is a standard approach for solving
statistical mechanics problems on tree-like graphs. We start from an Ising model
with coupling K, and generic boundary fields h; acting on the boundary sites of the
Cayley tree. It is straightforward to show that all boundary spins can be decimated,
at the price of introducing new effective fields acting on the next layer of the tree,
which now forms the new boundary. This process can then be iterated, and the
resulting recursion (“cavity”) equations for uniform boundary fields are then given
by [, i1 exp(Koio; + h<k+1)0iﬂq_l = Cexp(h®g;), for some constant C. Here we
have assumed that we are working with Z; for simplicity so that the boundary fields
are uniform, but this approach can be readily extended to arbitrary inhomogeneous
boundary fields.The critical behavior of this model is then easily deduced from solving
for the cavity fields recursively. Approaching the transition from the paramagnetic
phase, we find that the magnetization at the root of the tree decays exponentially
with the number of layers N, (0g) ~ exp(—N/{) with a correlation length ¢ =
—1/log((g—1) tanh K) that diverges at the critical coupling K. = arctanh(1/(qg—1)),
which is finite for coordination number ¢ > 1. Expanding near the critical point yields
¢ ~ |K—K.|™", with v = 1. On the ferromagnetic side, we have (g¢) ~ h ~ (K—K_.)?,
with 8 = 1/2. (A procedure to access this exponent was proposed in Ref. [GH19] in
the context of random circuits.) The order parameter exponent § = 1/2 takes the
mean-field value for a transition in the Ising universality class, a general feature of

statistical mechanics on the Cayley tree [KT74]. On the other hand, the correlation
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Figure 1.5. Entanglement scaling. Collapse of the boundary domain wall free
energy cost for () = 2 replicas, as a proxy for the entanglement entropy in the replica
limit @@ — 0. For K = (log D)/2 > K. the domain wall mostly follows a minimal cut
through the bulk, so its energy scales logarithmically with the interval size L. For
K < K., the domain wall fluctuates through the bulk over a number of layers given
by the correlation length, which diverges as { ~ |K — K |7 with v = 1. Inset: at
criticality, the entanglement scales as S ~ loglog L 4.

length exponent v = 1 is inherited from quasi-one-dimensional physics, as has been
noted previously [HI9S8].

Entanglement Scaling — The cavity method above can readily be applied to ar-
bitrary configurations of the boundary fields, and can be used to evaluate eq. (1.4)
in the case of () = 2 replicas. We denote the averaged free energy cost of a domain
wall S(L4) = Fa — Fo, which is the quantity which becomes entanglement entropy
in the limit @ — 0 from eq. (1.4). On the paramagnetic side of the transition (small
K = (log D)/2), the Ising order decays & layers into the bulk, so we expect the entan-
glement to saturate to a constant value S(La — o0) o log&, corresponding to area
law scaling. This is consistent with our numerical results, which indicate a divergence
S(Ly — o0) ~ —alog(K. — K) as K — K_. The saturation to this area law value

C/IK—Ke|

occurs for L, > &, with the crossover scale &, = ¢ = e . Therefore, while

v =1 in the bulk, in terms of the entanglement scaling the relevant diverging length
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scale diverges exponentially near the transition, due to the tree geometry. On the or-
dered side of the transition (K > K.), S(L4) is proportional to the energy cost of the
domain wall which scales as the number of layers into the bulk ~ log L 4. As expected
from general scaling arguments, the prefactor is set by £, and we find S(L,4) ~ %.
Finally, scaling at the critical point is required to be S(L4) ~ aloglog L4 by general
scaling considerations from the behavior in the phases, in good agreement with our
numerical solution to the cavity equations for the system sizes we can access (Fig. 1.5).

In summary, we have

(
%—i—aloglogLA, K — K},

S~ aloglog L 4, K=K, (1.6)

alogé, K — K_.
\

We find that our results are consistent with the entanglement scaling at en-
tanglement transitions in quantum chaotic systems subject to projective measure-
ments or in wavefunctions given by square random tensor networks upon replacing
logLa — L [SRN19, VPYL19, LCF19]. This is because geodesics (minimal cut
minimizing the domain wall energy at large bond dimension) in flat 2D Euclidean
space are given by straight lines, whereas they scale with the logarithm of the size
of region A on the Cayley tree. These different regimes can be summarized by the
universal scaling form S — S, = F((K — K.)(log L4)'/*) with v = 1 shown in Fig. 1.5.

Replica limit — So far our results for the bulk critical exponent and for the entan-
glement scaling (1.6) were inferred from the case of ) = 2 replicas for simplicity. We
now discuss how one can obtain the critical properties in the replica limit ) — 0 of
eq. (1.4). It is possible to apply the cavity method to the model (1.5), but the number
of cavity fields is then given by the number of irreducible representations of Sg. As
a result, the replica limit () — 0 is still out of reach on the Cayley tree. To proceed,

we use the following trick based on universality: we modify the Boltzmann weights of

21



%P iy
1000 + oo °

X

=@ 0.70
=@ 0.65
=@- 0.60
=@ 0.55
=@ 0.50
=@ 0.45
=@ 0.40
=@ 0.35
=@ 0.30

10795 |

La=16
La=32
La=48
Ly=64 8
L,=80 E.o

|S(y. La) = S(ye, La)|

&
.o-““
‘Qo“.

10-° H

I

@oco0o0e

8 16 32 64 -2 :1 ' 0 ' i
La (v = vo)(logLa) ™

»t

Figure 1.6. Numerical results. Left panel: averaged von Neumann entropy for
random tree tensor network states of size L = 256 as a function of the subsystem size
L4 for various values of v, where v € [0,1] is a parameter tuning continuously the
bond dimension between D = 1 and D = 3 (see text). Right panel: collapse of the
data with 7. = 0.47 and v = 1.

the model eq. (1.5) while preserving the Sg x Sg symmetry of the Hamiltonian (1.5).

Therefore, we introduce a different statistical mechanics model

Hmodified = — Zlog (1+ Kx(g;'95)) (1.7)
(,)

where x(g) = %X(g) with y the character of the standard representation of the
symmetric group Sg. This model is still invariant under left/right multiplication by
elements of Sg, and since the standard representation is faithful and well-defined for
any ), we do not expect this modified model to have an enlarged symmetry. (This
is inspired by the O(N) model, whose critical behavior in 2D was understood by

Nienhuis [Nie82] by introducing a different model with the same symmetry group.)
Remarkably, for uniform boundary conditions gy = go = () (corresponding to Zy),
the modified model (1.7) is still solvable on the Cayley tree with coordination number
q = 3 using a single cavity equation for any (). The cavity equation reads gi(l +
A (9:))*(1+Kx(g; 'g;)) = C(1+h*=Dy(g;)). Using standard representation theory

results, we find the following recursion relation for the boundary cavity fields
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We can now analytically continue () in this equation, and study the critical behavior
as a function of (). We analyzed the fixed points of this recursion relation and their
stability as a function of ). For > 1, we find first order transitions (with ¢ = 2
being special), while for () < 1 there is a second order transition for K. = Q!/2. For
K < K, the correlation length reads £~! = log % so we find ¥ = 1 as in the Ising
(Q = 2) case. For K > K_, the cavity fields flow to a non-zero value which scales as
~ (K — K.), so we find § = 1 which is the mean-field magnetization exponent of the
n-state Potts model with n < 2. In the replica limit, we thus find v = § = 1, which
coincide with the critical exponents of the n-state Potts model on the Cayley tree (for
n < 2). Those exponents do not depend on the replica number @, as expected from
mean-field critical behavior in general — the only exception is the exponent  which
happens to be different for () = 2 for symmetry reasons. We expect these exponents
to control the critical behavior of our model (1.5) in the replica limit @@ — 0, and
while we unfortunately cannot solve the modified model (1.8) with inhomogeneous
boundary conditions, we also expect the general scaling (1.6) with v = 1 to hold for
Q — 0.

Numerical results — We verify our predictions by generating tree tensor network
states and computing their entanglement properties numerically. Each state consists
of random, gaussian-distributed tensors of dimension D on each node of the Cayley
tree. By tuning the bond dimension we find a phase transition from area-law to
logarithmic scaling of the entanglement entropy, with D = 1 (trivially) showing area-
law scaling and D = 3 showing clear logarithmic scaling. As the dimension of tensors
must be integer, we augment these states with additional tensors on each bond of
the tree to interpolate between integer bond dimensions D = 1 and D = 3. With

the size of the tensors on the nodes fixed at D = 3, we insert on each bond diagonal
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tensors with elements (1,7,7?), with the parameter v tuned continuously from v = 0,
corresponding to D = 1, to v = 1, corresponding to D = 3. Upon tuning v, we find
a phase transition from area-law to logarithmic scaling of the entanglement entropy
(Fig. 1.6), consistent with the mean-field theory results detailed above. We estimate
the location of the critical point 7. to be in the interval [0.4,0.6] and the critical
exponent v to take a value in [1, 1.5]. The precision is limited due to the rather small
depth of the Cayley tree that is accessible numerically; however, we find that the
quality of the collapse improves with system size and is comparable to our results for

the Ising model on equally small Cayley trees.
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CHAPTER 2

HYDRODYNAMICS OF INTEGRABLE SYSTEMS

aktech Archives

Figure 2.1. Feynman’s last blackboard. In Feynman’s last blackboard we can
appreciate his interest in learning more about Bethe solvable models (that is, inte-
grable systems), and hydrodynamics, the main topics of this Chapter. In Feynman’s
own words: “I got really fascinated by these (1 + 1)-dimensional models that are
solved by the Bethe ansatz and how mysteriously they jump out at you and work and
you don’t know why. I am trying to understand all this better.” Richard Feynman
extracted from [Bat].

In this Chapter we discuss the thermodynamics and hydrodynamics of integrable
systems. Integrable systems are many-body systems where scattering among particles
is nondiffractive, in the sense that scattering events can be factored onto two-body
scattering processes [Tak99] (this in turn is very much connected with the often used
alternative definition that states that an integrable system is any many-body quantum

system with an extensive or complete set of local conserved charges [Pol77, Sut04] !).

!To make things yet more confusing, integrability has a very different meaning within the context
of classical dynamical systems governed by Hamilton’s equation of motion. The common feature
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This implies that all information about the momentum distribution in a generic initial
state is preserved. While according to this definition of integrability, nothing prevents
from considering two or three dimensional systems (see e.g. [Zam80, BB92]), we will
focus our attention on one dimensional systems. There are various reasons for focusing
on one dimensional integrable systems: (i) They are simpler to solve than their higher
dimensional counterparts — indeed one cannot determine the outcome of a two-body
scattering event in two and higher dimensions based solely on conservation of energy
and momentum. At variance, in one dimension, scattering events are head on which
means particles just suffer time delays — for classical particles, or phase shifts — for
quantum particles. (ii) They are strongly interacting. The reduced dimensionality
makes it more likely for particles to be closer to each other in one dimension than
in higher dimensions. Stronger interactions in turn mean more room for exciting
phenomena to occur. (%ii) Last but not least, integrable systems in one dimension
allow for various intriguing types of transport, a subject that will be the focus of Sec.
2.4.

In the first part of this Chapter we discuss the basics of integrability, with an em-
phasis on the Bethe equations and Thermodynamic Bethe Ansatz (TBA). We then
discuss some basics of conventional hydrodynamics, making special emphasis on the
method of hydrodynamic projections. We then extend this hydrodynamic framework
to the realm of integrable systems, a framework now known as generalized hydro-
dynamics, or GHD. Then we present explicit expressions for transport coefficients
obtained using this hydrodynamic framework. In the last section of this Chapter we
present one of the simplest integrable models, the Rule 54 cellular automaton. This

is a cellular automaton featuring two species of solitons. The particular simplicity of

among these classes of systems is the exact solvability of the model, in the sense that the equations
of motion can be integrated, so that given the state of the system at ¢ = 0, one can find the state at
any later time ¢. This feature has deep consequences on the ergodic properties of integrable systems.
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the model allows us to provide, for the first time, a sound numerical benchmark of

the various predictions of GHD for the transport coefficients in an integrable system.

2.1 Basics of Integrability

The theory of integrability as we know it today starts with H. Bethe’s Ansatz for
solving a model of a “one dimensional metal” [Bet31]. This method was later further
developed by other architects of the theory of integrability, including Yang and Yang,
Lieb, Baxter, Gaudin, and others [Gau83, LM13, KBI97]. The basic ingredients of
any integrable system living on a ring in 1D are the set of rapidities {6;},i=1,..., N
specifying the eigenstates (or quasiparticles) of the Hamiltonian in question, and the
scattering matrix S = S(,a) 2. In the thermodynamic limit L — oo at fixed density
N/L, the set of rapidities becomes densely ordered on the real line (rapidities can be
complex too, but for the sake of simplicity we restrict ourselves to real rapidities). In
this case it is more convenient to speak of densities of rapidities, viz

p(0) = lim L) §(6—6,), (2.1)

L—oo
k

where the different rapidities 65 are obtained for fixed L and ordered as 6 < 0y, for
any k 3. The quantity p(f) is also referred to as root or quasiparticle density. This

function determines completely the set of conserved charges, which read

Q) = / d6p(6)hi(6). (2.2)

2For certain Hamiltonians, including the XXZ, an eigenstate is specified not only by the set of
rapidities, but also by its quasiparticle type, or color. For the moment we will assume that there
is just one quasiparticle type. In Sec. 2.4 we shall see how to incorporate quasiparticle types
when discussing transport in integrable systems. In this sense, it is helpful to think of the systems
considered at this level of introduction as being spinless Bose gases (where no internal degree of
freedom is present).

3Tt is known that in integrable models the quasiparticles fill levels like fermions, which means there
cannot be any two quasiparticles with the same rapidity. This is a consequence of the Yang-Baxter
equation which in turn follows from the requirement of the S matrix being factorizable [ARS01].
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where h; are the one particle eigenvalues of the conserved charges Q;]0) = h;|0). The
functions h; should form a complete basis of functions. One such basis is the set of
polynomials h; = 6°. Two charges are of special relevance, corresponding to the single

particle energy e(f) ~ 6%, and momentum p(f) ~ 6. The Bethe equations read

N
et = T[ S0k 0). (2.3)

1=1,l#k
This formula comes from winding a quasiparticle around the ring, and using the fact

that the S matrix is factorizable. Let us define the scattering kernel

10
TO,a)=-=5(0,a). 24
(6,0) = =55(0,0) (24)
Taking the logarithm on both sides of the Bethe equation and taking the continuum

limit yields the standard form of the Bethe equations

P (0) = % + /daT(G, a)p(a), (2.5)
where we have introduced the density of states p*°*, which gives us the amount of
available states per rapidity, and the derivative of the momentum w.r.t. the rapidity
p = dp/df. Related to the density of states is the density of holes, given by p" =
ptot — p.

Our formulas so far are a direct consequence of the integrability condition. Nothing
has been said about the thermodynamics of integrable models. Thermodynamics tells
us that for a system with a set {Ql} of conserved charges, there corresponds a set of
Lagrange multipliers or generalized chemical potentials {f;}, so that the state of the
system be described by a (generalized) Gibbs state ~ exp(— Y, £iQ:). We would like
to find the link between the thermodynamics described by such Gibbs state and the

density of quasiparticles (2.1) which also fully characterizes the state of an integrable
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system, i.e. p(0) & exp(— >, ﬁlQl) Such link is given by the Thermodynamic Bethe
Ansatz (TBA) [YYG69]

() = Z Bihi(0) + / daT (0, a)F(e(a)), (2.6)

where the function F'(e) is the free energy density of a free particle of energy . The
quantity € should be viewed as a pseudoenergy that, a part from receiving contribu-
tions from all nonzero chemical potentials 3;, it has corrections due to interactions
[Doy20]. The function F'(¢) depends solely on the statistics of the particles present.
For classical particles it reads F' = —e™¢, for classical radiation F' = log ¢, for fermions
F = —log(1+ e7¢), and for bosons F' = log(1 — e ¢). Related to this is the Fermi
factor defined as n = dF/de. Eq. (2.6), together with the Bethe equation (2.5)
fully specify the thermodynamics of the system and permit us to work with any of
the various thermodynamic variables discussed. For instance, from these two sets of

equations it follows one can rewrite the Fermi factor as n = p/p™".

2.2 Basics of Hydrodynamics

This section follows greatly from Ref. [Doy20]. Hydrodynamics is a general phys-
ical theory that describes many particle systems with conservation laws at a scale
somewhere between the microscopic scale following the motion of each particle, where
the dynamics is reversible, and the thermodynamic scale, where the state is homoge-
neous and stationary. Hydrodynamics postulates local thermodynamic equilibrium.
That is, at a coarse grained scale [, where [ > a with a a microscopic scale, but
such that | < L with L the spatial scale of the entire system, the system at that
scale may be characterized by a set of local charges {¢;(z,t)} that may depend on

time, but that are nevertheless conserved over the entire system, i.e. 0;Q); = 0, with
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Qi = [ dxgi(x,t). Furthermore, hydrodynamics posits that the set of these charges

satisfy a set of conservation laws of the form

where crucially the current densities j;(x,t) depend in turn on (in principle all) the
conserved charge densities through the equations of state j; = j;({q:(z,t)}). A conse-
quence of the maximum entropy principle dictates that not just the current, but any
observable @(x,t) upon averaging over maximum entropy locally stationary states,
i.e. Gibbs states of the form p oc e”2i225i(®)%(®) are functions of the conserved
charges, i.e. O(z,t) = (O(x,1)) = O{q(z,t)}). We will thus reserve the “hat”
for (classical or quantum) observables to distinguish them from their corresponding
hydrodynamic variables. The equation of state thus provides the link between the
exact microscopic dynamics in terms of observables (i.e. Eq. (2.7) putting hats on
top of the variables and replacing when necessary the partial derivatives by discrete
ones), and the local thermodynamics — this is the basis of hydrodynamics. In this
way, when applicable, one can view the theory of hydrodynamics as describing the
simplest nonequilibrium setup, one where a set of local conservation laws exist and
local thermodynamic equilibrium is present, describing the transition from local equi-
librium to global equilibrium. The different classes of hydrodynamic theories are
only distinguished by the type of equation of state, i.e. the kind of functionality the
currents have on the charges. We shall come to this in the next section.

It is quite remarkable that a system comprised of ~ 10%* particles may be effec-
tively described by a (small) set of equations of the form (2.7). Preparing the system
in an initial state, we expect it to reach equilibrium after a long time, that is, to
thermalize. This equilibrium state may be global, in the sense that the final state
will only depend on the parameters of the bath (such as temperature, pressure, etc)

or local, in the sense that equilibrium is reached accross a finite region of space, in
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which case the rest of the system acts as a reservoir. According to the maximum
entropy production principle, we expect the system to maximize entropy subject to
constraints given by the conserved charges (Q;. As a consequence, after a long time the
system is expected to approach a Gibbs state of the form oc exp(—>_, > Bi(x)q(x)),
where the Lagrange parameters {f;} are in one-to-one relationship with the charge

densities via 3; = 0 f/dq;, with f the free energy density [Doy20].

2.2.1 Transport in conventional hydrodynamics

The theory of transport is concerned with the sort of functionality the currents
may have with time. The standard setup to study transport is to subject the system to
a small imbalance in one of the conserved charges, and see how it spreads according
to (2.7). This is the basis of linear response (LR) theory. Despite the apparent
simplicity of Eq. (2.7), systems can display rich transport phenomenology. Such rich
phenomenology is indeed encoded in the equation of state j; = j;({qi(x,t)}), which
ultimately dictates the sort of dynamics one may observe in experiments. Following
the logic behind LR, we let the charges take the form ¢;(z,t) = ¢ + d¢g;(z,t), where
q; is some homogeneous background charge and d¢; is a small perturbation on top of
this charge. Then we may carry out a gradient expansion in the charge imbalance
0g; in the equation state to give j; = Zj A j0g; + Zj D; j0,0q; + ..., where we have
dropped out an irrelevant constant term and the --- represent higher-order terms.
The matrix A sometimes receives the name of flur Jacobian and it is responsible for
ballistic transport, provided the rest of the terms in the expansion can be disregarded.
In this case one speaks of hydrodynamics at the Euler scale or Euler hydrodynamics.
Many systems however display diffusive behavior, in which case the matrix D cannot
be ignored. These corrections to the Euler hydrodynamics are sometimes termed

Navier-Stokes corrections. Ballistic and diffusive behavior comprise perhaps the two
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most common types of transport found in nature. However, more exotic behavior
may be found, a discussion of which is postponed for later.
FEuler scale terms.— To get a handle on the transport coefficients one resorts to

the framework of hydrodynamic projections. First, we introduce the inner product

1
tr[ei Zz Bz@z]

(0102) 5 tr[O] Ope=Zi5191] (2.8)

as well as the product (which strictly speaking is not inner)

1

e 1 7 A A 727,/87«@74 —t AT 72157’@1 t N 72:151@2 2
tr[e_ZiﬁiQi]( 101 0ze ] — tr[Ofe Jtr[Oqe ) (2.9)

<<@1 \@2»% =
Then, the susceptibility matrix (a.k.a. static covariance matrix) C reads

1.
Ciy = 7 {Qil @53

(2.10)
— [ dna@lao;

The last equality follows from translation invariance. It is easy to see that the same
matrix can be obtained via C;; = —dq;/d3; or as C;; = —06%f/63:0;, the latter
being the familiar expression found in basic thermodynamics textbooks. Similarly we
can define other hydrodynamic matrices. Of particular relevance is the Drude matrix
given by
t

Di; = lim %/ ds{(Ji(3) |1 (0))5 (2.11)
The Drude matrix gives the singular contribution to the d.c. conductivity (which
we define precisely below) and its name comes as one may expect from the Drude
model describing charged particles in the presence of an external electric field and in

the presence of a damping force proportional to their velocity. By ergodicity [Doy20]
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we expect that the time evolved currents should belong to the subspace of conserved

charges. Denote the projection operator onto the subspace of conserved charges as

PO = =3 Q;(C),u (00 (2.12)

1~ . 1 O | L
Dij = TOHPING = T (PTG = 7 (PHPI)S (213)
In other words,
1 T 1A c — B AN
Dij =13 D (AN Ot (@il ) (2.14)
k,l

Egs. (2.13, 2.14) reveal that despite the fact that the Drude matrix involves a tempo-
ral correlator, as per (2.11), this can be expressed solely in terms of thermodynamic
data, involving products of conserved charges and their currents. This will be of
key importance when studying transport in integrable systems. We mention also
that (2.14) affords as well a more compact representation in terms of the matrix B

[Doy20] with components

tU
|||

(JilQ)5 ZAMCM (2.15)

~ |

So that

D =BC 'B” = ACA”. (2.16)

Navier-Stokes terms.— The hydrodynamic matrices discussed so far contain only
information about the thermodynamics of the model, and they appear at the Euler
scale of hydrodynamics. Going beyond this requires analyzing the diffusive or Navier-
Stokes corrections, which are encoded in the diffusion matrix D discussed earlier. At

variance with the other matrices, this matrix goes beyond thermodynamics in that it
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is not solely determined by maximum entropy states, and instead it is encoded in the
hydrodynamics of the specific model [Doy20]. These are the terms that give rise to an
“arrow of time”, i.e. produce entropy. Related to the diffusion matrix is the Onsager
matrix L which is simply the product of the diffusion matrix and the covariance
matrix, L = DC. This essentially gives the regular part of the d.c. conductivity which
one can measure in transport experiments. Recall that the conductivity o relates the
response of currents in the presence of an external field E as J,(w) = 32, 045(w) Ep(w),
where J,(w) = I Ja(t)e™tdt (here E is often taken as an observable coupling to
one of the charges, e.g. E = h@l) The Green-Kubo formula tells us that the
conductivity tensor is determined by the current-current autocorrelation function

[Kub57, BHMK™*21]

I
Oap(w) = ﬁtlggo Lh—{]goZ/o e “T Ko p(T)dr, (2.17)
L[ e
Kap(t) = 7/ (Jp(0)[Ja(t + 2X) ) 5dA, (2.18)

where crucially the correlation function above is evaluated at fixed temperature (we
will see later on how to compute transport coefficients in a Floquet system where
energy is not conserved). The real part of the conductivity tensor then decomposes

into a sum of a divergent and a regular component
Reogp(w) = BrDapd(w) + gy (W), (2.19)

where the divergent part is proportional to the Drude matrix D and if nonzero in-
dicates the presence of ballistic transport. The Onsager matrix is then given by

[NDMP22]

Loy = lim [ ds ((Ja(s)5(0))5 — Das) (2.20)

—t

Knowledge of the Onsager matrix gives us access to the diffusion matrix, as D =

LC .
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2.3 Generalized Hydrodynamics

The equations of hydrodynamics generalize to the case when the system pos-
sesses an infinite number of conserved charges, that is, when the system is inte-
grable. The particular hydrodynamic framework that enables the study of such inte-
grable systems goes under the name of generalized hydrodynamics (or GHD for short).
One may wonder why such a framework is even needed, for integrable systems are
known to be ezactly solvable in the first place. The reason is that while integrability
has provided a remarkably powerful framework to study thermodynamics in detail
[VAVEWT08, YY69], studying correlation functions and the dynamics of integrable
systems has been only possible in very few setups. At variance with conventional
hydrodynamics, GHD exploits the quasiparticle picture of integrable systems, which
permits finding explicit formulas for transport coefficients as we will discuss below.
Before that however we discuss the hydrodynamics of integrable systems at the Euler
scale. The basic assumption of GHD is that at each hydrodynamic cell, the system
is in local thermodynamic equilibrium and one may thus define a local density of

quasiparticles p(6;z,t). The charge and current densities may be expressed as

gi(z,t) = /d@p(@;x,t)hi(ﬁ), (2.21)

Jilz,t) = /dHUEH(Q;x,t)p(&;x,t)hi(e), (2.22)

where the effective velocities are given by

() (0; 2, 1)

v (0 ) = 22
O 1) = @ 1)

(2.23)

with ¢’ = de/df. Here the superscript dr stands for dressed. It accounts for the effects

of interactions. Any dressed function g obeys
g (0; 2, t) = g(0;z,t) + /dQ’T(Q,9’)n(9’;z,t)gdr(9';x,t). (2.24)
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Eq. (2.21) is the direct generalization of (2.2) under the hydrodynamic assumption
stated above. Eq. (2.22) instead is nontrivial, and was only proven for integrable
field theories in [CADY16a] and extended to generic integrable models years later in
[VY19]. The continuity equations at the Euler scale (a.k.a. GHD equations) thus
read

Oip(0; 1, t) + 0™ (0; 2, 1) p(0; 2, 1)] = 0, (2.25)
where completeness of the charges {h;} has been used. The interpretation of this
equation is quite clear: it is an advection equation where the velocities get renormal-
ized as a result of interactions. At this point we can ommit the space-time dependence
and write our expressions more compactly in terms of operators and vectors with sup-
port on rapidity space. This means the kernel of the integrable model in question is

represented as an operator acting on vectors as the convolution
Tﬁ|9 = (T * h>|6 = /delT979/h9/7 (226)

while any other operator will be represented as a diagonal operator, in particular, for
the Fermi factor acting on a vector this means nﬁ|9 = nghy. With this notation the

dressing operation (2.24) thus reads
g =(1-Tn)"'g (2.27)

Likewise, the GHD equations in this notation read 9,0’ + 9,(v°5) = 0. It is possible

to rewrite the GHD equations in a yet simpler way in terms of the Fermi factors.

1

-d
First note that using the Bethe equations one has v 5 = -Lne/ " Using this we find

prs
using some simple algebra
— 1 dr —dr
op = > (1+nT") Omp" (2.28)
™
1 Sdr
0.(v7) = o (1+nT™) d,ne”", (2.29)
™
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where we have defined the dressed kernel T¥" = (1 — Tn)"!T. Combining these

relations with the GHD equations immediately gives us

(0, + v¥a,)

0. (2.30)

Let us note that within this notation, it is easy to extend our discussion to integrable
systems where states are characterized not only by a given rapidity, but also by a

color or type. This extension requires minimal modifications within this language.

We define the parity [DNBD19]

o = sgn(p'()). (2.31)

The scattering kernel depends now on rapidity as well as on quasiparticle type,
Top(0, ), with the indices a,b taking on discrete values characterizing the various
quasiparticle types. The scattering kernel acting on an arbitrary vector h (which
depends on both rapidity and quasiparticle type) takes on a very similar expression
to that in (2.26), except now the convolution is generalized so that [df — Y, [ d6,
with the sum running over the quasipartile types (similar considerations hold for di-
agonal matrices acting on vectors). The dressing operation is modified now and reads
J% = (1 — Tno)~'g, where the matrix n acts again diagonally on both rapidity as

well as on quasiparticle type.

2.4 Transport in Integrable Systems

So far we have discussed GHD at the Euler scale. Going beyond the Euler scale, the
next leading order term in the hydrodynamic expansion is of Navier-Stokes type. One
may wonder how integrable systems, whose defining feature is the presence of stable,
ballistically propagating quasiparticles (solitons), can incorporate diffusive terms in

the hydrodynamic equations. The answer to this is best illustrated using a kinetic
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picture [GHKV18al: as quasiparticles move they exert random time delays on each
other as a result of collisions, effectively causing diffusion. Hence, integrable systems
obey hydrodynamic equations where to leading order, both Euler and Navier-Stokes
terms are present, and hence the general formulas for calculating various transport
coefficients valid within conventional hydrodynamics (see Sec. 2.2.1) are still valid
here. A remarkable difference however between conventional hydrodynamics and
generalized hydrodynamics is that the rather rigid structure of integrability present
in the latter allows for explicit formulas of the various hydrodynamic matrices and
transport coefficients in terms of quasiparticle data. At the Euler scale the only
matrices present are the static covariance C, the Jacobian flux A, and the Drude
weight D. These were found for the Lieb-Liniger model within GHD in [DS17a] and
later generalized to arbitrary integrable models using low momentum single particle-

hole form-factors in [DNBD19]. They are expressed as [Doy20]

A =(1+nT) v (1+nT), (2.32)
B=(1+nT) v pf(1+Tn)™", (2.33)
C=(1L+nT) 'pf(1+Tn) ", (2.34)
D = (1 +nT) ' (v?")2pf(1 4 Tn)?, (2.35)

where f is a thermodynamic factor which takes account of the specific statistics of the

bare particles and is related to the free energy appearing in (2.6) through f = — dzgf
[Doy20]. Explicitly: f = 1 for classical particles, f = n for classical radiation,

f = 1 — n for fermions, and f = 1 + n for bosons. The diffusive corrections to the
Euler scale GHD were found in [GHKV18a, DNBD18|. The hydrodynamic matrices
involved in this case are determined by the low momentum two particle-hole form
factors [DNBD18], or alternatively, using a kinetic picture [GHKV18a]. First, the

diffusion matrix can be expressed as
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D= (1-nT) p*'D(p*)~ (1 - nT), (2.36)
where D is the diffusion kernel whose components are given as [DNBD19]
Dap(6, ) = 5,40(0 — )tbg(0) — Wop(0, ). (2.37)

The off-diagonal components of the diffusion kernel are the result of interparticle

scatterings between quasiparticles of different velocities and are given by

Wasl0,) = 50(0)1.06)

T(;,irl;(07 Oé>TI;i(IJ‘/<Oé79) e e
’ pt0t<952 Uaff(9> - Ubﬁ(a>|7 (238>
while the diagonal components, determined by w(#), are the result of quasiparticle
fluctuations of rapidity 6 as a result of random scattering processes. Its explicit
expression given by
_ 1 T£2(97 Oé) i eff eff
Wa(0) = §Z/dapb(a)(1 — () “ea) v (0) — vy (o). (2.39)
b a
2.5 A toy model for an integrable system: Rule 54
Having discussed GHD in quite general terms, we will now discuss a remarkably
simple model, the Rule 54 cellular automaton (CA), where all the formulas discussed
above take on a very simple form. Our goal here is to numerically show the formulas
relating transport coefficients presented in the previous section valid for integrable
systems. This model bears particular importance in the context of integrable sys-
tems. It is one of the simplest integrable models known, displaying just two kinds

of solitons (ballistically moving modes). This model has proved to be a remarkable

testbed where to explore many ideas of integrability, ranging from exact expressions

of nonequilibrium steady states [PMM16, KMPV18, KVGP20, KB21b], operator and
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entanglement spreading [Gop18a, GHKV18a, KB21a], hydrodynamics within the con-
text of GHD [BKP21], and thermalization properties [KB21c|. Our contribution here
is a numerical confirmation of the GHD formulas for transport coefficients (in partic-
ular, up to date no numerical evidence of the formulas for the d.c. conductivity in an

integrable system has been given). Most of the analytical results presented here can

be found in Refs. [GHKV18a, FGV19, BKP21].

2.5.1 The model

A state in the Rule 54 CA is specified by 2L sites each taking elements in the
Boolean set F = {{J,m}, with the prescription [0 = 1 and m = 0. We label sites
i € Z/2 and distinguish sites being A type if i € Z, and B otherwise. A unit cell
consists of an adjacent pair of A and B sites. Given some seed or initial state, the
Rule 54 flips an element at site i (J <> M) if any of its two adjacent sites is in the
state (. An illustrative snapshot of the resulting dynamics is shown in Fig. 3.4.
This classical dynamical rule admits a representation in terms of the Floquet map
Wj =067(1— m W)+ W W, jE€ Z/2, where W denotes the projector onto state

Jogity  d-gits
w), i.c. m|m) = |m), and 67 = 6 +6;, where 6 = |0) (m|

j»0; = |m) (O|; Each time
step is then given by a two step cycle as F = WBWA, WA/B = ®j€A/B Wj. From
now and for ease of notation we indicate the location of the unit cell by labeling the
i’th site of A type, e.g. for a state involving 6 sites [¢)) = |---CHCTJmO- - -), where
Jj=1 35 j+1

also for clarity of notation we separate adjacent unit cells. From now on we only label

the necessary unit cells.

2.5.2 Thermodynamics and hydrodynamics
Equilibrium states in Rule 54 are expressed in terms of the classical partition

function Z = tr[e‘“RNR_“LNL} which can be computed using the transfer matrix
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Figure 2.2. Snapshot of the Rule 54. Right: each soliton occupies a cell of
two sites. Blue sites correspond to right moving solitons, red sites correspond to left
moving solitons, and green sites correspond to a pair of right and left moving soliton
colliding.

1 1 e MR—HL e HR/2
e HR—HL o=HR—HL e ML e~ HR/2—1L
T = , (2.40)
1 1 e HR—HL e HR/2
e HR/2 e HR/2  HR/2—pL  o—HRTHL

written in the {mm, Cm, m, (171} basis. Knowledge of the transfer matrix allows us to
compute expected values and fluctuations of any observable in equilibrium. At the
root in the development of the GHD framework is the assumption of local quasista-
tionarity whereby observables are evaluated w.r.t. some arbitrary background state
locally in thermodynamic equilibrium

<(§(t) >uR,uL = %tr[@g)e_ > e HR(Z)PR,z 1L (x)ﬁL,m] _ (2.41)

x

To avoid clutter we may simply denote such expectation values as oV = <(’jg(f)> LRAL

making implicit assumption that such quantities are evaluated w.r.t. an arbitrary

background state. Focusing on the right movers first note that ﬁg%l,):z_ PRa = —j Ra+1/2T
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53@_1 /2, Where j’R,xH /2 = M (a word on notation: sometimes observables will be
xr

written either as O© or as O interchangeably, depending on the context). This

implies

A1) A(t) (1) 2(1)
pR,x ~ PRz = ]R@_l/g - ]R’x+1/2' (242)

Proceeding identically for the left movers we get

A(t+1) At ~(t ~(t
Praz+1/2 — pL,)w-i-l/Q + JJ(:,)zH - Jj(z)z =0, (2'43)

with the local current j’m = —m . Note that there exists some freedom on the way
we choose the local currents as we can always add a local gradient term in (2.42,2.43)
that would still give rise to the conservation of Ng/;. These exact relations give rise

to the following hydrodynamic equations upon coarse graining
8tp+/, + a$j+/7 = O, (244)

where for convenience we have rotated to basis of positive and negative movers, p; ,_ =
pr £ pr. We will alternatively refer to these modes as density and imbalance of
particles, respectively. The currents here are given by j,,— = prvg £ prvr. To find
the velocities vg/, we proceed as in [GHKV18a]: consider a right mover starting at
(2°,t°) = (0, 0) and ending at (x, ). As it travels to the right with a bare velocity v% =
+1 it will encounter left movers that started closer than x — vyt causing time-delays so
that after t time steps t = x+ pr(x —vrt). This gives vg = x/t = (14 prvr) /(14 pr).
Similar arguments for a left mover leads to v, = (—1+ prvg)/(1+ pr). Solving these

two equations gives
2pL/R

_— 2.45
1+ pr+pL (2:45)

vp/p =1 F

As a result, we have in particular j, = p_. This equation holds microscopically,

which means that this Euler relation is exact — we do not have higher order (diffusive)
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corrections. The current for p_ is more complicated and includes diffusive corrections.
The GHD formalism takes advantage of the integrability of the model through the
Bethe and TBA equations. The simplicity of the model permits us to write down a

closed form for these [FGV19]. We can either work in the R, L or the 4, — basis,

being both related via g = (PR, pL> = %O (p+7 p_) with

0= . (2.46)

K = . (2.47)

Note that the scattering kernel in the {4+, —} basis is diagonal with 0 in the +,+
component. That is, p; is a zero mode of K and as such it will spread purely
ballistically as alluded above. As before, we denote the dressing operation hdr =
(1+Kn) A for any vector i € R2. The Bethe equation (expressing § = (,0}% ,OL))
reads

f=nl? (2.48)

where 1 = (17 1), and the Fermi factors in matrix form read n = diag (n r N L).

Solving the Bethe equation yields

2 (2.49)

tot
R/L

where the total density of states reads

tot

PriL =1+ pr/r — Pr/L- (2.50)
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The Bethe equation also implies

7= ni?", 2.51
P

where v = (UR; UL)' Differentiating w.r.t. ¢ and z eqgs. (2.48) and (2.51) and after
some straightforward algebra gives the following advection equation written in terms
of Fermi factors

O + v, = 0. (2.52)

In a GGE with chemical potentials ur and p7, the Fermi factors are given by ng/; =
1/(1 4 exp(eryr)), where the quantities ep/;, are solutions of the TBA equations

[FGV19
1+ e it

€r/L = MRr/L T 1l0g

Egs. (2.48) and (2.53) fully determine the thermodynamics of Rule 54 as indicated

by the following diagram

> > s ) 2.54
{pr.pL} e {nr,nr} <> {er, €L} e {pr, o} (2.54)

2.5.3 Transport coefficients
The continuity equations (2.44) admit diffusive corrections and they give rise to
nonzero transport coefficients. Here we are only interested in the d.c. conductivity

and Drude weights. The conductivity tensor reads [MKP17]
1 > ‘
Tap(w) = 5Gas(0) + ; Gap(t)e™, (2.55)

with the connected current-current correlation function G,4(t) = 1/ L(jc(f)jlfo)>c =

1/ L(<j§t>j§°)> - (jc(bt)><j£0)>) where in our case we will choose for convenience the
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basis of density and imbalance of particles, i.e. a,b € {+,—}. Sending ¢ — oo in

Gap(t) we obtain the Drude weight
Da,b = lim Ga’b<t). (256)
t—o0

Taking instead the zero-frequency (long-wavelength) limit of (2.55) we obtain the d.c.

conductivity

1
d.c. __
00 = 5Gas(0) + D Gas(t) >0, (2.57)

t>0

where the last inequality follows from the known fact that the integrated autocorrela-
tion function is always nonnegative. Of course, for integrable systems this diverges. It
is then customary to split the d.c. conductivity in terms of a regular and a divergent
component, the latter being proportional to the Drude weight. From now on we will

refer to this regular part as the genuine d.c. conductivity, i.e.

oy = 5Gas(0) + Y Gaslt), (2.58)

t>0

N —

with (N}'mb(t) = Gup(t) — Dayp. To compute these two quantities we resort to the GHD

matrices discussed in the previous section. The Drude matrix reads
D= (1+nK) 'p(1 —n)v*(1+Kn)™! (2.59)

from where we extract D, for a given equilibrium state determined by pg . To
simplify the expressions of the Drude matrix let us consider ug = pr. The Drude

matrix has components

1-— 1-—
D++:2pL( 29 o pr( L)

s PU o po o=t 2.60
’ (1+2p1)2 ’ (14 2pp)* (2.60)
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the others vanishing. To get the d.c. conductivity matrix we first need the suscepti-
bility matrix
C=(1+nK)'p(l—-n)1+Kn)™" (2.61)

We will also need the diffusion kernel, whose components are

1 AN

Dy = 5Pb<1 — ny) pt‘;’t [V — V], (2.62)
~ 1 Ks% ? p};Ot 2 ~
Do pta = §pa(1 —Ng) pto’t |va — | = < tot) Dy (2.63)

From here we obtain the diffusion matrix

D = (1 +nK) 'p'D(p*") (1 + nK). (2.64)

The diffusion matrix gives us the diffusive corrections (Navier-Stokes term) to the

continuity equation (2.44)

045+ 0x(v[6)5) = 0.(DIp)0.5). (2.65)

Written explicitly in terms of Fermi factors in the R, L basis we get

1 nr(l—ng) o np(ng —1) 2
0 —0, dyne,
R T, R (1 + 2np)3 2 T+ 2np)(1+ 2ng)2 "t
1 ( ) np(ng —1) 2
0, — 0, ding. 2.66
M T g (1+2n )3 O T 0Ty mpplene (266)
One can also check that indeed D, . = D, _ = 0, so that diffusive corrections for the

positive movers vanish, as argued earlier. The d.c. conductivity matrix then reads

o =DC. (2.67)
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We will test the prediction

de. np(l—np)ng(l —ng)

T (142n0)2(1 +ng +np) (1 + 2ng)?’

(2.68)

(which is valid for any pg 1) the other components being zero.

2.5.4 Numerical results

We verify the GHD predictions against first-principle numerical simulations. We
use a matrix product operator (MPO) purification scheme to compute expectation
values as well as correlation functions of operators evolved under Heisenberg dynamics
w.r.t. mixed initial states.

In Fig. 2.3 we compare the GHD predictions solving (2.44) and the MPO based
numerical results using a maximum bond dimension xy = 32. We choose a system size
of L = 200 to allow for smooth initial conditions, which in this case we choose to be a
superposition of gaussians in ug(x) and pr(x). For the GHD equations, we first solve
the TBA and Bethe equations. This fixes the initial conditions pg(0,z) and pr (0, x).
We then feed these initial conditions into (2.65) to solve using the Crank-Nicholson
algorithm. We remark that the diffusive corrections in (2.65) are so small that to the
naked eye solving these eqs. with or without these corrections do not seem to make
any visible difference. However, as we shall see such diffusive corrections can be better
captured when studying instead transport via current-current correlation functions.
We remark that the simplicity of the set-up allows for very fast computation times,
both for the GHD and MPO results (of the order of seconds for solving the GHD
equations and of minutes for the MPO time evolution on a regular laptop).

In Fig. 2.4 we show the results of computing (connected) current-current corre-
lation functions (J,(t).J,(0))¢ using MPO time evolution when the background state
is pur = pr = 0. Again, we find perfect agreement between our numerical results

and the GHD predictions (2.60). Using (2.58) we verify as well the GHD predictions
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Figure 2.3. GHD predictions vs MPO results I. Left (right): left (right)
movers density profiles as a function of space-time for an initial state given by pug(z) =
aexp(—f(z + 30)?) and ur(z) = aexp(—B(x — 30)?) with @ = 0.1 and 3 = 0.002.
MPO results using x = 32.

for the d.c. conductivity which in this case takes the value o%“ = 1/128. The case
1 = 0 is special for the following reason. Any string operator O has e.v. for fixed wof
(0), = W, with a,b € Z§ . This implies that at g = 0, j_; evolves onto a
linear combination of such string operators with integer weight, i.e. j@] =>. ni@i,
with n; some integer, and so it follows <j£t)j£0)>u:0 = Y. m;/2%, with m;, b; some
positive integers. In fact it is easy to realize that (J%.J©Y,_g = n(t)/22+! for t > 0,
where n(t) is again a positive integer. The denominator in this expression comes from
the fact that at any given time ¢ > 0, the longest string cannot have greater length
than 2¢+1. With this information and the numerical results (which are exact at least
for big enough y) we can extract easily the values of n(t) (a priori any floating point
number from the numerical results could be interpreted as being either rational or
irrational; this analysis discards the latter possibility). It is quite remarkable that,
despite the fact that n(t) seems at plain sight growing odd numbers (e.g. n(3) = 5,
n(b) = 121, n(10) = 68667, n(12) = 1045967), they conspire to add to something

very simple, as reflected in the value of the d.c. conductivity crd_"c; =1/128.
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Figure 2.4. GHD predictions vs MPO results II. Current-current correlation
function (J,(t)J,(0))¢ for a,b € {+, —} at ur = pr = 0 using MPOs of xy = 128 and
predicted Drude weight D(p = 0) = 1/32.

We conclude this section by benchmarking the GHD predictions for D(u) and
od¢(p) in Fig. 2.5 finding again spectacular agreement between predictions and
MPO results. We remark that the o%¢ values are not particularly small and yet
there is no appreciable discrepancy between the coarse-grained results based on GHD
and those using first-principle, microscopic calculations based on MPO techniques.

We extend the benchmarks of 0% to arbitrary pr/r in Fig. 2.6.
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Figure 2.5. GHD predictions vs MPO results III. Transport coefficients Drude
weight (left) and d.c. conductivity (right) as a function of chemical potential ur =
pr = . MPO results using y = 128.
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Figure 2.6. GHD predictions vs MPO results IV. Left (right): d.c. conduc-
tivity tensor o vs. ppr via MPO (GHD).
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CHAPTER 3
CHAOS BY BREAKING INTEGRABILITY

This Chapter discusses the core of the Thesis. The first Chapter dealt with the
dynamics of quantum chaotic systems, while the second one dealt with the hydrody-
namics of integrable systems. Most systems in Nature however are neither perfectly
chaotic nor completely solvable. Our aim in this Chapter is to develop a kinetic
framework that aims to link these two classes of systems.

The first part of this chapter, Sec. 3.1, discusses Ref. [LPWGV21a], which de-
scribes our effort to describe nonequilibrium transport in physically meaningful setups
(i.e. away from strict integrability). Our starting point is any integrable model of
choice, described by GHD, and which is perturbed when adding the simplest rhs
on the GHD equations (2.25) corresponding to a single decay rate determined phe-
nomenologically and that in turn preserves a few charges. This decay rate governs the
decay of the slowest decaying modes of the theory. We validate the predictions of our
approximation against matrix product operator calculations on chaotic quantum spin
chains, finding surprisingly good agreement. We show that despite its simplicity, our
framework can capture phenomena distinctive of strongly interacting systems, such
as widely separated charge and energy diffusion constants.

The previous framework, being phenomenological in nature, does not offer enough
insights into the nature of transport in weakly perturbed integrable systems. With the
aim of understanding such transport better, in the next section, Sec. 3.2, we study
a particular realization of integrability breaking in Rule 54, an integrable cellular

automaton that was already discussed in great detail in the last Chapter. Integrability
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breaking is induced by forcing movers to change direction at random, effectively
preserving the density of movers, while breaking the conservation of the imbalance of
movers (i.e. the difference in the number of right vs. left movers). While simple to
state, the particular mechanism that realizes backscattering in Rule 54 is constrained
to a certain subspace so as to preserve the density of movers, which leads to some
intriguing transport that we fail to understand in detail. In spite of this, we manage
to understand analytically dynamics at the level of tagged quasiparticles. The results
of this section are based on Ref. [LPGV22].

In the last section, Sec. 3.3, we step back and consider a simpler integrable model
to that of Rule 54, the hard-rod gas, which is a model similar to Rule 54 but in the
space-time continuum and with in principle arbitrary velocities for the bare particles
of the model. As in Rule 54, we shall consider backscattering as the source of noise.
The simplicity of dealing with backscattering noise in the hard-rod gas model as
compared to Rule 54 arises from the fact that noise and interactions in the former
are decoupled from each other. This allows us to compute transport analytically
away from integrability in this setup, providing a rare example of fully analytically
tractable dynamics away from the integrable point. The results of this section are

based on Ref. [LPV23].

3.1 Generalized relaxation time approximation

Motivation — As discussed in Chapter 2, GHD allows to compute transport in
integrable systems, a surprising feature given the infinitely many conservation laws
in these systems. Realistic systems, however, are only approximately integrable. On
short timescales they obey GHD, but on the longest timescales they cross over to
conventional hydrodynamics. A general theory of this crossover has remained elusive,
despite recent progress [LLP81, MMGS13, HKM13, EKMR14, JHR06, LMMR14,
LGS16a, BCK15, BEGR15, BEGR16, CDD*19, SR10, MR18, MMGS16, AF17, SVO18,

52



MR19, BCR*19, CBM18, FGV20a, DBD20, DNMKI20, BDNDL20a, PCC*20, BLGR20,
BGR20]. In principle one can write a collisional Boltzmann equation for weak inte-
grability breaking [FGV20a, DBD20]. However, in general the collision integral is
intractable, as it depends on all the matrix elements of the integrability-breaking
perturbation. In special cases, such as long-range interactions, slowly fluctuating
noise, or weakly interacting systems, the integrability-breaking perturbation can it-
self be expressed in terms of GHD data [FGV20a, DBD20]. More generally, how-
ever, integrability-breaking perturbations lie outside of GHD: for example, Umklapp
scattering involves large momentum transfer, and thus cannot be captured by a long-
wavelength theory such as GHD. In the absence of the GHD framework, evaluating
the collision integral is an intractable task.

This work addresses the question of integrability breaking from a fundamentally
different perspective. Instead of microscopically deriving the collision integral, we
adopt a simple but general approximation, which we call the “generalized relaxation
time approximation” (GRTA), by analogy with the conventional relaxation time ap-
proximation (RTA) for weakly interacting electrons [Bre99]. The GRTA assumes that
there is a single dominant relaxation time that controls the onset of chaos. This as-
sumption allows us to efficiently simulate dynamics away from the integrable limit.
Although our approach resembles the conventional RTA in positing a unique relax-
ation time, its implementation and physical consequences are completely different.
The RTA deals with nearly free particles, so their scattering kinematics is simple. By
contrast, in an interacting integrable system, the momentum carried by each quasi-
particle is a nonlinear functional of the full quasiparticle distribution function. Thus,
when one describes a scattering process in an integrable system, not only the matrix
elements but also the delta functions conserving momentum and energy are nontrivial

to evaluate.
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Instead, we implement the GRTA as follows. In GHD, one regards a system as lo-
cally being in a generalized Gibbs ensemble (GGE) [RDO08b, LEG*15, VR16a], with
chemical potentials for each conservation law [VR16a]. The key step in our approach
is to replace the local GGE with a local thermal Gibbs state, subject to the resid-
ual conservation laws, at some finite rate 1/7 (where 7 is the generalized relaxation
time). The main assumption is that there is a unique local relaxation rate for the
quasiparticle distribution function. This is justified under certain assumptions, and
(as we discuss below) fails sometimes; however, we find that it is remarkably accurate
at reproducing numerical time evolution, even when the integrability-breaking per-
turbations are not especially small. For initial states far from equilibrium, the GRTA
(unlike the RTA) gives rise to nontrivial relaxation dynamics, as the local equilib-
rium state is a nontrivial functional of the local quasiparticle distribution. Moreover,
contrary to the simplest implementation of the RTA, GRTA preserves conservation
laws and is suitable to study hydrodynamics. Thus, we argue the GRTA captures the
“generic” crossover from generalized to conventional hydrodynamics.

Boltzmann equation — Let us imagine perturbing an integrable system with
Hamiltonian H, by a small, nonintegrable perturbation V of order g that destroys all
but a few conservation laws. We assume that the expressions for charges and currents
are unchanged — neglecting O(g) corrections to these quantities, and force terms that
are treated elsewhere [BAC19]. The leading effect of the nonintegrable perturbation
is to thermalize quasiparticle distributions at long times ¢ > O(g™2). Integrability

breaking endows the GHD equation with a collision integral

Qipx + 0: (05 [Plpr) = Tlp]- (3.1)

that mixes quasiparticle sectors, where the index A labels both rapidities, as well
as any possible quasiparticle colors. This collision integral Z, can in principle be

derived perturbatively using Fermi’s Golden Rule (FGR), and is O(g?) [FGV20a,
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DBD20, BDNDL20a]. It involves the matrix elements (form factors) of the integra-
bility breaking perturbations, which can be expressed in terms of hydrodynamical
data only for noninteracting systems, and for perturbations involving low momentum
transfer such as slowly varying noisy potentials or long-range interactions [FGV20a).
Eq. (3.1) was analyzed within linear response in Ref. [FGV20a], and was shown to
lead to diffusive hydrodynamics in general.

Generalized relaxation-time approximation — For most physical integrability-breaking
perturbations, the matrix elements of the perturbation cannot be expressed in terms
of hydrodynamic data. In the few cases where the collision integrals can be writ-
ten down explicitly, they are impractical to implement numerically, even for simple
physical processes like particle loss in a Bose gas [BDD20]. For context, we remark
that even for weakly-interacting fermions, collision integrals are often approximated
by using the relaxation-time approximation (RTA), which suffices to capture most of
the relaxation physics and to describe experiments. Here, we introduce a generalized
relaxation-time approximation (GRTA), which amounts to choosing a simple form for

the collision integral:

Dipx + 0 (05 [plor) = —(px — P [p)) /7. (3:2)

This right-hand side enforces local thermalization on a typical relaxation timescale 7
as follows: p§{PP*[p] is a nonlinear functional of the state py, defined as the distribution
of quasiparticles of a Gibbs state with the same value of the conserved quantities ¢,
(w =1,..., N corresponding to the charges preserved by the integrability breaking
perturbation) as the state py. For example, consider a Bose gas where the integrability
breaking perturbation preserves energy E, particle number N and momentum P.
Then the distribution p§P*[p] corresponds to the (boosted) Gibbs ensemble density
(A—pN—vP)

matrix Pgiphs = %e_ﬁ where (3, and v are chosen so that the average
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particle number, energy and momentum are the same as in the state p). By definition,
we have [ d\(py — p§P™)ha(N) = 0, ensuring the conservation of the charges Qu.
Physically, the GRTA assumes that local relaxation is controlled by a single re-
laxation rate. Of course, realistic FGR collision integrals have a lot more structure,
involving a hierarchy of relaxation rates. However, we expect this approximation to
capture the key physics of integrability breaking. One can formalize this intuition
as follows. The relaxation of charges in the presence of weak integrability-breaking
is captured by the equation 0,Q; = — > ;1'ijQ;, where I' is a matrix that is itself a
functional of the equilibrium state [FGV20a, DBD20]. The spectrum of the matrix T’
contains zero modes corresponding to the residual conserved charges, as well as other
eigenmodes that capture the characteristic decay rates. If there is a gap between
the zero modes and the decaying modes, one can identify this gap with 1/7, and
replace the matrix I' with a projector onto modes that decay at rate ~ 1/7, which is

~t/7 will dominate exponentials decaying with

justified at long enough times where e
faster rates. The GRTA corresponds to replacing I'"! ~ 7 for all decaying charges,
which approximately coincides with the projection approach, provided that all resid-
ual conserved currents have approximately similar overlaps with the slowest-decaying
modes of I'. (This construction indicates that the GRTA will fail whenever there are
arbitrarily slowly relaxing modes, as we expect on physical grounds, and also when
the currents of residual charges have very different overlaps with the slowest-relaxing
modes of T'.)

We evaluate the right-hand side of eq. (3.2) as follows. We compute the (density
of) conserved charges ¢, (say particle number, momentum and energy) in the state
pa(z, 1), and invert the equation of states of the model — known from the equilibrium
thermodynamic Bethe ansatz (TBA) [Tak99] — to find the Lagrange multipliers (in
our example, 3, 1 and v) of the Gibbs state corresponding to those values. Using

TBA, we then compute the density of quasiparticles p§P*[p] corresponding to those
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Figure 3.1. Energy transport in nonintegrable spin chains: inverse temper-
ature profiles B(x,t) = 1/T(x,t) in an XXZ spin chain with a staggered transverse
field h, breaking integrability. The TEBD data for h, = 0.2 is described very well by
eq. (3.3) and GRTA with 7 ~ 8. Left inset: Variances of the energy profiles vs time
from TEBD, for various values of h,, showing a crossover between ballistic and diffu-
sive transport. Right inset: The fitted values of 7 agree with the FGR scaling (3.5)
for both g = h, (staggered z-fields) and g = J.. (staggered xa-couplings).

Lagrange multipliers and thus I,. Note that we use the equation of states of the
unperturbed (integrable) model. This is justified perturbatively by the fact that the
integrability breaking perturbation smoothly modifies thermodynamic quantities and
the equation of states (with small changes if the perturbation is weak), while it dra-
matically affects the dynamics at long times. We take 7 to be an unknown constant,
a single phenomenological parameter to be determined by comparing the solution of
eq. (3.2) to numerics or experiments.

Numerical solution— To implement this GRTA scheme numerically, we develop a
general numerical scheme to solve (3.1), which can be used both near and far from
equilibrium. Following the numerical methods of Ref. [BVKM17, BAC19, MS20]
in the integrable case, we find it convenient to work with the “normal modes” of

GHD, which are given by the occupation ratios (Fermi factors) ny = py/p'°", where
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tot

Pt = px + ph is the total density of states at rapidity A and p? the density of holes.
There is a one-to-one correspondence between the density of quasiparticles p, and the
occupation ratios ny, provided by the Bethe equations. In terms of ny, the Boltzmann

equation (3.1) takes the advection form
oy + v58[n]0,ny = In[n], (3.3)

where I is simply related to Z,[p]. We then solve this equation by finite elements,
discretizing space, time, and rapidity. We use a backward first order scheme ny(z,t) =
na(z —v§8[n(x, t)|At, t — At) + Atly[n(x, t)], where crucially, the velocity and collision
integrals in the right-hand side are evaluated at time ¢ to improve stability. We solve
this equation by iteration, and check convergence with respect to the small parameters
At, Az and AN.

Energy transport in spin chains— The GRTA approach has the advantage of being
very general, and can be applied to chaotic spin chains near integrability. To illustrate

this, we consider the spin—% XXZ spin chain with integrability breaking perturbations
H= Z(S’f AQ‘TH + S’fgz?ﬂ—l + Agzz Aiz+1) + V, (3.4)

with anisotropy A = 1, and V = h, 3,(~=1)'SF or V = J. 3, (=1)5¢5%,, . When
V = 0, this model is integrable, and energy transport is purely ballistic as the total
energy current is a conserved quantity. As higher-order corrections vanish exactly,
energy transport can be captured extremely well by GHD [BVKM17]. The staggered
perturbation V' breaks integrability and the U(1) symmetry of the XXZ model.

We consider energy transport in the Hamiltonian (3.4) by preparing a local re-

gion with temperature 7" = 10 embedded in a uniform equilibrium background with
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temperature T = 2 1. We simulate the dynamics of this system up to time ¢ = 20 by
evolving the density matrix using time-evolving block decimation (TEBD) and com-
pare with the GRTA (3.2) for various values of 7. We compare the local temperature
profiles T'(z,t) between the two approaches, using the equilibrium equation of state
of Eq. (3.4) to convert energy density to temperature. (This accounts for the shift
in the equilibrium energy density due to the perturbation V, which can readily be
captured using perturbation theory). We find a best fit for the single parameter 7 by
matching the full temperature profiles from the TEBD simulations and the GRTA.
We find that GRTA is able to describe the nonintegrable dynamics of (3.4) re-
markably well with a single parameter 7 for each V, for various values of h, or J!
ranging from 0.05 to 0.6, corresponding to almost two decades in 7. Moreover, the

fitted values of 7 all agree very well with the simple FGR scaling

T~ Cg 2, (3.5)

with C' = 0.32(5) for g = h, (staggered x-fields), and C' ~ 4.95(5) for g = J. (stag-
gered zz-couplings). This is remarkable, as in general we expect that relaxation times
should depend on temperature, and the initial state considered has a wide range of
temperatures. Allowing for limited dependence of 7 on the state p — such as through
the local temperature — might be necessary to capture strongly nonequilibrium se-
tups with even wider temperature ranges. While the variance of the profiles of the
local perturbation in energy grows quadratically (indicating ballistic transport) in the

integrable case, it crosses over to linear (diffusive) growth for times ¢ > 7.

"'We have chosen energy transport in this model because GHD accurately describes energy trans-
port in the integrable limit even at relatively short times. For other quantities like spin, GHD
remains asymptotically valid, but there are larger corrections at short times; these are corrections
to GHD, rather than to GRTA.
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B(z,t)

Figure 3.2. Generic energy transport in chaotic spin chains: inverse temper-
ature profiles 5(z,t) = 1/T(x,t) at time ¢t = 20 in an XXZ spin chain with a staggered
transverse field h, breaking integrability, comparing TEBD and GRTA starting from
a non-trivial inhomogeneous initial state. The values of 7 in GRTA for each h, were
determined from Fig. 3.1.

This scaling implies that the whole time evolution for all values of g we consider
can be described quite accurately using a single free parameter C'. While we obvi-
ously expect corrections to this GRTA approach, combined with the expected FGR
scaling (3.5), it clearly captures most of the physics of integrability breaking. Sur-
prisingly GRTA is able to describe energy transport even for strongly chaotic chains
for which the relaxation time 7 is O(1).

To illustrate the predictive power of GRTA, we study energy transport for a more
complicated inhomogeneous initial state, for various values of the staggered field h,,
comparing GRTA to TEBD (Fig 3.2). Note that there is no free parameter here, as
the values of the relaxation time 7(h,) are fixed from the analysis of Gaussian initial
states in Fig. 3.1, and follow approximately eq. (3.5). The agreement is remarkable,
and illustrates that GRTA captures energy transport in this generic nonintegrable

spin chain not only qualitatively, but also to a large extent quantitatively (the error

between GRTA and TEBD is at most 2%).
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Hydrodynamics of nonintegrable Bose gases— We study now the crossover from
generalized to conventional hydrodynamics in one-dimensional Bose gases, governed

by the Lieb-Liniger Hamiltonian
. . \V&: . o m i a s
Hy = /dq: 4l (—2— — u) U+ U, (3.6)
m

with m = 1/2 and ¢ = 1 hereafter. We first consider integrability-breaking pertur-
bations that relax momentum: in this case, the conserved quantities in the Gibbs
state of the GRTA are particle number and energy. We implement both far from
equilibrium free expansions into vacuum of a cloud of atoms which models experi-
ments on ultracold Bose gases (Fig. 3.3a) [KWWO06, LHMG*09, LHMHM11, RSB*13,
KMHM14, BHML*12, LSM*12, VLM*13, SJS*17, KPHM17, SBDD19, TKL"18a],
and linear response setups where the initial state is a small local perturbation on
top of an equilibrium Gibbs state (Fig. 3.3b). We confirm that the conservation of
both energy and particle number are satisfied to a very good accuracy for all plotted
time scales (< 0.5%). We find that while the variance of the profiles of the local per-
turbation in both energy and particle density grow quadratically (indicating ballistic
transport) in the integrable case, they crossover to linear (diffusive) growth for times
t > 7. Diffusive hydrodynamics is expected as momentum is not conserved, and we
see that energy and particle number have different diffusion constants, inherited from
the different Drude weights of the integrable limit.

We have also solved the hydrodynamic evolution of a Bose gas (3.6) with a per-
turbation that preserves particle number, energy, and momentum. Our scheme fully
preserves Galilean invariance, so the particle current is momentum and is therefore
conserved: we observe “sound modes” propagating ballistically in the nonintegrable
case, which broaden diffusively on the time scales simulated. We also observe a small
heat mode near the origin. This is consistent with what is expected from conven-

tional, Navier-Stokes hydrodynamics in one dimension. We note that conventional
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Figure 3.3. Crossover from generalized to conventional hydrodynamics
in 1d Bose gases using GRTA with 7 = 1. Left: Energy density vs time for free
expansion of a cloud into vacuum, for a GRTA perturbation conserving energy and
particle number. Inset: evolution of the charges @,, of the Lieb-Liniger model, showing
conservation of particle number ()g = N and energy Qo = E. Middle: Particle density
after a linear-response perturbation to a thermal state with 7" = 1 and p = 0, for
a GRTA perturbation conserving energy and particle number. Inset: variances of
the energy and particle density profiles, showing diffusive behavior. Right: Linear-
response initial state for a GRTA perturbation conserving energy, particle number
and momentum. Left inset: Momentum profiles. Right inset: Variance of the particle
number profiles showing ballistic transport (red), and diffusive broadening of the
sound peaks in the momentum profiles (blue).

hydrodynamics is generically anomalous in one dimension, and adding noise to our
equations is expected to broaden the sound peaks in a superdiffusive way (dynamical
exponent z = 3/2) — instead of diffusive — as predicted by the theory of nonlinear
fluctuating hydrodynamics [NR02, vB12, Spol4]. It would be interesting to include

noise in our framework to check this.

3.2 Backscattering in Rule 54

While the generalized relaxation-time approximation method discussed in the pre-
vious section proves very effective at computing transport away from integrability, un-
derstanding better this dynamics from first-principles seems out-of-reach in general.
The main bottleneck for a full understanding of the physics of integrability break-
ing is a lack of tools to compute the various decay rates governing the relaxation of

nonconserved charges, which should be controlled by Fermi Golden’s Rule (FGR).
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Our relaxation-time approximation scheme assumes a single, dominant time scale
that governs relaxation. The associated effective decay rate, extracted phenomeno-
logically, can be used to compute transport. Here we aim at extracting this effective
decay rate ab-initio, and more generally compute transport coefficients, by considering
backscattering noise in Rule 54 — the integrable cellular automaton already discussed
in Chapter 2. Our main finding here is that, while such a single dominant time scale
exists, given by the smallest decay rate, transport coefficients such as the diffusion
constant are not determined by this parameter. Instead, one must take into account
the transient dynamics as well as we will explain, rendering the problem analytically
out-of-reach. However, some signatures of transport are still accessible analytically.

These are the self-diffusion constants of the tracers and associated quantities.

3.2.1 Interlude: integrability breaking in Hamiltonian systems

Before embarking on breaking integrability in the Rule 54 model, it is worth taking
a brief detour and discuss what we expect from the study of integrable Hamiltonian
systems with at least one broken conservation law. This is a topic with a long history
in the literature of integrable systems (see e.g. [MMGS13, KWE11, BEGR16, LGS16b,
BK17, DKPR16, VR16b]), that has regained some interest recently in the context of
GHD [FGV20b, DBD21, BLV21, BDNDL20b, LPWGV2la]. Our main goal is to
review briefly the assumptions that go into this framework, as they appear to fail for
Rule 54.

Consider a system described by an integrable Hamiltonian Hy and a perturba-
tion gV = g [ dxd(x) that breaks the conservation of charge §;, so that the total
Hamiltonian is given by H = Hy+ gV. A necessary requirement for V to break the
conservation of Q; = [ dxgi(x) is that [Q;, V] # 0. The dynamics of the e.v. of the

charge, ¢; = (G;), up to O(g3) is governed by
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o = & / ds([V°(s), Qu(0)) + O(g°), (3.7)

—t

where as usual when dealing with perturbation theory, operators are evolved in the in-
teraction picture, Oo(t) = ettt Qe=iflot and the only assumption so far is a background
homogeneous state with density matrix py = Z ! exp(— 2 Bij) and [Qj, Qk] =0
for any pair of charges. Note that neglecting O(g®) terms and assuming a continuous

spectrum of Hy we recover the Fermi Golden Rule (FGR) expression
s = 49" Y 5(Ae)3(Ap)Agi|(nlalp) |, (3:8)

where an insertion of the identity in terms of eigenstates of Hy has been made, and
e.v.s have been expressed in terms of the quasiparticle density p. The rhs is sometimes
referred to as the drift. The terms Ae, Ap, are the difference in energy (w.r.t. the
unperturbed Hamiltonian) and momentum, between states |n), |p), and Ag; is the
difference in charge eigenvalue of Q; in |n) vs. |p). Lastly, we have implicitly taken
t — 0o, L — o0, to bring down the (-) terms. An analogous expression to (3.8)
may be found if instead of an integrable Hamiltonian Hj, we started off from a
Hamiltonian with at least one conserved charge Qi, so this result is rather universal.
One key assumption for the validity of FGR in many-body systems, as pointed out in
e.g. [MRDRI19], is that the system should (i) equilibrate quickly and (ii) be weakly-
coupled. The fast equilibration condition means that after a finite time 7%, the system
relaxes to the diagonal equilibrium ensemble of the unperturbed Hamiltonian — this
ignores hydrodynamic tails effects. The weak coupling condition means g7* < 1.

(See [MRDR19] for precise meaning of these conditions).

3.2.2 Setup in the noisy Rule 54
When considering breaking the conservation of either of the two charges in Rule 54,

we find it more natural to break the conservation in the imbalance of solitons. From a
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physical standpoint this setup should mimic the physics of breaking the conservation
of momentum in a Bose gas system in the presence of Galilean invariance (recall the
imbalance corresponds to the current of density of solitons, j. = p_). One way to
implement this choice of integrability breaking is to convert a right mover into a left
mover with probability p, and viceversa. Ultimately we seek a r.h.s. in (2.44 ) of
the form —p_ /7 in the spirit of a relaxation time approximation [LP83], where the
relaxation time 7 o< 1/p. This would result in an exponential decay over time of
the nonconserved charges p_. Microscopically, the integrability breaking mechanism
should be of the form [ & [1J with probability p (collision terms appearing in
i i
Pr/Liji+1/2 are left intact). One can show that in order for the perturbation to
preserve the number of particles it must act on a specific subspace. There are various
choices for such a subspace which we report in A.1, the simplest of which is given

when applying the following projector

~

M =gy + L0 (3.9)

where f[RJ = Em., f[LJH 2 = HEE A The dynamics is then given by a two
step process: first, Jwe evolve by one time]step via the unitary map F. Next, we apply
the map [ <> [0J with probability p on those unit cells that belong to subspace
(3.9). We ]repeat t;liS procedure t times and average over both initial configurations
and trajectories (which are now stochastic). An instance of such dynamics is shown
in Fig. 3.4. While this dynamics can be implemented efficiently via a simple classical
Monte Carlo (MC) algorithm, an alternative description can be given using the lan-
guage of quantum channels. Quantum channels allow not only for unitary evolution
within the system, but generalized measurements as well, the latter giving rise to
dissipation. The basic ingredient is a set of Kraus operators {f(z} that evolve a given
state described by a density matrix p(t) — p(t+1) =3, Kuﬁ(t)KZ and that satisfy

the completeness condition »_, IA(];IA( . = 1. A well-known fact is that the choice of
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these Kraus operators is not unique [NC02]. The specific choice of Kraus operators for
our setup is delegated to A.1. The benefit of a purely quantum mechanical description
of the dynamics in terms of Kraus operators is that such time evolution is exact and
can be in principle simulated via time dependent matrix product operator (tMPO)
techniques [Schlla, Ortil4]. We have ran these simulations finding agreement with
MC where possible. In practice we have found that for the time scales involved away

from integrability, there is little benefit in using tensor networks.

3.2.3 Tracer dynamics

To give some intuition of the transport properties away from integrability we
consider the limit g — oo (low density of particles). Here the dynamics becomes
trivial — interactions are irrelevant and our system is effectively described as a single
soliton undergoing a random walk with a mean free path set by the noise, a picture
that remains true in general, see left panel of Fig. 3.4. The imbalance decays with a
decay rate given by I' = 2p (in the continuous time case) and I' = —log(1 — 2p) (in
the discrete time case). The density of particles in turn spreads diffusively. Starting

with an initial state p; , = 0,0 the late time shape for p, is exactly given by the

1?2 . . . .
gaussian p; , = ﬁe‘m, with a diffusion constant D given by D = 1/T.

N —o

Figure 3.4. Snapshot of the noisy Rule 54.. Left: Snapshot of density of
particles in the presence of noise in Rule 54 at low density p > 1. Right: dynamics
of a tagged particle (in green) near half-filling p = 0.

66



0.03 = t=5000

0.02 -

w(z, )Vt

0.01 |

0.00

20 40

0

Figure 3.5. Tracer distribution profile at half-filling 1 = 0. The distribution
follows a normal distribution at long enough times ~ N(0,2D*t) (black line) with
D* the self-diffusion constant extracted from (3.11). Results shown for p = 0.02 and
w=0 (D*=100). Results for a system size L = 800 using pbc.

Away from the trivial limit g — oo the dynamics consists of a bunch of par-
ticles interacting with each other and subject to noise (a Brownian hard-rod gas
in essence, with fixed bare velocity +1). As a proxy for transport we focus on the
dynamics of a tracer. Studying tracer dynamics is arguably much simpler than many-
body correlation functions, yet this has proved useful as a first step at determining
the nature of transport in integrable systems by exploiting the quasiparticle picture
[GHKV18b, GV19]. Studying fluctuations of quasiparticle trajectories essentially
gives the diagonal components of the diffusion kernel (see Eq. 2.62), and as such
cannot fully determine the diffusion constant (which requires knowledge of the off-
diagonal components as well). A complete characterization of each tracer ¢ in Rule 54
is given in terms of its flavor n; which is a random variable taking the value +1 if the
tracer is moving right, or —1 if it is moving left, and its coordinates (z,t). A snapshot
of what the dynamics looks like for a tagged particle away from integrability is shown
on the right panel in Fig. 3.4. We are interested in the dynamics over homogeneous

equilibrium background states. The flavor n should average to zero, (n(t)) = 0 (this
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is because at equilibrium pr = pp and at any given time, particles of both flavors
are equally likely). As a result we study instead fluctuations (n(¢)n(0)). From the
theory of Brownian motion we expect this quantity to decay exponentially with a
characteristic flavor decay rate I'* which we seek to determine. We imagine tagging a
right tracer starting at coordinates (0, 0). Its ensemble survival probability (the prob-
ability for the tracer to turn left) should be proportional to p x (Il (this is because
the perturbation can only act within the subspace ﬁR@). To fix the proportionality
constant we need the constraint that in order for the perturbation to act at x, a right
particle at  must exist in the first place, hence the survival probability of the tagged
{Mp.q) (Ilg)

right particle should be I, = p x (Iz4|pre) = PGnsy = Py with (-]-) denoting

conditional expectation value, and where in the last equality we have used the fact

A

that we are considering homogeneous background states, so that (O,) = (O). An

identical argument for the left movers would yield instead I'} = pg;) . At equilibrium
1r = pr = p the two decay rates are equal and so the flavor decay rate is ['* = 2pvy*,

with v* = g—l’:; = <<I;LL>> and whose expression can be found using the one dimensional

transfer matrix of Rule 54 (2.40)

V= TrerETe (3.10)

We find that our numerical results match perfectly this formula for small enough
p, as shown in Fig. 3.6. We also note that in the limit of very low filling, this
formula reproduces the decay rate expected for a free particle, v* — 1. With this
at hand we can also quantify how tracer particles diffuse. Each particle will be
subject to collisions with other particles and backscattering events that happen at
rate py*. As a result each particle will diffuse with a characteristic self-diffusion
constant D* (which in general, is different from the full diffusion constant D). In
other words, the probability distribution w(x,t) to find a tracer at coordinates (z, )

assuming it started at the origin, (0,0), should become a Gaussian that broadens as
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Figure 3.6. Tracer vs full dynamics. Left panel: flavor decay as a function of
time for values of p that range from p = —1.0 to p = 2.0 with steps of size Ay = 0.5
with p = 0.02. Black dashed lines correspond to best fits. Middle panel: derivative of
tracer variance as a function of time along with theory predictions for the self-diffusion
constant D* shown in black dashed lines. Inset shows a zoom over the region of © > 0.
Right panel: flavor decay rate v* and correlator decay rate (at the longest time scales)
v vs p, including numerical data points extracted from a blind fit. Inset shows the
scaling collapse in the large ¢ limit at u = 0 along with a fit with the conjectured
decay rate 7 = 1/16. Also shown for comparision the corresponding flavor decay rate

v =1/8.

(@2(t))er = [ 2*w(z,t) < 2D*t, where =< denotes the scaling limit p — 07, ¢ — oo,

pt fixed. To determine D* we use the following standard formula for a Brownian

particle 2D* = [?/7* with [ the mean-free path and 7* the tracer’s lifetime. Plugging
(1+¢h)

in [ = vr*, with v the tracer’s velocity whose expression is v = 3374 [GHKV18b]

and 7* = 1/py* we find

1 1 mE o1
__27_*_<+6) il

= . 3.11
2 e3r(3 +et)2p (3:11)

The results for the self-diffusion constant are shown in Fig. 3.5, and Fig. 3.6 indicating

very good agreement with the formula (3.11).

3.2.4 Transport in the noisy Rule 54

Having argued the presence of diffusive dynamics at the level of tracer dynamics,
we now briefly discuss transport properties. Using the Kubo formula, we are inter-
ested in the two-point function of currents G 4 (t) = 1/ L(jff) j@)? Recall that in

the integrable limit the currents correspond just to the imbalance N_, and are thus
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conserved. The effects of integrability breaking are already encoded in the temporal
evolution of N_, which will be the main object of study in what follows [the full cur-
rent is given locally as LJH/Q =(1- 2pﬂr)ﬁ,,x+1/g]. To study G 4 we time evolve

the total imbalance by one time step, which gives us

A A

N N — _opn1®), (3.12)

where I1_ = > f[,ﬂ- with f[,,l- = f[iﬁ,,i. Already this equation of motion (e.o0.m.)
tells us that the imbalance should decay. On general grounds, nonconserved charges
are expected to decay exponentially fast with a drift consistent with FGR [TKL*18b,
MRDR19, FGV20b, DBD21, LPWGV2la]. To extract the drift from here we can
evaluate this e.o.m. in an ensemble with slight imbalance, where we take ugr = p+ 9
and puy, = p— 6 with 6 — 0. Alternatively, we can simply study the correlator

(N@NEO)) at fixed ur = pgp = p. To lowest order in p we find (see A.2 for details on

the derivation)

1o @0y _ e’ 2
Lat<Nf — >_ 4p<1_|_eu)3(3+€#) +O(p )7 (313)

where the time derivative is taken to be discrete. Eq. (3.13) is exact up to leading
order in p, and thus is analagous to FGR (3.8). However, for our noisy Rule 54 model
the subleading terms O(p?) cannot be disregarded, as shown in the Appendix of Ref.
[LPGV22], thereby indicating a breakdown of perturbation theory in the noisy FFA,
and ultimately implying a breakdown of FGR in our setup. More precisely, the terms
O(p?) involve sums over time of correlators which approach a constant at long times.
The presence of such a “Drude weight” in those correlators imply that the higher-
order terms actually scale with time, and cannot be neglected at long times even if
p < 1. A possible way to interpret this result is that Rule 54 fails to equilibrate

on its own. The lack of a dephasing mechanism in the model is what prevents from
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truncating the series expansion to leading order in the perturbation coupling p. In
the Appendix of Ref. [LPGV22] we indeed show by computing explicitly the second
order corrections (as well as the third order corrections) that they grow in time as
O(t?) (O(t?)), thereby invalidating any perturbative analysis in the vein of FGR. One
can show however that a proper resummation of the perturbative series reveals the

following scaling form of the two-point function for the currents (see Ref. [LPGV22])

G (1) = F(p), (3.14)

with F' a function characterizing transport that would be interesting to characterize in
future work. While the function F' decays exponentially for pt > 1, we emphasize that
the diffusion constant depends on the whole scaling function F', and not on a single
decay rate. Properly characterizing this function would likely involve understanding
the decay of all the other conserved quantities of Rule 54, even if those decouple from

its hydrodynamics in the integrable case.

3.3 Backscattering in the hard-rod gas

The specific backscattering mechanism in Rule 54 made the analysis of transport
very challenging. To simplify the analysis further, we consider here backscattering in
the hard-rod gas model. As in the Rule 54, backscattering here reverts the momen-
tum of particles. A further motivation for studying this model is that most integrable
models we know of can be mapped to generalized hard-rod gases, so our conclusions
directly generalize to other models [DYC18]. We remark that, just as in the Rule
54 model, backscattering — corresponding to large momentum transfer, is outside
the types of integrability-breaking perturbations considered in the existing litera-
ture. This is because the current framework for dealing with integrability-breaking

perturbations is built on the form-factor expansion formalism, which is a system-
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Figure 3.7. Snapshots of the dynamics of hard-rods. Left panel: integrable
limit. Right panel: nonintegrable dynamics with backscattering at a rate v > 0. In
red, trajectories of quasiparticles. In the integrable limit, the velocity of quasiparticles
gets renormalized as a result of collisions with other quasiparticles. Same initial
conditions in both panels.
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atic approach for dealing with perturbations that exert low-momenta transfer on the
quasiparticles.

Stochastic backscattering leads to decay of infinitely many conserved charges,
including momentum, but also preserves infinitely many residual conserved quantities
corresponding to even moments of the velocity distribution of the gas. The resulting
model thus displays features of both integrable and chaotic dynamics. In Fig. 3.7 we
show snapshots of what the dynamics of the hard-rod gas looks like at the integrable
point, as well as in the presence of noisy backscattering.

Hard-rod gas with stochastic backscattering — The one-dimensional hard-
rod gas is an integrable model that can be best understood as a set of classical particles

subject to a hard-core repulsive potential

SN
=

0z| > a

Z% E; z; — i), U(dx) = ’ (3.15)

oo, |0z <a,

72



where a denotes the rods’ length, and x; and p; denote positions and momenta (setting
mass m = 1). Starting from a configuration with z;;; —x; > a, the rods evolve freely
until they encounter another rod, ;41 —x; = a, at which point the two rods exchange
velocity instantaneously. Because of the simple kinematics of such elastic collisions,
the full distribution of velocities (or momenta) is conserved by the evolution and
the model is thus integrable. Quasiparticles can be defined by tagging rods with
fixed momenta (see Fig. 3.7). Quasiparticles are displaced by an amount a after each
collision, so that they move with an effective velocity that depends on the density
of all other rods with different momenta. The large-scale, coarse-grained dynamics
of hard-rods is described by a Boltzmann-type equation for the phase-space density

pr(z,t) = g;—d]\lfc given as [Per69, BDS83, DS17b]

afk/(k B k/)pk’<x7t)
1—a [, pw(z,t)

Bip + (v p) = 0, v [p] = k + (3.16)

This kinetic equation can also be interpreted as an Euler-scale GHD equation for
the hard-rod gas [CADY16b, BCDNF16, DS17b]. There are diffusive corrections to
this equation, due to the randomness of the scattering shifts arising from thermal
fluctuations of the initial state [LPS68, Spo82, BS97, DS17b, DNBD18, GHKV18b,
DNBD19]; in what follows we will ignore those as they are subleading in the limit
of weak integrability breaking [FGV20b]. The integrability of the model can be seen
from the infinite set of conservation laws (as N — oo) corresponding to the various
moments w.r.t. the velocities, with charge densities ¢, = [ k"p.

We then introduce an integrability-breaking perturbation in the following way:
with rate 7, we stochastically backscatter rods by flipping the sign of their velocity.
This perturbation converts right-moving rods into left-moving ones, and vice-versa.
Clearly, this perturbation leads to momentum relaxation, and breaks the conservation
of all odd moments ¢o,,1 of the velocity distribution. On the other hand, all even

charges ¢, remain conserved: in other words, the odd part of the velocity distribution
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decays, while the even part remains conserved. Any even velocity distribution is an
equilibrium steady-state under this perturbation.

Generalized Boltzmann equation — In the presence of an integrability break-
ing perturbation, such as backscattering noise, eq. (3.16) acquires a right hand side,
captured by a collision integral Zx[p|]. In what follows we shall be interested in the
linear response regime, so we write py(x,t) — pi + 0pr(z,t), such that the stationary
state, p*, is an even function of momentum and uniform in space (the latter condi-
tion follows from eq. (3.16) subject to O,p* = 0), p; = nf(k), with n the density of
particles and f an even function. In this regime the resulting linearized Boltzmann
equation reads [FGV20Db)]

Opop + Ad0p = —Tép, (3.17)

where A and I' are hydrodynamic matrices that act on velocity space, with I'y, =
—0Zk/0pg|p=p=- The matrix A follows from linearizing (3.16), and reads [DS17b]
A = RWiR with v = vf[p*], R = 1 — 6*T and 6* = (1 — an)"!p* an effec-
tive occupation number, and the kernel T acts as follows on a test velocity function
(TY)r, = —a [ dk'v. All matrix operations in those expressions act on velocity
space. The operator I' contains the decay rates of the different conserved modes in
the original integrable model. Residual conserved quantities thus correspond to zero
modes of I'. In the case of backscattering noise, we have (I't))r = y(¢¥r — ¥_g). As
expected, this perturbation breaks the conservation of odd charges, while preserving
the remaining ones. Thus the resulting model is of a new kind, where the system
is neither fully chaotic nor integrable: in the following we will show that transport
is entirely diffusive, despite the existence of infinitely-many conservation laws. The
observable of interest will be the diffusion constant of conserved modes. Since the
system under consideration has infinitely-many conserved charges, the resulting dif-
fusion constant will be an infinite dimensional matrix. To derive an expression for

this, one can project Eq. (3.17) onto decaying and conserved modes. The matrix
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A will mix all modes, so the task is to solve the resulting system of equations. To
leading order in a gradient expansion, one can show (see Sec. B) that the diffusion

matrix reads (see also [FGV20b, DBD21])

D = PA(PTP) AP, (3.18)

where P projects onto the subspace of nonconserved modes, and P onto its comple-
mentary, i.e. onto the subspace of conserved modes.

Non-interacting limit — To gain some intuition on the problem at hand, we
first solve the simple limit of free rods (i.e. @ = 0). Intuitively, in that limit each
rod is simply undergoing a random walk with mean free path vy /(27). In that limit
we have Ay = vpd(k — k') with v, = k, i.e. the velocity of rods in the absence of

interactions. The linearized Boltzmann equation simply couples the (k, —k) modes

Oy + vy + - 0Pk 0
' - . (3.19)
- Oy — 00y +7v dp—r 0
Going to Fourier space (w, q), this reveals two eigenvalues at low energy: w, = —i2y+

O(q?) corresponding to the decaying mode dp, = dpr — dp—p, and w, = —iDg* +
O(q*), with D = v?/(27), corresponding to the diffusive mode dp; = dpi. + dp_p.
Similar equations have been discussed, e.g., in the context of the hydrodynamics of
stochastic conformal field theories (CFTs) [BD17]. Away from the free particle limit,
the diffusive modes no longer correspond to this particular combination, as the A
matrix will connect modes of different velocities k. To solve the hard-rod problem
with backscattering we take a step back and solve the limit when there are only a
discrete number of velocities, in which case A becomes a finite dimensional matrix.
Discrete velocity distribution — To analyze the case of discrete number of

particles it suffices to analyze the case of only two particle species (a more detailed
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analysis may be found in the Appendix C). Consider a background state given by
velocities in the set {#v;, +vy}, and their respective probabilities {£-, 2} with p; +

p2 = 1. We can write down an exact expression for the discrete version of the

hydrodynamic matrices above. These read T" = —aJy, I' = ~AI'y & I'y, with Jy the

1 -1
4 x 4 matrix of all ones, and I'; = , where the subindex ¢ refers to the
-1 1

subspace of velocities {£wv;}. The noise matrix I'; is diagonalized with the matrix

1 1
0; = revealing a zero mode corresponding to dp;” = dpft + dpF, with 5pf/ g

1 -1

denoting the density of particles (above the background state) moving with velocity
+u;, respectively. There is also a decaying mode, corresponding to dp; = 6pF — dpt.
Note that contrary to the non-interacting case, these are not normal modes of the
hydrodynamic equations, since they do not diagonalize the velocity matrix A. The

diffusion matrix is thus given as

Dij =Y Attinm AR (i) (3.20)
k

where the different matrices are written in the basis of £ modes (i.e. the matrix
A results from a rotation by O = O; @ Os). The resulting diffusion matrix is off-
diagonal, where some of these elements may be negative (see Appendix C). However,

the matrix has strictly positive eigenvalues given by

2 )
p, = W) e _ : Y i=1,2. (3.21)
— an

Thus, the diffusion constant of the long-lived modes of the model, which are different
from the conserved modes p; since the diffusion matrix is not diagonal (in contrast to
the free particle case discussed above), is solely determined by the effective velocity

of the original modes (in the integrable limit) and by the backscattering rate. This
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formula is also consistent with previous findings in the Rule 54 cellular automaton
[LPGV22], and is analogous to the free particle case discussed above when replac-
ing the velocities by their renormalized counterparts. This result is fairly intuitive:
backscattering acts simply on the effective quasiparticles of the interacting model, so
the mean-free path is set by the effective velocity instead of the bare one; we will
come back to this intuition below.

We focus now on the structure factor of the density of particles which is the
observable of interest, giving us access to diffusion constant and a.c. conductivities.
This reads S(x,t) = (6p(z,t)dp(0,0))., with dp = dp; + dp5 and the label ¢ refers
to the connected part of the correlator. With the aid of the eigenvector matrix that
diagonalizes D given by W with components W;; = 1 — anp;, W; j+; = —anp;, and
the equilibrium charge fluctuation matrix C' = (6pdp) = R~'p*RT in the eigenmode
basis, we can compute the structure factor matrix for the conserved modes S; ;(x,t) =
(0p; (x,1)0p;(0,0))c. The exact expressions for these may be found in the Appendix
C. The rod density structure factor is then given as S(z,t) = 3, ; S; ;(x,1), and we

find the simple expression

S(x,t) = n(1 —an)*{g(x, 2D;t)), (3.22)
_ =%
where (-) =3 p;- and g(z,0%) = f/% This expression is also consistent with the

sum rule [dzS(z,t) = 37, Ci;. In Fig. 3.8 we present the results from simulating
numerically the hard-rod gas where rods take in velocities v; = 1, v = 1/2 with
probabilities p; = ps = 1/2. The parameters used in the simulation are: backscat-
tering rate v = 0.005, system size 2L = 20, number of hard-rods N = 400, and
hard-rod length a = 0.01. We use periodic boundary conditions (pbc), and subtract
off initial fluctuations due to finite size effects. For comparison we also present the
results from the free theory predictions, corresponding to the limit a — 0, showing

that the dynamics is both chaotic and interacting. The small discrepancies from the
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Figure 3.8. Structure factor(discrete case). The background state is given by a
uniform superposition of states with velocities v; = 1, v, = 1/2 (and p; = ps = 1/2).

The theory predictions follow Eq. (3.22) with the respective diffusion constants D;,
Ds,. For comparison we also show the free theory results, corresponding to the a — 0.

theory predictions are the result of the dynamics not having fully thermalized on the
timescales of the simulation.

General case— When the spectrum of velocities is continuous, for instance,
given by a Gaussian packet centered around k = 0, the approach taken for a discrete
spectrum is still helpful. Indeed it is straightforward to extend the previous analysis to
the case of an arbitrary discrete spectrum of velocities by induction from the studied
case of two particle species — see Appendix C. In particular, the diffusion constant of
each of the hydrodynamic modes in the presence of backscattering will be given by
Eq. (3.21). This result still carries over to the continuum.

The tractability of this problem can be understood in terms of the simple action

of the backscattering perturbation in terms of the normal modes of GHD, that is, the

78



modes 6p = Rdp that diagonalize the matrix A. Formally, the problem is dramati-
cally simplified by the fact that [R,I'] = 0, where R = 1 — 6*T is the matrix that
diagonalizes A (whose eigenvalues correspond to the effective velocities). The physical
meaning of this constraint is that effectively, backscattering noise acts simply on the
quasiparticles dressed by interactions. In that basis, the Boltzmann equation (3.17)

now reads

6Pk + v opr = —(pK — 0p—k), (3.23)

where §p, = (ROp)r and vfT = £ [p*]. We note that this simplification occurs only if
the backscattering rate is velocity independent, since (Ty)x # (71)x in general. Fur-
ther, the requirement that (Rdp)_r = dp_j follows from the equilibrium occupation
number being an even function 6} = 6*, (as it should in equilibrium), and from the
symmetry of the scattering kernel 7}, _j» = T . The generalized Boltzmann equa-
tion (3.23) is a direct generalization of eq. (3.17) in the presence of interactions, where
the effective velocities are now dressed by the effects of interactions. The problem
therefore reduces to the non-interacting one (3.19): backscattering leads to a 2 x 2
problem in the (k, —k) basis of GHD normal modes. The residual hydrodynamic

modes 0p, = dpx + dp_ satisfy

(07 + 270, — (v")*03)dp = 0, (3.24)

which exhibits a crossover from ballistic transport at short times (vt < 1), to diffusive
transport with diffusion constant Dy, = (v¢1)2/2y at long times (y¢ > 1). Diffusion
is induced by the decay of the nonconserved charges (‘=" modes) with decay rate 2.

Anomalous structure factor— Focusing on in the long time limit of the
conserved modes, the resulting structure factor follows from that in Eq. (3.22), with

np; — p; the hard-rod phase space density at equilibrium. Taking p; = np(k) with

79



p(k) a Gaussian (thermal) velocity distribution centered at 0 and with variance o2,

the rod density structure factor reads

S(z,t) = ”(1;—;‘”)3\/}(0 <1 - \/gm) | (3.25)

with Ko(z) = fo‘x’ e~leleoshtdt the modified Bessel of second kind. In Fig. 3.9 we com-

pare the theory predictions with the numerical results showing excellent agreement.
We trace back this singular behavior to the presence of infinitely many conserved
charges, each with a different diffusion constant, conspiring to produce a profile that
is evidently nongaussian. In particular, the structure factor shows a singularity of
logarithmic nature at the origin independently of the rods’ length, following from
Ko(azx) =, ~Euler — log(az/2) + O(z*logx), a > 0, with Ygye Euler’s constant.

This implies that the return probability (structure factor near the origin) is anoma-

lous, with a logarithmic correction to the expected diffusive behavior

logt

NG (3.26)

which we also observe in numerical simulations (Fig. 3.9). The effective diffusion

constant of hard-rods in this limit is found as D = 2% [ dxa?S(z,t) which yields

D = no?/2v, independently of the rods’ length.
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Figure 3.9. Anomalous structure factor. The background state is given by a a
Gaussian (thermal) velocity distribution centered at 0 and variance o%. The theory
predictions follow Eq. (3.25). Inset: scaling of structure factor at x = 0 (return

probability) along with theory predictions (ignoring an offset for visual purposes),
where a = n(1 — an)? /270, follows also from Eq. (3.25).
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CHAPTER 4

OPERATOR SPREADING IN CHAOTIC VS.
INTEGRABLE MODELS

In this last Chapter we discuss operator spreading in both chaotic and integrable
systems. Our aim here is to uncover any possible fingerprints that would allow us
to distinguish these two classes of many-body systems. While both chaotic and inte-
grable systems have operator operator fronts that broaden diffusively !, albeit as a re-
sult of different mechanisms, as shown in [NVH18b, vKRPS18a, RPvK18a, KVH18a,
GHKV18a] there are yet more subtle differences between the two. We find that
while chaotic systems have purely gaussian operator fronts, the height of the opera-
tor front in integrable systems decays anomalously, at least within the times accessed
by our matrix product based numerical simulations. This scaling is explained using a
quasiparticle picture. Further, by fixing a finite bond dimension in our numerical sim-
ulations we find that chaotic systems are prone to dramatic numerical errors at and
near the front, which makes these systems very hard to simulate. This is at variance
with previous works that claimed chaotic systems may be easy to simulate near the

front. We reconcile our numerical results with these works by a proper identification

of the front. This work is based on Ref. [LPWGV21b].

1One can think of an operator front as follows: for any initially local operator Op, upon time evo-
lution this operator becomes a complex superposition of Pauli strings (thinking of spin-1/2 systems
for simplicity). The operator front measures the weight of the longest strings on this time evolved
operator (see also Sec. 4.1.1).
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4.1 Operator Right-weight, matrix product operators and

truncation errors
In this Section, we introduce our main quantity of interest, the operator right-
weight, and explain how it can be computed numerically using MPOs. We also

address the effects of truncation errors.

4.1.1 Operator right-weight

Consider the spreading of an initially local operator Oy = O(x = 0) under Heisen-
berg time evolution. Under time evolution, this operator will grow into a more com-
plicated one O(t) = [U(t)]TOpU(t) being a superposition of many strings made of
products of non-trivial local operators. A way to characterize the complexity of this
object is by means of the OTOC. Consider another local operator at site x, V,. The
OTOC is defined as the squared of the commutator between these two operators
C(z,t) = ||[O), Va]|]> = 2 (1 — Re(tr[O()"VIO(t)V,])). The shape of the OTOC
shares universal features across generic systems including ballistic spreading of the
wavefront, a rapid growth ahead of the wavefront and saturation behind the wave-
front at late times. These features are showcased in Fig. 4.1 for the integrable XXZ
model.

To characterize the size of an initially local operator Oy under Heisenberg evolution

consider instead the decomposition

Ot) = as(t)S, (4.1)

where the sum above goes over all possible string operators (Pauli strings in the
case of spin-1/2 operators). A complete understanding of operator spreading can be

captured by the set of coefficients {as(t)}, a task which is out of reach. Instead, we are
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interested in coarse-grained quantities relating these coefficients. One such quantity

is the right-weight. For a given operator O(t) it reads [NVH18b, VKRPS18b]:

pr() = > las()” (4.2)

strings w/
rightmost
non-identity
on site j

The coefficients as(t) appearing in the expression can be obtained exploiting the
fact that these strings form an orthogonal basis in a Hilbert space of dimension
D% ag(t) = tr [STO(t)] /D. (Here D is the Hilbert space dimension of states; i.e.
D = 2% for spin-1/2 chains). We require the initial operator to be normalized,
ie. tr [03(90] /D = 1, which implies (using unitarity) the sum rule: Y ¢ as(t)|]* =
1. Note that by construction we also have > pr(j,t) = 1. This conservation law
has important consequences for the “hydrodynamics” of operator spreading in both
integrable and non-integrable systems. On general grounds, we expect the associated
current to behave as j = vppr — DO.pr + ..., where vp is the butterfly velocity
characterizing the speed of the ballistically moving operator front, D is a diffusion
constant that sets the generic diffusive broadening of the front, and the dots represent
nonlinear and higher-derivative terms. In what follows we shall focus on spin-1/2

chains, both integrable and chaotic.

4.1.2 Matrix product operators

In order to measure the right-weight numerically, we use matrix product operator
(MPO) techniques. For this purpose, we express Eq. (4.1) as a state in the Hilbert
space of operators as is routinely done in the context of time evolution of MPOs
[PKS*19], so that O(t) — |O(t)) = > sas(t)|S). To evaluate the right-weight as
a correlator, we introduce the projector onto the identity acting on site x, P1, (i.e.
Pr. = 1), (1].), where |1) = ®E_, (|00), + |11),) /v/2. We reserve odd entries of

any MPS in this newly enlarged Hilbert space for the physical sites, and the even sites
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for the ancilla sites|PKS™19]. Tt is then straightforward to show that the right-weight

can be computed as follows

pr(z,t) = a%«@(t)! [ PlO®), (4.3)
o>z
where 0, should be interpreted as a discrete spatial derivative.

We compute the right-hand side of eq. (4.3) using the TEBD algorithm (discussed
in Sec. 1.2.1) applied to matrix product operators. We denote the maximum bond
dimension as xmax. Time evolution is implemented directly in operator space as
|O(t)) = e *|Op) where L = —H ® 1+ 1® HT, where the Kronecker product
here is used to distinguish physical from ancilla space. In this language, standard
two-point correlation functions can be computed as simple overlaps between states in
this doubled Hilbert space.

In our numerical simulations, unless otherwise stated, we will be considering a
system size of L = 401 sites, a fourth order Trotter decomposition of step size dt = 0.1
and a cutoff error of € = 1071°. The system size was chosen so that the right-weight
front never reaches the boundary of the system within the time scale of interest,

which is tyax ~ O(10%). These simulations are carried out using the C++ iTensor

library [FWS20].

4.1.3 Operator front and truncation errors

In the remainder of this chapter, we will use this MPO approach to compute the
right-weight in various interacting chaotic and integrable spin 1/2 chains. Before we
address specific features of operator spreading in those different classes of systems,
we address here the dramatic effects of truncation errors in the MPO approach. Rep-
resentative plots of the right-weight and of OTOCs are shown in Fig. 4.1, for both
a chaotic Ising chain, and for the integrable XXZ spin chain, using a finite bond

dimension yyax = 128.
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Figure 4.1. Operator spreading in integrable and chaotic spin chains start-
ing from Oy = of. Left panel: OTOC spatio-temporal profile in the integrable
XXZ model for A = 0.5 and V, = oZ. Middle panel: right-weight profile still in

xT

the integrable XXZ model with A = 0.5. Right panel: right-weight profile in the
non-integrable transverse-field Ising model with h, = 0.9045 and h, = 0.8090. The
dashed lines are contour lines following a given threshold 6. Data obtained with bond
dimension xyax = 128. For integrable models, both the OTOC and the right-weight
behave in a reasonable way, despite the relatively small bond dimension, but the
front broadens subdiffusively because of truncation errors. In the chaotic case (right
panel), the operator front disappears at finite time because of truncation errors.

For integrable chains, both the OTOC and the right-weight behave as expected,
despite the finite bond dimension. However, as we will show below, some qualitative
details end up being affected by the truncation errors. In particular, for finite bond
dimension, we will see that the front broadens subdiffusively as t* with o ~ 1/3 for
small bond dimensions, while we recover o = 1/2 as ymax — 00. This explains the
apparent t'/3 broadening in the integrable Heisenberg chain observed in Ref. [XS20]
using small bond dimension MPOs.

The effects of truncation errors on the operator front in chaotic chains are much
more dramatic. As shown in the right panel of Fig. 4.1, the operator front (defined
as the maximum of the right-weight, moving at the butterfly velocity vg) fades away
and disappears at short times. We will show below that this unphysical feature is
entirely due to truncation errors, and can be deferred to longer times by increasing
the bond dimension. Thus large bond dimensions are absolutely essential to describe

the operator front correctly. In contrast, bond dimensions as low as ymax = 4 can be
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enough to capture the exponentially-decaying tails of the operator front, as noted in
Refs.[XS20, HPL19]. Our results are also consistent with contour lines for the OTOC
being less than a given threshold e being less sensitive to truncation errors for small €
(see dashed line in Fig. 4.1). However, as we show here, the small-e contours outside
the front are an unreliable guide to the location of the front itself (i.e., the maximum
of the right-weight). In the case of integrable systems, using those tails to analyze
the front broadening gives rise to incorrect results for low bond dimensions. In the
following, we will carefully analyze the convergence of our results with respect to bond
dimension; for practical purposes we restrict ourselves to maximal bond dimensions

less than ypmax = 512 in most cases to access long enough times.

4.2 Operator front in integrable systems

Armed with this numerical tool, we analyze the operator front in integrable quan-
tum systems. As in chaotic systems, we expect a ballistically moving front, broad-
ening as t'/3 in free systems [PK05, CDLV18, KHN18, X520, LM18, Fagl7], and t'/2
in interacting integrable systems [GHKV18a]. In integrable systems, we expect the
operator front to follow the fastest quasiparticle. For interacting integrable systems,
quasiparticles behave as biased random walkers due to their random collisions with
other quasiparticles [Gop18b, GHKV18a, DNBD18, GZ18, DNBD19]. In the follow-
ing, we will confirm those predictions numerically, but also identify a key difference
with chaotic systems. As we will show, the quasiparticle picture suggests that the

—3/4

peak height of the front decays anomalously as t7°/% at least at intermediate times,

and scales with a non-Gaussian universal function that we compute exactly.

4.2.1 Free fermions
Before turning to interacting integrable quantum systems, we briefly recall how

operators spread in spin chains dual to free fermions, following Ref.[LM18]. For
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concreteness, we focus on the XX spin chain with Hamiltonian

H= JZ x ]+1 SJ+17 (44)

where 5% are spin-1 /2 operators acting on site j, and J = 1 in the following. Let
us consider the spreading of the Pauli operator o* of the X X model initially at site
0, that is Oy = o§. Since this Hamiltonian is Jordan-Wigner dual to free fermions,
this reduces the possible Pauli strings participating in Oy(t). Out of the 4 possible
Pauli strings, only L? Pauli strings will contribute here. Indeed only the operators
o) (Hz <l<j UZ) o;, 0;, for general i, j, will contribute, as those are the only spin

operators that map to quadratic fermions under a Jordan-Wigner transformation.

The right-weight can thus be computed using standard free fermion techniques, and

is given by
pr(a,t) = [J(8)]" + 20 L8] Y[, (O, (4.5)
y<z
were J,(t) = 1/27 [T emiketeostD gl are Bessel functions of the first kind. As ¢ and

x become large, this yields the following scaling form for the right-weight [HRS04]

1 r—t

where the butterfly velocity is vg = 1, and F' is some universal scaling function.
This establishes that the operator front broadens subdiffusively as t'/3 in free fermion

systems.

4.2.2 Interacting integrable spin chains
We now turn our attention to operator spreading in interacting integrable systems.

Our model of interest will be the paradigmatic spin-1/2 XXZ Hamiltonian
H= JZSm ;r+1 + Sy ]+1 + ASJZ ;4-17 (47)
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Figure 4.2. Right-weight spatial profile at ¢t = 20 in the XXZ spin chain with
A =5, and Oy = o for various maximum bond dimensions. The yellow data points
correspond to the squared correlator | (oG (t = 20)07%) |* at infinite temperature 3 = 0,
which lower bounds the right-weight.

In what follows, we set J = 1. This model is integrable and in this sense “exactly
solvable”, though quantities such as OTOC or the right-weight are analytically out
of reach, and have to be computed numerically.

We analyze numerically the right-weight pr(j, t) for various values of the anisotropy
A. In what follows, we mostly focus on the initial operator o, but we will also con-
sider other operators. A typical plot of the right-weight at a given time (here ¢ = 20),
for A = 5 is shown in Fig. 4.2, for different maximum bond dimensions. A few key
features are worth noting. First, as already anticipated above, the operator front —
corresponding to the right-moving peak in the right-weight — clearly requires large
bond dimensions to be captured accurately. Second, the right-weight also shows a
diffusively-spreading lump near the origin, lagging behind the operator front. This
is a signature of the diffusive spin transport in this model [LZP17]: the right-weight
is lower bounded by the square of the infinite-temperature spin autocorrelation func-

tion | (07 (t)og) |*, which is known to behave diffusively in the XXZ spin chain for
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Figure 4.3. Standard deviation of the front of the right-weight versus time
for various maximum bond dimensions plus a linear fit over the data for yyax = 128
showing approximately diffusive spreading. Top panel: A = 1/2 and Oy = o§.
Bottom panel: A = 5 and Oy = o§. Insets in both panels depict the standard
deviation of the front for a small bond dimension yymax = 32, showing that truncation
errors lead to an operator front that broadens subdiffusively with an exponent close
to 1/3.
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A > 1 [LZP17]. The effects of U(1) conservation laws on operator spreading in
chaotic systems was studied in Refs.[KVH18b, RPvK18b], and is qualitatively similar
in the XXZ spin chain with A > 1, as finite-temperature spin transport is diffusive
in this regime [DNBD19] (see also Ref. [BHMK™21]). In contrast, when A < 1, spin
transport in this system is known to be ballistic, and we do not observe a lump of
right-weight near the origin (Fig. 4.1, left panel). The right-weight in this regime is
still nontrivially lower-bounded by the dynamical correlation function; however, in
this case the dynamical correlation function scales as 1/t all the way out to the light
cone, so one does not expect a visible lump near the origin.

In integrable systems, we expect the operator front to coincide with the speed
of the fastest quasiparticle [GHKV18a]. As a result, the butterfly velocity should
depend on the density of all other quasiparticles, and thermal fluctuations naturally
give rise to diffusive broadening of the front. To check this numerically, we compute
the width of the operator front for an initially local operator as a function of time. By
computing the standard deviation of the front of the right-weight for both A = 1/2
and A = 5 (Fig. 4.3), we find that the operator front does broaden as oy ~ t*
with a ~ 0.5. As anticipated above, our results show that large bond dimensions are
required to capture this diffusive broadening of the front (with bond dimensions larger
than xaax ~ 10%). Below that threshold, the results do not converge at intermediate
to large times, and we find instead some apparent subdiffusive front broadening (see
insets in Fig. 4.3).

An intuitive way to understand why one cannot restrict to low maximum bond
dimension to study the entire operator front is to realize that finite bond dimen-
sion truncations are a non-local operation: while the tail is well-captured by a low
maximum bond dimension (since this lies outside the lightcone, where the MPO is

represented by lightly entangled blocks) at short enough times, the width of the front
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| Free | Integrable | Chaotic |
a 1/3 1/2 1/2

s 2/3 3/4 1/2

Table 4.1. Scaling exponents for generic operator fronts in quantum spin
chains (for intermediate, accessible time scales). The width of the front scales as
w(t) ~ t*, while the height scales as h(t) ~ t=%.

is affected in a non-trivial way because of truncations deep in the light cone (see

Fig. 4.2).

4.2.3 Scaling of the front and quasiparticle picture of operator spreading

At the moment, there is no theory for computing quantities like the right-weight
(or the OTOCS) in interacting integrable systems. However, it is natural to expect
that operator spreading should be captured by the quasiparticles of the underly-
ing integrable model, similar to the quasiparticle picture of entanglement spread-
ing [CC06, CCO7, FC08, AC17a, AC17b, Alb18, Alb20]. Thermodynamics and hy-
drodynamics in integrable systems can entirely be understood in terms of quasi-
particles. This is the basis of the recent framework of generalized hydrodynamics
(GHD) [BCDNF16, CADY16¢c, Doy19]. Within a given (generalized) equilibrium
state, quasiparticles with quantum number A (called rapidity) move ballistically with
a velocity vy, with an associated diagonal diffusion constant D, due to random col-
lisions with other quasiparticles in the thermal background. Both v, and D, can be
computed analytically in a given generalized equilibrium state. These quasiparticles
are known control to transport properties and entanglement scaling, so it is natural
to expect them to control operator spreading as well. Let us assume phenomenologi-
cally that the right-weight couples to quasiparticles propagating from the position of
the initial operator in a featureless (infinite temperature) background, with an un-

known weight wy (normalized so that [ d\wy = 1). This means that we expect the
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Figure 4.4. Scaling of the front for the XXZ spin chain with A = 1/2 and
Oy = o§. Top panel: collapse of right-weight from the model (4.8) for different times
and asymptotic form F(u). Here w) was chosen to be Gaussian, though its precise
form does not matter. Bottom panel: collapse of right-weight from TEBD at short
times.

right-weight to be given by

_ (a:f'L))\t)2

4Dyt (4.8)

1

r,t) ~ | dd\w)y———=¢
pr(z;t) )\\/47TD)\t
The weight wy is an unknown function in general. On general grounds, we ex-
pect the operator front to be described by the fastest quasiparticle excitation in
the system [GHKV18a]. This would correspond to wy = §(A — \g), with )¢ the

1 _(z—vpt)?

rapidity corresponding to the fastest quasiparticle, and pg(z,t) = 5Dt Dot

with Dy = D,,, vg = v),. This would be a Gaussian front, as in 1d chaotic sys-
tems [NVH18b, VKRPS18b](in particular the height of the front should decay as
~ t71/2). Our numerical data is however not consistent with this picture for the
times we can access: (1) We find numerically that the speed of the front is slightly
lower than vy, (2) The diffusion constant associated with the diffusive broadening of

the front in Fig. 4.3 does not coincide with the GHD predictions for Dy, (3) The oper-
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Figure 4.5. Collapse of the right-weight for various operators O, for the
XXZ model with A = 1/2. Top panel: Oy given by the energy density on site
0. Middle panel: local charge of a non-conserved operator that couples to conserved
charges Oy = 04 0, + h.c.. Bottom panel: local charge of a non-conserved operator
that does not couple to any conserved charge Oy = 0. In this last case, we find that
the height of the front scales as t~/2.

ator front observed numerically is clearly non-Gaussian (Fig. 4.4), and in particular,
its height decays as ~ t~%/* (instead of ~ t~1/2).

All those observations indicate that, at least for times accessible within TEBD, the
right-weight couples more generically to a continuum of quasiparticles with rapidity
near \g. In fact, eq. (4.8) predicts a universal form for the operator front as long as
wy is non-zero within a finite neighborhood of Ag. The asymptotic behavior of (4.8)
at long times can then be obtained through a saddle point analysis. Expanding all
quantities near the front, we have vy = vg — w(A — Xg)> + ..., Dy = Dy + ...,
and wy = wy + ..., where w > 0 since by assumption vz is the maximum velocity.

Plugging these expressions into eq. (4.8) and changing variables, we find that

pr(,t) ~ t7F (u), (4.9)
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where u = (z — vpt)/\/2Dyt, with the universal scaling function

dT] 1

F(u) = meﬁ(w“)? (4.10)

This intermediate-time scaling form is one of our main results. It is entirely in-
dependent of the weight w), as long as the right-weight couples to a continuum of

quasiparticles with rapidity near A = A\g. The height of the operator front decays as

1/2

t=3/% rather than decaying as t~'/2 as in chaotic systems, with the associated non-

Gaussian scaling function (4.10). In particular, we have F'(u) ~ 1/4/]u| as u — —o0,

1 1
~
Vit Jupt—x®

As shown in Fig. (4.4), eq (4.8) approaches the scaling form (4.9) at long times

—3/4 1/2

X u -

indicating a fat tail behind the front that scales as ¢

only (¢t ~ 10%) for generic functions wy, making it challenging to observe numerically.
However, we find that our TEBD data collapses very well against the scaling (4.9),
even though the resulting collapse is not fully converged to the scaling function (4.10)
at those times (Fig. (4.4)). Our TEBD data very clearly indicates a non-Gaussian
front, with the height decaying with an exponent consistent with ¢=3/4.

In Fig. 4.5 we show results of the right-weight for various choices of initial op-
erators in the XXZ spin chain. Operators corresponding to conserved charges, such
as energy, are expected to have a right-weight that scales as in (4.9). Other op-
erators such as Oy = odo; + h.c. are not conserved, but do couple to hydrody-
namic modes (in this case energy), and thus are expected to scale as in (4.9) as well.
To see this note that one may introduce the projector onto hydrodynamic modes
P=> |I;)C;;' (], where the sum goes over all pairs of conserved charges, {|I;))}
is the set of all conserved charges in vector form (using the notation from Sec. 4.1),
and Cy; = (I;]|1;)) = 27 %tr(I;1;). Thus any operator O with P|O}) # 0 is expected to
have a corresponding right-weight scaling as in (4.9) (at least for intermediate times).

In comparison, the last panel in Fig. 4.5 shows the right-weight of the operator ¢”;

this operator manifestly does not couple to any hydrodynamic modes as it breaks the
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U(1) symmetry. The behavior of this operator is quite unlike that described above:

it has a Gaussian front that closely resembles what one would see in a chaotic sys-

1/2 3/4

tem. In particular, the height of the front scales down as ¢~/< rather than as ¢~
The anomalous scaling observed in Figs. 4.4-4.5 is stable against increasing bond
dimension (data shown for yyax = 256).

Our results do not settle the asymptotic late-time behavior of the right-weight
in integrable systems. It seems plausible that for generic operators there will be
some non-hydrodynamic piece (that does not couple to single quasiparticles) in ad-
dition to the hydrodynamic piece—we have no reason to expect that the coupling
to single quasiparticles exhausts the operator weight. Assuming there is some such

—-1/2

non-hydrodynamic piece, the ¢ peak of the non-hydrodynamic part of the front

3/4 peak due to quasiparticles. We do not see any sign

will eventually dominate the ¢~
of this in our numerics, but we do not have access to late enough times to address
this asymptotic question. Whether the quasiparticles capture all the operator weight,
for some reason we do not yet understand, or whether there is instead a late-time
crossover to a Gaussian front, is an interesting question for future work.

Table 4.1 summarizes the various scalings for the width and height of the operator
weight for generic operators, in integrable, chaotic and non-interacting systems. We
also note that our prediction for the operator front (4.9) in interacting integrable
systems also applies to the front of standard two-point correlation functions. Linear
response correlation functions admit a hydrodynamic decomposition in terms of quasi-

particles as in eq. (4.8), so our argument carries over to such correlation functions. It

will be interesting to check this prediction in future work.

4.3 Operator front in chaotic systems
We now briefly contrast our findings for interacting integrable systems to chaotic

(non-integrable) chains. In chaotic systems, the operator front is expected to broaden

96



Right-weight: pr(j,1t)

Xmax =4 Xmax = 1024
20 1.0

Number of lavers 7
=~

=30 -—15 0 15 30 -30 —15 0 15 30
Site j Site j

Figure 4.6. Truncation errors on the right-weight for random circuit
dynamics. Here we show a single Haar random circuit realization. Left panel:
xmax = 4. Right panel: yyax = 1024. The dashed lines are contour lines of the
right-weight with threshold 6. For small bond dimension, the operator front slows
down, and stops at finite time. This is an artifact of truncation errors, that can be
postponed to longer times by increasing the bond dimension.

Front average (x),,

Time ¢

Time ¢

Figure 4.7. Slow-down in operator spreading due to truncation errors. Top
panel: average front position vs time averaged over different circuit realizations and
for various maximum bond dimensions xyax. Bottom panel: same but for the front
variance.
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Figure 4.8. Comparison of integrable vs. chaotic dynamics in operator
spreading. Left (Right): XXZ model at A = 1/2 and an homogeneous (staggered)
magnetic field of h, = 0.1. Results at xyax = 64.

diffusively [NVH18b, VKRPSI18b] as in integrable systems (albeit for very different
reasons [GHKV18al), but with a Gaussian scaling function. As we will show below,
the effects of truncation errors using finite dimension MPOs are even more drastic for
chaotic systems. In practice, this provides yet another way to distinguish integrability
and chaos using finite bond dimension numerics, but this also makes accessing the
true operator front properties of chaotic systems numerically very challenging.

We first study random Haar quantum circuits where each two-site gate is indepen-
dently drawn from the ensemble of Haar random matrices of size ¢ x ¢?, with ¢ the
local Hilbert space dimension. Our results will focus on the case ¢ = 2 corresponding
to spin—1/2 systems. The seminal works [NVH18b, VKRPS18b] analyzed this setup
analytically and characterized operator spreading exactly. Our main motivation here
is to study operator front broadening in this setup numerically, to illustrate the effects
of truncation errors due to finite bond dimension. Our results indicate the following
two features present in quantum chaotic models at finite bond dimensions: 1) artificial

slow-down of operator spreading as shown in Figs. 4.6-4.7 (see also Ref.[HPL19]); and
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2) a front that broadens sub-diffusively and eventually stops broadening altogether,
as shown in Fig. 4.7 (see also [XS20] for similar results in the chaotic kicked Ising
model). In Fig. 4.8 we show how, even close to integrability, this slow-down in op-
erator spreading becomes patent when studying the XXZ model for A = 1/2 and
a staggered magnetic field along the z— direction of h, = 0.1. Taking instead an
homogeneous magnetic field of the same strength, in which case the system remains
integrable, the front spreads ballistically at all times following the trace of the fastest
quasiparticles in the system.

Those findings are consistent across all non-integrable models we have considered.

We have also studied the chaotic Ising chain Hamiltonian given by:
H = JZO'JZ-U;+1+th;+h$O'JI-. (4.11)
J

For simplicity we set again J = 1. To ensure we are far into the non-integrable regime,
we set h, = (1 ++/5)/4 and h. = (5 +/5)/8, as in Ref.[KH13]. Our simulations
for the computation of the right-weight in this case require a time step dt < 0.01.
In contrast with the integrable case analyzed in the previous section, the present
non-integrable model yields a front that evades our MPO simulations entirely: the
entire light cone structure vanishes after the maximum bond dimension is reached,
after which the front fails to spread at all. We note that this phenomenon is absent
in the integrable case (see middle panel in Fig. 4.1). In fact, the maximum bond
dimension in both the TFI model as well as in the XXZ model is reached at around
the same time in both cases. This hints at a possible connection already put forward

in Ref.[Picvev07] between operator entanglement growth and integrability.
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CHAPTER 5
CONCLUSION

In this Thesis we have studied universal properties in the dynamics of quantum
many-body systems. First, inspired by random matrix theory and the physics of
random quantum circuits we have studied a model of random tree tensor networks
that display an entanglement phase transition from area law to logarithmic law as
a function of the bond dimension. Our results indicate that the universality class
of these mean-field entanglement transitions corresponds to the n-state Potts model
living on a Cayley tree.

Next, in order to better understand the dynamics of integrable systems we have
analyzed in great detail transport in the Rule 54 cellular automaton, verifying recent
formulas using the framework of generalized hydrodynamics.

In the third Chapter we have studied transport in near-integrable models, that
is, models that weakly break integrability. Our motivation here was to better un-
derstand transport in more experimentally realistic scenarios, where different sources
of noise ultimately destroy the conservation of charges. We proposed an experimen-
tally relevant and simple scheme based on the relaxation-time approximation that is
able to capture universal properties of these systems, such as Fermi Golden’s Rule
for the decay rate of nonconserved charges and diffusion of conserved charges (when
momentum is not conserved). With the aim to understand better transport in near-
integrable systems we studied two simple models of these systems, corresponding to
backscattering in the Rule 54 and in the classical hard-rod gas. We argued that

transport in the noisy version of Rule 54 displays some pathological features in that
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Fermi Golden Rule is strictly speaking not satisfied in our set-up and that, owing to
slow equilibration, transport is not governed by a single decay rate, challenging the
relaxation-time approximation scheme proposed earlier. Nevertheless we manage to
analytically extract the self-diffusion constant of the tracer particles (corresponding
to the diagonal components of the diffusion matrix). In the case of backscattering
in the hard-rod gas, we manage to study analytically transport (in the limit of small
noise). Our results shed light on the role of the off-diagonal components of the diffu-
sion matrix — they are nonzero in general, in the presence of interactions (as in the
hard-rod gas). Moreover, as far as we are aware, our resulting model is the first of its
kind: it possesses infinitely many local conserved charges despite not being integrable.

Lastly, we have studied operator spreading in both integrable and quantum chaotic
systems. We have provided evidence of a novel signature that would in principle allow
one to distinguish integrable from chaotic systems: the height of the right-weight
decays anomalously in the former (up to accessible times), while in the latter does
so consistent with a gaussian front. Further, we have found while tensor network
simulations allow one to extract the exponentially decaying tail of the front, the
entire front suffers from severe truncation errors at fixed bond dimension already at

reasonably short times.
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APPENDIX A

QUANTUM CHANNEL DESCRIPTION OF NOISY RULE
54

A.1 Setting up the Kraus operators

Our model is defined as follows: after each unitary step a , we convert with certain
probability p a right mover into a left mover and viceversa. This will preserve the
total number of particles N, but not the imbalance N_. It is easy to realize that
the minimum set of Kraus operators implementing this operation at each unit cell j

is two and must be of the form

K;szlzlj_ j+ 1_pﬂj7 (Al )
1a

~

K,\,— = /pILS;IL;,

with j € Z. Here I projects onto a given (to be determined) subspace composed of
right /left movers while S swaps a right mover and a left mover within said subspace.
The identity element in (A.la) guarantees the completeness condition of Kraus op-
erators. A full circuit layer is thus given by p(t +1) = >°. 5 f(ﬁﬁfﬁ(t)]}l%;, with
i = (u1, pa, ..., ur) and we define Kﬁ = ®iL:1 f(u The structure of the model, in
particular the fact that the density of right and left movers depend on three sites (two
unit cells) already tells us that we should make sure that not only at a given unit cell
N, is preserved, but also at its adjacent cells. To keep matters simple we consider
the operator S; that swaps the states |[]ljl) (corresponding to one right mover) and

|l]j[]> (corresponding to one left mover). That is, S; = 67 0O 07,1 +h.c.. Having

T ir1y2
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found S we can determine II. After some trial and error we find that the most general
projector that still preserves N, must be of the form

A

IL=co( mACCmm+ mEm)
—1 7 41 i—1 i i+1

+4(Omm + omoro ) (A.2)

i—1 i a+1i+2 i1 i i+lit2

Y, e )
with «, 8,7 € {0,1}. Note that these Kraus operators are symmetric, [A(l = [A(g =
K ;- This work considers the simplest case with v = 1, 8 = v = 0, for which Kraus
operators mutually commute with each other, [K,,, K u;] = 0 for any 4, j (this is not
true for the other possible choices). This will permit us to encode dissipation in a
single circuit layer. Note that this circuit has a natural interpretation as an extension
of the Rule 54 cellular automaton when including noise of strength p and as such we

can simulate it classically as well. For details on the numerical implementation of the

quantum channel, we refer to “Numerical details” section of the Appendix.

A.2 Perturbative expansion of the quantum channel
Let p_ the density of left movers in vector form, i.e. p_ =1/ LN_. Time evolution

for t time steps gives ) = ®® 5 with the map

t

o0 = | Y K@ KzF' | | (A.3)
A}

where we have implicitly made use of the properties [A(ZL = Kg — K and Ff = FT.
At this step it is useful to start a perturbative expansion in p of Z{ﬁ} f(,; ® f(ﬁ. Let

us denote @1 = ﬂlgl = f[zglﬂl Carrying out the expansion we get
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L
Z K;® K = K,,..0 ® Kqy,..0 + Z K0,.,..0,1,0,..0) @ Kp,..010,.,0 + O(p2)~
{i} i=1

(A.4)

Let us consider the first term. This gives us

=1
(A.5)
The second term takes also a very simple form
f((o,o,...,o,%,o,.‘.,o) ® R(o,o,...,o,},o,...,o) = p0; ®O; + O(p?). (A.6)

Thus to first order in p we have

Y KioK; —1—|—pz<® ® 0, —%(1®ﬂi+ﬂi®1)) LOMY). (AT
{2}

Plugging this into ®® we get

(A.8)

Applying this to the local density of imbalance which we take it to be p_;, with
[ € [1, L] we have

A(t

L
PO ="+ 0NV O T — (BN LYY ILET + O(p?), (A9)

z—lnl



where /3(1(77) = (F T)”,ﬁgﬁ’ " and we have made use of [/3(1(77), I1;] = 0 Vi, I, n. We seck an
e.o.m. for the decaying charge. Let N_ = > Py Its discrete time derivative reads
L
NUY - N = p S (FYoNY 6 P — (FYTLNYILE + 0(p?), (A.10)
i=1
where have used conservation of the global charge under the unperturbed dynam-
ics, [, N_] = 0. Multiplying both sides of (A.10) by N9 and averaging over an
homogeneous Gibbs state of fixed p, (---) = 1/Ztr]- - e_“N+], we get

L
A A ~ N

(VD - NNy = 536,80, — (INOTLN) + 0(p?)

(A.11)

where in the first line we have made use of [F', N.| = 0, in the second line we have

used

éiﬁ—,jéi =(1- 25@;’),57,]'1:[1 (A.12)

and defined I1_ = > ﬂ_J with ﬁ_’i = ﬂi,é_’,», and in the last line we have made use

A

of p_,1I_; = I1;, and I = > I1;. Using the transfer matrix (2.40) we get

e3H

<m>:20+€w%3+aﬂ, (A.13)

and so the derivative of the correlator at order p reads (taking time continuous)

1 A e

NG
NN = e e T

O(p?). (A.14)

In the following we shall see that the next to leading order terms O(p?) cannot in

fact be disregarded, as the small parameter controlling this expansion is pt and not
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p7*: the r.h.s. does depend on time through the term O(p?). We shall discuss these
higher order corrections next but before, let us state that in (A.14) at t = 0, terms
of p? and higher order are zero (in general, at any time step ¢, only terms of at most

order p' can contribute; see below) and so one can extract a decay rate as

A ~

NN,y = I, (NONOY|, g, (A.15)

where ['gy. = 2ps. With

_ () e(B+en)
a LG+,+ n (1"’6’“‘)3 .

where G4, = 1/L{N?) is the current-current correlator of number of solitons in
the integrable limit. The subscript s.t. here is to denote short time, given that the

extracted decay rate is only an approximation that is valid at very short times (strictly,

at t = 0).
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APPENDIX B

DIFFUSIVE HYDRODYNAMICS FROM
BACKSCATTERING

Here we rederive the formula for the diffusion constant of conserved modes within
GHD used in the main text, Eq. (4), and which follows from Ref. [FGV20b] (see also

[ZBK22]). Our starting point is the linearized Boltzmann equation Eq. (3),
Opdp + A00p = —Tép, (B.1)

where the operators A and I" act on velocity space as convolution, e.g. Adpy(z,t) =

[ dk' Agr:dpi (2, t). The densities of conserved charges in the hard-rod gas obey

g () = / ARk pr (1), (B.2)

Similar relations would still hold for other integrable models; in particular, an identical
relation holds in the Lieb-Liniger model — see e.g. Ref. [BD22]. We can recast the

Boltzmann equation B.1 in terms of these charges as follows,

0i0qy, + Z A 0:0Gm = — Z Lm0 Gm, (BS)

where, analogously to the phase-space density, we assumed the above dynamics
occurs above a state of fixed, homogeneous charge ¢ = [dkk"p;. Now the hy-
drodynamic matrices are expressed in the charge basis and have components e.g.

Apm = [ dkdK'E" Ay k™. We now use the method of hydrodynamic projections to

107



project Eq. (B.3) onto decaying charges, via the operator P, and conserved charges,

via its complement, which we denote as P = 1 — P. This results in the following two

equations

8, P3G+ PAD,SG = 0, (B.4a)

8, P8¢ + PAD,6G = —PTP4q. (B.4b)

where the charge vector ¢ has as components all the charges of the original integrable
model. Note that we have implicitly assumed that dissipation will only act within the
subspace of decaying charge (while in general, and in particular, for backscattering,
decaying and conserved modes will be mixed by the integrable dynamics). Applying

the inverse of the dissipation operator on (B.4b) and solving recursively yields

PéG= —(PTP) " (0,P5¢ + PAD,6Q)

= —0,(PTP) 'PAPSG+ O({9?,0,0,,0%}). .
Ignoring higher order gradient terms and plugging this into (B.4a) leads to
OPSq+ PAD,PSq = DO Piq, (B.6)
where
D = PA(PTP)"'AP. (B.7)

We will show below that for the case of backscattering noise, there are no ballistic

contributions as the matrix A will only couple decaying charges with conserved ones.
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APPENDIX C
BACKSCATTERING IN THE HARD-ROD GAS

While the hydrodynamics of the hard-rod gas was originally solved assuming a
(continuous) distribution of rods’ velocities, we shall assume that a well-defined and
analogous description exists in the presence of a discrete set of different velocities.
This will facilitate computing the diffusion constant of the different particle species
exactly, and in the limit of infinite number of such particle species, allow us to compute

the structure factor of density in the continuum limit.

C.1 One particle species (two velocities)

Earlier works [Per69, BDS83, DS17b] had shown that the hydrodynamics of the

hard-rod gas at the Euler scale obeys GHD equation

Oip + 0 (v p) = 0, (C.1)

where
a fy (k= K)puo (1)
L= af, pola,D)

with a the hard-rod’s length. Within linear response we may take p = p* 4+ dp, with

o] = k + (C.2)

p* some stationary state that is spatially homogeneous. For what follows we take this
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state to be given by p* = n3(86(v — vg) + (v + vy)), with n = N/(2L) the density of

hard-rods in the system. In this stationary state the effective velocity is given by

Y0 _ el (C.3)

eff _
Vpry(v0) = T——

Note that this effective velocity is precisely that of the Rule 54 cellular automaton
when setting vy = +1, a = —1 [GHKV18b]. Carrying this analogy further, we posit

the GHD equation to be of the form:
00p + ADop =0, (C4)
with p'= (p,, p_), with p+ = pr % pr, where pg/, is the density of particles moving

at speed vy = £1. In the linear response setup we’re interested in we have p,. = n+dp,

p— = dp_, and where the operator A is given as [DS17b]
A=(1—6T) (1 —0°T), (C.5)

where 6 is the Fermi factor and we have implicitly assumed all quantities here are

evaluated at the stationary state. The Fermi factor in vector form is given as
0 = (1—an)'5", 7= (n, 0) (C.6)
The counterpart in matrix form corresponds to the diagonal matrix constructed out

of this vector. Likewise, we may view the dressed velocity as being a diagonal matrix

with entries given by (C.3). The kernel acts as follows on a test function
Ty(v) = —a/dww(w). (C.7)
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In the R/L basis the kernel should read *

In the presence of backscattering noise, the GHD equation takes the form

8,07 + AdyoF = —T5p, (C.9)

with, the decay matrix

=~ , (C.10)
~1 1

with p the proba for a right/left mover to veer direction. Note that I' has one zero

mode and one decaying mode, which is found upon rotating I' to the + basis as

I — Ooro, (C.11)
with
1 1
O = : (C.12)
1 -1
The decaying mode corresponds to the p_ mode and has eigenvalue I'_ _ = 2v. To

get the diffusion constant of positive movers we also rotate the A matrices onto the

+/— basis to find

1
A, =1 A =——-—. C.13
+ ’ T (1 —an)? ( )
The diffusion constant is given as
1 eff \2
Dy, =A, TLA , = Gl (C.14)

29(1 — an)? 27y

'While in the continuum the diagonal components of matrix T are ill-defined, we will set these to
be 1 in the discrete version of the model. It can be shown that the diffusion constant of quasiparticles
and the structure factor will not depend on these diagonal (gauge) components.
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Note that these are results are identical to those obtained in Rule 54 upon setting

a=—1[LPGV22].

C.2 Two particle species
The previous analysis can be generalized straightforwardly to the case of parti-
cles having four possible velocities (two of opposite sign) with backscattering. The

corresponding hydrodynamic matrices now read

1111
1111
T=—a : (C.15)
1111
1111
1 -1 0 0
-1 1 0 0
=~ : (C.16)
0 0 1 -1
0 0 -1 1
1 1 0 0
1 =10 0
0= . (C.17)
00 1 1
00 1 -1

where the rotation matrix is defined so as to rotate to the + basis within each speed
sector. We stick to the convention that the top left block in the O matrix defines a
subspace of e.g. velocity +v; and the bottom right block defines a different subspace

of velocity £vs. The Fermi factor (in matrix form) reads in the R/L basis

1
LEP (C.18)

:l—cm4

0
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where we’ve chosen the background state to be that where all velocities are equally
likely to simplify the analysis (we will extend to arbitrary distribution and number
of particle species below). With this we can find the A matrix in the 4+ basis using

(C.5). For reference we write it down

(+1) 1) (+:2) (-:2)
0 (1—%)u 0 — Gy (+1)
1 11— an
A= 1—a2n u1 0 2(1—an) U1 0 1) (019)
1—an
0 — 4y 0 (1—=F) v | +2
2(1?1@”) U2 0 1:5 U2 0 -:2)

with (£, 7) corresponding to the sector with +v; velocity. The diffusion matrix written

in this basis reads

-1
Divirbd) = D AT oAb i), (C.20)
k

with I'_ ;) (—s = 2. The diffusion matrix has off-diagonal entries now owing to the

]

interaction between the two different particle species. The matrix components read

(

2

(2 —an)*v? — (anvy)?, 1=7j =1,

1 1
Dy (+.4) = 2y 11 —an) (2 — an)*v? — (anv,)?, i=j =2, (C.21)

an(2 — an)(v? — v]z), i # 7.

\

The diagonal components of this matrix may be negative for some choice of pa-
rameters. This is fine so long as D > 0. This can be checked by diagonalizing D
and checking that its eigenvalues are nonnegative. We've confirmed this and found

the eigenvalues to be {(v$1)2 (v5T)2} x 1/2v. The corresponding eigenmodes read
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{(—¢, 1),(1, —¢)} with ¢ = =1+ 2. This crucially implies p;. = p(4.1) + p+.2) i

not a diffusive mode. Instead, these correspond to

op=W1p, (C.22)
with 552 ((Sp(Jﬁl) 5p(+’2)>7 and
—¢ 1
W= ¢ : (C.23)
I —9¢

the matrix of eigenvectors of D. We are interested in the quantity S(x,t) = (dp(z,t)dp(0,0))c,
with 0p = 0p(4,1)+0p(+,2) corresponding to the density of particles. First we compute
the C' matrix which reads [DS17b]

C=01-0T)" p"(1-T6%)". (C.24)

At variance with the A matrix, the C' matrix, written in the 4, — basis is not simply
given by a rotation of C' by O, and instead this picks up a factor of 2 (as can be

checked by explicitly computing C' and A). Explicitly

(+1) 1) (+2) (-2)
(2 —2an + (an)?) 0 tan*(—2 + an) 0\ (+1)
C = 0 2 0 01 (C.25)
Tan*(—2 + an) 0 in(2-2an+(an)?) 0 [ +2
0 0 0 n ]y

Crucially, the (+,1) and (+,2) charges are correlated, while (—,1) and (—,2) are

not. This means in particular we must take care of cross terms when expanding
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0p = 0p(+,1) + p(+,2) in the structure factor. We compute next each term appearing
in S(JJ,t), S(I,t) = SLl(SL’,t) + 51’2<$,t) + Sg,l(x,t) + 52’2(x,t>, with Si’j(ﬂf,t) =
(0p(+,0) (2, t)dp(+,5)(0,0))¢. We shall be interested in the C' matrix projected onto the

{(+,1), (+,2)} subspace. Call it C). In the eigenmode basis this reads

~ n (an)? 1

) — (w-HoH -1 = = Loy =12
CH = whHeHmw ) 2= 1159

Loyes. (C.26)

Note that the exact expression of C' depends on the choice of normalization factors
of the eigenvectors forming matrix W but this is the one that yields the simplest

expression for C'. Then,

8171(ZE, t) = 92525'171(1’, t) — QZSSLQ(I, t) — QZSSQJ(I, t) + 5'2’2(1‘, t)

= ngQé'S)g(:v, 2D1t) + C’éz)g(x, 2Dt) (C.27)
n

T (6°g(x, 2D1t) + g(x, 2Dat)) ,

22

where D; = (v§1)2/2v, and < denotes the limit ¢ > 1/, and g(z,0?) = f;% As a

sanity check we confirm [ dxS)1(z,t) = C11. We can compute the rest of the terms

contributing to S(z,t) and we find

ne
4(1 4+ ¢)
ne

Soq(x,t) < —m(g(x, 2D1t) + g(x, 2Dst)), (C.28)

(g(xv QDIt) + ¢2g($, 2D2t))

Sly2<$,t) = — (g(x, 2D1t> + g(a:, 2D2t)),

52,2(1’, t) = m

These results also fulfill the sum rule [ dxS; ;(x,t) = C; ;. Equipped with these results
we get the structure factor of the density
n(1—¢?\>

= 21— an)?(g(w, 2D1t) + g(, 2D31)).

(C.29)
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So, indeed, we find that the structure factor of the density is given by an equal

superposition of the two gaussians.

C.3 m-particle species (arbitrary distribution)
For arbitrary number of particles species and arbitrary even velocity distribu-
tions, so that {v; — p;/2, —v; — p;/2}, with p; € [0, 1], the corresponding A matrix

components read (found by inspection from analyzing smaller instances)

.
—14+anp; .
12 an Viy =]

1+an
A () = (C.30)

L ,1+anpivj7 t 7£ J-

(

1(7an(17§)2i)v‘ i — ]
—1+an (3

an

TiromEliVis U F J.
L (—1+an)2p 7& J

Which results in the diffusion matrix

D), (+4) = 0 —an)? (1 = an + (an)’p;)v; — (an)’p;(v*)) , (C.32)

v} + (14 an)v; — an(v?)), (C.33)

with (v?) =3, prvi. Note that in the absence of interactions the diffusion matrix is
purely diagonal. The next step is to determine the eigenmode matrix that diagonalizes

D. This has the rather simple form

L—anp;, 1=
W, = (C.34)

—anp;, i # J.

The charge-charge matrix for arbitrary distribution has components
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npi(1 — anp; + (an)’p;), i = j,

Cl (i) =
_(2 —an an2pip‘7 [ 7& ja
) ’ (C.35)
C(—,i),(—,j) = nPZél:.]’
C(+7i)1(_1j) = O = C(_7l)7(+7])
Note that the sum rule in this case takes a very simple form
Z C(+7¢)7(+,j) = n(l — an)Q. (C.36)

1,

Written in the basis of eigenmodes in the + subspace the charge-charge matrix reads

o) — n(an)Qdiag(p1,p27 e D) (C.37)

The structure factor matrix has components

S;.i(x,t) = n(an)®x
2 .
(pi — &) pig(@, Dit) + 3 v2prg(x, 2Dit), i=j
X
plp] <<pz — %) g(l‘, Qplt) + (pj — ﬁ) g(l’, QDJt) + Zk’;ﬁz,j pkg(% QDkt)> ) i 7é j
(C.38)

After some lengthy algebra we find the structure factor of density S(z,t) = 3, Si ;(z,t)
S(z,t) = n(1 — an)*(g(z, 2Dt)), (C.39)

where

(9(x,2D1)) = Zpig(x, 2Dit). (C.40)
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This is the expression quoted in the main text. This expression fulfills the sum rule,
> St) = X C’Z-(;»r) = n(l —an)?. In the continuum limit we simply replace

pi — p(v) and the sum by an integral. L.e. the structure factor is given as

, (C.41)

S(z,t) = (1— an)z/dvp*(v)g(x,QD(v)t), D(v) =

with p*(v) = p(v)n the background particle density.
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