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Logical inference leads to one of the major interpretations of probability theory called log-
ical interpretation, in which the probability is seen as a measure of the plausibility of a log-
ical statement under incomplete information. Assuming that our usual inference procedure
is working rationally for every set of logical propositions represented in terms of commut-
ing projectors on a given Hilbert space, we extend the logical interpretation to quantum
mechanics and derive the Born rule. Our result implies that, from epistemological view-
points, we can regard quantum mechanics as a natural extension of classical probability
theory.
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1. Introduction
Inference is one of the essential building blocks in various branches of mathematical science:
Jaynes’ derivation of statistical mechanics [1,2] is based on the inference of the probability
distribution which is most likely to reproduce given expectations of thermodynamic variables.
Since the era of Laplace [3], probability has been more or less regarded as a measure of likeli-
hood of statements being valid, although there coexists the interpretation that the probability
is nothing but the relative frequency.

Inference plays an important role even in understanding fundamental aspects of probability
theory. The following was shown by Cox [4–9]: Suppose there is a measure of the plausibility
of statements being valid under incomplete information. If the measure follows inference rules
consistent with our common sense, then the measure satisfies the product rule and the sum
rule of probability, and hence it can be interpreted as the probability. In other words, without
invoking the notion of relative frequency, probability theory can be derived by assuming rea-
sonable inference rules under incomplete information. This derivation is called Cox’s theorem,
which allows us to see probability as a natural extension of the truth values of propositions.
This interpretation is called the logical interpretation of probability [10].

Recently, several inference methods are coming to be used to reconstruct quantum mechanics.
The equations of motion such as the Schrödinger equation [11], the Pauli equation [12], and the
Klein–Gordon equation [13] are derived under the logical interpretation, augmented with the
auxiliary requirement that the plausibility of the experimental outcomes is robust under slight
changes of the experimental parameters. The wave function is also derived with other auxiliary
assumptions [14,15].
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In this paper we show that the measure of plausibility takes the form of the Born rule by
extending the argument mentioned above to Hilbert space and the projectors thereof. Inter-
estingly enough, the inference rule leads to the unique concrete expression of the quantum
conditional probability associated with the Lüders conditionalization [16], which specifies the
post-measurement quantum state. More precisely, the Lüders conditionalization requires that
after a projection measurement Q on a density matrix ρ, the state changes to ρQ = QρQ/tr(ρQ),
whereas we will find that the quantum conditional probability in accordance with the inference
rule takes the form Pr(P | Q) = tr(ρQP) = tr(QρQP)/tr(ρQ), where P is a projection operator.
Thus, the quantum conditional probability is seen as the Born rule for the density matrix ρQ,
which is obtained after the measurement of Q. We hereafter call the expression of the quantum
conditional probability “Lüders rule,” in order to stress the relationship between the Lüders
conditionalization and the quantum conditional probability [17].

Analogously to the derivation of Cox’s theorem, throughout our derivation of both rules we
will assume that the plausibility measures follow our standard inference procedures for com-
muting projectors. Our derivation, hence, enables us to see both the rules as the measures of
plausibility on which our inference makes sense for the commuting projectors.

The paper is organized as follows. In Sect. 2 we review two formulations of probability the-
ory. In Sect. 3, we present three approaches to interpretations of probability theory. In Sect. 4,
one of those interpretations, Cox’s approach to the logical interpretation on the basis of in-
ference rules, is studied in detail. In Sect. 5, we extend Cox’s approach in quantum mechanics.
In Sect. 6, we characterize the Lüders rule as the unique conditional probability satisfying the
inference rule. In Sect. 7, we give an example where the inference rule employed in Cox’s ap-
proach is no longer valid for non-commuting projectors. Section 8 is devoted to our conclusion
and discussions.

2. Two formulations of probability theory
Probability and conditional probability are central notions in probability theory. Depending
on which one we take as the more fundamental concept, we have two formulations of proba-
bility theory. In this section we give a brief review of them, since we need both in the following
argument.

We hereafter deal with both formulations based on the finite additive class, which is defined
as follows. Suppose we are given a countable infinite number of mutually different elements
ω1, ω2, …. The set of all the elements is denoted by � := {ω1, ω2, …}, and subsets thereof are
written as A1, A2, …. A set F of the subsets A1, A2, … is called the finitely additive class if it
satisfies

∅ ∈ F,

Ai ∈ F ⇒ Ai
c ∈ F,

A1, A2, . . . , An ∈ F ⇒
n⋃

i=1

Ai ∈ F . (1)

Here, ∅ stands for the empty set, and Ac is the complement of A defined through A ∩ Ac = ∅
and A ∪ Ac = �. The set F satisfying Eqs. (1) for infinite n is called a σ -algebra.

Let us turn to the two formulations mentioned above. In the first one, which we hereafter call
the probability-based formulation, the probability is given first, and the conditional probability
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is defined as the ratio thereof. More precisely, the probability Pr(A) is defined as a map from F
to [0, 1] = {x ∈ R | 0 ≤ x ≤ 1} which satisfies

Pr(A) ≥ 0 for all A ∈ F, (2a)

Pr(�) = 1, (2b)

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Ai) (2c)

if {Ai}n
i=1 is a family of mutually disjoint subsets of �: Ai ∩ Aj = ∅ for i 
= j. The conditional

probability Pr(A | B) is given as

Pr(A | B) = Pr(A ∩ B)
Pr(B)

(3)

when Pr(B) 
= 0.
The second formulation [18–20], in contrast, is based on the conditional probability. In this

formulation, we introduce the finite additive class F and its non-empty subset G, and define the
conditional probability Pr(A | B) for A ∈ F and B ∈ G as a function which takes a value in [0,
1] and fulfills

Pr(B | B) = 1 for all B ∈ G, (4a)

Pr

(
n⋃

i=1

Ai | B

)
=

n∑
i=1

Pr(A | B) (4b)

for the set {Ai}n
i=1 of mutually disjoint elements of F and B ∈ G, and

Pr(A | B) = Pr(A ∩ B | C)
Pr(B | C)

(4c)

for A ∈ F and B,C ∈ G such that B ⊂ C and Pr(B | C) > 0.
The formulation based on Eqs. (4) is a natural extension of the probability-based formulation.

It is shown in Ref. [19] that the conditional probability Pr(A | B) in the sense of Eq. (4) can be
seen as the probability when B is fixed. Thus, we utilize the notation Pr(A) for the special case
B = �, that is,

Pr(A) = Pr(A | �). (5)

Conversely, the conditional probability in Eq. (3) satisfies Eqs. (4). Note that not all the con-
ditional probabilities in the sense of Eqs. (4) take the form of Eq. (3). These two formulations
are extended to the σ -algebra for infinite n in Eqs. (2) and (4), respectively.

3. Interpretations of probability
For interpreting probability theory, we show the existence of a mathematical quantity which is
easy to understand intuitively and fulfills the conditions of Eqs. (2) or (4), depending on which
formulation we take. Here we take three examples of well-known interpretations of probability:
that is, frequency interpretation, subjective interpretation, and logical interpretation [21]. Note
that the frequency interpretation and subjective interpretation are applicable to the finitely ad-
ditive class as well as σ -algebra [22]. On the other hand, in the logical probability it is shown to
be hard to implement the finitely additive class, due to Assumption 1 below, which requires an
infinite number of elementary propositions [7].
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3.1 Frequency interpretation
First, let us show that the relative frequency of the events occurring satisfies the conditions in
Eq. (2). Given the finite set �, the relative frequency of Ai is defined by the ratio of the number
of events that Ai occurs to of the total number of events. It is obvious that the relative frequency
satisfies Eq. (2). Thus, we may interpret the probability as the relative frequency.

In the frequency interpretation, we need a well-defined ensemble of repeatable events to define
the probability distributions. On the other hand, it has been pointed out that the frequency
interpretation is not applicable to one-shot events or the measurement of physical constants
[23,24]. The following two interpretations provide useful tools for the analyses of such cases.

3.2 Subjective interpretation
The second example is the Dutch book argument (DBA) [25]. In DBA, we consider a bet on
whether a given hypothesis (it rains tomorrow, for example) is true. If the hypothesis is true,
then the bettor obtains the stake S. If it is not the case, they obtain nothing. Let us now suppose
that the bettor pays a wager qS, where q is called the betting quotient. Then the net payoff of
the bet is S − qS if the hypothesis is true, and −qS otherwise.

In Ref. [25], de Finetti showed that the bookie can construct a set of bets in such a way that the
bettor loses in any combination of betting outcomes (the truth values of the given hypotheses,
in other words), if the set of betting quotients does not obey the conditions in Eq. (2). In other
words, as far as the bettor is rational in the sense that they wish to avoid a net loss, the betting
quotients have to obey the axioms of probability theory: the fair betting quotients are equal to
the probability. See Refs. [21,26] for proof of the mathematical relation between the fair betting
quotients and the axioms of the probability.

DBA leads to the subjective interpretation of the probability, since the betting quotients in-
dicate how tru the bettor feels the hypotheses to be. The salient feature of DBA is that the
bettor can freely determine their own betting quotients: in a bet, it is not necessary that all the
participants of the bets have the same betting quotients. This implies that in the subjective in-
terpretation we may assign several different probabilities (degrees of belief) for the plausibility
of a hypothesis by our own decision.

3.3 Logical interpretation
The third example is the degree of plausibility of a given proposition conditioned by the prior
information [4–9], which is an extension of the truth value, and the central issue of this paper.
In the logical interpretation, we are given the propositions, and suppose the existence of a
measure of plausibility of the proposition, on which inference works rationally. Then, there
exists a function which maps the measure of plausibility to the conditional probability function
satisfying Eqs. (4), suggesting that the conditional probability quantifies the plausibility of the
proposition being valid.

4. Conditional probability function in the logical interpretation
In what follows, we show that the degree of plausibility is mapped to the conditional probability.
This implies that the conditional probability is seen as a natural extension of the truth value of
the proposition under uncertainty. Boolean operations provide a basis for this interpretation,
since they characterize the relations among the (composite) propositions made through the
logical operations. Given the truth values of several propositions, we can find the truth values
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of the composite propositions associated with them by performing Boolean operations. Since
we make the argument to see conditional probability as an extension of the truth value, we
provide a discussion on Boolean algebra below.

A six-tuple consisting of a set S = {A, B,C, . . . } with the Boolean operations and (∧), or (∨),
and not (�), and two elements �, � ∈ S, is called a Boolean algebra if the following properties
hold [27]:

(a) Commutativity:

A ∧ B = B ∧ A ∈ S, A ∨ B = B ∨ A ∈ S. (6)

(b) Distributivity:

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) ∈ S, A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C) ∈ S.

(7)

(c) Identity:

A ∧ � = A ∈ S, A ∨ � = A ∈ S. (8)

(d) Complements:

A ∧ ¬A = � ∈ S, A ∨ ¬A = � ∈ S. (9)

Here, � and � are the identity with respect to the or and and operations, respectively. In
what follows, � plays the role of the identically false proposition, whereas � represents the
identically true proposition.

Equipped with the Boolean operations and, or, and not by

A ∧ B := A ∩ B, A ∨ B := A ∪ B, ¬A := Ac, (10)

respectively, the finitely additive class F = {A, B,C, . . . } mentioned earlier satisfies Eqs. (6),
(7), (8), and (9) through the identification � := ∅ ∈ F and � := � ∈ F , showing that the finite
additive classF with the Boolean operations is a concrete Boolean algebra. This implies that we
may establish the logic on the finitely additive class, because the Boolean operation represents
the relation among the logical propositions. On the basis of this observation, we may safely
regard the element ωi ∈ � as an elementary proposition, which could be true or false. The
subsets A, B, … in the finitely additive class F , which is the concrete Boolean algebra, are
therefore the set of composite propositions made by the Boolean operations, and the set � is
seen as the set of all of these.

We now formally introduce the measure of conditional plausibility, denoted by ε(A | B) ∈ R,
whose value quantifies the degree of plausibility that A is true, given that B is true. We suppose
that re exists two real numbers F and T exist such that F ≤ ε(A | B) ≤ T for every A and B. We
hereafter show that (i) there exists a function w(·) through which w(ε(A | B)) as a function of A
and B satisfies the conditions in Eqs. (4) under reasonable assumptions given below, and (ii) we
may set w(F) = 0 and w(T) = 1: there exists a map w(·) from the degree of plausibility to the
conditional probability.

Before we proceed, we point out that there are variants of the sets of assumptions used to
prove Cox’s theorem [4,5,8,9]. This is because Cox used implicit assumptions in his original
proof [6,7], and several researchers tried to construct more reasonable proofs to fill the gap.
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Among these variants, we adopt the assumptions given in Refs. [4,9] for clarity and rigor of
presentation.

The first assumption is the following:

Assumption 1 (van Horn). There exists a non-empty set of real numbers P0 with the following
two properties:

(a) P0 is a dense subset of the interval [F, T].
(b) For every y1, y2, y3 ∈ P0, there exist propositions A1, A2, A3, B such that y1 = ε(A1 | B),

y2 = ε(A2 | A1 ∧ B), and y3 = ε(A3 | A2 ∧ A1 ∧ B).

Although Assumption 1 looks intricate, it is necessary to exclude models which are not the
standard probability theory, but satisfy all the assumptions we will hereafter make; indeed, such
a model is constructed in Ref. [6]. Moreover, it is known that Assumption 1 requires infinite
numbers of the elementary propositions [7].

We make the second assumption:

Assumption 2 (van Horn). Let A, B, and C be propositions. Then there exists a continuous func-
tion F : [F, T]2 → [F, T] which is strictly increasing in both the arguments and satisfies

ε(A ∧ B | C) = F (ε(B | C), ε(A | B ∧ C)). (11)

Assumption 2 implies that the plausibility of the composite proposition A∧B given C be-
ing true is related to two measures of plausibility of the composite propositions ε(B | C) and
ε(A | B ∧ C). In other words, we infer the plausibility of ε(A ∧ B | C) from successive infer-
ences using them.

From Assumptions 1 and 2, by using the properties of Boolean algebra, it is found in Ref. [9]
that the function F(x, y) satisfies

F (x, F (y, z)) = F (F (x, y), z). (12)

Further, the following fact [28] is useful for obtaining the concrete expression of F(x, y):

Lemma 1 (Aczél). Let a and b, with a < b, be real numbers. Suppose that f: [a, b]2 → [a, b] is a
continuous function, strictly increasing in both arguments, and satisfies the associativity equation

f (x, f (y, z)) = f ( f (x, y), z) (13)

for all x, y, z ∈ (a, b]. Then there exists some continuous, strictly increasing function g(x) such
that

g( f (x, y)) = g(x) + g(y). (14)

Now we define w(x) := eg(x) and identify f with F. By exponentiating both sides of Eq. (14)
and substituting w(x), we obtain

F (x, y) = w−1 [w(x)w(y)] . (15)

Note that substitution of Eq. (15) into Eq. (11) leads to

w(ε(A ∧ B | C)) = w(ε(B | C))w(ε(A | B ∧ C)), (16)

which is an expression of the inference rule in Eq. (11) in terms of w(ε(A | B)). For the range
of w(x), we have 0 ≤ w(x) ≤ 1, the proof of which is given in Ref. [9]. Since w(x) is a strictly
increasing function, this ensures that we may set w(F) = 0 and w(T) = 1, as mentioned above.
Note that w(x) is surjective.

Further, we make the following assumption on w(x):
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Assumption 3 (Cox). There exists a twice differentiable function S(x) such that

w(ε(A | B)) = S(w(ε(¬A | B))). (17)

Assumption 3 means that the plausibility of a given proposition can be inferred from that of
its negation. Cox found that Eq. (17) yields

S(x) = (1 − xm)
1
m , (18)

where m is a positive finite constant. Now we set m = 1 to obtain

w(ε(A | B)) + w(ε(¬A | B)) = 1. (19)

Equations (16) and (19) suffice to show that the conditional plausibility w(ε(A|B)) satisfies
Eqs. (4). To show these, we need

w(ε(A ∨ B | C)) = w(ε(A | C)) + w(ε(B | C)) − w(ε(A ∧ B | C)), (20)

whose proof is given in the appendix.
We first prove Eq. (4c). Suppose B ⊂ C, which leads to B ∧ C = B. Then it follows from

Eq. (16) that

w(ε(A ∧ B | C)) = w(ε(A | B))w(ε(B | C)), (21)

which reduces to Eq. (4c) when w(ε(B|C)) 
= 0.
Furthermore, by setting A = B = C in Eq. (21), we find w(ε(A | A))2 = w(ε(A | A)), whose

solutions are either 1 or 0. Therefore we obtain Eq. (4a) by taking the solution w(ε(A | A)) = 1
and replacing A with B.

Now we proceed to prove Eq. (4b). Substituting � for A in Eq. (16), we find

w(ε(� ∧ B | C)) = w(ε(� | C))w(ε(B | � ∧ C)). (22)

Since � ∧ B = B and � ∧ C = C, Eq. (22) turns into

w(ε(� | C)) = 1. (23)

Furthermore, putting A = � in Eq. (19), we find

w(ε(∅ | C)) = 0. (24)

Hence, from Eq. (20), we obtain

w(ε(A ∨ B | C)) = w(ε(A | C)) + w(ε(B | C)) if A ∧ B = ∅. (25)

By induction, we find

w

(
ε

(
n∨

i=1

Ai | B

))
=

n∑
i=1

w(ε(Ai | B)) (26)

for the set {Ai}n
i=1, whose elements are mutually disjoint. Note that the right-hand side of

Eq. (26) converges, since the left-hand side is bounded.
The above argument guarantees that we may put

Pr(A | B) = w(ε(A | B)), (27)

meaning that if the degree of the plausibility ε(A | B) satisfies the assumptions mentioned above,
there exists a function w(x) which maps ε(A | B) to the conditional probability. Note that we
have not used the repeatability or frequency in the above argument.

5. Quantum extension
In the following we extend the preceding argument to quantum mechanics. Let H be a (count-
ably) infinite-dimensional Hilbert space, and P, Q, … be the projectors acting on H. The set of
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all the projectors is denoted by L(H). The range of P is denoted by Im P := {P|ψ〉| | |ψ〉 ∈ H}.
Note that Im P is also a Hilbert space.

Since the eigenvalues of the projectors are either 1 or 0, the eigenvalues can be seen as the
truth values, and hence every projector can be thought of as a proposition.

Analogously to ε(A | B) in the preceding section, let us now introduce ε(P | Q) as the degree
of plausibility for the proposition P, given that Q is true. We suppose that ε(P | Q) is bounded,
as F ≤ ε(P | Q) ≤ T, and well-defined for all pairs of the projectors, even for those which do
not necessarily commute.

Given the propositions P and Q, the composite projectors P ∧ Q and P ∨ Q are defined as the
projectors to the meet and join of Im P and Im Q, respectively. The negation �P is the projector
on the orthogonal complement of Im P, which is hereafter denoted by Im P⊥. Note that the
set of all projectors L(H) is a lattice, since the meet and join of any pair of projectors are also
elements of L(H).

We shall show that the inference rule ε(P | Q) obeys leads to the Born rule, and the conditional
probability satisfying the inference rule takes the form of the Lüders rule. For this purpose,
it is convenient to construct a Boolean sublattice in a set of commuting projectors. When P
and Q commute with each other, we have the explicit expressions of the logical operations by
associating them with corresponding projectors:

P ∧ Q = PQ, P ∨ Q = P + Q − PQ, ¬P = 1 − P, (28)

where 1 is the identity operator. Note that P ∨ Q = P + Q if P and Q are mutually orthogonal.
Similarly to Eqs. (1), we can define a set C of commutative projectors such that

0 ∈ C,

P ∈ C ⇒ ¬P ∈ C, (29)

P, Q ∈ C ⇒ P ∧ Q ∈ C. (30)

It is clear that the elements in C satisfy the properties in Eqs. (6), (7), (8), and (9). Hence, by
identifying � and � with 0 ∈ L(H) and 1 ∈ L(H), respectively, the set C is found to be a Boolean
sublattice of the non-Boolean lattice L(H).

Three remarks are in order. First, 0, 1 in C correspond to ∅, � in F , respectively. Second,
the set C is not unique: we can find infinitely many sets satisfying Eq. (29). Indeed, given a
projector P, we can construct C = {0, P, ¬P, 1}, implying that any projector is an element of
some Boolean sublattice C. Third, the join of all C gives L(H).

We now extend the definitions of the probability and conditional probability given in Sect. 2
to quantum mechanics. A non-negative function Pr(P | Q) of the projectors P ∈ L(H) and
Q ∈ K, where K is a non-empty subset of L(H), is a conditional probability if it satisfies

Pr(Q | Q) = 1 for all Q ∈ K, (31a)

Pr

(
n∨

i=1

Pi | Q

)
=

n∑
i=1

Pr(Pi | Q) (31b)

for Pi ∈ L(H) and Q ∈ K, where PiPj = Piδij for any i, j, and

Pr(P ∧ Q | Q) = Pr(P ∧ Q | R)
Pr(Q | R)

(31c)
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for P ∈ L(H) and Q, R ∈ K such that Q < R and Pr(Q | R) > 0. Here, δij is the Kronecker delta,
and Q < R means that Q(H) ⊂ R(H), which leads to Q = QR = RQ [29]. The probability is
defined through the conditional probability as

Pr(P) = Pr(P | 1), (32)

which satisfies

Pr(1) = 1, (33a)

Pr

(
n∨

i=1

Pi

)
= ∑n

i=1 Pr(Pi) (33b)

for Pi ∈ L(H) such that PiPj = Piδij for any i, j.
The formal replacement of the sets A, B, C by the projectors P, Q, R in Eq. (4c) is insufficient

to define the conditional probability in quantum mechanics, since such replacement overlooks
the non-commutativity among the propositions. In other words, Pr(P ∧ Q | Q) = Pr(P|Q) does
not always hold in quantum mechanics, whereas its classical counterpart Pr(A ∧ B | B) = Pr(A
| B) always does by setting B = C in Eq. (4c) [19].

The physical implication of Pr(P ∧ Q | Q) 
= Pr(P | Q) is clear in the following example: Let
us take P as the proposition that the spin of a given particle has a definite value, say p along
the x-axis, and take Q as another proposition that its spin has a definite value q along the y-
axis. On the one hand, then, P ∧ Q is the proposition that the particle has the definite values
along the x-axis and y-axis simultaneously, implying Pr(P ∧ Q | Q) = 0 due to the uncertainty
relation. On the other hand, Pr(P | Q) may have a non-zero value, since the eigenstate of the
spin measurement along the y-axis could yield the definite value p in the spin measurement of
the x-axis.

Armed with this, we hereafter make the extension of Cox’s theorem. First, in parallel to sec-
tion Sect. 4, we make three assumptions, which employ the analogues of F and S for commuting
projectors. Second, we derive the concrete expression of the conditional probability Pr(P|Q) for
the case P ≤ Q, from which the Born rule is derived. Here, P = Q stands for P ≤ Q and Q ≤ P.

The first assumption is as follows:

Assumption 4. There exists a non-empty set of real numbers P0 with the following two properties:

(a) P0 is a dense subset of [F, T].
(b) For every y1, y2, y3 ∈ P0, there exist mutually commuting propositions P1, P2, P3, Q such

that y1 = ε(P1 | Q), y2 = ε(P2 | P1 ∧ Q), and y3 = ε(P3 | P2 ∧ P1 ∧ Q).

This assumption requires an infinite number of mutually commuting projectors in a Boolean
subalgebra C, excluding the finite-dimensional Hilbert space.

To proceed, we make the following assumption:

Assumption 5. There exists a continuous function G : [F, T]2 → [F, T] which is strictly increasing
in both the arguments and satisfies

ε(P ∧ Q | R) = G(ε(Q | R), ε(P | Q ∧ R)) (34)

for any mutually commuting projectors P, Q, R.
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The function G(x, y) ensures the validity of our inference on the composite proposition P ∧ Q
given R, if they commute. Conversely, if the propositions do not commute, then our inference
rule in Eq. (34) does not necessarily hold, as will be shown in section Sect. 7.

By using a Assumptions 4 and 5, and employing the argument given in section Sect. 4, we
can obtain

G(G(x, y), z) = G(x, G(y, z)), (35)

whose solution is given by

G(x, y) = w−1 [w(x)w(y)] , (36)

where w(x) is a continuous, strictly increasing non-negative function. It follows that

w(ε(P ∧ Q | R)) = w(ε(Q | R))w(ε(P | Q ∧ R)) (37)

for any mutually commuting projectors P, Q, R. Note that 0 ≤ w(ε(P | Q)) ≤ 1 is also derived.
By finding the function w(x), we can safely assume the following:

Assumption 6. There exists a twice differentiable function T(x) such that

w(ε(P | Q)) = T (w(ε(¬P | Q))) (38)

for any mutually commutative projectors P, Q.

Similarly to the previous section, this assumption leads to

T (x) = (1 − xm)
1
m . (39)

Setting m = 1, we observe

w(ε(P | Q)) + w(ε(¬P | Q)) = 1 (40)

for projectors P and Q such that [P, Q] = 0. Hence, in parallel to Eq. (20), it follows from
Eqs. (37) and (40) that

w(ε(P ∨ Q | R)) = w(ε(P | R)) + w(ε(Q | R)) − w(ε(P ∧ Q | R)) (41)

for any mutually commuting projectors P, Q, R. The proof is given in the appendix.
We now prove that

w(ε(P ∨ Q | R)) = w(ε(P | R)) + w(ε(Q | R)) (42)

for any mutually commuting projectors P, Q, R satisfying PQ = 0. The proof is similar to that
of Eq. (25). First, by setting P = Q = R in Eq. (37), we find w(ε(P | P))2 = w(ε(P|P)), whose
solutions are either 1 or 0. Then we take w(ε(P | P)) = 1. Second, substituting 1 for P in Eq. (37)
and using 1 ∧ Q = Q and 1 ∧ R = R, we find w(ε(1 | R)) = 1. Furthermore, putting P = 1 in
Eq. (40), we find w(ε(0|R)) = 0. Third, by using w(ε(0|R)) = 0 in to Eq. (41) for the mutually
commuting projectors P, Q, R satisfying PQ = 0, we obtain Eq. (42), which completes the
proof.

We now proceed to prove a technical lemma which that plays an essential role in determining
the explicit form of w(x), and shows the uniqueness of the (conditional) probability measure
associated with w(x) in quantum mechanics.

Lemma 2. Suppose we are given a projector Q and two density operators ρ1 and ρ2 such that

tr(ρ1Q) = tr(ρ2Q) = 1 (43)

and

tr(ρ1P) = tr(ρ2P) (44)
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for all P such that P ≤ Q. Then,

ρ1 = ρ2. (45)

Proof. From Eq. (43) we obtain

tr(ρ1¬Q) = tr(ρ2¬Q) = 0. (46)

Let us perform the spectral decomposition to write �Q as

¬Q = |ϕ〉〈ϕ| + · · · . (47)

By substituting Eq. (47) into Eq. (46), we find

tr(ρi¬Q) = tr(ρi|ϕ〉〈ϕ|) + · · · = 0 (48)

for i = 1, 2. Since density operators and projectors are non-negative, we find tr(ρ i|ϕ〉〈ϕ|) =
〈ϕ|ρ i|ϕ〉 = 0. This implies that

ρi|ϕ〉 = 0 (49)

for any vector |ϕ〉 ∈ Im Q⊥.
Let us take a normalized vector |ψ〉 ∈ H and decompose it as

|ψ〉 = |ψ1〉 + |ψ2〉, (50)

where

|ψ1〉 = Q|ψ〉 ∈ Im Q, |ψ2〉 = (1 − Q)|ψ〉 ∈ Im Q⊥. (51)

Since Eq. (49) holds for |ψ2〉 ∈ Im Q⊥, for a projector R = |ψ〉〈ψ | we observe

tr(ρiR) = 〈ψ |ρi|ψ〉
= 〈ψ1|ρi|ψ1〉 + 〈ψ2|ρi|ψ2〉 + 2Re〈ψ1|ρi|ψ2〉
= 〈ψ1|ρi|ψ1〉
= ‖ψ1‖2tr(ρiO) (52)

for i = 1, 2. Here, ‖ψ1‖ = √〈ψ1|ψ1〉 is the norm of the vector |ψ1〉 and O = |ψ1〉〈ψ1|/‖ψ1‖2 is
the projector onto the one-dimensional subspace generated by |ψ1〉.

With the use of |ψ1〉 ∈ Im Q, we find O ≤ Q. Then, it follows from Eq. (44) that

tr(ρ1O) = tr(ρ2O), (53)

which leads to tr(ρ1R) = tr(ρ2R), or equivalently,

tr(DR) = 0, (54)

where

D = ρ1 − ρ2. (55)

Since the operator D is normal (DD† = D†D, where † stands for the adjoint operation) and
Eq. (54) holds for any one-dimensional projector R, which is clearly non-negative, we can em-
ploy the spectral decomposition and obtain ρ1 = ρ2, which completes the proof. �

Lemma 2 is a special case of Lemma 5, which was first shown in Refs. [31,32]. We now prove
the following lemma.

Lemma 3. If dim Im Q ≥ 3, there exists a density operator ρ with which w(ε(P | Q)) is written
as

w(ε(P | Q)) = tr(ρP)
tr(ρQ)

(56)
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for all P such that P ≤ Q.

Proof. By using induction on Eq. (42), we obtain

w

(
ε

(
n∨

i=1

Pi | Q

))
=

n∑
i=1

w(ε(Pi | Q)) (57)

for the projectors P1, …, Pn, Q such that PiPj = δijPi and [Pi, Q] = 0. Since [Pi, Q] = 0 is a
necessary condition of Pi ≤ Q, Eq. (57) also holds for the set of mutually orthogonal projectors
{Pi}n

i=1 such that PiPj = δijPi and Pi ≤ Q for fixed Q. Furthermore, by noticing that Q behaves
like the identity operator on Im Q due to the idempotence Q2 = Q, we observe that Eq. (57)
can be seen as the sufficient condition of the Gleason theorem [30], as far as we consider the
set of projectors {P| | P ≤ Q}.

On the basis of the above argument, we may employ the Gleason theorem and hence obtain

w(ε(P | Q)) = tr(ρQP) (58)

for P ≤ Q, if dim Im Q ≥ 3. Here, ρQ is a density operator which is dependent on Q. Since Q
≤ Q, we can set P = Q to observe that

w(ε(Q | Q)) = tr(ρQQ) = 1, (59)

from Eq. (31a). The density operator ρQ satisfying Eqs. (58) and (59) for {P| | P ≤ Q} is
uniquely determined, due to Lemma 2.

Now it is clear from Eq. (59) that the density operator ρQ has non-trivial support only on the
eigenspace of Q. Hence, with an appropriate density operator ρ, we can write

ρQ = QρQ
tr(ρQ)

. (60)

Plugging Eq. (60) into Eq. (58) and using the cyclic property of trace and PQ = QP = P coming
from P ≤ Q, we find Eq. (56), which completes the proof. �

Lemma 4. w(ε(P|Q)) is the conditional probability for P, Q such that P ≤ Q.

Proof. To prove this, we show Eqs. (31) for Eq. (56). Equations (31a) and (31b) are obvious.
For Eq. (31c), we find

w(ε(P ∧ Q | R))
w(ε(Q | R))

= tr[ρ(P ∧ Q)]
tr(ρQ)

= w(ε(P ∧ Q | Q)), (61)

which completes the proof. �

It is now straightforward to derive the Born rule:

Theorem 1. The probability find the of proposition P being true is given by the Born rule:

Pr(P) = tr(ρP). (62)

Proof. We set Q = 1 in Eq. (56). Then we can make use of Lemma 3 and obtain

w(ε(P | 1)) = tr(ρP). (63)

Since w(ε(P | Q)) is the conditional probability for P ≤ Q, and P ≤ 1 holds for any projector
P, we get Eq. (62), which proves the theorem. �

Since the identity operator 1 corresponds to �, this corollary shows that we can regard the
Born rule as the degree of plausibility of proposition P under no information.
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6. Inference rule and Lüders rule
Equation (56) is seen as a special case of the Lüders rule of conditional probability [17], which
takes the form

Pr(P | Q) = tr(QρQP)
tr(ρQ)

. (64)

Indeed, when P ≤ Q, the numerator of the right-hand side is written as tr(QρQP) = tr(QρP)
= tr(ρPQ) = tr(ρP), which results in Eq. (56). We now turn to show that the Lüders rule is the
concrete expression of the conditional probability which is defined for arbitrary pairs of the
projectors and in accordance with logical interpretation. To this end, we recall:

Lemma 5 (Beltrametti and Cassinelli [31,32]). For a Hilbert spaceH, let Pr( · ) be a probability
measure on L(H), and let Q be any projector such that Pr(Q) 
= 0. Then there exists a unique
probability measure on L(H), which we denote by Pr( · | Q), such that, for all projectors P ≤ Q,
Pr(P | Q) = Pr(P)/Pr(Q).

Proof. From the Gleason theorem, we find that, for any projector Q, the probability measure
Pr( · |Q) must take the form Pr(P|Q) = tr(ρQP) for some density operator ρQ. If we can show
the uniqueness of the density operator ρQ, then we complete the proof.

Now suppose that ρ1 and ρ2 are two density operators such that tr(ρ1P) = tr(ρ2P) =
Pr(P)/Pr(Q) for all projectors P which satisfies that satisfy P ≤ Q. We then find Eq. (43) by
setting P = Q. Therefore, we can employ Lemma 2 and obtain ρ1 = ρ2, which completes the
proof. �

We arrive at the following theorem.

Theorem 2. If there exists a conditional probability satisfying

Pr(P ∧ Q | R) = Pr(P | R) Pr(Q | P ∧ R) (65)

for any commuting projectors P, Q, R, then it is uniquely determined and takes the form of
Eq. (64).

Proof. We first show that Eq. (65) leads to Pr(P | Q) = Pr(P)/Pr(Q) for P ≤ Q. Since P ≤ 1 and
Pr(P) = Pr(P | 1), we make use of Eq. (65) to obtain

Pr(Q)Pr(P | Q) = Pr(Q | 1)Pr(P | Q ∧ 1) = Pr(P ∧ Q | 1) = Pr(P ∧ Q) = Pr(P). (66)

Here we have used P ≤ Q in the last equality.
Next, we use Lemma 5. Then we find that there exists a unique density operator ρQ by which

the conditional probability takes the form Pr(P|Q) = tr(ρQP). By setting P = Q, n we obtain
Pr(Q | Q) = 1. Thus, as with the proof of Lemma 3, we find that there exists a density operator
ρ such that ρQ = QρQ/tr(ρQ), which completes the proof. �

Thus, we have arrived at the Lüders rule as the conditional probability for all the projectors,
by starting from the inference rules valid at least in mutually commuting projection operators.
Note that Eq. (65) is the concrete expression of the inference rule in Eq. (34).

In the rest of this section we show that the Lüders rule satisfies Eqs. (31).

Corollary 1. The function Pr(· | ·) defined by equation Eq. (64) satisfies Eq. (31b) for Pi ∈ L(H)
and Q ∈ K such that PiPj = δijPi.

Proof. This is shown by direct calculation. �
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Corollary 2. The function Pr(· | ·) defined by equation Eq. (64) satisfies Eq. (31c).

Proof. From Eq. (64), we observe that

Pr(P ∧ Q | R)
Pr(Q | R)

= tr[(P ∧ Q)RρR]
tr(QRρR)

. (67)

Since Q < R, we have Q = QR = RQ, which reduces the denominator of the right-hand side
of Eq. (67) to

tr(QRρR) = tr(QρR) = tr(ρRQ) = tr(ρQ). (68)

Similarly, we have P∧Q < Q, since Im(P ∧ Q) ⊂ Im Q. Thus, in the same fashion as for Eq. (68),
we obtain

tr[(P ∧ Q)RρR] = tr[(P ∧ Q)QRρR]

= tr[(P ∧ Q)QρR]

= tr[QρR(P ∧ Q)]

= tr[QρRQ(P ∧ Q)]

= tr[QρQ(P ∧ Q)]. (69)

By plugging Eqs. (68) and (69) into Eq. (67), we obtain Eq. (31c), which completes the
proof. �

7. Violation of the inference rule
In the previous section we derived the Lüders rule by assuming the validity of the inference
rules in Eq. (65) for projectors P, Q with the ordering relation P ≤ Q. This suggests that the
inference rules do not necessarily hold for non-commuting projectors.

However, the relation between the validity of the inference rule and the commutativity is not
simple. Indeed, as suggested in the following proposition, we can show that the inference rule
holds even when there exists a pair of non-commuting projectors. To argue this, we introduce


 = Pr(P ∧ Q | R) − Pr(P | R) Pr(Q | P ∧ R) (70)

and check its behavior. If 
 = 0, then the inference rule in Eq. (16) holds.
We first show the following proposition.

Proposition 1. Suppose [P, Q] = [P, R] = 0. Then 
 = 0.

Proof. We show that Pr(P ∧ Q | R) = Pr(P | R) Pr(Q | P ∧ R). Since [P, Q] = [P, R] = 0, we
have

Pr(P ∧ Q | R) = tr[RρR(P ∧ Q)]
tr(ρR)

= tr(RρRPQ)
tr(ρR)

,

Pr(P | R) = tr(ρRP)
tr(ρR)

,

Pr(Q | P ∧ R) = tr[(P ∧ R)ρ(P ∧ R)Q]
tr(ρP ∧ R)

= tr(PRρPRQ)
tr(ρPR)

= tr(RρRPQ)
tr(ρRP)

(71)

by using the relations P2 = P, Q2 = Q, R2 = R and the cyclic property of the trace tr(PQ)
= tr(QP). It thus follows that Pr(P ∧ Q | R) = Pr(P | R) Pr(Q | P ∧ R), which completes the
proof. �
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This proposition suggests that [Q, R] 
= 0 is insufficient for 
 
= 0: the violation of the inference
rule requires either [P, Q] 
= 0 or [P, R] 
= 0.

Second, we construct an example of the violation of the inference rule Eq. (16). Now we set
H = C3 and introduce the normalized state vectors

ψ = (ψ1, ψ2, ψ3)t (ψi ∈ R),

ϕ = (ϕ1, ϕ2, ϕ3)t (ϕi ∈ R),

z = (0, 0, 1)t, (72)

where t is the transposition operation. We further define the projector onto the two-dimensional
planes as

P = 13 − ψψt, Q = 13 − ϕϕt, R = 13 − zzt, (73)

where 13 stands for the identity operator on C3.
The meet P ∧ Q is the projector onto the intersection of the two two-dimensional subspaces

Im P and Im Q, which are seen as planes. Thus, if P 
= Q, P ∧ Q is the projector onto the vector
orthogonal to the normal vectors ψ and ϕ:

P ∧ Q = ξ(ψ, ϕ)ξ(ψ, ϕ)t, (74)

where

ξ(ψ, ϕ) = ψ × ϕ

|ψ × ϕ| , (75)

and × is the exterior product. Note that

Pξ(ψ, ϕ) = Qξ(ψ, ϕ) = ξ(ψ, ϕ), (76)

which ensures ξ(ψ, ϕ) ∈ Im(P ∧ Q). By the same argument, we observe that

P ∧ R = ξ(ψ, z)ξ(ψ, z)t (77)

when P 
= R.
Furthermore, let us set ρ = 13/3. By direct calculation, we then obtain

Pr(P ∧ Q | R) = 1
2

(
1 − |(ψ × ϕ) · z|2

|ψ × ϕ|2
)

,

Pr(P | R) = 1
2

(
1 + |ψ · z|2) ,

Pr(Q | P ∧ R) = 1 − |(ψ × z) · ϕ|2
|ψ × z|2 , (78)

which leads to


 = 1
2

[
1 − |(ψ × ϕ) · z|2

|ψ × ϕ|2 − (
1 + |ψ · z|2) (

1 − |(ψ × z) · ϕ|2
|ψ × z|2

)]
(79)

for P 
= Q 
= R.
We now find the violation of the inference rule in Eq. (16): When ψ = (1/

√
2)(1, 0, 1)t and

ϕ = (1/
√

2)(0, 1, 1)t, we have Pr(P ∧ Q | R) = 1/3, Pr(P | R) = 3/4, and Pr(Q | P ∧ R) = 1/2,
resulting in 
 = −1/24. Note that P, Q, R are mutually non-commuting in this case.

8. Conclusion and discussions
We obtained the Born rule and the Lüders rule through a simple and natural generalization of
the logical interpretation of probability theory. We did not take the rules as postulates, but as
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theorems deduced from the reasonable assumption that our inference works rationally for any
set of commuting projectors.

Whereas the inference rule in Eq. (34) and its concrete expression in Eq. (65) hold for any C by
the assumptions, it does not hold for non-commuting projectors. This property of the Lüders
rule is analogous to the algebraic property of the observables appearing in Mermin’s magic
square [33]: given a set of non-commuting observables, subsets of the commuting observables
follow the algebraic relations of their eigenvalues, but this is not the case for the total set of
non-commuting observables. We could say that the validity of our inference rules depends on
the context. This property was overlooked in Ref. [34], where the Born rule was algebraically
derived by using the associativity relation of the composite proposition (P ∨ Q) ∨ R = P ∨ (Q
∨ R) = P ∨ Q ∨ R for mutually orthogonal projectors P, Q, R.

The results we have obtained could give new insights into quantum logic [35]. In quantum
logic, we can show that (i) the projectors of the Hilbert space are seen as representations of
elements of the orthomodular lattice, which governs the algebraic relations among quantum
propositions [36], and (ii) the probability measure on the projectors is given by the Born rule
(the Gleason theorem). Note that these outcomes are formal, and suggest nothing about the
interpretations of the quantum probability.

In contrast, we have derived the Born rule based on assumptions which are easy to understand
as the inference rules in the Boolean sublattice. Thus, we may say that, on the basis of quantum
logic, we have arrived at an interesting and new viewpoint: the Born rule is the natural extension
of the standard inference rules to the orthomodular lattice structure.

One interesting question is whether the framework presented here can be extended in such
a way that the mapping w(ε( ·| | Q)) takes the form of Eq. (56) even for the σ -additive case
(infinite n in Eq. (57)). As pointed out in Chapter 2 of [8], such extension requires “a well-
defined and well-behaved limiting process from a finite set.”It seems challenging to show the
existence of such a limiting process for general sequences of projectors {P1, P2, …, Pn}. Note
that, for many practical purposes, it would suffice to consider the finite-set cases, since actual
experimental apparatuses have finite resolution and limitations on the measurement range.

We must mention that the inference approach is one of the conceptual foundations in machine
learning [37]. In particular, various non-informative prior distributions such as Jeffery’s prior
are proposed on the line of thought of logical interpretation. Analogously, our results may
provide a conceptual basis for quantum machine learning [38], which is a recent central issue
in quantum information theory [39].
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Appendix. Proofs of Eqs. (20) and (41)
We first prove Eq. (20) by following the argument given in Ref. [8]. To this end, we note De
Morgan’s law for elements A, B of the abstract Boolean algebra [27]:

¬(A ∨ B) = ¬A ∧ ¬B. (A1)

Let us turn to the finite additive class F , which is the concrete Boolean algebra. Three Boolean
operations, and, or, and not, have been defined in Eqs. (10). By using Eqs. (A1), (16), and (17),
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we then obtain

w(ε(A ∨ B | C)) = 1 − w(ε(¬(A ∨ B) | C))

= 1 − w(ε(¬A ∧ ¬B | C))

= 1 − w(ε(¬A | C))w(ε(¬B | ¬A ∧ C))

= 1 − w(ε(¬A | C)) [1 − w(ε(B | ¬A ∧ C))]

= w(ε(A | C)) + w(ε(¬A | C))w(ε(B | ¬A ∧ C))

= w(ε(A | C)) + w(ε(¬A ∧ B | C))

= w(ε(A | C)) + w(ε(B | C))w(ε(¬A | B ∧ C))

= w(ε(A | C)) + w(ε(B | C)) [1 − w(ε(A | B ∧ C))]

= w(ε(A | C)) + w(ε(B | C)) − w(ε(A ∧ B | C)), (A2)

which completes the proof.
We can prove Eq. (41) by making the above argument and replacing the elements A, B,C ∈

F with P, Q, R ∈ C. respectively. The Boolean operations acting on P, Q, R ∈ C are given by
Eqs. (28).
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