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Abstract

In this paper we provide a formula for the canonical differential form of the
hypersimplex Ay, for all n and k. We also study the generalization of the
momentum amplituhedron M, x to m = 2, which has been conjectured to share
many properties with the hypersimplex, and we provide counterexamples for
these conjectures. Nevertheless, we find interesting momentum amplituhedron-
like logarithmic differential forms in the m = 2 version of the spinor helicity
space, that have the same singularity structure as the hypersimplex canonical
forms.
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1. Introduction

Geometry has always played an essential role in physics, and it continues to be crucial in many
recently developed branches of theoretical and high-energy physics. In recent years, this state-
ment has been supported by the introduction of positive geometries [1] that encode a variety
of observables in quantum field theories [2—5], and beyond [6—8], see [9] for a comprehen-
sive review. These recent advances have also renewed the interest in well-established and very
well-studied geometric objects, allowing us to look at them in a completely new way. One
essential new ingredient introduced by positive geometries is that to every convex polytope,
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one can associate a meromorphic differential form with the property that it is singular on all
boundaries of the polytope, and the divergence is logarithmic. Moreover, when each boundary
is approached, an appropriately defined residue operation allows one to find the differential
form of the boundary with the same properties. This process can be repeated and eventually
one arrives at a zero-dimensional boundary with a trivial O-form equal £1. Such canonical
forms can be found for every convex polytope and for more complicated ‘convex’ shapes in
Grassmannian spaces, which has been conjectured for the amplituhedron [2] and the momen-
tum amplituhedron [4]. Many well-known convex polytopes made their recent appearance in
physics in the context of positive geometries, the primary example given by the associahedron
featured in the bi-adjoint ¢ scalar field theory [3] or, more generally, generalized permuta-
hedra discussed in [10]. More recently, another well-known polytope, the hypersimplex Ay ,,
also has become relevant in the positive geometry story. It was conjectured in [11] and conse-
quently proven in [12] that a particular class of hypersimplex subdivisions are in one-to-one

correspondence with the tilings of the amplituhedron .Af,i, which is a prototypical example of

a positive geometry. Moreover, it was conjectured that its spinor helicity cousin, .Mf,l, which
is a generalization of the momentum amplituhedron M, ; [4], shares many properties with the
hypersimplex. This paper focuses on the latter statement and tries to verify whether it is cor-
rect. To this extent, we start by treating the hypersimplex as a positive geometry and finding its
canonical differential form. In particular, the hypersimplex A, can be defined as the image of
the positive Grassmannian through the (algebraic) moment map [13] (see also [11]). Using this
fact, we find a simple expression for the hypersimplex canonical form, which can be obtained
by summing push-forwards of canonical forms of particular cells in the positive Grassmannian
G (k, n). The momentum amplituhedron .Mff,i has also been defined as the image of the same
positive Grassmannian using a linear map @ , ) [11], which we will define in the main text.
After taking the same collection of positroid cells in the positive Grassmannian, and summing
their push-forwards through the @, 3, map, we find a simple logarithmic differential form
in spinor helicity space, that has the same singularity structure as the hypersimplex canonical
form. However, it is not the canonical form of .Mf,l Moreover, we show that M,(lz,)( does not
possess the desired properties conjectured in [11].

The paper is organized as follows: in section 2 we recall the definition of hypersimplex,
describe its boundary structure and define positroid tilings. We also provide a previously
unknown formula for its canonical differential form. In section 3 we recall the definition of
the momentum amplituhedron .Mff,)( introduced in [11] and find a logarithmic differential form
defined on the m = 2 version of the spinor helicity space, that has the same singularity struc-
ture as the hypersimplex canonical form. We also comment on the validity of the conjectures in
section 11 of [11]. We end the paper with a summary and outlook, and appendices containing
the definitions of positive geometries and push-forwards, and proofs of some of our statements
from the main text.

2. Hypersimplex

The hypersimplices A, form a two-parameter family of convex polytopes that appears in vari-
ous algebraic and geometric contexts. In particular, they have been used to classify points in the
Grassmannian G(k, n) by studying their images through the moment map [13]. This naturally
leads to a notion of matroid polytopes and matroid subdivisions [14—16], which are in turn
related to the tropical Grassmmanian [14, 17, 18]. When the Grassmannian G(k, n) is replaced
by its positive part G (k, n), the moment map image of G (k, n) is still the hypersimplex Ay,
and one can use it to study positroid polytopes [19], positroid subdivisions [11, 20, 21] and
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their relation to the positive tropical Grassmannian [22]. In this paper we look at the hypersim-
plex A, from the point of view of positive geometries'. As the main result of this section, we
provide an explicit expression for the canonical differential form for Ay, for all n and .

2.1. Definitions

We denote by ¢; the standard basis vectors in R”. The hypersimplex A, is then defined” as
the convex hull of the indicator vectors ¢; = ) ,; ¢; where I is a k-element subset of [n] =
{1,2,...,n}. Since for all x = (xy,...,x,) € A, we have x| + - - - + x,, = k, the hypersim-
plex Ay, lives in an (n — 1)-dimensional affine subspace inside R". Moreover, the hypersim-
plex Ay, is identical to the hypersimplex A, _, after the replacement I < [n]\I. We refer to
this symmetry as a parity symmetry.

Equivalently, the hypersimplex A, can be defined as the image of the positive Grassman-
nian G4 (k, n) through the moment map [13]. For a given n and 0 < k < n, the Grassmannian
G(k,n) is the space of all k-dimensional subspaces of R”. Each element of G(k,n) can be
viewed as a maximal rank £ x n matrix modulo GL(k) transformations, whose rows span the k-
dimensional space. We denote by ( IZ] ) the set of all k-element subsets of [1]. Then for/ € ( [ZJ ) ,
we define p;(C) to be the k X k minor formed of columns of C labelled by elements of /. We
call these variables the Pliicker variables, and they are defined up to an overall rescaling by a
non-zero constant. The positive Grassmannian G4 (k,n) is the set of all elements C € G(k, n)
for which p,(C) > 0 forall I € ("'). Finally, we define the moment map

i Glk,n) - R", 2.1)
as
2ilpi(O)Pe
(C) =&~ 2.2)
T m©r
Then, the hypersimplex is the image of the (positive) Grassmannian
Ay = Gk, n)) = (G (k, n)). (2.3)

If we restrict our attention to the positive Grassmannian G (k,7n), we can instead use the
algebraic moment map [23]

ZIPI(C)eI
>pi(C)

which will significantly simplify our calculations in the following. Most importantly, we have

mC) = 24

Apn = UG (k, n)), 2.5

see [11] for more details.
An important fact we will use later is that the positive Grassmannian G (k, n) has a natural
decomposition into cells of all dimensions [24]. For a subset M C (1), we denote by Sy the

subset of all elements in the positive Grassmannian G (k, n) such that their Pliicker variables

' For an introduction on positive geometries, we refer the reader to [1], we also collect some basic information in
appendix A.

2 Alternatively, the hypersimplex A, can be defined as the intersection of the hyperplane x; + - - - 4 x,, = k with the
unit cube in R".
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are positive, p; > 0, for I € M, and they vanish, p; = 0, for I ¢ M. If Sy, # ) then we call Sy,
a positroid cell. Positroid cells can be labelled by various combinatorial objects, most impor-
tantly by bounded affine permutations 7 on [n] [25]. From now on we will use S instead of
Sy to label positroid cells of the positive Grassmannian.

In the following, we will adopt the notation from [11]. The closure of the image of the
positroid cell S; through the algebraic moment map i is called a positroid polytope [19],
and we denote it by I'; = /i(S,). We will be interested in a particular type of positroid poly-
topes: if the dimension of I'; is n — 1 and [ is injective on S; then we call I'; a positroid
tile. We will use positroid tiles to define positroid tilings of the hypersimplex Ay,, which
will allow us to find its canonical differential form wy,. One important property of this dif-
ferential form is that it is logarithmically divergent on all facets of the hypersimplex Ay,,.
These facets are also positroid polytopes, of dimension n — 2, and can be described using
the underlying cell decomposition of the positive Grassmannian G (k,n). In particular, for
1 < k < n — 1, there are exactly 2n boundaries of the hypersimplex A ,, and they come in two
types: x; = Qorx; = 1, fori = 1,...,n. In the former case, they are images of positroid cells
S with dim S; = (k — 1)(n — k), and the positroid polytope I';; is isomorphic with the hyper-
simplex Ag_1,,—1. In the latter case, we find positroid cells S, with dim S, = k(n — k — 1), and
', is identical with the hypersimplex Ay, . The exceptional cases are fork = l ork =n — 1
when the hypersimplices A, and A,,_; , are just simplices, with only one type of boundaries:
x; = 0fork = 1and x; = 1 fork = n — 1.In all these cases, the permutations corresponding to
boundary positroid polytopes can be found using the package amplituhedronBoudaries
[26]. The package also provides an easy way to find the complete boundary stratification of
the hypersimplex Ay ,.

2.2. Hypersimplex canonical forms

We are now ready to explain how to find the canonical differential form wy , for the hypersim-
plex Ay,. We will use the fact that all hypersimplices can be subdivided using a collection of
positroid tiles whose interiors are non-overlapping and whose union equals Ay ,,. We will call
such collection a positroid tiling of Ay,. Having found a positroid tiling of Ay,, the canon-
ical differential form wy, can be calculated as a sum of push-forwards through the algebraic
moment map /i of the canonical forms of the corresponding positroid cells in the positive Grass-

mannian G (k, n). More specifically, if T = {m,...,7,}, with Sy, C G(k, n) a positroid cell
fori=1,...,p, is a collection of bounded affine permutations for which {T',, ..., Fﬂp} isa
positroid tiling of A, then
Win = D fix wr, (2.6)
TeT

where w; is the canonical form of the positroid cell S, and /. indicates the push-forward
through [ defined in appendix A.

As already mentioned, the hypersimplex Ay, reduces to a simplex fork = lork =n — 1.In
these cases no tiling is required since the algebraic moment map is already injective, and we can
take the push-forward of the top form on the positive Grassmannian G4 (1,n) or G (n — 1, n).
A simple calculation leads to the following canonical differential forms

wip = d log (“) A...Adlog (x") 2.7)

X1 X1

|- - x,
wno1n = d log )AL Adlog ) 2.8)
l—xl 1—X1

4




J. Phys. A: Math. Theor. 55 (2022) 205202 T tukowski and J Stalknecht

These are just canonical differential forms on the projective space P*~!, with homogeneous
coordinates (xi, .. ., x,) in the first case and (y,,...,y,) = (1 — xy,...,1 — x,) in the second
case.

For 1 < k < n — 1, the algebraic moment map /i is not injective anymore, and the image of
the positive Grassmannian through fi covers the hypersimplex Ay, infinitely many times. To
find the canonical form wy, we need to divide the hypersimplex into smaller non-overlapping
pieces for which the algebraic moment map is injective, namely positroid tiles, such that their
union equals Ay ,. Such subdivisions have been extensively studied in [11], where they were
related to subdivisions of the amplituhedron [2], and to the positive tropical Grassmannian [22].
For our purposes, we need to find a single positroid tiling for a given hypersimplex Ay ,,. There
are various ways to find such tilings: for example using height vectors from the tropical positive
Grassmannian [11], using the amplituhedron and T-duality [11], or using blade arrangements
[21]. In the simplest non-trivial example, A, 4, one finds two positroid tilings:

e Positroid polytope I'(3546y With vertices {e(;2}. €13}, €{1.4}, €723}, €124} } and positroid
polytope I'( 4 5.7y with vertices {e(; 3}, e{14}, €23}, €24} €34} } OF

e Positroid polytope I'y4356y With vertices {ef) 2}, €13}, €{1.4}» €{2.4}- €34} } and positroid
polytope F{3’476’5} with vertices {6{1’2}, €{1,3}>€{2,3},€{24}> 6{3’4}}

Where we explicitly specified the affine permutations labelling cells in G4 (2,4). Each of
these polytopes is the image of a positroid cell S in the positive Grassmannian G4 (2, 4), and
the algebraic moment map /i is injective on all of them. This allows us to invert i1 on these
cells, and to find the push-forward of the canonical forms for them. For each cell we find that
the resulting differential form has singularities corresponding to spurious boundaries between
polytopes in a tiling. For example, in the first positroid tilings above, we find a singularity at
x1 + x, = 1. However, this singularity disappears in the sum of terms, and we get a differential
form in the so-called local form, with all singularities corresponding to the boundaries of the
hypersimplex A, 4. We find the following explicit expression for wy 4:

oa(2) o (2 o2

o)) (2
on2)sem () om )
o) (2) (1)

—dlog [~V adiog (2 ) Adlog [ ). 2.9)
l—xl 1—x1 1—X1

Interestingly, this expression can also be understood in a different way: each three-formin (2.9)
is a differential form of a three-dimensional simplex, where the boundaries of each simplex can
be read off from the singularities of the form. Then (2.9) suggests that the hypersimplex A, 4
can be obtained from the simplex with boundaries at x; = 0,i = 1,.. ., 4, after removing from
it four simplices 7; with boundaries x; = 1, x; = O for j # [,for/ = 1,...,4. This is indeed a
correct statement, as is illustrated in figure 1. Notice that (2.9) is not manifestly invariant under
the parity symmetry x; <> (I — x;), which we would expect to be true for A, 4. In particular, a
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_{1.4)

Figure 1. An interpretation of A, 4 using three-dimensional simplices. The big simplex
has all facets on the hyperplanes x; = 0, the four blue simplices have three facets on
the hyperplanes x; = 0, and one on a hyperplane x; = 1. The projection from the 3D
hypersurface in R* to R3 is given by (x|, X2, X3, x4) — (X1, X2, X3).

parity conjugate version of (2.9) is

1— 1— 1—

w2,4:dlog<1 ?)/\dlog(1 ?)/\dlog<1 f‘)

— X1 — X1 — X1

1—

—d log R A d log > Ad log x4

— X1 1— 1 1—)C1

— 1—
_dlog< - ?)/\dIOg(lfxl)/\dlog<1_i‘;)
_dlog< 2 )/\dlog(i_ 3)/\dlog(l_M)

— X1 — X1 1

1- 1- 1-
—dlog( xz)/\dlog( x3>/\dlog< x4>. (2.10)
X1 X1 X1

However, using the constraint x; + x, + x3 + x4 = 2, one can easily verify that (2.9) and
(2.10) are the same. The formula (2.10) provides an alternative interpretation for A, 4 as a
simplex with all boundaries at x; = 1 with four smaller simplices removed.

Our study of the hypersimplex A, 4 can be easily generalized to A, for any n and k. In all
these cases we need to find a single positroid tiling of the hypersimplex Ay, and to use the
algebraic moment map /i to calculate the push-forward of differential forms on Grassmannian
positroid cells, summing over the tiling. This allows us to find a general formula for the hyper-
simplex canonical form wy,. Our result has logarithmic singularities on all boundaries of the
hypersimplex Ay ,, which are of the form Ay_; ,_; or Ay,_,, and the residue when evaluated
at these boundaries is wy_1,—1 and wy 1, respectively.

Before writing down an explicit form for wy,, we need to introduce some notation which
will allow us to write it in a concise way. Let us consider a (d — 1)-dimensional bounded
region with exactly d boundaries, where each boundary is of one of two types: boundaries at
hyperplanesa; = 0,i = 1, ..., d, and boundaries at hyperplanes b; = 0,i = 1, ..., d. We know

6
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that a generic set of d hyperplanes in a (d — 1)-dimensional space defines a simplex. Let us
take J € ([d]) and denote by X, the simplex bounded by hyperplanes a; = 0 for j € [d]\J and
by = 0 for J € J. The canonical differential form o for the simplex X is then

aj, for j & J,

d
UJ:/\dlog <ﬂ>, where o; = { (2.11)
j=2 “

bj, for j € J.

The choice of «; in the denominator is arbitrary, and any other «;; can be chosen at the cost
of an overall factor (—1)/*!. The simplex described above has d — [ facets of the form a; = 0,
and / facets of the form b; = 0. It will prove useful to define a sum of the forms o, over all
simplices with this distribution of facets:

o= Y oy (2.12)
re ()

This sum over all simplices with a specific facet distribution enjoys useful properties. First of
all, there is an inductive way to find 0,4 from 0,4 and 0,1 4-:

b
Old = Old— 1/\d10g< )‘FU[ Ld— 1/\d10g< d) (2.13)
aj bj

forany j=1,...,d — 1. From this it immediately follows that:

Res O1d = Old—1, (214)
ag=0
Res 010 = 01-14-1, (2.15)
by=0

where, by using (2.12), the right-hand side does no longer depend on a,, b;. More generally,
we can take a residue fora; = 0 or b; = O forany j=1,...,d, and obtain similar formulae
with the right-hand side relabelled. Also, let us notice that the parity symmetry that exchanges
aj with b; leads to

aj<>b;

Old Mad,[,d. (216)

Finally, by expanding d log (a i/ 1) =d log o; — d log o one can alternatively write (2.11)
as:

ai, lfl ¢ ],
Z( DA dlogla). o= { N 2.17)
ield\{j} b, ifi e J.

Note that the d terms in the sum of (2.17) can be divided into two categories: there are / terms
with [ one-forms dlogb;’s and d — [ — 1 one-forms dloga;’s, and there are d — [ terms with
[ — 1 one-forms dlog b;’s and d — [ one-forms d log a;’s. We introduce the notation

a;, ifi%],
nd_Z( ntt >y A dlog a,:{ . (2.18)

([d]\{]}>ze[d]\{]} b;, ifiel,
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which is the sum over all terms with exactly / dlogb;’s and d — [ — 1 dloga;’s with minus
signs consistent with (2.17). It then follows that:

Old = Tid + Ti—1d- (2.19)

From this, it is easy to arrive at the following identity:

d
> (Do =0, (2.20)
=0

since the alternating sum makes the terms in (2.19) telescope, and we use the fact that 7_; 4 =
Tdd = 0.

Armed with this formalism we can now set ¢; = x; and b; = 1 — x;, and write the canonical
differential form wy, for the hypersimplex Ay, for general n and k as:

k—1 n—k+1
win = Y (Do = > (=1 "o, (221)
1=0 1=0

The equality between these two expressions comes from (2.20) and the fact that on the support
of the hypersimplex constraint x; + - - - + x, = k we have:

ok = 0. (2.22)

As mentioned before, the alternating minus signs have the effect that terms telescope when
expanded using (2.19). This allows us to write the hypersimplex form as a single term:

Wikn = Thk—1,n- (223)

We will sketch a proof of formulae (2.21) and (2.23) in appendix B.1.
Using the properties of the forms ¢ and 7, we can immediately read off the following
properties for the hypersimplex canonical forms:

xi>1—x;

Wkn S Wn—kn>» (224)
Res win = win-1, (2.25)
RESI Win = Wk—1n—1- (2.26)

This reflects the proper structure of hypersimplex boundaries, and the fact that A, is parity
dual to A,y -

We summarize this section by rewriting the results we obtained above fork = 1,k =n — 1,
and n = 4,k = 2 using this generalized notation. For the cases when the hypersimplex is a
simplex, namely k = 1 and k = n — 1, we can write

Win = Oon = O¢, (227)

Wn—1n = Oppn = O[n)- (228)
For n = 4, k = 2 we simply find

W24 = 004 — 014 = 0p — O0{1} — O0{2} — 0{3} — 04}, (2.29)
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where the second expression supports the discussion after formula (2.9). We can also see a
similar behaviour for higher n, for example for A, , we find

Wan = O0n = 01 =00 — »_ 0}, (2.30)

i=1

where each o ; corresponds to an (n — 1)-dimensional simplex with one facet at x; = 1 and
all other facets at x; = 0 for j # i. This discussion motivates us to rewrite the general formula
(2.21) in a slightly different way:

Wikn = Op — Z an — Z o, — e Z Ol 5
ne(®) \ee(?) ke ()

(2.31)

where each term is the canonical form of a simplex. This is equivalent to the following set-
theoretic statement for Ay ,:

Aa=%\| U =\ U =\ U B , (2.32)
ne()  \ue(¥) heae()

which to our knowledge has not been previously known. A sketch of a proof that this indeed
holds for all hypersimplices is provided in appendix B.2.

3. Momentum amplituhedron

The momentum amplituhedron M, is a positive geometry introduced in [4] to describe
tree-level scattering amplitudes in A/ = 4 sYM in spinor helicity space. Its counterpart in
momentum twistor space is the amplituhedron A, ; [2], which has a natural generalization
Af:"}() beyond the case relevant to physics, labelled by an integer m, with m = 4 corresponding
to the physical case. It was observed in [11] that a natural generalization also exists for the
momentum amplituhedron for even m, and the authors of [11], including one of the authors

of this paper, suggested a possible definition for M,(ﬁ{) for even m. In particular, they conjec-

tured in section 11 of their paper that, for m = 2, the momentum amplituhedron ./\/l,(lz,)( shares
many properties with the hypersimplex Ay ,. Their main conjecture stated that the positroid
tilings of the hypersimplex Ay, are in one-to-one correspondence with positroid tilings of the
momentum amplituhedron M,(f,i Based on this, it was found in [26] that the boundary stratifi-

cation of the momentum amplituhedron M,(lz,)( is analogous to the boundary stratification of the
hypersimplex Ay ,. In this section we show that both statements are not correct and find their
counterexamples.

Despite the fact that the definition of ./\/lff,i in [11] does not provide an object closely related
to the hypersimplex Ay ,, we find interesting differential forms that can be naturally defined
in the space introduced there. These differential forms have properties analogous to the hyper-
simplex canonical forms wy, we studied in section 2. They are not, however, canonical forms

of the momentum amplituhedron M,(lz,)( defined in [11].

9
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3.1. Definition of m = 2 momentum amplituhedron

We follow the notation in [11] and provide the definition of the momentum amplituhedron
M,(lz,)( It relies on two matrices A and A, encoding the ‘external data’:

A=AMA...N) EMn—k+1,n), A=A, ...A,) € MKk+1,n).
(3.1

One assumes that A is a positive matrix, i.e. all its maximal minors are positive, and A is
a twisted positive matrix, i.e. the matrix describing its orthogonal complement is a positive
matrix. Then, the m = 2 momentum amplituhedron M,(f,){ is defined as the image of the positive
Grassmannian G (k, n) through the map specified by these matrices:

d,:Gikn) > Gn—kn—k+1)xGlhk+1), C—(.Y),

(3.2)

(AR)

where

YA = cLAY YA = coih (3.3)

aitM oo a

Weuse C = {cs} € Gy(k,n),and C+ = {c;} is the orthogonal complement of C. The image
of the positive Grassmannian naturally lives in an (n — 1)-dimensional subspace of the (n —
k + k = n)-dimensional space G (n — k,n — k + 1) x G (k, k + 1) specified by the ‘momentum
conservation’-like identity:

n

St -A)i<17l : 7\). —0, (3.4)

; i
i=1

v~vhere Yt e G(l,n—k—1)and Yle G(1,k + 1) are the orthogonal complements of ¥ and
Y, respectively. Similar to the m = 4 momentum amplituhedron ./\/lff,){ in [4], we define the

‘spinor helicity’ variables A, ) as:
. e A An
Ni= (YD) = €aayn, gty 0 Vi Va2 o YA EATH (3.5)
o AP
M= Vi = €, auag, V1Y% VEAT (3.6)

These A and X variables satisfy a similar ‘momentum conservation’ identity:

En: i\ = 0. (3.7)
i=1

3.2. Momentum amplituhedron-like logarithmic forms

Before discussing the geometry of M,(f,i, let us focus on differential forms that can be defined in

the (\, \) space. Since the domains of the maps /i and ® , 3, are the same, a natural question
is what happens when we take a collection of positroid cells in the positive Grassmannian
G (k,n) that provides a positroid tiling of the hypersimplex Ay,, and evaluate their push-
forwards using the momentum amplituhedron map @ , 3, (3.2). An important observation is

that this push-forward does not depend on the positivity conditions for the A and A matrices.

10
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Taking any collection of G (k,n) positroid cells labels 7 = {my,...,m,} that gives a
positroid tiling of A, we can define
Dk = D (D5 1)) s (3.8)
TeT

where w; is the canonical form of the positroid cell Sr, and (P, 3)). indicates the push-
forward?. We have calculated @,,; using positroid tilings of hypersimplices up to n = 7, all k,
and found that the answer is independent from the tiling. Moreover, it can be expressed using
the notation we introduced in section 2.2. By taking o, defined in (2.17), and substituting
a—\ b— 5\, we can write the differential form @, ; in (3.8) as:

k—1

Wk = Z O1ns  for kodd, (3.9)
1=0,24,...
k—1

Tk = Y ou forkeven. (3.10)
I=135,...

We believe that these formulae are true for any n and k. These can also be written in a more
uniform way using the differential forms 7 from (2.17) as

k—1
Dok = 3 Tia (3.11)
=0

Interestingly, these differential forms have properties similar to those we have found for
the hypersimplex canonical forms wy,. In particular, they are parity symmetric when A is
exchanged with \:

Wk Mwn—k,k- (3.12)

This can be shown using a version of equation (2.20):

<n <n
Y o= Y. om (3.13)

1=0,24,... 1=135,...

and the fact that on the support of momentum conservation we have:

<n <n n
Oln = o =0, for> M\ =0. (3.14)
> > >

1=0,24,... =135,... i=1

Additionally, the differential form @, x has an identical singularity structure with the hypersim-
plex canonical forms wy ,, namely:

Res Wy x = Wn—1.s (3.15)
Res wn,k = wn_l,k_l. (316)
=0

3 The signs of push-forwards are fixed such that the common singularities appearing in different terms, i.e. the spurious
singularities, have a vanishing residue. We found that it is always possible to find such combinations of signs.
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Analogous formulae are also true if we replace )\, 5\,1 with any other );, 5\,- fori=1,2,...,n.
These formulae indicate that the structure of singularities of the differential form @, 4 is exactly
the same as the structure of singularities of wy , in section 2.2, after we identify \; with x;, and
A; with 1 — x;. In particular, there are exactly 2n singularities, n of which are of the form
A\ = 0, and n of which are of the form A; = 0. The residues at these singularities are given by
differential forms @ with lower labels as in (3.15) and (3.16), providing us with a recursive
description akin to the one for the hypersimplex canonical forms wy,.

3.3. Geometry

Our calculations in the previous section pose a natural question whether there exists a geometric
object for which @, ; provides the canonical differential form. The first guess would be that this
object must be the momentum amplituhedron defined in section 3.1. We have however checked
that even in the first non-trivial example, for n = 4, k = 2, the momentum amplituhedron ME@
defined above is not the correct geometry. Instead, one needs to modify the positivity conditions
in the definition of Mf% to get a geometry with wy, as the canonical form. Even after this
modification, the final conjecture of section 11 in [11] is still not correct since, depending
on the choice of external data, only one out of two positroid tilings of the hypersimplex A; 4
provides a tiling of such modified momentum amplituhedron. This can be attributed to the fact
that, even with the modified positivity conditions, the region we define looks concave. We have
found that for k = 2 and any n we can always find conditions for external data A and A such
that the resulting geometry can be tiled using some, but not all, of the positroid tilings of the
hypersimplex A, ,. Similar statement holds true for k = n — 2, as well as forn = 6 and k = 3.
It is, however, not possible beyond these cases and therefore we conclude that <I>( A% cannot
be used to define a geometry for which @, is the canonical differential.

Let us start by stating that for k = 1 and for k = n — 1 the momentum amplituhedron .Mff,)(
is just a simplex. In these cases, the map & , 7, is injective and there is no need for any tiling.

Then the canonical differential form for M) is

Wy = d log <§\\2> A...Adlog (i") , (3.17)
1 1

and for M,(Z,)l_l is

Wpn—1 = d log ﬁ A...Ad log ﬁ . (3.18)
)\1 >\1

Trivially, the boundary stratifications of Mf; and Mf}l_l are equivalent to the boundary

stratifications of the hypersimplices A, and A, ,,, respectively.

Beyond k =1 and k = n — 1, the map <I>( AK) is not injective anymore, as was the case
for the algebraic moment map fi. There are, however, significant differences between the two
geometries that we illustrate in detail in the simplest non-trivial case: n = 4, k = 2. Recall that
the hypersimplex A, 4 is an octahedron depicted in figure 1, and it can be subdivided using
pairs of positroid polytopes in two different ways. These positroid polytopes are images of
some three-dimensional cells, labelled by 7 and 7', in the positive Grassmannian G (2,4)
through the algebraic moment map . In particular, they have spurious boundaries along the
hyperplanes x; + x, = 1 or x, + x3 = 1. This can be easily seen by considering the shared
co-dimension-one boundaries of cells S; and S, in the positive Grassmannian G (2,4), and
studying images of such boundaries through the moment map. A similar analysis can be done

12
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using the @, 3, map and the images of the three-dimensional cells have spurious boundaries
along )\15\1 + )\25\2 = 0 (two cells) or >\25\2 + A3 5\3 = 0 (two cells). For a pair of cells to be a
tiling of Mf@, their images must be disjoint. This means that close to their shared boundary,

the images need to sit on the opposite sides of the surface MAL+ XA =0 (resp. Ao +
A3A3 = 0). For example, let us consider positroid cells in G (2, 4) labelled by the permutations
m = {3,4,6,5} and m, = {4,3, 5,6} which are parametrised by matrices:

(1 a3 0 -—a (1 0 0 =5
Cn = (o I e 0 ) Cr, = (0 1 8 B (319
with a; > 0 and 3; > 0. In the positive Grassmannian G (2,4) these cells share a boundary
Sz, NS, = Sa365 that is the cell labelled by m1» = {4, 3, 6,5}, parametrised by the matrix

_(1 0 0 —m
C7Tm2_ (O 1 Y2 0) (320)

with «; > 0, whose image is the spurious boundary inside the surface M + AsA3 = 0. For
the cell parametrized by the permutation 7; we find

Ao 4 Ashs = ([123] — o [234])(— (134) + an (124)) a3, (3.21)

with a; > 0, where the points on the spurious boundary correspond to setting oz = 0. For the
cell parametrized by the permutation 7, we find

Mda + A3y = —((234) + B1(123))([124] + Ba[1341)5, (3.22)

with 3; > 0 and the spurious boundary corresponds to setting 53 = 0. Then, assuming the
positivity conditions for A and A from section 3.1, there exists an open set U in S such that
([123] — 7,[234])(—(134) + ~,(124))7, < 0 and for any sufficiently small neighbourhood of
U in S;,, the right-hand side of (3.21) is negative. This means that in the neighbourhood of
the set U, the images of Sy, and S;, are on the same side of the surface )\25\2 + )\35\3 =0,
and therefore they do intersect. Therefore they do not provide a positroid tiling of Mf; This
provides a counter-example to the statements in section 11 of [11].

By changing positivity conditions, it is possible to slightly modify the definition of the
momentum amplituhedron to get a geometry for which @, 4 provides the correct canonical
form. For example, if we assume

[123] >0,  [I124]>0, [134]>0, [234] <0,
(123) >0,  (124) >0,  (134) <0,  (234) >0 (3.23)

then the <I>( AR images of cells labelled by permutations 7| and 7, do not overlap, since Ao +

As)A; has opposite sign for all elements in these cells, and they subdivide the image of the
positive Grassmannian G (2, 4). Therefore the logarithmic form @, 4 is the canonical form of
this geometry. However, in this case, the images of the remaining two cells, 73 = {2,4,5,7}
and 74 = {3,5,4,6}, do overlap and they do not provide a subdivision of the image. This
comes from the fact that the image of the positive Grassmannian G (2, 4) through <I>( AR with
the positivity conditions (3.23) looks concave and has the shape depicted in figure 2.

Using similar analysis, we have found that a similar behaviour is true for higher n. In particu-
lar, we found that the image of G4 (k, n) through ® , 3z, with the positivity conditions described
in section 3.1, cannot be tiled by the images of the same cells as for the hypersimplex. As in the

13
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{1,3}

24)

Figure 2. A schematic image of the positive Grassmannian G (2,4) through the map
<I>( AK) with positivity conditions (3.23). The spurious boundary A\, + A3A3 = 0 is
shown in orange. The labels at the vertices indicate the nonvanishing Pliickers of the
0-dimensional positroid cells that map to them.

case described above, we checked that for k = 2 and the first few values of n, it is still possible
to modify positivity conditions such that there exists a collection of cells in G (2, n) that form
a positroid tiling of A,, and their images through P, i, are disjoint. In all these cases, the
differential form @, » from (3.9) is the canonical differential form of the corresponding image
of G(2,n) through @, 3,. Even this becomes impossible for higher k: we have computational
evidence that for n > 6 and 2 < k < n — 2 there are no tilings of A, for which the images
through the map ¢ (AR are disjoint. This shows that one cannot use the map <I>( AR to generate

a region in the (A, X)-space for which w, is the canonical form.

4. Summary and outlook

In this paper, we have studied two geometries, the hypersimplex Ay, and the generalization of
the momentum amplituhedron M,(f,){ proposedin [11], from the point of view of positive geome-
tries. We have provided two main results. One is the previously unknown formula (2.21) for the
hypersimplex canonical form wy,. The formula has a natural interpretation as a set-theoretical
decomposition of hypersimplex into simplices given in (2.32). Moreover, we provide a negative
but important result stating that the generalization of the momentum amplituhedron suggested
in [11] does not possess the desired properties. In particular, we have found counter-examples
showing that the conjectures in section 11 of [11] regarding positroid tilings of .Mf,z,l are not
valid. It can be attributed to the fact that the momentum amplituhedron for m = 2 is ‘concave’.
This, in turn, is related to the fact that the momentum amplituhedron for m = 2 shares prop-
erties with the ordinary amplituhedron for m = 1. The latter is known to be concave and,
in general, amplituhedra for odd m are less well-behaving than the ones for even m, see for
example [27]. We predict that the momentum amplituhedron for m = 2,6, 10, ... will have
similar behaviour, and the conjectures from section 11 of [11] will not hold in these cases. The
question remains open on whether the conjectures are correct for m divisible by four, beyond
m=4.
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In this paper we have also provided interesting differential forms written directly in the (), A)
spinor helicity space, which have properties analogous to those of the hypersimplex canonical
forms. This leads to the question of whether one can find a shape inside the (A, ) space with
the canonical differential form given by w,, ;. It is unclear from our explorations whether it will
be possible, and it remains an interesting open problem.
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Appendix A. Definition of positive geometry and push-forward

Positive geometries [1] naturally live in complex projective spaces PV, and their real parts
PY(R). One defines X to be a complex projective algebraic variety of complex dimension D
and X(R) to be its real part, and one denotes by X>o C X(IR) an oriented set of real dimension
D. A D-dimensional positive geometry is a pair (X, X>() equipped with a unique non-zero
differential D-form Q(X, X>¢), called the canonical form, satisfying the following recursive
axioms:

e For D = 0 we have that X = X is a single real point and (X, X>() = £1 depending on
the orientation of X>.

e For D > 0 we have that every boundary component (C, Cx) of (X,X>0) is a positive
geometry of dimension D — 1. Moreover, the form {2(X, X>) is constrained by the residue
relation

Resc Q(X, X>0) = Q(C, C>p), (A.1)

along every boundary component C, and has no singularities elsewhere.

The residue operation Res¢ for a meromorphic form w on X is defined in the following
way: suppose C is a subvariety of X and z is a holomorphic coordinate whose zero set z = 0
parametrizes C. Denote as u the remaining holomorphic coordinates. Then a simple pole of w
at C is a singularity of the form

w(u, z) = w'(u) A % +e, (A.2)

where the ellipsis denotes terms smooth in the small z limit, and «'(u) is a non-zero
meromorphic form on the boundary component. One defines

Rescw :=w'. (A.3)

If there is no such simple pole then one defines the residue to be zero.
We also define what we mean by the push-forward of a differential form. We consider a sur-
jective meromorphic map ¢ : A — B of finite degree p, where A and B are complex manifolds
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of the same dimension. For a given point b € B we can find its pre-image, namely a collection
of points ¢; in A, i = 1,.. ., p, satisfying ¢(a;) = b. Taking a neighbourhood U; of each point
a; and a neighbourhood V of b, we can define the inverse maps: ©; = ¢| Z/,-l : V — U,;. Then the
push-forward of a meromorphic top form « on A through ¢ is a differential form 3 on B given
by the sum over all solutions of the pull-backs through the inverse maps ;:

P
B=d.a=> o, (A.4)

i=1

where the pull-back of a differential form is a standard notion in differential geometry. In
practice, one solves the equation y = ¢(x) and for each solution x = v,(y) one substitutes the
explicit expression for x into the differential form «, and then sums the resulting forms.

Appendix B. Proofs

B.1. Sketch of a proof for formulae (2.21) and (2.23)

In this appendix we will provide a sketch of a proof of formulae (2.21) and (2.23), which give
explicit expressions for the canonical form of the hypersimplex A, ,. Since the two formulae
easily follow from each other, it will be sufficient to only prove (2.23).

We want to show that the canonical form wy, of the hypersimplex Ay, is given by

Wiin = Tk—1,n5 (B.1)

where

) | x. ifi ¢ 1,
=Y DY N dloga, O‘f:{

= re (W )it} 1 —xi, ifiel
1
(B.2)

Since we know the facet structure of the hypersimplex Ay, and in particular the fact that they
are hypersimplices Ag_1,—1 or Ag,—1, we have the following properties of wy,:

(a) win, 1 <k <n—1 has exactly 2n simple poles, n at x; =0 and n at x; =1 for i =
1,...,n,

(b) }SEE Wen = TW (i}
(© ng Wkn = TW— 1\ {i}»

Where wy )\ (iy is defined as wy,,— with the variables x’s relabelled in the following way:
xj— xjif j <1, x;— xjyqq if j > i. We will prove equation (B.1) by induction in n.

Assume that for some n = m, equation (B.1) holds for all 1 <k <m — 1. We want to
find wy 1, where for now we assume that 2 < k < m — 1. Using condition 2, we have that
Rggwk,mﬂ = Wi mr1\(i}» and therefore wy i1 = TWe g1y A dlogx; + - - -, where the

ellipsis . .. indicates the terms that do not have a pole at x; = 0. Note that wy ;417\ {;} €quals
wi.m With x’s relabelled, and therefore from the induction hypothesis we know that this is equal
tO T_1 pms17\{iy defined as 741, with the x’s relabelled as above. Then we have:

Went1 = ETe—t mypap iy Ad log x;+ -+ foralli € [m+ 1]. (B.3)
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Note that Re% The1m+1 = (—1)”‘iTk_1,[nl+1]\{,~}, hence the terms in wy 4 that have a residue
Xi=

at some x; = 0 correspond to the terms that appear in 74— ,+;. Next, we use the fact that

Res Res wi,t1 = — Res Reswy,41 to fix the relative signs of these terms. Importantly,
X,':O -XH»l:O -XH»l:O .X,':O

we find that the relative signs do agree with those of 74_; 4. Therefore, we conclude that
Wim+1 = ETe—1m+1 + P, where P is a term that does not have any poles at x; = 0. Next, from
point 3 and the explicit form of 74,41, we see that P also cannot have any poles when
x; = 1. From point 1 we then conclude that P cannot have any poles at all, including at infinity
and we find that P = 0 and thus wy +1 = £T¢—1,m+1. Finally, without loss of generality, we
can choose the orientation of Ay, such that we have a positive sign. This argument holds
forall 2 < k < m — 1. Since for k = 1 and k = m, hypersimplices A ,,+1 and A, ;41 are just
ordinary simplices, then we immediately see that (B.1) is also true in these cases. Therefore we
have that wy ,+1 = Tg—1,m+1 forall 1 < k < m. This concludes the inductive step. The base case
can be checked explicitly for example for n = 4, k = 2 (see equation (2.9) and the surrounding
discussion). Together, this proves the claim (B.1).

B.2. Sketch of a proof of formula (2.32)

We now turn to equation (2.32). We want to prove that the following formula is correct:

Aa=3\| U =\ U =\ |-\ U B , (B4
ne()  \ne(%) e

where X, I € (l'l’]) is the simplex cut out by the hyperplanes x; = 0,i ¢ I, x; = 1,i € I in the
n — 1 dimensional subspace of R” defined by the relation x; + x, + - - - + x, = k.

To simplify our discussion, we introduce an alternative labelling for the simplices X;: we
denote by X, p,,....5,) With b; = 0, 1, the simplex cut out by the hyperplanes x; = b; (equivalent
to 3yi5,=11)- Then, the inequalities that cut out these simplices are given by:

x;i < b, ifk<b
X1 =2, by,bn) = § Xi = by, iftk > b (B.5)
xi=b,  itk=b,

where I = {ilb; = 1}, and b = by + b, + - - - + b, = |I|. This can be understood as follows:
in R” the hyperplanes x; = b; intersect in the point (by, b, . . ., b,)T. Clearly, this point is above
the hyperplane x; + - - - 4+ x, = k when b > k, hence we need x; < b;. When b < k, the hyper-
planes x; = b; in R” intersect below the plane x; + - - - + x,, = k, and we thus require x; > b;.
When b = k these hyperplanes x; = b; in R” intersect in the point (b1, by, . . ., b,)" which is on
the plane x; + - - - + x, = k.

and d; = b; V ¢; ifwt“he three binary strings are ‘below k’: b,c,d < k (where b =), b;,c =
>-.cind =>".d;). Here, A and V are binary ‘and’ and ‘or’ operations, respectively. If one of
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the three binary strings is on the opposite side of k from the other two, then the intersection is

empty. In the language of ;1 € (")), we can summarize this result as follows:

DY If 1], [J|,[IUJ| < k
SO =4 S WAV Y (B.6)
0 otherwise.

An alternative way to define the hypersimplex Ay, is as the intersection of the unit cube in
R" and the hyperplane x; + x, + - - - + x,, = k. Explicitly, the hypersimplex is cut out by the
inequalities:

0<x <1, i=1,...,n (B.7)

constrained to the hypersurface x; + x, + - - - + x,, = k. It is thus clear that the hypersimplex

is completely contained inside the simplex ¥y = 0.0 = {x; > 0,i =1,...,n}. We now
look at the simplices with 1 and (n — 1) zeroes in their binary string, e.g. X1y = X1,..0) =
{x1 =2 1,x2 >20,...,x, > 0}. Itis clear that this simplex is a subset of ¥y and only intersects

with the hypersimplex along the face x; = 1. The analogous result holds for all >i¢;. In fact,
when we take away all simplices ¥;) from Xy, the only region that is left will be the interior
of the hypersimplex:

Aa=3\ | U = | (B.8)

where it is necessary to take the closure on the rhs because we also subtract all boundaries of
the hypersimplex.

In general, the simplices 7, 1 € (') overlap. Set-theoretically, this is not a problem and
equation (B.8) works just fine. However, from the point of view of positive geometries there are
certain regions that have been ‘subtracted twice’, hence the analogous equation does not hold
for the canonical forms. Instead we would like to subtract the intersecting parts of | J 1 ( g ) >

before subtracting it from >Jy:

A=\ | |J =\ U =uns, || (B.9)

16("1[]> J1,J2€(I’1[])

From the discussion above it is clear that, for example, 31y N Xy = Xy 53, and from this it

is not difficult to see that | J . 126([,1,]> XN, = Ul6 ( [;]) >;. However, we now run into the

same problem that the simplices X;, I € (lg]) can in general overlap. Continuing along the
same line, the union of two set 7,J € (") can result in either an element of (') or (11).
But, since Ule('ﬁl) C Ule(lg')’ we find that UII,IZG([;I) Y, NY, = UJe(lg') Y. In general,
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a similar reasoning implies that Ul1 e () Xy NYE, =U,, (f) ;. Thus, by continuously

removing the intersection of simplices in the way explained above, we find

Aa=3\| U =\ U =\ U = . (B.10)
116(['1”) IzE(Ig]) I/E(I;l])
This formula holds ‘set-theoretically’ for all / < k, but we can refine the amount of overlap
we subtract by increasing /. This process terminates naturally, since UILE ([,,]) Xy, is not full-
< k

dimensional and is just the set of the vertices of Ay ,. Then (B.4) is equivalent to (B.10) when
we set k = [. While the hypersimplex A, can be decomposed as (B.10) for any [ < k, when
| = k in addition we have that the sets that appear at a given level in the formula (B.4) are
disjoint when lower terms are subtracted. It allows us to translate this statement into an equality
of canonical forms, namely (2.31).
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