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Abstract
In this paper we provide a formula for the canonical differential form of the
hypersimplex Δk,n for all n and k. We also study the generalization of the
momentum amplituhedronMn,k to m = 2, which has been conjectured to share
many properties with the hypersimplex, and we provide counterexamples for
these conjectures. Nevertheless, we find interesting momentum amplituhedron-
like logarithmic differential forms in the m = 2 version of the spinor helicity
space, that have the same singularity structure as the hypersimplex canonical
forms.
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1. Introduction

Geometry has always played an essential role in physics, and it continues to be crucial in many
recently developed branches of theoretical and high-energy physics. In recent years, this state-
ment has been supported by the introduction of positive geometries [1] that encode a variety
of observables in quantum field theories [2–5], and beyond [6–8], see [9] for a comprehen-
sive review. These recent advances have also renewed the interest in well-established and very
well-studied geometric objects, allowing us to look at them in a completely new way. One
essential new ingredient introduced by positive geometries is that to every convex polytope,
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one can associate a meromorphic differential form with the property that it is singular on all
boundaries of the polytope, and the divergence is logarithmic. Moreover, when each boundary
is approached, an appropriately defined residue operation allows one to find the differential
form of the boundary with the same properties. This process can be repeated and eventually
one arrives at a zero-dimensional boundary with a trivial 0-form equal ±1. Such canonical
forms can be found for every convex polytope and for more complicated ‘convex’ shapes in
Grassmannian spaces, which has been conjectured for the amplituhedron [2] and the momen-
tum amplituhedron [4]. Many well-known convex polytopes made their recent appearance in
physics in the context of positive geometries, the primary example given by the associahedron
featured in the bi-adjoint φ3 scalar field theory [3] or, more generally, generalized permuta-
hedra discussed in [10]. More recently, another well-known polytope, the hypersimplex Δk,n,
also has become relevant in the positive geometry story. It was conjectured in [11] and conse-
quently proven in [12] that a particular class of hypersimplex subdivisions are in one-to-one
correspondence with the tilings of the amplituhedron A(2)

n,k, which is a prototypical example of

a positive geometry. Moreover, it was conjectured that its spinor helicity cousin, M(2)
n,k, which

is a generalization of the momentum amplituhedronMn,k [4], shares many properties with the
hypersimplex. This paper focuses on the latter statement and tries to verify whether it is cor-
rect. To this extent, we start by treating the hypersimplex as a positive geometry and finding its
canonical differential form. In particular, the hypersimplexΔk,n can be defined as the image of
the positive Grassmannian through the (algebraic) moment map [13] (see also [11]). Using this
fact, we find a simple expression for the hypersimplex canonical form, which can be obtained
by summing push-forwards of canonical forms of particular cells in the positive Grassmannian
G+(k, n). The momentum amplituhedron M(2)

n,k has also been defined as the image of the same
positive Grassmannian using a linear map Φ(Λ,Λ̃) [11], which we will define in the main text.
After taking the same collection of positroid cells in the positive Grassmannian, and summing
their push-forwards through the Φ(Λ,Λ̃) map, we find a simple logarithmic differential form
in spinor helicity space, that has the same singularity structure as the hypersimplex canonical
form. However, it is not the canonical form of M(2)

n,k. Moreover, we show that M(2)
n,k does not

possess the desired properties conjectured in [11].
The paper is organized as follows: in section 2 we recall the definition of hypersimplex,

describe its boundary structure and define positroid tilings. We also provide a previously
unknown formula for its canonical differential form. In section 3 we recall the definition of
the momentum amplituhedronM(2)

n,k introduced in [11] and find a logarithmic differential form
defined on the m = 2 version of the spinor helicity space, that has the same singularity struc-
ture as the hypersimplex canonical form. We also comment on the validity of the conjectures in
section 11 of [11]. We end the paper with a summary and outlook, and appendices containing
the definitions of positive geometries and push-forwards, and proofs of some of our statements
from the main text.

2. Hypersimplex

The hypersimplicesΔk,n form a two-parameter family of convex polytopes that appears in vari-
ous algebraic and geometric contexts. In particular, they have been used to classify points in the
Grassmannian G(k, n) by studying their images through the moment map [13]. This naturally
leads to a notion of matroid polytopes and matroid subdivisions [14–16], which are in turn
related to the tropical Grassmmanian [14, 17, 18]. When the Grassmannian G(k, n) is replaced
by its positive part G+(k, n), the moment map image of G+(k, n) is still the hypersimplex Δk,n,
and one can use it to study positroid polytopes [19], positroid subdivisions [11, 20, 21] and

2



J. Phys. A: Math. Theor. 55 (2022) 205202 T Łukowski and J Stalknecht

their relation to the positive tropical Grassmannian [22]. In this paper we look at the hypersim-
plex Δk,n from the point of view of positive geometries1. As the main result of this section, we
provide an explicit expression for the canonical differential form for Δk,n for all n and k.

2.1. Definitions

We denote by ei the standard basis vectors in R
n. The hypersimplex Δk,n is then defined2 as

the convex hull of the indicator vectors eI =
∑

i∈I ei where I is a k-element subset of [n] ≡
{1, 2, . . . , n}. Since for all x = (x1, . . . , xn) ∈ Δk,n we have x1 + · · ·+ xn = k, the hypersim-
plex Δk,n lives in an (n − 1)-dimensional affine subspace inside R

n. Moreover, the hypersim-
plex Δk,n is identical to the hypersimplex Δn−k,n after the replacement I ↔ [n]\I. We refer to
this symmetry as a parity symmetry.

Equivalently, the hypersimplex Δk,n can be defined as the image of the positive Grassman-
nian G+(k, n) through the moment map [13]. For a given n and 0 � k � n, the Grassmannian
G(k, n) is the space of all k-dimensional subspaces of R

n. Each element of G(k, n) can be
viewed as a maximal rank k × n matrix modulo GL(k) transformations, whose rows span the k-
dimensional space. We denote by

( [n]
k

)
the set of all k-element subsets of [n]. Then for I ∈

( [n]
k

)
,

we define pI(C) to be the k × k minor formed of columns of C labelled by elements of I. We
call these variables the Plücker variables, and they are defined up to an overall rescaling by a
non-zero constant. The positive Grassmannian G+(k, n) is the set of all elements C ∈ G(k, n)
for which pI(C) � 0 for all I ∈

( [n]
k

)
. Finally, we define the moment map

μ : G(k, n) → R
n, (2.1)

as

μ(C) =

∑
I |pI(C)|2eI∑

I |pI(C)|2 . (2.2)

Then, the hypersimplex is the image of the (positive) Grassmannian

Δk,n = μ(G(k, n)) = μ(G+(k, n)). (2.3)

If we restrict our attention to the positive Grassmannian G+(k, n), we can instead use the
algebraic moment map [23]

μ̃(C) =

∑
I pI(C)eI∑

I pI(C)
, (2.4)

which will significantly simplify our calculations in the following. Most importantly, we have

Δk,n = μ̃(G+(k, n)), (2.5)

see [11] for more details.
An important fact we will use later is that the positive Grassmannian G+(k, n) has a natural

decomposition into cells of all dimensions [24]. For a subset M ⊂
( [n]

k

)
, we denote by SM the

subset of all elements in the positive Grassmannian G+(k, n) such that their Plücker variables

1 For an introduction on positive geometries, we refer the reader to [1], we also collect some basic information in
appendix A.
2 Alternatively, the hypersimplex Δk,n can be defined as the intersection of the hyperplane x1 + · · ·+ xn = k with the
unit cube in R

n.
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are positive, pI > 0, for I ∈ M, and they vanish, pI = 0, for I /∈ M. If SM �= ∅ then we call SM

a positroid cell. Positroid cells can be labelled by various combinatorial objects, most impor-
tantly by bounded affine permutations π on [n] [25]. From now on we will use Sπ instead of
SM to label positroid cells of the positive Grassmannian.

In the following, we will adopt the notation from [11]. The closure of the image of the
positroid cell Sπ through the algebraic moment map μ̃ is called a positroid polytope [19],
and we denote it by Γπ = μ̃(Sπ). We will be interested in a particular type of positroid poly-
topes: if the dimension of Γπ is n − 1 and μ̃ is injective on Sπ then we call Γπ a positroid
tile. We will use positroid tiles to define positroid tilings of the hypersimplex Δk,n, which
will allow us to find its canonical differential form ωk,n. One important property of this dif-
ferential form is that it is logarithmically divergent on all facets of the hypersimplex Δk,n.
These facets are also positroid polytopes, of dimension n − 2, and can be described using
the underlying cell decomposition of the positive Grassmannian G+(k, n). In particular, for
1 < k < n − 1, there are exactly 2n boundaries of the hypersimplexΔk,n, and they come in two
types: xi = 0 or xi = 1, for i = 1, . . . , n. In the former case, they are images of positroid cells
Sπ with dim Sπ = (k − 1)(n − k), and the positroid polytope Γπ is isomorphic with the hyper-
simplex Δk−1,n−1. In the latter case, we find positroid cells Sπ with dim Sπ = k(n − k − 1), and
Γπ is identical with the hypersimplexΔk,n−1. The exceptional cases are for k = 1 or k = n − 1
when the hypersimplices Δ1,n and Δn−1,n are just simplices, with only one type of boundaries:
xi = 0 for k = 1 and xi = 1 for k = n − 1. In all these cases, the permutations corresponding to
boundary positroid polytopes can be found using the packageamplituhedronBoudaries
[26]. The package also provides an easy way to find the complete boundary stratification of
the hypersimplex Δk,n.

2.2. Hypersimplex canonical forms

We are now ready to explain how to find the canonical differential form ωk,n for the hypersim-
plex Δk,n. We will use the fact that all hypersimplices can be subdivided using a collection of
positroid tiles whose interiors are non-overlapping and whose union equals Δk,n. We will call
such collection a positroid tiling of Δk,n. Having found a positroid tiling of Δk,n, the canon-
ical differential form ωk,n can be calculated as a sum of push-forwards through the algebraic
moment map μ̃ of the canonical forms of the corresponding positroid cells in the positive Grass-
mannian G+(k, n). More specifically, if T = {π1, . . . , πp}, with Sπi ⊂ G+(k, n) a positroid cell
for i = 1, . . . , p, is a collection of bounded affine permutations for which {Γπ1 , . . . ,Γπp} is a
positroid tiling of Δk,n, then

ωk,n =
∑
π∈T

μ̃∗ ωπ, (2.6)

where ωπ is the canonical form of the positroid cell Sπ , and μ̃∗ indicates the push-forward
through μ̃ defined in appendix A.

As already mentioned, the hypersimplexΔk,n reduces to a simplex for k = 1 or k = n − 1. In
these cases no tiling is required since the algebraic moment map is already injective, and we can
take the push-forward of the top form on the positive Grassmannian G+(1, n) or G+(n − 1, n).
A simple calculation leads to the following canonical differential forms

ω1,n = d log

(
x2

x1

)
∧ . . . ∧ d log

(
xn

x1

)
, (2.7)

ωn−1,n = d log

(
1 − x2

1 − x1

)
∧ . . . ∧ d log

(
1 − xn

1 − x1

)
. (2.8)
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These are just canonical differential forms on the projective space P
n−1, with homogeneous

coordinates (x1, . . . , xn) in the first case and (y1, . . . , yn) = (1 − x1, . . . , 1 − xn) in the second
case.

For 1 < k < n − 1, the algebraic moment map μ̃ is not injective anymore, and the image of
the positive Grassmannian through μ̃ covers the hypersimplex Δk,n infinitely many times. To
find the canonical form ωk,n we need to divide the hypersimplex into smaller non-overlapping
pieces for which the algebraic moment map is injective, namely positroid tiles, such that their
union equals Δk,n. Such subdivisions have been extensively studied in [11], where they were
related to subdivisions of the amplituhedron [2], and to the positive tropical Grassmannian [22].
For our purposes, we need to find a single positroid tiling for a given hypersimplexΔk,n. There
are various ways to find such tilings: for example using height vectors from the tropical positive
Grassmannian [11], using the amplituhedron and T-duality [11], or using blade arrangements
[21]. In the simplest non-trivial example, Δ2,4, one finds two positroid tilings:

• Positroid polytope Γ{3,5,4,6} with vertices {e{1,2}, e{1,3}, e{1,4}, e{2,3}, e{2,4}} and positroid
polytope Γ{2,4,5,7} with vertices {e{1,3}, e{1,4}, e{2,3}, e{2,4}, e{3,4}}, or

• Positroid polytope Γ{4,3,5,6} with vertices {e{1,2}, e{1,3}, e{1,4}, e{2,4}, e{3,4}} and positroid
polytope Γ{3,4,6,5} with vertices {e{1,2}, e{1,3}, e{2,3}, e{2,4}, e{3,4}}

Where we explicitly specified the affine permutations labelling cells in G+(2, 4). Each of
these polytopes is the image of a positroid cell Sπ in the positive Grassmannian G+(2, 4), and
the algebraic moment map μ̃ is injective on all of them. This allows us to invert μ̃ on these
cells, and to find the push-forward of the canonical forms for them. For each cell we find that
the resulting differential form has singularities corresponding to spurious boundaries between
polytopes in a tiling. For example, in the first positroid tilings above, we find a singularity at
x1 + x2 = 1. However, this singularity disappears in the sum of terms, and we get a differential
form in the so-called local form, with all singularities corresponding to the boundaries of the
hypersimplex Δ2,4. We find the following explicit expression for ω2,4:

ω2,4 = d log

(
x2

x1

)
∧ d log

(
x3

x1

)
∧ d log

(
x4

x1

)
− d log

(
1 − x2

x1

)
∧ d log

(
x3

x1

)
∧ d log

(
x4

x1

)
− d log

(
x2

x1

)
∧ d log

(
1 − x3

x1

)
∧ d log

(
x4

x1

)
− d log

(
x2

x1

)
∧ d log

(
x3

x1

)
∧ d log

(
1 − x4

x1

)
− d log

(
x2

1 − x1

)
∧ d log

(
x3

1 − x1

)
∧ d log

(
x4

1 − x1

)
. (2.9)

Interestingly, this expression can also be understood in a different way: each three-form in (2.9)
is a differential form of a three-dimensional simplex, where the boundaries of each simplex can
be read off from the singularities of the form. Then (2.9) suggests that the hypersimplex Δ2,4

can be obtained from the simplex with boundaries at xi = 0, i = 1, . . . , 4, after removing from
it four simplices Tl with boundaries xl = 1, x j = 0 for j �= l, for l = 1, . . . , 4. This is indeed a
correct statement, as is illustrated in figure 1. Notice that (2.9) is not manifestly invariant under
the parity symmetry xi ↔ (1 − xi), which we would expect to be true for Δ2,4. In particular, a
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Figure 1. An interpretation of Δ2,4 using three-dimensional simplices. The big simplex
has all facets on the hyperplanes xi = 0, the four blue simplices have three facets on
the hyperplanes xi = 0, and one on a hyperplane xi = 1. The projection from the 3D
hypersurface in R

4 to R
3 is given by (x1, x2, x3, x4) �→ (x1, x2, x3).

parity conjugate version of (2.9) is

ω2,4 = d log

(
1 − x2

1 − x1

)
∧ d log

(
1 − x3

1 − x1

)
∧ d log

(
1 − x4

1 − x1

)
− d log

(
1 − x2

1 − x1

)
∧ d log

(
1 − x3

1 − x1

)
∧ d log

(
x4

1 − x1

)
− d log

(
1 − x2

1 − x1

)
∧ d log

(
x3

1 − x1

)
∧ d log

(
1 − x4

1 − x1

)
− d log

(
x2

1 − x1

)
∧ d log

(
1 − x3

1 − x1

)
∧ d log

(
1 − x4

x1

)
− d log

(
1 − x2

x1

)
∧ d log

(
1 − x3

x1

)
∧ d log

(
1 − x4

x1

)
. (2.10)

However, using the constraint x1 + x2 + x3 + x4 = 2, one can easily verify that (2.9) and
(2.10) are the same. The formula (2.10) provides an alternative interpretation for Δ2,4 as a
simplex with all boundaries at xi = 1 with four smaller simplices removed.

Our study of the hypersimplex Δ2,4 can be easily generalized to Δk,n for any n and k. In all
these cases we need to find a single positroid tiling of the hypersimplex Δk,n, and to use the
algebraic moment map μ̃ to calculate the push-forward of differential forms on Grassmannian
positroid cells, summing over the tiling. This allows us to find a general formula for the hyper-
simplex canonical form ωk,n. Our result has logarithmic singularities on all boundaries of the
hypersimplex Δk,n, which are of the form Δk−1,n−1 or Δk,n−1, and the residue when evaluated
at these boundaries is ωk−1,n−1 and ωk,n−1, respectively.

Before writing down an explicit form for ωk,n, we need to introduce some notation which
will allow us to write it in a concise way. Let us consider a (d − 1)-dimensional bounded
region with exactly d boundaries, where each boundary is of one of two types: boundaries at
hyperplanes ai = 0, i = 1, . . . , d, and boundaries at hyperplanes bi = 0, i = 1, . . . , d. We know
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that a generic set of d hyperplanes in a (d − 1)-dimensional space defines a simplex. Let us
take J ∈

( [d]
l

)
and denote by ΣJ the simplex bounded by hyperplanes aj = 0 for j ∈ [d]\J and

bj′ = 0 for j′ ∈ J. The canonical differential form σJ for the simplex ΣJ is then

σJ =

d∧
j=2

d log

(
α j

α1

)
, whereα j =

{
a j, for j /∈ J,

b j, for j ∈ J.
(2.11)

The choice of α1 in the denominator is arbitrary, and any other α j can be chosen at the cost
of an overall factor (−1) j+1. The simplex described above has d − l facets of the form ai = 0,
and l facets of the form bi = 0. It will prove useful to define a sum of the forms σJ over all
simplices with this distribution of facets:

σl,d :=
∑

J∈
(

[d]
l

)σJ . (2.12)

This sum over all simplices with a specific facet distribution enjoys useful properties. First of
all, there is an inductive way to find σl,d from σl,d−1 and σl−1,d−1:

σl,d = σl,d−1 ∧ d log

(
ad

a j

)
+ σl−1,d−1 ∧ d log

(
bd

b j

)
, (2.13)

for any j = 1, . . . , d − 1. From this it immediately follows that:

Res
ad=0

σl,d = σl,d−1, (2.14)

Res
bd=0

σl,d = σl−1,d−1, (2.15)

where, by using (2.12), the right-hand side does no longer depend on ad, bd . More generally,
we can take a residue for a j = 0 or b j = 0 for any j = 1, . . . , d, and obtain similar formulae
with the right-hand side relabelled. Also, let us notice that the parity symmetry that exchanges
aj with bj leads to

σl,d
a j↔b j←→ σd−l,d. (2.16)

Finally, by expanding d log
(
α j/α1

)
= d log α j − d log α1 one can alternatively write (2.11)

as:

σJ =

d∑
j=1

(−1) j+1
∧

i∈[d]\{ j}
d log(αi), αi =

{
ai, if i /∈ J,

bi, if i ∈ J.
(2.17)

Note that the d terms in the sum of (2.17) can be divided into two categories: there are l terms
with l one-forms d log bi’s and d − l − 1 one-forms d log ai’s, and there are d − l terms with
l − 1 one-forms d log bi’s and d − l one-forms d log ai’s. We introduce the notation

τl,d :=
d∑

j=1

(−1) j+1
∑

I∈
(

[d]\{ j}
l

)
∧

i∈[d]\{ j}
d log αi, αi =

{
ai, if i /∈ I,

bi, if i ∈ I,
(2.18)

7
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which is the sum over all terms with exactly l d log bi’s and d − l − 1 d log ai’s with minus
signs consistent with (2.17). It then follows that:

σl,d = τl,d + τl−1,d. (2.19)

From this, it is easy to arrive at the following identity:

d∑
l=0

(−1)lσl,d = 0, (2.20)

since the alternating sum makes the terms in (2.19) telescope, and we use the fact that τ−1,d =
τ d,d = 0.

Armed with this formalism we can now set ai = xi and bi = 1 − xi, and write the canonical
differential form ωk,n for the hypersimplex Δk,n for general n and k as:

ωk,n =
k−1∑
l=0

(−1)lσl,n =
n−k+1∑

l=0

(−1)n−lσn−l,n. (2.21)

The equality between these two expressions comes from (2.20) and the fact that on the support
of the hypersimplex constraint x1 + · · ·+ xn = k we have:

σk,n = 0. (2.22)

As mentioned before, the alternating minus signs have the effect that terms telescope when
expanded using (2.19). This allows us to write the hypersimplex form as a single term:

ωk,n = τk−1,n. (2.23)

We will sketch a proof of formulae (2.21) and (2.23) in appendix B.1.
Using the properties of the forms σ and τ , we can immediately read off the following

properties for the hypersimplex canonical forms:

ωk,n
xi↔1−xi←→ ωn−k,n, (2.24)

Res
xn=0

ωk,n = ωk,n−1, (2.25)

Res
xn=1

ωk,n = ωk−1,n−1. (2.26)

This reflects the proper structure of hypersimplex boundaries, and the fact that Δk,n is parity
dual to Δn−k,n.

We summarize this section by rewriting the results we obtained above for k = 1, k = n − 1,
and n = 4, k = 2 using this generalized notation. For the cases when the hypersimplex is a
simplex, namely k = 1 and k = n − 1, we can write

ω1,n = σ0,n = σ∅, (2.27)

ωn−1,n = σn,n = σ[n]. (2.28)

For n = 4, k = 2 we simply find

ω2,4 = σ0,4 − σ1,4 = σ∅ − σ{1} − σ{2} − σ{3} − σ{4}, (2.29)

8
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where the second expression supports the discussion after formula (2.9). We can also see a
similar behaviour for higher n, for example for Δ2,n we find

ω2,n = σ0,n − σ1,n = σ∅ −
n∑

i=1

σ{i}, (2.30)

where each σ{i} corresponds to an (n − 1)-dimensional simplex with one facet at xi = 1 and
all other facets at x j = 0 for j �= i. This discussion motivates us to rewrite the general formula
(2.21) in a slightly different way:

ωk,n = σ∅ −

⎛⎜⎝ ∑
I1∈

(
[n]
1

)σI1 −

⎛⎜⎝ ∑
I2∈

(
[n]
2

)σI2 −

⎛⎜⎝. . .−
∑

Ik−1∈
(

[n]
k−1

)σIk−1

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠ ,

(2.31)

where each term is the canonical form of a simplex. This is equivalent to the following set-
theoretic statement for Δk,n:

Δk,n = ΣØ\

⎛⎜⎝ ⋃
I1∈

(
[n]
1

)ΣI1\

⎛⎜⎝ ⋃
I2∈

(
[n]
2

)ΣI2\

⎛⎜⎝. . . \
⋃

Ik−1∈
(

[n]
k−1

)ΣIk−1

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠, (2.32)

which to our knowledge has not been previously known. A sketch of a proof that this indeed
holds for all hypersimplices is provided in appendix B.2.

3. Momentum amplituhedron

The momentum amplituhedron Mn,k is a positive geometry introduced in [4] to describe
tree-level scattering amplitudes in N = 4 sYM in spinor helicity space. Its counterpart in
momentum twistor space is the amplituhedron An,k [2], which has a natural generalization
A(m)

n,k beyond the case relevant to physics, labelled by an integer m, with m = 4 corresponding
to the physical case. It was observed in [11] that a natural generalization also exists for the
momentum amplituhedron for even m, and the authors of [11], including one of the authors
of this paper, suggested a possible definition for M(m)

n,k for even m. In particular, they conjec-

tured in section 11 of their paper that, for m = 2, the momentum amplituhedron M(2)
n,k shares

many properties with the hypersimplex Δk,n. Their main conjecture stated that the positroid
tilings of the hypersimplex Δk,n are in one-to-one correspondence with positroid tilings of the
momentum amplituhedronM(2)

n,k. Based on this, it was found in [26] that the boundary stratifi-

cation of the momentum amplituhedronM(2)
n,k is analogous to the boundary stratification of the

hypersimplex Δk,n. In this section we show that both statements are not correct and find their
counterexamples.

Despite the fact that the definition of M(2)
n,k in [11] does not provide an object closely related

to the hypersimplex Δk,n, we find interesting differential forms that can be naturally defined
in the space introduced there. These differential forms have properties analogous to the hyper-
simplex canonical forms ωk,n we studied in section 2. They are not, however, canonical forms
of the momentum amplituhedron M(2)

n,k defined in [11].

9
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3.1. Definition of m = 2 momentum amplituhedron

We follow the notation in [11] and provide the definition of the momentum amplituhedron
M(2)

n,k. It relies on two matrices Λ and Λ̃, encoding the ‘external data’:

Λ = (Λ1Λ2 . . .Λn) ∈ M(n − k + 1, n), Λ̃ = (Λ̃1Λ̃2 . . . Λ̃n) ∈ M(k + 1, n).

(3.1)

One assumes that Λ is a positive matrix, i.e. all its maximal minors are positive, and Λ̃ is
a twisted positive matrix, i.e. the matrix describing its orthogonal complement is a positive
matrix. Then, the m = 2 momentum amplituhedronM(2)

n,k is defined as the image of the positive
Grassmannian G+(k, n) through the map specified by these matrices:

Φ(Λ,Λ̃) : G+(k, n) → G (n − k, n − k + 1) × G (k, k + 1) , C �→ (Y, Ỹ),

(3.2)

where

YA
α = c⊥αiΛ

A
i , ỸȦ

α̇ = cα̇iΛ̃
Ȧ
i . (3.3)

We use C = {cα̇i} ∈ G+(k, n), and C⊥ =
{

c⊥αi

}
is the orthogonal complement of C. The image

of the positive Grassmannian naturally lives in an (n − 1)-dimensional subspace of the (n −
k + k = n)-dimensional space G (n − k, n − k + 1) × G (k, k + 1) specified by the ‘momentum
conservation’-like identity:

n∑
i=1

(
Y⊥ · Λ

)
i

(
Ỹ⊥ · Λ̃

)
i
= 0, (3.4)

where Y⊥ ∈ G(1, n − k − 1) and Ỹ⊥ ∈ G(1, k + 1) are the orthogonal complements of Y and
Ỹ, respectively. Similar to the m = 4 momentum amplituhedron M(4)

n,k in [4], we define the

‘spinor helicity’ variables λ, λ̃ as:

λi := 〈Yi〉 = εA1A2...An−kAn−k+1YA1
1 YA2

2 . . .YAn−k
n−k Λ

An−k+1
i , (3.5)

λ̃i := [Ỹi] = εȦ1Ȧ2...ȦkȦk+1
ỸȦ1

1 ỸȦ2
2 . . . ỸȦk

k Λ̃
Ȧk+1
i . (3.6)

These λ and λ̃ variables satisfy a similar ‘momentum conservation’ identity:

n∑
i=1

λiλ̃i = 0. (3.7)

3.2. Momentum amplituhedron-like logarithmic forms

Before discussing the geometry ofM(2)
n,k, let us focus on differential forms that can be defined in

the (λ, λ̃) space. Since the domains of the maps μ̃ and Φ(Λ,Λ̃) are the same, a natural question
is what happens when we take a collection of positroid cells in the positive Grassmannian
G+(k, n) that provides a positroid tiling of the hypersimplex Δk,n, and evaluate their push-
forwards using the momentum amplituhedron map Φ(Λ,Λ̃) (3.2). An important observation is

that this push-forward does not depend on the positivity conditions for the Λ and Λ̃ matrices.

10
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Taking any collection of G+(k, n) positroid cells labels T = {π1, . . . , πp} that gives a
positroid tiling of Δk,n, we can define

ωn,k =
∑
π∈T

(Φ(Λ,Λ̃))∗ ωπ , (3.8)

where ωπ is the canonical form of the positroid cell Sπ , and (Φ(Λ,Λ̃))∗ indicates the push-
forward3. We have calculated ωn,k using positroid tilings of hypersimplices up to n = 7, all k,
and found that the answer is independent from the tiling. Moreover, it can be expressed using
the notation we introduced in section 2.2. By taking σl,n defined in (2.17), and substituting
a → λ, b → λ̃, we can write the differential form ωn,k in (3.8) as:

ωn,k =
k−1∑

l=0,2,4,...

σl,n, for k odd, (3.9)

ωn,k =

k−1∑
l=1,3,5,...

σl,n, for k even. (3.10)

We believe that these formulae are true for any n and k. These can also be written in a more
uniform way using the differential forms τ from (2.17) as

ωn,k =

k−1∑
l=0

τl,n. (3.11)

Interestingly, these differential forms have properties similar to those we have found for
the hypersimplex canonical forms ωk,n. In particular, they are parity symmetric when λ is
exchanged with λ̃:

ωn,k
λi↔λ̃i←→ ωn−k,k. (3.12)

This can be shown using a version of equation (2.20):

�n∑
l=0,2,4,...

σl,n =

�n∑
l=1,3,5,...

σl,n, (3.13)

and the fact that on the support of momentum conservation we have:

�n∑
l=0,2,4,...

σl,n =

�n∑
l=1,3,5,...

σl,n = 0, for
n∑

i=1

λiλ̃i = 0. (3.14)

Additionally, the differential form ωn,k has an identical singularity structure with the hypersim-
plex canonical forms ωk,n, namely:

Res
λn=0

ωn,k = ωn−1,k, (3.15)

Res
λ̃n=0

ωn,k = ωn−1,k−1. (3.16)

3 The signs of push-forwards are fixed such that the common singularities appearing in different terms, i.e. the spurious
singularities, have a vanishing residue. We found that it is always possible to find such combinations of signs.

11
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Analogous formulae are also true if we replace λn, λ̃n with any other λi, λ̃i for i = 1, 2, . . . , n.
These formulae indicate that the structure of singularities of the differential formωn,k is exactly
the same as the structure of singularities of ωk,n in section 2.2, after we identify λi with xi, and
λ̃i with 1 − xi. In particular, there are exactly 2n singularities, n of which are of the form
λi = 0, and n of which are of the form λ̃i = 0. The residues at these singularities are given by
differential forms ω with lower labels as in (3.15) and (3.16), providing us with a recursive
description akin to the one for the hypersimplex canonical forms ωk,n.

3.3. Geometry

Our calculations in the previous section pose a natural question whether there exists a geometric
object for which ωn,k provides the canonical differential form. The first guess would be that this
object must be the momentum amplituhedron defined in section 3.1. We have however checked
that even in the first non-trivial example, for n = 4, k = 2, the momentum amplituhedronM(2)

4,2
defined above is not the correct geometry. Instead, one needs to modify the positivity conditions
in the definition of M(2)

4,2 to get a geometry with ω4,2 as the canonical form. Even after this
modification, the final conjecture of section 11 in [11] is still not correct since, depending
on the choice of external data, only one out of two positroid tilings of the hypersimplex Δ2,4

provides a tiling of such modified momentum amplituhedron. This can be attributed to the fact
that, even with the modified positivity conditions, the region we define looks concave. We have
found that for k = 2 and any n we can always find conditions for external data Λ and Λ̃ such
that the resulting geometry can be tiled using some, but not all, of the positroid tilings of the
hypersimplexΔ2,n. Similar statement holds true for k = n − 2, as well as for n = 6 and k = 3.
It is, however, not possible beyond these cases and therefore we conclude that Φ(Λ,Λ̃) cannot
be used to define a geometry for which ωn,k is the canonical differential.

Let us start by stating that for k = 1 and for k = n − 1 the momentum amplituhedronM(2)
n,k

is just a simplex. In these cases, the map Φ(Λ,Λ̃) is injective and there is no need for any tiling.

Then the canonical differential form for M(2)
n,1 is

ωn,1 = d log

(
λ2

λ1

)
∧ . . . ∧ d log

(
λn

λ1

)
, (3.17)

and for M(2)
n,n−1 is

ωn,n−1 = d log

(
λ̃2

λ̃1

)
∧ . . . ∧ d log

(
λ̃n

λ̃1

)
. (3.18)

Trivially, the boundary stratifications of M(2)
n,1 and M(2)

n,n−1 are equivalent to the boundary
stratifications of the hypersimplices Δ1,n and Δn−1,n, respectively.

Beyond k = 1 and k = n − 1, the map Φ(Λ,Λ̃) is not injective anymore, as was the case
for the algebraic moment map μ̃. There are, however, significant differences between the two
geometries that we illustrate in detail in the simplest non-trivial case: n = 4, k = 2. Recall that
the hypersimplex Δ2,4 is an octahedron depicted in figure 1, and it can be subdivided using
pairs of positroid polytopes in two different ways. These positroid polytopes are images of
some three-dimensional cells, labelled by π and π′, in the positive Grassmannian G+(2, 4)
through the algebraic moment map μ̃. In particular, they have spurious boundaries along the
hyperplanes x1 + x2 = 1 or x2 + x3 = 1. This can be easily seen by considering the shared
co-dimension-one boundaries of cells Sπ and Sπ′ in the positive Grassmannian G+(2, 4), and
studying images of such boundaries through the moment map. A similar analysis can be done

12
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using the Φ(Λ,Λ̃) map and the images of the three-dimensional cells have spurious boundaries

along λ1λ̃1 + λ2λ̃2 = 0 (two cells) or λ2λ̃2 + λ3λ̃3 = 0 (two cells). For a pair of cells to be a
tiling of M(2)

4,2, their images must be disjoint. This means that close to their shared boundary,

the images need to sit on the opposite sides of the surface λ1λ̃1 + λ2λ̃2 = 0 (resp. λ2λ̃2 +
λ3λ̃3 = 0). For example, let us consider positroid cells in G+(2, 4) labelled by the permutations
π1 = {3, 4, 6, 5} and π2 = {4, 3, 5, 6} which are parametrised by matrices:

Cπ1 =

(
1 α3 0 −α1

0 1 α2 0

)
, Cπ2 =

(
1 0 0 −β1

0 1 β2 β3

)
(3.19)

with αi > 0 and βi > 0. In the positive Grassmannian G+(2, 4) these cells share a boundary
Sπ1 ∩ Sπ2 = S4,3,6,5 that is the cell labelled by π1∩2 = {4, 3, 6, 5}, parametrised by the matrix

Cπ1∩2 =

(
1 0 0 −γ1

0 1 γ2 0

)
(3.20)

with γ i > 0, whose image is the spurious boundary inside the surface λ2λ̃2 + λ3λ̃3 = 0. For
the cell parametrized by the permutation π1 we find

λ2λ̃2 + λ3λ̃3 = ([123] − α1[234])(−〈134〉+ α2〈124〉)α2α3, (3.21)

with αi > 0, where the points on the spurious boundary correspond to setting α3 = 0. For the
cell parametrized by the permutation π2 we find

λ2λ̃2 + λ3λ̃3 = −(〈234〉+ β1〈123〉)([124] + β2[134])β3, (3.22)

with βi > 0 and the spurious boundary corresponds to setting β3 = 0. Then, assuming the
positivity conditions for Λ and Λ̃ from section 3.1, there exists an open set U in Sπ1∩2 such that
([123] − γ1[234])(−〈134〉+ γ2〈124〉)γ2 < 0 and for any sufficiently small neighbourhood of
U in Sπ1 , the right-hand side of (3.21) is negative. This means that in the neighbourhood of
the set U, the images of Sπ1 and Sπ2 are on the same side of the surface λ2λ̃2 + λ3λ̃3 = 0,
and therefore they do intersect. Therefore they do not provide a positroid tiling of M(2)

4,2. This
provides a counter-example to the statements in section 11 of [11].

By changing positivity conditions, it is possible to slightly modify the definition of the
momentum amplituhedron to get a geometry for which ω2,4 provides the correct canonical
form. For example, if we assume

[123] > 0, [124] > 0, [134] > 0, [234] < 0,

〈123〉 > 0, 〈124〉 > 0, 〈134〉 < 0, 〈234〉 > 0 (3.23)

then theΦ(Λ,Λ̃) images of cells labelled by permutationsπ1 and π2 do not overlap, since λ2λ̃2 +

λ3λ̃3 has opposite sign for all elements in these cells, and they subdivide the image of the
positive Grassmannian G+(2, 4). Therefore the logarithmic form ω2,4 is the canonical form of
this geometry. However, in this case, the images of the remaining two cells, π3 = {2, 4, 5, 7}
and π4 = {3, 5, 4, 6}, do overlap and they do not provide a subdivision of the image. This
comes from the fact that the image of the positive Grassmannian G+(2, 4) through Φ(Λ,Λ̃) with
the positivity conditions (3.23) looks concave and has the shape depicted in figure 2.

Using similar analysis, we have found that a similar behaviour is true for higher n. In particu-
lar, we found that the image of G+(k, n) throughΦ(Λ,Λ̃) with the positivity conditions described
in section 3.1, cannot be tiled by the images of the same cells as for the hypersimplex. As in the

13



J. Phys. A: Math. Theor. 55 (2022) 205202 T Łukowski and J Stalknecht

Figure 2. A schematic image of the positive Grassmannian G+(2, 4) through the map
Φ(Λ,Λ̃) with positivity conditions (3.23). The spurious boundary λ2λ̃2 + λ3λ̃3 = 0 is
shown in orange. The labels at the vertices indicate the nonvanishing Plückers of the
0-dimensional positroid cells that map to them.

case described above, we checked that for k = 2 and the first few values of n, it is still possible
to modify positivity conditions such that there exists a collection of cells in G+(2, n) that form
a positroid tiling of Δ2,n and their images through Φ(Λ,Λ̃) are disjoint. In all these cases, the
differential form ωn,2 from (3.9) is the canonical differential form of the corresponding image
of G+(2, n) throughΦ(Λ,Λ̃). Even this becomes impossible for higher k: we have computational
evidence that for n > 6 and 2 < k < n − 2 there are no tilings of Δk,n for which the images
through the map Φ(Λ,Λ̃) are disjoint. This shows that one cannot use the map Φ(Λ,Λ̃) to generate

a region in the (λ, λ̃)-space for which ωn,k is the canonical form.

4. Summary and outlook

In this paper, we have studied two geometries, the hypersimplexΔk,n and the generalization of
the momentum amplituhedronM(2)

n,k proposed in [11], from the point of view of positive geome-
tries. We have provided two main results. One is the previously unknown formula (2.21) for the
hypersimplex canonical form ωk,n. The formula has a natural interpretation as a set-theoretical
decomposition of hypersimplex into simplices given in (2.32). Moreover, we provide a negative
but important result stating that the generalization of the momentum amplituhedron suggested
in [11] does not possess the desired properties. In particular, we have found counter-examples
showing that the conjectures in section 11 of [11] regarding positroid tilings of M(2)

n,k are not
valid. It can be attributed to the fact that the momentum amplituhedron for m = 2 is ‘concave’.
This, in turn, is related to the fact that the momentum amplituhedron for m = 2 shares prop-
erties with the ordinary amplituhedron for m = 1. The latter is known to be concave and,
in general, amplituhedra for odd m are less well-behaving than the ones for even m, see for
example [27]. We predict that the momentum amplituhedron for m = 2, 6, 10, . . . will have
similar behaviour, and the conjectures from section 11 of [11] will not hold in these cases. The
question remains open on whether the conjectures are correct for m divisible by four, beyond
m = 4.
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In this paper we have also provided interesting differential forms written directly in the (λ, λ̃)
spinor helicity space, which have properties analogous to those of the hypersimplex canonical
forms. This leads to the question of whether one can find a shape inside the (λ, λ̃) space with
the canonical differential form given by ωn,k. It is unclear from our explorations whether it will
be possible, and it remains an interesting open problem.
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Appendix A. Definition of positive geometry and push-forward

Positive geometries [1] naturally live in complex projective spaces P
N , and their real parts

P
N(R). One defines X to be a complex projective algebraic variety of complex dimension D

and X(R) to be its real part, and one denotes by X�0 ⊂ X(R) an oriented set of real dimension
D. A D-dimensional positive geometry is a pair (X, X�0) equipped with a unique non-zero
differential D-form Ω(X, X�0), called the canonical form, satisfying the following recursive
axioms:

• For D = 0 we have that X = X�0 is a single real point and Ω(X, X�0) = ±1 depending on
the orientation of X�0.

• For D > 0 we have that every boundary component (C, C�0) of (X, X�0) is a positive
geometry of dimension D − 1. Moreover, the formΩ(X, X�0) is constrained by the residue
relation

ResC Ω(X, X�0) = Ω(C, C�0), (A.1)

along every boundary component C, and has no singularities elsewhere.

The residue operation ResC for a meromorphic form ω on X is defined in the following
way: suppose C is a subvariety of X and z is a holomorphic coordinate whose zero set z = 0
parametrizes C. Denote as u the remaining holomorphic coordinates. Then a simple pole of ω
at C is a singularity of the form

ω(u, z) = ω′(u) ∧ dz
z
+ · · · , (A.2)

where the ellipsis denotes terms smooth in the small z limit, and ω′(u) is a non-zero
meromorphic form on the boundary component. One defines

ResC ω :=ω′. (A.3)

If there is no such simple pole then one defines the residue to be zero.
We also define what we mean by the push-forward of a differential form. We consider a sur-

jective meromorphic map φ : A → B of finite degree p, where A and B are complex manifolds
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of the same dimension. For a given point b ∈ B we can find its pre-image, namely a collection
of points ai in A, i = 1, . . . , p, satisfying φ(ai) = b. Taking a neighbourhood Ui of each point
ai and a neighbourhood V of b, we can define the inverse maps: ψi = φ|−1

Ui
: V → Ui. Then the

push-forward of a meromorphic top form α on A through φ is a differential form β on B given
by the sum over all solutions of the pull-backs through the inverse maps ψi:

β = φ∗α =

p∑
i=1

ψ∗
i α, (A.4)

where the pull-back of a differential form is a standard notion in differential geometry. In
practice, one solves the equation y = φ(x) and for each solution x = ψi(y) one substitutes the
explicit expression for x into the differential form α, and then sums the resulting forms.

Appendix B. Proofs

B.1. Sketch of a proof for formulae (2.21) and (2.23)

In this appendix we will provide a sketch of a proof of formulae (2.21) and (2.23), which give
explicit expressions for the canonical form of the hypersimplex Δk,n. Since the two formulae
easily follow from each other, it will be sufficient to only prove (2.23).

We want to show that the canonical form ωk,n of the hypersimplex Δk,n is given by

ωk,n = τk−1,n, (B.1)

where

τl,n :=
n∑

j=1

(−1) j+1
∑

I∈
(

[n]\{ j}
l

)
∧

i∈[n]\{ j}
d log αi, αi =

{
xi, if i /∈ I,

1 − xi, if i ∈ I.

(B.2)

Since we know the facet structure of the hypersimplex Δk,n, and in particular the fact that they
are hypersimplices Δk−1,n−1 or Δk,n−1, we have the following properties of ωk,n:

(a) ωk,n, 1 < k < n − 1 has exactly 2n simple poles, n at xi = 0 and n at xi = 1 for i =
1, . . . , n,

(b) Res
xi=0

ωk,n = ±ωk,[n]\{i},

(c) Res
xi=1

ωk,n = ±ωk−1,[n]\{i},

Where ωk,[n]\{i} is defined as ωk,n−1 with the variables x’s relabelled in the following way:
x j → xj if j < i, x j → x j+1 if j � i. We will prove equation (B.1) by induction in n.

Assume that for some n = m, equation (B.1) holds for all 1 � k � m − 1. We want to
find ωk,m+1, where for now we assume that 2 � k � m − 1. Using condition 2, we have that
Res
xi=0

ωk,m+1 = ±ωk,[m+1]\{i}, and therefore ωk,m+1 = ±ωk,[m+1]\{i} ∧ d log xi + · · · , where the

ellipsis . . . indicates the terms that do not have a pole at xi = 0. Note that ωk,[m+1]\{i} equals
ωk,m with x’s relabelled, and therefore from the induction hypothesis we know that this is equal
to τ k−1,[m+1]\{i} defined as τ k−1,m with the x’s relabelled as above. Then we have:

ωk,m+1 = ±τk−1,[m+1]\{i} ∧ d log xi + · · · for all i ∈ [m + 1]. (B.3)
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Note that Res
xi=0

τk−1,m+1 = (−1)n−iτk−1,[m+1]\{i}, hence the terms in ωk,m+1 that have a residue

at some xi = 0 correspond to the terms that appear in τ k−1,m+1. Next, we use the fact that
Res
xi=0

Res
xi+1=0

ωk,m+1 = − Res
xi+1=0

Res
xi=0

ωk,m+1 to fix the relative signs of these terms. Importantly,

we find that the relative signs do agree with those of τ k−1,m+1. Therefore, we conclude that
ωk,m+1 = ±τk−1,m+1 + P , where P is a term that does not have any poles at xi = 0. Next, from
point 3 and the explicit form of τ k−1,m+1, we see that P also cannot have any poles when
xi = 1. From point 1 we then conclude that P cannot have any poles at all, including at infinity
and we find that P = 0 and thus ωk,m+1 = ±τ k−1,m+1. Finally, without loss of generality, we
can choose the orientation of Δk,n such that we have a positive sign. This argument holds
for all 2 � k � m − 1. Since for k = 1 and k = m, hypersimplices Δ1,m+1 and Δm,m+1 are just
ordinary simplices, then we immediately see that (B.1) is also true in these cases. Therefore we
have thatωk,m+1 = τ k−1,m+1 for all 1 � k � m. This concludes the inductive step. The base case
can be checked explicitly for example for n = 4, k = 2 (see equation (2.9) and the surrounding
discussion). Together, this proves the claim (B.1).

B.2. Sketch of a proof of formula (2.32)

We now turn to equation (2.32). We want to prove that the following formula is correct:

Δk,n = ΣØ\

⎛⎜⎝ ⋃
I1∈

(
[n]
1

)ΣI1\

⎛⎜⎝ ⋃
I2∈

(
[n]
2

)ΣI2\

⎛⎜⎝. . . \
⋃

Ik−1∈
(

[n]
k−1

)ΣIk−1

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠, (B.4)

where ΣI , I ∈
( [n]

l

)
is the simplex cut out by the hyperplanes xi = 0, i /∈ I, xi = 1, i ∈ I in the

n − 1 dimensional subspace of Rn defined by the relation x1 + x2 + · · ·+ xn = k.
To simplify our discussion, we introduce an alternative labelling for the simplices ΣI: we

denote byΣ(b1,b2,...,bn) with bi = 0, 1, the simplex cut out by the hyperplanes xi = bi (equivalent
to Σ{i|bi=1}). Then, the inequalities that cut out these simplices are given by:

ΣI = Σ(b1,b2,...,bn) =

⎧⎪⎪⎨⎪⎪⎩
xi � bi, if k < b

xi � bi, if k > b

xi = bi, if k = b,

(B.5)

where I = {i|bi = 1}, and b = b1 + b2 + · · ·+ bn = |I|. This can be understood as follows:
in R

n the hyperplanes xi = bi intersect in the point (b1, b2, . . . , bn)T. Clearly, this point is above
the hyperplane x1 + · · ·+ xn = k when b > k, hence we need xi � bi. When b < k, the hyper-
planes xi = bi in R

n intersect below the plane x1 + · · ·+ xn = k, and we thus require xi � bi.
When b = k these hyperplanes xi = bi in R

n intersect in the point (b1, b2, . . . , bn)T which is on
the plane x1 + · · ·+ xn = k.

Now, it is easy to see that the intersection of two simplices Σ(b1,b2,...,bn) and Σ(c1,c2,...,cn) is just
the simplex Σ(d1,d2,...,dn), where di = bi ∧ ci if all three binary strings are ‘above k’: b, c, d > k,
and di = bi ∨ ci if the three binary strings are ‘below k’: b, c, d < k (where b =

∑
i bi, c =∑

i ci, d =
∑

i di). Here, ∧ and ∨ are binary ‘and’ and ‘or’ operations, respectively. If one of
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the three binary strings is on the opposite side of k from the other two, then the intersection is
empty. In the language of ΣI , I ∈

( [n]
l

)
, we can summarize this result as follows:

ΣI ∩ΣJ =

⎧⎪⎪⎨⎪⎪⎩
ΣI∪J , If |I|, |J|, |I ∪ J| � k

ΣI∩J , If |I|, |J|, |I ∩ J| � k

∅ otherwise.

(B.6)

An alternative way to define the hypersimplex Δk,n is as the intersection of the unit cube in
R

n and the hyperplane x1 + x2 + · · ·+ xn = k. Explicitly, the hypersimplex is cut out by the
inequalities:

0 � xi � 1, i = 1, . . . , n, (B.7)

constrained to the hypersurface x1 + x2 + · · ·+ xn = k. It is thus clear that the hypersimplex
is completely contained inside the simplex Σ∅ = Σ(0,0,...,0) = {xi � 0, i = 1, . . . , n}. We now
look at the simplices with 1 and (n − 1) zeroes in their binary string, e.g. Σ{1} = Σ(1,0,...,0) =
{x1 � 1, x2 � 0, . . . , xn � 0}. It is clear that this simplex is a subset of Σ∅ and only intersects
with the hypersimplex along the face x1 = 1. The analogous result holds for all Σ{i}. In fact,
when we take away all simplices Σ{i} from Σ∅, the only region that is left will be the interior
of the hypersimplex:

Δk,n = ΣØ\

⎛⎜⎝ ⋃
I∈

(
[n]
1

)ΣI

⎞⎟⎠, (B.8)

where it is necessary to take the closure on the rhs because we also subtract all boundaries of
the hypersimplex.

In general, the simplices ΣI , I ∈
( [n]

1

)
overlap. Set-theoretically, this is not a problem and

equation (B.8) works just fine. However, from the point of view of positive geometries there are
certain regions that have been ‘subtracted twice’, hence the analogous equation does not hold
for the canonical forms. Instead we would like to subtract the intersecting parts of

⋃
I∈

(
[n]
1

)ΣI

before subtracting it from Σ∅:

Δk,n = ΣØ\

⎛⎜⎝ ⋃
I∈

(
[n]
1

)ΣI\

⎛⎜⎝ ⋃
J1,J2∈

(
[n]
1

)ΣJ1 ∩ΣJ2

⎞⎟⎠
⎞⎟⎠. (B.9)

From the discussion above it is clear that, for example, Σ{1} ∩ Σ{2} = Σ{1,2}, and from this it
is not difficult to see that

⋃
J1,J2∈

(
[n]
1

)ΣJ1 ∩ ΣJ2 =
⋃

I∈
(

[n]
2

)ΣI . However, we now run into the

same problem that the simplices ΣI , I ∈
( [n]

2

)
can in general overlap. Continuing along the

same line, the union of two set I, J ∈
( [n]

2

)
can result in either an element of

( [n]
3

)
or

( [n]
4

)
.

But, since
⋃

I∈
(

[n]
4

) ⊂
⋃

I∈
(

[n]
3

), we find that
⋃

I1,I2∈
(

[n]
2

)ΣI1 ∩ ΣI2 =
⋃

J∈
(

[n]
3

)ΣJ . In general,

18



J. Phys. A: Math. Theor. 55 (2022) 205202 T Łukowski and J Stalknecht

a similar reasoning implies that
⋃

I1,I2∈
(

[n]
l

)ΣI1 ∩ ΣI2 =
⋃

J∈
(

[n]
l+1

)ΣJ . Thus, by continuously

removing the intersection of simplices in the way explained above, we find

Δk,n = ΣØ\

⎛⎜⎝ ⋃
I1∈

(
[n]
1

)ΣI1\

⎛⎜⎝ ⋃
I2∈

(
[n]
2

)ΣI2\ · · · \

⎛⎜⎝ ⋃
Il ∈

(
[n]
l

)ΣIl

⎞⎟⎠
⎞⎟⎠
⎞⎟⎠. (B.10)

This formula holds ‘set-theoretically’ for all l � k, but we can refine the amount of overlap
we subtract by increasing l. This process terminates naturally, since

⋃
Ik∈

(
[n]
k

)ΣIk is not full-

dimensional and is just the set of the vertices of Δk,n. Then (B.4) is equivalent to (B.10) when
we set k = l. While the hypersimplex Δk,n can be decomposed as (B.10) for any l � k, when
l = k in addition we have that the sets that appear at a given level in the formula (B.4) are
disjoint when lower terms are subtracted. It allows us to translate this statement into an equality
of canonical forms, namely (2.31).
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