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Abstract: In the absence of a Grand Unified Theory framework, connecting the values of the mixing

parameters in the quark-and-lepton sector is a difficult task, unless one introduces ad hoc relations

among the matrices that diagonalize such different kinds of fermions. In this paper, we discuss in

detail the possibility that the PMNS matrix is given by the product UPMNS = V⋆
CKM T⋆, where T

comes from the diagonalization of a see-saw like mass matrix that can be of a Bimaximal (BM), Tri-

Bimaximal (TBM) and Golden Ratio (GR) form, and identify the leading corrections to such patterns

that allow for a good fit to the leptonic mixing matrix as well as to the CP phase. We also show

that the modified versions of BM, TBM and GR can easily accommodate the solar and atmospheric

mass differences.

Keywords: neutrino mixing; quark CKM; flavor problem

1. Introduction

In the last several years, neutrino experiments confirmed that neutrinos oscillate and
can measure with great precision the values of the mixing angles. Some neutrino oscillation
properties are still unknown/not really clear (as, for example, whether CP violation exists
in the lepton sector or whether the mass hierarchy is of normal or inverted type), but the
emerging picture is quite intriguing. Differently from the mixing angles in the quark sector,
described by an almost diagonal matrix VCKM, neutrino mixing is dictated by two large
and one small angle, thus making the UPMNS a matrix with large entries, except for the
(13) element. In spite of this huge discrepancy (that has been dubbed as the flavor problem),
the current numerical values of fermion mixing seem to be inextricably wedged into well-
defined relations [1], which, using the standard parametrization of mixing matrices, are
summarized as follows:

θPMNS
12 + θCKM

12 ∼ π/4 , θPMNS
23 + θCKM

23 ∼ π/4 . (1)

The previous structure, which is presumed to exist behind such empirical relations, is
known as quark–lepton complementarity (QLC) and, while being appealing from a theoretical
and phenomenological point of view, does not give any clue as to which kind of symmetry
is possibly responsible for them.

The usual answer to this problem is grand unification (GUT), whereby quarks and
leptons are unified into the same multiplets [2–8]; on the other hand, in non-GUT scenarios,
one is somehow forced to input the CKM (PMNS) matrix into the relations that define the
PMNS (CKM). Several authors have explored such a possibility [1,9–15] and discussed
the observable consequences of scenarios leading to QLC [16–20], including the effect of
the RGE running on the stability of Equation (1) [21–24]. An extension of Equation (1) to
the sector (13) results in a complete failure, as the sum θPMNS

13 + θCKM
13 ∼ 10◦; thus, it is

necessary to find a new connection between neutrinos and quarks that involves the reactor
angle. The most promising suggestion is, once again, GUT-inspired end reads:

θPMNS
13 = α θCKM

12 , (2)
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where α can be any O(1) number [10,25–28]. One possibility to recover Equation (2) is to
assume that the mixing matrices are related through

UPMNS ∼ VCKM T , (3)

where T is an appropriate unitary matrix that we parametrize as the product of three
sub-rotations:

T ≡ U23U13U12 . (4)

In this paper, we want to elaborate more on Equation (3), finding the exact theoretical
relation among UPMNS and VCKM allowed by specific ansatz on the diagonalization pro-
cedure of the fermion mass matrices. This involves the determination of the matrix T; by
assuming an initial form for T of Bimaximal (BM), Tri-Bimaximal (TBM) [29] and Golden
Ratio (GR) type [30], we compute in a systematic way all relevant corrections that allow us
to reproduce the neutrino mixing angles as well as the Jarlskog invariant [31]. Instead of
performing an overall fit involving general perturbations of BM, TBM and GR mixing, we
preferred to introduce three different corrections, one for each Uij quoted in Equation (4),
and study the prediction of mixing parameters determined by each of them. In this way,
we are able to keep track of the relevant source of deviations from the initial form for T
that allows for a good fit to the experimental data. We find that a complex parameter u
is needed in the U13 rotation to increase the amount of leptonic CP violation up to the
current experimental values, while a simple real correction in the (12) plane is mandatory to
account for the solar angle. Finally, deviation to maximality for the atmospheric angle can
be accounted by a real shift ω in the (23)-sector. In addition to mixing parameters, the newly
found corrections are also compatible with the solar and atmospheric mass differences to a
high degree of precision.

The paper is organized as follows: in Section 2, we discuss all the above-mentioned
corrections in detail, showing how to include them in a perturbative approach to the
determination of the mixing parameters; in Section 3, we show how to reproduce the
experimental mass differences within our framework for all perturbed mixing patterns;
finally, Section 4 is devoted to our conclusions. We close the paper with Appendix A,
where we report the expressions of the mixing parameters up to O(λ3).

2. Corrections to BM, TBM and GR

2.1. Notation

Let us first fix our notation; we are working in the left–right (LR) basis and, with no

loss of generality, we assume diagonal heavy right-handed neutrinos MR = M
diag
R and

diagonal charged leptons Mℓ = M
diag
ℓ

. The diagonalization of the Dirac neutrino mass is

achieved through W†
LmνD

UR = m
diag
νD

, so that the Hermitian matrix mνD
m†

νD
is such that

W†
LmνD

m†
νD

WL = (m
diag
νD

)2, where the eigenvalues of (m
diag
νD

)2 are real and non-negative,

and the columns of WL are the eigenvectors of the mνD
m†

νD
matrix. Applying the see-saw

formula in the LR basis, we obtain

mν = −mνD
(M

diag
R )−1 mT

νD

= WL m
diag
νD

U†
R (M

diag
R )−1 U⋆

R m
diag
νD

WT
L . (5)

At this point, the matrix m0 = m
diag
νD

U†
R (M

diag
R )−1 U⋆

R m
diag
νD

is a complex symmetric
matrix and, thus, it can be diagonalized by an unitary matrix T such that

m0 = T S TT , (6)

where S is a diagonal matrix with, in principle, complex entries. Thus, for the light neutrino
mass, we have the following decomposition:

mν = −WL T S TT WT
L . (7)
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To obtain the proper structure of UPMNS, we assume a neutrino change in the basis of
the following type:

ν′ = UPMNS ν , (8)

where the mass eigenstates are those indicated with ν. At the Lagrangian level, the sym-
metric mass term, on the basis of interaction eigenstates, is as follows:

(νT)′ mνν′ = νT UT
PMNS mν UPMNS ν ≡ νT m

diag
ν ν (9)

so that

mν = U⋆
PMNS m

diag
ν U†

PMNS , (10)

and we can identify

UPMNS = W⋆
L T⋆ (11)

and

m
diag
ν = S . (12)

In the following, we will assume WL ≡ VCKM, whose structure in the Wolfenstein
parameterization is reported below:

VCKM =





1 − λ2/2 λ Aλ3(−iη + ρ)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − iη − ρ) −Aλ2 1



 . (13)

The values of the VCKM parameters used in our simulations are provided in Table 1.

Table 1. Best-fit value and 1σ range of the VCKM parameters, from [32].

Parameter Best-Fit Value and 1σ Range

λ 0.2251 ± 0.0008
A 0.828 ± 0.01
η 0.355 ± 0.009
ρ 0.164 ± 0.009

For the T matrix, instead, one can in principle assume exact Tri-Bimaximal mixing
(TBM), Bimaximal mixing (BM) or Golden Ratio (GR) forms:

UBM =















1√
2

− 1√
2

0

1

2

1

2

1√
2

−1

2
−1

2

1√
2















, UTBM =









√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2









,

UGR =













c12 s12 0
s12√

2
− c12√

2

1√
2

s12√
2

− c12√
2

− 1√
2













,

(14)

where c12 = cos θ12, s12 = sin θ12 and tan θ12 = 1/φ, with φ = (1 +
√

5)/2. However, it
turns out that the UPMNS implied by them is unsatisfactory in the predicted values of
the mixing angles and Jarlskog invariant JCP, for which we use the following expression:
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JCP = Im [(UPMNS)11(UPMNS)
∗
12(UPMNS)

∗
21(UPMNS)22] . (15)

We have summarized the situation in Table 2 where, for each mixing pattern, we have
reported the perturbative prediction on sin(θ13), tan(θ12), tan(θ23) (up to O(λ)) and JCP (up
to O(λ3)). In the last column, we have computed the distance ∆ between such predictions
and the current experimental values for a Normal Ordering (NO) of the neutrino masses1

(Table 3). Such a distance is computed according the following formula:

∆ = Σ3
i=1

[

Pi − Bi

σi

]2

, (16)

where P⃗ is a vector of parameters P⃗ = [tan(θ12), tan(θ13), tan(θ23), JCP] as predicted by
TBM, BM and GR (see Table 2); σ⃗ are the related 1σ errors and B⃗ contains the best-fit values

of Table 3, B⃗ =
[

tanb f (θ12), tanb f (θ13), tanb f (θ23), J
b f
CP

]

. ∆ allows us to estimate how far a

given texture is from the current values of the mixing parameters.

Table 2. Perturbative predictions on sin(θ13), tan(θ12), tan(θ23) (up to O(λ)) and JCP (up to O(λ3))

as obtained from the ansatz UPMNS = V⋆
CKMT⋆, where T can be TBM, BM and GR mixing patterns.

In the last column, we report the values of the variable ∆ defined in Equation (16).

T sin(θ13) tan(θ12) tan(θ23) JCP ∆

UTBM
λ√
2

1√
2
+ 3λ

2
√

2
1 − 1

6 Aηλ3 2715

UBM
λ√
2

1 −
√

2λ 1 1
4
√

2
Aηλ3 2500

UGR
λ√
2

2
√

5
5+

√
5
+ 5

√
2

5+
√

5
λ 1 − 1

2
√

10
Aηλ3 2580

Table 3. Neutrino observables and their 1σ ranges as derived from NuFIT 5.3 [33,34], using the

dataset with SK atmospheric data [35]. For the extraction of the best-fit value and 1σ uncertainty of

the Jarlskog invariant, we refer to its one-dimensional χ2 projection from NuFIT 5.3.

Parameter Best-Fit Value and 1σ Range

r ≡ ∆m2
sol/|∆m2

atm| 0.0295 ± 0.0008
tan(θ12) 0.666 ± 0.019
sin(θ13) 0.149 ± 0.002
tan(θ23) 0.912 ± 0.035

JCP −0.027 ± 0.010

While all patterns predict maximal (23) mixing and the same sin(θ13), the differences
come from JCP (strongly suppressed for all patterns) and from the solar sector; in particular,
for the latter, the BM mixing results in a better agreement with the current experimental
value than TBM and GR, as evident by the smaller ∆. The predictions in Table 2 are also
reported in Figure 1, together with their 2σ experimental spread (red rectangles)2.

From this, we learn that, after the shifts of O(λ) provided by VCKM , negative
corrections are needed for all patterns to jump into the 1σ allowed range for all mixing
angles. It is worth mentioning that, if 3σ allowed for ranges for the atmospheric mixing
angle and the Jarlskog invariant is taken into account, the BM scenario is compatible
with experimental data. Indeed, both sin θ23 ∼ 1 and JCP ∼ 0 are not yet excluded by
neutrino experiments [34].

In the next section, we will analyze, in a systematic way, which corrections of Uij in
Equation (4) are the most appropriate to better fit the neutrino mixing parameters.
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tan(θ12)0.5 1

BM TBMGR

tan(θ23)10.5

ALL

sin(θ13)0 0.5

ALL

Figure 1. Current 2σ experimental spread on tan(θ12), tan(θ23) and sin(θ13) (red rectangles) and the

predictions derived from UPMNS = V⋆
CKMT⋆, where T can be TBM, BM and GR mixing patterns.

Errors have been derived from Table 3.

2.2. Corrections from the (13)-Sector to BM, TBM and GR

We start our analysis by studying in detail the correction to the standard patterns
from the (13)-sector. The main idea is that, given the absence of any CP phase in (14),
Equation (11) implies a very low CP violation in the lepton sector [36], of the order of O(λ3)
and proportional to η, as shown from the expressions of JCP in Table 3. Thus, to allow for a
larger CP violation, which seems to be preferred by recent oscillation results, new sources
of symmetry violation are needed. Assuming for T the decomposition as in Equation (4),
larger CP violation can be generated by slightly shifting the (13)-rotation from the identity;
to this aim, we introduce a complex parameter u [37] such that |u| ≪ 1 and we rescale it by
one power of the Cabibbo angle λ. This also implies that the rescaled |u| ∼ O(1). Thus, the
(13)-rotation has the following structure:

U13 =







1 − λ2

2 |u|2 0 uλ

0 1 0

−u∗λ 0 1 − λ2

2 |u|2






. (17)

To completely construct the matrix T, we need to specify the rotations in the other two
sectors, the (12)- and (23)-rotations. In order to contemplate the BM, TBM and GR mixing
simultaneously, we leave unspecified the rotation in the (12)-sector and, since the sign
of such a rotation is not fixed a priori, we leave it as free, encoding this uncertainty into
the parameter σ that can assume values ±1. At this stage, the rotation in the (23)-sector
is maximal (so, from our ansatz, we expect all deviations to θ23 to come from VCKM, see
below). Thus, we have

U23 =







1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2






, U12 =





c̃12 σs̃12 0
−σs̃12 c̃12 0

0 0 1



 , (18)

where c̃12 ≡ cos(θ̃12) and s̃12 ≡ sin(θ̃12) are the cosinus and sinus functions of a rotation in
the (12)-sector (not to be confused with the usual solar angle). This, in turn, implies the
following structure of the T matrix:
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T ≡ U23U13U12 =











c̃12

(

1 − λ2

2 |u|2
)

σs̃12

(

1 − λ2

2 |u|2
)

uλ

−(σs̃12 + c̃12u∗λ)/
√

2 (c̃12 − σs̃12u∗λ)/
√

2
(

1 − λ2

2 |u|2
)

/
√

2

(σs̃12 − c̃12u∗λ)/
√

2 −(c̃12 + σs̃12u∗λ)/
√

2
(

1 − λ2

2 |u|2
)

/
√

2











. (19)

Notice that unitarity is fully respected up to O(λ3). With our parametrization, the
relevant patterns are recovered once we fix u = 0 (for all of them) and s̃12 = 1/

√
3,

s̃12 = 1/
√

2 and s̃2
12 = 2/(5 +

√
5) for TBM, BM and GR, respectively (at this stage,

the value of σ is irrelevant). For the Jarlskog invariant JCP, up to O(λ3), we obtain the
expression as below:

JCP =
λ

4
σ Im (u) sin(2θ̃12) +

λ2

2
√

2
Im (u) cos(2θ̃12)+

− λ3

8
σ sin(2θ̃12)

[√
2Aη + 2Im (u)

(

2 + |u|2 +
√

2Re (u)
)]

. (20)

Some comments are in order:

• In the limit of exact TBM, BM and GR, the invariant J reduces to

JTBM
CP = − Aηλ3σ

6
, JBM

CP = − Aηλ3σ

4
√

2
, JGR

CP = − Aηλ3σ

2
√

10
, (21)

which all lead to a suppressed CP violation in the lepton sector, in agreement with
Table 2 for an appropriate choice of σ.

• Retaining terms proportional to Re (u) (and setting Im (u) = 0) does not cure the

previous problem since they appear only to O(λ3).
• To reconcile our prediction with the experimental value, we need to allow for a devia-

tion from exact TBM, BM and GR forms provided by Im (u). The O(λ) degeneracy
between σ and Im (u) will allow the latter to assume both positive and negative values.

To find the set of values of Re (u), Im (u) that allows us to reproduce the best-fit point

of JCP (J
b f
CP), in Figure 2, we plot the ensemble of u values which makes the modified

versions of TBM (black solid line), BM (red dashed line) and GR (blue dot-dashed line)
compatible with Jbf

CP at 1σ, subject to the constraint |u| < 1. Given the similarities in the
analytical structure of TBM, BM and GR, we see that the overlapping complex u-region is
covered; in addition, as commented above, we also expect a less relevant dependence on
Re (u) compared to Im (u).

The main conclusion is that |Im (u)| ≳ 0.3 (and almost any Re (u) in the [−1, 1] range)
is enough to obtain the correct amount of leptonic CP violation, for any choice of the
starting matrix. The mild Re (u), Im (u) correlation is mainly dictated by the constraint
|u| < 1.

Now, we target for the expressions of the mixing angles. For the reactor angle, we
obtain a formula which is independent on the θ̃12 parameter (and thus, on the sign of σ) up
to O(λ3) terms (notice that O(λ2) terms vanish):

sin(θ13) =

√

1/2 + |u|2 +
√

2Re (u) λ +
[

2
√

2Aρ − 4AηIm u + (−2 + 4Aρ)Re u − |u|2(3
√

2 + 2Re (u))
]

4
√

1 + 2|u|2 + 2
√

2Re (u)
λ3 . (22)

In the limit of exact TBM, BM and GR mixing (u = 0), we recover the well-known
relation sin(θ13) = λ√

2
+O(λ3) , which is still a good approximation (see also Table 2).

Moreover, Equation (22) shows that, barring accidental cancellations, negative Re (u) values
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are needed to compensate for positive shifts driven by |u| (unless Im (u) is also small, in
that case small positive values of Re (u) are also allowed).

TBM

BM

GR

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Re(u)

Im
(u
)

σ=-1

σ=1

Figure 2. Ensemble of u values which make the modified versions of TBM (black solid line), BM (red

dashed line) and GR (blue dot-dashed line) compatible with J
b f
CP at 1σ. The upper (lower) plots show

the solutions obtained with σ = −1 (σ = +1).

Not too much must be said for the atmospheric angle; up to O(λ3), we obtain

tan(θ23) = 1 +
λ2

2

[

−1 + 4A − 2
√

2Re (u)
]

. (23)

The most interesting feature is the absence of any dependence on Im (u); thus, the
small deviations from maximality are governed, besides the Cabibbo angle, by Re (u) only.
We also have to mention that the current best-fit point is away from maximal mixing at the
level of 3σ (see Table 3). Thus, relatively large positive Re (u) are needed to shift tan(θ23)
towards its 1σ preferred value, which lies around tan(θ23)

b f ∼ 0.9. As in the previous case,
no dependence on θ̃12 appears so that exact TBM, BM and GR hypotheses give the same
expression in Equation (23) with Re (u) = 0.

Finally, for the solar angle, we obtain

tan(θ12) = tan(θ̃12) +
λ√
2c̃2

12

σ +
λ2

2c̃3
12

s̃12 +

+
λ3

4c̃4
12

σ
[√

2(1 − 2Ac̃2
12ρ) + c̃2

12(
√

2|u|2 + 2Re (u))
]

. (24)

The most considerable feature is that the corrections implied by U13 of Equation (17)
are too small to be significant; thus, the expressions of θ12 are very similar to those quoted in
Table 2. In addition, once we specify the values of θ̃12 for the relevant patterns, there are no
free parameters up to O(λ2); we can then derive the following sum-rules among physical
angles that, for the sake of simplicity, we report here up to the first order in sin(θ13):

tan(θ12) =















1√
2
+ 3σ sin(θ13)/2 for TBM

1 + 2σ sin(θ13) for BM

2
√

5/(5 +
√

5) + 10σ sin(θ13)/(5 +
√

5) for GR .

(25)
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The only possibility to (marginally) reconcile the previous sum rules with the ex-
perimental value happens for BM mixing with σ = −1, which shows a deviation from
tan(θ12)

b f at around ∼3% (compare with Figure 1); for the other mixing patterns, this dif-
ference amounts to values as large as ∼20% for GR and ∼30% for TBM. To better quantify
the (dis-)agreements of the obtained UPMNS with the experimental data after including the
corrections in Equation (17), we perform a simple χ2 test, with the following function:

χ2 =

[

JCP−J
b f
CP

]2

σ2
JCP

+
[sin(θ13)−sin(θ13)

b f ]
2

σ2
sin(θ13)

+
[tan(θ23)−tan(θ23)

b f ]
2

σ2
tan(θ23)

+
[tan(θ12)−tan(θ12)

b f ]
2

σ2
tan(θ12)

(26)

For all patterns, the minimum of the χ2 is very large, in the range (10–103) and it
is dominated by the tan(θ12) term; in fact, if we exclude θ12 from the χ2 function, the fit
improves considerably for all patterns, with χ2

min ∼ O(20) (the best performance being
the one obtained by BM mixing with σ = −1). The problem related to the deviation
from the maximality of θ23 is, instead, less relevant because of a larger relative 1σ error
compared to θ12. Finally, the corrections analyzed here help in improving the values of ∆,
∆ = (2708, 2492, 2573) for TBM, BM and GR mixing, respectively. Obviously, assuming for
the variable u a smaller value, that is shifting u → λN u, does not solve the problem for any
integer N.

2.3. Perturbation on the (23)-Sector

One possibility to alleviate the problem in the (23)-sector is to slightly modify U23 of
Equation (4) by inserting a new real parameter ω according to3

U23 =







1 0 0

0 1√
2
− λω −

√
2λ2ω2 − 2λ3ω3 1√

2
+ ωλ

0 − 1√
2
− ωλ 1√

2
− λω −

√
2λ2ω2 − 2λ3ω3






. (27)

Notice that, to maintain the unitarity of U23, we displayed up to O(λ3) terms. We
repeat the same calculations as before and indicate with a prime the new expressions of
the mixing parameters while leaving unprimed the results of the previous section. The
relevant corrections driven by ω are as follows:

J′CP = JCP − λ3

2
Im (u)

[

ω cos
(

2θ̃12

)

+ 2σω2 sin
(

2θ̃12

)

]

sin′(θ13) = sin(θ13) +
λ2ω√

2

[√
2 + 2Re (u)

]

√

1 + 2|u|2 + 2
√

2Re (u)

tan′(θ23) = tan(θ23) + 2
√

2λω (28)

tan′(θ12) = tan(θ12)−
λ2ωσ

cos2
(

θ̃12

) .

We see that JCP, θ12 and θ13 acquire small O(λ2−3) corrections that do not improve
the fit compared to the previous section. For the atmospheric angle, instead, an O(λ)
is relevant, especially for negative values of ω as, starting from maximality, we need a
negative correction to jump into the experimental value4. Notice that this is true for any
value of σ. However, even though the atmospheric angle turns out to be in the correct
range, the fits to the expressions in Equation (28) are only slightly improved but still remain
≳ O(100) because of the poor foreseen solar angle; as before, only the modified BM mixing
case presents a good minimum of the χ2 at χ2

min = 3.47. For the sake of illustration, the
behavior of the ∆χ2 = χ2 − χ2

min as a function of ω is presented in Figure 3. For every ω,
we have marginalized over Re (u) and Im (u) in the fit.
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Figure 3. ∆χ2 = χ2 − χ2
min behaviour as a function of ω for the modified BM mixing. In the fit

procedure, we have marginalized over the (Re (u), Im (u))) pair.

2.4. The Full Glory: Perturbation on the (12)-Sector

The results of the previous sections have shown that the predictions for JCP and
sin(θ13) are good for all mixing once the u-corrections are included. The ω corrections
are needed to reconcile the θ23 deviations from maximal mixing (common to all patterns),
while the solar angle remains sensitively away from its experimental value for TBM and
GR mixing but sufficiently close to it for BM. Thus, in order to complete our program to
match the data of Table 3, we need to add a (real) correction of O(λ) to the (12)-sector that
we dub with z. We parameterize it in the following way:

U12 =





K s̃12σ + zλ 0
−s̃12σ − zλ K 0

0 0 1



 , (29)

where K = c̃12 − s̃12zσ/c̃12λ− z2/(2c̃3
12)λ

2 − s̃12z3σ/(2c̃5
12)λ

3. The expression of the mixing
parameters are modified accordingly; in particular, θ13 and θ23 are unaffected by z, so their
expressions of Equation (28) are valid even in this case. The Jarlskog invariant obtains an
O(λ2) correction of the form

J′′CP = J′CP +
λ2

2

cos(2θ̃12)Im (u)

cos(θ̃12)
z . (30)

By construction, the most interesting case is related to θ12; here, corrections of O(λ)
driven by z compete with that shown in Equation (24):

tan′′(θ12) = tan(θ12)
′ + λ

σ z

cos3
(

θ̃12

) . (31)

Thus, we expect that a cancellation among the λ coefficients could bring the TBM and
GR mixing in agreement with the data (for any σ), while for BM, the contribution from z
(and σ = −1) must be small in order to not destroy the agreement found above; conversely,
we expect that σ = 1 will be acceptable for non-vanishing z corrections. To check whether
this is the case, we minimized the χ2 function of Equation (26) over the four independent
parameters Re (u), Im (u), ω and z and reported their best-fit values in Table 4.

For all patterns, the minimum of the χ2 is very close to zero, so we did not report
it on the table. As expected, the magnitude and signs of the needed z′s reflects our
considerations below Equation (31). In addition, the very similar values for Re (u) and
Im (u) can be understood from Figure 2, where the acceptable regions for such parameters
are almost equivalent for each pattern. Finally, compared to the previous section, the value
of ω is compatible with the BM case previously analyzed and, as expected, tends to assume
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a very similar strength for all other patterns and signs of σ (O(λ) corrections are universal).
The 90% and 99% confidence levels of the χ2 function in the (ω, z)-plane for TBM (left
panel), BM (middle panel) and GR (right panel) are reported in Figure 4; in each plot, we
included both ±1 possibilities for σ and marginalized over the (Re (u), Im (u))) pair.

Table 4. Values of the parameters Re (u), Im (u), ω and z that minimize the χ2 function of

Equation (26), computed for σ = −1 and, in parenthesis, for σ = 1. For all patterns, χ2
min ∼ 0.

Pattern Re (u) Im (u) ω z

TBM −0.27 (−0.27) 0.57 (−0.55) −0.27 (−0.27) −0.50 (−0.77)
BM −0.27 (−0.29) 0.57 (−0.56) −0.27 (−0.27) 0.08 (−1.17)
GR −0.27 (−0.27) 0.57 (−0.54) −0.27 (−0.27) −0.73 (−0.55)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.0

-0.5

0.0

ω

z

*

*

90% CL

99% CL

σ=1

TBM

σ=-1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.0
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0.0

ω

z

*

*

σ=1

BM

σ=-1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1.0

-0.5

0.0

ω

z *

*
σ=-1

GR

σ=1

Figure 4. The 90% and 99% χ2 confidence levels in the (ω, z)-plane for TBM (left panel), BM

(middle panel) and GR (right panel). In each plot, we have reported both ±1 possibilities for σ and

marginalized over the (Re (u), Im (u))) pair.

3. On the Neutrino Masses

The next step is to ensure that our procedure is able to reproduce the solar and atmo-
spheric mass differences. Equation (5) offers the structure of the neutrino mixing matrix in
terms of a right rotation UR (four real parameters), three right-handed neutrino masses and
three Dirac neutrino masses, for a total of ten unknown parameters; of those, four have
been used to constrain the matrix T in Equation (6), and the remaining six parameters are
left to describe neutrino masses. To determine them, one can try to figure out the structure
of the diagonal matrix S by inverting Equation (6), so that

S = T†m
diag
νD

U†
R (M

diag
R )−1 U⋆

Rm
diag
νD

T⋆ . (32)

Notice that the matrix S ≡ m
diag
ν does not depend on the quark mixing. One possibility

to determine the unknown parameters is to rephrase Equation (32) to the more useful form:

S − T†m0T⋆ = 0 . (33)

Its left-hand side is a symmetric matrix made complex by the entries of m
diag
ν and by the

T matrix, needed to successfully reproduce the leptonic CP violation. Thus, Equation (33)
is equivalent to 12 conditions, which have to be simultaneously valid. However, we can
easily verify that the imaginary parts of the elements of T are always smaller than the real
part (at the level of 20% or smaller) with a notable exception of element (13), for which
the imaginary part is either larger (in the only case when T is the corrected BM mixing
with σ = −1) or just half of the real part. With the aim of catching the relevant physics,
not obfuscated by useless details (phases are of the uttermost importance for CP violation,
not for neutrino masses), we prefer to deal with real S and T matrices; this allows us
to reduce the number of constraints to only six5. Even in this case, the large number of
free parameters makes the expressions of neutrino masses quite cumbersome. Thus, we
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only give a numerical solution to Equation (33). For the S matrix, we take the following
expression, valid for the Normal Ordering (NO) case:

S = diag(m1,
√

m2
1 + ∆m2

sol ,
√

m2
1 + ∆m2

atm) , (34)

where m1 is the absolute neutrino mass scale that, for the sake of simplicity, we assume
vanishing. We then construct the adimensional function:

F(m⃗νD
, M⃗R, θ⃗R) =

∑
3
j<i=1

[

Sij − (TTm0T)ij

]2

∆m2
sol

, (35)

and look for minima as close as possible to zero. Here, the vectors have the following
entries with obvious meaning:

m⃗νD
=

(

mνD1
, mνD2

, mνD3

)

M⃗R =
(

MR1
, MR2

, MR3

)

θ⃗R =
(

θR12
, θR13

, θR23

)

. (36)

We consider ourselves satisfied when F(m⃗νD
, M⃗R, θ⃗R) < 1, meaning that all the differ-

ences between the corresponding matrix elements of S and TTm0T are smaller than the
smallest measured mass scale ∆m2

sol. The minimization procedure has been carried out
by means of the software MultiNest v 3.10, which is based on nested sampling normally
used for calculation of the Bayesian evidence [40–42]. The choice of priors in this context is
relevant. To prove that a solution to the system (33) exists, we set

1 ≤ mνD1
/GeV < 10 , 10 ≤ mνD2

/GeV < 100 , 100 ≤ mνD3
/GeV < 500 ,

1013 ≤ MR1
/GeV < 1014 , 1014 ≤ MR2

/GeV < 1015 , 1015 ≤ MR3
/GeV < 1016 , (37)

θ⃗R ∈ [0, 2π) .

Notice that, with the neutrino masses given by complicated expressions of parameters,
the positions mνD1

< mνD2
< mνD3

and MR1
< MR2

< MR3
do not correspond a priori

to a definite mass hierarchy, as it would be the case for a standard see-saw mechanism,
where, for example, mi ∼ m2

νDi
/MRi

for NO. We have analyzed the six different cases

corresponding to modified BM, TBM and GR and the two values of σ = ±1; for each
texture, we reported in Table 5 the minimum of F(m⃗νD

, M⃗R, θ⃗R) and the values of the

vectors m⃗νD
, M⃗R and θ⃗R in which the minimum is assumed. We also report in Figure 5 an

example of posterior distributions for the BM case, σ = −1 (all cases are very similar to
each other).

Table 5. Results of the minimization procedure of the function F(m⃗νD , M⃗R, θ⃗R) in Equation (35). Fmin

stands for the minimum value of such a function; the meaning of the three vectors m⃗νD , M⃗R and θ⃗R

has been given in Equation (36).

Fmin m⃗νD
(GeV) M⃗R (1013 GeV) θ⃗R (◦)

BM
σ = +1 0.42 (9.35, 55.35, 117.70) (4.0, 70.10, 297.51) (145.80, 195.44, 162.01)
σ = −1 0.44 (9.98, 36.84, 111.52) (3.59, 67.78, 708.16) (122.88, 12.88, 112.59)

TBM
σ = +1 0.31 (9.38, 58.54, 130.56) (3.41, 93.21, 794.35) (331.00, 347.73, 317.70)
σ = −1 0.34 (9.66, 34.52, 159.29) (2.09, 55.69, 485.30) (321.58, 354.03, 221.83)

GR
σ = +1 0.19 (9.83, 80.88, 201.77) (3.55, 86.014, 728.73) (341.65, 171.70, 188.76)
σ = −1 0.45 (9.26, 42.48, 156.88) (2.97, 38.95, 268.45) (145.00, 8.15, 341.63)
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Let us further analyze in detail the results of our minimizing procedure. First of
all, none of the analyzed patterns can be tagged as a preferred one, as the minima of
the F function are very close to each other. This is in agreement with what we found
for the mixing angles where, after including all relevant corrections, no preferred choice
emerged. The vector m⃗νD

is characterized by the fact that the first and third elements prefer
values at their upper and lower limits, respectively, while mνD2

is generally confined in
the central region (with an exception for the case TBM, σ = +1, which, instead, prefers
larger values). As for the Majorana masses, we observe similarities in all elements among
the different patterns: MR1

and MR3
tend to stay close to their allowed lower and upper

bounds, respectively, while MR2
is mostly concentrated in the middle region around

[40–90] · 1013 GeV. It is interesting to observe that the posterior distributions (middle
panels of Figure 5) are almost flat for MR3

but peaked at large allowed values for MR1
and

MR2
. While for the latter case this seems consistent with the values at the minimum of

F, for the former, this behavior does not completely match what reported in Table 5. We
interpret this as that MR1

gives a smaller contribution to F as the other Majorana masses.
This also happens for the first Dirac neutrino mass mνD1

, whose best-fit value is close to
its upper limit while the posterior distribution is essentially flat. Finally, a look at Figure 5
reveals that the posterior distributions for the mixing angles are multi-modal; in particular,
a clear bi-modal distribution is seen for θR12

, around | sin(θR12
)| ∼ 1/2, and for θR13

around
| sin(θR13

)| ∼ 0; this is also visible in Table 5. A less clear bi-modal behavior is also present
for θR23

, but the spreads around the maximum posterior probability are not negligible.
Assuming the fixed values sin(θR12

) = 1/2 and sin(θR13
) = 0, the right-handed rotation

implied by our fit is as follows:

UR =





√
3/2 1/2 0

−c23/2
√

3c23/2 s23

s23/2 −
√

3s23/2 c23



 . (38)
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Figure 5. Posterior distributions for the elements of the vectors m⃗νD (first line) M⃗R; (middle line)

and θ⃗R (lower line) for the BM case, σ = −1. Darker and lighter blue refer to 68% and 95% credible

intervals, respectively.
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4. Conclusions

In this paper, we have investigated in detail the hypothesis that the PMNS mixing
matrix is given by the relation UPMNS = V⋆

CKM T⋆, where T is a unitary matrix. By
considering the decomposition T ≡ U23U13U12, we have shown that a T matrix coinciding
with TBM, BM and GR mixing fails, among others, to reproduce the experimental preferred
value of the Jarlskog invariant, which is related to the third power of the Cabibbo angle.
To solve these issues, we have analyzed O(λ) corrections to the Uij matrices, showing
that a complex parameter u is needed in the (13) rotation to reconcile our ansatz with
the experimental amount of leptonic CP violation. While a correction ω in the (23)-sector
is needed for a substantial deviation of the atmospheric angle from maximality, it only
marginally improves the global fit to the experimental values of the mixing angles because
of a wrong estimate of θ12 in all cases but BM. Thus, a shift in the (12) plane is mandatory
to account for the solar angle and, consequently, to obtain an excellent fit for all mixing
parameters and for any initial choice of T. The ansatz illustrated here is also appropriate to
reproduce the value of solar and atmospheric mass differences. Indeed, equipped with the
best-fit values of the Re (u), Im (u), ω and z parameters, we have shown that a description
of neutrino masses via the see-saw mechanism is possible. Because of the cumbersome
analytical expressions of ∆m2

sol,atm, we relied on a numerical scan of the vector components

of m⃗νD
, M⃗R and θ⃗R of Equation (36) and found that, with our choice of priors, a complete

description of neutrino masses and mixing under the assumption UPMNS = V⋆
CKM T⋆

is possible.
The analysis shown here can be further extended to contemplate different starting

ansatzs whose structures are different from those analyzed here; an example in this direction
is offered by the trimaximal mixing [43], which differs from the BM structure in predicting
sin(θ13) = 1/

√
3.
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Appendix A. Full O(λ3) Formulae

For the sake of completeness, we report here the full O(λ3) expressions of the mixing
parameters obtained from our ansatz UPMNS = V⋆

CKM T⋆.

J =
λ

4
σ Im (u) sin(2θ̃12) + λ2 Im (u) cos2(θ̃12)

4 cos(θ̃12)

(√
2 cos(θ̃12) + 2z

)

+

− λ3

8
σ sin(2θ̃12)

[√
2Aη + 2Im (u)

(

2 + |u|2 +
√

2Re (u)
)]

+ (A1)

− λ3

2
Im (u)

[

ω cos
(

2θ̃12

)

+ 2σω2 sin
(

2θ̃12

)

]

+

− λ3zσ

{

−8
√

2 sin(θ̃12)Im (u) +
2zIm (u) sin(θ̃12)

cos(θ̃12)3

[

3 cos2(θ̃12) + sin2(θ̃12)
]

}

https://inspirehep.net/literature/2803966
https://inspirehep.net/literature/2803966
https://arxiv.org/abs/2407.02487
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sin(θ13) =

√

1/2 + |u|2 +
√

2Re (u) λ +

+
λ2ω√

2

[√
2 + 2Re (u)

]

√

1 + 2|u|2 + 2
√

2Re (u)
+

+λ3

[

2
√

2Aρ − 4AηIm u + (−2 + 4Aρ)Re u − |u|2(3
√

2 + 2Re (u))
]

4
√

1 + 2|u|2 + 2
√

2Re (u)
+ (A2)

+λ3 ω2

√
2Im 2(u)

[

2Re (u)
(

Re (u) +
√

2
)

+ 2Im 2(u) + 1
]3/2

tan(θ23) = 1 + 2
√

2λω +
λ2

2

[

−1 + 4A − 2
√

2Re (u)
]

+ (A3)

+λ3ω
(

4
√

2A − 2Re (u) + 12
√

2ω2 −
√

2
)

tan(θ12) = tan(θ̃12) +
λ σ

(√
2c̃12 + 2z

)

2c̃3
12

+
λ2

2c̃3
12

s̃12 −
λ2ωσ

c̃2
12

+
λ2 z

√
2s̃12

c̃4
12

+
3λ2z2 s̃12

2c̃5
12

+

+
λ3

4c̃4
12

σ
[√

2(1 − 2Ac̃2
12ρ) + c̃2

12(
√

2|u|2 + 2Re (u))
]

+ (A4)

+
λ3

2c̃7
12

{

−2
√

2c̃4
12ω(c̃12σω + s̃12) + c̃2

12z
[

c̃2
12σ − 2ω sin(2θ̃12) + 3σs̃2

12

]

+

c̃12σz2(5 − 3 cos(2θ̃12))√
2

+ σz3(3 − 2 cos(2θ̃12))

}

Notes

1 For our purposes, it is enough to consider the normal hierarchy only, as the only significant difference with respect to the inverted

ordering case is a slight preference for the opposite θ23 octant.
2 We do not report the spread of JCP as, for any pattern, its absolute value is around two orders of magnitude smaller than the

experimental best-fit.
3 Since the complex variable u was already enough to guarantee the correct amount of leptonic CP violation, we prefer to reduce

the number of free parameters by choosing a real correction ω.
4 The three main neutrino global fits [33,38,39] do not agree on the preferred θ23 octant, even though the 3σ ranges are all compatible.

In our analysis, a higher octant value for θ23 can be easily obtained with a positive ω value.
5 If, instead, we prefer to deal with complex matrices, phases must thus be added to UR to help in vanishing all imaginary parts of

Equation (33).
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