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BACKGROUND
Neutrinos are one of the biggest research areas
to look for Beyond the Standard Model physics,
and studying rare processes requires high intensity
neutrino beams. For next generation facilities, ro-
bust targets need to be designed which can sustain
the increased radiation damage and thermal shock
from higher beam intensities (up to 4+ MW)
Record: 959 kW (NuMI, May 2023)
LBNF w/ PIP-II: 1.2 MW
LBNF w/ PIP-III: 2.4 MW

NANOFIBER TARGETS
• High Power Targetry R&D Group at Fermi-

lab studying nanofibrous target material—
electrospun mats of Yttria-Stabilized Zirco-
nia nanofibers [1,2].

• Several potential advantages:
1. Empty space dissipates thermal stress

waves
2. Porosity allows cooling with gas flow
3. Intrinsic radiation hardening

• Thermal shock test with single beam pulse
at HiRadMat revealed survival depends on
construction parameters.

• Top row: less dense nanofiber mat (Solid Vol-
ume Fraction (SVF) f = 0.05) appears un-
damaged. Bottom row: denser mat (SVF
f = 0.20) failed after beampulse.

Objective of this work: use Bayesian Optimiza-
tion to study trade-off between secondary particle
production yield and target lifetime.

BAYESIAN OPTIMIZATION
• Bayesian optimization is a strategy for global

optimization
• Particularly useful if objective function F is

expensive to compute or lacks a simple form
or derivative information (black box)

• Works by treating F as random function with
statistical model of your choosing. Knowl-
edge of F at a finite number of points +
Bayes’ theorem −→ posterior distribution

• Use posterior distribution to compute acqui-
sition function—optimizing acq f’n tells you
where to try next in parameter space

• Predicting damage and yield to a nanofiber
target is VERY computationally expensive.
Advantage of BO is doing expensive calcu-
lation only at carefully chosen points

OBJECTIVE FUNCTION
• Choose wisely: only connection between

math and the physical problem
• Input space: SVF, f , and average fiber ra-

dius, R with bounds f ∈ [0.05, 0.35] and
R ∈ [100nm, 2.5µm]

• Failure of HiRadMat high density target be-
lieved to be pressurization of air inside target
=⇒ small f improves survival

• Low f lowers secondary particle yield, so
balance max pressure rise ∆P and yield Y

• Thus, chose F(f,R) to be:

F(f,R) :=

(
Y(f)− Yref

Yref

)
+

(
−∆P (f,R)− Pref

Pref

)
• Yref = 2.89 × 10−3 (SH PPP)—yield of

graphite target, Pref = 100kPa

PARAMETER SPACE TRAJECTORY

Contours of viscous resistance (1/α, see “Model”) overlaid with
trip of Bayesian Optimizer through SVF (f) and fiber radius (R)
parameter space. Green x’s are training points, +’s are tested
points (colored gradient from blue to red based on value of F )
and the gold star is the best point so far.

PROGRESS ON OBJECTIVES

Progress on attaining our “objectives” of low pressure rise and
high yield at each iteration of the loop.

MEAN AND CONFIDENCES

Plot of final mean value and 2σ confidence intervals of F as
function of SVF f for fixed R = 2500nm (optimum radius).

OPTIMIZER
• Used BoTorch Python library [10]

• Gaussian process as prior distribution for F
• Training of hyperparameters by minimizing

negative marginal log likelihood

• Expected Improvement as acquisition func-
tion, optimized using Monte-Carlo method

• Ran for 13 iterations, demonstrated conver-
gence behavior to f = 0.35 and R = 2500nm,
the maximum allowed values

MODEL
• Gas phase thermal conductivity [3] incorpo-

rates size effects and non-equilibrium
• Porous zone effective thermal conductivity

[4], nonlinear combination of solid and gas

• Permeability to fluid flow (in Darcy’s Law),
α, given below [5]

α =
ϵ R2

8 (ln ϵ)
2

(ϵ− ϵp)
x+2

(1− ϵp)
x
[(x+ 1) ϵ− ϵp]

2

• Where ϵ = 1 − f , R is avg fiber radius,
ϵp = 0.11, x depends on direction of fluid
flow (for ⊥, x = 0.785, for ∥, x = 0.521)
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CONCLUSIONS
• Optimizer identified increasing R as improv-

ing α without changing f and the yield

• Neglected way to penalize R increasing, exit-
ing realm of applicability of model and ther-
mal stresses may become problem at large R

• Additional thermal or mechanical penalty
terms may be needed.

• Pursuing multi-objective Bayes Optimiza-
tion will allow study of Pareto fronts and un-
derstanding of trade-off better

ACKNOWLEDGEMENTS
This work was produced by Fermi Research Alliance, LLC under Con-

tract No. DE-AC02-07CH11359 with U.S. Department of Energy, Office

of Science, Office of High Energy Physics. Research presented here was

possible with the support of the Fermilab Accelerator PhD Program.

CONTACT INFORMATION
W.J. Asztalos: wasztalos@hawk.iit.edu

FERMILAB-POSTER-24-0064-AD

0Fermilab 

QJ 
0.75 :J 

~ 
QJ 

0.50 u 
C 
QJ 
L 
QJ 

0.25 ..... 
QJ 

0:: 

E 
0 0.00 L ..... 
QJ 
u 
C -0.25 
QJ 
L 
QJ 

:t:: 
0 -0.50 
QJ 

0:: 
-0.75 

Improvement or Depreciation from Reference Pressure 
and Yield Values During Optimization Trip 

---7-----------,-----------,------ ---
' ' ' ' ' ' ' ' ' ' ' ' I I I I 

--- :----------- :----------- :------- --- :--------- -:-
1 I I I I 
I I I I 
I I I I 

' ' ' ' ' ' 

' ' ' ' --------:-----------:---
' ' ' ' ' ' ' ' ' ' ---~-----------~-----------~--- - ------- _i _____ -----~-----------~---

' ' 1 I I I 

' ' I I I I 

' ' I I I I 

' ' I I I I 

' ' 
I I I I 

I I I I I I 

1---=c/'----i-----------i--------- -t-----------t---------- ~ ------- -t---
1 I I I I 
I I I I I 
I I I I 
I I I I 

I I I I I I I 
___ J ___________ J ___________ J _______ ---J-----------•-----------•-----------•---

1 I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I 
I I I I I 

---◄-----------◄----------- ➔---- ------➔-----------➔-----------1 I I I 
I I I I 
I I I I 
I I I I 

' ' ' I I I I I 
---➔------ ----➔-----------➔-----------➔-----------➔-----------

0 

1 I I I 
I I I I 
I I I I 

2 4 6 
Iteration 

8 10 

Yield 
F 

12 
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Mean and Confidence Regions for R=2500nm 
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