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The se notes are intended as an elementary exposition of the concepts and 

mathematical techniques of light-cone physics. They are directed toward ex- 

perimentalists or theorists not working directly in the field and therefore con- 

tain little that is unknown to the initiate. I apologize at the outset for the obvious 

lack of rigor: Whenever rigor and simplicity were at odds, I havechosen simplicity. 

Fortunately it is not difficult to present the fundamentals of light-cone physics, 

at least as abstracted from deep inelastic scattering, in simple terms. Mathe- 

matically, little more than a knowledge of the Fourier transform is required. 

Conceptually, the coordinate space structure of the parton model will provide a 

guide to the light-cone. It is impossible in these brief notes to describe many of 

the interesting applications of light-cone physics-for these, I refer to the liter- 

ature and to the lectures of Professors Brandt and Preparata at this School. 

The outline is as follows: first, some kinematic preliminaries so we will all 

agree on what we are talking about; second, a geometrical argument that effects 

near the light-cone dominate the cross section for inelastic lepton scattering in 

the Bjorken limit; third, mathematical techniques including discussions of light- 

cone expansions, more formal arguments for light-cone dominance and “meas- 

urement” of the light-cone singularities of operator products in deep inelastic 

scattering experiments; and lastly, some intuition for the origin of light-cone 

singularities in the framework of the parton model. 

I. PRELIMINARIES 

Consider the scattering of some lepton (for concreteness an electron, al- 

though the discussion applies as well to muons, neutrinos, or antineutrinos) off 

of a nucleon (practically, a proton or deuteron) with large transfer of both energy 
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and momentum. Assuming one photon exchange, we have, diagrammatically, 

where the final hadron state IX> is not observed. The mass and laboratory energy 

of the virtual photon are fixed by the laboratory energy and scattering angle of the 

lepton: 

q2 S -Q2 = -4ee’ sin28/2 

P-q E v =(e-e’)M 

The deep inelastic, or Bjorken, 1 limit is that in which u ‘and Q2 approach 

Q2 infinity with the ratio x = 2~ 

with much ensuing confusion). 

The cross section may be 

= l/w fixed (caution-what I call x some call o, 

written in terms of the matrix element for the 

virtual photon to excite the nucleon to the state IX) : 

do 

dQ2dv i 
c <PIJp (0)/X> <XIJv W/P> 

X 

@ (27f)484 
( 
P+q-Px 

,i 

where Jp(0) is the hadronic electromagnetic current operator. The lepton cur- 

.P rent, 1 , is presumed known from QED or from some phenomenological weak interaction 

theory, so our ignorance is isolated in the quantity in curly brackets, conventionally 

defined as 4n Wpy . In (I. 1) < > d enotes an average over the lepton spins, and 
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W 
PV 

is understood to be averaged over the proton spin. Our states are covar- 

iantly normalized2: 

<PIP’> = (2~)~ 2E a3 (F- F) 

which, we note for later use, implies that jP> carries with it the dimension 
-1 3 (mass) . The appearance of a local operator, Jp(0), in (I. 1) is an essential 

simplification which does not occur, for example, in purely hadronic reactions. 

In inelastic lepton scattering, we at least study hadronic structure with a well- 

defined probe. 

The four-momentum-conserving a-function prevents us from carrying out 

the sum over states in Eq. (I. 1). Translational invariance removes the problem 

since 

Using this, the label X occurs only in the state vector, and completeness 

(g IX) <Xl = 1) may be used to obtain: 

W 1 
pLv=zf e I 

iq’yd4y <PjJp (Y) J, (O)lP> 

It is slightly more convenient to deal with operator commutators than with 

operator products. Notice that 

eiq’Y<XIJp(y)\P> = (2*)4~4(Px+q-P)<X(Jc1(0))P> 

(I-2) 

ZZ 0 

because there is no state IX) for which the 6-function can be satisfied (i.e. , a 
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I 

nucleon cannot decay by emission of a positive energy photon to another physical 

state). This allows us to subtract from (I. 2) the same expression with the cur- 

rents in the opposite order, since it is zero: 

W 1 
jLv = zi- <P$Jp W, Jv (O$P> (I-3) 

Notice that (I. 3) is the imaginary part of the virtual forward Compton scat- 

tering amplitude (this is just the optical theorem). 4 Graphic ally : 

where the dashed line indicates that the intermediate states are ou-mass-shell, 

physical states. We shall have much to say about the two space time points (0 

and y) in (I. 3). While they have no direct interpretation in electroproduction, it 

is obvious that in the Compton amplitude, they are the points of absorption and 

emission of the virtual photonon the nucleon. We shall see that the behavior of 

< I[ 
P JF(y), JV (0) IP> at nearly light-like points (y2 = 1 0) governs inelastic elec- 

tron scattering in the Bjorken limit. 

Since W 
PY 

is a Lorentz tensor and (for the case of electron scattering) must 

satisfy current conservation, qcLW 
IJV = w&l” = 0, it has a particularly simple 

decomposition into invariant “structure functions1t5: 
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In terms of Wl and W2 the cross section is given by 

c0s2 t + 2Wl(q2,v) sin2 g] 

Before confronting the light cone, it is useful to look at the v , Q2 plane 

over which the functions Wl and W2 are defined. 

W 
PV 

must vanish whenever it is kinematically impossible to scatter to a real 

state IX> whose mass is given by 

2 
MX = (Pi- q)2 = M2 + 2~ - Q2 
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Since Mi 2 M2, W 
PU 

must vanish for 2v < Q2. The line 2u =Q2 corresponds 

to elastic scattering where the state IX) is just the original nucleon. A reso- 

nance of mass MR lies on the line 2v -Q2 = Mi - M2 parallel to the elastic line. 

The conventional Regge limit lies along lines parallel to the v axis, i. e. , masses 

(including the virtual photon’s) are held fixed, while the energy of the virtual 

photon becomes infinite. The Bjorken limit, v , Q2 -+oo with the ratio x = Q2/2v 

fixed, is the realm of light-cone physics. It is reached in the Q2,v plane by going 

out along rays through the origin, the slope corresponding to the value of x. 

Although the Bjorken limit is only achieved formally at infinite v and Q2, it 

has become commonplace to set infinity equal to 1 or 2 GeV2 in confronting data. 

The reason for this is of course hindsight: predictions which are derived for in- 

finite v and Q2 seem borne out by experiment at rather small values. Experi- 

mentally it is found that for Q2, v > 1 or 2 GeV, the structure functions W,(Q2, v ) 

and u W 6 
2 (Q2, v ) reduce to functions of x alone : 

w,(Q2, v ) - Fl(x) 

“W (Q2, Y ) - F2(x) 
M2 2 

This was predicted by Bjorken’ and is known as Bjorken scaling. 

At this time, neither the light-cone nor any other approach to the problem 

has succeeded in providing a satisfactory explanation for the early onset of seem- 

ingly asymptotic behavior. Of course, it is possible that the present experiments 

only give the illusion of asymptopia and that surprises await us at higher values 

of Q2 and v . Light-cone techniques are formally valid only at infinite v and Q2. 

If Bjorken scaling is found to break down at larger values of Q2 and v , it does 

not invalidate light-cone physics. It would mean, however, that we have been mis- 

taken in applying it to the present data. 
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II. LIGHT-CONE DOMINANCE 

By light-cone dominance, we shall mean two things: first, that in the 

Bjorken limit, the dominant contribution to the Fourier transform of (I. 3) 

comes from the region 0 I y2 6 1/Q2; and, second, that it arises from the term 

in <PI Jp(YLJvW]Jp) ( [I 
re erred f to hereafter as the current correlation func- 

tion) which is most singular on the light cone. If true, this provides great sim- 

plification-most of the complexity of the current correlation function may be 

ignored, only the most violent behavior near y2 = 0 need be studied. It may seem 

that these two requirements are identical-in fact, for lepton scattering they are- 

however, in other processes, we shall see that the first is satisfied while in gen- 

eral the second is not. Unless the leading singularity can be shown to dominate, 

light-cone techniques lose most of their predictive power. Here we present a 

geometrical argument in support of the first requirement, and return to the sec- 

ond in a later section. 

The requirement that y2 >, 0 follows from causality. The current correlation 

function vanishes unless y2 is timelike. The conventional argument for y2 S l/Q2 

is based on the oscillation of the phase e lqey in (I.3).7 We attempt to interpret 

this argument geometrically. 8 Consider the laboratory frame: 

P = (M,O,O,O) 

q= ($ ,o,o, JW) 

A plane of constant phase obeys the equation q 0 y = @ or qoyo - q3y3 = @ . In 

Euclidean geometry, this is the equation of a family of planes perpendicular to 

the vector q = (qo,O,O, - q3). If we suppress the other two directions (which 

are inessential for the argument), we may plot the planes (now lines) of constant 

phase and simply see what happens to them in the Bj-limit. 
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In the figure, these lines are plotted for some phase interval, say A@ = 2n, 

and are explicitly perpendicular to 5. Now, for large Q2 and v , the vector q 

approaches ( -& ,O,O, - G - Mx , ) it lies a distance $ up the zero-axis and a 

distance Mx outside the light cone. As the Bjorken limit is taken, two things 

happen: first, the vector q runs out along the dashed line parallel to, but a dis- 

tance Mx away from, the light cone. Consequently the lines of constant phase 

tilt over and become progressively more nearly parallel to the light cone. Sec- 

ond, the distance between successive lines of constant phase, which is easily 

seen to be - M/v , goes to zero. Right on the light cone, these effects cancel, 
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I 

that is, the point of intersection of a phase line with the light cone (3. , the 

points A, B, or C in the figure) remains fixed in the limit. These points are 

the solutions of the equation 

q)Y() - 93Y3 = @ 

when 

and are given by 

Yg = Y3 

Yo(qo - q3) = !P 

yo=y3= &/Mx, 

which are clearly fixed in the limit. In fact, the distance between the successive 

points of intersection (e.g. , between B and C) is given by 

A@ AyO=Ay3=-. 

The significance of this is as follows: The phase oscillations, becoming in- 

finitely closely spaced, will tend to wipe out any smooth contribution from the 

current correlation function inside the light cone. If there is some discontinuou.s 

behavior in the current correlation function across the light cone, this contribu- 

tion to W 
CLV 

will persist in the Bjorken limit because the phase lines do not be- 

come asymptotically close along the light cone. Indeed, we can guess (correctly) 

that, since the wavelength along the light cone is of the order l/Mx, the Bjorken 

limit will sample behavior along the light cone with a frequency propor- 

tional to Mx. Some discontinuous behavior is expected at the light cone on the 

basis of causality. 
C 
JP (y), Jv (o)] should be zero outside the light cone, but is 

presumably not zero for y2 2 0. Unless the correlation function vanishes like ’ 

e-l/Y2 as y2 - 0, it or its derivatives will be discontinuous or singular near 

y2= 0. 
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Several of the assumptions made in this argument can be shown to be un- 

necessary. First, the current correlation function may have certain singular be- 

havior inside the light cone, yet the light cone still dominates.’ Second, even 

for current products -rather than commutators-which do not necessarily vanish 

for y2 < 0, the region y2 I 1 , 5. l/Q2 can be shown to dominate in the Bjorken 

limit!‘This may seem surprising since a discontinuity across y2 = 0 figured 

heavily in our discussion. A simple demonstration that this is not necessary 

follows from arguments given in Appendix C of the second paper of Ref. 27. 

In the following section, we return to the question of light-cone dominance, _ 

especially to the requirement that the leading singularity dominate, in a more 

mathematical context. 

III. LIGHT-CONE EXPANSIONS 
AND THE MEASUREMENT OF LIGHT-CONE SINGULARITIES 

I If we are convinced that the region y2 ,< l/Q2 dominates the Fourier trans- 

form, the next step is to develop a formalism for studying objects like the cur- 

rent correlation function in this region. Such a formalism-operator product ex- 

pansions about y2 = O-was developed by Frishman 11 and by Brandt and Preparata. 10 

A fine review of this subject, which is too extensive to cover here, is given by 

Frishman in his Schladming Lectures. 
12 

From now on, we shall deal only with a hypothetical structure function, 

V(Q2, v ), arising from the scattering of some scalar current J(y) off of the 

nucleon. 

V(Q2 
1 

,v) =G 

I 

eiqvyd4y <P([J(y), J(O)] [ P> (I= 1) 

with 

c (y2, Y. p) = <Pl[J(y,, J(DjllP> 
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The complications of spin are not essential for the discussion. 

We wish to study C(y2, y . P) near y2 = 0. Simple examples such as free 

field theory lead one to expect a product of operators to satisfy an expansion of 

the following form: 

A(x) B(y) = c C@ (X-Y) F[q (%Y) 

PI 

where the C@] are not operators but may be singular as (x -Y)~ -0, while the 
13 

FPl are bilocal operators (i.e. , they are operator-valued at both x and y) 

regular near (~.-y)~ - 0. The indices [a] are Lorentz indices and any other 

labelling (e., internal symmetry, strength of singularity) which may occur. 

An example is in order: Consider J(y) = : q+(y) $ (y) : where q(y) is a free scalar 

field. It is easy to show then l4 [J(x), J(Y)] = iA(x-y)A,(x-y)+iA(x-y) 3 

[: ++w 4) (Y) : + :9+(y) $J 6) :I w h ere A and A, are certain functions (singular 

near the light cone) about which we shall have more to say. Although the ex- 

ample we have chosen is a commutator, a similar expansion exists for the 

product. 

The basic assumption is that the singularities, if any, may be isolated in 

the C-number function C PI. At least three courses of investigation are sug- 

gested by these expansions: 1. attempting to justify such expansions rigorously, 

for example in model field theories; 2. studying the way various terms in the 

expansion contribute to structure functions like V(Q2, v ); and, 3, trying to 

calculate these expansions by approximate methods in more “realistic” model 

field theories. About 1, we have little to say except to give a reference. 15 

The second subject is very fertile. We shall see that it is possible to 

“measure” the strength of the most singular’term in the expansion by doing deep 
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inelastic scattering experiments, 16 and that the results are surprising. First, 

take the one-nucleon matrix element of the light-cone expansion of a current 

commutator: 

W2, Y - P) = <P][J(y), JW]lP> 

(y2) da1 (Y - P, y2) 

In the Bjorken limit, we need only the behavior of C near y2 = 0; since FIa3 is 

assumed to be regular near the light cone, we may set y2 = 0 in F[o] . We shall 

now suppose that the most singular term in the expansion has a certain form and 

compute its contribution to V(Q2,v ) in the Bjorken limit. This will illustrate the 

sort of mathematics involved in light-cone calculations. We then return to the ex- 

pansion and show that terms less singular on the light cone are less important in 

the Bjorken limit. 

Certain properties of C(y2, y . P) constrain the allowed form of E Cd and F[oI. 

In particular 

1. C(y2,y. P)=Ofory’ < 0 (causality) 

2. C(y2,y. P) = -C(y2, -y. P) (crossing) 
2 17 3. V(Q2,v)=Ofor12vl <Q, puts constraints 

On F[ck] (y . P) which we will formulate more carefully later. 

Suppose the most singular term in 
c were 

IhI 

If F(y * P) = +F( -ye P), conditions 1 and 2 are satisfied. 

It is useful to check dimensions at each stage of these calculations. By 

dimension, we mean the physical dimension (see footnote 3) in units of mass 

(III. 2) 
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I 

(inverse length). C(y2, y . P) has dimension +2 if we take the currents to have 

dimension 2 as suggested by free scalar field theory 
18 (remember IP> has 

dimension -1). In the realistic case, the dimension of the electromagnetic cur- 

rent is fixed at 3 since Q s I 
d3 x Jo (x) is dimensionless, but in our hypothetical 

case, we must fix the dimension by assumption. Equation (III. 2) has the proper 

dimension ( dim[&(y2)] = +2) if F(y . P) is dimensionless. 

The contribution of (III. 2) to V(Q2, v ) is given by 

V,(Q2, v) z 1 
4r2i 

I 

eiqSyd4y S(y2) E (y,) F (y . P) (III. 3) 

We have replaced E (y . P) by E (yo) since sign (y . P) = sign(y0) when multiplying a 

function which vanishes outside the light cone. We can guess some features of the 

Fourier transform by dimensional analysis: The dimension of the right-hand side 

of (III. 3) is -2, and in the Bjorken limit, we expect this to be provided by a factor 

of l/v (l/v is equivalent to l/Q2 in the limit). Hence we expect Vl(Q2, v )-0(1/v ) 

in the limit. 

Let us confirm this by direct calculation. First write F(y . P) in terms of 

its Fourier transform: 

so (III.3) becomes 

r” 

VltQ2,v) =+ 
4n i 

d4y ei(q+a!p)‘y S(Y2) E (YO) (III. 4) 

The function defined by the y integration in (III. 4) is well known. A knowledge 
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of a few of its properties is extremely useful. Consider 

A(y,m2) z 1 
i (2T)3 

/ 

d4keikmy6(k2 -m2) E (kg) 

In field theory, A(y , m2) is related to the imaginary part of the Feynman propa- 

gator for a free particle of mass m: 

- $ (Yo)AtY,m2) = Im <OIT(@ (y) + to))/ O> 

A(Y, m2)= i <O~[$J (Y), + (O)lb> 

represented diagrammatically by 

I 
I 

6 
l 

I Y 

I 

A(y) m2) has the following useful properties 19. . 

A. 

B. 

C. 

1 W,m2> = 5 E (Y~)~(Y~) - 
1 

A(Y,O) =s E (Yo)S(Y2) 

d 

d m2 
A(Y9m2) 

I m2=0 
= -& Ed 

l-F\ 
where J1 rnJy& ) is the regular Bessel function. Note the light-cone singular- 

ities in A(y,m2) and the fact (property B) that the Fourier transform of 6(k2)e(kO) 

is, up to numerical factors, just 6 (y2) E (yo). 
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We can now evaluate III. 4: 

ocl 

Vl(Q2,v) = 2n 

I 

da!f(a!)A(o P+q,O) 

-00 

ZZ da! f (a!)8((Y2M2 + ICY v - Q2)+ M+ v) 

Now there are two solutions to the a-function: 

In the Bjorken limit, these reduce to 

o! r -2v/M2 

and we find, doing the integral against the a-function 

Lim vl(Q2, v) = 
Bj 

$+(a) -f($] 

Returning briefly to the spectral condition (no. 3 listed above), we find we can 

make V(Q2, v) vanish for 12~1 C Q2 if f(x) = 0 for )a! 1 > 1. This trans- 

lates into a restriction of F (y . P). It ensures that f (-2v /M2) vanishes 

in the Bjorken limit, leaving 

Lim V,(Q2, V) = Y$ f(x). 
Bj 
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Our conjecture based on the geometrical picture of the previous section is borne 

out: The structure function measures the Fourier transform of the smooth func- 

tion multiplying the light-cone singularity with a frequency proportional to x. The 

scaling law is analogous to Bjorken’s scaling laws for WI or W2. 

Suppose, now, that we look at a term in C(y2, y a P) with a weaker singularity 

on the light cone, for example: 

where the constant A2 (with dimension [mass12) is necessary to preserve the di- 

mension of C(y2, y . P). This term contributes to V(Q2, v ) a term of the form 

V2(Q2, V) = * 

/ 

e 
4R i 

iq’y d4y&12 8 (y2) E (yo) G (y . P) 

2 2 Again we may guess the answer by dimensional analysis: We expect V2 - 4 /v 

in the Bjorken limit. Property C of the function A(y, m2) allows us to perform 

this integral-substitute for 0 (y2) E (yo), do the integral as for V1, differentiate 

by m2 and set m2 to zero-with the result 

2 
v2(Q2, v) Q $- g(x) 

V 

where g(x) is the Fourier transform of G(y . P). 

The relation between the light-cone singularity of a term in C(y2, y . P) and 

the power of v in the ensuing scaling law is completely general. In deep in- 

elastic scattering, only the most singular term on the light cone survives in the 

limit so the scaling law measures the strength of that singularity. By the way, , 

this establishes the second “condition” for light-cone dominance mentioned at 

the beginning of Section II: The leading singularity indeed dominates in the Bj limit. 
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What is remarkable in the SLAC-MIT experiments is that scaling for v W2 

and W1 in the Bjorken limit is what would be expected if the electromagnetic 

current were constructed.from free fields: That is, construct electromagnetic 

currents from some hypothetical free fields and commute them as we did for 

the scalar case :$+ (y) $ (y) : ‘above. Certain singular functions will occur and 

give rise to the prediction that v W2 and W1 scale. Of course, this is not to say 

that the proton is described by free-field theory. If it were, only elastic scatter- 

ing could occur. Only leading singularities are from free-field theory. The 

matrix elements of bilocal operators, F [a]‘Y. P), whose Fourier transforms pro- 

duce the observed scaling functions involve interactions and should be rich 

sources of information about the structure of the nucleon. Just how much free- 

field theory is necessary in order to recover free-field singularities on the light 

cone will become apparent when we study the parton model in the next section. 

We now turn to the third aspect of light-cone expansions: trying to calculate 

by approximate methods in more “realistic” models. Here we must be very 

brief. One’s first instinct might be to try perturbation theory in some reasonable 

model like QED with massive photons. However, one finds that in every order 

scaling for v W2 and WI is broken by logarithms of Q2, or correspondingly the 

leading light-cone singularities of free-field theory are not preserved in perturba- 

tion theory. 
20 

Only very smooth (super-renormalizeable) theories scale order- 

by-order in perturbation theory -but these do not provide a very attractive model 

for hadronic currents. For example, there is no known super-renormalizeable 

theory in four dimensions which describes spin l/2 particles-an unfortunate sit- 

uation for quark enthusiasts. 

Faced with this, one could either forget perturbation theory or try to sum 

all orders and show that scaling, and therefore free-field light-cone singularities, 

reappears. While there has been work on the latter, 
21 

the former has attracted 

-17- 



the most attention recently. There are two popular ways to ignore perturbation 

theory: The first is to do free-field theory, the second is to introduce inter- 

actions through the canonical equations of motion and canonical commutation 

relations in some model field theory (knowing full well that the canonical equa- 

tions of motion are modified by the divergences of perturbation theory, if we 

believed perturbation theory). The first way, free-field theory, was emphasized 

by Fritzsch and Gell-Mann 22 and proceeds as follows. To calculate the leading 

term in the light-cone expansion of the commutator of two currents, imagine the 

currents to be constructed of some free fields (e. g. , for quarks: J e-m* (y) = 
P 

6 (y) yP Q e(y), .where Q is the 3 x3 quark charge matrix) and compute 
[ 
JP(y), Jv (0) 1 

as we did for :++(y) $I (y) : above. One finds a free-field light-cone singularity 

multiplying some bilocal operator. This singularity will give scaling as observed 

at SLAC. The matrix element of the bilocal operator determines the shape of the 

scaling functions W,(x) and v W,(x). One does not assume that free-field theory 

describes the bilocal operator, only the singularity. This leaves the shapes of 

W,(x) and v W2(x) unspecified. This approach is primarily useful for generating 

algebraic relations (9, sum rules) involving various deep inelastic processes. 

If the currents carry SU(3) labels, then the bilocal operators will carry other SU(3) 

quantum numbers by virtue of the f ijk and d ijk which appear when doing the com- 

mutators. How sum rules are constructed is discussed, for example, in Ref. 22. 

Not surprisingly, the sum rules derived in this manner can also be derived in the 

parton model-a fact which we will understand better in the next section. 

The second approach: “Canonical manipulations” is more of a testing ground 

to tell us when we might trust free-field theory than a calculational scheme in its 

own right. That is: One verifies that the introduction of interactions, treated 

canonically, does not alter the singularities of free-field theory and then one 
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proceeds with free-field theory. If one’s results depend on the interaction, then 

they are thought less likely to be valid since we have little claim to know what 

are the correct interactions among the hypothetical fields which build up hadronic 

weak and electromagnetic currents. “Canonical manipulations” provide a guide 

which tells us how far free-field theory can be pushed. Using this approach, 

Brandt and Preparata 10 and Gross and Treiman 23 showed that introduction of a 

neutral vector interaction among hypothetical quarks does not alter the free-field 

light-cone singularity. Similar techniques were used by Llewellyn Smith to study 

scalar and pseudoscalar interactions with similar results. 24 A related approach, 

originated by Cornwall and Jackiw, 25 begins with a canonical field theory quan- 

tized on the plane T = y” + y3 = 0 rather than at equal times. Light-cone, actually 

equal-r, commutators of currents may be computed from the canonical equal-r 

commutator of the fields just as equal-time current commutators are usually cal- 

culated from equal-time commutation relations of fields. This approach yields 

the same results as canonical manipulations at equal times but may be somewhat 

simpler from a computational standpoint. 

In any case, at the present time there does not seem to be any attractive way 

to calculate light-cone expansions beyond the leading term which is consistent 

with a leading singularity given by free-field theory. 

IV. FREE FIELD LIGHT-CONE SINGULARITIES- 
THE PARTON MODEL WITHOUT PARTONS 

We now turn to the parton model to provide a simple picture of the origin of 

the free-field singularity which the SLAC -MIT electron scattering experiments’ 

have found in the current correlation function. 26,27 This is an appropriate time , 

to emphasize again that we are assuming that the experiments really are asymp- 

totic. If scaling is violated at larger Q2, then the important singularities are 

not those of free-field theory and this naive constituent picture is inapplicable. 
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I 

Again we consider scalar currents and confine ourselves to scalar partons. 

To formulate the parton model, go to the target’s infinite momentum frame 28 

where its momentum F(in the z-direction) is larger than any other variable in 

the problem (e. g. , IFI >> Q2/~, V/M). - At infinite momentum and in the Bj 

limit, it is argued that the interactions of the constituents in the target are slowed 

down and they appear instantaneously free when hit by the current. On the basis 

of this picture, supported by detailed calculations in models, 29 the constituents 

are taken to be scattered elastically by the current and not to interact with the 

spectator constituents after scattering. These assumptions of elasticity and 

incoherence are the heart of the model. 

Diagrammatically, the model reduces V(Q2, v) (for positive energy photons, 

we need only the first ordering of currents in (III. 1)): 

v oc 

in the Bjorken limit to the following: 

Notice that in the parton model, the currents are connected by 

which should produce a A(y , m2) in coordinate space -let us see how this arises. 
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The parton model diagram reads as follows: 

Lim V(Q’,v) = & 
Bj / 

d4dqay C /anI <nljb%tW> 
n 

(IV. 1) 

where In> are parton states out of which the proton is composed with amplitude 

“n (I’) = C ‘nIn>)’ and j is the free single particle current operator which 
n 

can only scatter partons, not create pairs. Terms like a* m an are all eliminated by 

the assumption of incoherence. 

Elasticity and incoherence reduce J(y) to j(y): there are no form factors 

to diminish the vertex. Insert into (IV. 1) a complete set of states and identify 

the current correlation function: 

‘dJoi)J(O)IP> =x Iant <nlj(y)lm, <m(W)jn> 
nm 

j(y) operates on each parton, pi, in (n> individually so the sum on m reduces 

to the phase space for the single parton it scatters: 

<p(J(Y)J(O)IP> = C {anI I d3 
2 <ilj(O)li’) <i’lj(O)li) 

‘t 
ni 1 

@e 
i(Pi - Pil)‘Y 
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With our normalization <iI j (0)) if> = hi, the charge of the i th parton, 

<pI~(~)J(o)ip) 

I 

= ‘pi e-ipi”y C h21a I2 elpi” 
i’ i n 

ni 

(IV. 2) 

But 

where the familiar A(y,m2) = i(A+(y,m2) - A-&, m2)) (A+(y,m2) has the op- 

posite sign of the exponential from A- (y , m2)) . Had we begun with the current 

commutator, rather than the product, we would have obtained A(y) m2). 

It remains to simplify the non-singular part of (IV. 2). The sum over n in- 

cludes a sum over the momenta of the ith particle-which is taken to be forward 

along the infinite momentum direction, so: 

6 (X - Xi) 

where 

P” 2 xi PF o< Xi< 1 

so that 

1 

<dJW JP)/P> = &hm2) dxe ixP.y 7 
L ianI Af 6(X - Xi) 

ni 
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The last factor is the scaling structure function in the parton model: 

i.e., him vv(Q2,v) = f(x) = 
W 

C lan[2Af8(X-Xi) 

ni 

so we have: 
1 

<P/J(Y)J(O)IP> a~ A-(y,m2) 
/ 

dxeixysP f(x) 

0 

The analogous result for the commutator is 

<PI[J(y), J(Ojll P> cc A(y,m2) dxcos(xy . P)f (x) 

Finally, taking the leading singularity of A(y , m2): 

1 

<P\[J(y), J(O)]/P> 0~ 6(y2) e (~0) 
I 

dxcosxy . Pf(x) (IV. 3) 

+ less singular terms. 

To summarize: 

I. The free-field light-cone singularity which corresponds to Bjorken 

scaling emerges from the free propagation of the elastically scattered 

parton in the final state. 

II. The smooth y . P dependence measures the Fourier transform of the 

parton probability distribution weighted by the squared charge. 

Suppose we had begun with the light-cone result (IV.3) and tried to derive 

the parton model (IV. 1). All of the algebraic results are reversible-however, 

-23- 



at some point, it is necessary to assume that partons exist, i.e., that it makes 

sense to write lP> = g an In> for constituent states In). Hence the title of this 

section: The light-cone formalism, including leading free-field singularities, 

does not seem to require the existence of real physical constituents. It is an 

open question how much can be abstracted from free-field theory without forcing 

real, physical constituents upon us. A more complete discussion of the relation 

between the two approaches is given in the second paper under ref. 27. 

The parton model and light-cone analyses are not equivalent outside of the 

realm of highly inelastic lepton scattering. To illustrate the problems which 

arise when one tries to apply light-cone techniques to other processes, consider 

briefly massive muon pair production in the parton model. The experiment is: 

P1 + P2 -* I*+ /J - + anything 

at large S = (P1 + P2)2 and large Q2 = rp+ + Pp -)z with Q2/s finite. A treat- 

ment of this process using light-cone techniques together with additional assump- 

tions has been given by Professor Brandt 
30 31 at this School. In the parton model 

two diagrams are possible: 

A. Annihilation B. Bremsstrahlung 

Drell and Yan use their parton model to show diagram A dominates for Q2, s--co; , 

Q2/s fixed. A free-field light-cone singularity is associated with the propagation 

of an elastically-scattered parton. Diagram A has no scattered parton, hence no 
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light-cone singularity. One can show 27 that the matrix element corresponding to 

A is smooth across the light cone. Diagram B, however, has an elastically 

scattered parton and is singular on the light cone. In addition, it is not hard to 

see 
27,30 

that both diagrams receive contributions from the region y2 6 l/Q2 in 

coordinate space. Referring back to our formulation of light-cone dominance, we 

see that the first requirement (y2 s 1/Q2) is satisfied, but the second is violated- 

a non-leading singularity dominates. The resolution lies in the S-dependence of 

the diagrams-while diagram B is more singular at y2 = 0, in the parton model it 

falls more quickly with S, leaving the non-singular diagram dominant. 

In light-cone treatments of this process, additional assumptions must be 

made which re-establish the dominance of diagrams like B. The situation is 

certainly not so simple as it was in electron scattering. 
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