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ABSTRACT 

Neither quantum field theory nor S-Matrix theory have a well defined proce- 

dure for going over to an approximation that can be reliably used in non-relativistic 

models for nuclear physics. We meet the problem here by constructing a finite par- 

ticle number relativistic scattering theory for (scalar) particles and mesons using 

integral equations of the Faddeev-Yakubovsky type. Restricted to N particles 

and one meson, we can go from the relativistic theory to a “potential theory” in 

the integral equation formulation by using boundary states which do not contain 

the meson asymptotically. The meson-particle input amplitudes contain a pole 

at the particle mass, and the particle-particle input amplitudes are null. This 

gives unique definition (numerically calculable) to the particle-particle off-shell 

amplitude, and hence to the covariant “scattering potential” (but not to the non- 

invariant concept of “potential energy”). As we have commented before, if we take 

these scattering amplitudes as input for relativistic Faddeev equations, the results 

are identical to those obtained from the same model starting from three particles 

and one meson. In this paper we explore how far we can extend this relativistic 

“potential model” to higher numbers of particles and mesons. 
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In a paper presented this yearIll I noted that “In effect we have discovered a 

‘relativistic potential model’ which does not generate ‘three body forces’.” In fact 

all that I showed in that paper was that the “confined meson model” led to the 

same dynamical equations whether one first computed a “potential” in the two 

particle-one meson system and then added a third particle or started from three 

particles and one meson and then confined the meson - a conjecture that Sawicki 

had stated but did not prove. I assumed that the extension of the theorem to N 

particles and one meson was obvious. Perhaps so. I will try to convince you below 

that starting from a relativistic N-particle plus one meson system and confining 

the meson leads to a relativistic N-particle theory which is well defined, unitary 

and relativistically invariant as to predictions. I will then indicate what problems 

lie in wait when one goes on (a) to include two distinct mesons in the N-particle 

system or (b) t o include “anti-particles” or Ucrossing symmetry”; conjoining (a) 

and (b) lies beyond even the speculative horizon of this paper. 

The uconfined quantum” approach”’ used in this paper started from the rel- 

ativistic three-particle theory for three distinguishable scalar particles developed 

by Lindesay”’ . We specialize this theory by making a distinction between par- 

ticles and mesons (of finite mass, which we also can call “quanta” if we wish to 

include the zero mass case). Particles are not allowed to scatter directly, while 

quanta scatter by forming an intermediate state with the same mass and quan- 

tum numbers as the particle. For-an Ueffective Lagrangian” perturbation theory 

these restrictions define a “Yukawavertex” and, by extension, an “Abelian gauge 

theory”. Our scattering is driven by an s-channel “bound Staten or uresonancen 

kinematically defined by requiring this input scattering amplitude to have a pole 

in the invariant four momentum of this subsystem at this mass. The energy for 

this “off-shell” state comes from the uncertainty principle rather than from some 

“Hamiltonian”; S-momentum is conserved in any coordinate system. These prin- 

ciples give us an explicit model for the Wick”’ - Yukawa”’ description of the 

origin of nuclear’ forces. As has been shown already, this leads to a well defined 

relativistic theory of particle scattering and meson production due to single meson 

exchange I61 . 



We trust this discussion specifies clearly how the two technical terms uparticle” 

and ‘(mesonn enter into what follows. Particles and mesons are assumed to have 

unique masses, or ‘decay widths so small for the problems of interest that the mass 

uncertainty can be ignored. In our theory “particles” do not scatter directly from 

each other, and the number of “particles” is conserved. 

For convenience we will use the uzero momentum frame” for the N particle plus 

1 meson system and leave discussions of Umanifest covariancen to more detailed 

presentations of this class of models. The number of particles, N, is conserved. The 

number of mesons would be conserved if we could specify the ezternal measurement 

procedure which would discriminate between a particle and a Uparticle plus any 

finite number of quanta bound Staten; of course we have ruled this possibility out 

by our construction. The Faddeev theory conserves the number of mesons as well 

as particles, and then (at the 2 particle plus one meson level) implicitly defines the 

“coupling constant” through unitarity. In the confined quantum theory presented 

here the number of mesons flips back and forth between 0 and 1 depending on 

whether we are looking at a system of N - 1 particles and one Ubound Staten - 

which is indistinguishable from a particle -or N particles and one meson. All of 

this fits comfortably into the framework of a relativistic, unitary Faddeev-type 

scattering theory, as my students and I have taken some pains to establish. 

The concept of uzero momentum framen is invariant for any finite system. The 

velocity of any massive system can be observationally specified by its finite velocity 

with respect to the system in which the 2.7’K background radiation is isotropic by 

calculating its invariant mass and the implied velocity that would bring it to rest 

in that system. This clearly allows us to calculate the velocity of any terrestrial 

laboratory with respect to that (locally and empirically) specified system. 

We restrict our degrees of freedom to mass shell particles specified by the 

3-vectors Jc;,; E 1,2, . . . . N and the momentum (when present) of the meson q. 

Since the ubound Staten is indistinguishable either kinematically or by quantum 

numbers from one of the particles, we can define ;Ei = CEiki whether the quantum 

is present or absent. In the first case &C + q = 0, and in the second ;Ei = 0. We 

generalize the starting point of our earlier three-body treatments (two particles 
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plus 1 meson) to N particles plus 1 meson (following roughly our “zero rangen 

treatment of the non-relativistic four body problem”’ ) by writing the initial 

equations as L 

Since the Faddeev spectator indices (a, 6, c) do not generalize to N-particle systems, 

we use instead pair indices (ip, jp, kp) for the input two-body amplitudes t. The 

form of the equations then follows immediately from our assumption that any 

particle can only scatter from the meson, and not from another particle. Our other 

basic assumptions then fix the input amplitudes as tip = ~~rr,“,~&j~“(~j-~~) where D. 

Dip is required to vanish when the invariant four momentum of;he quantum- 

particle system is equal to Wli, the mass of the particle. Using mass shell states 

with the usual invariant completeness relation s e ]k >< k] = 1, cm = d%%8, 

and removing the dependence on q by overall 3-momentum conservation will then 

leave us N 3-vector (particulate) degrees of freedom and a factor of [cP(-;Ec)]-l 

when we reduce the operator equations to integral equations. 

Rather than following through this explicit treatment here, we argue instead 

that our model already specifies the structure we must end up with. As we de- 

velop the multiple scattering series for the amplitudes Tij, which are defined by 

ss .~(Sir-mt)gj~(sj~-mg)Fi~,jp, we find that we intersperse N-particle 

propagators with N particle plus 1 meson propagators conserving 3-momentum 

but (thanks to the Wick-Yukawa mechanism we have formalized) not the energy. 

However the energy with which the 1 meson states appear differs from that of 

the states by which it is clothed only by the meson energy itself. Further, since 

the momentum conservation relates the states with which we start and end, we 

conclude that the integral equations must be of the form 

IgIl = 
/ 

d3k’ 
FV;k(lki -k_il)E, _ Ef, _ io+Fkj(lel,..,k;,...,khr;;E(o) 

mk 
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where 

Vij I - Wlj&j 

(ki - kj”)” + p2 

and E = Cf=icmk. Since Vij = Vji, a large number of proofs exist which establish 

that the solution of these equations, if unique, is unitary. 

For N=2 we see that our model is equivalent to ordinary Yukawa potential 

scattering except that the kinematics of the particles are relativistic. It is also 

convenient to note that ki + kj = 0, and hence that the dynamics involves only 

one vector variable. When we go from N=2 to N=3, we must use care, since 

the integral equations as they stand contain, on iteration, disconnected pieces 

and the summation becomes ambiguous. This is, of course, the same problem 

Faddeev faced in the non-relativistic potential theory, and can be met by the 

same method. We decompose the three body amplitude into a sum of pair plus 

spectator terms, where the driving term for the pair is the solution of the two 

body problem in the three body space, and then couple these in such a way as 

to produce a unique solution to the problem which was ambiguous as originally 

posed. The resulting equations are now in two vector variables rather than one. 

A check on this approach is provided, as already notedl’l, by first formulating 

the 3 particle plus 1 meson problem as a four-body problem and noting that the 

confined quantum assumption reduces the 18 Faddeev-Yakubovsky amplitudes to 

three, which turn out to be identical to the Faddeev amplitudes obtained by the 

first approach. 

For the four particle problem driven by single meson exchange, we start from 

the general pair equations, show that one iteration can be regrouped into (3~) and 

(2,2) configurations, and then written again as a kernel which uses the solution of 

the S-particle problems and the product of two two-particle problems as driving 

terms. The number of vector variables, and the number of non-cancelling terms 

in the energy propagator then goes from one to two. So far as we can see, this 

procedure generalizes from N to N + 1 if we use the Faddeev-Yakubovsky com- 

binatorics for any finite number of particles. Further, since the procedure starts 
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from pairs coupled by a single meson, we can use a separate meson mass pij for 

each pair, and need not use a common meson mass for the whole system. 

The conclusion we have now reached is that if we consider a system of rela- 

tivistic particles which interact only by the elementary exchange of a relativistic 

meson whose mass and coupling constants can be separately specified for each 

pair, the relativistic N-particle problem is equivalent to the corresponding Yukawa 

potential problem, provided that we use Faddeev-Yakubovsky integral equations 

and that we use relativistic kinematics for the particles. For some people this is 

not particularly startling. When discussing this with Brian Lynn[” , he claimed 

that under the same assumptions the result could be obtained by starting from 

the Bethe-Salpeter equation. Perhaps so. What we claim here is that we have 

proved this proposition; I am eager to see other proofs. 

Although, looked at superficially, the system we have just derived looks as 

if it contains N(N - 1)/2 mesons Uat the same time”, this is an illusion. The 

“potential” is in fact a relativistic propagator in which only one mesonic degree 

of freedom appears. In order to obtain (if we can - which is at best speculative 

at this point) a genuine ((two meson exchange potential”, we would have to start 

from relativistic four particle equations containing two particles and two mesons, 

and apply the confined quantum restriction to that model. This is problem (a) 

as alluded to in our first remarks. At the N=2 level, we anticipate no difficulties 

in principle. If our method is correct, and applicable, we will be able to find 

out how to solve the problem of relating the Uboxn, “crossed boxn and iteration 

of the “single meson exchange” to each other in a way that leads to a unique 

specification of the “potential”. Here we have an advantage over the discussions 

which started three decades ago. Since we start from integral equations which are 

unambiguously specified in terms of the multiple scattering series they generate, 

and are covariant, finite, unitary, “time reversal n invariant, . ..most of the problems 

that arise when one starts from a “field theory” expansion in terms of powers of 

a “coupling constant” and then tries to make sense of this in terms of something 

that can be inserted in a non-relativistic Schroedinger equation[“’ are missing. 

We trust that a ‘g* potentialn which meets some of the needs of the relativistic 
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2-particle problem can be constructed this way. Whether a similar argument to 

that given above can be constructed to justify the use of this object in the N 

particle relativistic problem is more dubious. 

The attack on problem (b) - th e inclusion of antiparticles - has been under- 

taken by George Pastrana’lol . It is easy to start from Lindesay’s three particle 

theory by calling the distinguishable elements “particle”, “antiparticle” and “me- 

son” with masses m = fi and p. Particle-antiparticle scattering then goes through 

state p while particle (antiparticle) - meson scattering goes through state m(m); 

we must now also require a conserved quantum number such that the number 

of particles minus the number of antiparticles is conserved. Starting from the 

rn&,pp sector, the unitary theory which then results can be ucrossed” to yield 

unique and unitary predictions for the pm, prft, mm, mm sectors. Putting these 

two approaches together should allow extensions to interesting quantitative appli- 

cations in QED and &CD. 
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