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ABSTRACT

Neither quantum field theory nor S-Matrix theory have a well defined proce-
dure for going over to an approximation that can be reliably used in non-relativistic
models for nuclear physics. We meet the problem here by constructing a finite par-
ticle number relativistic scattering theory for (scalar) particles and mesons using
integral equations of the Faddeev-Yakubovsky type. Restricted to N particles
and one meson, we can go from the relativistic theory to a “potential theory” in
the integral equation formulation by using boundary states which do not contain
the meson asymptotically. The meson-particle input amplitudes contain a pole
at the particle mass, and the particle-particle input amplitudes are null. This
gives unique definition (numerically calculable) to the particle-particle off-shell
amplitude, and hence to the covariant “scattering potential” (but not to the non-
invariant concept of “potential energy”). As we have commented before, if we take
these scattering amplitudes as input for relativistic Faddeev equations, the results
are identical to those obtained from the same model starting from three particles
and one meson. In this paper we explore how far we can extend this relativistic

“potential model” to higher numbers of particles and mesons.
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In a paper presented this year'"' I noted that “In effect we have discovered a
‘relativistic potential model’ which does not generate ‘three body forces’.” In fact
all that I showed in that paper was that the “confined meson model” led to the
same dynamical equations whether one first computed a “potential” in the two
particle-one meson system and then added a third particle or started from three
particles and one meson and then confined the meson — a conjecture that Sawicki
had stated but did not prove. I assumed that the extension of the theorem to N
particles and one meson was obvious. Perhaps so. I will try to convince you below
that starting from a relativistic N-particle plus one meson system and confining
the meson leads to a relativistic N-particle theory which is well defined, unitary
and relativistically invariant as to predictions. I will then indicate what problems
lie in wait when one goes on (a) to include two distinct mesons in the N-particle
system or (b) to include “anti-particles” or “crossing symmetry”; conjoining (a)

and (b) lies beyond even the speculative horizon of this paper.

The “confined quantum” approach'” used in this paper started from the rel-
ativistic three-particle theory for three distinguishable scalar particles developed
by Lindesay™ . We specialize this theory by making a distinction between par-
ticles and mesons (of finite mass, which we also can call “quanta” if we wish to
include the zero mass case). Particles are not allowed to scatter directly, while
quanta scatter by forming an intermediate state with the same mass and quan-
tum numbers as the particle. For.an “effective Lagrangian” perturbation theory
tilese restrictions define a “Yukawa vertex” and, by extension, an “Abelian gauge
theory”. Our scattering is driven by an s-channel “bound state” or “resonance”
kinematically deﬁned by requiring this input scattering amplitude to have a pole
in the invariant four momentum of this subsystem at this mass. The energy for
this “off-shell” state comes from the uncertainty principle rather than from some
“Hamiltonian”; 3-momentum is conserved in any coordinate system. These prin-

ciples give us an explicit model for the Wick"" - Yukawa'

description of the
origin of nuclear forces. As has been shown already, this leads to a well defined
relativistic theory of particle scattering and meson production due to single meson

()
exchange'®



We trust this discussion specifies clearly how the two technical terms “particle”
and “meson” enter into what follows. Particles and mesons are assumed to have
unique masses, or decay widths so small for the problems of interest that the mass
uncertainty can be ignored. In our theory “particles” do not scatter directly from

each other, and the number of “particles” is conserved.

For convenience we will use the “zero momentum frame” for the N particle plus
1 meson system and leave discussions of “manifest covariance” to more detailed
presentations of this class of models. The number of particles, N, is conserved. The
number of mesons would be conserved if we could specify the external measurement
procedure which would discriminate between a particle and a “particle plus any
finite number of quanta bound state”; of course we have ruled this possibility out
by our construction. The Faddeev theory conserves the number of mesons as well
as particles, and then (at the 2 particle plus one meson level) implicitly defines the
“coupling constant” through unitarity. In the confined quantum theory presented
here the number of mesons flips back and forth between 0 and 1 depending on
whether we are looking at a system of N — 1 particles and one “bound state” —
which is indistinguishable from a particle —or N particles and one meson. All of
this fits comfortably into the framework of a relativistic, unitary Faddeev-type

scattering theory, as my students and I have taken some pains to establish.

The concept of “zero momentum frame” is invariant for any finite system. The
velocity of any massive system can be observationally specified by its finite velocity
with respect to the system in which the 2.7° K background radiation is isotropic by
calculating its invariant mass and the implied velocity that would bring it to rest
in that system. This clearly allows us to calculate the velocity of any terrestrial

laboratory with respect to that (locally and empirically) specified system.

We restrict our degrees of freedom to mass shell particles specified by the
3-vectors k;,1 € 1,2,...,N and the momentum (when present) of the meson q.
Since the “bound state” is indistinguishable either kinematically or by quantum
numbers from one of the particles, we can define K = Efii&,- whether the quantum

is present or absent. In the first case K + ¢ = 0, and in the second K = 0. We

generalize the starting point of our earlier three-body treatments (two particles



plus 1 meson) to N particles plus 1 meson (following roughly our “zero range”
treatment of the non-relativistic four body problem'” ) by writing the initial

equations as
Fipin =t;, [6;; — X110, RoF 1
tU,J tu | Y k=1%k*0X ku 5u

Since the Faddeev spectator indices (a, b, ¢) do not generalize to N-particle systems,
we use instead pair indices (tu,ju, kp) for the input two-body amplitudes t. The
form of the equations then follows immediately from our assumption that any

particle can only scatter from the meson, and not from another particle. Our other

gL, 8:50° (ks — Kj)
w

D,, is required to vanish when the invariant four momentum of the quantum-

basic assumptions then fix the input amplitudes as ¢;, = where

particle system is equal to m;, the mass of the particle. Using mass shell states
with the usual invariant completeness relation [ %1—"|[5:, ><k|=1, em =vVk?+m?,
and removing the dependence on ¢ by overall 3-momentum conservation will then
leave us N 3-vector (particulate) degrees of freedom and a factor of [eu(—K)]™*

when we reduce the operator equations to integral equations.

Rather than following through this explicit treatment here, we argue instead
that our model already specifies the structure we must end up with. As we de-
velop the multiple scattering series for the amplitudes T;;, which are defined by

g ltm
tgiu—m?

(8ip— m?)gj#%‘@(sj# - m})F,-M-,,, we find that we intersperse N-particle
propagators with N particle plus 1 meson propagators conserving 3-momentum
but (thanks to the Wick-Yukawa mechanism we have formalized) not the energy.
However the energy with which the 1 meson states appear differs from that of
the states by which it is clothed only by the meson energy itself. Further, since
the momentum conservation relates the states with which we start and end, we

conclude that the integral equations must be of the form

Ty (K; Ko) — Vi (|k: — E3l)
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where

Voo — ____ 9i8ib;
T (k- k)R + w2

and F = E;’f:lem,‘. Since V;; = Vj;, a large number of proofs exist which establish

that the solution of these equations, if unique, is unitary.

For N=2 we see that our model is equivalent to ordinary Yukawa potential
scattering except that the kinematics of the particles are relativistic. It is also
convenient to note that k; + k; = 0, and hence that the dynamics involves only
one vector variable. When we go from N=2 to N=3, we must use care, since
the integral equations as they stand contain, on iteration, disconnected pieces
and the summation becomes ambiguous. This is, of course, the same problem
Faddeev faced in the non-relativistic potential theory, and can be met by the
same method. We decompose the three body amplitude into a sum of pair plus
spectator terms, where the driving term for the pair is the solution of the two
body problem in the three body space, and then couple these in such a way as
to produce a unique solution to the problem which was ambiguous as originally
posed. The resulting equations are now in two vector variables rather than one.
A check on this approach is provided, as already notedll], by first formulating
the 3 particle plus 1 meson problem as a four-body problem and noting that the
confined quantum assumption redqces the 18 Faddeev-Yakubovsky amplitudes to
three, which turn out to be identical to the Faddeev amplitudes obtained by the
first approach.

For the four particle problem driven by single meson exchange, we start from
the general pair equations, show that one iteration can be regrouped into (3,1) and
(2,2) configurations, and then written again as a kernel which uses the solution of
the 3-particle problems and the product of two two-particle problems as driving
terms. The number of vector variables, and the number of non-cancelling terms
in the energy prépagator then goes from one to two. So far as we can see, this
procedure generalizes from N to N + 1 if we use the Faddeev-Yakubovsky com-

binatorics for any finite number of particles. Further, since the procedure starts



from pairs coupled by a single meson, we can use a separate meson mass ui; for

each pair, and need not use a common meson mass for the whole system.

The conclusion we have now reached is that if we consider a system of rela-
tivistic particles which interact only by the elementary exchange of a relativistic
meson whose mass and coupling constants can be separately specified for each
pair, the relativistic N-particle problem is equivalent to the corresponding Yukawa
potential problem, provided that we use Faddeev-Yakubovsky integral equations
and that we use relativistic kinematics for the particles. For some people this is
not particularly startling. When discussing this with Brian Lynn' | he claimed
that under the same assumptions the result could be obtained by starting from
the Bethe-Salpeter equation. Perhaps so. What we claim here is that we have

proved this proposition; I am eager to see other proofs.

Although, looked at superficially, the system we have just derived looks as
if it contains N(N — 1)/2 mesons “at the same time”, this is an illusion. The
“potential” is in fact a relativistic propagator in which only one mesonic degree
of freedom appears. In order to obtain (if we can - which is at best speculative
at this point) a genuine “two meson exchange potential”, we would have to start
from relativistic four particle equations containing two particles and two mesons,
and apply the confined quantum restriction to that model. This is problem (a)
as alluded to in our first remarks. At the N=2 level, we anticipate no difficulties
in principle. If our method is correct, and applicable, we will be able to find
out how to solve the problem of relating the “box”, “crossed box” and iteration
of the “single meson exchange” to each other in a way that leads to a unique
specification of the “potential”. Here we have an advantage over the discussions
which started three decades ago. Since we start from integral equations which are
unambiguously specified in terms of the multiple scattering series they generate,
and are covariant, finite, unitary, “time reversal ” invariant, ...most of the problems
that arise when one starts from a “field theory” expansion in terms of powers of
a “coupling constant” and then tries to make sense of this in terms of something

]

that can be inserted in a non-relativistic Schroedinger equation' are missing.

We trust that a “g* potential” which meets some of the needs of the relativistic



2-particle problem can be constructed this way. Whether a similar argument to
that given above can be constructed to justify the use of this object in the N
particle relativistic problem is more dubious.

The attack on problem (b) - the inclusion of antiparticles — has been under-

[10]

taken by George Pastrana . It is easy to start from Lindesay’s three particle
theory by calling the distinguishable elements “particle”, “antiparticle” and “me-
son” with masses m = i and u. Particle-antiparticle scattering then goes through
state u while particle (antiparticle) - meson scattering goes through state m(m);
we must now also require a conserved quantum number such that the number
of particles minus the number of antiparticles is conserved. Starting from the
min, pp sector, the unitary theory which then results can be “crossed” to yield

unique and unitary predictions for the um, um, mm,mm sectors. Putting these

two approaches together should allow extensions to interesting quantitative appli-
cations in QED and QCD.

REFERENCES

1. H.P.Noyes, “A Minimal Relativistic Model for the Three Nucleon System”, in
Three Body Forces in the Three Nucleon System, B. Berman. ed., Springer-
Verlag, 1986 (in press) and SLAC-PUB-3973.

2. H.P.Noyes and G.Pastrana, “A Covariant Theory with a Confined Quan-
tum”, in Few Body Problems in Physics, B. Zeitnitz, ed., North Holland,
Amsterdam, 1983, p. 655.

James V. Lindesay, PhD Thesis, Stanford, 1981; SLAC Report No. 243.
G.C.Wick, Nature, 142, 993 (1938).

H.Yukawa, Proc.Phys.Math.Soc., Japan, 17, 48 (1935).

H.P.Noyes and J.V.Lindesay, Australian J. Physics, 36, 601 (1983).
H.Pierre Noyes, Phys. Rec. C 26, 1858 (1982).

B. Lynn, private communication, August 1986.

M.J.Moravcsik and H.P.Noyes, Ann.Rev.Nucl.Sei. 10, 95-174 (1961).
10. G.Pastrana, PhD thesis, Stanford (in preparation).

© ® X s P



SLAC-PUB — 4053
August 1986

(T/E)

ERRATA

A RELATIVISTIC “POTENTIAL MODEL”
FOR N-PARTICLE SYSTEMS”

H. PIERRE NOYES
Stanford Linear Accelerator Center

Stanford University, Stanford, California 94305

On page 4, the first equation should read:

Fipju = tiy [5€j - Eﬁ:lgikRoFku,ju]
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